CRASH-WORTHY
TRUSTWORTHY
SYSTEMS
RESEARCH AND
DEVELOPMENT

Efficient Tagged Memory

Alexandre Joannou, Jonathan Woodruff, Simon W. Moore, Robert Kovacsics,
Hongyan Xia, Robert N. M.Watson, David Chisnall, Michael Roe, Brooks
Davis, Peter G. Neumann, Edward Napierala, John Baldwin,A. Theodore

Markettos, Khilan Gudka, Alfredo Mazzinghi, Alexander Richardson, Stacey Son
and Alex Bradbury

University of Cambridge and SRI International

EH UNIVERSITY OF
@» CAMBRIDGE

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of
the author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

CTSRD

Johnny Proposes Tagged Memory

/ |-bit Tag Per Word! \ o

* Tag pointers for integrity? <
Tag allocated memory!?
Data flow tracking?

Watchpoints on any word!?
Only I-bit per word! /

B H UNIVERSITY OF
¢¥» CAMBRIDGE

CTSRD

Johnny Proposes Tagged Memory

-

|-bit Tag Per Word! \

Tag pointers for integrity?
Tag allocated memory!?
Data flow tracking?
Watchpoints on any word!?

Only I-bit per word! /

\@® .

//
v

Non-standard Memory?

* Custom cache width is possible

)|

Registers could preserve the bit
But custom DRAM is a non-starter

We can’t even afford ECC!

{ Security must be free!

\7

/

3

I H UNIVERSITY OF
¢¥» CAMBRIDGE

CTSRD

Johnny Proposes Tagged Memory

/ A Tag Table in DRAM! \
e Put table in standard DRAM e _
* It will be really small (I-bit per word!)
* Emulate wider memory, fetch tag and data
on cache miss
* Keep them together on-chip /

B H UNIVERSITY OF
¢¥» CAMBRIDGE

CTSRD

Johnny Proposes Tagged Memory

-

A

A Tag Table in DRAM! \
Put table in standard DRAM
It will be really small (I-bit per word!)
Emulate wider memory, fetch tag and data
on cache miss
Keep them together on-chip /

//
v

N @@ Double the Memory Accesses?

ﬂ * Access both the table and the data on every

cache miss!?
* No

o

\7

/

BB UNIVERSITY OF

&¥ CAMBRIDGE

CTSRD

Johnny Proposes Tagged Memory
4 N

A Cache for the Tag Table! 7~
* Use a dedicated cache for the tags! -~
* It will hold tags for loads of data
(I-bit per word! Covers megabytes of data!)
* Only do DRAM table lookup on a miss

/

B H UNIVERSITY OF
¢¥» CAMBRIDGE

CTSRD

Johnny Proposes Tagged Memory

-

A

~

A Cache for the Tag Table!
Use a dedicated cache for the tags!
It will hold tags for loads of data.
(I-bit per word! Covers megabytes of data!)
Only do DRAM table lookup on a miss.

/

//
v

@ / Last-level Caches Aren’t that Effective

* This is logically a last-level cache

ﬂ e LLC has low hit-rates: 40-60% for SPEC

We only see accesses that have missed in primary caches...

-

* +50% memory accesses isn’t going to fly

\7

/

B H UNIVERSITY OF

&¥ CAMBRIDGE

The Tagged Memory Challenge

|. Add | bit per word of memory

2. Make it “free”

B H UNIVERSITY OF
¢¥» CAMBRIDGE

Re-cap Simple Tag Hierarchy

* Store tags with data in cache
hierarchy

* Tag controller does tag table
lookup on DRAM access

* Cache lines of tags from DRAM

m!m UNIVERSITY OF
¢» CAMBRIDGE

An Experiment in Gem5
 Trace all DRAM accesses

* Replay against a tag controller + cache model

* Measure tag-cache hit-rate

Using ARMv8 Gem5

Google v8 engine running Earley-Boyer Octane (x3)

FFMPEG

4-core, 8MiB L3 with prefetching

B H UNIVERSITY OF
¢¥» CAMBRIDGE

Tag Table Cache Properties

DRAM traffic overhead vs. tag cache size, 64-byte lines

= 50%

= ¢— Earley-Boyer —eo— FFMPEG

=

=409 -

>

@)

&) O

= 30%

< Only 12% overhead with same

+ 200 - reach as Iast_level cache!
;: : <5% traffic overhead at
e b 256KiB with 16MiB capacity
- 10% A .

a0 o ;

< —b— 0

= 0% : : —@ —

64KiB (for 4MiB of data) 128KiB (for 8MiB of data) 256KiB (for 16MiB of data)

Tag cache size

Why is tag cache more effective than a traditional last-level cache!?

Il B H UNIVERSITY OF
¢¥» CAMBRIDGE

Tag Table Cache Locality Analysis

Temporal and Spatial Hits vs. Line Size
for Earley-Boyer, 256KiB tag cache, 8-way set associative

100% : — :
@ misses [spatial hits [temporal hits
80%
1¢2]
Q
142]
3
g 60%
(v
<
g
S 40%
on .
éﬂ 64-byte line of tags
20% 4KiB Page of data
1-byte line of tags =

64B Line of data

0

1 2 4 8 16 32 64 128 256 512 1024
Tag cache line size (bytes)

12 EH UNIVERSITY OF
¥ CAMBRIDGE

CTSRD

Tag Compression

1 bit per page of data: 0 for no tags set

root table
Tags for a
]?age ‘Bf dat? leaf table
64 bytes

* 2-level tag table

 Each bit in the root level indicates all zeros in a
leaf group

* Reduces tag cache footprint

* Amplifies cache capacity

13 BB UNIVERSITY OF

Use-case |: Pointer Integrity

All virtual addresses are tagged

All words that match successful TLB translations

Similar to our CHERI| FPGA implementation

100
g °0 Cache Lines Containing Pointers
5 80
o 70
_tCJ 60
(4]
O 5o
[
O 40
£ 30
L]
U 20
¢ u
O I
bzip2 chromium Octane Earley- Octane Splay
. Boyer
C C++ C++ & Javascript | Y !
14 Pointer-heavy Javascript B UNIVERSITY OF

&% CAMBRIDGE

CTSRD

Use-case 2: Zero Elimination

* Tag cache lines that contain zeros
* Eliminate zero cache lines from DRAM traffic

* Can we eliminate more data traffic than the tag
table generates!

e 1.5-2.5% of lines in DRAM traffic are all zero

(in our workloads)

e |f we use less than |% for table traffic, we
improve performance!

15 i B UNIVERSITY OF

&¥ CAMBRIDGE

Overhead with Compression

4.0%
- 3.9%
8 B FFMPEG M Earley-Boyer
£ 3.0%
9 2.5%
O .J7/0
& 2.0%
e
= 1.5%
2
< 1.0%
a 0.5% .

0.0% e

No Compression Com.pressed Compressed
Pointers Zeros
© EH UNIVERSITY OF

¥ CAMBRIDGE

CTSRD

CHERI FPGA Implementation

* 64-bit MIPS implementation with tagged pointers
* 256KiB, 4-way set associative L2 cache

* Parameterizable hierarchical tag controller
backed by 32KiB 4-way associative tag cache

I H UNIVERSITY OF
¢¥» CAMBRIDGE

CTSRD

Benchmarks in Hardware
DRAM Traffic Overhead in FPGA Implementation

Note: MiBench overheads with compression are approximately zero

B Uncompressed

"g 8% I 0 Compressed
=
L 6%
S
i
" 4% |
B
=
5 2%
AR

0% i

0? \Q‘l&%\’ & QS) N fboﬂ %Q\‘Zr Qé N &
MiBench &\Qﬁ Octane

@‘Zr

SRi 18
International, /

3B UNIVERSITY OF
¢¥ CAMBRIDGE

CTSRD

Things We've Learned

* A tag table caches extremely well

Spatial locality pays off for very wide lines
* Simple compression works well for sparse tags

* Single-bit tags in standard memory can require
nearly zero overhead in the common case

Pointer tags + zero line elimination could actually net reduce
memory accesses for most cases!

Questions!

Jonathan.Woodruff@cl.cam.ac.uk

19 i B UNIVERSITY OF

¥ CAMBRIDGE

