
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air 
Force Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of 
the author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

CHERI JNI:
Sinking the Java security model into the C

David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil,
Alexandre Joannou, Jonathan Woodruff,  A. Theodore Markettos, 

J. Edward Maste, Robert Norton, Stacey Son, Michael Roe, 
Simon W. Moore, Peter G. Neumann, Ben Laurie,

Robert N. M. Watson



The Java abstract machine

2

Java VM Native Code

JNI
Type safe
Garbage collected
Data hiding
Security policy enforcement

Fast
Full control over memory
Basically full of evil



Native Code

Fast
Full control over memory
Basically full of evil

The Java concrete machine

3

Java VM

Type safe
Garbage collected
Data hiding
Security policy enforcement

JNI



JNI is insecure by design

The JNI does not check for programming errors such as 
passing in NULL pointers or illegal argument types. Most 

C library functions do not guard against programming 
errors…The programmer must not pass illegal pointers 
or arguments of the wrong type to JNI functions. Doing 
so could result in arbitrary consequences, including a 

corrupted system state or VM crash. 

4



BRIEF CHERI PRIMER

5



Hardware memory safety

6

s

pointer (64 bits)25
6-

bi
t 

ca
pa

bi
lit

y

Virtual
address
space

v1-
bi

t 
ta

g

permissions (31 bits)objtype (24bits)

length (64 bits)

offset (64 bits)

base (64 bits)

Compressed representation provides the same abstract model in 128 bits.



Sealing gives opaque pointers

7

Sealing 
Capability

Data
Capability

Sealed 
Capability

Seal

Unseal Data
Capability

Trusted code Trusted codeUntrusted code

Unseal

Other data

Trap!



CHERI AND THE JNI

8



CHERI JNI

9

Java VM
Native Code

JNI

Type safe
Garbage collected
Data hiding
Security policy enforcement
Declarative policy for 
sandboxed native code.

Fast
Full control over local memory
Memory-safe access to Java buffers
Controlled access to Java objects
Evil stays in the box

Native Code

JNI

Native Code

JNI



Sandbox scopes

10

Fast

Secure
Easy

Global

Method

Object



Direct buffer access

11

class Foo {
@Sandbox(...)
native long process(ByteBuffer buf)

}

JNIEXPORT void JNICALL
Java_Foo_process
(JNIEnv *env, jobject this, jobject buf) {
char *b = (*env)->GetDirectBufferAddress(env, buf);
someNativeLibraryThing(buf);

}

Java NIO class intended to 
provide C code with direct 
access to JVM-owned 
memory



Direct buffer access

12

class Foo {
@Sandbox(...)
native long process(ByteBuffer buf)

}

JNIEXPORT void JNICALL
Java_Foo_process
(JNIEnv *env, jobject this, jobject buf) {
char *b = (*env)->GetDirectBufferAddress(env, buf);
someNativeLibraryThing(buf);

}

Bounds-checked access to 
JVM-owned buffer and 
nothing else.
No store permission if the 
ByteBuffer is read only.



Avoiding type confusion

Exploitable vulnerability in existing state of the art 
SFI-based technique.

13

// Get the field ID for integer field x
jfieldID f = (*env)->GetFieldID(env, cls, "x", "I");
// Set that field to 42
(*env)->SetIntField(env, r, f, 42);

JVM does:
*(r + (f->offset)) = 42;
No type checking of f.

CHERI JNI checks f and r are 
sealed with the correct type, 
errors if not.



CHERI vs prior sandboxing work

Mechanism JITs Stack 
Unwinders

Many 
Sandboxes

Direct 
buffers

CHERI ✔ ✔ ✔ ✔

SFI-based X X X X

Process-based ✔ ✔ X X

14



Garbage collection extends to C

• All Java references in C code are sealed 
capabilities

• All pointers to Java arrays or direct buffers are 
unsealed (but bounded) capabilities

• All capabilities are protected by a tag bit

• The garbage collector can find them in memory

15



Conclusion

• CHERI allows the Java security model to be 
extended all of the way through native code

• Native code cannot violate the invariants of the 
JVM

• Performance is comparable with conventional JNI 
implementations

16


