CRASH-WORTHY
TRUSTWORTHY
SYSTEMS
RESEARCH AND
DEVELOPMENT

The CHERI capability model

Revisiting RISC in an age of risk

Jonathan Woodruff, Robert N. M.Watson, David Chisnall, Simon W. Moore,

Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann,
Robert Norton, Michael Roe

University of Cambridge, SRI International, Google

ISCA 2014 — 18 June 2014

Approved for public release.This research is sponsored by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views,
opinions, and/or findings contained in this article/presentation are those of the author/presenter and should
not be interpreted as representing the official views or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of Defense.

@B UNIVERSITY OF

» CAMBRIDGE

Memory Safety Crisis

n

~82% of exploited vulnerabilities in 2012

— Software Vulnerability Exploitation Trends, Microsoft

€5 YOUNBANK

How are processors responding?
2

Memory Safety Deprecation & Demand

Burroughs B5000 IBM System/38

Consensus on paged virtual memory

Inltel
MPX

Security becoming
marketable

Cambridge Hardware support for fine-grained
CAP computer memory safety was the future!

We’ve Built A Real Open Source System

® CHERI processor +
peripherals on FPGA

® Extension of
FreeBSD OS

(Including Capsicum
software capabilities)

® Clang & LLVM

Capability: Unforgeable
token of authority.

Some “capabilities’:
File descriptors (Capsicum, L4)
Segment descriptors (CAP, Intel iAPX)
Pointers in a virtual machine (Java, .Net)

Bounded pointers (M-Machine)

CHERI Capabilities are
Unforgeable Fat Pointers

Fat Pointer = Base + Length + Permissions

Build a RISC Capability Machine

® Single-cycle instructions
® | oad/Store architecture

® Compiler & OS manage capabilities

Build A Useful RISC
Capability Machine

® Keep page-table for virtualisation and
backward compatibility

® Constrain existing loads and stores with
implied capability register

® |ntegrate with 64-bit MIPS ISA
(Applicable to any RISC ISA)

Paged Memory

® OS managed
® Enables swapping
® Centralized

® Allows revocation

Address validation

Capabilities

® Compiler managed
® Precise
® Can be delegated

® Many domains

Pointer safety

Paged Memory = Capabilities

® OS managed
® Enables swapping
® Centralized

® Allows revocation

Address validation

® Compiler managed
® Precise
® Can be delegated

® Many domains

Pointer safety

A CHERI Capability

Base of
memory of
region

Length
of region

length [64]

Permissions [16]

Experimental [112]
Access

— 256 bits

permissions

Capability Register File
Both Implicit and Explicit Use

Implicit Program Counter Capability

CO (Implicit Data Capability)

C2

Address calculation

Instruction
Fetch Data Access

| Rn

Virtual ddress
\/

TLB

v

Physical Memory

Address calculation

Instruction Legacy
Fetch Data Access

|Offset |
PCC Co

Virtual Address

TLB

LI

Physical Memory

Address calculation

Instruction Legacy Capability

Fetch Data Access Data Access
| Off E et |
PCC Co Cn

Virtual Address

TLB

e

Physical Memory

Capabilities can Replace Pointers

® Unprivileged capability manipulation
Instructions

® (Capability loads and stores for all
required memory operations

Capability Transformations
Strictly Reduce Privilege

Mnemonic Function

ClncBase Increase base and decrease length

CSetlLen Reduce length
CAndPerm Restrict permissions
CClearTag Invalidate a capability register

Full Instruction Set Reference: www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf

Complete Set of Capability
@ Loads and Stores Width

0x32 rd ch rt offset 1] 0

CLB rd, rt, offset(chb)

Signed
Mnemonic Function

CSC Store capability register

CLC Load capability register
CL[BHWD][U] Load byte-double via capability register
CS[BHWD] Store byte-double via capability register

CLLD Load-linked via capability register

CSCD Store conditional via capability register

Full Instruction Set Reference: www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf

Tags to Protect
Capabilities in Memory

| bit 256 bits

" . _

@,

Capabilities on the stack and in data structures

20

Tag Table in Commodity DRAM

. E—
s Tag Lookup I
DRAM -
Tags on
physical -
memory Cache line is
tag + data

21

OS Support is Simple

® Preserve per-process capability state

® Deliver capability exception signals

Result: Capability machine in each address space

22

C-language Support is
Straightforward

® Clang extension to implement pointers as
capabilities

® capability qualifier on pointers

® Used almost like any other pointer
(no subtraction)

23

C-language Support is
Straightforward

__capability char *myString = jalr malloc
(__capability char*x)malloc(size);

cincbase$cl, $c@, returnValue

csetlen $cl, $cl, size

myString[size] = ‘d’; csb ‘d’, size, 0($cl)

24

C-language Support is
Straightforward

__capability char *myString = jalr malloc
(__capability char*x)malloc(size);

cincbase$cl, $c@, returnValue

csetlen $cl, $cl, size

myString[size] = ‘d’; csb ‘d’, size, 0($cl)

J—

Run-time
Trap!

25

Program Compartmentalisation
is Flexible

® Coarse-grained using
CO, the implicit data
capability

® Fine-grained using native
capability addressing

% 7 ,,_;[-"j,‘/_" 7 4 AsaWilson - CC BY-SA 2.0

CHERI is Built on
BERI

“Bluespec Extensible RISC Implementation

bRl

e 64-bit MIPS R4000 ISA
® 6-stage pipeline
® Single issue, in order

e >|00 MHz on Altera
Stratix IV

Open source at www.beri-cpu.org

27

Mul/Div
Il
i 'f Capability
Unit_

Main
Pipeline
™ -

T A '16k L1
-Tag - ek
Controller . j:;__'_1.

|
A% .

BNy

164k L2-

http://www.beri-cpu.org

Address Calculation Pipeline

IF/ID ID/EX EX/MEM MEM/WB
| —P>
E’_l_> Instruction —> Data
Memory > > Suerrr‘)irsa; Memory (—p
Registers el
- P

28

Address Calculation Pipeline

IF/ID ID/EX EX/MEM MEM/WB

| —P
PC _ _L
Instruction —p ! Data

Memory | 1 [17| General Memory —-

PCC » Purpose
Registers >ALU >
= =P

PC offset via PCC >

Capability
Registers

Data Access offset via

arbitrary capability
register

Address Calculation Pipeline

PCC + PC |->

Instruction
Memory

PC instead

Use absolute }

IF/ID ID/EX EX/MEM MEM/WB
> —P>
> Data
—¢%| General Memory |—p

P

Rogisters >
= P> 5

-
Capability
Registers
L Data Access offset via L

arbitrary capability
register

See Paper for Limit Study

Conclusions:

® CHERI is competitive
® Our capability size is the only notable overhead

® A hypothetical 128-bit CHERI has leading performance

CHERI vs. CCured

® Running in
userspace under
FreeBSD on CHERI
FPGA prototype

® We ported
CCured, an
automatic
memory-safe
transform for C

140
120
100

0,0)
o

Overhead Percentage
N N OB O
o O O O O

Olden Bounds-checking

116.92

Bisort

23.72

8.99

MST

33

M CCured
B CHERI
29.66
23.45
. B
I
-6.06
TreeAdd Perimeter

Protection Slowdown vs. Working Set Size

L1 L2 TLR

«@=TrceAdd | g i g

N
o

N
o

=
o

—
ol o
Lo e e

Percent Runtime Overhead

|
!
&

2 4 8 16 32 64 128 256 512 1024
CHERI working set size in Kilobytes

o

34

Protection Slowdown vs. Working Set Size

25 | «a@wTrecAdd |
a@=BiSort
20 2
«=@=|\/ST

15 | =@=Perimeter

10

Percent Overhead

2 4 3 16 32 64 128 256 512 1024

CHERI working set size in Kilobytes
35

Conclusions

® Memory safety needs hardware support

® Current approaches are too weak or too
disruptive

® A hybrid capability approach is compatible
and scalable

36

Questions!

CHERI & SoC RTL, LLVM, & FreeBSD are open source! www.cheri-cpu.org
Thanks to DARPA and Google for support! 35

http://www.cheri-cpu.org

