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The Java abstract machine
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The Java concrete machine
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JNI is insecure by design

The JNI does not check for programming errors such as 
passing in NULL pointers or illegal argument types. Most 

C library functions do not guard against programming 
errors…The programmer must not pass illegal pointers 
or arguments of the wrong type to JNI functions. Doing 
so could result in arbitrary consequences, including a 

corrupted system state or VM crash. 
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BRIEF CHERI PRIMER
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Hardware memory safety
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Compressed representation provides the same abstract model in 128 bits.



Sealing gives opaque pointers
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CHERI AND THE JNI
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CHERI JNI
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Sandbox scopes
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Direct buffer access

11

class Foo {
@Sandbox(...)
native long process(ByteBuffer buf)

}

JNIEXPORT void JNICALL
Java_Foo_process
(JNIEnv *env, jobject this, jobject buf) {
char *b = (*env)->GetDirectBufferAddress(env, buf);
someNativeLibraryThing(buf);

}

Java NIO class intended to 
provide C code with direct 
access to JVM-owned 
memory



Direct buffer access
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class Foo {
@Sandbox(...)
native long process(ByteBuffer buf)

}

JNIEXPORT void JNICALL
Java_Foo_process
(JNIEnv *env, jobject this, jobject buf) {
char *b = (*env)->GetDirectBufferAddress(env, buf);
someNativeLibraryThing(buf);

}

Bounds-checked access to 
JVM-owned buffer and 
nothing else.
No store permission if the 
ByteBuffer is read only.



Avoiding type confusion

Exploitable vulnerability in existing state of the art 
SFI-based technique.
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// Get the field ID for integer field x
jfieldID f = (*env)->GetFieldID(env, cls, "x", "I");
// Set that field to 42
(*env)->SetIntField(env, r, f, 42);

JVM does:
*(r + (f->offset)) = 42;
No type checking of f.

CHERI JNI checks f and r are 
sealed with the correct type, 
errors if not.



CHERI vs prior sandboxing work

Mechanism JITs Stack 
Unwinders

Many 
Sandboxes

Direct 
buffers

CHERI ✔ ✔ ✔ ✔

SFI-based X X X X

Process-based ✔ ✔ X X
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Garbage collection extends to C

• All Java references in C code are sealed 
capabilities

• All pointers to Java arrays or direct buffers are 
unsealed (but bounded) capabilities

• All capabilities are protected by a tag bit

• The garbage collector can find them in memory
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Conclusion

• CHERI allows the Java security model to be 
extended all of the way through native code

• Native code cannot violate the invariants of the 
JVM

• Performance is comparable with conventional JNI 
implementations
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