
The BERIpad tablet: open-source construction,
CPU, OS and applications

A Theodore Markettos∗, Jonathan Woodruff∗, Robert N M Watson∗,
Bjoern A Zeeb∗, Brooks Davis†, Simon W Moore∗
∗Computer Laboratory, University of Cambridge, UK
{firstname.lastname}@cl.cam.ac.uk

†SRI International, Menlo Park, CA, USA
brooks.davis@sri.com

Abstract—We present a full desktop computer system on
a portable FPGA tablet. We have designed BERI, a 64-bit
MIPS R4000-style soft processor in Bluespec SystemVerilog. The
processor is implemented in a system-on-chip on an Altera Stratix
IV FPGA on a Terasic DE4 FPGA board that provides a full
motherboard of peripherals. We run FreeBSD providing a multi-
user UNIX-based OS with access to a full range of general-
purpose applications. We have a thorough test suite that verifies
the processor in continuous integration. We have open-sourced
the complete stack at beri-cpu.org including processor, system-
on-chip, physical design and OS components. We relate some
of our experiences of applying techniques from successful open-
source software projects on the design of open-source hardware.

Index Terms—Open-source, hardware, tablet, FPGA, Bluespec,
BERI, MIPS, FreeBSD, Terasic, Altera

I. INTRODUCTION

Open-source software is behind much of modern comput-
ing. The open-source model, including software engineering
practices such as modularity, code reuse, version control, test
suites with test-driven development and continuous integration,
and the building of developer communities, are now well
understood.

Open-source hardware, however, has failed to gain much
traction. Part of this is inherent: hardware is a physical object
and physical objects cannot be shared in the way software can.
But the design of hardware involves intellectual property (IP)
in just the same way that software does.

Meanwhile, system-on-chip design has polarised. On the
one hand, semiconductor vendors produce systems with ever-
increasing complexity with ever-more-dense fabrication pro-
cesses. The cost and complexity of such ASICs continues to
rise, such that custom design becomes impractical other than
when producing huge volumes.

On the other hand, Field-Programmable Gate Arrays (FP-
GAs) offer a technology accessible at lower volumes. This
provides an opportunity for open-source hardware. The FPGA
itself is produced in the huge volumes that is necessary to
make semiconductor production economic, and FPGA boards
can be bought off-the-shelf at reasonable cost. The FPGA is
programmable with IP which can be written and distributed in
a similar development process to modern software. One exam-
ple of a popular open-source FPGA project is the NetFPGA

Fig. 1. BERIpad with application launcher

networking platform [1].
FPGAs are typically programmed in hardware definition

languages (HDLs) such as VHDL or Verilog. System-on-chip
(SoC) design typically involves integration of components
from many different sources — modularity enables reuse.
Traditional HDLs take a low-level approach, which means that
an intricate knowledge of the interface and timing properties of
a component are necessary to use it. As ASIC designers have
found to their cost, incorrect assumptions about interfaces are
a common cause of errors [2].

Such a low-level development process has held back open-
source hardware on FPGAs: while components are available
in repositories such as OpenCores [3], it is often quicker to
re-implement them from scratch than to fully understand the
nuances of the component’s interface.

In this paper we describe a desktop-class computer system
we have designed and open-sourced, including processor and
peripherals. We have used an array of techniques from soft-
ware engineering to aid our development process and build
more solid foundations than many previous hardware projects.

We have used Bluespec SystemVerilog, a higher level
language to take care of many of the interfacing difficulties.

Bluespec enables us to build a complex SoC in a much shorter
time than a Verilog-based design. In addition we can run
a high-speed cycle-accurate simulation of the design which
can boot the open-source FreeBSD OS in simulation. We
then apply regression testing and continuous integration to our
processor so that we can be confident that it works the first
time when synthesised on the FPGA.

Using Bluespec to aid productivity, we have designed BERI,
a 64-bit MIPS R4000-style soft processor that runs at 100 MHz
on the FPGA, as well as approximately 34 kHz in cycle-
accurate simulation. The processor has a full test-suite that
compares the processor against existing MIPS emulators and
is run against every source code commit.

We also have full series of peripherals, providing modern
interfaces such as Gigabit Ethernet, SD card, HDMI, USB
2.0, and up to 8GB of DDR2 memory, using either cores we
developed in Bluespec or were provided by Altera. Bluespec
makes it easier to wrap the details of bus interfacing, such as
AXI [4] or Altera’s Avalon, so that a peripheral device need
only present a simple, easy to write interface.

We implement this on a Terasic DE4 FPGA board which
contains an Altera Stratix IV 230GX FPGA. The FPGA board
is built into a battery-powered tablet with touchscreen LCD
which is easily portable and able to demonstrate our work at
conferences and meetings.

Having designed this complex system-on-chip, we have
ported the FreeBSD operating system and written drivers for
all the peripherals (with the exception of USB, which is
under way). A desktop/server-class OS with full driver support
greatly increases the flexibility of the platform as complex
software protocol stacks such as USB and IPv6 come for
free. As a result we can give developers access to the board
via SSH so that they can experiment with our open-source
hardware without owning a physical FPGA board. Support for
our platform has been upstreamed and will release in FreeBSD
10.0.

We have open-sourced all the levels of the design from
processor through system-on-chip to OS. Since the design is at
a higher level than traditional VHDL or Verilog, both hardware
and software are easier to modify which means it is easy to
customise to your application. In addition, components such
as the BERI CPU are designed to be easily re-usable without
modification in projects where smaller soft-cores such as an
Altera NIOS II are insufficient due to addressing or data width
constraints.

We begin with Section II which introduces our hardware
platform. In Section III we describe the differences between
Bluespec SystemVerilog and traditional HDLs such as Ver-
ilog. The architecture of the BERI processor is described in
Section IV. The processor simulation environment is outlined
in Section V and testing in Section VI.

Section VII then describes the rest of the system-on-chip.
Section VIII explains bringup of FreeBSD and the system
software. Finally we draw some conclusions.

Fig. 2. Tablet construction

II. THE BERIPAD TABLET PLATFORM

Our development platform is based on the Terasic DE4
board. The DE4 contains a large Altera Stratix IV 230GX
FPGA with roughly 230K LEs and 17 Mbit of BRAM. We
chose the board due to the large FPGA and the number of
peripherals. The board supports up to 8 GB of DDR2 memory
in two SODIMMs, and a number of high-speed transceivers
which are wired to PCI Express, SATA and high speed module
connectors. It also provides 64 MB of flash memory, a 2 MB
static RAM, a USB controller, four gigabit Ethernet ports and
about 80 pins of GPIO, plus the ability to take two daughter
cards to further expand the platform. In short, most of the I/O
of a modern PC.

We use this board in a number of configurations. We built
the Bluehive[5], an array of 16 DE4s using the PCIe and SATA
ports for high-speed board interconnect. We built a rackmount
server, an array of DE4s to provide BERI with FreeBSD as
a cloud service to external developers through SSH login. We
also built the BERIpad, a portable system which we use for
giving demonstrations at conferences and to visitors.

The BERIpad consists of a DE4 board in a custom laser-
cut acrylic case. To the rear is mounted a Terasic MTL
multitouch screen which provides the primary user interface
to the tablet. On the front is mounted a Terasic HDMI output
board. The SoC design drives the same image to both displays,
which enables giving of presentations directly from the tablet.
The unit is powered by an Energizer 40Wh laptop secondary
battery via a PicoPSU voltage converter. The power supply
arrangement uses off-the-shelf components to avoid issues
with airport security due to safety issues with custom-made
lithium battery packs. If we were constructing a larger volume
of tablets, we would investigate a custom battery geometry and
custom power supply to make the tablet thinner, have a longer
battery life and involve the processor in power management.

The tablet is about 29 cm × 16 cm × 6 cm and weighs
1.6 kg. Battery life is about 1−1 1

2 hours, though we currently

do no power management in our design. One difficulty we
discovered is that the battery uses the presence of an output
cable being plugged in to enable the internal DC-DC converter.
Despite a physical switch disconnecting the FPGA, if the
battery remains plugged into the board it runs down over the
course of a day or two. We hope to fix this with an alternative
battery, but in the meantime simply unplugging the internal
battery cable suffices.

The Terasic multitouch LCD has a resolution of 800×480,
which is matched with an HDMI output of 640×480 for
maximum compatibility with conference projectors. We are
working on a more flexible video system which is able to run
LCD and HDMI at different resolutions, and X11 support.

III. BLUESPEC: LANGUAGE FOR EXTENSIBLE DESIGN

Bluespec SystemVerilog is a hardware description language
developed out of work at Massachusetts Institute of Technol-
ogy [6]. Bluespec features a rich and strict type system which
includes interfaces for correct flow control. A Bluespec design
is structured as a “term rewriting system”, a collection of state
that is updated by a set of rules. While this arrangement is
a common design pattern in other hardware description lan-
guages, limiting the designer to this structure greatly improves
automated analysis of the system allowing more detailed
and relevant compiler warnings and much faster simulation.
Bluespec compiles to Verilog, for synthesis into hardware, and
C, for fast cycle-accurate simulation in software.

In the sections below we will step through a FIFO example
which demonstrates the value of Bluespec syntax and inter-
faces to illustrate some basic benefits of the language for open-
source, easily-extensible hardware.

The left column of Figure 3 is an implementation of a simple
single element FIFO in Bluespec, and the right side is a very
similar FIFO in Verilog. The number of lines in the Bluespec
version is reduced from 36 to 13, not counting white space,
but more importantly the function of the module is much more
clear.

In the Bluespec case it is apparent that the enq Action can
only occur if the full register is not True, and that the action
itself assigns the Packet t data value that is passed in to the
internal fifomem register and full is set to True. In contrast,
in the Verilog case, it is not clear that there is any particular
action to enqueue a packet, but with careful inspection you
will notice that when the writep signal is asserted, fullp is not
set, and rstp is not high, fifomem will be set to the value of
din and fullp will be set to 1.

Having inspected this code, you might mentally associate
din with writep as an input interface but use of din and writep
are not limited to this interface and may be used arbitrarily
in the module. In contrast, Bluespec formalizes the idea of a
transaction, making the writep implicit and the packet input
associated with this interface local to this interface, preventing
accidental misuse.

Furthermore the interface to the Bluespec module is much
more clear than that of the Verilog module. The Bluespec
module exposes three operations, enq, deq, and first. The

Verilog module exposes seven signals which may be set or
read independently, though only certain combinations and
sequences of actions will result in a coherent result. Therefore
use of this module requires a complex understanding of the
meaning of each signal, greatly increasing the barrier to entry
for working with this module.

This complexity problem grows exponentially worse with
large Verilog systems with interoperating modules where each
must be understood in order to modify the code in significant
ways.

Figure 4 gives a similar test bench in each language which
exercises the respective modules. Again it should be noted that
not only is the code much shorter in the Bluespec case, but
it is easier to understand. Crucially, the flow control signals
that might incite incorrect operation are not exposed in the
Bluespec case and so correct operation is default and implicit.
In contrast, the Verilog case exposes all flow control signals
rendering the system fragile as a result.

Both the Bluespec and the Verilog implementations of the
FIFO use a packet t type, however in the Verilog version this
type will be a simple pseudonym for a bit vector of a certain
size but in the Bluespec case this type will be distinguished
from other types of the same width. As a result, an attempt
to enqueue an element that is of another type will fail at
compile time, even if they are of the same size. This allows
the designer to embed his intended use for the FIFO in the
design and prevent unintended use without explicit casts. This
strict typing system also contributes to Bluespec designs being
understandable and extendable without breakage.

In this example we have mentioned the interface system and
strict typing, which both help eliminate errors. The Bluespec
rule structure and the implicit clock and reset signals in
Bluespec eliminate other classes of error. A full description
of the language is available elsewhere, but we consider the
guarded interface structure as the most significant language
feature for assisting the manageability of large scale projects.

We believe that the factors mentioned here are a key
reason why open-source hardware projects have not seen much
success. Successful contribution to an existing system requires
an inordinate level of understanding of the system such that
it is often easier to reimplement a complex system than to
understand an equivalent system built by someone else. We
have found that a code base in Bluespec SystemVerilog is
relatively approachable and extensible and have had many
successful undergraduate, masters, and PhD level projects
significantly extend our Bluespec processor. We hope this
success will continue more broadly with BERI as a universally
available open-source project.

IV. BERI, A PROCESSOR IN BLUESPEC

This section describes the general purpose 64-bit MIPS
core [7] featured in our DE4 tablet. We have named this base
processor BERI (Bluespec Extensible RISC Implementation)
and have packaged it as an open-source project which is
available with the DE4 tablet stack. We will give a tour of the
Bluespec Extensible RISC Implementation (BERI) with the

Bluespec
module mkFIFO(FIFO#(Packet_t));

Reg#(Packet_t) fifomem <- mkReg(0);
Reg#(Bool) full <- mkReg(False);

method Action enq (Packet_t packet)
if (!full);

fifomem <= packet;
full <= True;

endmethod

method Action deq if (full);
full <= False;

endmethod

method Packet_t first if (full);
return fifomem;

endmethod
endmodule

Verilog
module fifo (
input clk,
input rstp,
input packet_t din,
input readp,
input writep,
output packet_t dout,
output reg fullp
);

packet_t fifomem;

always @(posedge clk) begin
if (rstp == 1) begin
dout <= {0:31};

end else begin
dout <= fifomem;

end
end

always @(posedge clk)
if (rstp == 1’b0) begin
if (writep == 1’b1 && fullp == 1’b0) begin

fifomem <= din;
fullp <= 1’b1;

end
end else fifomem={default:0};

always @(posedge clk)
if (rstp == 1’b0) begin
if (readp == 1’b1 && fullp == 1’b1)

fullp <= 1’b0;
end

always @(count) begin
if (count < MAX_COUNT)
fullp <= 1’b0;

else
fullp <= 1’b1;

end

endmodule

Fig. 3. FIFO in Bluespec versus Verilog

premise that the reader is evaluating the design for extension
and use in a project. The Bluespec Extensible RISC Imple-
mentation (BERI) is currently an in-order core with a 6-stage
pipeline which implements the 64-bit MIPS instruction set
used in the classic MIPS R4000 [8]. Some 32-bit compatibility
features are missing and floating point support is experimental.
Achievable clock speed is above 100 MHz on the Altera
Stratix IV and average cycles per instruction is close to 1.2
when booting the FreeBSD operating system. In summary,
the high-level design and performance of BERI is comparable
to the MIPS R4000 design of 1991, though the design tends
toward extensibility and clarity over efficiency in the micro-
architecture.

A. Starting Point: Greg Chadwick’s Multi-threaded User-
mode MIPS64

The BERI project started with an early version of the
MAMBA multi-threaded usermode 64-bit core in Bluespec
developed by Greg Chadwick for use in many-core research
[9], [10]. Chadwick’s core was a standard 5-stage pipeline
with an extra stage for the context FIFO. This core executed 8
independent threads with associated register files using round-
robin scheduling. The BERI processor expands on this imple-

mentation with a register rename scheme for full pipelining of
a single thread, added multiply and divide, added both level 1
and level 2 caches, and added a TLB and all system register
support necessary to boot a general-purpose operating system.
In the sections below, we annotate each component with the
Bluespec module name which implements it to aid in browsing
the Bluespec source code.

B. The BERI Pipeline

The BERI pipeline in its current state is 6 stages long.
Figure 5 gives a detailed high-level overview of its structure.

1) Instruction Fetch submit program counter to memory
system

2) Scheduler/Register Rename find instruction dependen-
cies and prepare for forwarding

3) Decode fully define instruction behaviour
4) Execute perform arithmatic or assignment
5) Memory Access submit any memory operation
6) Writeback potentially commit updates to architectural

state

Bluespec
typedef Bit#(32) Packet_t;
module mkFifoBench();
Reg#(Packet_t) counter <- mkReg(0);
FIFO#(Packet_t) fifo <- mkFIFO;

rule enq;
fifo.enq(counter);
counter <= counter + 1;

endrule

rule deq;
$display(fifo.first);
fifo.deq();

endrule
endmodule

Verilog
module fifoBench (clk, reset);
packet_t counter [0:31];
reg readp;
reg writep;
wire dout;
wire fullp;

fifo myfifo(clk, reset, counter, readp, writep,
dout, fullp);

always @(posedge clk) begin
if (reset) begin
counter <= 0;

else begin
if (!fullp) begin

writep <= 1’b1;
end else

writep <= 1’b0;

if (fullp) begin
readp <= 1’b1;
$display(dout);

end else
readp <= 1’b0;

counter <= counter + 1;
end

end

Fig. 4. FIFO testbench in Bluespec versus Verilog

Instruction
Fetch Scheduler Decode Execute Writeback

Instruction
Cache MMU: TLB Data

Cache

Memory

 System Control Coprocessor

Register File

Memory
Access

Branch Predictor

Level 2 Cache

PC
Instruction

Reg. #s

Instruction

Phys. PC

Virt. PC

Phys. Addr

Virt. Addr.

Phys. PC

Data LineInst. Line

Data Word

Commit

Next PC

Reg. Write
Reg. Reads

Read Line
Read Addr./Write Line

Read Addr./Write Line

Load Value

Connection Colour

Request Response Other

Connection Width

< 16 bits ~32 bits ~64 bits ~256 bits

Fig. 5. MIPS Pipeline with Caches

rule instructionFetch(!theDebug.pause());
// Get the next program counter (and current epoch) from the branch predictor.

PcAndEpoch pce <- branch.getPc(nextId, False);
Address nextPC = pce.pc;
Bool breakpoint <- theDebug.checkPC(nextPC);
// Initialize a default control token to insert in the pipeline.

ControlTokenT ct = defaultControlToken;
ct.epoch = pce.epoch;
ct.id = nextId;
// Set the renamed target register that this instruction will write to.

ct.destRenamed = unpack(pack(nextId)[1:0]);
// Also asign the next PC of the control token.

ct.pc = nextPC;
if (breakpoint) begin
ct.dead = True;
ct.flushPipe = True;

end
// Enq this control token to the toScheduler FIFO to be consumed
// when the instruction is also ready to be consumed.

toScheduler.enq(ct);
nextId <= nextId + 1;
theMem.instructionMemory.reqInstruction(nextPC[63:2], ct.id);

endrule

Fig. 6. Source code for BERI instruction fetch stage

1) Instruction Fetch (included in mkMIPSTop): The instruc-
tion fetch stage is implemented entirely in the mkMIPSTop
module as a single rule. The Bluespec code is reproduced
in Figure 6 as an example. Inspection of Figure 6 will
identify the exercise of four interfaces for this stage of the
pipeline. branch.getPc takes the next program counter and
current epoch from the branch predictor. theDebug.checkPC
verifies that this program counter is not a breakpoint. toSched-
uler.enq is just the interface of a FIFO for storing the Con-
trolTokenT, which is the pipeline register type. Finally, the-
Mem.instructionMemory.reqInstruction initiates a read from
the instruction memory with the program counter. While this
stage is simpler than the other stages, the approachability
of the Bluespec style can be appreciated here. All of these
interfaces other than the debug interface are also noted in
Figure 5.

2) Scheduler/Register Rename (mkScheduler): The sched-
uler (or register rename) stage receives the instruction word
from memory and performs a pre-decode of the instruction
in order to fetch register operands and analyse dependencies.
This stage categorizes instructions enough to determine which
fields represent operand register numbers or destination reg-
ister numbers. Operand register numbers are then submitted
as reads to the two read ports of the register file and the
destination register number is noted in a renamed register
table. Every instruction is assigned one of four entries in
the result table in the execute stage. Since the result of
an instruction will be stored in the table for the next four
instruction executions, the scheduler will direct any of the
next four instructions that take the same register number as
an operand to use the value from the table rather than the
value fetched from the register file. This technique is generally
called register renaming since we are continually changing
the “names” of the four table entries in the execute stage to
useful register numbers in the current working set. In addition
to preparing register forwarding using the rename logic, the

scheduler stage also submits register numbers for reads of both
the register file and the system control processor (CP0), as
noted in Figure 5. Finally, the scheduler stage reports to the
branch predictor the branch type of the instruction based on its
simple pre-decode to aide in predicting the next PC. Because
of the MIPS branch delay slot, there is time to consider this
analysis of each fetched instruction before beginning the fetch
of any potential target.

3) Decode (mkDecode): The Decode stage of the pipeline
consumes the register values read from the register file and
also the instruction from the Scheduler stage and prepares
the operands and ALU operation for the execute stage. The
Decode stage sets every flag necessary for the correct operation
of the pipeline such that there is no need in the rest of the
pipeline to inspect the instruction itself. These flags include
memory operation (Load or Store), memory operation width,
signed or unsigned operation, etc. The decode stage reads from
the register file and prepares the operands for the Execute stage
such that the bits delivered to Execute can be directly fed into
the arithmetic logic with the exception of values that must be
taken from the result table in the Execute stage.

4) Execute (mkExecute): The Execute stage of the pipeline
selects and performs an arithmetic operation as defined by
the flags in the control token prepared by Decode. In the
case of a multiply or divide instruction, an operation is
initiated in the mkMulDiv module as a separate pipeline, a
direct implication of the MIPS specification of multiply and
divide as asynchronous operations. The main Execute logic
is divided in a case statement between memory operations,
branch operations, and normal arithmetic operations. While
these could share the same logic, it was necessary to give the
memory operation a dedicated and simplified add (or subtract)
to reduce the critical path.

5) Memory Access (mkMemAccess): The Memory Access
stage of the pipeline was introduced recently having been
previously included in the Execute stage. The Memory Access

stage initiates any memory operation in the memory system.
If there is no memory operation to be done, the control token
is enqueued to the next stage with no change. A small amount
of buffering in this stage allows arithmetic operations to be
calculated during a data memory stall.

6) Writeback (mkWriteback): The Writeback stage of the
pipeline happens in any one of three rules due to the need to
exercise the memory read interface, the memory write inter-
face, or neither. The Writeback stage consumes any result from
memory as well as an exception report from the system control
processor (CP0) and decides whether an instruction should
commit. The Writeback stage then submits an exception report
to CP0, possibly triggering an exception and flushing the
pipeline. Writeback also reports a successful writeback to the
register file to update architectural state and to the branch
predictor unit which must decide whether the final “next PC”
was that predicted by the unit. Writeback also must report a
successful commit to the memory subsystem for both a read
or a write in order to stop cancelled memory operations from
proceeding. If the instruction does not commit because of a
branch misprediction, the instruction epoch is incremented and
the pipeline is flushed.

C. Caches

The BERI pipeline has 3 caches, an instruction level 1 cache
(mkICache), a data level 1 cache (mkDCache), and a shared
level 2 cache (mkL2Cache). The arrangement of these caches
is noted in the bottom half of Figure 5. All levels of cache
began with one design and so are very similar in structure.
For example, all are direct mapped1 with a 32-byte line size.
The level 1 caches are both 16 KB in size, are write-through,
virtually indexed and physically tagged, and complete in one
cycle. The instruction and data cache lookups begins with the
virtual address while the TLB begins a simultaneous lookup of
the physical address also using the virtual address. In the next
cycle, a rule in the level one caches consumes the physical
address from the TLB (if it was a hit) and compares it with
the result of its tag lookup. If the two match, it continues with
the data it had fetched, either returning it to the main pipeline
in the case of a read or merging it with new write data and
storing back into its memory as well as writing through to the
level 2. The instruction cache uses an 8-byte memory width
internally as a balance between fill time (32-bytes/8-bytes =
4 cycles) and a maximum access width of 4 bytes. The data
cache uses a full 32-byte memory width internally to facilitate
wide writes from custom coprocessors which might want to
take advantage of the naturally wide structure of the FPGA
logic as well as the wide interface to main memory, as the

1All levels of cache are direct mapped because memory is plentiful in
the FPGA but combinational logic is not. Doubling or quadrupling cache
size is nearly free, but adding complex selection logic is costly both in area
and timing. Therefore we were able to increase hit rate more efficiently by
increasing the size of a direct-mapped cache than by increasing associativity.
We tried two way and four way set associativity in the level 2 and two way
in the level one, both with way prediction. Timing was a problem in all cases
and nearly the same hit-rate was achieved by simply quadrupling the size of
the direct mapped cache.

main memory on the Terasic DE4 is DDR2 which runs at
400 MHz, transferring over 256 bits for every cycle of the
BERI processor.

The level 2 cache is 64 KB in size and services the level 1
caches through a request merge module using a full 32-byte
wide interface. The level 2 cache also responds in a single
cycle on a hit, though the merge logic consumes one cycle in
each direction yielding a total delay of 3 cycles for a level 1
miss that hits in the level 2.

D. Multiply and Divide Operations (mkMulDiv)

Multiply and divide operations are asynchronous and are
initiated from the Execute stage of the pipeline. The multiply
pipeline is only 2 stages long after being initiated in Execute.
The divide pipeline processes 2 bits of operand every cycle for
a worst case delay of 32 cycles for a 64 bit operand, though the
pipeline will skip 8 contiguous zeros in the dividend so that
dividing small numbers will not incur the worst case delay.

E. System Control Coprocessor (mkCP0)

The system control processor, or CP0, is integrated tightly
with the pipeline as seen in Figure 5. The simplest function
of CP0 is as a special purpose register file, allowing reads and
writes from the main pipeline. CP0 registers are not forwarded
in the pipeline, though the pipeline will conservatively block
until completion of a CP0 update if it encounters an instruction
which may read a CP0 register. CP0 registers include a CON-
FIG register which reports the features of this implementation
of the processor, as well as a STATUS register with some
writeable configuration fields. CP0 registers also include a
timer register (COUNT) and a time-out register (COMPARE),
the combination of which can be used to implement process
time quanta by the operating system. A set of CP0 registers
also implement TLB probes and updates, and the TLB logi-
cally belongs to CP0.

Exception handling in CP0 is especially complex since TLB
exceptions triggered in CP0 must retain TLB miss information
that is not held in the main pipeline. Thus potential victim
addresses are stored in CP0 for both instruction and data
memory operations. In the Writeback stage, the main pipeline
requests the exception token from CP0, merges any exceptions
with its own and branches to the correct trap handler. After
the exception pipeline flush, the exception program counter,
i.e. the victim address, and the cause information can be read
from CP0 registers (EPC, CAUSE).

F. Translation Look-aside Buffer (mkTLB)

The translation look-aside buffer, or TLB, is instantiated
inside the CP0 module and requests to the TLB pass through
CP0 and are flagged for authorisation level. CP0 also notes
all translated virtual addresses so that they will be available
in the case of a miss exception.

Our translation lookaside buffer structure is unique. Large
TLBs are usually set associative in modern designs, but the
common MIPS spec only defines a fully associative table. The
modern MIPS spec defines both a variable page sized table

(which is fully associative) and a fixed page size table (which
is set associative), however FreeBSD, our target operating
system, did not yet support this arrangement. However we
noticed when debugging FreeBSD TLB operations that the
operating system never used an indexed write above the
WIRED register2 (which was usually 1) without first doing
a probe immediately before. The vast majority of TLB write
operations used the write random instruction which allowed
insertion using an arbitrary algorithm. We found that a TLB
that only used fully associative entries at the bottom but
that had a large direct mapped cache at the top worked
transparently for FreeBSD.

15

TLB Hi Entries
(Virtual Page Numbers)

2
1
0

...

wired

16 fully
associative

entries

Victim
Buffer

16
17

127

...
...128

Direct-
mapped
entries

Block Ram
Registers

TLB Lo Entries
(Physical Page Addresses)

2 pages for each entry
127.0
127.1

17.0
17.1
16.0
16.1

15.0
15.1

2.0
2.1
1.0
1.1
0.0
0.1

...
...

...

One memory for
TLB Lo Entries

Fig. 7. BERI TLB structure

Our current implementation of the TLB has 16 fully asso-
ciative entries and 128 direct mapped entries, as diagrammed
in Figure 7. Any write random operation maps an entry into
the top 128 entries using a simple hash of the lower bits of the
virtual page number. A write indexed operation will only write
to the specified index if it is in the bottom 16 entries, however
a write request to an entry above 16 will simply write to the
hash of the virtual page number, ensuring it will be found
there on a lookup. If this write indexed operation immediately
follows a tlb probe operation and is simply modifying an entry
that was inserted using write random, then there is no anomaly.
In FreeBSD, it seems that this is always the case.

A direct mapped TLB does not work in a simple arrange-
ment because it is possible that a single instruction uses two
virtual pages (for the instruction and data) that map to the same
entry in the TLB. In this case the program ceases to make
progress as it alternately misses the TLB for its instruction
address and its data address. Therefore the entries in the fully
associative set above the wired register (below which random

2The WIRED register specifies the TLB entry below which entries should
not be arbitrarily replaced. The entries below the index in the WIRED register
are “wired” and use of those mapped virtual addresses are guaranteed not to
throw TLB exceptions.

writes should not occur) are treated as a victim buffer for the
128 direct mapped entries. Thus the hardware might move
entries in the table without notifying the operating system.
Since FreeBSD does not maintain a shadow status of the
hardware page table and simply probes the hardware table
before any modification, this does not cause a problem.

The mkTLB module contains only one TLB lookup but
maintains a small cache of TLB entries for each interface, and
the number of interfaces is variable. Currently each interface
caches 4 page entries which are direct-mapped to prevent
affecting the critical path. These entries are cleared on every
TLB write to prevent coherence issues and a TLB cache miss
causes a 3 cycle delay for a full TLB lookup.

G. Branch Prediction (mkBranch)

The branch predictor in BERI is less unusual than the
TLB, but does take advantage of the peculiarity of the MIPS
instruction set. As seen in Figure 5, the branch predictor unit
has three key interfaces. The first is getPc which delivers
a program counter and the associated instruction sequence
epoch to the instruction fetch unit. The second is putTarget
which receives the instruction and some flags from decode.
The putTarget interface makes the actual prediction of the next
program counter and produces two tokens, one to be consumed
by getPc and the other to be consumed by pcWriteback. This
third interface, pcWriteback, receives the canonical program
counter writeback of every instruction and compares it against
the prediciton made by putTarget. If the two do not match,
the pcWriteback interface increments the instruction sequence
epoch which causes the getPc interface to begin issuing
program counters from the correct location and with the next
epoch. All instructions of the previous epoch will be discarded
by the writeback stage.

This branch predictor has been used as an exercise for a
masters’ level course and students were able to modify the
branch predictor to improve hit rates for a software routine.
The clear structure of the Bluespec language allows extensive
modification by designers with only a cursory understanding
of the original design. We hope that many better versions of
the mkBranch unit will be developed for BERI as an open-
source project.

H. Debug Unit (mkDebug)

BERI also includes a debug unit that is able to pause the
pipeline, insert instructions, and trace execution. Commands
are sent to the debug unit over a byte stream interface which
is normally exported as an Avalon streaming interface. Details
of this interface can be found in the open-source project
documentation.

V. SIMULATION INFRASTRUCTURE

The top level module for BERI when built for synthesis in
Altera’s Qsys tool is mkTopAvalon which translates a general
purpose internal memory request and response format into an
Avalon master interface and also includes a bus of peripherals
written in Bluespec. However we have another Bluespec top

Test Class Number of Test Routines Number of Tests
ALU 68 334
Branch 71 276
Cache 4 17
Coprocessor 0 66 312
Floating Point 36 93
Framework 18 77
Fuzz Regressions 10 10
Memory 45 307
TLB 16 50
Total 334 1476

TABLE I
TEST COUNTS

level interface, mkTopSimulation, which passes bus requests
to a library in C through a Bluespec “BDPI” interface. The C
library, called PISM, emulates the Avalon bus by inspecting
a potential address and responding with a boolean indication
of whether it is able to service a request to that address and
then passing the request to the appropriate peripheral. We have
PISM peripherals to emulate the Altera JTAG UART, a touch
screen display, and the main DRAM memory. UNIX devices
can also be presented as peripherals – files as SD card images,
terminals as a console, and so on.

mkTopAvalon

mkTopSimulation

mkMIPSTop

mkTopAXI
(work in progress)

PISM C
peripheral

bus simulator

Altera Qsys
Avalon Bus

Different Top Level
Modules

Identical Processor
Implementation

AXI Bus
(e.g. for Xilinx)

Fig. 8. BERI simulation versus synthesis instantiations

Relegating the differences between the simulated system
and the synthesized system to the top level module ensures
that our simulated design is as identical as possible to the
synthesised design so that discrepancies between the two do
not introduce bugs in hardware which are difficult to reproduce
in simulation. This arrangement is diagrammed in figure 8. We
expect to also produce a mkTopAXI top level module in the
near future for use on Xilinx boards.

VI. TEST SUITE

The BERI open-source project also includes a unit test suite
which currently includes over 1,400 tests spanning from basic
functionality to TLB fills and cache tests. The test and category
counts are reproduced in Table I.

The test suite can be run from the command line before
every commit to ensure that changes to the processor have

not broken functionality in unexpected ways. The test suite
has also been integrated with the Jenkins automated test
framework (Figure 9) so that it is run automatically on every
commit to ensure the operational correctness of the hardware
design at all times. This type of regression suite is common in
open-source software projects but is less known in open-source
hardware due to a lack of common infrastructure. We expect
that the comprehensive test suite that accompanies BERI will
assist its success as an open-source project by allowing con-
tributers to the project to efficently check their own changes
before submission for inclusion in future releases.

VII. SYSTEM-ON-CHIP DESIGN

We have used Bluespec to construct a variety of Avalon
peripherals to build a system-on-chip around BERI. The top-
level design, hiding clocks in the interests of space, can be
seen in Figure 10.

The peripherals are held in a child Qsys file (Figure 11) to
simplify the top level. They consist of a variety of components,
some existing Altera Qsys components, some constructed
entirely in Bluespec and some in Bluespec that instantiates
existing Verilog.

The most complex custom component in our system is
MTL Framebuffer Flash, which manages the flash and SRAM
that share a bus on the DE4, and drives the displays using the
SRAM as video memory. This component provides an Avalon
Stream (not shown) to a Bluespec component that sends colour
data to both the Terasic HDMI extension board and to the
Terasic Multi-touch LCD Module. This framebuffer device is
able to mirror the video streams from the LCD to HDMI to
enable connecting the tablet to a projector.

Other components include the Ethernet MAC, as supplied
by Altera, the Philips USB interface on the DE4 (for which
we are yet to write FreeBSD drivers), the Altera University
Program SD controller (written in VHDL and accessed via an
Avalon interface). We use a variety of UARTs, both Altera’s
JTAG UART for terminal access and for access to the BERI
debug unit, and an NS16550-compatible UART for physical
RS232 access to the DE4 board (since the 16550 register
layout is already supported in FreeBSD).

VIII. PORTING FREEBSD

FreeBSD is a widely used, contemporary, general-purpose,
open-source operating system found in server and workstation
environments, but also as the foundation for a broad range of
mobile, embedded, and appliance products [11]. For example,
you can find FreeBSD in the underlying OS layers of Apple
OS X, Apple iOS, NetApp OnTap/GX, Juniper Junos, and
Sony Playstation 3. As we began our project, FreeBSD already
supported several MIPS processors and emulators, so porting
FreeBSD to BERI was straightforward. It was necessary to
extend FreeBSD in two ways: (1) adding BERI-specific boot
code and device enumeration support; and (2) developing
device drivers for Altera IP cores as well as hard peripherals
found on the Terasic DE4.

Fig. 9. BERI tests are run by Jenkins on every source commit

We have upstreamed the majority of our BERI platform
code to the open-source project, and plan to merge the rest so
that FreeBSD 10.0 fully supports BERI, making it accessible
to a wide audience of potential academic and open-source
consumers. Support for FreeBSD brings access to tens of thou-
sands of off-the-shelf open-source libraries and applications,
including the gcc compiler suite and Apache web server.

A. Boot and configuration

A small built-in ROM in BERI is able to relocate a
FreeBSD kernel out of flash, or, if a DIP switch is set, make
use of a kernel loaded directly into DRAM using JTAG.
After relocation, the boot ROM interprets the kernel’s ELF
header, passing in information on DRAM configuration when
it jumps to the kernel’s start routine. We describe BERI board
configurations using Flat Device Trees (FDT), which are also
used on PowerPC and ARM-based systems [12]. FDT files
describe the bus topology, generally simple for system-on-
chip configurations, including memory addresses and interrupt
information for peripherals available to the operating system.
Figure 13 excerpts the FDT configuration file for the DE4
tablet, including an on-board 1GB DRAM (in the standard
configuration), BERI CPU, BERI programmable interrupt con-
troller (PIC), NS16550-compatible RS232 port, Altera JTAG
UART, Altera University Program SD Card IP Core, on-
board Intel Strata-Flash, Altera triple-speed Ethernet MAC,
and Terasic multitouch display (MTL) (Figure 14).

A typical configuration loads a FreeBSD kernel from the
DE4 on-board flash, and then uses an embedded memory
root file system or SD Card root file system. In tablet
configurations, nios2-terminal can be used to connect to the
Altera JTAG UART to reach the OS console. In rack-mount
configurations, we use the DE4 RS232 serial port connected
to a console server.

B. Device drivers

Our BERI FPGA design exposes Altera soft-cores and
on-board peripheral ICs via a memory-mapped Avalon bus.
FDT notifies the FreeBSD device-driver framework of the
locations of the device mappings and interrupt configurations.
FreeBSD’s BERI PIC driver programs the PIC to map enabled
device interrupt sources to MIPS IRQ lines, suppressing
interrupts from other devices.

We have developed device drivers for three Altera IP cores:
the JTAG UART (altera jtag uart), triple-speed MAC (atse),
and SD Card (altera sdcard), which implement low-level
console/tty, Ethernet interface, and block storage classes. In
addition, we have implemented a generic driver for Avalon-
attached devices (avgen), which allows memory mapping of
arbitrary bus-attached devices without interrupt sources, such
as the DE4 LED block, BERI configuration ROM, and DE4
fan and temperature control block.

Finally, we have developed a device driver for the Tera-
sic multitouch display (terasic mtl), which implements a
memory-mapped pixel buffer, system console interface for
the text frame buffer, and memory-mapped touchscreen input
FIFO. Using this driver, UNIX can present a terminal interface,
but applications can also overlay graphics and accept touch
input.

C. Software platform

FreeBSD provides us with access to the complete open-
source ecosystem of development tools and UNIX applica-
tions. In addition to the FreeBSD base system, which includes
core components such as UNIX command-line tools, DHCP
client, and SSH server, we are able to cross-build tens of
thousands of third-party applications. Cross-building from x86
systems is important due to the limited CPU, memory, and
storage resources of the BERI tablet, but we distribute pre-built
applications in the form of FreeBSD pkgng packages based on

Fig. 10. Top level Qsys project (clocks not shown)

Fig. 11. Qsys peripherals (only Avalon memory-mapped interfaces shown)

the 64-bit MIPS ISA. In the rack-mount environment, BERI
nodes also have access to the Network File System (NFS) to
supplement the on-board SD Card.

We have developed a small set of sample multi-touch
applications for the tablet platform, including a touch drawing
tool and a slide presentation package. Additionally, a UNIX
shell can be used directly from the touchscreen via an on-
screen keyboard app, allowing access to UNIX tools such as
top (Figure 15). Both the operating system and FPGA bitfiles
can be flashed onto the on-board Intel StrataFlash allowing
in-field CPU upgrades.

IX. CONCLUSION

Currently, open-source FPGA design centres around
projects such as OpenCores. OpenCores acts as a repository
for HDL components, and encourages common interfaces
through specifications such as the Wishbone interconnect[13].

However open-source FPGA design has not become com-
monplace for a number of reasons. Traditional VHDL and
Verilog lack support for robust interfaces for data flow between
components. Common bus standards such as AXI, Avalon and
Wishbone help for top-level system-on-chip interconnect, but
this does not suit interconnection of smaller component parts.
Interface design and testing is a time-consuming and error-

Mini Bootloader Run
Test I2C on HDMI chip
Reset HDMI chipSetting clock_scale to 0x00000000000004E2
clock scale = 0x00000000000004E2 - passed
entry: platform_start()
cmd line:
envp:
memsize = 3eeffc00
Cache info:
picache_stride = 4096
picache_loopcount = 4
pdcache_stride = 4096
pdcache_loopcount = 4

cpu0: Unknown cid 0 processor v0.4
MMU: Standard TLB, 40 entries
L1 i-cache: direct-mapped with 512 sets, 32 bytes per

line
L1 d-cache: direct-mapped with 512 sets, 32 bytes per

line
Config1=0xcee07040<COP2>

Physical memory chunk(s):
0x1f95000 - 0x3eefffff, 1022799872 bytes (249707 pages)
Maxmem is 0x3ef00000
KDB: debugger backends: ddb
KDB: current backend: ddb
Copyright (c) 1992-2013 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991,

1992, 1993, 1994
The Regents of the University of California. All

rights reserved.
FreeBSD is a registered trademark of The FreeBSD Foundation

.
FreeBSD 10.0-CURRENT #0 226199: Fri Mar 22 20:15:29 UTC

2013
...

atse0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>
metric 0 mtu 1500

options=80048<VLAN_MTU,POLLING,LINKSTATE>
ether 02:07:ed:94:90:f0
nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL

>
media: Ethernet autoselect (1000baseT <full-duplex

>)
status: active

Wed Jul 17 20:52:17 UTC 2013

FreeBSD/mips (beri1) (ttyj0)

login: root
Jul 17 20:52:26 beri1 login: ROOT LOGIN (root) ON ttyj0
#

Fig. 12. Excerpt from BERI boot log

prone part of hardware design. Lack of type-checking and
compile-time verification adds to this problem.

The lack of language support for robust interfaces means
that typically designers use their own interfaces within and
between sub-modules. This makes them harder to understand
to the outsider, as the interesting functionality is obscured by
the control flow.

A project that is harder to understand is one that requires
more thorough documentation. Not only is such documentation
time-consuming to write, the increased prerequisite under-
standing also raises the barrier of entry to new participants
in an open-source project.

Furthermore, FPGA design already has higher barriers to
entry than open-source software. FPGA boards have a non-
zero cost. Synthesis favours powerful computers and is time

model = "SRI/Cambridge BeriPad (DE4)";
compatible = "sri-cambridge,beripad-de4";
cpus {
cpu@0 {
device-type = "cpu";
compatible = "sri-cambridge,beri";

};
};
soc {
memory {
device_type = "memory";
reg = <0x0 0x40000000>;

};
beripic: beripic@7f804000 {
compatible = "sri-cambridge,beri-pic";
interrupt-controller;
reg = <0x7f804000 0x400 0x7f806000 0x10
0x7f806080 0x10 0x7f806100 0x10>;

}
serial@7f002100 {
compatible = "ns16550";
reg = <0x7f002100 0x20>;

};
serial@7f000000 {
compatible = "altera,jtag_uart-11_0";
reg = <0x7f000000 0x40>;

};
sdcard@7f008000 {
compatible = "altera,sdcard_11_2011";
reg = <0x7f008000 0x400>;

};
flash@74000000 {
partition@20000 {
reg = <0x20000 0xc00000>;
label = "fpga0";

};
partition@1820000 {
reg = <0x1820000 0x027c0000>;
label = "os";

};
};
ethernet@7f007000 {
compatible = "altera,atse";
reg = <0x7f007000 0x400 0x7f007500 0x8
0x7f007520 0x20 0x7f007400 0x8
0x7f007420 0x20>;

};
touchscreen@70400000 {
compatible = "sri-cambridge,mtl";
reg = <0x70400000 0x1000
0x70000000 0x177000 0x70177000 0x2000>;

};
};

Fig. 13. Excerpt from Flat Device Tree (FDT) description of the DE4-based
BERI tablet.

consuming, often requiring hours per compile. Hardware de-
bugging tools lag behind their software equivalents in ease-of-
use and functionality. FPGA tools are also less amenable to
traditional software engineering practices.

Taken together, these issues mean an open-source FPGA
project faces a challenging up-hill battle toward acceptance
and building a productive community.

In this work we have begun to address these issues in a
number of ways. First, we started with a higher level hardware
description language that makes writing correct code easier,
and simplifies the data flow within and between modules. Clear
interfaces make the design of a large component such as the
BERI processor a tractable task and enable easy modification
by others.

Second, the language has a cycle-accurate simulator that is

Fig. 14. BERIpad booting FreeBSD

Fig. 15. Process list and soft keyboard

more efficient than a VHDL or Verilog simulation, including
the ability to boot an OS in simulation on a common PC. We
provide a test suite that is run against the processor after every
version control commit, which means regressions in such a
complex piece of code are found quickly. This makes it easier
for newcomers to extend the processor without fear that they
may break other parts of the design.

We have implemented the processor on a commercial FPGA
board and built a portable platform which means we can
easily demonstrate it to people who do not have access to the
hardware. The system-on-chip also contains peripherals that
are designed using a similar methodology to the processor.
The physical construction and system-on-chip design have also
been open-sourced.

We have ported the open-source FreeBSD operating system
to the platform. A feature-rich OS makes the platform a
much more flexible one, brings a large catalogue of existing
software, and provides a familiar environment for open-source
software development. We are able to offer SSH access to a
board running the BERI processor to those who do not have

access to FPGA hardware, including the ability to upgrade the
CPU remotely.

Open-source hardware still faces many challenges, but we
hope by taking a software engineering approach we can begin
to address them.

DOWNLOAD

Download our work from http://www.beri-cpu.org/

ACKNOWLEDGEMENTS

We would like to thank our colleagues — especially
Jonathan Anderson, Ross Anderson, Gregory Chadwick,
David Chisnall, Nirav Dave, Wojciech Koszek, Ben Lau-
rie, Will Morland, Steven Murdoch, Robert Norton, Peter
Neumann, Philip Paeps, Michael Roe, Colin Rothwell, Ben
Thorner and Philip Withnall.

This work is part of the CTSRD Project that is sponsored
by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL), under contract
FA8750-10-C-0237. The views, opinions, and/or findings con-
tained in this report are those of the authors and should not be
interpreted as representing the official views or policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency or the Department of Defense. Portions of
this work were supported by Google, Inc.

REFERENCES

[1] J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “Netfpga–an open platform for gigabit-rate
network switching and routing,” in Microelectronic Systems Education,
2007. MSE ’07. IEEE International Conference on, 2007, pp. 160–161.

[2] R. Bergamaschi, S. Bhattacharya, R. Wagner, C. Fellenz, M. Muhlada,
F. White, J.-M. Daveau, and W. Lee, “Automating the design of SOCs
using cores,” IEEE Design & Test of Computers, vol. 18, no. 5, pp.
32–45, 2001.

[3] OpenCores website. http://opencores.org/
[4] Xilinx Inc, “AXI reference guide,” 2011.
[5] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos, and A. Mu-

jumdar, “Bluehive - a field-programable custom computing machine for
extreme-scale real-time neural network simulation,” in Proceedings of
FCCM 2012, pp. 133–140.

[6] Bluespec SystemVerilog Version 3.8 Reference Guide, Bluespec, Inc.,
Waltham, MA, November 2004.

[7] R. Watson, P. Neumann, J. Woodruff, J. Anderson, R. Anderson,
N. Dave, B. Laurie, S. Moore, S. Murdoch, P. Paeps, et al., “CHERI:
A Research Platform Deconflating Hardware Virtualization and Protec-
tion,” in Workshop paper, Runtime Environments, Systems, Layering and
Virtualized Environments (RESoLVE 2012), 2012.

[8] S. Mirapuri, M. Woodacre, and N. Vasseghi, “The MIPS R4000 proces-
sor,” IEEE Micro, vol. 12, no. 2, pp. 10–22, 1992.

[9] G. A. Chadwick and S. W. Moore, “Mamba: A scalable communication
centric multi-threaded processor architecture,” in Computer Design
(ICCD), 2012 IEEE 30th International Conference on. IEEE, 2012,
pp. 277–283.

[10] G. A. Chadwick, “Communication centric, multi-core, fine-grained
processor architecture,” University of Cambridge, Computer Laboratory,
Tech. Rep. UCAM-CL-TR-832, Apr. 2013. http://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-832.pdf

[11] M. K. McKusick and G. V. Neville-Neil, The Design and Implementation
of the FreeBSD Operating System. Pearson Education, 2004.

[12] Power.org, “Power.org standard for Embedded Power Architecture Plat-
form Requirements (ePAPR),” 2011.

[13] OpenCores, “WISHBONE system-on-chip (SoC) interconnection archi-
tecture for portable IP cores,” 2010.

