
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Protecting C++ Programs
with CHERI

Khilan Gudka, Alexander Richardson, Robert N. M. Watson
University of Cambridge

PriSC 2019
13 January 2019

The need for C++ memory safety

• Many widely used applications are written in C++: web browsers,
mail readers, office suites, etc.

• These applications handle untrusted data and are thus quite
susceptible to spatial and temporal security vulnerabilities.

• This can lead to information leaks, privilege escalation, arbitrary
code execution.

2

CHERI protection model

• RISC hybrid-capability architecture supporting fine-grained,
pointer-based memory protection:

• pointer integrity (e.g., no pointer corruption)

• pointer provenance validity (e.g., no pointer injection)

• bounds checking (e.g., no buffer overflows)

• permission checking (e.g., W^X for pointers)

• monotonicity (e.g., no privilege escalation / improper re-use)

• encapsulation (e.g., protect software objects)
3

Pr
ot

ec
t

po
in

te
r

Pr
ot

ec
t

po
in

te
e

25
6-

bi
t

ca
pa

bi
lit

y
length (64 bits)
offset (64 bits)
base (64 bits)

CHERI capabilities extend pointers with:

• Tags protect capabilities in registers and memory

• Bounds limit range of address space accessible via pointer

• Permissions limit operations – e.g., load, store, fetch

• Sealing for encapsulation: immutable, non-dereferenceable
4

Allocation

Virtual
address
space

v1-
bi

t
ta

g
permissions (31 bits) sobjtype (24bits)

CHERI: 256-bit architectural capabilities

5

12
8-

bi
t

ca
pa

bi
lit

y

Allocation

Virtual
address
space

v
1-

bi
t

ta
g

permissions compressed bounds relative to address s

Virtual address (64 bits)

• Compress bounds relative to 64-bit virtual address

• Floating-point bounds mechanism limits bounds alignment

• Security properties maintained (e.g., monotonicity)

• Still supports C-language semantics (e.g., out-of-bound
pointers)

CHERI: 128-bit micro-architectural capabilities

Compiling C++ to CHERI

• Two modes of compilation using Clang/LLVM:

• Hybrid – annotate which pointers should become capabilities
(like const, volatile)

• Pure – all pointers are turned into capabilities

6

class A { public: int f; }

A* __capability a = new A;
a->f = 42;

LLVM IR:
%call = tail call i8 addrspace(200)* @operator new(unsigned long)(i64 zeroext 4)
%f = bitcast i8 addrspace(200)* %call to i32 addrspace(200)*
store i32 42, i32 addrspace(200)* %f

new calls malloc() which
sets bounds on the allocation

Let’s start simple…

Look easy?

7

#include <iostream>
using namespace std;

cout << “Hello World!” << endl;

Challenges

• Almost all challenges have been in the compiler frontend

• Ensuring __capability is supported and propagated correctly

• References, templates, function overloading

• Initializer lists, static initialisation of structs

• nullptr
• Memory alignment

• std::align, new, new[]

8

Challenges

• Name mangling for capability-qualified types

• void foo(A* __capability) à _Z3fooU3capP1A

• <type_traits> and <hash> specialisations for __intcap_t

• Pointer-to-members (last thing we had to fix for ”Hello World!”)

• End result: can compile all of libc++ and all ~5K non-
exception-non-rtti tests are passing.

• Have implemented support for exceptions but not very well tested

• Modifications to LLVM, libunwind, libcxxrt
9

Virtual-table hijacking
• Common code re-use attack is to use the dynamic dispatch mechanism

to invoke arbitrary C++ virtual functions.

• Counterfeit Object-Oriented Programming paper (IEEE S&P 2015) explains a
version of this attack:

1. Find a loop over a collection of objects that invokes a virtual
function on each object. vtable index is fixed at the call site.

2. Exploit a memory vulnerability and inject a collection of objects
each with their vptr fields set such that when the vtable index is
added, the desired virtual gadget will be called.

3. Overlap instance fields of these injected objects to achieve passing
values between gadgets.

10

Virtual-table hijacking

• CHERI already prevents injection of arbitrary objects.

• We can harden the virtual call mechanism by enforcing integrity of
the vptr by using sealed capabilities.

• Integrity here also means that the vptr points to the right vtable.

11

vptr

field1

field2

vfunc_1

vfunc_2

vfunc_3

…

vfunc_n

vtable for class A

instance of class A

Capability sealing mechanism

• Capability sealing allows capabilities to be marked as immutable and
non-dereferenceable.

• Hardware exceptions are thrown if attempts are made to modify
or dereference them.

• Sealed capabilities contain an additional piece of metadata, an object
type, set when a memory capability undergoes sealing.

• Sealing capability has the PERMIT_SEAL permission and the object
types that it is allowed to seal for.

• Object types allow multiple sealed capabilities to be linked.
12

vptr sealing mechanism

• Idea: replace vptr with a sealed capability

• vptr capability is sealed with the otype set to the class’s type.
Call this new capability sealed-vptr

• When an object is created, the vptr field is initialized to the
sealed-vptr capability

• At a virtual function call, sealed-vptr is unsealed to get back
the vptr capability.

• Unseal successful à correct vtable pointer, proceed to call
virtual function

13

• Tightening bounds for base-class sub objects.

• When passing an object to a polymorphic call, which expects the base
class type, set bounds to the base-class object.

• Challenges: What if we later downcast? How common is this? Can the
compiler identify these cases and not tighten bounds then?

B vptr

Hardening other C++ features

14

class A { … }
class B : public A { … }

void foo(A* a) { … }

B* b = new B;
foo(b);

A_field1

A_field2

B_field1

B_field2

A sub-object

B object

Pass capability with
bounds tightened
to the A sub-object

Hardening other C++ features

• Type safety to prevent type confusion attacks.

• A dangling pointer of class type A may now point to an object of
some other class type B when the memory is re-allocated.

• Can lead to accessing sensitive data and executing arbitrary code.

• Idea: store a sealed type capability in each object and unseal it
whenever deemed important.

• Unseal successful à type matches,
otherwise error.

15

sealed-type

vptr

field

obj

WebKit case study

• Web rendering engine used in web browsers, such as Apple Safari.

• Very large C++ codebase: parsers, interpreters, untrusted data handling.

16

• WebKit: thin layer to link against from the
applications

• WebCore: rendering, layout, network access,
multimedia, accessibility support

• JS Engine: the JavaScript engine. JavaScriptCore
by default, but can be replaced (e.g. V8 in
Chromium)

• Platform: platform-specific hooks

WebKit

WebCore

JS Engine Platform

Application

JavaScriptCore case study

• JavaScriptCore Interpreter is written in a combination of C++ and
typed target-independent assembly (?).

• The assembly is compiled (via ruby scripts!) to target-specific
assembly (if supported) or C++.

1717

subi 1, t3
loadp [protoCallFrame, t3, 16], extraTempReg
storep extraTempReg, CodeBlock[sp, t3, 16]
btinz t3, .copyHeaderLoop

t3.i32 = t3.i32 - int32_t(0x1);
t3.clearHighWord();
t5.i = *CAST<intptr_t*>(t2.i8p + (t3.i << 4));
CAST<intptr_t>(sp.i8p + (t3.i << 4) + intptr_t(0x20)) = t5.i;
if (t3.i32 != 0)

goto _offlineasm_doVMEntry__copyHeaderLoop;

Assuming JS pointers are
128-bit capabilities

Translation to
C++ for CHERI

JavaScriptCore case study

• Interpreter has virtual registers, stack and heap.

• C++ version is a large switch statement with
gotos and computed gotos:

opcode = t0.opcode;
goto *opcode;

• Each JavaScript expression is turned into an
array of ‘instructions’.

• An instruction could be an opcode, operand or
any of…

1818

Caller Frame

Return PC

CodeBlock

Callee

Argument Count

this

First argument

…

Last argument

…

…

Stack Frame

0

16

32

48

64

80

96

JS pointers are
128-bit capabilities

JavaScriptCore case study

19

union {
Opcode opcode;
int operand;
unsigned unsignedValue;
WriteBarrierBase<Structure> structure;
StructureID structureID;
WriteBarrierBase<SymbolTable> symbolTable;
WriteBarrierBase<StructureChain> structureChain;
WriteBarrierBase<JSCell> jsCell;
WriteBarrier<Unknown>* variablePointer;
Special::Pointer specialPointer;
PropertySlot::GetValueFunc getterFunc;
LLIntCallLinkInfo* callLinkInfo;
UniquedStringImpl* uid;
ValueProfile* profile;
ArrayProfile* arrayProfile;
ArrayAllocationProfile* arrayAllocationProfile;
ObjectAllocationProfile* objectAllocationProfile;
WatchpointSet* watchpointSet;
void* pointer;
bool* predicatePointer;
ToThisStatus toThisStatus;
TypeLocation* location;
BasicBlockLocation* basicBlockLocation;
PutByIdFlags putByIdFlags;

} u;

Instruction

union {
EncodedJSValue value;
CallFrame* callFrame;
CodeBlock* codeBlock;
EncodedValueDescriptor encodedValue;
double number;
int64_t integer;

} u;

(Virtual) Register

JavaScriptCore case study

• 64-bit NaN-boxing encoding to identify types of value:

• Integers (top 16-bits all set):
e.g. 0xffff000000000003 à 3

• Double-precision (at least 1 of the top 16 bits is set but not all):
e.g. 0x3ff4eb851eb851ec à 1.245
e.g. 0x7ff9000000000000 à NaN

• Pointer values (only use low 48 bits):
e.g. 0x164066810

20

JavaScriptCore case study

• Teaching WebKit/JavaScriptCore the following:

• JS pointers and registers are 128-bit capabilities

• Fixing mixing of pointer-typed and int64/int32-typed instructions
on the same register values

• Fixing constant offsets to reflect capability-sized fields

• Using virtual addresses in cases when offset is not enough (e.g.
bitwise ops, inequalities, subtracting entire capabilities)*

21

JavaScriptCore case study

• Other fixes:

• Regular expressions

• Exceptions, garbage collection

• Reading and writing closure values

• Various ops such as: op_inc, op_get_array_length, op_nstricteq,
op_get_parent_scope, op_negate, op_to_number

• Fix alignment when accessing and allocating multiple objects
contiguously (in a single allocation)

• Custom binary operations (e.g. concatenating an integer and a string)

22

JavaScriptCore case study
root@qemu-cheri128-kg365:~ # ./jsc
>>> var add3 = function(arg) { return arg + 3; }
>>> add3(5)
8
>>> add3(add3(5))
11
>>> 15.3 / 18 * 27.1 * (Math.ceil(1.3) * Math.exp(2.3) * Math.log (1.223) * Math.sin(32.22))
66.6192983328985
>>> print("hello" + ", " + "world!")
hello, world!
>>> var d = new Date()
>>> d.toDateString()
Sat May 12 2018
>>> parseInt('Infinity')
NaN
>>> new Date(0).toLocaleTimeString('zh-Hans-CN-u-nu-hanidec', { timeZone: 'Asia/Kolkata' })
���:��:��

23

WebKit

24

CHERI homepage

CHERI-WebKit Safari

Conclusion

• C++ is widely used for important applications, such as web
browsers, office suites, mail readers, etc.

• CHERI provides fine-grained memory protection providing bounds
and permissions checking.

• We are looking at hardening C++ features using CHERI: vtable
pointers, type safety, base class bounds

• Evaluating with the WebKit rendering engine because it is a
substantial C++ codebase with complex behavior and large trade
off space.

• Performance?
25

Questions?

26

