
Fundamental Trustworthiness Principles
Peter G. Neumann, SRI International, Menlo Park CA

Working draft, March 6, 2017

Abstract

Enormous benefits can result from basing requirements, architectures, implementations, and oper-
ational practices on well-defined and well-understood generally accepted principles. Furthermore,
any set of principles is by itself clearly incomplete. However, considerable experience, understand-
ing, and foresight are needed to use such principles productively.

In this document, we itemize, review, and interpret various design and development principles
that – if properly understood and applied – can advance predictable composability of components,
total-system trustworthiness, high assurance, and other attributes of computer systems and net-
works. We consider the relative applicability of those principles, as well as some of the problems
they may introduce. We also examine the pervasive way in which these design and development
principles have inspired and motivated the prototype CHERI architecture.

1 Background

System trustworthiness is a measure of how worthy a system might be to trusted to satisfy what-
ever critical requirements are desired, often relating to security, reliability, guarantees of real-time
performance and resource availability, survivability, and more – all in spite of a wide range of
adversities (known and some unknown). Trustworthiness depends on hardware, software, commu-
nications media, power supplies, physical environments, and ultimately people in many capacities
– requirements specifiers, designers, implementers, users, operators, maintenance personnel, ad-
ministrators, and (unfortunately) the abilities of attackers to exploit weaknesses or limitations in
all of the above.

We examine here the exent to which the ongoing CHERI (Capability Hardware Enhanced RISC
Instructions) system hardware-software co-design effort has successfully applied those principles
(either intentionally or serendipitously). Recent CHERI papers include [1, 2, 3].

The prototype CHERI Instruction-Set Architecture (ISA) is an extension of the MIPS-64 ISA
that adds capability instructions and capability registers. The CHERI ISA prototype provides
support for strongly-typed objects, rapid domain crossing, very-fine-grained access controls, and
compartmentalization of software. The clean-slate approach provides remarkably strong security,
including adaptations of FreeBSD and LLVM-based compilers that understand the capability in-
structions, and that effectively prevent many of the common programming errors – or otherwise
help programmers avoid them. It provides a hybrid architecture that allows legacy object code
and recompiled source code (even with potential malware) to coexist securely with high-security
software, without adverse effects. The hardware and software are open-sourced. Extensive tech-
nology transfer is in progress, currently halfway through year 7 of what is now an 8-year DARPA
project (originally scheduled for only four years).



2 Introduction to Principled Systems

Everything should be made as simple as possible – but no simpler.
Albert Einstein

A fundamental hypothesis motivating this analysis is that achieving assurably trustworthy
systems requires much greater observance of certain underlying principles than is normally present.
We assert that careful attention to such principles can greatly facilitate the following efforts.

• Principled architectures. Establishment of predictably composable open distributed-
system network-oriented architectures needs to rely on sensible total-system architectures
if the systems are to be capable of fulfilling critical requirements (e.g., for security, reli-
ability, survivability, and performance), while being readily adaptable to widely differing
applications, different hardware, heterogeneous software providers, and changing technolo-
gies. Here, the term architecture here generally implies both the structure of systems and
networks. and the design of their functional interfaces and interconnections – at various lay-
ers of abstraction. (This is distinct from the so-called hardware instruction-set architecture,
which is concerned primarily with precisely defining the hardware interface to the software.)

• Principled system development. The entire development process needs to be sensi-
bly structured and managed. This may include the development of detailed specifications,
principled implementations that follow good coding practices, up-front concerns for trust-
worthiness, and assurance of that trustworthiness for composable interoperable components,
with predictable behavior when those components are composed.

• Principled assurance. Any meaningful measure of trustworthiness requires serious at-
tention to assurance that the conceptual requirements, abstract specifications, detailed im-
plementations, and operational practices have some realistic justifiable expectation of sat-
isfying the desired mission needs. Thus, attainment of assuredly trustworthy systems and
networks that are capable of addressing all relevant critical requirements requires assurance
methodologies that are themselves highly principled and that take advantage of the design,
development, and operational principles.

The benefits of disciplined and principled system development cannot be overestimated, espe-
cially in the early stages of the development cycle. Principled design and software development can
stave off many problems later on in implementation, maintenance, and operation. Huge potential
cost savings can result from diligently observing and maintaining relevant principles throughout
the design and development cycles. However, the primary concept involved is that of disciplined
development; there are many methodologies that provide some kind of discipline, and all of those
can be useful in some cases. Furthermore, no system can be called “trustworthy” in the absence
of meaningful assurance evaluations.

Many of the principles discussed here are fairly well known in concept, and reasonably well
understood by system cognoscenti. However, their relevance is often not generally appreciated
by people with little development or operational experience. Not wishing to preach to the choir,
we do not dwell on elaborating the principles themselves, which have been extensively covered
elsewhere (as cited below). Instead, we concentrate on the importance and applicability of these
principles in the development of systems with critical requirements – and especially secure systems
and networks. The clear implication is that disciplined understanding and observance of the most



effective of these principles can have enormous benefits to developers and system administrators,
and also can aid user communities. However, we also explore various potential conflicts within
and among these principles, and emphasize that those conflicts must be thoroughly understood
and respected. The challenges in developing trustworthy systems development are intrinsically
complicated, especially when attempting to meet life-critical or other stringent requirements. For
example, it is important to find ways to manage that complexity, rather than mistakenly believing
that intrinsic complexity is avoidable by pretending to practice “simplicity”.

3 Trustworthiness Principles

Willpower is always more efficient than mechanical enforcement, when it works. But
there is always a size of system beyond which willpower will be inadequate.
Butler Lampson

Developing and operating complex systems and networks with critical requirements demands
a different kind of thinking from that used in operating-system design and routine programming.
We consider here various sets of principles, their applicability, and their limitations. We begin
with the historically significant Saltzer-Schroeder-Kaashoek principles, followed by several other
sets of principles and structural developmental approaches.

Of particular interest here are compositions of different elements (e.g., requirements, speci-
fications, implementations, and analyses), and the assurance that can be attributed to systems
with requirements for trustworthiness. Critical problems relate to composability (preservation
of existing properties) and compositionality (analysis of emergent properties arising from the
compositions) of constituent components, some of which can be extremely difficult to predict.
Examples of compositionality include total-system safety and security, which cannot be evaluated
component-wise. These properties may be extremely difficult to predict, although failures that
result may be evident (e.g., failure to work at all), or subtle, surprising, and very difficult to
detect (e.g., [4] which is still relevant today – even if outdated), A recent example of surprising
extensive failures of compositionality involved the client and server sides of essentially all popular
implementations of the heavily used and very critical cryptographically based TLS 1.2 protocol [5].

3.1 Saltzer-Schroeder-Kaashoek Security Principles, 1975 and 2009

The ten basic security principles formulated by Saltzer and Schroeder [6] in 1975 are all still
relevant today, in a wide range of circumstances. An eleventh principle on minimizing what must
be trusted appears in the 2009 book by Saltzer and Kaashoek [7]. (I had included a similar
principle on minimizing what has to be trusted to achieve survivable systems in my 2000 ARL
report [8] and again in my 2004 DARPA report on problems and approaches related to trustworthy
compositions [4].) In essence, these principles are summarized here, along with CHERI-relevant
explanations. In addition, the principle of intentional use has been added as a twelfth basic
principle, at the suggestion of Robert Watson. It is an excellent partner for the principle of least
privilege, as it adds considerably more refinement to the indirect use of privileges on behalf of
other processes (or users).

1. Economy of mechanism: Seek design simplicity (wherever and to whatever extent it is
effective). CHERI’s high-assurance hardware relies on just a handful of capability instruc-



tions, and compilers that constructively utilize those instructions, out of which extremely
trustworthy systems and applications can be constructed.

2. Fail-safe defaults: Deny accesses unless explicitly authorized (rather than permitting ac-
cesses unless explicitly denied). CHERI process initializations can minimize what privileges
are available. Further CHERI has no Hydra-like amplification of capability privileges, pro-
viding strict monotonicity of privileges.

3. Complete mediation: Check every access, without exception. CHERI capabilities are
unforgeable, and the capability mechanism is nonbypassable. Any attempts to modify a
capability results in something that is no longer a capability.

4. Open design: Do not assume that design secrecy will enhance security. The CHERI
Instruction Set Architectures (for both the 256-bit research capabilities and the 128-bit
implementable version) is open-sourced.

5. Separation of privileges: Use separate privileges or even multiparty authorization (e.g.,
two keys) to reduce misplaced trust. The CHERI ISA supports typed objects that enforce
strong typing, each type having its own separately defined privileges that are relevant to the
particular type.

6. Least privilege: Allocate minimal (separate) privileges according to need-to-know, need-to-
modify, need-to-delete, need-to-use, and so on of the typed objects. The existence of overly
powerful mechanisms such as superuser is inherently dangerous. The CHERI hardware
capability mechanism in which each capability has its own minimal set of privileges and
the hardware-software support for fine-grained compartmentalization further enhances the
least-privilege principle.

7. Least common mechanism: Minimize the amount of mechanism common to more than
one user and depended on by all users. Avoid sharing of trusted multipurpose mechanisms,
including executables and data – in particular, minimizing the need for and use of overly
powerful mechanisms such as superuser and nonlocally shared buffers. As one example of the
flaunting of this principle, exhaustion of shared resources provides a huge source of covert
storage channels, whereas the natural sharing of real calendar-clock time provides a source
of covert timing channels. CHERI’s strongly typed higher-layer objects allow each type to
have its own rules and privileges; when reusing any common code, the capability mechanism
and the compartmentalization provide suitable isolation to prevent harmful effects. On the
other hand, at present covert channels are not considered in the CHERI ISA, and must be
dealt with in implementation.

8. Psychological acceptability: Strive for ease of use and operation – for example, with
easily understandable and forgiving interfaces. To a considerable extent, issues related to
security benefit from being largely invisible to casual users. Much of the CHERI capability
mechanism can be hidden by operating systems and compilers. Optimizing performance is
likely to be not necessary for users other than application developers.

9. Work factor: Make cost-to-protect commensurate with threats and expected risks. This
is a problem in many conventional systems, in which attackers need to find only a few
exploitable weak links, whereas system developers and administrators need to ensure that



there are very few exploitable weak links that cannot be isolated. The work factor is often
mistakenly applied to cryptography, when exploitable system flaws can totally undermine
the belief that the cryptography is very strong. We believe that formal analysis of the
CHERI ISAs can greatly increase the assurance associated with the trustworthiness of the
hardware, and that the resulting software will be significantly less vulnerable to hardware-
based attacks.

10. Recording of compromises: Provide nonbypassable tamperproof trails of evidence. This
is a huge problem in proprietary paperless all-electronic voting machines and election sup-
port systems. CHERI can provide the nonbypassability and tamperproof trails of evidence
through compartmentalization and fine-grained least privilege. This is a requirement that is
made much easier on CHERI-based systems, because of the compartmentalization, encapsu-
lation, control-flow integrity, and other trustworthiness attributes that can enable forensics-
worthy audit trails. Thus, this principle is not one that guided the development, but rather
emerged naturally as a by-product of the system itself.

11. Minimization of what has to be trustworthy: Poorly designed systems may have a
sense of structural abstraction, but typically do not provide encapsulation (discussed in
the next subsection) within each module – which often leads to vulnerabilities. In such
systems, higher-layer abstractions can often compromise lower layers. CHERI’s ISA and
indeed its overall hardware-software system seriously pursue this principle throughout, with
encapsulated abstractions that can be enforced with fine-grained least-privilege capability
architecture in hardware, and fine-grained compartmentalization within processes in hard-
ware and software – providing an elegant way to respect this principle. The following added
principle is also highly beneficial.

12. Intentional use. Whenever multiple rights are available to a program, the selection of
rights used to authorize work on behalf of the program must be explicit, irrespective of the
specific layer of software abstraction. The intent of this principle is to avoid the acciden-
tal or unintended exercise of rights that could lead to a violation of the intended policy.
It counters what is classically known as ‘confused deputy’ problems, in which a program
can unintentionally exercise a privilege that it holds legitimately, but on behalf of another
program that does not (and should not) have the ability to exercise that privilege. This
principle (implicit in many capability systems) has been applied throughout the CHERI
design, including architectural privileges (e.g., the requirement to explicitly identify capa-
bility registers used for load or store) and the sealed capability mechanism that can be used
to support the CHERI object-capability model. (An attempt to satisfy this principle was
found implicitly in PSOS’s propagation-limiting capabilities, and has also been applied to
CheriBSD.)

With regard to the penultimate principle above (11), appropriate trustworthiness should be
situated where it is most needed – suitable to overall system requirements, rather than required
uniformly across widely distributed components (with potentially many weak links) or totally
centralized (with creation of a single weak link and forgetting other vulnerabilities). Trustwor-
thiness is expensive to implement and to ensure; as a consequence, significant benefits can result
from architecturally minimizing the extent to which higher-layer mechanisms have to trustworthy,
especially if they can depend on (and rely on) the trustworthiness of lower layers. This principle



can contribute notably to sound architectures. In combination with economy of mechanism, this
suggests avoidance of bloatware and unfortunate dependence on less trustworthy components.

Remember that these are principles, not hard-and-fast rules. By no means should they be
interpreted as ironclad, especially in light of some of their potential mutual contradictions that
require development tradeoffs. (See Section 4.) The Saltzer-Schroeder principles grew directly
out of the Multics experience (e.g., [9]), discussed further at the end of this section. Some of
these principles have taken on almost mythic proportions among the security elite, and to some
extent buzzword cult status among many fringe parties. Therefore, perhaps it is not necessary to
explain each principle in detail – although there is considerable depth of discussion underlying each
principle. Careful reading of the Saltzer-Schroeder paper [6] and the Saltzer-Kaashoek book [7]
is recommended. Matt Bishop’s security books [10, 11] are also useful in this regard, placing
the principles in a more general context. In addition, Chapter 6 of Matt Curtin’s book [12] on
“developing trust” – by which he might really hope to be “developing trustworthiness” – provides
some useful further discussion of these principles. Also, consider the discussion below on additional
principles in Section 3.2.

There are two fundamental caveats regarding these principles. First, each principle by itself
may be useful in some cases and not in others. The second is that when taken in combinations,
groups of principles are not necessarily all reinforcing; indeed, they may actually be mutually in
conflict. Consequently, any sensible development must consider appropriate use of each principle
in the context of the overall effort. Examples of a principle being both good and bad – as well as
examples of cross-principle interference – are scattered through the following discussion. Various
caveats are considered in the penultimate section.

Table 1 summarizes the applicability of each of the Saltzer-Schroeder-Kaashoek principles to
the goals of composability, trustworthiness, and assurance (particularly with respect to security,
reliability, and survivability-relevant requirements). Although this table is somewhat generic, it is
also specifically relevant to CHERI, in light of the CHERI-relevant enumeration of the principles
above. An asterisk indicates that CHERI actually makes constructive use of this principle in the
system design (consciously or unconsciously), and thereby enhances trustworthiness. An asterisk
in parenthesis implies that this principle was not a driving force in the design, but became easier
to satisfy in implementations – as a result of the principled system architecture.

In particular, complete mediation, separation of privileges, and allocation of least privilege are
enormously helpful to composability and trustworthiness. Open design can contribute significantly
to composability, when subjected to internal review and external criticism. However, there is
considerable debate about the importance of open design with respect to trustworthiness, with
some people still clinging tenaciously to the notion that security by obscurity is sensible – despite
risks of many flaws being so obvious as to be easily detected externally, even without reverse
engineering. Indeed, the recent emergence of very good decompilers for C and Java, along with
the likelihood of similar reverse engineering tools for other languages, both suggest that such
attacks are becoming steadily more practical. Overall, the assumption of design secrecy and the
supposed unavailability of source code is often not a deterrent, especially with ever-increasing
skills among black-box system analysts. However, there are of course cases in which security by
obscurity is unavoidable – as in the hiding of private and secret cryptographic keys, even where
the cryptographic algorithms and implementations are public.

Fundamental to trustworthiness is the extent to which systems and networks can avoid be-
ing compromised by malicious or accidental human behavior and by events such as hardware
malfunctions and so-called acts of God. In [8] and elsewhere, we have considered compromise



Table 1: Relevance of Saltzer-Schroeder to CHERI Goals
Principle Composability Trustworthiness Assurance

Economy of Beneficial within a sound Vital aid to sound Can simplify
mechanism * architecture; requires design; exceptions must analysis

proactive design effort be completely handled
Fail-safe Some help, but not Simplifies design, Can simplify
defaults * fundamental use, operation analysis
Complete Very beneficial with Vital, but hard Can considerably
mediation * disjoint object types to achieve without simplify analysis

hardware help Nonbypassability
Open design * Design documentation is Secrecy of design is, Assurance is mostly

very beneficial among a bad assumption; irrelevant in badly
multiple developers open design requires designed systems;

strong system security open design enables
total-system analysis

Separation of Very beneficial if Avoids many Focuses analysis
privileges * hardware supported common flaws more precisely
Least Very beneficial if Limits flaws; improves Focuses analysis
privilege * hardware supported design and operation more precisely
Least common Beneficial absent Avoids some Modularizes
mechanism * natural polymorphism common flaws analysis
Psychological Could help a little – Affects mostly usability Ease of use
acceptability if not subvertible and operations can contribute
Work factor * Relevant especially for Misguided if system Gives false sense

crypto algorithms but easily compromised of security under
not implementations; from below, spoofed, non-algorithmic
may not be composable bypassed, etc. compromises

Compromise Not an impediment After-the-fact, Not primary
recording if distributed; real-time but useful, contributor
(*) detection/response needs easy to attain to analysis

must be anticipated in secure systems
Minimize Composability can Can greatly Formal analysis
what must be be significantly increase and flow control
trustworthy * improved trustworthiness can detect flaws
Intentional Simplifies Enhances Refines
use of rights * predictable least operational

composability privilege assurance

from outside, compromise from within, and compromise from below, with fairly intuitive
meanings. For example, outsiders may penetrate a system, or create denials of service; insiders
may be able to masquerade as other users or misuse existing privileges; operating systems may
be compromised from below by utilizing hardware quirks, and applications may be compromised
by manipulating operating systems. There are cases in theory where weak links can be avoided



(e.g., end-to-end encryption for integrity, and zero-knowledge protocols that can establish a shared
key without any part of the protocol requiring secrecy), although in practice they may also be
undermined by compromises from below.

From its beginning, the Multics development was strongly motivated by a set of principles –
some simple ones were originally stated by Ted Glaser and Peter Neumann in the first section of
the very first edition of the Multics Programmers’ Manual in 1965. (See http://multicians.org.)
Multics was also driven by disciplined development. For example, with almost no exceptions,
coding effort was never begun until a written specification had been approved by the Multics
advisory board; also with almost no exceptions, all of the code was written in a subset of PL/I
just sufficient for the initial needs of Multics, for which the first compiler (early PL, or EPL) had
been developed by Doug McIlroy and Bob Morris.

In addition to the Saltzer-Schroeder principles, further insights on principles and discipline
relating to Multics can be found in a paper by Corbató, Saltzer, and Clingen [13] and in Corbató’s
Turing lecture [14].

3.2 Related Principles, 1969 and Later

Another view of principled system development was given by Neumann in 1969 [15], relating to
what is often dismissed as merely “motherhood” – but which in reality is both very profound and
difficult to observe in practice. The basic motherhood principles under consideration in that paper
(alternatively, you might consider them just as desirable system attributes) included automated-
ness, availability, convenience, debuggability, documentedness, efficiency, evolvability, flexibility,
forgivingness, generality, maintainability, modularity, monitorability, portability, reliability, sim-
plicity, and uniformity. Some of those attributes indirectly affect security and trustworthiness,
whereas others affect the acceptability, utility, and future life of the systems in question. Consid-
erable discussion in [15] was also devoted to (1) the risks of local optimization and the need for a
more global awareness of less obvious downstream costs of development (e.g., writing code for bad
– or nonexistent – specifications, and having to debug really bad code), operation, and mainte-
nance; and (2) the benefits of higher-level implementation languages (which prior to Multics were
rarely used for the development of operating systems [14, 13]).

In later reports (e.g. [8]), Neumann considered some extensions of the Saltzer-Schroeder prin-
ciples. Although most of those principles might seem more or less obvious, they are of course full
of different interpretations and hidden issues. We summarize an extended set of principles here,
particularly as they might be interpreted in the CHERI context.

13. Sound architectures. Recognizing that it is much better to avoid design errors early than
to attempt to fix them later, the importance of architectures inherently capable of evolvable,
maintainable, robust implementations is enormous – even in an open-source environment.
The value of a well-thought-out architecture is considerable in open-source systems. The
value in closed-source proprietary systems could also be significant, if it were thought through
early on, although architectural foresight is often impeded by legacy compatibility require-
ments that tend to lock system evolution into inflexible architectures. Good interface design
is as fundamental to good architectures as is their structure. Both the architectural structure
and the architectural interfaces (particularly the visible interfaces, but also some of the in-
ternal interfaces that must be interoperable) benefit from careful early specification. Defense
in depth and defense in breadth are both conceptually desirable, but only in the context of
the preceding and following principles as they relate to total-system trustworthiness.



14. Abstraction. The primitives at any given logical or physical layer should be relevant to
the functions and properties of the objects at that layer, and should mask lower-layer detail
where possible. Ideally, the specification of a given abstraction should be in terms of ob-
jects meaningful at that layer, rather than requiring lower-layer (e.g., machine dependent)
concepts. Abstractions at one layer can be related to the abstractions at other layers in a
variety of ways, thus simplifying the abstractions at each layer rather than collapsing dif-
ferent abstractions into a more complex single layer. (Horizontal and vertical abstractions
and six types of abstractions are discussed in Virgil Gligor’s contributed appendix on Vis-
ibly Controllable Computing in [4]. This text is an elaboration of David Parnas’s “uses”
paper [16].)

15. Modularity. Modularity relates to the characteristic of system structures in which different
entities (modules) can be relatively loosely coupled and combined to satisfy overall system
requirements, whereby a module could be modified or replaced as long as the new version
satisfies the given interface specification. In general, modularity is most effective when
the modules reflect specific abstractions and provide encapsulation within each module.
CHERI takes modularity seriously, and actually provides submodularization particularly in
application software when a particular application module needs further separation.

16. Encapsulation. Details that are relevant to a particular abstraction should be local to that
abstraction and subsequently isolated within the implementation of that abstraction and the
lower layers on which the implementation depends. One example of encapsulation involves
information hiding – for example, keeping internal state information hidden from the visible
interfaces. Another example involves masking the idiosyncrasies of physical devices from
higher-layer system interfaces – and of course from the user interfaces as well. Encapsulation
includes but is not limited to information hiding (as in the early work of David Parnas),
and also helps maintain integrity of the abstraction in question from manipulation from
outside the modular abstraction. The CHERI hardware ISA supports encapsulation in
several respects, including within typed objects, and also as a by-product of the Bluespec
strongly typed language that has been used to specify our various prototype ISAs.

17. Layered and compositional assurance. Protection (and generally defensive design for
security, reliability, and so on) should be distributed to where it is most needed, and should
reflect the semantics of the objects being protected. Layering (e.g., Multics rings or Dijk-
stra’s THE system) can be very effective without losing efficiency. Compositional separa-
tion (compartmentalization) among modules or even within a single application or modular
abstraction can also be effective. Structured abstractions can greatly simplify analysis, al-
though the compositions themselves must also be analyzed. With respect to the reality
of implementations that transit entities of different trustworthiness, layers of protection are
vastly preferable to flat concepts such as single sign-on (that is, where only a single authenti-
cation is required). With respect to psychological acceptability, single signon has enormous
appeal; however, it can leave enormous security vulnerabilities as a result of compromise
from outside, from within, or from below, in both distributed and layered environments.
Thus, with respect to the apparent user simplicity provided by single signon, psychologi-
cal acceptability conflicts with other principles, such as complete mediation, separation of
privileges, and least common privilege. The hierarchically layered separation of the CHERI
hardware and the various software layers as well as the horizontal separations provided by
compartmentalization are fundamental to CHERI’s trustworthiness.



18. Constrained dependency. Improperly guarded dependencies on less trustworthy entities
should be avoided. However, it is possible in some cases to surmount the relative untrustwor-
thiness of mechanisms on which certain functionality depends – as in the two-dozen types of
trustworthiness-enhancing mechanisms enumerated in [4]. In essence, do not trust anything
on which you must depend – unless you are seriously satisfied with demonstrations of its
trustworthiness. This principle is a generalization of the Biba property [17], which deals
more specifically with multilevel integrity.

19. Object orientation. The OO paradigm bundles together abstraction, encapsulation, mod-
ularity of state information, inheritance (subclasses inheriting the attributes of their parent
classes – e.g., for functionality and for protection), and subtype polymorphism (subtype
safety despite the possibility of application to objects of different types). This paradigm fa-
cilitates programming generality and software reusability, and if properly used can enhance
software development. This is a contentious topic, in that most of the OO methodologies and
languages are somewhat sloppy with respect to inheritance. (Jim Horning noted that the
only object-oriented language he knows that takes inheritance of specifications seriously was
the Digital Equipment Corporation ESL OWL/Trellis, which was a descendant of Barbara
Liskov’s CLU language.) CHERI supports the separations associated with typed objects, in
both hardware and software.

20. Separation of policy and mechanism. Statements of policy should avoid inclusion of
implementation-specific details. Furthermore, mechanisms should be policy-neutral where
that is advantageous in achieving functional generality. However, this principle must never
be used in the absence of understanding about the range of policies that might be usefully
implemented. There is a temptation to avoid defining meaningful policies, deferring them
until later in the development – and then discovering that the desired policies cannot be
realized with the given mechanisms. This is a characteristic chicken-and-egg problem with
abstraction. However, it is again fundamental to the CHERI total-system architecture.

21. Separation of duties. In relation to separation of privileges, separate classes of duties of
users and computational entities should be identified, so that distinct system roles can be as-
signed accordingly. Distinct duties should be treated distinctly, as in system administrators,
system programmers, and unprivileged users.

22. Separation of roles. Concerning separation of privileges, the roles recognized by protection
mechanisms should correspond in some readily understandable way to the various duties.
For example, a single all-powerful superuser role is intrinsically in violation of separation of
duties, separation of roles, separation of privilege, and separation of domains. The separation
of would-be superuser functions into separate roles as in Trusted Xenix is a good example of
desirable separation. Once again (as with single signon, noted above), there is a conflict be-
tween principles: the monolithic superuser mechanism provides economy of mechanism, but
violates other principles. In practice, all-powerful mechanisms are sometimes unavoidable,
and sometimes even desirable despite the negative consequences (particularly if confined to
a secure sub-environment). However, they should be avoided wherever possible.

23. Separation of domains. Concerning separation of privileges, domains should be able to
enforce separate roles. For example, a single all-powerful superuser mechanism is inherently
unwise, and is in conflict with the notion of separation of privileges. However, separation of



privileges is difficult to implement if there is inadequate separation of domains. Separation of
domains can help enforce separation of privilege, but can also provide functional separation
as in the Multics ring structure, a kernelized operating system with a carefully designed
kernel, or a capability-based architecture.

24. Sound authentication. Authentication is a pervasive problem. Nonbypassable authen-
tication should be applicable to users, processes, procedures, and in general to any active
entity or object. Authentication relates to evidence that the identity of an entity is gen-
uine, that procedure arguments are legitimate, that types are properly matched when strong
typing is to be invoked, and other similar aspects.

25. Sound authorization and access control. Authorizations must be correctly and appro-
priately allocated, and nonsubvertible (although they are likely to assume that the identities
of all entities and objects involved have been properly authenticated – see sound authentica-
tion, above). Crude all-or-nothing authorizations are often riskful (particularly with respect
to insider misuse and programming flaws). In applications for which user-group-world autho-
rizations are inadequate, access-control lists and role-based authorizations may be preferable.
Finer-grained access controls may be desirable in some cases, such as capability-based ad-
dressing and field-based database protection. However, knowing who has access to what at
any given time should be relatively easy to determine.

26. Administrative controllability. The facilities by which systems and networks are admin-
istered must be well designed, understandable, well documented, and sufficiently easy to use
without inordinate risks. This both a driving principle of the CHERI architecture and a
by-product of sensible use of the systems.

27. Comprehensive accountability. Well-designed and carefully implemented facilities are
essential for comprehensive monitoring, auditing, interpretation, and automated response (as
appropriate). Thus, this principle should an a priori concern, as serious security and privacy
issues must be carefully used relating to the overall accountability processes and audit data.
CHERI addresses this need through its provisioning of trustworthy hardware and operating
systems, and its ability to provide high-integrity application compartmentalization.

Table 2 summarizes the utility of the extended-set principles with respect to the three goals of
the CHERI program acronym, as in Table 1. Once again, an asterisk indicates that CHERI actually
makes constructive use of this principle, and is thereby enhances trustworthiness. An asterisk in
parenthesis implies that this principle was not a driving force in the design, but became easier to
satisfy in implements – as a result of the principled system architecture.

For an extensive further elaboration of abstraction, modularity, dependence, and more, see
Virgil Gligor’s appendix (Visibly Controllable Computing) that he contributed to [4].

At this point in our analysis, it should be no surprise that all of these principles can contribute
in varying ways to many aspects of total-system trustworthiness – safety, security, reliability,
survivability, and other -ilities. Ultimately, all of these properties are emergent properties of the
total system, and cannot be determined from the components. Furthermore, many of the principles
and -ilities are interrelated. We cite just a few of the interdependencies that must be considered.



Table 2: Relevance of Extended-Set Trustworthiness Principles to CHERI Goals

Principle Composability Trustworthiness Assurance

Sound system Can considerably Can greatly increase Can increase assurance
architecture * facilitate composability trustworthiness of design and simplify

and compositionality implementation analysis
Abstraction * Very beneficial with Very beneficial Simplifies analysis

suitable independence if composable by decoupling it
Encapsulation * Very beneficial Very beneficial if Localizes analysis to

if properly done, composable; avoids abstractions and
enhances integration certain types of bugs their interactions

Modularity * Very beneficial Very beneficial Simplifies analysis
if interfaces and if well specified; by decoupling it
specifications overmodularization and if modules are
well defined impairs performance well specified

Layered and Very beneficial, but Very beneficial if Structures analysis
compositional may impair noncompromisible from according to layers
assurance * performance above/within/below and their interactions
Robust Beneficial: can Beneficial: can obviate Robust architectural
dependency * avoid compositional design flaws based on structure simplifies

conflicts misplaced trust analysis
Object/type Beneficial, but Can be beneficial, but Can simplify analysis
integrity * labor-intensive; complicates coding of design, possibly

can be inefficient and debugging implementation also
Separation of Beneficial, but Increases flexibility Simplifies analysis
policy/mech. * both must compose and evolution
Separation of Helpful indirectly Beneficial if well Can simplify analysis
duties * as a precursor defined/enforced if well defined
Separation of Beneficial if roles Beneficial if Partitions analysis
roles * non-overlapping properly enforced of design and operation
Separation of Can simplify Allows finer-grain Partitions analysis
domains * composition and enforcement and of implementation

reduce side effects self-protection and operation
Sound authenti- Helps if uniformly Huge security benefits, Can simplify analysis,
cation (*) invoked aids accountability improve assurance
Sound authori- Helps if uniformly Reduces misuse, Can simplify analysis,
zation (*) invoked aids accountability improve assurance
Administrative Composability helps Good architecture Control enhances
control (*) controllability helps controllability operational assurance
Comprehensive Composability helps Beneficial for Can provide feedback
accountability (*) accountability post-hoc analysis for improved assurance



For example, authorization is of limited use without authentication, whenever identity is im-
portant. Similarly, authentication may be of questionable use without authorization. In some
cases, authorization requires fine-grained access controls. Least privilege requires some sort of
separation of roles, duties, and domains. Separation of duties is difficult to achieve if there is
no separation of roles. Separation of roles, duties, and domains each must rely on a supporting
architecture.

The comprehensive accountability principle is particularly intricate, as it depends critically on
many other principles being properly invoked. For example, accountability is inherently incomplete
without authentication and authorization. In many cases, monitoring may be in conflict with
privacy requirements and other social considerations [18], unless extremely stringent controls are
enforceable. Furthermore, trustworthy forensic evidence requires trustworthy systems in the first
place. Separation of duties and least privilege are particularly important here. All accountability
procedures are subject to security attacks, and are typically prone to covert channels as well.
Furthermore, the procedures themselves must be carefully monitored. Who monitors the monitors?
(Quis auditiet ipsos audites?)

4 Caveats on Applying the Principles

For every complex problem, there is a simple solution. And it’s always wrong.
H.L. Mencken

As we noted above, the principles referred to here may be in conflict with one another if
each is applied independently; in certain cases, the principles are not composable. In general,
each principle must be applied in the context of the overall development. Ideally, greater effort
might be useful to reformulate the principles to make them more readily composable, or at least
to make their potential tradeoffs or incompatibilities more explicit. However, this is probably
counterproductive, because judicious use of principles is not a cookbook exercise.

There are also various potentially harmful considerations that must be considered – for exam-
ple, over-use, under-use, or misapplication of these principles, and certain limitations inherent in
the principles themselves. Merely paying lip-service to a principle is clearly a bad idea; principles
must be sensibly applied to the extent that they are appropriate to the given purpose. Simi-
larly, all of the criteria-based methodologies have many systemic limitations (e.g., [19, 20]); for
example, formulaic application of evaluation criteria is always subject to incompleteness and mis-
interpretation of requirements, oversimplification in analysis, and sloppy evaluations. However,
when carefully applied, such methodologies can be useful and add discipline to the development
process. Thus, we stress here the importance of fully understanding the given requirements and of
creating an overall architecture that is appropriate for realizing those requirements, before trying
to conduct any assessments of compliance with principles or criteria. And then, the assessments
must be taken for what they are worth – just one piece of the puzzle – rather than over-endowed as
definitive results out of context. Overall, there is absolutely no substitute for human intelligence,
experience, and foresight.

The Saltzer-Schroeder principle of design simplicity is one of the most popular and commonly
cited. However, it can be extremely misleading when espoused (as it commonly is) in reference to
systems with critical requirements for security, reliability, survivability, real-time performance, and
high assurance – especially when all of these requirements are necessary within the same system
environment. Simplicity is a very important concept in principle (in the small), but complexity is



often unavoidable in practice (in the large). For example, serious attempts to achieve fault-tolerant
behavior often result in roughly doubling the size of the overall subsystem or even the entire
system. As a result, the principle of simplicity should really be one of managing complexity rather
than trying to eliminate it, particularly where complexity is in fact inherent in the combination
of requirements. Keeping things simple is indeed a conceptually wonderful principle, but often
not achievable in reality. Nevertheless, unnecessary complexity should of course be avoided. The
back-side of the Einstein quote at the beginning of Section 2 is indeed both profound and relevant,
yet often overlooked in the overzealous quest for perceived simplicity.

An extremely effective approach to dealing with intrinsic complexity is through a combination
of the principles discussed here, particularly abstraction, modularity, encapsulation, and careful
hierarchical separation that architecturally does not result in serious performance penalties, well
conceived virtualized interfaces that greatly facilitate implementation evolution without requiring
changes to the interfaces or that enable design evolution with minimal disruption, and far-sighted
optimization. In particular, hierarchical abstraction can result in relative simplicity at the inter-
faces of each abstraction and each layer, in relative simplicity of the interconnections, and perhaps
even relative simplicity in the implementation of each module. By keeping the components and
their interconnections conceptually simple, it is possible to achieve conceptual simplicity of the
overall system or networks of systems despite inherent complexity. Furthermore, simplicity can
sometimes be achieved through design generality, recognizing that several seemingly different prob-
lems can be solved symmetrically at the same time, rather than creating different (and perhaps
incompatible) solutions.

Note that such solutions might appear to be a violation of the principle of least common
mechanism, but not when the common mechanism is fundamental – as in the use of a single
uniform naming convention or the use of a uniform and nonbypassable capability-based addressing
mode that transcends different subtypes of typed objects. In general, it is riskful to have multiple
procedures managing the same data structure for the same purposes. However, it can be very
beneficial to separate reading from writing – as in the case of one process that updates and
another process that uses the data. It can also be beneficial to reuse the same code on different
data structures, although strong typing is then important.

One further unfortunate common practice that should be considered as an anti-principle is
known as security by obscurity. This involves the fallacious belief that if something is never revealed
to the public, it is more likely to remain secure. There are notorious counter-examples, such as
Matt Blaze’s ability to render the Clipper Chip key-escrow process completely useless by disabling
the Law-Enforcement Access Field (LEAF) without any access to the classified algorithms and
classified production process. (I recall being told by an ex-NSA person: “Oh, yes, we knew about
that vulnerability, but did not think anyone would find it.”)

One of the primary goals of system developers should be to make system interfaces concep-
tually simple while masking complexity so that the complexities of the design process and the
implementation itself can be hidden by the interfaces. This may in fact increase the complexity of
the design process, the architecture, and the implementation. However, the resulting system com-
plexity need be no greater than that required to satisfy the critical requirements such as those for
security, reliability, and survivability. It is essential that tendencies toward bloatware be strongly
resisted. (They seem to arise largely from the desire for bells and whistles – extra features – and
fancy graphics, but also from a lack of enlightened management of program development.)

A networking example of the constructive use of highly principled hierarchical abstraction is
given by the protocol layers of TCP/IP (e.g., [21]). An early total-system paper co-design is



given by the capability-based Provably Secure Operating System hardware-software paper design
(PSOS) [22, 23, 24]), whose functionality at each of more than a dozen layers was specified formally
in only a few pages each, with at least the bottom seven layers intended to be implemented in
hardware. The underlying addressing is based on a capability mechanism (layer 0) that uniformly
encompasses and protects objects of arbitrary types – including files, directories, processes, and
other system- and user-defined types. The PSOS design is particularly noteworthy because a single
capability-based operation at layer 12 (user processes) could be executed as a single machine
instruction at layer 6 (system processes), with no iterative interpretation required unless there
were missing pages or unlinked files that require operating system intervention (e.g., for dynamic
linking of symbolic names, à la Multics). To many people, hierarchical layering instantly brings to
mind inefficiency. However, the PSOS architecture is an example in which the hierarchical design
could be implemented extremely efficiently – because of the power of the capability mechanism,
strong typing, and abstraction, and its intended hardware implementation.

We note that formalism for its own sake is generally counterproductive. Formal methods are
not likely to reduce the overall cost of software development, but can be helpful in decreasing the
cost of software quality and assurance. They can be very effective in carefully chosen applications,
such as evaluation of requirements, specifications, critical algorithms, and particularly critical
code. Once again, we should be optimizing not just the cost of writing and debugging code, but
rather optimizing more broadly over the life cycle.

There are many other common pitfalls that can result from the unprincipled use of principles.
Blind acceptance of a set of principles without understanding their implications is clearly inappro-
priate. (Blind rejection of principles is also observed occasionally, particularly among people who
establish firm requirements with no understanding of whether those requirements are realistically
implementable – and among strong-willed developers with a serious lack of foresight.)

Lack of discipline is clearly inappropriate in design and development. For example, we have
noted elsewhere [8, 25] that the open-source paradigm by itself is not likely to produce secure,
reliable, survivable systems in the absence of considerable discipline throughout development,
operation, and maintenance. However, with such discipline, there can be many benefits. (See
also [26] on the many meanings of open source, as well as a Newcastle Dependable Interdisciplinary
Research Collaboration (DIRC) final report [27] on dependability issues in open source, part of
ongoing work.)

Any principle can typically be carried too far. For example, excessive abstraction can result
in overmodularization, with enormous overhead resulting from intermodule communication and
nonlocal control flow. On the other hand, conceptual abstraction through modularization that
provides appropriate isolation and separation can sometimes be collapsed (e.g., for efficiency rea-
sons) in the implementation – as long as the essential isolation and protection boundaries are not
undermined. Thus, modularity should be considered where it is advantageous, but not merely for
its own sake.

Application of each principle is typically somewhat context dependent, and in particular de-
pendent on specific architectures. In general, principles should always be applied relative to the
integrity of the architecture.

One of the severest risks in system development involves local optimization with respect to
components or individual functions, rather than global optimization over the entire architecture,
its implementation, and its operational characteristics. Radically different conclusions can be
reached depending on whether or not you consider the long-term complexities and costs introduced
by bad design, sloppy implementation, increased maintenance necessitated by hundreds of patches,



incompatibilities between upgrades, lack of interoperability among different components with or
without upgrades, and general lack of foresight. Furthermore, unwise optimization (whether local
or global) must not collapse abstraction boundaries that are essential for security or reliability –
perhaps in the name of improved performance. As one example, real-time checks (such as bounds
checks, type checking, and argument validation generally) should be kept close to the operations
involved, for obvious reasons. As another example, the Risks Forum archives include several cases
in which multiple alternative communication paths were specified, but were implemented in the
same or parallel conduits – which were then all wiped out by a single backhoe!

Perhaps most insidious is the a priori lack of attention to critical requirements, such as any that
might involve the motherhood attributes noted in [15] and listed above. Particularly in dealing
with security, reliability, and survivability in the face of arbitrary adversities, there are few if any
easy answers. But if those requirements are not dealt with from the beginning of a development,
they can be extremely difficult to retrofit later. One particularly appealing survivability require-
ment would be that systems and networks should be able to reboot, reconfigure, and revalidate
their soundness following arbitrary outages, without human intervention. That requirement has
numerous architectural implications.

Once again, everything should be made as simple as possible, but no simpler. Careful adherence
to principles that are deemed effective is likely to help achieve that goal.

5 Reviewing CHERI’s Use of the Principles

Section 3.1 and Section 3.2 indicate that most of the principles enumerated here were instrumental
(explicitly or even occasionally coincidentally) in the CHERI system hardware-software co-design
and implementation – as summarized by the asterisks in the left-hand columns of Table 1 and
Table 2.

Not surprisingly, the highly principled CHERI total-system architecture has actually succeeded
in following most of these principles constructively – in the hardware ISAs, in low-layer software,
and in the compilers. This principled approach is enabling considerable advances toward much
greater trustworthiness. In particular, the CHERI hardware-software co-design has approached
inherently complex problems architecturally, structuring the solutions to those problems as con-
ceptually simple compositions of relatively simple components, with emphasis on the predictable
behavior of the resulting systems and networks. We are also engaged in formal analyses of the
critical hardware properties, which will enhance the assurance that the formal specifications of
the hardware ISA will live up to our expectations. We hope that this carefully documented and
highly principled effort will be an inspirational example to others.

In that the basic CHERI prototype hardware instruction-set architecture (256-bit capabilities
on the extended MIPS64 ISA) is actually scalable downward (e.g., 128-bit capabilities, and even
64-bit capabilities on a 32-bit platform – without the memory-management unit) suggests a con-
siderable range of applicability to a variety of applications. The high end would be very applicable
to servers, cloud storage, rack computing, and powerful desktops; the medium version could be
ideal for laptops and mobile devices; and the low end more suitable for devices and controllers for
the Internet of Things. Thus, we can also envision a comparable range of trustworthy operating
systems to match the power and trustworthiness of the capability hardware.



6 Conclusions

In theory, there is no difference between theory and practice. In practice, there is an
enormous difference. (Many variants of this concept are attributed to various people.
This is a personal adaptation.)

What would be extremely desirable in our quest for trustworthy systems and networks is theory
that is practical and practice that is sufficiently theoretical. Thoughtful and judiciously applied
adherence to sensible principles appropriate for a particular development can greatly enhance
the security, reliability, and overall survivability of the resulting systems and networks. These
principles can also contribute greatly to operational interoperability, maintainability, operational
flexibility, long-term evolvability, higher assurance, and many other desirable characteristics.

What are generally called “best practices” are often rather lowest-common-denominator tech-
niques that have found their way into practice, rather than what might otherwise be the best
practices that would be useful. (See [28, 29, 30]. On the other hand, citeNIST800-160 considers
the engineering aspects that are relevant to reinforcing best practices and principles for enhancing
cybersecurity.

Furthermore, the supposedly best practices can be mis-applied by very good programmers, and
bad programming languages can still be used wisely. Unfortunately, spaghetti code is seemingly
always on the menu, and engorged bloatware tends to win out over elegance. Overall, there are
no easy answers.

Overall, having sensible system and network architectures is generally a good starting point –
especially if they observe the principles noted here.

References

[1] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis, B. Lau-
rie, P. G. Neumann, R. Norton, and M. Roe, “The CHERI Capability Model: Revisiting
RISC in an Age of Risk,” in Proceedings of the 41st International Symposium on Computer
Architecture, June 2014.

[2] R. N. Watson, P. G. Neumann, J. Woodruff, J. Anderson, D. Chisnall, B. Davis, B. Laurie,
S. W. Moore, S. J. Murdoch, and M. Roe, “Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture, Version 1.14,” tech. rep., SRI International and the
University of Cambridge, September 2015.

[3] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson, D. Chisnall,
N. Davé, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. Norton, M. Roe, S. Son, and
M. Vadera, “CHERI: A Hybrid Capability-System Architecture for Scalable Software Com-
partmentalization,” in Proceedings of the 2015 IEEE Symposium on Security and Privacy,
(San Jose, California), IEEE Computer Society, May 2015.



[4] P. G. Neumann, “Principled assuredly trustworthy composable architectures,” tech. rep., SRI
Int’l, Menlo Park, CA, December 2004. http://www.csl.sri.com/neumann/chats4.html, .pdf.

[5] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti, P.-
Y. Strub, and J. K. Zinzindohoue, “A Messy State of the Union: Taming the Composite State
Machines of TLS,” in Proceedings of the 2015 IEEE Symposium on Security and Privacy, (San
Jose, California), IEEE Computer Society, May 2015. https://www.smacktls.com/smack.pdf.

[6] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems,”
Proceedings of the IEEE, vol. 63, pp. 1278–1308, September 1975.

[7] J. H. Saltzer and F. Kaashoek, Principles of Computer System Design. Morgan Kaufmann,
2009. Chapters 1-6 only. Chapters 7-11 are online:
http://ocw.mit.edu/Saltzer-Kaashoek.

[8] P. G. Neumann, “Practical architectures for survivable systems and networks,” tech.
rep., Final Report, Project 1688, SRI Int., Menlo Park, California, June 2000.
http://www.csl.sri.com/neumann/survivability.html.

[9] E. I. Organick, The Multics System: An Examination of Its Structure. MIT Press, Cambridge,
Massachusetts, 1972.

[10] M. Bishop, Computer Security: Art and Science. Addison-Wesley, Reading, Massachusetts,
2002.

[11] M. Bishop, Introduction to Computer Security. Addison-Wesley, Reading, Massachusetts,
2004.

[12] M. Curtin, Developing Trust: Online Security and Privacy. Apress, Berkeley, California, and
Springer-Verlag, Berlin, 2002.

[13] F. J. Corbató, J. Saltzer, and C. T. Clingen, “Multics: The first seven years,” in Proceedings
of the Spring Joint Computer Conference, vol. 40, (Montvale, New Jersey), AFIPS Press,
1972.

[14] F. J. Corbató, “On building systems that will fail (1990 Turing Award Lecture, with a
following interview by Karen Frenkel),” Communications of the ACM, vol. 34, pp. 72–90,
September 1991.

[15] P. G. Neumann, “The role of motherhood in the pop art of system programming,” in Pro-
ceedings of the ACM Second Symposium on Operating Systems Principles, Princeton, New
Jersey, pp. 13–18, ACM, October 1969. http://www.multicians.org/pgn-motherhood.html.

[16] D. L. Parnas, “On a “buzzword”: Hierarchical structure,” in Information Processing 74 (Pro-
ceedings of the IFIP Congress 1974), vol. Software, pp. 336–339, North-Holland, Amsterdam,
1974.

[17] K. Biba, “Integrity considerations for secure computer systems,” Tech. Rep. MTR 3153, The
Mitre Corporation, Bedford, Massachusetts, June 1975. Also available from USAF Electronic
Systems Division, Bedford, Massachusetts, as ESD-TR-76-372, April 1977.



[18] D. Denning, P. G. Neumann, and D. B. Parker, “Social aspects of computer security,” in
Proceedings of the 10th National Computer Security Conference, September 1987.

[19] P. G. Neumann, “Rainbows and arrows: How the security criteria address computer misuse,”
in Proceedings of the Thirteenth National Computer Security Conference, (Washington, D.C.),
pp. 414–422, NIST/NCSC, 1–4 October 1990.

[20] W. H. Ware, “A retrospective of the criteria movement,” in Proceedings of the Eighteenth
National Information Systems Security Conference, (Baltimore, Maryland), pp. 582–588,
NIST/NCSC, 10–13 October 1995.

[21] C. Hunt, TCP/IP Network Administration, 3rd Edition. O’Reilly & Associates, Sebastopol,
California, 2002.

[22] R. J. Feiertag and P. G. Neumann, “The foundations of a Provably Secure Operating System
(PSOS),” in Proceedings of the National Computer Conference, pp. 329–334, AFIPS Press,
1979. http://www.csl.sri.com/neumann/psos.pdf.

[23] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson, “A Provably
Secure Operating System: The system, its applications, and proofs,” tech. rep., Computer
Science Laboratory, SRI International, Menlo Park, California, May 1980. 2nd edition, Report
CSL-116.

[24] P. G. Neumann and R. J. Feiertag, “PSOS revisited,” in Proceedings of the 19th Annual Com-
puter Security Applications Conference (ACSAC 2003), Classic Papers section, (Las Vegas,
Nevada), pp. 208–216, IEEE Computer Society, December 2003. http://www.acsac.org/ and
http://www.csl.sri.com/neumann/psos03.pdf.

[25] P. G. Neumann, “Robust nonproprietary software,” in Proceedings of the 2000 Symposium
on Security and Privacy, (Oakland, CA), pp. 122–123, IEEE Computer Society, May 2000.
http://www.csl.sri.com/neumann/ieee00.pdf.

[26] C. Gacek, T. Lawrie, and B. Arief, “The many meanings of open source,” tech. rep., Depart-
ment of Computing Science, University of Newcastle upon Tyne, Newcastle, England, August
2001. Technical Report CS-TR-737.

[27] C. Gacek and C. Jones, “Dependability issues in open source software,” tech. rep., Department
of Computing Science, Dependable Interdisciplinary Research Collaboration, University of
Newcastle upon Tyne, Newcastle, England, 2001. Final report for PA5, part of ongoing
related work.

[28] D. of Homeland Security, “Strategic principles for securing the internet of things,” tech. rep.,
DHS, December 2016.

[29] BITAG, “Internet of things IoT security and privacy recommendations,” tech. rep., BITAG
Broadband Internet Technical Advisory Group, November 2016.

[30] C. on Enhancing National Cybersecurity, “Report on securing and growing the digital econ-
omy,” tech. rep., NIST Publication, 1 December 2016, Gaithersburg MD, 1 December 2016.


