
CTSRDCTSRDCRASH-worthy
Trustworthy

Systems
Research and
Development

The CHERI capability model
Revisiting RISC in an age of risk

Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore, 	

Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, 	

Robert Norton, Michael Roe	

University of Cambridge, SRI International, Google

ISCA 2014 — 18 June 2014
Approved for public release. This research is sponsored by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views,
opinions, and/or findings contained in this article/presentation are those of the author/presenter and should
not be interpreted as representing the official views or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of Defense.	

Memory Safety Crisis

~82% of exploited vulnerabilities in 2012	

— Software Vulnerability Exploitation Trends, Microsoft	

How are processors responding?
2

1960 1970 1980 1990 2000 2010

Cambridge
CAP computer

Burroughs B5000

© Burroughs Corporation

IBM System/38

© IBM Corporation

Hardware support for fine-grained
memory safety was the future!

RISC

Consensus on paged virtual memory

Intel
MPXSecurity becoming

marketable

Memory Safety Deprecation & Demand

3

We’ve Built A Real Open Source System

• CHERI processor +
peripherals on FPGA	

• Extension of
FreeBSD OS	

(Including Capsicum
software capabilities)	

• Clang & LLVM

4

Capability: Unforgeable
token of authority.

 Some “capabilities”:

 File descriptors (Capsicum, L4)

 Segment descriptors (CAP, Intel iAPX)

 Pointers in a virtual machine (Java, .Net)

 Bounded pointers (M-Machine)

5

CHERI Capabilities are
Unforgeable Fat Pointers

Fat Pointer = Base + Length + Permissions

6

Build a RISC Capability Machine

• Single-cycle instructions	

• Load/Store architecture	

• Compiler & OS manage capabilities

7

Build A Useful RISC
Capability Machine

• Keep page-table for virtualisation and
backward compatibility	

• Constrain existing loads and stores with
implied capability register	

• Integrate with 64-bit MIPS ISA	

(Applicable to any RISC ISA)

8

• OS managed	

• Enables swapping	

• Centralized	

• Allows revocation

Paged Memory

Address validation
9

Capabilities

• Compiler managed	

• Precise	

• Can be delegated	

• Many domains

Pointer safety
10

CHERI
Capabilities

• OS managed	

• Enables swapping	

• Centralized	

• Allows revocation

• Compiler managed	

• Precise	

• Can be delegated	

• Many domains

Paged Memory+

Address validation Pointer safety
11

A CHERI Capability

base	
 [64]

length	
 [64]

Permissions	
 [16]

Experimental	
 [112]

256	
 bits

Length
of region

Base of
memory of

region

Access
permissions

12

Capability Register File
Both Implicit and Explicit Use

base length perms

base length perms

base length perms

base length perms

.

.

.

base length perms

Implicit Program Counter Capability

C0 (Implicit Data Capability)

C1

C2

C31

13

PC

Instruction
Fetch Data Access

Rn

TLB

Physical Memory

V i r t u a l A d d r e s s

P h y s i c a l A d d r e s s

Address calculation

14

Address calculation

PC

Instruction
Fetch

Legacy
Data Access

Rn

PCC C0

Physical Memory

O f f s e t

V i r t u a l A d d r e s s

P h y s i c a l A d d r e s s
TLB

15

Address calculation

RnPC

Instruction
Fetch

Legacy
Data Access

Capability
Data Access

Rn

PCC C0 Cn

TLB

Physical Memory

O f f s e t

V i r t u a l A d d r e s s

P h y s i c a l A d d r e s s

16

Capabilities can Replace Pointers

• Unprivileged capability manipulation
instructions	

• Capability loads and stores for all
required memory operations

17

Full Instruction Set Reference: www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf

Capability Transformations
Strictly Reduce Privilege

Mnemonic Function

CIncBase Increase base and decrease length

CSetLen Reduce length

CAndPerm Restrict permissions

CClearTag Invalidate a capability register

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf

Complete Set of Capability
Loads and Stores

0x32 rd cb rt o↵set 1 0

CLB rd, rt, offset(cb)

Figure 3.4: Instruction encoding for CLB, capability load byte

Mnemonic Description

CSC Store capability register
CLC Load capability register
CL[BHWD][U] Load byte, half-word, word or double via capability

register, signed or unsigned
CS[BHWD] Store byte, half-word, word or double via capability

register

CLLD Load linked via capability register
CSCD Store conditional via capability register

Table 3.3: Segment addressing instructions

Segment control-flow instructions — CHERI implements two types of

branches that depend on the segment descriptors which are listed in Table 3.4.

The first type includes CJR and CJALR which jump into an executable segment

descriptor at an o↵set provided in a general-purpose register. To “jump” in

the context of the capability coprocessor is to move a segment descriptor into

the program counter capability (PCC). CJALR additionally stores the existing

PCC into another capability register. The second control-flow instruction type,

proposed by David Chisnall, branches based on the validity of a descriptor. These

allow a program to e�ciently observe the presence of a reference which can be

very useful for garbage collectors. These also allow dynamic languages to replace

pointers with the actual data if the data is immutable smaller than the reference.

Mnemonic Description

CJR Jump capability register
CJALR Jump and link capability register

CBTU Branch if capability tag is unset
CBTS Branch if capability tag is set

Table 3.4: Segment control-flow instructions

46

Mnemonic Function
CSC Store capability register

CLC Load capability register

CL[BHWD][U] Load byte-double via capability register

CS[BHWD] Store byte-double via capability register

CLLD Load-linked via capability register

CSCD Store conditional via capability register

Signed

WidthLWC2

Full Instruction Set Reference: www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf

Tags to Protect
Capabilities in Memory

Capabilities on the stack and in data structures

DATA

256 bits1 bit

TAGS

20

Tag Table in Commodity DRAM

DATADRAM

Tag Lookup	

(with cache)

L2 Cache

TAGS	

<0.5%

Tags on
physical
memory Cache line is 	

tag + data

21

OS Support is Simple

• Preserve per-process capability state	

• Deliver capability exception signals	

Result: Capability machine in each address space

22

C-language Support is
Straightforward

• Clang extension to implement pointers as
capabilities

• __capability qualifier on pointers	

• Used almost like any other pointer 	

(no subtraction)

23

!
 __capability char *myString =
 (__capability char*)malloc(size);
!
!
!
 myString[size] = ‘d’;

!
 jalr malloc
!
 cincbase $c1, $c0, returnValue
 csetlen $c1, $c1, size
!
 csb ‘d’, size, 0($c1)

C-language Support is
Straightforward

24

!
 jalr malloc
!
 cincbase $c1, $c0, returnValue
 csetlen $c1, $c1, size
!
 csb ‘d’, size, 0($c1)

C-language Support is
Straightforward

Run-time
Trap!

!
 __capability char *myString =
 (__capability char*)malloc(size);
!
!
!
 myString[size] = ‘d’;

25

Program Compartmentalisation
is Flexible

• Coarse-grained using
C0, the implicit data
capability	

• Fine-grained using native
capability addressing

Asa Wilson - CC BY-SA 2.026

CHERI is Built on
BERI

“Bluespec Extensible RISC Implementation”

• 64-bit MIPS R4000 ISA	

• 6-stage pipeline	

• Single issue, in order	

• >100 MHz on Altera
Stratix IV

BERI Pipeline 18.6%

Floating Point 31.8%

Capability Unit 14.7%
Tag Cache 4.0%

CPro0 & TLB 7.8%
Level 2 Cache 6.6%
L1 Data Cache 4.6%
L1 Instr. Cache 2.4%
Debug 4.7%
Multiply & Divide 2.6%
Branch Predictor 2.3%

FPU

Capability!
Unit

Tag!
Controller

TLB!
& CP0

64k L2

16k L1I
16k L1D

Branch Predictor

Debug

Mul/Div

Main!
Pipeline

27
Open source at www.beri-cpu.org

http://www.beri-cpu.org

Address Calculation Pipeline

IF/ID ID/EX EX/MEM MEM/WB

General
Purpose
Registers ALU

Data
Memory

Instruction
Memory

PC

28

PC offset via PCC Capability
Registers

IF/ID ID/EX EX/MEM MEM/WB

General
Purpose
Registers ALU

Data
Memory

Instruction
Memory

PC

+
PCC

+

Data Access offset via
arbitrary capability

register

Address Calculation Pipeline

29

Capability
Registers

IF/ID ID/EX EX/MEM MEM/WB

General
Purpose
Registers ALU

Data
Memory

Instruction
Memory

+

PCC + PC

Data Access offset via
arbitrary capability

register

Use absolute	

PC instead

Address Calculation Pipeline

30

See Paper for Limit Study

Conclusions:	

• CHERI is competitive	

• Our capability size is the only notable overhead	

• A hypothetical 128-bit CHERI has leading performance

CHERI vs. CCured

• Running in
userspace under
FreeBSD on CHERI
FPGA prototype	

• We ported
CCured, an
automatic
memory-safe
transform for C

32

116.92&

23.72& 23.45&
29.66&

23.6&

8.99& 5.19&

,6.06&,20&

0&

20&

40&

60&

80&

100&

120&

140&

Bisort& MST& TreeAdd& Perimeter&

O
ve
rh
ea
d(
Pe

rc
en

ta
ge
(

CCured&

CHERI&

Olden Bounds-checking

33

Protection Slowdown vs. Working Set Size

L1 L2 TLB

0"

5"

10"

15"

20"

25"

2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Pe
rc
en

t'R
un

*m
e'
O
ve
rh
ea
d'

CHERI'working'set'size'in'Kilobytes'

TreeAdd"

34

0"

5"

10"

15"

20"

25"

2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Pe
rc
en

t'O
ve
rh
ea
d'

CHERI'working'set'size'in'Kilobytes'

TreeAdd"
BiSort"
MST"
Perimeter"

Protection Slowdown vs. Working Set Size

35

Conclusions

• Memory safety needs hardware support	

• Current approaches are too weak or too
disruptive	

• A hybrid capability approach is compatible
and scalable

36

Questions?

CHERI & SoC RTL, LLVM, & FreeBSD are open source! www.cheri-cpu.org

Thanks to DARPA and Google for support! 37

http://www.cheri-cpu.org

