
CTSRD Peter G. Neumann, Robert N. M. Watson, and Simon W. Moore
Jonathan Anderson, Ross Anderson, David Chisnall, Nirav Dave, Brooks Davis, Rance DeLong, Khilan Gudka, Steven Hand, Asif Khan, Myron King, Ben Laurie, Patrick Lincoln,
Anil Madhavapeddy, Ilias Marinos, Andrew W. Moore, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Robert Norton, Philip Paeps, Michael Roe, John Rushby,
Hassen Saidi, Muhammad Shahbaz, Stacey Son, Richard Uhler, Philip Withnall, Jonathan Woodruff, Bjoern A. Zeeb

Approved for public release. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/
presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

Dr Peter G.
Neumann

Dr Nirav
Dave

Dr Robert N. M.
Watson

Dr Michael
Roe

Dr Hassen
Saidi

Mr Jonathan
Woodruff

Mr Stacey
Son

Members of the CTSRD team and its external oversight group at our May 2011 review meeting in Cambridge, UK

Joe Stoy (Bluespec), Jonathan Woodruff (Cambridge), Ben Laurie (Google), Ross Anderson (Cambridge),
Virgil Gligor (CMU), Philip Paeps (Cambridge), Li Gong (Mozilla), Peter Neumann (SRI)

Simon Cooper, Michael Roe (Cambridge), Robert Watson (Cambridge), Howie Shrobe (DARPA),
Steven Murdoch (Cambridge), Sam Weber (NSF), Jonathan Anderson (Cambridge), Simon Moore (Cambridge)

Anil Madhavapeddy (Cambridge), Dan Adams (DARPA), Rance DeLong (LynuxWorks),
Jeremy Epstein (SRI), Hassen Saidi (SRI)

Mr Brooks
Davis

Dr David
Chisnall

Dr Khilan
Gudka

Many Cambridge members of the CTSRD team meeting for an August 2012 project photo in Cambridge, UK

Jonathan Woodruff, Richard Clayton, Jonathon Anderson, Michael Roe, Ross Anderson, David Chisnall, Robert Watson

Khilan Gudka, Robert Norton, Simon Moore

Dr Simon W.
Moore

Dr Andrew W.
Moore

Mr Rance
DeLong

Mr Ilias
Marinos

Dr Prashanth
Mundkur

Capability-enabled Clang and LLVM
We have extended the Clang/LLVM compiler suite to generate CHERI ISA
instructions based on new C-language annotations and Internal Representation (IR)
intrinsics. We add a __capability qualifier for pointers, causing CHERI instructions
to be generated, inferring bounds checks and permissions from type information
such as arguments to allocation functions and const. These are then dynamically
enforced. MIPS and CHERI-aware functions may be interleaved seamlessly allowing
a gradual migration. Memory capabilities form the type-safety foundation for shared
memory between protection domains.

The CHERI-enabled C compiler will automatically set size information for
capabilities constructed from dynamic and static allocations and allow automatic
dynamic range checking.

We provide a set of builtin functions for manipulating capabilities directly in C and
enforce properties at run time. This example inspects the length and passes that as
an argument, and has a quick-exit path if handed an invalid capability.

CTSRD is developing a principled, formally-supported, robust, programmer-
friendly, high-performance and incrementally adoptable hardware/software platform
designed for efficient implementation of the principle of least privilege. Hardware
and software security structures and design principles are reinforced by:

• Capability Hardware Enhanced RISC Instructions (CHERI)
• Security Oriented Analysis of Application Programs (SOAAP)
• Smten formal verification suite for Bluespec HDL
• Temporally Enforced Security Logic Assertions (TESLA)

CTSRD adopts a hybrid approach, able to run existing C-language operating
systems and application software while supporting gradual adoption of its novel
protection features for critical Trusted Computing Bases (TCBs) and high-risk
components. CTSRD allows programmers to wipe the slate clean incrementally.

CHERI tablet and rack-mount BlueHive array, based on Terasic's DE4 FPGA board. CHERI CPUs support
fine-grained compartmentalization, mitigating broad classes of known and unknown vulnerabilities.

Capability Hardware Enhanced RISC Instructions (CHERI)
CHERI provides a fine-grained protection model within address spaces,
complementing existing virtual-memory based process models by providing efficient
and more programmable support for application compartmentalization:

• Uses a reduced instruction set computer (RISC) approach, providing tools for
compiler and operating system writers while minimizing hardware complexity.

• Targets low-level software TCBs: OS kernels, language runtimes and web
browsers, as well as high-risk data processing such as video decoding.

• Allows simultaneous implementation of different security models, reflecting
diverse OSs, programming languages, and application requirements.

• Implements a hybrid capability model supporting current software side-by-side
with components employing fine-grained compartmentalization.

We have developed two 64-bit CHERI prototypes, synthesizable for Terasic DE-4
and NetFPGA 10G platforms. Our CheriCloud facility allows remote access to
CHERI systems able to run both conventional and adapted software. CheriCloud
will be available to early adopters in the DARPA CRASH and MRC communities.

Compartmentalized "fetch" programConventional "fetch" program

Kernel

main
loop

vulnerable
HTTP fetch

logic

Kernel

Conventional
UNIX process

Capability mode process

main
loop

vulnerable
HTTP fetch

logic

Capsicum and the application compartmentalization motivation
Programmers are turning to application compartmentalization to mitigate inevitable
vulnerabilities: software is decomposed into sandboxed components, each with only
the rights it requires to function. This approach employs the principle of least
privilege: as granularity increases, rights delegated to individual sandboxes decrease.
As vulnerabilities are exploited, only the rights of the affected component are leaked,
forcing attackers to exploit many more vulnerabilities to accomplish the same goals.

The Capsicum hybrid capability model developed by Cambridge
and Google blends contemporary OS design with capability
system security, addressing semantic mismatches between OS
features and application compartmentalization. Rights are
delegated using capabilities, unforgeable tokens of authority.
Capability-mode processes have access only to explicitly
delegated rights as the use of OS global namespaces is denied.

However, compartmentalization scalability – utilization of increasing numbers of
sandboxes – is constrained by performance and programmability limitations of
current hardware and software. Today's CPU instruction set architectures (ISAs)
reflect a 1990s design consensus conflating virtualization and protection, limiting
protection scalability. Compartmentalizing applications using IPC-linked processes
also introduces distributed systems programming problems for local applications.

Current systems are exposed to greater threats, demanding dramatically increased
use of compartmentalization, placing strain on protection and programming models
designed for less risky workloads. CTSRD is developing clean-slate technologies to
support large-scale deployment of compartmentalization for the first time. http://www.cl.cam.ac.uk/research/security/ctsrd/soaap.html http://www.cl.cam.ac.uk/research/security/ctsrd/tesla.htmlhttp://www.cl.cam.ac.uk/research/security/ctsrd/cheri.html

Call malloc()
ld $25, %call16(malloc)($18)
jalr $25
Load the address of fillArray
ld $25, %call16(fillArray)($18)
Set the length of the capability
cincbase $c1, $c0, $2
Call fillArray
jalr $25
Set capability length (in branch-delay slot)
csetlen $c1, $c1, $16
Load the value (causing capability violation trap)
clw $16, $1, 0($c1)

Get the tag bit
CGetTag $1, $c1
andi $1, $1, 1
If it's zero, skip to the return
beq $1, $zero, $BB1_2
nop
Clear the write permission
ori $2, $zero, 65495
candperm $c1, $c1, $2
Load the address of the fillArray() function
ld $25, %call16(fillArray)($1)
Get the capability length for the second argument
cgetlen $2, $c1
Call fillArray
jalr $25

Bounds checking

Capability tagging and permissions

openssl-api.c:211#0

state 0
(⋆)

state 1
(⋆)

main(⋆,⋆)
(Entry)
«init»

state 2
(cert)

X509_STORE_CTX_init(⋆,⋆,cert,⋆) == TSEQUENCE

state 3
(cert)

X509_verify_cert(⋆) == TSEQUENCE

state 4
(cert)

NOW

state 5
(cert)

main(⋆,⋆) == ⋆
«cleanup»

match "a.c:120#0", x, y

TEAL compiler

LLVMTESLA "optimiser"Clang

TESLA analyser
C

Manifest
(TESLA IR)

Translate

Codegen object
filesCompile Instrument

TEAL

Extract

void
use_cert(X509 *cert)
{
#ifdef TESLA

TESLA_WITHIN(main, previously(
X509_STORE_CTX_init(ANY(ptr), ANY(ptr), cert, ANY(ptr)) == 1,
X509_verify_cert(ANY(ptr)) == 1

));
#endif

/* use the certificate ... */
}

automaton {
 identifier {
 location {
 filename: "openssl-api.c"
 line: 188
 counter: 0
 }
 }
 context: ThreadLocal
 expression {
 type: SEQUENCE
 sequence {
 expression {
 type: FUNCTION
 function {
 function {
 name: "X509_STORE_CTX_init"
 }
 direction: Exit
 context: Callee
 [...]
 argument {
 type: Variable
 index: 0
 name: "cert"
 }
 [...]
 expectedReturnValue {
 type: Constant
 value: 1
 }

Temporally Enhanced Security Logic Assertions (TESLA)
TESLA allows programmers to describe temporal properties of security-critical
software and validate them at runtime.

Programmers describe these properties with inline assertions or explicit finite-state
automata. Both forms of TESLA specification are written in C, referencing names
from surrounding scopes and exploiting the compiler's type checker. Both are
converted to a TESLA intermediate representation (IR), allowing other languages to
target the TESLA backend as well.

$ diff openssl-api.ll openssl-api.instr.ll
 ; Function Attrs: nounwind ssp uwtable
 define i32 @main(i32 %argc, i8** %argv) #0 {
 entry:
+ call void @__tesla_instrumentation_callee_enter_main(i32 %argc, i8** %argv)
 %retval = alloca i32, align 4
 %argc.addr = alloca i32, align 4
 %argv.addr = alloca i8**, align 8
@@ -147,6 +168,7 @@

 return: ; preds = %if.end16, %if.then
 %20 = load i32* %retval, !dbg !649
+ call void @__tesla_instrumentation_callee_return_main(i32 %argc, i8** %argv, i32 %20)
 ret i32 %20, !dbg !649
 }

@@ -386,7 +408,9 @@
 %cert.addr = alloca %struct.x509_st*, align 8
 store %struct.x509_st* %cert, %struct.x509_st** %cert.addr, align 8
 call void @llvm.dbg.declare(metadata !{%struct.x509_st** %cert.addr}, metadata !780), !dbg !781
- call void (i8*, i32, i32, %struct.__tesla_locality*, ...)* @__tesla_inline_assertion(i8* getelementptr
+ %intrumentation_cert = load %struct.x509_st** %cert.addr, !dbg !782
+ %0 = ptrtoint %struct.x509_st* %intrumentation_cert to i64, !dbg !782
+ call void @__tesla_instrumentation_assertion_reached_0(i64 %0), !dbg !782
 ret void, !dbg !783
 }

In this example, TESLA observes the `main()` entry event, so it creates an automaton
instance and moves it from state 0 to state 1. However, it does not observe the
`X509_STORE_CTX_init() == 1` event (this is the cause of the verification flaw), so
when the `NOW` event occurs, TESLA cannot find an automaton instance named
(cert=0x7fda614147c0,⋆,⋆,⋆). The certificate has not been verified!

TESLA failure:
In automaton 'openssl-api.c:211#0':
automaton 0 {

state 0: --(main(X,X): Entry)-->(1 <<init>>)
state 1: --(X509_STORE_CTX_init(X,X,cert,X) == 1)-->(2)
state 2: --(X509_verify_cert(X) == 1)-->(3)
state 3: --(NOW)-->(4)
state 4: --(main(X,X) == X)-->(5 <<cleanup>>)
state 5:

}
openssl-api: No instance matched key '0x1 [7fda614147c0 X X X]' for transition(s) [(3:0x1 -> 4)]

In the example below, the programmer asserts that the X.509 certificate passed to
the use_cert function has been properly verified. In fact, however, the certificate
verification code suffers from the vulnerability in CVE-2008-5077: an OpenSSL
error code has been misinterpreted as success.

TESLA instruments the program as expressed in LLVM IR.
Any language that targets LLVM can be instrumented.
TESLA generates code to convert program events like
function entry/return or structure field assignment into
symbols that are consumed by TESLA automata.

Security Oriented Analysis of Application Programs (SOAAP)
Experience with Capsicum shows that
adapting programs for compartmentalization
is difficult, leading to problems with
correctness, performance, complexity, and
critically, security. SOAAP is a set of
semi-automated techniques to assist
programmers with compartmentalization.

Compartmentalization hypotheses are
explored through source-code annotations
describing sandboxing strategy (e.g.,
sandbox creation, rights delegation, and
RPC forwarding). Security goals and
properties (such as information flow
constraints and past vulnerabilities) as well
as acceptable performance overhead can
also be labeled in program source code.

SOAAP uses static and dynamic analysis to
engage developers in interactive dialogue,
identifying potential correctness bugs (e.g.,
data inconsistencies), security breaches
(e.g., information leaks), expected performance and the impact of software supply-
chain trojans. SOAAP builds on Clang and LLVM.

Data Consistency

Past vulnerabilities

Performance

$./jpg_decode mypic.jpg
*** Sandboxing overhead 69.998658% (Threshold: 12%)

SOAAP can find unintended accesses
and missing data synchronisation.

SOAAP can evaluate effectiveness in
mitigating past vulnerabilities.

Confidentiality

$ make soaap
*** Sandbox "session" accessed data classified "secret"
*** but does not have necessary clearance to do so.
+++ Line 100 of file session.c

*** Persistent sandbox "session" contains private data
*** that may leak when the sandbox is reused. Consider
*** using an ephemeral sandbox instead or scrub the memory
*** region before control returns.
+++ Line 27 of file session.c

SOAAP can detect data leaking into and
out of sandboxes.

$ make soaap
*** Sandboxed method "parse" has a past-vulnerability
*** annotation for "CVE-2005-ABC". Another vulnerability
*** here would leak the following:
+++ Read access to file descriptor "ifd"

*** Method "not_sandboxed" had past vulnerability
*** "CVE-2005-DEF" but is not sandboxed. Another
*** vulnerability here could leak ambient authority
*** including full network and file system access.

SOAAP can simulate expected
performance and evaluate overhead.

$ make soaap
*** Write to shared global variable "some_flag" in method
*** "main" will not be seen by sandbox "compress".
*** Synchronization is needed to propagate this update to
*** the sandbox.
+++ Line 23 of file compress.c

*** Sandboxed method "gz_compress" read global variable
*** "some_other_flag" but it is not allowed to. If the
*** access is intended, the variable needs to be annotated
*** with __soaaap_read_var.
+++ Line 29 of file compress.c

1 __soaap_sandbox_ephemeral("decoder")
2 __soaap_sandbox_overhead(12)
3 int jpg_decode(char* buf,
 __soaap_data_in int len) {
 ...
25 }

1 __soaap_classify("secret") char* server_key;
2
3 void main() {
 ...
20 while (...) {
21 accept_connection();
22 }
23 }
24
25 __soaap_sandbox_persistent("session")
26 void accept_connection() {
27 __soaap_private char session_key[1024];
28 compute_session_key(session_key, server_key);
29 }

1 __soaap_sandbox_ephemeral("parser")
2 void parse(__soaap_read_fd int ifd, DOMTree* t) {
3 …
4 if (...) {
5 __soaap_vuln_pt("CVE-2005-ABC");
 ...
10 }
 ...
13 }
14
15 __soaap_vuln_fn("CVE-2005-DEF")
16 void not_sandboxed() {
17 ...
18 }

1 __soaap_var_read("compress") int some_flag = 0;
2 int some_other_flag = 1;
3
4 void main() {
5 __soaap_create_sandbox("compress")
 ...
23 some_flag = get_option_from_cmd_line();
24 gz_compress(in, out);
25 }
26
27 __soaap_sandbox_persistent("compress")
28 void gz_compress(int ifd, int ofd) {
29 if (some_flag && some_other_flag) {
30 ...
31 }
32 }

Apache

FreeBSD

Hypervisor
Xen/MIPS?

BERI

clang/LLVM, BSD ELF tools

Reference applications

Reference compiler/toolchain

Reference operating system

Reference hypervisor

Hardware research stack

X.org ChromiumPostgres

C simulation FPGA synthesis
tPad / DE4 / NetFPGA10G

Hardware simulation/
implementation substrates ...

...

// The compiler automatically inserts the bounds limits
__capability int *buffer =
 (__capability int*)malloc(size);

// Size can be computed from the capability here, or
// made explicit so the code can be compiled on a
// non-capability-aware architecture
fillArray(buffer, size);

// This overflows the bounds and so will trap at run time
int retVal = buffer[size];

// If this isn't a valid capability, do nothing
if (!__builtin_cheri_get_cap_tag(array)) return;

// const is enforced with capability protections
__capability const int *x = array;

// This will abort at run time:
fillArray((__capability int*)x,
__builtin_cheri_get_cap_length(x));

