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Memory Safety Crisis

n

~82% of exploited vulnerabilities in 2012

— Software Vulnerability Exploitation Trends, Microsoft

€5 YOUNBANK

How are processors responding?
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Memory Safety Deprecation & Demand

Burroughs B5000 IBM System/38

Consensus on paged virtual memory

Inltel
MPX

Security becoming
marketable

Cambridge Hardware support for fine-grained
CAP computer memory safety was the future!



We’ve Built A Real Open Source System

® CHERI processor +
peripherals on FPGA

® Extension of
FreeBSD OS

(Including Capsicum
software capabilities)

® Clang & LLVM




Capability: Unforgeable
token of authority.

Some “capabilities’:
File descriptors (Capsicum, L4)
Segment descriptors (CAP, Intel iAPX)
Pointers in a virtual machine (Java, .Net)

Bounded pointers (M-Machine)




CHERI Capabilities are
Unforgeable Fat Pointers

Fat Pointer = Base + Length + Permissions




Build a RISC Capability Machine

® Single-cycle instructions
® | oad/Store architecture

® Compiler & OS manage capabilities




Build A Useful RISC
Capability Machine

® Keep page-table for virtualisation and
backward compatibility

® Constrain existing loads and stores with
implied capability register

® |ntegrate with 64-bit MIPS ISA
(Applicable to any RISC ISA)




Paged Memory

® OS managed
® Enables swapping
® Centralized

® Allows revocation

Address validation



Capabilities

® Compiler managed
® Precise
® Can be delegated

® Many domains

Pointer safety



Paged Memory = Capabilities

® OS managed
® Enables swapping
® Centralized

® Allows revocation

Address validation

® Compiler managed
® Precise
® Can be delegated

® Many domains

Pointer safety



A CHERI Capability
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Capability Register File
Both Implicit and Explicit Use

Implicit Program Counter Capability

CO (Implicit Data Capability)

C2




Address calculation

Instruction
Fetch Data Access

| Rn

Virtual ddress
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TLB
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Physical Memory




Address calculation

Instruction Legacy
Fetch Data Access

|Offset |
PCC Co

Virtual Address

TLB

LI

Physical Memory



Address calculation

Instruction Legacy Capability
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Capabilities can Replace Pointers

® Unprivileged capability manipulation
Instructions

® (Capability loads and stores for all
required memory operations



Capability Transformations
Strictly Reduce Privilege

Mnemonic Function

ClncBase Increase base and decrease length

CSetlLen Reduce length
CAndPerm Restrict permissions
CClearTag Invalidate a capability register

Full Instruction Set Reference: www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf



http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf

Complete Set of Capability
@ Loads and Stores Width

0x32 rd ch rt offset 1] 0

CLB rd, rt, offset(chb)

Signed
Mnemonic Function

CSC Store capability register

CLC Load capability register
CL[BHWD][U] Load byte-double via capability register
CS[BHWD] Store byte-double via capability register

CLLD Load-linked via capability register

CSCD Store conditional via capability register

Full Instruction Set Reference: www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf



http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf

Tags to Protect
Capabilities in Memory

| bit 256 bits

" . _

@,

Capabilities on the stack and in data structures
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Tag Table in Commodity DRAM

. E—
s Tag Lookup I
DRAM -
Tags on
physical -
memory Cache line is
tag + data
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OS Support is Simple

® Preserve per-process capability state

® Deliver capability exception signals

Result: Capability machine in each address space
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C-language Support is
Straightforward

® Clang extension to implement pointers as
capabilities

® capability qualifier on pointers

® Used almost like any other pointer
(no subtraction)
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C-language Support is
Straightforward

__capability char *myString = jalr malloc
(__capability char*x)malloc(size);

cincbase$cl, $c@, returnValue

csetlen $cl, $cl, size

myString[size] = ‘d’; csb ‘d’, size, 0($cl)

24




C-language Support is
Straightforward

__capability char *myString = jalr malloc
(__capability char*x)malloc(size);

cincbase$cl, $c@, returnValue

csetlen $cl, $cl, size

myString[size] = ‘d’; csb ‘d’, size, 0($cl)

J—

Run-time
Trap!
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Program Compartmentalisation
is Flexible

® Coarse-grained using
CO, the implicit data
capability

® Fine-grained using native
capability addressing
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CHERI is Built on
BERI

“Bluespec Extensible RISC Implementation

bRl

e 64-bit MIPS R4000 ISA
® 6-stage pipeline
® Single issue, in order

e >|00 MHz on Altera
Stratix IV

Open source at www.beri-cpu.org
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http://www.beri-cpu.org

Address Calculation Pipeline

IF/ID ID/EX EX/MEM MEM/WB
| —P>
E’_l_> Instruction —> Data
Memory > > Suerrr‘)irsa; Memory (—p
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- P
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Address Calculation Pipeline
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Address Calculation Pipeline

PCC + PC |->

Instruction
Memory

PC instead

Use absolute }
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See Paper for Limit Study

Conclusions:

® CHERI is competitive
® Our capability size is the only notable overhead

® A hypothetical 128-bit CHERI has leading performance



CHERI vs. CCured

® Running in
userspace under
FreeBSD on CHERI
FPGA prototype

® We ported
CCured, an
automatic
memory-safe
transform for C
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Protection Slowdown vs. Working Set Size
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Protection Slowdown vs. Working Set Size

25 | «a@wTrecAdd |
a@=BiSort
20 2
«=@=|\/ST

15 | =@=Perimeter

10

Percent Overhead

2 4 3 16 32 64 128 256 512 1024

CHERI working set size in Kilobytes
35



Conclusions

® Memory safety needs hardware support

® Current approaches are too weak or too
disruptive

® A hybrid capability approach is compatible
and scalable
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Questions!

CHERI & SoC RTL, LLVM, & FreeBSD are open source! www.cheri-cpu.org
Thanks to DARPA and Google for support! 35



http://www.cheri-cpu.org

