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Johnny Proposes Tagged Memory

/ |-bit Tag Per Word! \ o

* Tag pointers for integrity? <
Tag allocated memory!?
Data flow tracking?

Watchpoints on any word!?
Only I-bit per word! /
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Johnny Proposes Tagged Memory

-

|-bit Tag Per Word! \

Tag pointers for integrity?
Tag allocated memory!?
Data flow tracking?
Watchpoints on any word!?

Only I-bit per word! /
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Non-standard Memory?

* Custom cache width is possible

)|

Registers could preserve the bit
But custom DRAM is a non-starter

We can’t even afford ECC!

{ Security must be free!
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Johnny Proposes Tagged Memory

/ A Tag Table in DRAM! \
e Put table in standard DRAM e _
* It will be really small (I-bit per word!)
* Emulate wider memory, fetch tag and data
on cache miss
* Keep them together on-chip /
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Johnny Proposes Tagged Memory

-

A

A Tag Table in DRAM! \
Put table in standard DRAM
It will be really small (I-bit per word!)
Emulate wider memory, fetch tag and data
on cache miss
Keep them together on-chip /

//
v

N @@ Double the Memory Accesses?

ﬂ * Access both the table and the data on every

cache miss!?
* No

o
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Johnny Proposes Tagged Memory
4 N

A Cache for the Tag Table! 7~
* Use a dedicated cache for the tags! -~
* It will hold tags for loads of data
(I-bit per word! Covers megabytes of data!)
* Only do DRAM table lookup on a miss

/
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Johnny Proposes Tagged Memory

-

A

~

A Cache for the Tag Table!
Use a dedicated cache for the tags!
It will hold tags for loads of data.
(I-bit per word! Covers megabytes of data!)
Only do DRAM table lookup on a miss.

/
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@ / Last-level Caches Aren’t that Effective

* This is logically a last-level cache

ﬂ e LLC has low hit-rates: 40-60% for SPEC

We only see accesses that have missed in primary caches...

-

* +50% memory accesses isn’t going to fly
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The Tagged Memory Challenge

|. Add | bit per word of memory

2. Make it “free”
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Re-cap Simple Tag Hierarchy

* Store tags with data in cache
hierarchy

* Tag controller does tag table
lookup on DRAM access

* Cache lines of tags from DRAM
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An Experiment in Gem5
 Trace all DRAM accesses

* Replay against a tag controller + cache model

* Measure tag-cache hit-rate

Using ARMv8 Gem5

Google v8 engine running Earley-Boyer Octane (x3)

FFMPEG

4-core, 8MiB L3 with prefetching
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Tag Table Cache Properties

DRAM traffic overhead vs. tag cache size, 64-byte lines
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64KiB (for 4MiB of data) 128KiB (for 8MiB of data) 256KiB (for 16MiB of data)

Tag cache size

Why is tag cache more effective than a traditional last-level cache!?
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Tag Table Cache Locality Analysis

Temporal and Spatial Hits vs. Line Size
for Earley-Boyer, 256KiB tag cache, 8-way set associative
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Tag Compression

1 bit per page of data: 0 for no tags set

root table
Tags for a
]?age ‘Bf dat? leaf table
64 bytes

* 2-level tag table

 Each bit in the root level indicates all zeros in a
leaf group

* Reduces tag cache footprint

* Amplifies cache capacity
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Use-case |: Pointer Integrity

All virtual addresses are tagged

All words that match successful TLB translations

Similar to our CHERI| FPGA implementation
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Use-case 2: Zero Elimination

* Tag cache lines that contain zeros
* Eliminate zero cache lines from DRAM traffic

* Can we eliminate more data traffic than the tag
table generates!

e 1.5-2.5% of lines in DRAM traffic are all zero

(in our workloads)

e |f we use less than |% for table traffic, we
improve performance!
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Overhead with Compression
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CHERI FPGA Implementation

* 64-bit MIPS implementation with tagged pointers
* 256KiB, 4-way set associative L2 cache

* Parameterizable hierarchical tag controller
backed by 32KiB 4-way associative tag cache
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Benchmarks in Hardware
DRAM Traffic Overhead in FPGA Implementation

Note: MiBench overheads with compression are approximately zero
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Things We've Learned

* A tag table caches extremely well

Spatial locality pays off for very wide lines
* Simple compression works well for sparse tags

* Single-bit tags in standard memory can require
nearly zero overhead in the common case

Pointer tags + zero line elimination could actually net reduce
memory accesses for most cases!

Questions!

Jonathan.Woodruff@cl.cam.ac.uk
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