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Abstract
Large, complex, rapidly evolving pieces of software such as
operating systems are notoriously difficult to prove correct.
Developers instead describe expected behaviour through as-
sertions and check actual behaviour through testing. How-
ever, many dynamic safety properties cannot be validated
this way as they are temporal: they depend on events in the
past or future and are not easily expressed in assertions.

TESLA is a description, analysis, and validation tool that
allows systems programmers to describe expected temporal
behaviour in low-level languages such as C. Temporal asser-
tions can span the interfaces between libraries and even lan-
guages. TESLA exposes run-time behaviour using program
instrumentation, illuminating coverage of complex state ma-
chines and detecting violations of specifications.

We apply TESLA to complex software, including an
OpenSSL security API, the FreeBSD Mandatory Access
Control framework, and GNUstep’s rendering engine. With
performance allowing “always-on” availability, we demon-
strate that existing systems can benefit from richer dynamic
analysis without being re-written for amenability to a com-
plete formal analysis.

1. Introduction
It is notoriously difficult to prove large, complex, rapidly
evolving pieces of software such as operating systems cor-
rect. Low-level software often uses techniques such as func-
tion pointers and non-polymorphic casting that increase the
difficulty of static analysis. Even simple temporal properties
(e.g., “a permission check was done earlier in this system
call”) are obscured by indirection and dynamic modules.
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void foo(struct object *o, int op) {
TESLA_WITHIN(enclosing_fn, previously(
security_check(ANY(ptr), o, op) == 0));

Figure 1: A TESLA assertion: within the execution of
enclosing_fn, a previous call to security_check with ar-
guments (unspecified pointer, o, op) should have returned 0.

Most existing systems were not written with formal anal-
ysis in mind and retrofitting this style is a daunting task.
Notwithstanding the partial verification of seL4 [19], for-
mal analysis will not be part of commodity systems devel-
opment workflows for the foreseeable future. Static analysis
of whole programs can prove properties about all possible
executions, but we are sometimes less interested in learning
if events are possible than how often they occur in practice.

Without formal analysis techniques, developers use a va-
riety of techniques to improve the reliability of their code.
One tool is the assertion: a statement made by the devel-
oper, in the same language as their code, expressing assump-
tions about system state. Assertions can document pre- and
post-conditions and invariants, to be checked at run time.
They describe only instantaneous properties: e.g., about a
current value, but not about events that should have occurred
in the past (e.g., “an access-control check should have been
performed”) or the future (e.g., “this memory will be freed
before that lock is released”). Some systems incorporate ad
hoc mechanisms to test temporal properties (e.g., FreeBSD’s
WITNESS lock-order verifier [1]). Hand-crafted checkers
are valuable—FreeBSD rarely experiences deadlocks—but
are costly to implement and easy to get wrong.

TESLA is a generic tool that lets programmers spec-
ify temporal properties they expect their programs to have,
leaving run-time checks to be generated mechanically. Us-
ing temporal assertions such as figure 1, TESLA helps de-
velopers of complex systems to describe intended temporal
behaviour, understand actual run-time behaviour and detect
mismatches between the two.

Using TESLA, we were able to observe implementation
errors in OpenSSL, FreeBSD and GNUstep, discovering
new security bugs in FreeBSD and its test suite.



X509_STORE_CTX_set_cert(&xsc,x);
- if (!reqfile && !X509_verify_cert(&xsc))
+ if (!reqfile && X509_verify_cert(&xsc) <= 0)

goto end;
Figure 2: API misuse example from CVE-2008-5077:
OpenSSL’s x509 code incorrectly checks the return value of
X509_verify_cert, conflating -1 (error) with 1 (success).

2. Use cases
We illustrate TESLA’s motivation, use, and performance via
three complex systems: OpenSSL clients’ use of an error-
prone API, the FreeBSD Mandatory Access Control imple-
mentation, and GNUstep’s stateful APIs.

2.1 Correct usage of a security API
In 2008, Google’s security team found that core OpenSSL
applications were vulnerable to abuse due to erroneous use
of OpenSSL APIs [32]. Many OpenSSL APIs have tri-state
return codes: 1 indicates success, 0 indicates failures, and -1
indicates an exceptional error. Several OpenSSL-based ap-
plications checked return values with expressions that con-
flated success and exceptional errors (figure 2).

In this example, if X509_verify_cert returns -1 on an
ASN.1 type error, the openssl x509 command behaves as
if the certificate has been verified when it has not. This triv-
ial example can be detected by tools such as Coccinelle [23]
or even UNIX grep, but only when a static function is di-
rectly called by client code. Some erroneous calls were em-
bedded in a wrapper library. Client code such as FreeBSD’s
libfetch calls OpenSSL’s libssl, which incorrectly called
libcrypto functions. In this case, a libfetch developer
must not only vet libfetch but also all libraries it depends
on. When these libraries employ macros, or call verifica-
tion code via function pointers that may be overridden at run
time, text-based tools prove inadequate.

On learning of such a vulnerability, it is desirable for
downstream developers to be able to write a single de-
scription of the expected behaviour (“previously, the cer-
tificate was correctly verified”) and leave checking work—
including for library code—to the compiler without needing
to examine library code or alter existing abstractions and
APIs. TESLA’s dynamic validation allows this workflow,
even when function-pointer indirection occurs, but at the
cost of instrumentation and a runtime support library.

2.2 Correct implementation of a security framework
Many critical operating-system security properties are tem-
poral safety properties, e.g., the safe reuse of memory,
access-control checks being performed before object use,
and the eventual auditing of security events. To illustrate the
use of TESLA for this purpose, we applied it to the widely-
used open-source FreeBSD operating system [28].

FreeBSD implements several types of access control, in-
cluding Mandatory Access Control (MAC). The FreeBSD
MAC Framework separates mechanism—hooks throughout
the kernel declaring when subjects operate on objects—from
the specific policies that govern a system. The framework
has been used to implement historic security policies such
as Bell-LaPadula [3] and Biba [5] as well as modern secu-
rity policies such as those in iOS and Mac OS X [35].

Due to the kernel’s modularity and object-oriented ap-
proach to C, access-control checks can be distant from
the operations they govern. For example, figure 3 illus-
trates how fo_poll, used by the poll and select sys-
tem calls, reaches the protocol-specific implementation,
sopoll_generic. Given the complex code path from one to
the other, passing through multiple function pointers imple-
menting object orientation across open-file types, it would
be desirable to statically prove that all possible call paths
to sopoll_generic within a system call first invoke the rel-
evant MAC function, mac_socket_check_poll, to autho-
rise access. However, the kernel’s abstractions and dynamic
modules make static checking extremely difficult.

TESLA uses a dynamic approach to detect whether such
checks are performed correctly. We found multiple bugs:
not just missing checks, but also an instance of the correct
check made with the wrong arguments. We also detected
significant functional omissions in test suites designed to
check the correctness of kernel access control.

2.3 Exploration of stateful APIs
Understanding the behaviour of complex programs with hid-
den state and dynamic flow control is difficult. This applies
when the flow control is a property of the language, as in
Objective-C, and in dispatch mechanisms built on top of the
core language, such as vtable-based C object models. Poor
understanding of how concurrent components interact can
lead to sub-optimal code, and worse, difficult-to-find bugs.

An example is a subtle GNUstep cursor bug that we iden-
tified with TESLA after debugging efforts with conventional
tools had failed. This is not a security bug, but it is emblem-
atic of the subtle concurrency errors that often emerge from
the complex interactions of loosely-coupled systems and are
difficult or impossible to debug with existing tools. Such er-
rors are often the cause of serious security issues.

GNUstep is an open-source implementation of the Object-
ive-C frameworks published in the OpenStep specification
and now branded as Cocoa by Apple. Its graphics library
maintains a stack of cursor images that clients push to and
pop from. In June 2013, a GNUstep user reported that a
wrong cursor image occasionally displayed. Despite a de-
tailed report, extensive discussion, and powerful debugging
tools, the GNUstep developers were unable to identify the
problem’s source. Tools such as valgrind [31] and emula-
tors were too slow to reproduce the problem in an interactive
UI, while debuggers such as gdb perturbed the timing needed
to trigger this concurrency bug. With TESLA, however, we



static __inline int
fo_poll(... struct ucred *active_cred ...) {
return ((*fp->f_ops->fo_poll)(fp, events, active_cred, td));

struct file {
void *f_datastruct fileops *f_ops; /* File ops */

int soo_poll(... struct ucred *active_cred ...)
error = mac_socket_check_poll(active_cred, so);
return (sopoll(so, events, fp->f_cred, td));

int sopoll(..., struct ucred *active_cred...) {
fp = so->so_proto->pr_usrreqs->pru_sopoll;
return (fp(...));

struct socket {
struct protosw *so_proto;

struct protosw {
struct pr_usrreqs *pr_usrreqs;

struct pr_usrreqs {
int (*pru_sopoll)(struct socket *, ...);

int sopoll_generic(struct socket *so, ...,
struct ucred *active_cred, ...) {
/* Here, we expect that an access-control
* check has already been done. */

Figure 3: Abstraction layers separate a check from the code
it governs with indirection (green) and function calls (blue).

introduced low-cost instrumentation that allowed us to iden-
tify the bug, as described in section 3.5.3.

Complex control flow—and a lack of understanding of
it—is especially relevant for stateful APIs: for example, the
PostScript state machine used in many 2D graphics systems.
To avoid hundreds of arguments to function calls, various
attributes (stroke colour, transform matrix, and so on) are set
independently. Subsequent commands use these properties,
so the behaviour of a single draw-line method depends on
many previous calls. We investigated a second GNUstep bug
related to a new back-end library. The description was vague:
things are drawn on the screen incorrectly. Understanding
failure cases required introspection on complex temporal
behaviour. We could have manually modified roughly 110
methods, with the complexity and error this implies, but
instead used TESLA to understand the runtime behaviour
in a useful way. These results are described in section 3.5.3.

3. Describing safety properties
TESLA allows programmers to describe safety properties
using temporal assertions in their source code. These asser-
tions are inspired by Linear Temporal Logic (LTL) and have
a natural expression as finite-state automata [34] that can be
mechanically woven into a program (section 4.2).

int sopoll_generic(struct socket *so, ...,
struct ucred *active_cred, ...) {
TESLA_SYSCALL_PREVIOUSLY(
mac_socket_check_poll(active_cred, so) == 0);

Figure 4: A TESLA assertion that expresses the same safety
property as the comment in figure 3.

3.1 Temporal assertions
Temporal assertions augment standard assertions with key-
words such as previously and eventually that allow pro-
grammers to specify temporal events relative to the moment
the assertion site is reached. A simple example is shown in
figure 4 asserting a prior mac_socket_check_poll call with
the same arguments returned 0.

TESLA assertions, whose grammar is shown in figure 5,
are inspired by LTL, but they are not formally as expres-
sive. For example, TESLA cannot express concepts such as
“globally” or “until” that refer to all events over a time pe-
riod: instead it uses concepts such as eventually that can
be evaluated with just a few instrumentation points. Even
then, expressions such as previously are implemented with
macros that expand to use low-level reserved symbols such
as __tesla_sequence. The high-level macros exist purely
for programmer convenience: should name collisions arise,
alternative macros can be defined or programmers can di-
rectly target the low-level names.

Temporal assertions do not run in the same way as instan-
taneous assertions. Rather, the former expose descriptions of
expected behaviour to the TESLA analyser, which emits au-
tomata that drive program instrumentation. These descrip-
tions include a context (section 3.2), bounds (section 3.3)
and an expression (section 3.4).

3.2 Automata contexts
Temporal assertions allow programmers to describe allowed
orderings of program events using automata, as exempli-
fied in figure 9. Automata consume ordered sequences of
events, but complex, multi-threaded systems can have ar-
bitrary event interleavings. To adapt real system behaviour
to the automaton model, the programmer must specify how
program events should be mapped into serial strings of sym-
bols. If the assertion is in an implicitly serialised context
such as a thread, TESLA can omit internal synchronisation.

TESLA supports two contexts: thread-local and global. In
the thread-local context event serialisation is implicit. When
describing behaviours that spanning threads, the global con-
text provides explicit synchronisation. This yields a seriali-
sation of events that is non-deterministic but commits to an
event order that corresponds to actual program behaviours:
an event such as function call entry or exit cannot complete
until its instrumentation hook has finished running.



assert := ‘TESLA_GLOBAL(‘ A ‘)‘
| ‘TESLA_PERTHREAD(‘ A ‘)‘
| ‘TESLA_ASSERT(‘ context ‘,‘ A ‘)‘
| ‘TESLA_WITHIN(‘ fnName ‘,‘ A ‘)‘

A := start ‘,‘ end ‘,‘ expr
start := staticExpr
end := staticExpr
expr := modifier ‘(‘ expr ‘)‘ | boolExpr

| sequence | function | fieldAssign
| ‘TESLA_ASSERTION_SITE‘

modifier := ‘optional‘
| ‘callee‘ | ‘caller‘
| ‘strict‘ | ‘conditional‘

boolExpr := expr (op expr)+
op := ‘||‘ | ‘^‘

sequence := ‘TSEQUENCE(‘ expr (‘,‘ expr)? ‘)‘
| ‘previously(‘ expr (‘,‘ expr)? ‘)‘
| ‘eventually(‘ expr (‘,‘ expr)? ‘)‘

function := ‘call(‘ fnExpr ‘)‘
| ‘returnfrom(‘ fnExpr ‘)‘
| fnExpr ‘==‘ val

fnExpr := fnName ‘(‘ args ‘)‘
staticExpr := ‘call(‘ fnName ‘)‘

| ‘returnfrom(‘ fnName ‘)‘
args := val (‘,‘ val)?
val := ‘flags(‘ C flags ‘)‘

| ‘bitmask(‘ C flags ‘)‘
| C value | ‘any(‘ C type ‘)‘

Figure 5: High-level TESLA assertion grammar. This gram-
mar uses the high-level TESLA macros for readability; these
macros translate to reserved-namespace C symbols.

3.3 Temporal bounds
In a finite system with many in-flight automata, we cannot
allow unbounded previously and eventually assertions.
The programmer must specify bounds at which automata can
be initialised and finaliased, e.g., “within the current system
call” and “within the current page fault handler”.

The bounding requirement allows TESLA to control its
memory footprint (described in section 4.4.1). It is possi-
ble to use very loose bounds, e.g., TESLA_WITHIN(main), but
programmers would be well-advised to only write such as-
sertions when they have a clear understanding of the total
number of automata that could be generated.

We have not found the bounding requirement to be oner-
ous; intuitively, the statement “this event must eventually be
audited” is only useful when “eventually” is understood to
be a specific point in time, well before the system’s next re-
boot, when the truth of the proposition can be evaluated.

3.4 TESLA expressions
Using TESLA, programmers describe the expected system
behaviour in terms of temporal relationships among observ-

able events. These descriptions use three types of expres-
sions: concrete events, abstract operations, and modifiers
that guide the interpretation of sub-expressions.

3.4.1 Events
TESLA events are concrete program events observable from
instrumentation, including function call and return, structure
field assignment, and reaching an assertion site.
Function call/return Programmers can specify that they ex-
pect a C function to be called (or an Objective-C message to
be sent) with particular parameters and/or return a partic-
ular value. The specifications in figure 1 says that, within
the scope of the function enclosing_function, we expect
the security_check function to have been previously called
with parameters o and op from the scope of the function foo.
The first parameter ANY(ptr) is a wildcard expression: any
value passed as the first argument to security_check will
match. Argument patterns can also be specified as minimal
or maximal bitfield, or indirectly using the C address-of op-
erator. This is particularly useful for APIs passing values out
by pointer, using return values for error codes.

Function call and return events can be specified with the
equality pattern above or with more explicit call(fn_name(
optional_args)) and returnfrom(...) patterns.
Field assignment The second concrete event type is assign-
ment to a structure field. Programmers can describe simple
assignment (e.g., s.foo = NEXT_STATE) or compound as-
signment (e.g., s.foo += 1 or s.foo++).
Assertion site The final concrete TESLA event type occurs
when program execution reaches an assertion site. This event
can be described explicitly with TESLA_ASSERTION_SITE or
implicitly with previously(x) or eventually(x), which
expand to [x, TESLA_ASSERTION_SITE] in the previously
case and [TESLA_ASSERTION_SITE, x] for eventually.

3.4.2 Operators
TESLA expressions can also include sequences and boolean
operators that describe relationships among events. A se-
quence of TESLA expressions can be specified with the
TSEQUENCE operator or with previously(x) and eventually
(x) macros, which expand as described in “Assertion site”
above. Each sub-expression can itself be a concrete event or
a complex expression.

TESLA also supports the boolean OR operator. Finite-
state automata model regular languages with sequences,
repetition, and the exclusive-or operator. In the assertion
previously(check(x)||check(y)), it is not an error for
both checks to be performed. Rather, the logical OR ∨ stip-
ulates that at least one occurred. We implement ∨ by con-
structing an automaton that tracks the state of both original
automata independently in a cross-product–like operation:

states(a ∨ b) = {aibj | ai ∈ a and bj ∈ b}



TESLA_WITHIN(main, previously(
EVP_VerifyFinal(ANY(ptr), ANY(ptr), ANY(int),

ANY(ptr)) == 1));

Figure 6: A temporal assertion in libfetch can describe the
certificate verification behaviour expected of libssl.

∀bj ∈ b . ∀ai, ak ∈ a (ai
e1−→ ak implies aibj

e1−→ akbj)

∀ai ∈ a . ∀bj , bk ∈ b (bj
e2−→ bk implies aibj

e2−→ aibk)

3.4.3 Modifiers
TESLA also defines modifiers that control the interpretation
of events and operations, including the optional modifier
and caller / callee, which control the context in which
function instrumentation is added to the program.

3.5 Describing use cases
We now revisit the use cases introduced in section 2, show-
ing how we wrote TESLA descriptions of the intended pro-
gram behaviour. The interpretation, use and evaluation of
these descriptions is described in later sections; here we con-
centrate on the expressiveness of TESLA and its ability to
describe expected behaviour.

For all of these use cases, it is possible to build an ad-
hoc mechanism to check the desired property. Such a mech-
anism might require touching many parts of the source code.
It would be viscous and diffuse, containing hidden depen-
dencies and prone to action slips, to use Green’s Cognitive
Dimensions of Notations [15].

In contrast, TESLA provides a general framework that
can be directed from a single programmer annotation, writ-
ten at a level of abstraction appropriate to the property being
described. This allows programmers to focus on correctly
describing their logic, rather than implementing mechanisms
for checking it (and potentially introducing more bugs).

3.5.1 OpenSSL API correctness
In section 2.1, we used OpenSSL as an example of an API
that is easy to use incorrectly, creating security risks. A
vulnerability was caused by applications failing to properly
check tri-state return values. To exploit it, we modified the
OpenSSL server to maliciously craft a key-exchange signa-
ture that would cause an exceptional failure in a code loca-
tion that — as of OpenSSL 0.9.8 — used one of these in-
correct checks. We did this by forging an ASN.1 tag inside
a DSA signature so that one of two large integers claimed to
have the BIT STRING type rather than INTEGER. This caused
an exceptional failure inside OpenSSL’s libcrypto that was
incorrectly conflated with success by libssl client code.

To demonstrate how TESLA can help discover this kind
of logical error, we wrote a simple client that retrieved an
HTML document from our malicious s_server. This client

uses libfetch, which uses OpenSSL’s libssl, which con-
tains the code that calls libcrypto incorrectly.

Consider a scenario whereby, on the day after CVE-2008-
5077 was announced, the author of this libfetch client was
curious as to whether or not the client was vulnerable to this
kind of problem. Rather than manually inspecting or instru-
menting all code that might call libcrypto incorrectly, the
author can write a TESLA assertion such as figure 6 and then
recompile the program and its dependencies. This assertion
does not capture the same bug as figure 2: that would be de-
tected by writing an assertion right next to the error itself,
which is not a clear demonstration of TESLA’s power. In-
stead, figure 6 shows an assertion in one library (libfetch)
that can drive instrumentation on either side of another li-
brary API (between OpenSSL’s libssl and libcrypto).

The assertion in figure 6 states that, within the context of
the main execution, a call to EVP_VerifyFinal previously re-
turned success. The return value may not have been correctly
checked, but if the function returns non-success, it will not
satisfy the TESLA expression.

3.5.2 Kernel security framework correctness
We annotated the FreeBSD kernel with 84 assertions docu-
menting 37 inter-process security properties and 47 Manda-
tory Access Control (MAC) properties. This proved an inter-
esting case study as we had previously implemented these
aspects of the kernel [35]. Writing initial assertions took
roughly four hours, but debugging the assertions and im-
plementation took an additional two days as we both found
bugs in the assertions (reflecting our own misunderstanding
of properties of the implementation!) and bugs in MAC it-
self.

previously quantifiers are common in these assertions,
which are frequently placed within object implementations
(e.g., specific filesystems) but refer to checks in higher-
level frameworks (e.g., the Virtual File System (VFS)).
We assert that, when an object is accessed within a ser-
vice, access-control checks have already occurred with the
correct subject, object, and parameters. For instance, in
protocol-specific socket code (e.g., sopoll_generic) we
added TESLA assertions stating that mandatory access con-
trol checks (in this case, mac_socket_check_poll) had pre-
viously been performed by central, protocol-agnostic code.

Using these assertions, we found that the MAC check
mac_socket_check_poll was being invoked for the select
and poll system calls, but not kqueue. More subtly, we

discovered that one of two present checks was performed
using the wrong credential: in sopoll_generic, we asserted
that MAC must be checked with the active_cred credential,
but an error in one dynamic call graph caused the cached
file_cred to be passed down instead of active_cred. This
error could lead to authorisation being performed using the
credential that created the associated file or socket rather
than those of the current (active) thread.



static int ufs_open(struct vop_open_args *ap) {
TESLA_SYSCALL_PREVIOUSLY(

mac_kld_check_load(... vp) == 0
|| mac_vnode_check_exec(... vp ...) == 0
|| mac_vnode_check_open(... vp ...) == 0);

// ...
static int ffs_read(struct vop_read_args *ap) {
TESLA_SYSCALL(incallstack(ufs_readdir)

|| previously(called(
vn_rdwr(vp ... flags(IO_NOMACCHECK) ...)))

|| previously(
mac_vnode_check_read(... vp) == 0));

// ...

Figure 7: The UFS implementations of read and open have
code-path–dependent expectations for access-control.

We also make use of eventually quantifiers to ensure
that necessary security side effects always occur—for exam-
ple, if a process credential is modified, then the P_SUGID pro-
cess flag must be set to prevent privilege escalation attacks
via debuggers. TESLA assertions cover bounded periods of
time, with the majority of our security assertions within the
lifetime of a single system call (syscall). However, we are
concerned with certain other cases, such as file-system I/O
initiated by virtual-memory page faults (trap_pfault).

There is considerable subtlety in the placement and
content of TESLA assertions. It took several iterations
to develop the checks illustrated in figure 7, which val-
idate that across both system-call and page-fault paths,
proper access control takes place. We initially believed that
mac_vnode_check_open authorised all file-system level open
operations, and quickly discovered that different checks
handled other open-like operations: loading of kernel mod-
ules and execution of binaries. Likewise, file-system reads
initiated using the file-system independent vn_rdwr may
be used “internally” and have MAC checks disabled by
IO_NOMACCHECK, in which case checks should not be ex-
pected by TESLA. One additional instance of ufs_readdir
occurs within the file system without passing back through
VFS. Similar complex structures exist around extended at-
tributes, which may be accessed via system calls, as well as
by UFS itself in implementing access-control lists, requiring
different enforcement depending on the code path.

As a dynamic system, TESLA relies on test suites and ex-
ercise tools (such as fuzzers) to trigger coverage of pertinent
code paths—a significant limitation relative to static tech-
niques. However, TESLA itself can help test and therefore
improve test coverage: of the 37 inter-process access-control
assertions we wrote, 26 were not exercised by FreeBSD’s
inter-process access-control test suite. Most omissions (19)
were in procfs—a deprecated facility disabled by default.
Two, however, were in the CPUSET facility added after

TESLA_WITHIN(startDrawing, previously(ATLEAST(0,
#include "TESLAGOps.h"
[ANY(id) push],
[ANY(id) pop],
// ...
[ANY(id) drawWithFrame: ANY(NSRect) inView//...

)));

Figure 8: A TESLA assertion that causes instrumentation to
be generated for GNUstep GUI debugging.

the test suite was written; five further unexercised assertions
were in the POSIX real-time scheduling facility.

All of these assertions are subtle and non-trivial, but that
is a property of the system they are describing: OS kernels
are complex, subtle, and optimised for performance rather
than formal analysis. Each TESLA assertion is itself quite
succinct, allowing us—in just a few hours of interactive
dialogue with the tool—to describe properties that had never
been formalised or even documented, let alone proven.

3.5.3 Stateful API exploration
To exploit TESLA’s dynamic introspection capabilities, we
investigated the GNUstep UI bugs described in section 2.3.

We used TESLA to insert instrumentation and call cus-
tom handler code in order to understand the system’s dy-
namic behaviour. Our automata were simple, stating that in
between two instrumentation points, which we placed at the
start and end of a run-loop iteration, some (or none) of the
API methods should have been called. Figure 8 shows the
assertion that generates all of the tracing information for
this investigation. The TESLAGOps.h file contains macros de-
scribing the names and types for all (roughly 110) methods
that we wish to instrument. The methods listed at the end are
those that we wanted to get extra events on method return.
The instrumenter generates state-machine events for each
call that are handled by both TESLA’s automata-checking
logic and to be passed to our custom handler.

The cursor push/pop bug was first reported on the GNU-
step mailing lists in June 2013, but the causes were not cor-
rectly identified. With TESLA, we were able to instrument
the library to provide a stack trace every time a push or
pop message was sent and log detailed information about
the events being delivered. We provided traces generated by
TESLA to the developers at the start of October 2013, al-
lowing them to immediately determine the problem and cor-
rectly fix it within a week. Examining the trace, we discov-
ered that mouse-entered events were, in some cases, not cor-
rectly paired with mouse-exited events and so the same cur-
sors were pushed onto the cursor stack multiple times. The
stack traces that we recorded showed that events invalidating
cursor tracking rectangles were being delivered after events
that inspected those rectangles. This resulted in a later pop



only popping one of a number of duplicated copies of the
same cursor, leaving the UI in the wrong state.

The second bug—incorrect output from a new graphics
back-end—had already been fixed when we investigated it;
our goal was to determine whether finding bugs of this nature
was easier with TESLA than with manual inspection. This
involved instrumenting around 110 methods, some in the
back end and some in the library. This would have been a
huge undertaking to do manually. With TESLA, we were
able to generate detailed event traces, describing exactly
which view class was responsible for calling each back-end
method and to understand. The bug was caused by the new
back end’s inability to save and restore graphics states in a
non-LIFO order. This was caused by the author of the code
not being aware that this was a valid sequence of operations,
something obvious in traces of even simple application.

Investigating both bugs required a few hundred lines of
changes in three files. Of these, half were in the TESLAGOps.h
file created simply to list the selectors that we wished to in-
strument. Most of the remainder was code for formatting the
traces. This modification let us track complex interaction be-
tween two software libraries and uncover the source of subtle
interaction bugs between loosely coupled components.

By understanding the flow of execution through a com-
plex library, it also becomes possible to make more informed
decisions about how it should evolve. These traces make it
possible to examine common sequences of operations, ex-
posing potential optimisation opportunities. This is difficult
to discover statically, as many views delegate drawing to
‘cells’ (simple classes that draw data in a particular way)
that are provided by another object. For example, accord-
ing to our profiling, applications often save and restore the
graphics state (a comparatively expensive operation), when
the only aspects of the state that are changed in between are
the current drawing location and the colour. In some com-
plex views, the restore is unnecessary, because the next cell
always explicitly sets these values and so these calls might
be elided. This would require invasive changes to the internal
APIs, but before examining these traces it was not obvious
that this would be a worthwhile change.

4. TESLA implementation
TESLA uses the LLVM compiler construction libraries [22]
and the associated C front-end Clang [21]. The TESLA
workflow uses three components: a Clang-based analyser to
parse automata from C-based languages, an LLVM-based in-
strumenter to insert event hooks into the LLVM IR (inter-
mediate representation), and a runtime support library that
tracks automata instances and their state.

4.1 Analyser
The TESLA analyser uses the Clang Tooling framework [25]
to consume C abstract syntax trees and parse assertions
contained in them. Since TESLA uses the Clang front-end

for its analysis, it benefits from the same syntax- and type-
checking, scoping rules, etc. as a normal compilation pass.

The TESLA analyser performs a recursive descent over
an abstract syntax tree (AST) constructed by Clang, pars-
ing the expressions it finds and converting them into au-
tomata states and transitions. For instance, the assertion
TESLA_WITHIN(syscall, eventually(foo(x)==0)) will be
translated into an automaton with a chain of transitions
driven by events call(syscall), TESLA_ASSERTION_SITE,
foo(x)==0, and returnfrom(syscall), as well as bypass
returnfrom(syscall) transitions to allow code paths that
call foo but never pass through the assertion site.

Using Clang, we could also support other C-based lan-
guages such as C++ and Objective-C. We do not currently
support C++, as we primarily target C-based trusted com-
puting bases (TCBs), but we do support assertions that use
Objective-C. Parsed assertions are converted into an automa-
ton representation, stored on disk in a file with a .tesla ex-
tension and formatted using Google Protocol Buffers [13].

The assertions in every file can name events defined in
any other file, so we combine .tesla files into a larger file
describing all parts of the program that may need instru-
mentation. This interdependency complicates iteratively re-
building a program: when one C file changes, it changes the
combined .tesla file. This causes re-instrumentation of all
LLVM IR files; the impact of this is discussed in section 5.1.

4.2 Instrumenter
The TESLA instrumenter modifies compiled code to turn
program events into automaton transitions, transforming
LLVM IR generated by language front-ends. We currently
focus on C and Objective-C produced by Clang, but can
instrument IR generated from any source language.

LLVM IR is a typed assembly language in static single
assignment (SSA) form for an abstract machine with an infi-
nite register set whose contents may only be assigned once.
This abstract representation is convenient for instrumenta-
tion because register contents are immutable.

Instrumentation is not robust in the presence of function
inlining and other optimisations, so we run the TESLA in-
strumenter before optimisation, i.e. we run the Clang front-
end with -O0, instrument its output and then run the LLVM
optimiser opt with -O2 on the result.

The TESLA instrumenter adds two kinds of code dur-
ing program instrumentation: program hooks that identify
program events and event translators that match events and
convert them to automata symbols. Programs hooks are sim-
ply calls to generated functions, and they can be inlined in
some cases (when using caller-side instrumentation or when
employing link-time optimisations). They expose events in-
cluding function call/return, structure field assignment and
assertions to the event translators described below.
Function call/return TESLA can instrument function calls
and returns in either callee or caller context. The former is
desirable when instrumenting functions defined by the pro-



grammer, whereas the latter is important when instrumenting
calls into a library that cannot be recompiled. Callee instru-
mentation adds instrumentation to the target function’s entry
basic block and before any return instructions. Caller instru-
mentation is inserted immediately before and after a call site.
Field assignment The same approach is taken for the direct
assignment to structure fields. Unlike function events, there
is no callee context: the code that modifies the structure field
is the code that must be modified. The event translator for a
field assignment takes as arguments the structure containing
the field, a pointer to the field (and thus its current value) and
the new value that is being assigned.
Assertions The program must also be transformed so that,
on reaching TESLA assertion sites, the call to the TESLA
pseudo-function __tesla_inline_assertion is replaced by
a call to an appropriate event translator. The values of vari-
ables named in the assertion are taken from the local scope
and passed to the event translator and the original call to the
unimplemented __tesla_inline_assertion is removed.
Event translators The instrumenter generates event trans-
lators that convert program events into automata symbols.
Event translators are generated as chains of basic blocks,
with two tasks per automaton that references the event.

First, the generated code checks static event parameters.
For instance, in the assertion eventually(foo(x)==0), the
event should only be reported if foo(x) returned 0. Oth-
erwise, the translator branches to the static checks for the
next automaton. Second, if the static checks passed, it al-
locates a fixed-size data structure on the stack, populates it
with the dynamic variable–value mapping and passes it to
libtesla’s tesla_update_state function. In the simple ex-
ample above, libtesla must check not just that the foo(x)
==0 event occurred but whether the value of x matches that
which was previously encountered in the assertion’s scope.

The only conditional control flow within event translators
is the ability to skip this second task if the checks in the
first task fail; in all cases, the generated code will make
forward progress under the assumption that our hand-written
tesla_update_state function makes forward progress.

4.3 Objective-C instrumentation
Instrumenting a dynamic language presents additional chal-
lenges. In C, a call to a function is static flow control, with
a destination that is unique. In Objective-C, interprocedural
flow control is either a C function call or a message send;
methods can be replaced at run time, so even for an object of
a known class it is impossible to tell statically which method
will be invoked for a given message send.

Fortunately, dynamic behaviour also provides an opportu-
nity: message sends are implemented by the objc_msgSend
function, provided by the Objective-C runtime library. We
modified these functions in the GNUstep Objective-C run-
time [10] to provide a new interposition mechanism.

Before calling any method, the runtime consults a global
table of interposition hooks and determine whether there is a
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TESLA_SYSCALL_PREVIOUSLY(
mac_socket_check_poll(ANY(ptr), so)==0);

Figure 9: An automaton for a MAC check assertion. Transi-
tions are weighted according to their occurrence at run time.

hook for the specified selector. This mechanism allows us to
provide callee-side instrumentation without access to source
code, but it does impose a performance penalty.

4.4 libtesla
libtesla is the run-time support library for TESLA. It ac-
cepts streams of events and uses them to manage automata
instances. Most of libtesla is written in portable C. Around
11% is specific to the FreeBSD kernel environment, half of
which is specific to DTrace.

libtesla can store automata state in either a global or
a thread-local store, as specified by the programmer (see
section 3.2). Each store can hold a number of automata
classes—one for each programmer-specified automaton—
that can each be instantiated a number of times, differenti-
ated by the variables they reference. For example, to imple-
ment the assertion previously(foo(x)==0), libtesla must
instantiate one instance of the automaton for each value of x
for which a foo(x)==0 event is observed.

4.4.1 The lifetime of an automaton instance
Figure 9 illustrates an automaton class, derived from a MAC
assertion, which can be instantiated by libtesla.
Init Automata instances are created with an «init» transi-
tion; the example in figure 9 begins by entering FreeBSD’s
amd64_syscall function. This transition creates an instance
in state 1 with name (∗): although the assertion refers to a
variable vp, at the point of entry into the system call it is not
yet known what the relevant value of vp will be.
Clone After a successful call to mac_vnode_check_read, an
instrumentation hook will forward the third parameter to



libtesla, which must then clone a copy of the (∗) automa-
ton in state 1 into an automaton named (vp1) in state 2. If
another call is made to mac_vnode_check_read with differ-
ent arguments, libtesla will clone another copy of the (∗)
automaton, yielding an automaton named (vp2) in state 2.
Update At this point, if the assertion site is reached with
local variable vp equal to vp1 or vp2, the correspondingly-
named automaton instance will be updated to state 4.
Error If, after the above transitions, the assertion site is
reached with variable vp = vp3, no instance can be found
to update: the function mac_vnode_check_read has not been
called with parameter vp3 and successfully returned, so an
error will be reported (see section 4.4.2).
Cleanup Finally, a «cleanup» transition resets an automaton
class: all instances are expunged and libtesla resumes ig-
noring events until the next «init». In the kernel we rely on
preallocation to avoid dynamic allocation in code paths that
do no permit it (e.g., while holding mutexes). Bounds such
as “within the current system call” allow this strategy: we
preallocate a fixed-size memory block per thread, giving a
deterministic memory footprint, and report overflows so that
we can adjust preallocation size on the next run.

4.4.2 Dynamic introspection
TESLA has a pluggable event notification framework with a
set of default handlers and support for user-provided handler
callbacks. libtesla reports all of the event types referenced
in section 4.4.1: instance initialisation, clones, updates, er-
rors, and finalisation (automaton acceptance).

In userspace, TESLA’s default behaviour is to output
event information to stderr, controlled by the TESLA_DEBUG
environment variable. Mismatches between temporal spec-
ifications and actual behaviour cause the program to fail-
stop by default, but this is configurable at run-time. In the
FreeBSD kernel, the default handler uses DTrace [7] to ag-
gregate information across events, e.g., counting how often
a transition is triggered per stack trace.

TESLA can combine observations of dynamic behaviour
with static automata descriptions, producing weighted
graphs like that in figure 9. This allows the programmer to
visually inspect the portions of the state graph that are exe-
cuted in practice, as well as their relative frequencies. This
visibility can be used to test tool development, like tradi-
tional code coverage analysis but at a logical rather than
source-line or machine-instruction level.

5. Performance
We have shown that TESLA is able to describe many use-
ful temporal behaviours, detect deviations from programmer
assertions, and help programmers understand run-time be-
haviour. We now evaluate TESLA’s performance for the use
cases described in section 2. TESLA imposes performance
overhead on both program build and run-time behaviour. In
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Figure 10: The TESLA toolchain slows down the OpenSSL
build process, especially when rebuilding incrementally.

most cases, these overheads are similar to costs accepted in
systems communities that use dynamic development tools.

5.1 OpenSSL API correctness
The OpenSSL API property that we describe in section 3.5.1
(“previously, the key-exchange signature was successfully
verified”) is a one-shot event: applications call SSL_connect
at the beginning of a connection, not repeatedly in a tight
loop. The performance impact on this simple case study is
encountered at build time.

When building software with TESLA assertions and in-
strumentation, there are additional stages in the compilation
workflow, so build times can increase by as much as 2.5×,
as shown in figure 10. The real cost of the TESLA workflow,
however, is in incremental rebuilds.

TESLA assertions in any source file can reference
events that are defined in any other source file. For in-
stance, in our case study, we wrote an assertion in the
client’s main function that references a call in OpenSSL’s
ssl3_get_key_exchange function to EVP_VerifyFinal. De-
pending on whether caller- or callee-side instrumentation is
preferred, instrumentation may need to be added when com-
piling either ssl/s3_clnt.c or crypto/evp/p_verify.c.

The practical consequence is that, after modifying a
TESLA assertion in any one source file, instrumentation
must be performed again, potentially on many files. In our
current implementation, we naively re-instrument all code,
leading to the approximately 500× incremental slowdown
shown in figure 10. This process could be pared down
through further build optimisation, but the one-to-many na-
ture of re-instrumentation is a fundamental problem.

In practical terms, an increase from near-instantaneous
incremental rebuilds to approximately 30s is a burden for
developers, but that cost must be weighed against the benefit
of identifying correctness issues that are difficult to detect
with conventional tools.

5.2 Kernel security framework correctness
Our use of TESLA in the FreeBSD kernel—introduced in
section 3.5.2—uncovered five functionality bugs with subtle
security implications, and substantially enhanced our under-
standing of several kernel properties. This benefit came at



Symbol Description Assertions
MF MAC (filesystem) 25
MS MAC (sockets) 11
MP MAC (processes) 10
M All MAC assertions 48
P Process lifetimes 37
All All TESLA assertions 96

Table 1: Assertion sets referenced in figure 11.

a cost of less than 1.35× when running under our instru-
mented kernel, which is somewhat slower than other debug-
ging tools accepted by the FreeBSD developer community in
the command case, but which is perfectly acceptable for de-
velopers of subsystems or for regression test infrastructure.

5.2.1 Build-time overhead
Instrumenting the kernel requires changing the build process
to emit LLVM IR on the path to object code. When we add
TESLA analysis and instrumentation to the LLVM bitcode
workflow, from-scratch build times increase with the number
and complexity of rules, taking up to 2.2× longer to build
and link with our set of TESLA assertions. This is a com-
parable slowdown to the OpenSSL case study. Incremental
rebuild of an instrumented kernel with no assertions takes
3.5× longer, and a kernel with 85 assertions takes 37×—
only a modest 30% savings vs. a clean build.

5.2.2 Run-time overhead
The FreeBSD community tolerates a number of performance
impacting development aids in the development branch. For
example the WITNESS and INVARIANTS kernel options
cause up to a 15% slow down in the macrobenchmarks dis-
cussed below and up to a 3× slowdown in microbenchmarks.
The enabling of these options by default demonstrates that
developers and other users of development trees are typically
willing to accept these overheads.

To determine the practical overhead of TESLA kernel as-
sertions we ran benchmarks on a kernel in a release configu-
ration, one with standard debugging options including WIT-
NESS and INVARIANTS, and several TESLA-instrumented
kernels. The kernel was from the FreeBSD 10-CURRENT
development branch on June 3 2013 (svn r229293) with
(conditionally compiled) TESLA modifications applied. The
variants of TESLA-instrumented kernels included one with
just the instrumentation framework and test assertions en-
abled (“Infrastructure”), various combinations of the asser-
tion sets listed in table 1, one with all TESLA assertions en-
abled (“All”) and one with all assertions enabled in addition
to normal FreeBSD debugging features (“All (Debug)”).

As a typical developer workload we benchmarked the
time required to perform a compile of the Clang-3.3 com-
piler in all these configurations. We also ran the Sys-
Bench [20] 0.4.12 OLTP benchmark against a MySQL
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Figure 12: Global assertions require explicit synchronisa-
tion, which comes at a run-time cost.

5.6.14 database as an example of a transaction sensitive
workload. In addition to these macrobenchmarks we ran
portions of the lmbench [29] microbenchmark suite against
the same set of kernels. All FreeBSD benchmarks were run
on servers with an Intel E5-1620 (SandyBridge) 3.60GHz
CPU, 64GB of RAM, and a 500GB SSD running a FreeBSD
amd64 9.2-RELEASE userland. The MySQL database was
memory backed and builds were performed on the SSD.

Almost all of our assertions were in the thread-local con-
text, so they could take advantage of an existing event seriali-
sation. The cost of a TESLA-imposed serialisation is shown
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Figure 13: Performance improvements with optimisation.

in figure 12. This serialisation is lock-based, so contention
would increase the cost further.

Our first, naive implementation caused a slowdown of
almost 2× in Clang builds and 10× in the OLTP benchmark.
Developers may occasionally accept high overheads when
running e.g., debug LLVM builds or under valgrind), but
not routinely as with FreeBSD debug features.

This performance impact was caused by many assertions
sharing the same temporal bounds: on entering a system call,
libtesla would do work on every system-call–related au-
tomaton. We optimised for this common case by keeping a
per-context (global or per-thread, see section 3.2) record of
common initialisation and cleanup events and doing lazy ini-
tialisation of automaton instances after they received their
first non-initialisation event. As shown in figure 13, mi-
crobenchmark results improved dramatically from nearly
100× slowdown to less than 7× and Clang builds were re-
duced to less than 10% overhead — comparable to normal
FreeBSD debug features WITNESS and INVARIANTS.

TESLA’s run-time overhead is still measurably higher
than other development and debugging tools accepted by the
FreeBSD project. Nonetheless, we expect that many devel-
opers of systems using TESLA would only run with a subset
of assertions enabled—which assertions would depend on
what they are working on—and that automated testing in-
frastructure would run test suites with all assertions enabled.

5.3 State machine exploration
For this case study, all our TESLA declarations are within
a single compilation unit. Although instrumentation spans
two libraries and multiple classes, it is all inserted via inter-
position and so we only need to run the instrumenter on a
single compilation unit. This means that incremental builds
still work, as do parallel builds, and so TESLA has a negli-
gible impact on build times.

5.3.1 Run-time overhead
The effect of TESLA instrumentation on sending Objective-
C messages is illustrated in figure 14a. This figure shows
the time spent in a tight message-sending loop — without
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Figure 14: TESLA has a significant impact on Objective-C
messages but little impact on user-perceived performance.

doing any other work — in a normal release build, a build
linked against the Objective-C runtime with tracing enabled,
with tracing enabled and a trivial interposition function on
the message send, and with a TESLA automaton processing
the events, where the run time is up to 16× longer. As
in the FreeBSD case, the microbenchmark shows a very
high overhead, but a more practical use of TESLA (our
exploration of AppKit API usage) reveals a more reasonable
overhead. We used GNU Xnee [33] to replay X11 events
and interact with dialog boxes, and figure 14b shows window
redrawing times: the majority of events only repaint portions
of the window, and outliers are complete redraws.

The four modes in this figure are without tracing support
compiled into the Objective-C runtime library, with tracing
support but without TESLA using it, with TESLA enabled
and monitoring the events, and with custom event handlers
enabled. When running with all of our tracing enabled, the
longest redraw is 54ms — allowing smooth animation —
and most redraws are well under 10ms. This is fast enough
that TESLA instrumentation could be deployed in a release
build, although trace generation would likely be disabled.

6. Related work
Temporal properties Chen et al.’s MOPS [8, 9] also repre-
sents temporal properties as automata and uses static model
checking to determine if the property is satisfied. However,
their expressivity is quite limited as automata transitions de-
scribe only function calls, but do not include program state
(e.g., pointer arguments and return values). Similar limita-
tions also apply to later work in aspect-oriented debugging:
languages such as AWED [30] and SPoX [16] are limited to
static descriptions of program events. In contrast, TESLA’s
automaton language can describe events that are parame-
terised by dynamic variable–value mappings.

Weimer and Necula have worked on mining temporal
specifications from Java programs [36]: they can extract
specifications of two-state automata (e.g., begin/commit
loops) from Java code by statically examining exception-

handling code paths. In contrast, our approach is to enable



programmers to directly describe complex high-level prop-
erties and mechanically check them at run-time.

Lawall et al.’s Coccinelle [23] addresses the problem de-
scribed in our OpenSSL use case with a text processing tool
that has some C-specific knowledge but does not completely
capture C expressions. By building on a modular compiler
framework, TESLA supports complex language constructs
and can keep pace with language development.

Gottschlich et al.’s Concurrent Predicates [14] intro-
duce synchronisation primitives that helps programmers re-
produce concurrency bugs: a Concurrent Predicate can be
thought of as a barrier conditioned on an arbitrary predicate.
This requires programmers to effectively describe local pre-
conditions in the negative (“my code will crash if X”); in
contrast, TESLA allows programmers to specify temporal
properties across arbitrary time spans and numbers of events.
Static analysis There has been a great deal of work done on
static analysis of systems code. Wu et al. have used static
AST analysis to find memory leaks in the MAC Framework,
a class of localised temporal bug [37]. Ball et al.’s SLAM [2]
and Beyer et al.’s Blast [4, 18] utilise counterexample-
guided abstraction refinement, in which tools progressively
refine an abstract code model until they prove the prop-
erty, find a counterexample, or time out. Cook has demon-
strated termination proofs on systems code [11] and Lu et
al.’s MUVI [26] detects multi-variable concurrency bugs.
In all cases, however, output is not deterministic and run
times may be prohibitive: on large programs, MUVA had
run times from 20 minutes to three hours, Cook’s work on
device drivers included runs of over 100,000 seconds, and
Blast often gives up after a timeout. TESLA, in contrast, im-
poses a run-time performance cost, but for the properties it
can check, it can always check them on exercised code paths.
Symbolic execution Cadar et al.’s KLEE [6] provides a
framework for symbolic execution of LLVM IR. This pro-
vides a way of exhaustively testing all possible code paths,
but is time consuming. Using KLEE with large code bases
such as OS kernels is not currently feasible: the number of
potential execution paths becomes unmanageable.
Program instrumentation Cantrill et al.’s DTrace [7] pro-
vides a framework for inserting probes into software. By
itself, DTrace cannot describe the complex temporal prop-
erties that TESLA targets, nor can it instrument structure
field assignment. An early TESLA prototype attempted to
extend the D language for this purpose, but we abandoned
it in favour of a compiler-driven approach. TESLA does use
DTrace’s static probe functionality to aggregate and report
on temporal events in the FreeBSD kernel.

Yanagisawa et al. use the Kerninst binary patching frame-
work to implement aspect-oriented programming in the
Linux kernel [38]. They are able to run code at arbitrary
point cuts, but without compiler-assisted instrumentation,
they must generate machine code that interoperates with
register allocation, etc. in the surrounding context. Kerninst

could also support TESLA, but our integration with the
compiler provides greater assurance of correctness and lets
us statically check properties of the instrumentation itself.
TESLA could also utilise other binary instrumentation sys-
tems such as Luk et al.’s PIN [27] and Feiner et al.’s Dy-
namoRIO [12], but their dynamic overhead would add to that
of TESLA’s automata management.

Another AOP-like is Harris et al.’s Capweave [17], which
uses visibly pushdown automata to describe logical and
security requirements, driving binary weaving of security-
related system calls into a program. This model cannot de-
scribe arbitrary high-level events, nor assist the programmer
in understanding dynamic behaviour.
Program understanding Lefebvre et al’s Tralfamadore [24]
provides debugging access to the complete execution trace
of an application, allowing temporal problems to be diag-
nosed. However, it does not provide a programmer with a
vocabulary for describing assertions.

7. Future work
TESLA assertions can refer to values in the current scope,
but some temporal properties can only be described by bind-
ing events together with values that are no longer known. A
related problem relates to function pointers: TESLA can in-
strument functions called by pointer in the caller context but
not the callee context because it lacks the vocabulary to de-
scribe function pointer assignment when that pointer value
is not available in the assertion scope. We intend to intro-
duce free variables in future versions of TESLA, which will
support this assertion functionality, using the existing instru-
mentation and runtime infrastructure.

Currently, libtesla allocates its own memory for au-
tomata storage. Performance improvements could be gained
by allowing users to delegate space within data structures of
the instrumented program. This would naturally lead to per-
object assertions, allowing assertions to be more easily tied
to an object’s lifetime. Existing object locks could be used
or elided if proven to be held.

We have focused exclusively on dynamic analysis. A nat-
ural next direction would be to explore cases where static
analysis could be used to both improve accuracy and perfor-
mance. Where inter-procedural analysis is reliable, and in
particular when using per-thread contexts, it might be that
otherwise expensive sequences of checks and state transi-
tions could be entirely elided. A further advantage would be
compile-time reporting of potential failures.

Although we have performed some optimisation on com-
mon runtime cases, there is still further scope for perfor-
mance refinement. For instance, build time is partly ham-
pered by our tool re-loading, re-parsing, and re-interpreting
the same TESLA automaton description for every LLVM
IR file it instruments. Build-time overheads are also based
on a conservative compilation strategy: whenever any asser-
tion is modified, all LLVM IR files are re-instrumented us-



ing the new automata descriptions. This strategy is overly
pessimistic, as there are cases in which only limited re-
instrumentation is necessary. For instance, if an automaton is
rearranged or removed without introducing new instrumen-
tation points, TESLA need only re-instrument files that are
known to contain instrumentation points.

Extending the system to support C++ may also be of
interest, but is beyond the scope of the current evaluation.

Allowing post-processing of event traces from tools
such as Tralfamadore [24] would offer an alternative, non-
instrumentation–based checking scheme with different per-
formance vs. timeliness properties.

8. Lessons learned
When we began this work, we expected false positives and
false negatives, common to C-based static and dynamic anal-
ysis, to cause significant problems. Surprisingly, none of the
complex examples we present encounter this problem, partly
because TESLA warns programmers about unsafe code that
would violate TESLA’s program model. Taking data outside
the type system (e.g., casting it to char* and mutating raw
bytes) would cause TESLA to miss program events, but we
worked with software that did not take this approach.

Placing the tracing events on interfaces between modu-
lar code has a low overhead (compare figure 14a and fig-
ure 14b), but does not always catch bugs completely isolated
within a component. TESLA complements rather than re-
places unit testing, which is good at finding localised bugs.

The interposition mechanisms available in dynamic lan-
guages make generating TESLA call instrumentation much
simpler, allowing instrumentation without recompiling ev-
ery caller or callee. This could be translated to C if we added
a compilation mode that guaranteed every call a dynamic re-
location and a run-time linker that allowed interposition.

9. Conclusion
TESLA is a dynamic assertion framework for expressing and
validating the complex temporal properties key to the cor-
rectness of large-scale software systems. We have demon-
strated TESLA through three case studies: OpenSSL, the
FreeBSD kernel, and the GNUstep user interface, illustrating
API use checking, validation of temporal security proper-
ties, and functional coverage checking in test suites. In addi-
tion to checking temporal properties, TESLA enables explo-
ration of runtime behaviour, including visualising automata
transitions and profiling event frequencies. Through integra-
tion with DTrace, programmers can gain new insight into the
behaviour of complex systems. TESLA’s performance im-
pact is comparable with accepted debugging overheads for
target development communities, but also experiences per-
formance proportionality—developers pay for the assertions
they enable. We have focused on programmer-friendly and
practical dynamic analysis and instrumentation, but TESLA
also enables creation of a new corpus of semantically rich

and machine-readable assertions to enable increasingly pow-
erful static analysis and formal verification tools.
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