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Abstract. Development of computer aided verification tools has greatly
benefited from SMT technologies; instead of writing an ad-hoc reasoning
engine, designers translate their problem into SMT queries which solvers
can efficiently solve. Translating a problem into effective SMT queries,
however, is itself a tedious, error-prone, and non-trivial task. This paper
introduces Smten, a tool for automatically translating high-level sym-
bolic computations into SMT queries. We demonstrate the use of Smten
in the development of an SMT-based string constraint solver.

1 Introduction

As Satisfiability Modulo Theories (SMT) solvers mature, their use continues to
grow across many domains, including model checking, program synthesis, au-
tomated theorem proving, automatic test generation, and software verification.
A primary reason for the popularity of SMT is it removes the need for ad-hoc
reasoning engines in each application in favor of a simpler translation to a well
understood domain with high-performance solvers.

Translating a problem into effective SMT queries, however, is itself a tedious,
error-prone, and non-trivial task required for each new SMT-based tool. To bet-
ter understand the effort involved in translating a problem into SMT queries, we
will discuss issues that arise in the translation of Hampi [1], a string constraint
solver originally implemented using the STP [2] SMT solver.

The primary form of string constraint supported by the Hampi solver is
regular expression match. Figure 1 presents a high-level description in a Haskell-
like pseudo-code of what it means to perform regular expression matches in
Hampi. This description is polymorphic in the character type. At a high level,
the goal is to compute the match function symbolically, given a regular expression
and symbolic string, to obtain a boolean formula representing membership of the
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data RegEx = Epsilon | Empty | Atom Char | Range Char Char

| Star RegEx | Concat RegEx RegEx | Or RegEx RegEx

match :: (SChar c) ⇒ RegEx → [c] → Bool

match Epsilon str = null str

match Empty _ = False

match (Atom x) [c] = toSChar x == c

match (Range lo hi) [c] = toSChar lo ≤ c && c ≤ toSChar hi

match r@(Star x) str = null str | | any (match2 x r) (splits [1..length str] str)

match (Concat a b) str = any (match2 a b) (splits [0..length str] str)

match (Or a b) str = match a str | | match b str

match2 a b (sa, sb) = match a sa && match b sb

splits ns x = map (λn → splitAt n x) ns

Fig. 1. High-level regular expression match

string in the language of the regular expression. This boolean formula is used in
the SMT query.

The translation of regular expression match into a formula is complicated
by the fact that the STP SMT solver does not support strings or characters.
The symbolic string must first be translated into something understood by the
SMT solver, e.g., as a collection of free bit-vectors. High-level string operations
must also be translated to SMT-understandable operations. Some operations,
such as comparing two characters, translate naturally to bit-vector comparison
in the SMT formula. Others, like string length, depend entirely on how strings
are represented in the SMT query. Choosing how to represent high-level data
types and operations in a lower-level SMT formula is often tedious.

In practice, directly translating high-level data types and operations into
SMT formulas and querying the solver is not necessarily efficient. For example,
if we know the length of a substring being matched against part of a regular
expression, we can restrict the number of alternatives considered, drastically
reducing the SMT query size and consequently the solver runtime. Similar im-
provements can be achieved by exploiting the knowledge of known character
values in the string during the translation. Adding special code to exploit these
cases is non-trivial, and it is not always obvious when it will lead to a worthwhile
improvement in the translation process.

We have implemented Smten, a tool for automatically translating high-level
symbolic computations into efficient SMT queries. Smten minimizes the manual
effort of implementing and optimizing ad-hoc translations into SMT queries,
leading to simpler, more readable code, and increasing developer productivity.

We demonstrate Smten via a new implementation of the Hampi string con-
straint solver. Smten allowed us to easily identify and implement optimizations in
the SMT query generation, resulting in performance comparable to the original
implementation in 5% of the code size.



data Symbolic a

instance Monad Symbolic

assert :: Bool → Symbolic ()

runSymbolic :: Symbolic a → IO (Maybe a)

class Free a where

free :: Symbolic a

instance Free Bool

instance Free Integer

instance Free (Bit #n)

Fig. 2. The Smten Symbolic monad

Related Work

The value of augmenting SMT with general-purpose programming abstractions
is well recognized [3–5] and can be found in multiple guises in the literature. SMT
solvers, e.g., Z3 [6] and Yices [7] add theories to improve the solver runtime, e.g.,
record types and lambda terms; features which also raise the level of abstraction.
For practical reasons, however, SMT developers have not devoted significant
effort to abstractions aimed solely at improving the user’s representation task,
e.g., modules, parametric and ad-hoc polymorphism, and metaprogramming.

In the context of using SMT solvers, multiple Domain Specific Embedded
Languages (DSEL) [8] have been developed to hide the complexity of interact-
ing with the SMT solver and provide a straightforward metaprogramming layer
for SMT, e.g., Haskell embeddings of Yices [9] and Z3 [10]. These allow a pro-
grammer to describe complicated SMT queries metaprogramatically using the
host language. However, as these tend to focus on providing a syntactic bridge
to the host language, they have issues naturally exposing SMT features which
overlap with the host language abstractions, e.g., user-defined data types.

Smten combines the metaprogramming of DSELs with the raised abstrac-
tions of SMT solvers to provide a more coherent user experience, allowing rich
interactions between the two approaches.

2 Smten: Language and Implementation

The Smten input language is used to describe high-level symbolic computa-
tions for translation into SMT queries. Smten’s input language is a strongly
typed, purely functional language borrowing its syntax and many features from
Haskell [11], including support for algebraic data types, pattern matching, poly-
morphism, and type classes. We chose to base the Smten language on Haskell
because of its ability to concisely describe side-effect free computations. For
a complete description of type classes, pattern matching, functions, and other
Smten language features, we refer interested readers to the Haskell reference [11].
The remainder of this section is devoted to the Symbolic monad, the mechanism
in Smten for managing symbolic computations.

Figure 2 summarizes the Symbolic monad in Smten. Computations in the
Symbolic monad take place in the context of free variables and assertions. The
primitives for using the Symbolic monad are described as follows:



free introduces a new free variable into the Symbolic context and returns an
expression representing it. The expression returned can be used as a nor-
mal concrete expression in the Smten language. Smten provides primitive
instances of free for types supported directly by the SMT solver and can
automatically derive sensible, user-overloadable, instances of free for any
bounded algebraic data types. Currently Smten provides primitive support
for booleans, integers, and bit-vectors.

assert introduces a boolean assertion into the Symbolic context.
runSymbolic queries the solver to determine whether there exists an assignment

to the free variables in the given symbolic object satisfying all assertions. If
there is such an assignment, runSymbolic returns the value of its argument
under that assignment, otherwise it returns Nothing.

Smten also provides primitives to enable incremental queries supported by many
SMT solvers. These primitives are not discussed in this paper.

The high-level pseudocode for matching shown in Fig. 1 is valid Smten code.
Given match, the Symbolic monad can be used to easily describe an SMT-based
tool which accepts a length i and regular expression as input, and uses an SMT
solver to find a concrete string of length i matching the regular expression:

main :: IO ()

main = do

(len, regex) ← parseArgs

result ← runSymbolic (qmatch len regex)

case result of

Just v → putStrLn v

Nothing → putStrLn "no solution"

qmatch :: Integer → RegEx

→ Symbolic String

qmatch len regex = do

str ← sequence (replicate len free)

assert (match regex str)

return str

Note that the usage of the match function is the same whether the string ar-
gument is symbolic or concrete. Smten evaluates concrete inputs directly and
generates SMT expressions for symbolic inputs.

The Smten tool compiles high-level descriptions of symbolic computations
to Haskell using standard compilation techniques. Case expressions and primi-
tive operations in the kernel language recognize concrete arguments and perform
concrete evaluation wherever possible. This concrete evaluation removes objects
with no primitive SMT support, such as lists and complex data structures, from
the generated SMT query. Smten explicitly preserves dynamic sharing of expres-
sions in the generated SMT queries.

As Smten generates Haskell, one can easily mix Haskell and Smten code, and,
via Haskell’s foreign function interface, other languages, e.g., C or Java.

3 Implementing Hampi with Smten

Hampi is a string constraint solver whose constraints express membership of
strings in both regular languages and fixed-size context-free languages. A Hampi
input consists of regular expression and context free grammar (CFGs) defini-
tions, bounded-size string variables, and predicates on these strings referencing
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Fig. 3. Shampi source organization
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the regular expressions and grammars. The output from Hampi is a string which
satisfies the constraints or a report that the constraints are unsatisfiable. The
Hampi tool has already been applied successfully to testing and analysis of real
programs, most notably in static and dynamic analyses for SQL injections in web
applications and automated bug finding in C programs using systematic testing.
The original implementation of Hampi was developed in about 20K lines of Java
and uses the STP [2] SMT solver.

Shampi is our implementation of the Hampi tool developed using Smten3.
Figure 3 shows the organization of the source code for Shampi. We used the
Happy parser generator to implement the Hampi input parser. Much of the tool
we left in Haskell, including the rest of the parser and fix-sizing of CFGs. The def-
inition of RegEx is shared by both Haskell and Smten code. The match algorithm
is implemented entirely in the Smten language. In total, our implementation of
Shampi has a code base of 1030 lines.

Initially we used the näıve match algorithm from Fig. 1 for Shampi. To
improve performance, we simplified CFGs by restricting them to match fixed-
length strings. We further improved performance by caching boolean sub-match
results in our match implementation. These optimizations, once understood,
were implemented in Smten in a modest number of lines and in a matter of hours;
replicating the same optimizations without Smten would have taken significantly
more code and designer effort.

Figure 4 shows the performance of our implementation compared to the origi-
nal implementation of Hampi on all tests from the Hampi distribution. For both
Shampi and Hampi, we took the best of 10 runs. Shampi was compiled with
GHC-7.4.1 [12] and uses STP for solving SMT queries. We ran revision 46 of
a single Hampi server instance for all runs of all tests on Hampi to amortize
startup cost. Even so, Shampi outperforms Hampi on most tests, and is within
a factor of 8 in the worst case. Smten also allowed us to easily experiment with
using other solvers and representations for symbolic characters. Our best vari-

3 Smten & Shampi source is at http://people.csail.mit.edu/ruhler/shampi.tar.gz



ant represented characters as integers and called the Yices-2.1.0 [13] solver; it
slightly improves runtime overall and reduces the worst case overhead to a factor
of 4.

4 Conclusion

SMT technologies greatly benefit developers, allowing them to share a small
set of high-performance solvers rather than develop their own ad-hoc reason-
ing engine. Smten further extends this sharing from actual computations to the
translation of problems into SMT queries. Smten allows developers to leverage
existing effort and expertise in the difficult task of translating problems to effec-
tive SMT queries.

Our Shampi example clearly illustrates the value of Smten; Shampi closely
matches the performance of the Hampi tool, while being only 5% of the code.

We believe Smten has great potential in further improving SMT-based tool
construction. In the future, we plan to explore naturally describing counter-
example guided queries and extend the portfolio approach of SMT solving across
multiple sets of theories and solvers.
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