
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (‘CTSRD’) and FA8750-11-C-0249 (‘MRC2’). The views, opinions,
and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

CHERI
A Hybrid Capability-System Architecture

Robert N.M. Watson, Simon W. Moore, Peter G. Neumann, JonathanWoodruff,
JonathanAnderson, Ruslan Bukin, David Chisnall, Nirav Dave, Brooks Davis,

Lawrence Esswood, Khilan Gudka, Alexandre Joannou, Chris Kitching, Ben Laurie,
A.Theo Markettos, Alan Mujumdar, Steven J. Murdoch, Robert Norton, Philip Paeps,

Alex Richardson, Michael Roe, Colin Rothwell, Hassen Saidi, Stacey Son, MunrajVadera,
Hongyan Xia, and Bjoern Zeeb

University of Cambridge, SRI International

LAW 2015 – 7 December 2015

Motivation
The Eternal War in Memory*

Example bug: Heartbleed
…allows attackers to eavesdrop
on communications, steal data
directly from the services and
users and to impersonate
services and users.

Yet another memory safety bug!

2

*Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal War in Memory.
In Proceedings of the 2013 IEEE Symposium on Security and Privacy. IEEE 2013.

3

DARPA CRASH

If you could revise the
fundamental principles of
computer-system design
to improve security…

…what would you change?

4

Principle of least privilege

Every program and every privileged user
of the system should operate using the
least amount of privilege necessary to

complete the job.

Saltzer 1974 - CACM 17(7)
Saltzer and Schroeder 1975 - Proc. IEEE 63(9)

Needham 1972 - AFIPS 41(1)

Principle of least privilege (2)
• Access control

• Minimize privileges held by users (and hence their
processes) in accordance to policy

• Fault tolerance

• Limit the impact of software/hardware faults

• Vulnerability and Trojan mitigation

• Constrain rights gained as a result of software supply-
chain compromise (Karger IEEE S&P 1987)

• Motivation for sandboxing, privilege separation, and
software compartmentalization used to mitigate
vulnerabilities in contemporary applications

5

String
buffer

Malicious
data

$pc

$ra

Architectural least privilege
• Classical buffer-overflow attack

• Buggy code overruns a buffer,
overwriting an on-stack return address

• Overwritten return address is loaded
and jumped to, corrupting control flow

• Why did we allow these privileges:

• Ability to overrun the buffer?

• Ability to inject a code pointer that can
be used as a jump target?

• Ability to execute data as code?

• Wouldn’t eliminate the bug – but
would provide effective
vulnerability mitigation 6

$a1

$ra

$a0

Register file
Virtual

memory

$pc
Return
Address

Program
counter

Application-level least privilege (1)

Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities/exploits!

7

Application-level least privilege (2)

8

9

HTTP GET
sandbox

5. fetch

URL-specific sandbox
URL-specific sandbox

SSL
sandbox

HTTPS
sandbox

network
sandbox

Code-centred compartmentalisation

D
at

a-
ce

nt
er

ed
 c

om
pa

rtm
en

ta
lis

at
io

n

1. fetch
main loop

http

ssl

ftp

URL-specific sandbox

main loop

http

ssl

ftp

FTP
sandbox

2. fetch
main loop

http

ssl

ftp

HTTP
sandbox

3. fetch
main loop

http

ssl

FTP
sandbox

ftp

SSL
sandbox

HTTP auth
sandbox

4. fetch
main loop

http auth

ssl

FTP
sandbox

ftp http get

• Compartmentalization options for software
describe a compartmentalization space

• Each trade off security against performance
and programming complexity

• But MMU-based processes are problematic:

• Poor spatial protection granularity

• Limited simultaneous-process scalability

• Multi-address-space programming model

REVISITING RISC
IN AN AGE OF RISK

10

CTSRD: Revisiting the hardware-
software interface for security

11

Guiding design principles
• De-conflate virtualization and protection using a hybrid model

• Hybrid capability-system model

• Memory Management Unit (MMU) protects virtual addresses

• Capabilities protect pointers – “unforgeable tokens of authority”

• RISC approach – keep instructions simple, targeted at compilers

• C-language pointers map cleanly into ISA-level capabilities

• Tags, bounds, permissions, monotonicity, sealing protect pointers

• Spatial safety protects against many pointer-misuse vulnerabilities

• Temporal safety protects against many memory re-use attacks

• Scalable compartmentalization for exploit-independent mitigation

• Target: C-language TCBs – OS kernels, language runtimes, …

12

CHERI architectural elements

• Tagged memory tags capability-sized words in DRAM as pointers

• Capability register file holds in-use capabilities (pointers)

• Program counter capability extends program counter

• Default data capability ($ddc) controls legacy MIPS loads/stores

• NB: System control registers are also extended – e.g., $epc→$epcc, TLB
13

$pc

$ra

$a1

$a0

General-purpose
register file Physical memory

$pcc

Capability register file

$c31

v

v$c4

$ddc v

vCapability

d d

Capability width

v
-

$c3 -

pointer (64 bits)

Pointers today

• Pointers are integer virtual addresses

• Pointers (usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection: easily accidentally/maliciously overwritten

• Arithmetic errors lead to out-of-bounds memory leaks/overwrites

• Inappropriate pointer use – e.g., executable data, format strings
14

64
-b

it
po

in
te

r

Virtual
address
space

pointer (64 bits)

Tags for integrity and provenance

• Tags on capability registers indicate a valid capability

• Dereferencing an untagged capability throws an exception

• Tagged memory holds tags when capabilities are loaded/stored

• Capabilities can be embedded within data structures

• Tags track pointer provenance:

• Tag is set in primordial capabilities

• Valid capability manipulations maintain tag

• Data stores to in-memory capabilities clear tags

Virtual
address
space

v

1-
bi

t
ta

g
64

-b
it

po
in

te
r

pointer (64 bits)

Bounds checking

• Capability bounds restrict access to a range of memory

• Base, length, and base-relative offset

• Pointer can float within bounds – and beyond

• Set bounds instruction subsets a current range

• Used by heap, stack allocators – but also for explicit subsetting

• Out-of-bounds dereference throws a hardware exception
16

25
6-

bi
t

ca
pa

bi
lit

y

Virtual
address
space

v

1-
bi

t
ta

g

length (64 bits)

offset (64 bits)

base (64 bits)

pointer (64 bits)

permissions (31 bits)

Permissions

• Permissions limit how a pointer may be dereferenced

• Load, store, instruction fetch (and others)

• E.g., cannot jump to a data pointer, write to a code pointer

• Permission mask instruction reduces permissions

• Unauthorized dereference throws a hardware exception

17

25
6-

bi
t

ca
pa

bi
lit

y

Virtual
address
space

v

1-
bi

t
ta

g

length (64 bits)

offset (64 bits)

base (64 bits)

Pointer provenance and monotonicity

• Capability instructions and tags implement guarded manipulation

• Pointer provenance: pointers must be derived from other pointers

• Monotonicity: cannot increase rights associated with a capability

• Bounds can be narrowed but not widened

• Permissions can be cleared but not set

• Data received over the network cannot be interpreted as a pointer

• Heap pointers cannot be manipulated to allow access other heap objects
18

Stack allocator
Heap allocator

Data

objtype (24bits) s

Sealed capabilities

• Sealed bit provides strong encapsulation

• Enforce a TCB-defined calling convention

• Sealed capabilities are immutable, cannot be dereferenced

• Object types atomically link multiple capabilities

• Object capabilities pair code and data capabilities

• Foundation for secure hardware-software object invocation
19

Virtual
address
space

pointer (64 bits)

permissions (31 bits)

25
6-

bi
t

ca
pa

bi
lit

y

v

1-
bi

t
ta

g

length (64 bits)

offset (64 bits)

base (64 bits)

objtype (24bits) s

pointer (64 bits)

256-bit architectural capabilities

• CHERI capabilities are fat pointers with strong integrity

• Tags protect integrity; can’t dereference invalid capability

• Bounds limit range of address space accessible via pointer

• Permissions limit operations – e.g., load, store, instruction fetch

• Guarded manipulation enforces monotonic rights decrease

• Architectural description not the micro-architectural implementation
20

25
6-

bi
t

ca
pa

bi
lit

y

Virtual
address
space

v1-
bi

t
ta

g

permissions (31 bits)

length (64 bits)

offset (64 bits)

base (64 bits)

128-bit micro-architectural capabilities

21

12
8-

bi
t

ca
pa

bi
lit

y

Virtual
address
space

v

1-
bi

t
ta

g

perms compressed bounds relative to pointer s

pointer (64 bits)

• Exchange bounds precision for register size, cache footprint

• Floating-point(-like) bounds relative to pointer

• Must support out-of-bound C pointers – unlike prior schemes

• Must retain monotonicity for safe delegation!

• Care required with security-imprecision trade offs

• DRAM tag density from 0.4% to 0.8% of memory size

• Fully functioning prototype with software stack on FPGA

String
buffer

Malicious
data

$pc

$ra

Architectural least privilege

22

$a1

$ra

$a0

Register file
Virtual

memory

$pc
Return
Address

Program
counterCHERI memory protection:

• Eliminates out-of-bounds accesses
• Prevents injected data being used as a

code or data pointer
• Data pointers cannot be used as

branch or jump targets

• Efficiently implements least privilege,
mitigating as-yet undiscovered attack
techniques and software trojans

While:
• Retaining current programming

languages and models
• Supporting incremental deployment

Virtual memory and capabilities

23

Virtual Memory Capabilities
Protects Virtual addresses and pages References (pointers) to C

code, data structures

Hardware MMU,TLB Capability registers,
tagged memory

Costs TLB, page tables, lookups,
shootdowns

Per-pointer overhead,
context switching

Compartment scalability Tens to hundreds Thousands or more

Domain crossing IPC Function calls

Optimization goals Isolation, full virtualization Memory sharing,
frequent domain transitions

CHERI hybridizes these models: pick two!

Binary and source-code compatibility

• MIPS code lives side-by-side with CHERI code

• Incremental adoption – e.g., return addresses,
stack pointers, heap pointers, by type, etc.

24

More compatible Safer

N64
All pointers
are registers

Hybrid
Some pointers are capabilities;
e.g., annotated data pointers,
stack and/or code pointers

Pure-capability
All code and data

pointers are
capabilities

Software deployment models

25

OS kernel

Address-space executive

Address-space executive

Legacy application
+

capability libraries
Address-space executive

Pure-capability
application

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s

Hybrid capability/MMU OSes

Capability-based
OS with legacy

libraries

CHERI CPU

libsslzlibzlib zlibzlib class1
libssl

class2

libssllibssl

Single address space

Hybrid MMU-capability models: protection and
compartmentalization within virtual address spaces

Single-address-space
systems are possible but

not our focus

COMPARTMENTALIZATION

26

CheriBSD object capabilities
• In-process object-capability model

• Protection domain

• Capability register file, transitive closure
over reachable in-memory capabilities

• Domain transition

• Register transformation within a thread

• libcheri implements classes, objects

• Encapsulation, mutual distrust

• Objects are pairs of sealed code and
data capabilities with identical types

• Capability arguments / return
values allow memory and object
references to be delegated efficiently

27

Virtual
address
space

…

$c0
$c1
$c2

$c31

$c3

…

$c0
$c1
$c2

$c31

Thread1

capability
registers

Thread2

capability
registers

$c3

Object-capability call and return

Compartmentalized object

Ambient object

Compartmentalized object

Ambient object

Kernel

CCall

CCall

System
call

CReturn

CReturn

System-
call return

CReturnCCall

• Initial object has ambient authority
to full address space and system calls

• Compartmentalization runtime
constructs object with explicitly
delegated rights

• Synchronous function-call-like
CCall/CReturn supports current
application/library interfaces

• Trusted stack stitches together
stacks of mutually distrusting objects

• CCall/CReturnABI clears unused
registers to prevent data/capability
leakage between objects
28

Trusted Stack

Application implications

Pros
• Single address-space

programming model

• Referential integrity matches
programmer model

• Only modest work to insert
protection-domain boundaries

• Objects permit mutual distrust

• Constant (low) overhead
relative to function calls even
with large memory flows

Cons
• Still have to reason about the

security properties

• Shared memory is more subtle
than copy semantics

• Capability overhead in data
cache is real and measurable

• ABI subtleties between MIPS
and CHERI compiled code

• Lower overhead raises further
cache side-channel concerns

29

VALIDATION AND
REFINEMENT

30

CTSRD: Revisiting the hardware-
software interface for security

31

CHERI1 experimental prototype
• Hardware:

• 64-bit MIPS + CHERI ISA extensions

• Formal ISA model (in Cambridge L3)

• BSV HDL prototypes (FPGA target)

• Pipelined, L1/L2 caches, MMU, multicore

• Capability extensions, tagged memory

• 256-bit and 128-bit prototypes

• Software:
• CheriBSD operating system

• CHERI clang/LLVM compiler

• Adapted applications

• Open-source HW and SW32

Implementation on FPGA

Instruction
Fetch

Register
Fetch Decode Execute Writeback

Capability Coprocessor

Instruction Cache MMU: TLB Data Cache

Memory

Memory
Access

L2 Cache

Tag Controller

Instruction
Fetch

Register
Fetch Decode Execute Writeback

Capability Coprocessor

Instruction Cache MMU: TLB Data Cache

Memory

Memory
Access

L2 Cache

Tag Controller

CHERI micro-architectural additions

• ‘Capability coprocessor’ provides capability registers, instructions

• $ddc, $pcc interpose on MIPS load/store ISA, instruction fetch

• Processing ‘before’ MMU makes capabilities address-space relative

• Tag controller associates tags with in-memory capabilities

• Our implementation: memory partitioned, with a region holding all tags
33

Demo Tablet Platform

34

Terasic DE-4 tablet hosting 100MHz CHERI processor, CheriBSD OS

Pointer-intensive benchmarks for
pure-capability code (worst case)

• Primary cost: D-cache footprint from pointer-size increase

• Cycles overhead vs. data-size parameter (range of working-set sizes)

• 8.1% - 80.1% 256-bit capabilities

• 2.5% - 24.3% 128-bit capabilities

• “In the noise” for Dhrystone & tcpdump (256-bit capabilities)

• Other security/performance options – e.g., only return-address capabilities
35

40

45

50

55

60

65

70

75

80

85

1000 10000 100000 1000000

cy
cl

es
 p

er
 b

yt
e

of
 d

at
as

et

bytes of dataset

Bitonic Sort

CHERI256)

CHERI128)

BERI)

100

150

200

250

300

350

400

4000 40000 400000

cy
cl

es
 p

er
 b

yt
e

of
 d

at
as

et

bytes of dataset

Minimum Spanning Tree

CHERI256)

CHERI128)

BERI)

5

7

9

11

13

15

17

19

21

23

4000 40000 400000

cy
cl

es
 p

er
 b

yt
e

of
 d

at
as

et

bytes of dataset

Olden Perimeter

CHERI256)

CHERI128)

BERI)

10

11

12

13

14

15

16

17

18

19

4000 40000 400000

cy
cl

es
 p

er
 b

yt
e

of
 d

at
as

et

bytes of dataset

Olden TreeAdd

CHERI256)

CHERI128)

BERI)

36

Sandboxing: Domain-switching overhead

Function-call
baseline

CHERI domain X

process-based
separation
approaches

Inter-thread
baseline

Library compartmentalization

• Compartmentalize within
libraries without disturbing
public API/ABI

• Allows unmodified
applications to benefit from
compartmentalization of key
system classes/libraries

• Memory-based APIs are
extremely inefficient to pass
between processes

• Very efficient between CHERI
compartments as pointers
delegate memory access

37

Application vs. library-based
compartmentalization for gzip and zlib

Library-based compartmentalization of zlib
and gif2png performance

CHERI papers (1)
• ISCA 2014: Fine-grained, in-address-space memory protection

• Deconflate virtualization and protection

• Hybrid model adds capabilities while retaining an MMU

• Capabilities: pointers with tags, permissions, bounds

• Manual annotations protect selected stack/heap pointers

• C-language TCBs: OSes, language runtimes, etc.

• ASPLOS 2015: Explore and refine C-language compatibility

• Converge fat-pointer and capability models

• Binary-compatibility models and C compilation

• Large-scale software study of C-language compatibility

38

CHERI papers (2)
• Oakland 2015: Hybrid hardware-software compartmentalization

• Sealed capabilities and object types

• Hardware-enforced object-capability model

• Efficient, in-address-space HW-SW domain transition

• ACM CCS 2015: Compartmentalization modeling and analysis

• Conceptual model for software compartmentalization

• LLVM-based static analysis tools to analyze
compartmentalized designs to validate security goals

• Annotations for security goals, compartments, sensitive data,
vendor information, past vulnerabilities, …

• Analyses of Chromium, OpenSSH; KDE compartmentalization

39

CHERI technical reports
• Capability Hardware Enhanced RISC Instructions:

CHERI Instruction-Set Architecture. (UCAM-CL-
TR-876).

• ISAv4 released in November 2015

• Experimental 128-bit capabilities, domain-switching
optimisations, further C-language support; also
chapters on protection model

• Capability Hardware Enhanced RISC Instructions:
CHERI Programmer’s Guide. (UCAM-CL-TR-877).

• New document released in November 2015

• Compiler, OS internals

40

Current R&D directions
• Improve architecture, micro-architectural performance

• Converge register files, 128-bit “compressed” capabilities

• Opcode footprint reduction through ISA load/store reuse

• Explore and mature software security and development models

• Compiler, linker, and ABI refinement

• Control-Flow Integrity (CFI)

• Compartmentalization programming models

• Selected system calls within compartments (a la Capsicum)

• Complete pure-capability CheriBSD implementation

• Temporal safety (e.g., accurate C garbage collection)

41

Broader implications
• Model is applicable to other RISC ISAs – ARMv8, RISC-V, etc.

• Some design decisions are ‘deep’ – e.g., tags, monotonicity

• Others are ‘shallow’ – e.g., separate vs. merged register files

• Many incremental SW paths, security/performance tradeoffs

• Deploy for some or all data or code pointers? (e.g., stack, CFI)

• Deploy in key class libraries – no need to recompile applications

• Kernel compartmentalization (i.e., microkernels)

• Language runtimes / JIT: Java, Javascript, memory safety

• Reduce protection pressure on the TLB/page-table system

• Opportunity for large page sizes as physical memory grows
toward petabytes (e.g. HP’s, “The Machine”)

42

Conclusions

• RISC ISA and CPU design implement capability model

• In-address-space pointers become capabilities

• Complements MMU-based virtual memory

• Fine-grained memory protection for code, data

• Scalable compartmentalization

• Strong compatibility with C-Language TCBs

• Open-source implementation, ISA specification:
http://www.cheri-cpu.org/

43

Q&A

44

