
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

CHERI: A Hybrid Capability Architecture
Robert N. M. Watson, Simon W. Moore, Peter G. Neumann
Jonathan Anderson, John Baldwin, Hadrien Barrel, Ruslan Bukin, David Chisnall, Nirav Dave,

Brooks Davis, Lawrence Esswood, Khilan Gudka, Alexandre Joannou, Robert Kovacsics,
Ben Laurie, A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar,
Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, Robert Norton-Wright,

Philip Paeps, Lucian Paul-Trifu, Alex Richardson, Michael Roe, Colin Rothwell, Hassen Saidi,
Peter Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Jonathan Woodruff,

Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge, SRI International
MIT CSAIL - 9 November 2017

2

DARPA – CRASH

If you could revise the fundamental
principles of computer-system design

to improve security…

…what would you change?

3

Principle of least privilege

Every program and every privileged user
of the system should operate using the

least amount of privilege necessary
to complete the job.

Saltzer 1974 - CACM 17(7)
Saltzer and Schroeder 1975 - Proc. IEEE 63(9)

Needham 1972 - AFIPS 41(1)
…

String
buffer

Malicious
data

$pc

$ra

(Lack of) architectural least privilege
• Classical buffer-overflow + code reuse attack

1. Buggy code overruns buffer, overwrites return address
2. Overwritten return address is loaded and jumped to

• These privileges were not required by the C
language; why allow code the ability to:
• Write outside the target buffer?
• Corrupt or inject a code pointer?
• Execute data as code / re-use code?

• Limiting privilege doesn’t fix bugs – but does
provide vulnerability mitigation

Memory Management Units (MMUs) do not
enable efficient granular privilege minimization

4

$a1

$ra

$a0

Register file
Virtual

memory

$pc
Return
Address

Program
counter

Application-level least privilege (1)
Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities and exploits

5

Application-level least privilege (2)

6

7

HTTP GET
sandbox

5. fetch

URL-specific sandbox
URL-specific sandbox

SSL
sandbox

HTTPS
sandbox

network
sandbox

Code-centred compartmentalisation

D
at

a-
ce

nt
er

ed
 c

om
pa

rtm
en

ta
lis

at
io

n

1. fetch
main loop

http

ssl

ftp

URL-specific sandbox

main loop

http

ssl

ftp

FTP
sandbox

2. fetch
main loop

http

ssl

ftp

HTTP
sandbox

3. fetch
main loop

http

ssl

FTP
sandbox

ftp

SSL
sandbox

HTTP auth
sandbox

4. fetch
main loop

http auth

ssl

FTP
sandbox

ftp http get

• Potential decompositions occupy a compartmentalization space:

• Points trade off security against performance, program complexity

• Increasing compartmentalization granularity better approximates
the principle of least privilege …

• … but MMU-based architectures do not scale to many processes:

• Poor spatial protection granularity

• Limited simultaneous-process scalability

• Multi-address-space programming model

CHERI PROTECTION MODEL

8

CHERI software protection goals
• C/C++-language TCBs: kernels, language runtimes, browsers, …

• Granular spatial memory protection, pointer protection

• Buffer overflows, control-flow attacks (ROP, JOP), …

• Foundations for temporal safety

• E.g., accurate C-language garbage collection

• Higher-level language safety

• Safe interfaces to native code (e.g., impose Java memory safety on JNI)

• Efficient memory safety (e.g., hardware assisted bounds checking)

• Scalable in-process compartmentalization

• Facilitate greater use of exploit-independent mitigation techniques

9

CHERI architectural goals (1)

• De-conflate virtualization and protection

• Memory Management Units (MMUs) protect by location in memory

• CHERI protects references to code, data, software objects

• Add protections to existing indirection (pointers) – no new tables

• Architectural mechanism enforces software policy

• Language-based properties
(e.g., C/C++ compiler, linkers, OS model, runtime)

• New software abstractions
(e.g., confined objects for compartmentalization)

10

CHERI architectural goals (2)
• Hybrid capability-system model
• Capability systems target the principle of least privilege
• Capabilities are unforgeable, delegable tokens of authority
• Hybrid capability systems compose cleanly w/current designs

(RISC ISAs, MMUs, OSes, C-language software)
• ISA design also utilizes principle of intentional use:

Avoid implied privilege selection where possible (unlike an MMU)
• Performance goals:
• Low overhead for pointer protection and fine-grained

memory protection (goal: <2%)
• Significant performance gain for compartmentalization

(goal: >>1 order of magnitude)
11

virtual address (64 bits)

Pointers today

12

64
-b

it
po

in
te

r

Allocation

Virtual
address
space

• Implemented as integer virtual addresses (VAs)

• (Usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – pointers can be injected/corrupted

• Arithmetic errors – overflows, out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings

Attacks on data and code pointers are highly effective,
often achieving arbitrary code execution

CHERI protection model

• RISC hybrid-capability architecture supporting fine-grained,
pointer-based memory protection:

• pointer integrity (e.g., no pointer corruption)

• pointer provenance validity (e.g., no pointer injection)

• bounds checking (e.g., no buffer overflows)

• permission checking (e.g., W^X for pointers)

• monotonicity (e.g., no privilege escalation / improper re-use)

• encapsulation (e.g., protect software objects)
13

Pr
ot

ec
t

po
in

te
r

Pr
ot

ec
t

po
in

te
e

CHERI enforces protection semantics for pointers

➡ Provence and monotonicity control whether pointers can be dereferenced
• Valid pointers are derived from other valid pointers via valid transformations
• E.g., Received network data cannot be interpreted as a code or data pointer

➡ Bounds and permissions control how pointers are used, and can be minimized
• E.g., Pointers cannot be manipulated to access the wrong heap or stack object

➡ Foundations for software memory protection and compartmentalization

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance validity Bounds

14

CHERI-MIPS INSTRUCTION-SET
ARCHITECTURE (ISA)

15

CHERI architectural approach
• RISC ISA extensions that avoid new microcode, table lookups, exceptions:

• MMUs control the implementation of virtual addresses

• CHERI protects references to virtual addresses

• Pointers can be implemented via architectural capabilities

• Capabilities: unforgeable, delegable tokens of authority

• Tagged memory protects integrity, provenance of capabilities in DRAM

• Metadata, including bounds and permissions, limit capability use

• Capability monotonicity is implemented via guarded manipulation

• Sealing provides immutable, software-defined capabilities

• Exceptions, userspace CCall implement controlled non-monotonicity

• 256-bit architectural model, but efficient 128-bit implementation
16

virtual address (64 bits)25
6-

bi
t

ca
pa

bi
lit

y
length (64 bits)
offset (64 bits)
base (64 bits)

256-bit architectural capabilities

CHERI capabilities extend pointers with:

• Tags to protect in-memory capabilities:
• Dereferencing an untagged capability throws an exception

• In-memory overwrite automatically clears capability tag
• Bounds limit range of address space accessible via pointer

• Permissions limit operations – e.g., load, store, fetch

• Sealing for encapsulation: immutable, non-dereferenceable
17

Allocation

Virtual
address
space

v1-
bi

t
ta

g
permissions (31 bits) sobjtype (24bits)

128-bit micro-architectural capabilities

18

12
8-

bi
t

ca
pa

bi
lit

y

Allocation

Virtual
address
space

v
1-

bi
t

ta
g

permissions compressed bounds relative to address s

Virtual address (64 bits)

• Compress bounds relative to 64-bit virtual address

• Floating-point bounds mechanism limits bounds alignment

• Security properties maintained (e.g., monotonicity)

• Different formats for sealed vs. non-sealed capabilities

• Still supports C-language semantics (e.g., out-of-bound pointers)

• DRAM tag density from 0.4% to 0.8% of physical memory size

• Full prototype with full software stack on FPGA

Mapping CHERI into 64-bit MIPS

• Capability register file holds in-use capabilities (code and data pointers)

• Tagged memory protects capability-sized and -aligned words in DRAM

• Program-counter capability ($pcc) constrains program counter ($pc)

• Default data capability ($ddc) constrains legacy MIPS loads/stores

• System control registers are also extended – e.g., $epc→$epcc, TLB

• Other concrete ISA instantiations are possible: e.g., merged register files
19

General-purpose
register file Physical memory

Capability register file

$ra

$a1
$a0 vCapability

Capability width

-

v$ddc

v$c4

v

-

$c31

$c3

pointers

$pc

dd

$pcc v

Virtual memory and capabilities

20

Virtual Memory Capabilities
Protects Virtual addresses and pages References (pointers) to C code,

data structures

Hardware MMU,TLB, page-table walker Capability registers,
tagged memory

Costs TLB, page tables, page-table
lookups, shoot-down IPIs

Per-pointer overhead,
context switching

CHERI hybridizes the two models: use the
best combination for any given problem

Compartment scalability Tens to hundreds Thousands or more

Domain crossing IPC In-address-space function calls or
message passing

Optimization goals Isolation, full virtualization Memory sharing,
frequent domain transitions

HARDWARE-SOFTWARE
CO-DESIGN FOR CHERI

21

Hardware-software co-design over 7 years
• Abstract CHERI protection model protects OS, C, linker, app.

• CHERI-MIPS ISA extends the 64-bit MIPS ISA

• Human-readable CHERI ISA specification (tech report)

• L3 + Sail MIPS + CHERI ISA formal models

• Qemu-CHERI fast ISA emulator

• Bluespec SystemVerilog (BSV) pipelined, multicore CHERI-MIPS
CPU processor – simple but realistic

• C → Cycle-accurate software simulator

• Verilog → FPGA @100MHz

• CHERI software corpus: FreeBSD, Clang/LLVM, applications:
OpenSSH, PostgreSQL, nginx, …

• Evaluation: Performance, security, compatibility…
22

Instruction
Fetch

Register
Fetch Decode Execute Writeback

Capability Coprocessor

Instruction Cache MMU: TLB Data Cache

Memory

Memory
Access

L2 Cache

Tag Controller

Implementation on FPGA

CHERI R&D Timeline

23

CHERI ISA refinement (+reinvention)

24

Year Version Description

2010-
2012 ISAv1

RISC capability-system model w/64-bit MIPS
Capability registers, tagged memory
Guarded manipulation of registers

2012 ISAv2
Extended tagging to capability registers
Capability-aware exception handling
Boots an MMU-based OS with CHERI support

2014 ISAv3
Fat pointers + capabilities, compiler support
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

2015 ISAv4
MMU-CHERI integration (TLB permissions)
ISA support for compressed capabilities
HW-accelerated domain switching
Multicore instructions: full suite of LL/SC variants

2016 ISAv5
CHERI-128 compressed capability model
Improved generated code efficiency
Initial in-kernel privilege limitations

2017 ISAv6
Mature kernel privilege limitations
Further generated code efficiency
Architectural portability: CHERI-x86 and CHERI-RISC-V sketches
Exception-free domain transition

R
ISC

 + M
M

U
 +

capabilities

C
 + capabilities

C
om

partm
entalization

128-bit, code efficiency

In-kernel use;
non-M

IP
S ISA

s

CHERI SOFTWARE

25

What are CHERI’s implications for software?
• Efficient fine-grained architectural memory protection enforces:

Provenance validity: Where do pointers come from?

Integrity: How do pointers get where they are going?

Bounds, permissions: What rights should pointers carry?

Monotonicity: Can real software play by these rules?

• Scalable fine-grained software compartmentalization

Can we construct isolation and controlled communication using
integrity, provenance, bounds, permissions, and monotonicity?

Can sealed capabilities, controlled non-monotonicity, and
capability-based sharing enable safe, efficient domain transition?

26

CHERI software models

• Source and binary compatibility – multiple C-language, code-generation models:

• Unmodified code: Existing n64 code runs without modification

• Hybrid code: E.g., capabilities used in return addresses, annotated data/code
pointers, specific types, etc. (MIPS n64-interoperable)

… But “hybrid” is a spectrum between manual and automatic use

• Pure-capability code: Ubiquitous data- and data-pointer protection. (Non-MIPS-
n64-interoperable due to changed pointer size) – also a spectrum of choices

• CHERI Clang/LLVM compiler prototype generates code for all
27

More compatible Safer

Unmodified
All pointers are
integers

Hybrid
Annotated and automatically

selected pointers are capabilities

Pure-capability
All pointers are

capabilities

Hybrid-capability
userspace

From hybrid-capability code to pure-capability code

• n64 MIPS ABI: hybrid-capability code

• Early investigation – manual
annotation and C semantics

• Many pointers are integers (including
syscall arguments, most implied VAs)

• CheriABI: pure-capability code

• The last two years – fully automatic
use of capabilities wherever possible

• All pointers, implied virtual addresses
are capabilities (inc. syscall arguments)

28

MIPS code

Pure-capability code

` Hybrid-capability code

Largely conventional MIPS OS kernel
with CHERI-enabled userspace

Hybrid-capability CheriABI shim

Pure-capability
userspace

CheriABI: A full pure-capability OS userspace
• Complete memory- and pointer-safe FreeBSD C/C++ userspace

• System libraries: crt/csu, libc, zlib, libxml, libssl, …

• System tools and daemons: echo, sh, ls, openssl, ssh, sshd, …

• Applications: PostgreSQL, nginx; bringing up WebKit (C++)

• Valid provenance, minimized privilege for all pointers, implied VAs

• Userspace capabilities originate in kernel-provided roots

• Kernel, compiler, allocators, linker, … refine bounds and permissions

• Trading off privilege minimization, monotonicity, API conformance

• Typically in memory management – realloc(), mmap() + mprotect()
29

Evaluating compatibility
Goal: Little or no software modification (BSD base system + applications)

Goal: Software that works (BSD base + application test suites)

30

Pointer vs.
integer

Pointer size &
alignment

Pointer
integrity

Function
ABI

Unsupported
features

BSD libraries 20 3 6 5 2

BSD programs 19 4 5 5 4

PostgreSQL ✓ ✓ ✓ - -

Pass Fail Skip Total

MIPS 2998 47 168 3213

Hybrid 2992 53 168 3213

CheriABI 2800 75 203 3078

Increase in “skip”s due to our not running with dynamic linking in our test environment currently.
Several memory-safety bugs in tests also found and fixed!

BSD: 34 of 824 programs, 28 of 130 libraries modified. ~200 out of ~20,000 userspace C files/headers modified.

Evaluating protection
• Adversarial / historical analysis

üPointer integrity, provenance validity prevent ROP, JOP

üBuffer overflows: Heartbleed (2014), Cloudbleed (2017)

üPointer provenance: Stack Clash (2017)

• Existing test suites – e.g., BOdiagsuite (buffer overflows)

• Key evaluation concern: reasoning about a CHERI-aware adversary

31

OK min med large

mips64 0 4 7 171

CheriABI 0 276 287 289

LLVM Address Sanitizer (asan) on x86 0 275 285 286

CHERI COMPARTMENTALIZATION

32

Principles of CHERI compartmentalisation
• A thread’s protection domain is its register-file capabilities and

transitively reachable resources (i.e., via held capabilities)

• Manipulation of the capability graph can implement isolation,
controlled communication, and domain transition

• We can then construct an object-capability-based security model:
classes, objects, shared memory, and object invocation

33

Shared data

Shared dataStack

Code

Data
Thread 1

Code

Data Stack Thread 2

Sealed data
capability 2

Sealed code
capability 2

CheriBSD in-process compartmentalization (sketch)
• CheriBSD userspace object-capability model

• libcheri is a capability-based run-time linker

• libcheri loads, links classes, instantiates objects
• Confined objects: limited capabilities, no syscalls

• Fast and robust protection-domain transition
• Sealed capabilities enforce encapsulation so

that references can be safely delegated

• Invocation of a sealed object triggers a
non-monotonic register-file transformation

• Efficient object and memory sharing
• Delegate capabilities across invocation, return

34
Process

Class

Per-class

libcheri

Sealed data
capability

Sealed code
capability

Instance
data

Stack(s) Per-object

Object metadata

Instance data 2

libc
rtld

Ambient
stack(s)

Global heap
memory

Application

Object-capability invocation
• Mutual trust - robust function calls

• CHERI-aware jump, jump-and-link instructions

• Target, return capabilities protect control flow

• Shared stack, globals, …

• Mutual distrust - object-capability invocation

• Exception-free non-monotonic control transfer

• Independent stacks, globals, … for encapsulation

• Per-thread trusted stack links object stacks

• Reliable call-return semantics

• Reliable recovery on uncaught exception

• Classes permissions limit system calls (vis. Java JNI)
35

Confined object

CCall
invoke CCall

return

Confined object

CCall
invoke CCall

return

Kernel

Syscall
enter Syscall

return

Ambient
environment

function 1

function 2
CJALR CJR

Ambient
environment

CCall
invoke CCall

return

JamVM

CHERI-JNI: Protecting Java from JNI
• Java Native Interface (JNI) allows Java programs to use

native code for performance, portability, functionality

• Often fragile; sometimes overtly insecure

• Apply Java memory-safety and security models to JNI

• Limit native-code access to JVM internal state

• Pointer, spatial memory safety for native code

• Temporal safety for JNI heap access w/C-language GC

• Safe copy-free JNI access to Java buffers via capabilities

• Enforces Java security model on JNI access to Java
objects and system services (e.g., files, sockets)

• Prototyped using JamVM on CHERI-MIPS, CheriBSD
36

libcheri
runtime

CheriBSD

JNI code

Java
application

Sandboxed
JNI code

WHERE NEXT?

37

Ongoing research
Quantitative ISA optimization

Compiler optimization

Superscalar microarchitectures

Tag tables vs. native DRAM tags

Toolchain: linker, debugger, …

C++ compilation to CHERI

Grow software corpus

CHERI and ISO C/POSIX APIs

Sandbox frameworks into CHERI

MMU-free CHERI microkernel

Safe native-code interfaces (JNI)

Safe inter-language interoperability

C-language garbage collection

Accelerating managed languages

Formal proofs of ISA properties

Formal proofs of software properties

Verified hardware implementations

Non-volatile memory

Pointer-based security analysis from traces

Microarchitectural optimization opportunities
from exposed software semantics

MMU-free HW designs for “IoT”

38

CHERI papers
ISCA 2014: Fine-grained, in-address-space memory protection hybridizes MMU,
capabilities

ASPLOS 2015: Explore + refine C-language compatibility – capabilities + fat pointers

Oakland 2015: Efficient, capability-based compartmentalization in processes

ACM CCS 2015: Compartmentalization modeling using static analysis

PLDI 2016: C-language semantics + CHERI extension (w/EPSRC REMS Project)

IEEE Micro Journal Sep/Oct 2016: Hardware-assisted efficient domain switching

ASPLOS 2017: CHERI reinforcement for Java JNI

MIT Press book chapter 2017: Balancing disruption and deployability in CHERI

ICCD 2017: Efficient tagged memory through tag tables and caches

39

CHERI technical reports
Capability Hardware Enhanced RISC Instructions: CHERI Instruction-
Set Architecture (CHERI ISAv6)

• UCAM-CL-TR-907 – April/June 2017

• Kernel-mode compartmentalization, exception-free domain transition,
architecture-abstracted efficient tag restoration, CHERI x86_64 and RISC-V
sketches, explanation and rationale improvements

Capability Hardware Enhanced RISC Instructions: CHERI
Programmer’s Guide

• UCAM-CL-TR-877 – November 2015

• C language, compiler, OS internals

• Multiple technical reports on the BERI prototyping platform

40

Conclusion
• CHERI is a RISC hybrid capability-system architecture

• Iterative hardware-software co-design over 7 years

• Novel convergence of MMU and capability-based approaches

• Strong, real-world C-language pointer and memory protection with low overhead

• Scalable, fine-grained intra-process compartmentalization

• Substantial vulnerability-mitigation benefit validated against large, real-world software

• ISCA 2014, ASPLOS 2015, IEEE SSP 2015, ACM CCS 2015, PLDI 2016, IEEE Micro
2016; ASPLOS 2017, ICCD 2017, …

• Watson, et al. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 6), UCAM-CL-TR-907, April 2017

• Open-source architecture, hardware, and software; specifications and prototypes

https://www.cheri-cpu.org/
41

Q&A

42

