
Smten: Automatic Translation of High-level
Symbolic Computations into SMT Queries

Motivation: SMT-Based Tools
Leverage Satisfiability Modulo Theories (SMT) solvers for
computer aided verification tasks

Uses include:
model checking
program synthesis
automated theorem proving

automatic test generation
software verification

translate

translate

SMTorchestrate

SMT-Based Tool

input
output

problem domain SMT domain

Smten: A Meta-Tool
For developing SMT-based tools

Developer directly expresses high-level translation concerns

The Smten Language

High-level, purely functional

Provides a primitive API (based on monads) for describing
symbolic computations

Case Study: Hampi
An existing SMT-based tool for solving string constraints

Smten automatically generates optimized translation

Leads to flexible, high performance SMT-based tools with
greatly reduced developer effort

In our case study, Smten reduced lines of code by a factor of 20
while achieving performance comparable to hand crafted
translation

Challenge: The Translation to SMT

Implementing translation is tedious and error-prone

Example: Translating String Constraints

var v : 4;
val v' := concat("f", v);
assert v' contains "foo";
assert v' contains "odd";
assert v' not contains "weird";

Variables: v1, v2, v3, v4 of type Bit #8

Implemented in Java, using STP SMT solver

SHampi
A re-implementation of the Hampi tool using Smten

We explored 3 SMT solvers and 2 representations for characters

Acknowledgments

This work was sponsored by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL), under contract
FA8750-10-C-0237 and supported by National Science Foundation under Grant
No. CCF-1217498.

Richard Uhler1, Nirav Dave2

1 Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA, ruhler@csail.mit.edu
2 SRI International, Computer Science Laboratory, Menlo Park, CA, USA, ndave@csl.sri.com

Unified language for orchestration and symbolic computation

Hampi SHampi

Bit
Int Bit Int Bit

Bit

Yices2 Yices1

STP

High Level Problem:

Generated SMT Formula:

 ((102 = 102 ∧ v1 = 111 ∧ v2 = 111)
 ∨ (v1 = 102 ∧ v2= 111 ∧ v3 = 111)
 ∨ (v2 = 102 ∧ v3 = 111 ∧ v4 = 111))
 ∧ ((102 = 111 ∧ v1 = 100 ∧ v2 = 100)

 ∨ (v1 = 111 ∧ v2 = 100 ∧ v3 = 100)
 ∨ (v2 = 111 ∧ v3 = 100 ∧ v4 = 100))

 ∧ (¬ (102 = 119 ∧ v1 = 105 ∧ v2 = 101 ∧ v3 = 114 ∧ v4 = 100))

Formula:

Result: SAT with v1 = 111, v2 = 111, v3 = 100, v4 = 100

How to represent

References
Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi: a solver for string constraints. In:
Proceedings of the 18th international symposium on Software testing and analysis. ISSTA '09, New York,
NY, ACM (2009) 105-116

Uhler, R., Dave, N.: Smten: Automatic Translation of High-level Symbolic Computation into SMT Queries.
In: Proceedings of 25th International Conference on Computer Aided Verification. CAV '13, Saint
Petersburg, Russia. (2013)

main = do
 result <- runSymbolic STP $ do
 v <- sequence (replicate 4 (free :: Symbolic (Bit #8)))
 let v' = fromStr "f" ++ v
 assert (contains v' (fromStr "foo"))
 assert (contains v' (fromStr "odd"))
 assert (not (contains v' (fromStr "weird"))
 return v'
 case result of
 Just x -> putStr $ "SAT: " ++ show (toStr v')
 Nothing -> putStr $ "UNSAT"

High-level Problem in Smten:

The views, opinions, and/or findings contained in this report are those of the authors and should not be
interpreted as representing the official views or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of Defense

Optimized translation is crucial to a high-performance SMT-
based tool:

Generating large formulas is costly
Transmitting large formulas to an SMT solver is costly

Syntax and features borrowed heavily from Haskell

Algebraic data types pattern matching
polymorphism type classes
general purpose input/output

Easily expressed high level optimizations used in Hampi:
Fixed sizing of CFGs
Caching of submatch results

Has been successfully applied to testing and analysis of
real programs:

Analyses for SQL injections in web applications
Automated bug finding in C programs

strings?
chars?

Represent char as bit vector

Use naming variable naming convention

Map char equality to
bitvector equality

Should optimize away
in translation!

Specify SMT solver
Char representation

Corresponds to v' = "foodd"

Runtime Lines of Source

se
co

n
d

s

10

20

Translation concerns:

What SMT solver should be used?
How should high-level structures be represented in SMT?

High-level concerns in translation:

How should problem be decomposed into queries?

20K .java

1K .smtn

lin
e
s

10K

20K

Hampi SHampi

