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Abstract
We have implemented an FPGA soft-core, multithreaded,

64-bit MIPS R4000-style CPU called BERI to support
research on the hardware/software interface. We have
ported FreeBSD to this platform including support for mul-
tithreaded and soon multicore CPUs. This paper describes
the process by which a BERI system boots from CPU startup
through the boot loaders, hand off to the kernel, and en-
abling secondary CPU threads. Historically, the process of
booting FreeBSD has been documented from a user perspec-
tive or at a fairly high level. This paper aims to improve the
documentation of the low level boot process for developers
aiming to port FreeBSD to new targets.

1. Introduction
From its modest origins as a fork of 386BSD targeting Intel
i386 class CPUs, FreeBSD has been ported to a range of
architectures including DEC Alpha1, AMD x86_64 (aka
amd64), ARM, Intel IA64, MIPS, PC98, PowerPC, and
Sparc64. While the x86 and Alpha are fairly homogeneous
targets with mechanics for detecting and adapting to spe-
cific board and peripheral configurations, embedded systems
platforms like ARM, MIPS, and PowerPC are much more
diverse. Porting to a new MIPS board often requires adding
support for a new System on Chip (SoC) or CPU type with
different interrupt controllers, buses, and peripherals. Even
if the CPU is supported, boot loaders and associated kernel
calling conventions differ significantly between boards.

We have ported FreeBSD/MIPS to BERI, an open-source
MIPS R4000-style[1] FPGA-based soft-core processor that
we have developed. This required a range of work including
boot loader support, platform startup code, a suite of device
drivers (including the PIC), but also adapting FreeBSD’s
existing FDT support to FreeBSD/MIPS. We currently run
FreeBSD/BERI under simulation, on an Altera Stratix IV
FPGA on a Terasic DE4 FPGA board, and on an Xilinx
Virtex-5 FPGA on the NetFPGA-10G platform. The major-
ity of our peripheral work has been on simulation and the
DE4 platform. FreeBSD BERI CPU support is derived from
the MALTA port with some inspiration from the sibyte port.

Based on our experiences bringing up FreeBSD on BERI
we have documented the way we boot FreeBSD from the
firmware embedded in the CPU to userspace to provide
a new view on the boot process. FreeBSD is generally
very well documented between project documentation and
books like the Design and Implementation of the FreeBSD
Operating System [3], but detailed documentation of the
boot process has remained a gap. We believe this paper
well help porters gain a high level understanding of the
boot process and go allow interested users to understand the
overall process without the need to create an new port.

1Removed in 2006.

Figure 1: BERIpad with application launcher

The rest of this paper narrates the boot process with a
special focus on the places customization was required for
BERI. We begin by describing the BERI platform (Section
2), and then in detail documents the kernel architecture-
specific boot process for FreeBSD on BERI: boot loader
(Section 3) and kernel boot process (Section 4). In the in-
terest of brevity many aspects of boot are skipped and most
that are not platform or port-specific are ignored. Some
platform-specific components such as the MIPS pmap are
not covered. The goal is to provide a guide to those pieces
someone porting to a new, but relatively conventional MIPS
CPU would need to fill in. Porters interested in less con-
ventional CPUs will probably want to examine the NLM
and RMI ports in mips/nlm and mips/rmi for examples
requiring more extensive modifications.

2. The BERIpad platform

We have developed BERI as a platform to enable experi-
ments on the hardware-software interface such as our ongo-
ing work on hardware supported capabilities in the CHERI
CPU[5]. Our primary hardware target has been a tablet
based on the Terasic DE4 FPGA board with a Terasic
MTL touch screen and integrated battery pack. The de-
sign for the tablet has been released as open source at
http://beri-cpu.org/. The CPU design will be re-
leased in the near future. The modifications to FreeBSD—
except for MP—support have been merged to FreeBSD
10.0. The tablet and the internal architecture of BERI are
described in detail in the paper The BERIpad Tablet [2] The
following excerpt provides a brief overview of BERI and
the drivers we have developed.

The Bluespec Extensible RISC Implementation
(BERI) is currently an in-order core with a 6-
stage pipeline which implements the 64-bit MIPS
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instruction set used in the classic MIPS R4000.
Some 32-bit compatibility features are miss-
ing and floating point support is experimental.
Achievable clock speed is above 100MHz on the
Altera Stratix IV and average cycles per instruc-
tion is close to 1.2 when booting the FreeBSD
operating system. In summary, the high-level de-
sign and performance of BERI is comparable to
the MIPS R4000 design of 1991, though the de-
sign tends toward extensibility and clarity over
efficiency in the micro-architecture.

...

We developed device drivers for three Altera IP
cores: the JTAG UART (altera jtag uart), triple-
speed MAC (atse), and SD Card (altera sdcard),
which implement low-level console/tty, Ethernet
interface, and block storage classes. In addition,
we have implemented a generic driver for Avalon-
attached devices (avgen), which allows memory
mapping of arbitrary bus-attached devices with-
out interrupt sources, such as the DE4 LED block,
BERI configuration ROM, and DE4 fan and tem-
perature control block.

Finally, we have developed a device driver for the
Terasic multitouch display (terasic mtl), which im-
plements a memory-mapped pixel buffer, system
console interface for the text frame buffer, and
memory-mapped touchscreen input FIFO. Using
this driver, UNIX can present a terminal interface,
but applications can also overlay graphics and
accept touch input.

In addition to the drivers described above, made extensive
modifications to the exiting cfi(4) (Common Flash Inter-
face) driver to fully support Intel NOR flash and improve
write performance.

2.1. Flat Device Tree

Most aspects of BERI board configuration is described in
a Flat Device Trees (FDT) which are commonly used on
PowerPC and ARM-based systems [4]. Currently a Device
Tree Blob (DTB) is built into each FreeBSD kernel and
describes a specific hardware configuration. Each DTB is
built from a device tree syntax (DTS) file by the device tree
compiler2 before being embedded in the kernel. Figure 2
exerpts the DTS file boot/fdt/dts/beripad-de4.dts

and includes the BERI CPU, 1GB DRAM, programmable
interrupt controller (PIC), hardware serial port, JTAG UART,
SD card reader, flash partition table, gigabit Ethernet, and
touchscreen.

3. The early boot sequence

The common FreeBSD boot sequence begins with CPU
firmware arranging to run the FreeBSD boot2 second-stage
boot loader which in turn loads /boot/loader which loads

2dtc(1)

model = " SRI / Cambridge Ber iPad ( DE4 ) " ;
c o m p a t i b l e = " s r i −cambridge , b e r i p a d−de4 " ;
cpus {

cpu@0 {
dev ice−t y p e = " cpu " ;
c o m p a t i b l e = " s r i −cambridge , b e r i " ;

} ;
} ;
soc {

memory {
d e v i c e _ t y p e = " memory " ;
r e g = <0x0 0 x40000000 >;

} ;
b e r i p i c : be r ip i c@7f804000 {

c o m p a t i b l e = " s r i −cambridge , b e r i −p i c " ;
i n t e r r u p t −c o n t r o l l e r ;
r e g = <0 x7f804000 0 x400 0 x7f806000 0x10

0 x7f806080 0x10 0 x7f806100 0x10 >;
}
s e r i a l @ 7 f 0 0 2 1 0 0 {

c o m p a t i b l e = " ns16550 " ;
r e g = <0 x7f002100 0x20 >;

} ;
s e r i a l @ 7 f 0 0 0 0 0 0 {

c o m p a t i b l e = " a l t e r a , j t a g _ u a r t −11_0 " ;
r e g = <0 x7f000000 0x40 >;

} ;
sdcard@7f008000 {

c o m p a t i b l e = " a l t e r a , sdca rd_11_2011 " ;
r e g = <0 x7f008000 0x400 >;

} ;
f lash@74000000 {

p a r t i t i o n @ 2 0 0 0 0 {
r e g = <0x20000 0 xc00000 >;
l a b e l = " fpga0 " ;

} ;
p a r t i t i o n @ 1 8 2 0 0 0 0 {

r e g = <0x1820000 0 x027c0000 >;
l a b e l = " os " ;

} ;
} ;
e the rne t@7f007000 {

c o m p a t i b l e = " a l t e r a , a t s e " ;
r e g = <0 x7f007000 0 x400 0 x7f007500 0x8

0 x7f007520 0x20 0 x7f007400 0x8
0 x7f007420 0x20 >;

} ;
touchscreen@70400000 {

c o m p a t i b l e = " s r i −cambridge , mt l " ;
r e g = <0x70400000 0 x1000

0 x70000000 0 x177000 0 x70177000 0x2000 >;
} ;

} ;

Figure 2: Excerpt from Flat Device Tree (FDT) description of
the DE4-based BERI tablet.
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the kernel and kernel modules. Finally the kernel boots
which is described in Section 4.

3.1. Miniboot

At power on or after reset, the CPU sets the program counter
of at least one thread to the address of a valid program.
From the programmer perspective the process by which this
occurs is essentially magic and of no particular importance.
Typically the start address is some form of read-only or flash
upgradable firmware that allows for early CPU setup and
may handle details such as resetting cache state or pausing
threads other than the primary thread until the operating
system is ready to handle them. In many systems, this
firmware is responsible for working around CPU bugs.

On BERI this code is known as miniboot for physical
hardware and simboot for simulation. Miniboot is compiled
with the CPU as a read-only BRAM. It is responsible for
settings registers to initial values, setting up an initial stack,
initializing the cache by invalidating the contents, setting
up a spin table for MP boot, running code to initialize the
HDMI output port on the DE4 tablet, and loading a kernel
from flash or waiting for the next bit of code to be loaded
by the debug unit and executing that. With BERI we are
fortunate to not need to work around CPU bugs in firmware
since we can simply fix the hardware.

Miniboot’s kernel loading and boot behavior is controlled
by two DIP switches on the DE4. If DIP0 is off or mini-
boot with compiled with -DALWAYS_WAIT then we spin in
a loop waiting for the general-purpose register t1 to be set
to 0 using JTAG. This allows the user to control when the
board starts and given them an opportunity to load a kernel
directly to DRAM before boot proceeds. DIP1 controls the
relocation of a kernel from flash. If the DIP switch is set,
the kernel is loaded from a flash at offset of 0x2000000 to
0x100000 in DRAM. Otherwise, the user is responsible for
loading a kernel to DRAM by some other method. Currently
supported mechanisms are described in the BERI Software
Reference [7].

The kernel loading functionality occurs only on hardware
thread 0. In other hardware threads, miniboot skips this step
and enter a loop waiting for the operating system to send
them a kernel entry point via the spin-table. Multithread and
multicore boot is discussed in more detail in section 4.3.

Before miniboot enters the kernel it clears most registers
and sets a0 to argc, a1 to argv, a2 to env, and 3 to the size
of system memory. In practice argc is 0 and argv and env

are NULL. It then assumes that an ELF64 object is located at
0x100000, loads the entry point from the ELF header, and
jumps to it.

We intend that miniboot be minimal, but sufficiently flex-
ible support debugging of various boot layouts as well as
loading alternative code such as self contained binaries. This
allows maximum flexibility for software developers who
may not be equipped to generate new hardware images.

3.2. boot2

On most FreeBSD systems two more boot stages are inter-
posed between the architecture dependent boot code and the
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Figure 3: Layout of the DE4 flash

kernel. The first of these is boot23, the second stage boot-
strap, which has a mechanism for accessing local storage
and has code for read-only access to a limited set of file sys-
tems (usually one of UFS or ZFS). Its primary job is to load
the loader and to pass arguments to it. By default it loads
/boot/loader, but the user can specify an alternative disk,
partition, and path.

We have ported boot2 to BERI, creating three ‘micro-
drivers’ allowing JTAG UART console access, and use of
CFI or the SD card to load /boot/loader or the kernel.
These microdrivers substitute for boot device drivers pro-
vided by the BIOS on x86 or OpenFirmware on SPARC.
It also supports jumping to an instance of /boot/loader
loaded via JTAG. In our current implementation, boot2 is
linked to execute at 0x100000 and loaded from CFI flash
as the kernel currently is allowing it to be used with an un-
modified miniboot. In the future, we plan to place a similar
version of boot2 at 0x03fe0000, a 128K area reserved for
its use. This will allow a normal filesystem to be placed in
CFI flash from 0x1820000, which might contain the full
boot loader, a kernel, etc. Currently, we use boot2 to load
/boot/loader from the SD card, which offers an experi-
ence more like conventional desktop/server platforms than a
conventional embedded target.

Many versions of boot2 exist, targeted at different archi-
tectures. The version of boot2 in BERI is derived from the
x86 boot2, and is hence (marginally) more feature-rich than
ones targeted at more space-constrained embedded architec-
tures.

3boot(8)

http://www.freebsd.org/cgi/man.cgi?query=boot&sektion=8


Figure 4: FreeBSD loader boot menu

3.3. loader

The third common boot stage is the loader(8). The loader
is in effect a small kernel whose main job is to set up the
environment for the kernel and load the kernel and any
configured modules from the disk or network. The loader
contains a Forth interpreter based on FICL4. This interpreter
it used to provide the boot menu shown in Figure 4, parses
configuration files like /boot/loader.conf, and imple-
ments functionality like nextboot(8). In order to do this,
the loader also contains drivers to access platform-specific
devices and contains implementations of UFS and ZFS with
read and limited write support. On x86 systems that means
BIOS disk access and with the pxeloader network access
via PXE. On BERI this currently includes a basic driver for
access to the CFI flash found on the DE4.

We have ported the loader to FreeBSD/MIPS and share
the SD card and CFI microdrivers with boot2 to allow
kernels to be loaded from CFI flash or SD card. We currently
load the kernel from the SD card. We hope to eventually
add a driver for the onboard Ethernet device to allow us to
load kernels from the network.

The loader’s transition to the kernel is much the same as
miniboot. The kernel is loaded to the expected location in
the memory, the ELF header is parsed, arguments are loaded
into registers, and the loader jumps into the kernel.

3.4. The bootinfo structure

In order to facilitate passing information between boot2,
/boot/loader, and the kernel a pointer to a bootinfo

structure is between them allowing information such as
memory size, boot media type, and the locations of
preloaded modules to be shared. In the future we will add
support for passing a pointer to the FDT device database
that will be embedded in the CPU or stored separately in
flash.

4. The path to usermode
This section narrates the interesting parts of the FreeBSD
boot process from a MIPS porter’s perspective. In the elec-
tronic version of this document most of the paths, func-
tion names, and symbols are links to appropriate parts of
http://fxr.watson.org to enable further exploration.

4http://ficl.sourceforge.net

4.1. Early kernel boot

The FreeBSD MIPS kernel enters at _start in the _locore
function defined in mips/mips/locore.S. _locore per-
forms some early initialization of the CP0 registers, sets up
an initial stack and calls the platform-specific startup code
in platform_start.

On BERI platform_start saves the argument list, en-
vironment, and pointer to struct bootinfo passed by
the loader. BERI kernels also support an older boot in-
terface, in which memory size is passed as the fourth ar-
gument (direct from miniboot). It then calls the common
mips function mips_postboot_fixup which provides ker-
nel module information for manually loaded kernels and
corrects kernel_kseg0_end (the first usable address in
kernel space) if required. Per CPU storage is then ini-
tialized for the boot CPU by mips_pcpu0_init. Since
BERI uses Flat Device Tree (FDT) to allow us to config-
ure otherwise non-discoverable devices platform_start
then the locates the DTB and initializes FDT. This is the
norm for ARM and PowerPC ports, but is currently uncom-
mon on MIPS ports. We expect it to become more popu-
lar over time. The platform_start function then calls
mips_timer_early_init to set system timer constants,
currently to a hardcoded 100MHz, eventually this will come
from FDT. The console is set up by cninit and some de-
bugging information is printed. The number of pages of
real memory is stored in the global variable realmem5. The
BERI-specific mips_init6 function is then called to do the
bulk of remaining early setup.

BERI’s mips_init is fairly typical. First, mem-
ory related parameters are configured including laying
out the physical memory range and setting a number
of automatically tuned parameters in the general func-
tions init_param1 and init_param2. The MIPS func-
tion mips_cpu_init performs some optional per-platform
setup (nothing on BERI), identifies the CPU, configures
the cache, and clears the TLB. The MIPS version of
pmap_bootstrap is called to initialize the pmap. Thread 0
is instantiated by mips_proc0_init which also allocates
space for dynamic per CPU variables. Early mutexs includ-
ing the legacy Giant lock are initialized in mutex_init and
the debugger is initialized in kdb_init. If so configured
the kernel may now drop into the debugger or, much more
commonly, return and continue booting.

Finally mips_timer_init_params is called to finish
setting up the timer infrastructure before platform_start
returns to _locore. _locore switches to the now config-
ured thread0 stack and calls mi_startup never to return.

4.2. Calling all SYSINITS

The job of mi_startup is to initialize all the kernel’s sub-
systems in the right order. Historically mi_startup was
called main and the order of initialization was hard coded.

5The btoc macro converts bytes to clicks which in FreeBSD are single
pages. Mach allowed multiple pages to be managed as a virtual page.

6Most ports have one of these, but it seems to be misnamed as it is not
MIPS generic code.

http://www.freebsd.org/cgi/man.cgi?query=loader&sektion=8
http://www.freebsd.org/cgi/man.cgi?query=nextboot&sektion=8
http://fxr.watson.org
http://ficl.sourceforge.net
http://fxr.watson.org/fxr/source/mips/mips/locore.S?v=cheribsd
http://fxr.watson.org/fxr/ident?v=cheribsd;i=platform_start
http://fxr.watson.org/fxr/ident?v=cheribsd;i=platform_start
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mips_postboot_fixup
http://fxr.watson.org/fxr/ident?v=cheribsd;i=kernel_kseg0_end
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mips_pcpu0_init
http://fxr.watson.org/fxr/ident?v=cheribsd;i=platform_start
http://fxr.watson.org/fxr/ident?v=cheribsd;i=platform_start
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mips_timer_early_init
http://fxr.watson.org/fxr/ident?v=cheribsd;i=cninit
http://fxr.watson.org/fxr/ident?v=cheribsd;i=realmem
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mips_init
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mips_init
http://fxr.watson.org/fxr/ident?v=cheribsd;i=init_param1
http://fxr.watson.org/fxr/ident?v=cheribsd;i=init_param2
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mips_cpu_init
http://fxr.watson.org/fxr/ident?v=cheribsd;i=pmap_bootstrap
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mips_proc0_init
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mutex_init
http://fxr.watson.org/fxr/ident?v=cheribsd;i=kdb_init
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mips_timer_init_params
http://fxr.watson.org/fxr/ident?v=cheribsd;i=platform_start
http://fxr.watson.org/fxr/ident?v=cheribsd;i=thread0
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mi_startup
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mi_startup
http://fxr.watson.org/fxr/ident?v=cheribsd;i=mi_startup
http://svnweb.freebsd.org/base/head/sys/kern/init_main.c?revision=10027&view=markup
http://fxr.watson.org/fxr/ident?v=cheribsd;i=btoc


s t a t i c vo id
p r i n t _ c a d d r _ t ( void ∗ d a t a )
{

p r i n t f ( "%s " , ( char ∗ ) d a t a ) ;
}
SYSINIT ( announce , SI_SUB_COPYRIGHT ,

SI_ORDER_FIRST , p r i n t _ c a d d r _ t ,
c o p y r i g h t ) ;

Figure 5: Implementation of copyright message printing on
FreeBSD boot.

This was obviously not scalable so a more dynamic registra-
tion mechanism called SYSINIT(9) was created. Any code
that needs to be run which at startup can use the SYSINIT
macro to cause a function to be called in a sorted order to
boot or on module load. The sysinit implementation relies
on the ‘linker set’ feature, in which constructors/destructors
for kernel subsystems and modules are tagged in the ELF
binary so that the kernel linker can find them during boot,
module load, module unload, and kernel shutdown.

The implementation of mi_startup is simple. It sorts
the set of sysinits and then runs each in turn marking each
done when it is complete. If any modules are loaded by
a sysinit, it resorts the set and starts from the beginning
skipping previous run entries. The end of mi_startup

contains code to call swapper, this code is never reached
as the last sysinit never return. One implementation detail
of note in mi_startup is the use of bubble sort to sort the
sysinits due to the fact that allocators are initialized via
sysinits and thus not yet available.

Figure 5 shows a simple example of a sysinit. In this
example announce is the name of the individual sysinit,
SI_SUB_COPYRIGHT is the subsystem, SI_ORDER_FIRST
is the order within the subsystem, print_caddr_t is the
function to call, and copyright is an argument to be passed
to the function. A complete list of subsystems and orders
within subsystems can be found in sys/kernel.h. As
of this writing there are more than 80 of them. Most are
have little or no port-specific function and thus are beyond
the scope of this paper. We will highlight sysinits with
significant port-specific content.

The first sysinit of interest is SI_SUB_COPYRIGHT. It does
not require porting specifically, but reaching it and seeing
the output is a sign of a port nearing completion since it
means low level consoles work and the initial boot described
above is complete. The MIPS port has some debugging
output earlier in boot, but on mature platforms the copyright
message is the first output from the kernel. Figure 6 shows
the three messages printed at SI_SUB_COPYRIGHT.

The next sysinit of interest to porters is SI_SUB_VM. The
MIPS bus_dma(9) implementation starts with a set of stati-
cally allocated maps to allow it to be used early in boot. The
function mips_dmamap_freelist_init adds the static
maps to the free list at SI_SUB_VM. The ARM platform
does similar work, but does require malloc and thus runs
busdma_init at SI_SUB_KMEM instead.

Further bus_dma(9) initialization takes place at

SI_SUB_LOCK in the platform-specific, but often identical,
init_bounce_pages function. It initializes some counters,
lists, and the bounce page lock.

All ports call a platform-specific cpu_startup func-
tion at SI_SUB_CPU set up kernel address space and per-
form some initial buffer setup. Many ports also per-
form board, SoC, or CPU-specific setup such as initializ-
ing integrated USB controllers. Ports typically print de-
tails of physical and virtual memory, initialize the kernel
virtual address space with vm_ksubmap_init, the VFS
buffer system with bufinit, and the swap buffer list with
vm_pager_bufferinit. On MIPS the platform-specific
cpu_init_interrupts is also called to initialize interrupt
counters.

Most platforms have their own sf_buf_init routine to
allocate sendfile(2) buffers and initialize related locks.
Most of these implementations are identical.

The bus hierarchy is established and device probing is
performed at the SI_SUB_CONFIGURE stage (aka autoconfig-
uration). The platform-specific portions of this stage are the
configure_first function called at SI_ORDER_FIRST

which attaches the nexus bus to the root of the device
tree, configure which runs at SI_ORDER_THIRD and calls
root_bus_configure to probe and attach all devices,
and configure_final which runs at SI_ORDER_ANY

cninit_finish to finish setting up the console with
cninit_finish, and clear the cold flag. On MIPS and
some other platforms configure also calls intr_enable
to enable interrupts, A number of console drivers complete
their setup with explicit sysinits at SI_SUB_CONFIGURE and
many subsystems like CAM and acpi(4) perform their
initialization there.

Each platform registers the binary types it supports at
SI_SUB_EXEC. The primarily consists of registering the ex-
pected ELF header values. On a uniprocessor MIPS this is
the last platform-specific sysinit.

The final sysinit is an invocation of the scheduler

function at SI_SUB_RUN_SCHEDULER which attempts to
swap in processes. Since init(8) was previously cre-
ated by create_init at SI_SUB_CREATE_INIT and made
runnable by kick_init at SI_SUB_KTHREAD_INIT start-
ing the scheduler results in entering userland.

4.3. Multiprocessor Support

Multiprocessor systems follow the same boot process as
uniprocessor systems with a few added sysinits to enable
and start scheduling the other hardware threads. These
threads are known as application processors (APs).

The first MP-specific sysinit is a call to mp_setmaxid

at SI_SUB_TUNABLES to initialize the mp_ncpus and
mp_maxid variables. The generic mp_setmaxid func-
tion calls the platform-specific cpu_mp_setmaxid.
On MIPS cpu_mp_setmaxid calls the port-specific
platform_cpu_mask to fill a cpuset_t with a mask of
all available cores or threads. BERI’s implementation
extracts a list of cores from the DTB and verifies that they
support the spin-table enable method. It further verifies that
the spin-table entry is properly initialized or the thread is
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s t r u c t s p i n _ e n t r y {
u i n t 6 4 _ t e n t r y _ a d d r ;
u i n t 6 4 _ t a0 ;
u i n t 3 2 _ t r s v d 1 ;
u i n t 3 2 _ t p i r ;
u i n t 6 4 _ t r s v d 2 ;

} ;

Figure 7: Definition of a spin_entry with explicit padding
and the argument variables renamed to match
MIPS conventions.

ignored.
The initialization of APs is accomplished by the

mp_start function called at SI_SUB_CPU after
cpu_startup. If there are multiple CPUs it calls
the platform-specific cpu_mp_start and upon return
prints some information about the CPUs. The MIPS
implementation of cpu_mp_start iterates through the list
of valid CPU IDs as reported by platform_cpu_mask

and attempts to start each one except it self as determined
by platform_processor_id7 with the platform-specific
start_ap. The port-specific platform_start_ap’s job
is to cause the AP to run the platform-specific mpentry.
When runs successfully, it increments the mp_naps variable
and start_ap waits up to five seconds per AP for this to
happen before giving up on it.

A number of mechanisms has been implemented to in-
struct a CPU to start running a particular piece of code. On
BERI we have chosen to implement the spin-table method
described in the ePAPR 1.0 specification[4] because it is
extremely simple. The spin-table method requires that
each AP have an associated spin_entry structure located
somewhere in the address space and for that address to
be recorded in the DTB. The BERI specific definition of
struct spin_entry can be found in Figure 7. At boot the
entry_addr member of each AP is initialized to 1 and the
AP waits for the LSB to be set to 0 at which time it jumps to
the address loaded in entry_addr passing a0 in register a0.
We implement waiting for entry_addr to change with a
loop in miniboot. In BERI’s platform_cpu_mask we look
up the spin_entry associated with the requested AP, set
the pir member to the CPU id and then assign the address
of mpentry to the entry_addr member.

The MIPS implementation of mpentry is assembly
in mips/mips/mpboot.S. It disables interrupts, sets up
a stack, and calls the port-specific platform_init_ap

to set up the AP before entering the MIPS-specific
smp_init_secondary to complete per-CPU setup and
await the end of the boot process. A typical MIPS im-
plementation of platform_init_ap sets up interrupts on

7Implemented in mips/beri/beri_asm.S on BERI.

the AP and enables the clock and IPI interrupts. On BERI
we defer IPI setup until after device probe because our pro-
grammable interrupt controller (PIC) is configured as an
ordinary device and thus can not be configured until after
SI_SUB_CONFIGURE.

The MIPS-specific smp_init_secondary function ini-
tializes the TLB, setups up the cache, and initializes per-
CPU areas before incrementing mp_naps to let start_ap
know that it has finished initialization. It then spins waiting
for the flag aps_ready to be incremented indicating that the
boot CPU has reached SI_SUB_SMP as described below. On
BERI it then calls platform_init_secondary to route
IPIs to the AP and set up the IPI handler. The AP then sets
its thread to the per-CPU idle thread, increment’s smp_cpus,
announces it self on the console, and if it is the last AP to
boot, sets smp_started to inform release_aps that all
APs have booted and the smp_active flag to inform a few
subsystems that we are running with multiple CPUs. Unless
it was the last AP to boot it spins waiting for smp_started
before starting per-CPU event timers and entering the sched-
uler.

The final platform-specific sysinit subsystem is
SI_SUB_SMP which platform-specific release_aps

functions are called to enable IPIs on the boot CPU, inform
previously initialized APs that they can start operating, and
spin until they do so as described above. In the MIPS case
this means atomically setting the aps_ready flag to 1 and
spinning until smp_started is non-zero.

4.4. A word on IPIs

In multiprocessor (MP) systems CPUs communicate with
each other via Inter-Processor Interrupts (IPIs). A number
of IPI mechanisms exist, with FreeBSD MIPS using the sim-
plest model, a per-CPU integer bitmask of pending IPIs and
a port-specific mechanism for sending an interrupt, almost
always to hardware interrupt 4. This is implemented by the
ipi_send which is used by the public ips_all_but_self,
ipi_selected, and ipi_cpu functions. MIPS IPIs are
handled by mips_ipi_handler which clears the interrupt
with a call to platform_ipi_clear, reads the set of pend-
ing IPIs, and handles each of them.

On BERI IPIs are implemented using the BERI
PIC’s soft interrupt sources. IPIs are routed by
beripic_setup_ipi, sent by beripic_send_ipi, and
cleared by beripic_clear_ipi. These functions are ac-
cessed via kobj(9) through the FDT_IC interface defined
in dev/fdt/fdt_ic_if.m. The internals of BERI PIC are
described in the BERI Hardware Reference[6].
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5. Conclusion
Porting FreeBSD to a new CPU, even within a previously
supported family, is a significant undertaking. We hope
this paper will help prospective porters orient themselves
before they begin the process. While we have focused on a
MIPS ports, the code structure in other platforms–especially
ARM–is quite similar.
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