
Declarative, Temporal, and Practical Programming with Capabilities

William R. Harris∗, Somesh Jha∗, Thomas Reps∗†, Jonathan Anderson‡, and Robert N. M. Watson‡
∗{ wrharris, jha, reps }@cs.wisc.edu; University of Wisconsin-Madison, Madison, WI, USA

†GrammaTech Inc., Ithaca, NY, USA
‡{ jonathan.anderson, robert.watson }@cl.cam.ac.uk; University of Cambridge, Cambridge, England, UK

Abstract—New operating systems, such as the Capsicum
capability system, allow a programmer to write an application
that satisfies strong security properties by invoking security-
specific system calls at a few key points in the program.
However, rewriting an application to invoke such system
calls correctly is an error-prone process: even the Capsicum
developers have reported difficulties in rewriting programs to
correctly invoke system calls.

This paper describes capweave, a tool that takes as input
(i) an LLVM program, and (ii) a declarative policy of the
possibly-changing capabilities that a program must hold during
its execution, and rewrites the program to use Capsicum
system calls to enforce the policy. Our experiments demonstrate
that capweave can be applied to rewrite security-critical
UNIX utilities to satisfy practical security policies. capweave
itself works quickly, and the runtime overhead incurred in
the programs that capweave produces is generally low for
practical workloads.

I. INTRODUCTION

Developing practical but secure programs remains a diffi-
cult, important, and open problem. Network utilities such as
tcpdump and wget process data read directly from a net-
work connection, but execute vulnerable code [1], [2]. File
utilities and language interpreters are often run by a trusted
user to process untrusted data, but also execute vulnerable
code [3]–[7]. Once an attacker compromises vulnerable code
in any of the above programs, he can typically perform any
action allowed for the user that invoked the program.

Traditional operating systems provide only weak primi-
tives for applications to manage their privileges. As a result,
if a programmer wants to verify that his program is secure,
he typically must first verify that the program satisfies
very strong properties, such as memory safety. However,
recent work [8]–[11] has produced new operating systems
that allow programmers to develop programs that execute
untrusted code yet satisfy strong security requirements.
Moreover, programmers can develop such programs with
much less effort than fully verifying the program for a
traditional operating system. Such systems extend the set
of system calls provided by a traditional operating system
with security-specific calls (which henceforth we will call
“security primitives”). Throughout a program’s execution, it
interacts with the system by invoking security primitives to
signal key events in its execution. The developers of such
systems have manually modified applications to invoke secu-

rity primitives so that the application satisfies strong security
policies, even when the application contains untrusted code.

One example of an operating system with strong security
primitives is the capability operating system Capsicum [10],
now an experimental feature in FreeBSD 9 [12]. Capsicum
allows a programmer to compartmentalize his program into
separate modules that each have a subset of the full set
of privileges, following the principle of least privilege.
Capsicum tracks for each process (1) the set of capabilities
available to the process, where a capability is a file descriptor
and an access right for the descriptor, and (2) whether the
process has the privilege to grant to itself further capabilities
(i.e., open more files). Capsicum provides to each process
a set of system calls that the process invokes to limit its
capabilities. Trusted code in a program can first communi-
cate with its environment unrestricted by Capsicum, and then
invoke primitives to limit itself to have only the capabilities
that it needs for the remainder of its execution. Untrusted
code then executes with only the limited capabilities defined
by the trusted code. Thus, even if the untrusted code is
compromised, it will only be able to perform operations
allowed by the limited capabilities.

The Capsicum primitives are sufficiently powerful that
a programmer can rewrite a practical program to satisfy
a strong security policy by inserting only a few calls to
Capsicum primitives [10]. However, in practice it is difficult
for programmers to reason about the subtle, temporal effects
of the primitives. When the Capsicum developers first eval-
uated Capsicum, they rewrote programs, such as tcpdump,
in a way that they tentatively thought was correct, only to
discover later that the program was incorrect and required a
different rewriting [10]. Often, as in the case of tcpdump,
the difficulty results from the conflicting demands of (i)
using low-level primitives, (ii) ensuring that the program
satisfies a strong, high-level security requirement, and (iii)
preserving the core functionality of the original program.

This paper addresses the problem of writing programs for
capability systems, like Capsicum, by presenting a system,
called capweave, that takes from a programmer (1) a
program that does not invoke Capsicum primitives, and
(2) a declarative, temporal policy, stated in terms of the
capabilities that the program should hold over the course of
its execution, motivated by the principle of least privilege.
capweave automatically compartmentalizes the program

and instruments it to invoke Capsicum primitives so that it
satisfies the policy when executed on Capsicum. We call the
problem of finding such an instrumentation the Capsicum
policy-weaving problem.

Our capweave policy weaver addresses two key chal-
lenges that a programmer faces when manually rewriting a
program for Capsicum. The programmer’s first challenge is
to define what “secure behavior” means for his program.
While Capsicum provides a powerful set of primitive opera-
tions, it does not provide an explicit language for describing
policies. Because the Capsicum developers did not have
such a language when first developing Capsicum, it was
impossible for them to formally define correctness for their
rewritten programs.

The programmer’s second challenge is to write his pro-
gram to be both secure and functional. A programmer can
typically secure a program on Capsicum by strongly limiting
the capabilities of the program. However, the rewritten
program may limit its capabilities too strongly at one point
of an execution, and as a result, may not have the capabilities
required to carry out core program functionality later in
the execution. The incorrect rewriting of tcpdump [10]
exemplifies this issue. To resolve conflicts between security
and functionality, a programmer must carefully rewrite his
program to maintain additional state about an execution, and
consult the state to determine when to invoke Capsicum
primitives, or execute a program function in a separate
process with distinct capabilities.

An additional challenge in designing capweave was
to structure it so that it uses a simple, declarative model
of Capsicum. Capsicum system architects and application
developers have developed and continue to develop libraries
of functions that an application can invoke to more easily
manage its capabilities [13]. For the remainder of this paper,
we refer to both the system calls and library functions that
a program invokes to manage its capabilities as security
primitives. When a Capsicum architect implements a new
primitive, he should be able to easily extend capweave so
that it can instrument programs to invoke the new primitive,
but he should not need to understand the details of the
instrumentation algorithm used by capweave.

To address the programmer’s first challenge, capweave
provides a policy language with which a programmer can
write an explicit, declarative, general policy that restricts
the privileges of the program in terms of capabilities. Each
policy is a regular expression over an alphabet of program
points paired with sets of capabilities. The policy allows all
program executions that occur with the specified restricted
privileges.

To address the programmer’s second challenge,
capweave takes an uninstrumented program and its
policy, and automatically instruments the program to
satisfy the policy. To do so, capweave constructs from
the program, policy, and the semantics of Capsicum an

automata-theoretic safety game [14] between an “Attacker,”
who “plays” program instructions, and a “Defender” who
plays Capsicum primitives, by applying an automata-
theoretic policy weaver [15]. The Attacker wins the game if
the sequence of plays violates the policy, and the Defender
wins otherwise. capweave searches for a winning
Defender strategy, and from the strategy, instruments the
program to (i) maintain instrumentation-state variables, and
(ii) invoke Capsicum primitives based on the values of the
variables so that the program satisfies its policy.

For a Capsicum architect to update capweave for an
updated version of Capsicum, they only need to update
declarative definitions of (i) the state maintained by Cap-
sicum, (ii) the primitives available to a program, and (iii)
each primitive’s effect on the Capsicum state. In practice,
the state and primitives are easy to define: together they
account for only one tenth of the capweave source code.

We determined experimentally that capweave allows a
programmer to harden practical programs to satisfy policies
that rule out known critical exploits of the programs. We
applied capweave to rewrite several UNIX utilities for
Capsicum that have demonstrated security vulnerabilities.
The rewritten programs included programs that were previ-
ously rewritten manually by the Capsicum team, programs
suggested through discussion with the Capsicum develop-
ment team, and the PHP CGI interpreter, whose policy
was defined by independent security researchers at MIT
Lincoln Laboratory. capweave allowed us to rewrite each
utility using only a small handful of program annotations,
no more than 11 lines, and a simple high-level policy of
no more than 115 lines in our policy language. Each policy
not only mitigated specific known exploits, but restricted
the capabilities of significant segments of the program,
potentially mitigating a large class of future vulnerabilities.
Programs rewritten by capweave executed with equivalent
behavior to programs instrumented manually by an expert,
and incurred sufficiently low runtime overhead that they are
still deployable: only 4% runtime overhead over unwoven
programs on realistic workloads. We have provided a Cap-
sicum virtual machine containing all programs and policies
used in our experiments.1

Organization: §II uses the wget downloader to
illustrate the Capsicum policy-weaving problem and
capweave. §III discusses the design of capweave in de-
tail. §IV presents an experimental evaluation of the correct-
ness and performance of capweave and programs rewritten
by applying capweave. §V discusses related work.

II. MOTIVATION

In this section, we motivate the Capsicum policy-weaving
problem, and illustrate our solution by describing how
capweave is used to secure the wget downloader.

1The virtual machine used is available at https://www.dropbox.com/s/
711q31mccz47rt4/capweave-exp-vm.tar.gz.

void wget(char* uls[], int num_urls) {
// For each URL input by the user:
for (int i = 0; i < num_urls; i++) {

C0: sync_fork();
L0: char* url_nm = urls[i];

// If the URL is an HTTP resource:
L1: if (is_http(url_nm)) {

// Open a socket to the server:
L2: int svr_sock = open_http(url_nm);

char* out_path = url_nm;
bool redir_url = false;
/* If server sends redirect
* with status 3xx: */

if (must_3xx_redirect(svr_sock)) {
redir_url = true;
/* Get the name of the output
* file from the server: */

L3: out_path = get_outnm(svr_sock);
}

L4: char* data = read_http(svr_sock);
C1: redir_url ? cap_enter() : ;
L5: write_data(out_path);

} else { ... }
C2: sync_join();

}
}

Figure 1. Pseudocode for the wget downloader, instrumented to invoke
Capsicum primitives. wget takes an array of URL’s as input, and writes
the data at each URL to the file system of its host. Particularly subtle
segments of wget’s code are annotated with comments, and discussed in
§II-A. Capsicum primitives are typeset in bold font.

A. wget: an Insecure Program and a Desired Policy

We now present a simplified version of the wget down-
loader and a desired security policy that past versions of
wget do not satisfy. The wget downloader is a command-
line utility that takes as input a list of URL’s. For each URL,
wget attempts to download the data addressed by the URL
and write the data in the host file system.

Pseudocode for a simplified version of wget is given
in Fig. 1. Important program points are annotated with C
labels (e.g., L0). (Statements in Fig. 1 in bold font are
invoked by a version of wget instrumented for Capsicum.
Such statements are discussed in §II-B; for now, assume that
wget does not execute such statements.) For each input
URL, wget determines under what protocol the URL is
addressed (Fig. 1, line L1). Once wget determines the
protocol used, it runs protocol-specific functions to (i) open a
socket to the server holding the URL (line L2), (ii) download
the data addressed by the URL over the socket (lines L3 and
L4), and (iii) write the data to a file in the file system (line
L5).

Unfortunately, versions of wget through v.1.12 include a
vulnerability that allows an attacker who controls a server
with which wget interacts to write data to any file on the
host file system that can be written by the user who runs

wget. The vulnerability is exposed when wget processes
a particular HTTP response from the server. In particular,
wget may receive from a server a redirect response, which
directs wget to download data from a different network
address. When wget receives such a response, it determines
the path in its host file system to which it will write data
directly from the information provided by the redirect server.
A malicious server can exploit this behavior to craft a
redirect response that causes wget to write data chosen
by the attacker to a path in the file system chosen by the
attacker [2].

Ideally, a wget developer would formally specify that
wget must not demonstrate a vulnerability along the lines
of the one described above, and would rewrite wget so that
it satisfies such a specification. However, rewriting wget to
do so requires detailed knowledge of both the structure of
wget and of the HTTP protocol. Thus, it would be useful if
a developer could define an acceptable, if perhaps weaker,
specification for wget in terms of commonly-used, well-
understood operating-system objects, such as file descriptors,
and automatically rewrite wget to satisfy such a policy. In
particular, one useful policy for wget defined in terms of
file descriptors would be:

Policy 1. When wget executes read_http, it should
always be able to open arbitrary files and sockets. But wget
should execute write_data with the ability to open files
if and only if it has not received an HTTP-redirect response.

B. Securing wget on Capsicum

The Capsicum operating system [10] provides a set of
powerful security-oriented system calls (i.e., primitives) that
an application can invoke to ensure that it only behaves
in a secure manner, even if an attacker triggers a serious
vulnerability in the application. Capsicum extends the notion
of a file descriptor provided by UNIX to that of a capability
by mapping each file descriptor opened by a process to a set
of access rights that the process holds for the file descriptor.
Each right corresponds roughly to the ability to perform a
UNIX system call that operates on a file descriptor (e.g., the
access right CAP_READ corresponds to the read system
call). When a process running on Capsicum invokes a system
call c on file descriptor f, Capsicum carries out c only if
the process holds the right CAP_C for f. Capsicum also
maps each executing process to an ambient-authority flag,
which is a Boolean value that controls whether the process
can open new file descriptors.

Capsicum’s capabilities were designed so that a program
executing on Capsicum begins by executing a small, trusted
code segment that manages capabilities, and then executes
complex, untrusted code that can interact with its environ-
ment only through the capabilities set by the trusted code.
When a process opens a file descriptor, it holds all access
rights for the descriptor. Throughout the process’s execution,

it can invoke a Capsicum primitive limitfd(d, R) on
descriptor d and set of rights R to decrease its rights for
d to only those in R. A process begins executing with
the capabilities of its parent, and can invoke the Capsicum
primitive cap enter to relinquish the ambient authority.

A programmer can instrument wget to invoke the Cap-
sicum primitives so that it satisfies Policy 1 (§II-A). One
correct instrumentation of the example wget is the code
shown in Fig. 1, including the Capsicum primitives shown
in bold font. Essentially, wget is instrumented so that if
it handles an HTTP redirection, then it invokes cap enter

before attempting to write data to its host’s file system (line
L5).

However, for a programmer to instrument his program
to invoke Capsicum primitives correctly, he must address
two challenges, illustrated by the instrumented version of
wget. First, once a programmer formulates a policy, he
must modify his program to invoke the Capsicum primitives
to enforce the policy. However, the Capsicum primitives
can have subtle consequences. In the example wget, once
the programmer determines that under some conditions,
wget should execute program point L5 without ambient
authority, then the programmer can immediately deduce
that wget must sometimes invoke the cap enter primitive
before executing L5. However, once the programmer also
determines that if wget does not receive a redirect response,
then wget should execute L5 with ambient authority, it is
fairly difficult for him to instrument wget. The difficulty
stems from the fact that once a process invokes cap enter,
then the process can never regain the ambient authority for
the remainder of its execution. Thus, if a wget process (i)
attempts to download from URL u, (ii) receives a redirection
response, and (iii) invokes cap enter, then the process
must execute without ambient authority when downloading
from all input URL’s following u.
wget can be instrumented to satisfy the full informal

policy of Policy 1 by compartmentalizing it to use multiple
communicating processes. A “main” wget process executes
the loop that iterates over the list of input URL’s. To
download data from each input URL, the main process
synchronously forks a worker process to download the data
and write it to the file system (line C0). Each worker
process begins executing with ambient authority. If the
worker receives an HTTP-redirect response while download-
ing from its URL, then it invokes cap enter, but when the
worker process terminates (line C1), the main wget process
continues to execute with ambient authority, with which it
forks the next worker process. (Capsicum requires that a
child process begin executing with the capabilities of its
parent, but places no restrictions on the capabilities of the
parent based on the capabilities of its children.)

Second, the instrumented program sometimes must update
and consult additional instrumentation state to determine
when to invoke Capsicum primitives. In Fig. 1, the instru-

let redir_exploit =
any_instr* . [L0] . any_instr*

. [L3] . [not L0]*

. [L5 with AMB] in
let noredir_fails =

any_instr* . [L0]
. [not { L0, L3 }]*
. [L5 with (no AMB)] in

let http_fails =
any_instr* . [L4 with (no AMB)] in
redir_exploit | noredir_fails | http_fails

Figure 2. A capweave policy for the example wget given in Fig. 1.
The policy is a regular expression that matches all undesired executions of
wget, and is described in §II-C.

mented wget maintains a Boolean variable redir_url
that reflects whether or not wget received a redirection
response when downloading from the current URL. The
instrumented wget invokes cap enter (line C1) if and
only if redir_url is true.

Thus, a program can be rewritten to satisfy strong se-
curity requirements while preserving the functionality of
the original program by correctly manipulating capabilities
across multiple communicating processes and maintaining
additional instrumentation state. However, it is non-trivial
to determine how to rewrite an application to do so. In
particular, the control locations at which an application must
invoke primitives to satisfy a policy might not be near each
other in the application’s code. For example, in Fig. 1, wget
invokes fork and cap enter at distant program points.

C. Securing wget on Capsicum with capweave

§II-A and §II-B illustrate the general challenges that a pro-
grammer faces in rewriting a program to execute correctly
on Capsicum. While a programmer can typically define the
desired behavior of his rewritten program purely in terms
of capabilities (e.g., Policy 1), Capsicum does not allow
the programmer to state such a policy explicitly. Instead,
the programmer must instrument his program manually
to invoke primitives that manipulate both capabilities and
processes so that the resulting program executes with the
desired capabilities. To help a programmer address this
challenge, we have developed a Capsicum policy weaver,
called capweave. capweave takes as input from the pro-
grammer (1) a program that invokes no Capsicum primitives
(for the example wget, the code in Fig. 1 without the
instrumentation statements), and (2) a policy, which is a
regular language of capability traces that each constitute a
policy violation. A capability trace is a sequence of program
points paired with the capabilities that the program has when
it executes each program point.

A capweave policy that formalizes Policy 1 is given
in Fig. 2. The language of violations in Fig. 2 is defined
as the union of three sublanguages: redir_exploit,

noredir_fails, and http_fails. redir_exploit
formally expresses the set of all wget executions in which
an attacker exploits wget’s vulnerability in processing
HTTP redirection responses. redir_exploit is defined
as any sequence of instructions, followed by the program
point at which the next URL in the array of inputs is
selected (L0), followed by any sequence of instructions,
followed by the program point at which wget processes
an HTTP redirect response (L3), followed by any sequence
of instructions before the selection of the next input URL
(not L0), followed by wget writing downloaded data to
the file system (L5) with ambient authority.
noredir_fails formally expresses the set of all wget

executions in which wget does not receive an HTTP
redirection response, but attempts to write downloaded data
to the file system with insufficient rights. noredir_fails
is defined as any sequence of instructions, followed by L0,
followed by any sequence of instructions other than L0 or
L3, followed by executing L5 with ambient authority.
http_fails formally expresses the set of all wget

executions in which wget attempts to finish an HTTP
session with insufficient rights. http_fails is defined
as any sequence of instructions followed by attempting to
complete the HTTP protocol (L4) without ambient authority.

For the simplified version of wget given in Fig. 1, the
accompanying capweave policy given in Fig. 2 is almost as
large as the program itself. However, in practice, policies for
real-world programs tend to grow very slowly in the size of
the program. The real wget program contains 64,443 lines
of source code, but its entire policy can be expressed in only
35 lines of our policy language.
capweave outputs a version of the input program in-

strumented to invoke Capsicum primitives so that it satisfies
the input policy. From the uninstrumented version of the
example wget (i.e., Fig. 1 without the instrumentation state-
ments) and the example policy given in Fig. 2, capweave
outputs the correctly instrumented version of wget (Fig. 1
with the instrumentation statements).

D. capweave Parametrized on the Capsicum Semantics

The implemented version of capweave is actually struc-
tured slightly differently than described above: the im-
plemented tool supports a more general model in which
capweave is generated from an explicit description of
the semantics of Capsicum [15]. Because of this model,
capweave can be adapted easily when Capsicum is ex-
tended or when the “packaging” of sequences of invocations
of Capsicum primitives as a library API is changed.

The Capsicum semantics defines (i) the state maintained
by Capsicum as a program executes, (ii) the set of primitives
that an instrumented program can invoke, and (iii) the
effects of each primitive on the Capsicum state. In the
current implementation of capweave, the state maintained
by Capsicum is a stack of process states, where a process

state is (a) a map from each descriptor to its current set of
access rights, and (b) a Boolean value indicating whether the
process has ambient authority. If a process state p0 is below a
process state p1 on the stack, then the process whose state is
p0 spawned the process whose state is p1 via a synchronous
fork. The semantics also defines the effect of each primitive
on the Capsicum state. For instance, cap enter sets the
Boolean value to False in the process state of the currently
executing process (i.e., the top process on the stack); fork
pushes a copy of the top process state onto the stack; join
pops the top process state from the stack; etc.

It is significantly easier for a Capsicum architect to
define a model of Capsicum using this mechanism than it
would be for him to implement the entire policy weaver.
capweave consists of 35k lines of OCaml that employs
many subtle optimizations, whereas the Capsicum model
is specified in only 3k lines, which essentially define a
Capsicum interpreter. (The Capsicum state and interpretation
functions are discussed in more detail in §III-A3.)

In general, the Capsicum semantics would be speci-
fied by a Capsicum architect, rather than an application
implementer, and would be changed rarely—either when
new Capsicum primitives are introduced or when there are
changes in the API of a library that packages Capsicum calls
into routines that are more convenient to use than “raw”
Capsicum. Application programmers can then regenerate an
updated capweave tool and weave policies into as many
applications as they wish.

III. DESIGN OF THE POLICY WEAVER

A. The Policy-Weaving Problem

1) Language Syntax: The syntax of languages of both
unwoven and woven programs will be defined as instances
of a language of simple imperative programs, IMP. IMP
is a small “core” language that supports only updates to
program state with the result of language operations, opera-
tions on descriptors, invocations of woven instructions, and
conditional branches of control-flow. However, the actual
implementation of capweave instruments programs in the
LLVM intermediate language [16], and thus can weave
programs compiled from widely-used, practical languages,
such as C and C++.

Syntax of Unwoven Programs: The syntax of language
IMP〈wvinstrs〉 (Fig. 3) is defined for a fixed set of program
variables Vars, a fixed set of control labels Labels, and a set
of open sites Opens that label program instructions at which
descriptors are opened. The syntax is parametrized on a set
of woven instructions wvinstrs (i.e., security primitives). An
IMP program prog is a set of instruction blocks, including an
initial instruction block block0. Each instruction block is a
unique label, a statement, and a block-terminator instruc-
tion. A statement either assigns the result of a language
operation to a variable, opens a descriptor, or executes a
weaving instruction. A block terminator halts the program

prog := (block0, {block1, . . . , blockn})
block := LABEL : stmt; termin

stmt := v0 := op(v1, . . . , vn) vi ∈Vars
| dscinst
| wvinstrs

termin := halt | br v ? LABELt : LABELf v ∈Vars
dscinst := os : v0 := open(v1),

v0, v1 ∈ Vars, os ∈ Opens

Figure 3. Syntax of the IMP〈wvinstrs〉 language: an imperative language
parametrized on a set of woven instructions wvinstrs.

capinstr := v0 := op(v1, . . . , vn) vi ∈WVars

| v ? capprim v ∈WVars

capprim := cap enter

| limitfd(os, rs) os ∈ Opens, rs ⊆Rights
| fork
| join

Figure 4. Syntax of the set of Capsicum woven instructions capinstr.

or branches. The language of unwoven programs UNWOVEN
is the language of imperative programs with no woven
instructions: UNWOVEN = IMP〈∅〉.

Syntax of Woven Programs: The language of woven
programs is the language of IMP programs that may execute
Capsicum woven instructions (Fig. 4), defined over a set of
weaving variables WVars. A Capsicum woven instruction
may assign the result of a language operation to a variable in
WVars, or may execute a guarded invocation of a Capsicum
primitive. A Capsicum primitive is either cap enter, fork,
join, or limitfd(os, rs), for os ∈ Opens and rs ⊆ Rights.
A woven program is an IMP program instrumented to
execute Capsicum instructions: WOVEN = IMP〈capinstr〉.

2) Language Semantics: In this section, we define a
semantics of WOVEN programs by mapping each WOVEN
program to the executions that it may perform. In particular,
we define a semantic function τ that maps every WOVEN
program P and initial program state p to the trace of
capabilities that P holds throughout its execution from p.
τ is defined using an operational-semantic function σs that
describes how each program statement updates the state of
the program. σs is defined using the operational-semantic
function σw, which define how each weaving instruction
updates the program state. σw is defined using the Capsicum
interpretation of Capsicum primitives, which defines how
each primitive updates the state maintained by Capsicum
(§III-A3).

The semantics of WOVEN, given in Fig. 5, is defined
by a function τ (Fig. 5, Eqns. (1) and (2)) that maps
each program in WOVEN and initial program state p to

the sequence of capabilities that the program holds during
an execution that starts from p. Let a program state be an
assignment from each program variable to an integer value:
progstates = Vars→ Z, where Z denotes the set of integers.
A capability state is the state maintained by the Capsicum
operating system. The set of capability states capstates
is defined by the Capsicum architect (see §III-A3). Let a
capability trace be a sequence of program labels paired with
the capabilities that the program has as it executes the block
with the given label: captraces = (Labels × capstates)∗.
τ maps each program P ∈ WOVEN and program state
p ∈ progstates to the capability trace that P generates in
an execution that starts from p (Fig. 5, Eqn. (1)). The trace
generated by P from a program state p is the trace that the
initial block of P generates in an execution that starts from
p, along with a fixed initial woven state and capability state
(Fig. 5, Eqn. (2)).

The semantic function τb, given in Fig. 5, Eqns. (3)
and (4), defines the capability trace that a block generates
in an execution from a given state. Let a woven state be
a map from each weaving variable to an integer value:
wvstates = WVars → Z. Let a full state be a program-
state, woven-state, and capability-state triple: fullstates =
progstates × wvstates × capstates. Then τb defines the
capability trace generated by executing a given block from
a given full-state (Fig. 5, Eqn. (3)). The trace generated by
executing a block LABEL : s; t from a full state f is LABEL

paired with the capability state in f , followed by the trace
generated by executing the terminator instruction t starting
in the full-state obtained by updating f with the statement
s (Fig. 5, Eqn. (4)).

The terminator semantic function τt, given in Fig. 5,
Eqns. (5)–(7), defines the trace generated by executing a
block terminator from a given full-state f ∈ fullstates. The
terminator halt generates the empty trace (Fig. 5, Eqn. (6)).
The terminator br v ? LABELt : LABELf generates the trace
obtained by executing either the block labeled LABELt or
the block labeled LABELf from full-state f , depending on
whether v’s value is non-zero or zero, respectively (Fig. 5,
Eqn. (7)).

The statement semantic function σs, given in Fig. 5,
Eqns. (8)–(11), defines how a statement s ∈ stmt updates
a full-state f ∈ fullstates. If s is an assignment, then it
updates the program state in f according to the seman-
tics of the right-hand-side operation (Fig. 5, Eqn. (9)). In
Eqn. (9), the language semantics is denoted by the function
ιo : stmt → progstates → progstates, and omitted for
brevity. If s is a descriptor instruction, then it updates the
program and capability state in f according to the Capsicum
interpretation of descriptor instructions ιd (Fig. 5, Eqn. (10);
for a discussion of ιd, see §III-A3). If s is a weaving
instruction, then it updates the weaving and capability state
in f as defined by the weaving-instruction semantic function
σw (Fig. 5, Eqn. (11)).

τ : WOVEN → progstates→ captraces (1)
τJ(block0, {block1, . . . , blockn})K(p) = τbJP, block0K(p, ∅, ci) (2)

τb : (WOVEN × block)→ fullstates→ captraces (3)
τbJP, LABEL : stmt; termin)K(p, i, c) = (LABEL, c) :: τtJP, terminK(σsJstmtK(p, i, c)) (4)

τt : (WOVEN × termin)→ fullstates→ captraces (5)
τtJP, haltK(p, i, c) = ε (6)

τtJP, br v ? LABELt : LABELf K(p, i, c) = let dest = if p(v) 6= 0 then LABELt else LABELf in

τbJlabelblkP (dest)K(p, i, c) (7)
σs : stmt→ fullstates→ fullstates (8)

σsJv0 := op(v1, . . . , vn)K(p, i, c) = (ιoJv0 := op(v1, . . . , vn)K(p), i, c) (9)
σsJdscinstK(p, i, c) = let (p′, c′) = ιdJdscinstK(p, c) in (p′, i, c′) (10)
σsJcapinstrK(p, i, c) = σwJcapinstrK(i, c) (11)

σw : capinstr→ (wvstates× capstates)→ (wvstates× capstates) (12)
σwJv0 := op(v1, . . . , vn)K(i, c) = (ιoJv0 := op(v1, . . . , vn)K(i), c) (13)

σwJv ? capprimK(i, c) = (i, if i(v) 6= 0 then ιpJcapprimK(c) else c) (14)

Figure 5. Semantics of WOVEN. τ , τb, and τt define the capability trace that a WOVEN program generates by executing a given program, block, or
terminator instruction, respectively, from a given state. In the definition of τt, labelblkP maps each label to the instruction block that it labels. σs and
σw define how a program statement and woven instruction, respectively, update the state of a program. ιo and ιp denote the interpretation of program
operations and Capsicum primitives (Fig. 6), respectively). progstates, wvstates, capstates, and fullstates denote the spaces of program states, woven
states, capability states, and “full” program states, respectively (see §III-A2).

The woven-instruction semantic function σw, given in
Fig. 5, Eqns. (12)–(14), defines how a woven instruction
v ∈ wvinstrs updates a woven state w ∈ wvstates and a
capability state c ∈ capstates. If v stores the value of a
language operation in a woven-state variable, then the woven
state is updated according to the language semantics (Fig. 5,
Eqn. (13)). If the woven instruction is a guarded Capsicum
primitive v ? p, then if v is zero in w, v ? p does not update
the woven state, and otherwise, v ? p updates c according to
the Capsicum interpretation of primitive p (Fig. 5, Eqn. (14);
for a discussion of the interpretation of primitives ιp, see
§III-A3).

3) Capsicum Interpretation Functions: The semantics of
WOVEN (§III-A2) is defined from (1) the space of capability
states maintained by Capsicum, (2) the initial capability
state with which a program executes, and (3) the Capsicum
interpretations, which define how program instructions and
Capsicum primitives update capability states. If the se-
mantics of Capsicum were to be extended or revised in
some way, these are the only pieces of information that
a Capsicum architect would have to modify to obtain an
updated version of capweave.

A capability state defines what capabilities are held by
a program (Fig. 6, Eqns. (15) and (16)). Let a process
capability state be a Boolean, denoting whether a process
has ambient authority, together with a map from each
descriptor to a set of rights (Fig. 6, Eqn. (15)). A capability
state is a stack of process capability states (Fig. 6, Eqn. (16)).

The initial capability state ci is a singleton stack contain-
ing a process state denoting that the process has ambient

capability, and that the rights of no descriptors are defined:
ci = [(True, ∅)].

The Capsicum interpretation functions are given in Fig. 6.
The first interpretation function ιd defines how each descrip-
tor instruction i ≡ d: x := open(y) (Fig. 6, Eqns. (17)
and (18)) updates a program state p ∈ progstates and
capability state c ∈ capstates (Fig. 6, Eqn. (17)). If the
program holds ambient authority in c, then i updates p so
that x holds a fresh descriptor, and updates c so that the fresh
descriptor has all access rights. Otherwise, i updates p so that
x holds the value −1, and the latest descriptor opened at d
is not mapped to any set of access rights (Fig. 6, Eqn. (18)).

The second interpretation function ιp (Fig. 6, Eqns. (19)
and (20)) specifies how a Capsicum primitive p ∈ Capprims
updates a capability state c ∈ capstates (Fig. 6, Eqn. (19)).
If a program executes cap enter, then the program relin-
quishes ambient authority (Fig. 6, Eqn. (20)). If a program
invokes limitfd(d, R), then the program’s rights for the
last descriptor opened at d are updated to the intersection
of the program’s rights in c and the set of rights R (Fig. 6,
Eqn. (21)). If a program invokes fork, then the program
pushes a copy of the current process-capability state onto
the stack of process capability states (Fig. 6, Eqn. (22)).
If a program invokes join, then the program pops its top
process capability state pc, and updates the new top process
state in its capability state to have the descriptor rights in
pc (Fig. 6, Eqn. (23)).

Policy Semantics of WOVEN: A policy is a set of exe-
cutions of a program annotated with the capabilities that the
program must have as it executes. Although the capability

proccap = B× (Opens→ P(Rights)) (15)
capstates = proccap∗ (16)

ιd : dscinst→ (progstates× capstates)→ (progstates× capstates) (17)
ιdJd : x := open(y)K(p, r :: rs) = let (fd,R′) = if ambcap(r) then (fresh(r),Rights) else (−1,⊥) in

(p[x 7→ fd], (ambcap(r), rights(r)[d 7→ R′]) :: rs) (18)
ιp : capprim→ capstates→ capstates (19)

ιpJcap enterK(r :: rs) = (False, rights(r)) :: rs (20)
ιpJlimitfd(d,R)K(r :: rs) = (ambcap(r), descrights(r)[d 7→ rs(r)(d) ∩R]) :: rs (21)

ιpJforkK(r :: rs) = r :: r :: rs (22)
ιpJjoinK(r :: r′ :: rs) = (ambcap(r′), descrights(r)) :: rs (23)

Figure 6. Definition of the space of capability states and interpretation functions. proccap denotes the space of process states. In Eqn. (16), P(Rights)
denotes the power set of Capsicum access rights. capstates denotes the space of capability states. ιd and ιp denote the interpretations of descriptor
instructions and Capsicum primitives, respectively. In Eqns. (18), (21), and (23), ambcap(r) and descrights(r) denote the ambient-authority flag and map
from descriptors to access rights, respectively, in process state r. In Eqn. (18), fresh(r) denotes a new descriptor value that is not bound in process state r.

state of a program completely defines the capabilities held
by a program as it executes, writing policies defined by the
complete capability-state may be complicated or infeasible.
In particular, the Capsicum interpretation functions in Fig. 6
are defined over capability states that are stacks of process
capability states, but practical policies are typically defined
over only the currently executing process (i.e., the top
process on the stack of process capability states).

To bridge the gap between the capability state maintained
by Capsicum and the state used to define policies, the
Capsicum architect defines a space of policy states polstates
and a policy-state abstraction α : capstates→ polstates that
maps each capability state to the policy state that represents
it. Our implementation of capweave allows policies to
be defined using the capabilities of the currently executing
process: polstates = proccap, and α(cur :: procs) = cur.

A policy-state abstraction α defines a policy-semantics
function that maps each woven program and initial program
state to the trace of program labels paired with policy states
that the program generates in an execution from the initial
program state. For poltraces = (Labels × polstates)∗, the
policy semantics function τα : WOVEN → (progstates →
poltraces) is

ταJprogK(p) = mα(τJprogK(p))

where

mα(ε) = ε

mα((LABEL, c) :: t) = (LABEL, α(c)) :: mα(t)

4) Problem Definition: The policy-weaving problem is
to take an unwoven program and a policy, and weave
the program to satisfy the policy. We formally define the
weaving problem using the policy semantics of a program
and the definition of a weaving. To simplify the definition
of the policy-weaving problem, we fix the definition of the
Capsicum interpretation functions, initial state, and policy-
state abstraction to be as defined in Fig. 6 and §III-A2. The

definition of the program and policy semantics of WOVEN
programs is thus fixed as well.

For an unwoven program P ∈ UNWOVEN and a woven
program P ′ ∈ WOVEN, P ′ is a weaving of P if P ′ is
constructed by only adding woven instructions to P .

Defn. 1. For IMP statements s and s′, s′ is a weaving of s
if one of the following holds:

• s is not a sequence of statements, and (1) s′ = s or (2)
s′ = s′0; s

′
1 and either s′0 is a weaving of s and s′1 is a

sequence of woven instructions, or s′0 is a sequence of
woven instructions and s′1 is a weaving of s.

• s is a sequence of statements s0; s1 and s′ is a sequence
of statements s′0; s

′
1 where s′0 is a weaving of s0 and

s′1 is a weaving of s1.

A program P ′ = (block′0, {block
′
1, . . . , block

′
n}) is a weav-

ing of a program P = (block0, {block1, . . . , blockn}) if
for each 0 ≤ i ≤ n, blocki = LABELi : si; ti and
block′i = LABELi : s

′
i; ti, where s′i is a weaving of si.

The policy-weaving problem is to take an unwoven pro-
gram and a policy defining the allowed executions of the
program, and instrument the program so that it satisfies the
policy.

Defn. 2. Let P ∈ UNWOVEN be an unwoven program, and
let Q ⊆ captraces be a regular language of capability traces.
For a woven program P ′, let the traces of P ′, denoted as
T (P ′) ⊆ captraces, be the set of capability traces generated
by some input to the program: T (P ′) = {ταJP ′K(i) | i ∈
(Vars → Z)}. A solution to the policy-weaving problem
WEAVE(P,Q) is a woven program P ′ ∈ WOVEN such that
P ′ is a weaving of P (Defn. 1) and T (P ′) ⊆ Q.

WEAVE is undecidable in general; it can be shown that
any algorithm that could solve WEAVE could decide if a
program in a Turing-complete language satisfies an arbitrary
safety property. capweave uses a sound but incomplete

solver for WEAVE, described in §III-B.

B. Solving the Policy Weaving Problem via Automata Games

capweave reduces WEAVE to finding a winning strategy
to a two-player safety game, played by an Attacker and a
Defender. capweave uses an existing automata-theoretic
weaver-generator algorithm [15] as its core engine. To
make the paper self-contained, this section summarizes that
algorithm, and describes how capweave applies the weaver
generator to weave practical programs for Capsicum.

The weaver generator solves a version of the policy-
weaving problem in which an input program, a policy, and
the operating system are all modeled as automata. The
weaver generator solves such a problem by reducing it to
finding a modular winning strategy to a two-player safety
game. Intuitively, a two-player safety game is an automaton
in which the set of states is partitioned into a set of Attacker
states and a set of Defender states. When the game is in an
Attacker state, the Attacker can transition the state to any
adjacent state, and analogously for the Defender. The goal
of the Attacker is to eventually transition the game to an
accepting state, and the goal of the Defender is to prevent
the Attacker from doing so. A winning Attacker (Defender)
strategy is a function that reads the transitions chosen by
both the Attacker and Defender and outputs a transition for
the Attacker (Defender) such that if the Attacker (Defender)
always chooses the transition output by the strategy, then
the Attacker (Defender) always wins the game. For a game
defined by a pushdown automaton, a modular Attacker
(Defender) strategy is a strategy that chooses transitions
independently from the transitions chosen before the most
recent unmatched push transition. If a game defined by
a restricted classes of pushdown automata, called Visibly
Pushdown Automata (VPA) [17], has a winning modular
Attacker or Defender strategy, then the strategy can be found
efficiently [14].

Our policy weaver capweave soundly reduces a policy-
weaving problem WEAVE(P,Q) to the problem of finding a
winning Defender strategy to a game defined by a VPA.
Intuitively, capweave constructs a game in which the
choices of an Attacker correspond to instructions that a
program can execute, the choices of a Defender correspond
to Capsicum primitives that can be invoked, and accepting
states are reached when the program violates the policy. A
winning Defender strategy for the game thus corresponds
to a weaving that ensures that the woven program never
violates the policy. The problem of finding a winning
Defender strategy is NP-complete in general, but in practice
capweave finds a winning strategy to a game efficiently
by applying heuristics introduced in previous work ([15],
Sec. 4).

Fig. 7 illustrates how capweave applies the weaver
generator. The weaver generator takes as input a program
and policy, both represented as VPA’s, and an operating

Capsicum Arch.:

program
VPA

program
modeller

Capsicum
modeller

policy
VPA

weaver generator

RE-to-
VPA

policyprogram
Programmer:

Capsicum
VPA

instrumentation trdr.

code gen.

weaved program

CapWeave

Prog. interp

Prim. interp
Init state.
Policy abs.

Figure 7. Architecture of capweave. Items in the box labeled “Capsicum
Arch.” are defined by the Capsicum architect. “Init. state” denotes the initial
Capsicum state, “Desc. interp.” denotes the interpretation of Capsicum
program statements, “Prim. interp” denotes the interpretation of Capsicum
primitives, and “Policy abs.” denotes the policy abstraction.

system (e.g., Capsicum) modeled as a visibly-pushdown
transducer. Thus, to apply the weaver generator, capweave
must soundly model its input program, policy, and Cap-
sicum as VPA’s. capweave models the program as a
VPA constructed directly from the program’s interprocedural
control-flow graph, which is a standard technique in program
analysis [17]. However, in principle, the program can be
modeled by any VPA that overapproximates the possible
executions of the program (e.g., models constructed via
predicate abstraction [18]). Each policy that capweave
takes as input is a regular language, so the policy can
be represented as a finite-state automaton, and thus as a
visibly-pushdown automaton [17]. capweave constructs
the transducer model of Capsicum from the space of capa-
bility states and Capsicum interpretations (§III-A3). Details
of this construction are given in an extended version of this
paper [19].

The weaver generator produces an instrumentation strat-
egy represented as a transducer that reads a sequence of pro-
gram instructions and outputs the next Capsicum primitive
that a woven program should execute. capweave compiles
such an instrumentation transducer to a woven program by
representing the transition function of the instrumentation
transducer using a state variable and instructions in the
language capinstr (Fig. 4). capweave weaves the input
program to consult the state variable to determine which
Capsicum primitive to invoke next as the program exe-
cutes, and then update the state variable. This compilation
scheme is described further in the extended version of this
paper [19].

If a programmer provides a program P and policy Q for

which capweave cannot find a solution to WEAVE(P,Q),
then capweave can, in principle, provide useful diagnostic
information to the programmer. There are multiple reasons
why capweave may not be able to find a solution to a
weaving problem WEAVE(P,Q): (1) WEAVE(P,Q) may not
have a solution. (2) WEAVE(P,Q) may have a solution, but
capweave may not find a solution because either (a) when
capweave constructs a VPA model of P , the resulting
model allows P to perform more executions than P can
actually perform, or (b) the solution does not correspond
to a modular winning Defender strategy [15]. In all cases
except (b), the weaver generator produces a winning Attacker
strategy that describes the executions that P can perform
to violate Q, no matter what Capsicum primitives are
invoked by any weaving. From such an Attacker strategy
and the Capsicum semantics, capweave could construct
an unweavable policy Q′ that is no more restrictive than Q
(i.e., Q′ ⊇ Q). capweave could then either validate that
Q′ is truly unsatisfiable and provide Q′ to the user as an
explanation of capweave’s failure, or use Q′ to refine its
model of the input program. In case (b), capweave could
still apply various heuristics to iteratively weaken the input
policy, check if the weakened policy has a weaving, and
provide this information as diagnostics to the programmer.
We have not implemented support for handling failures in
capweave, and do not evaluate capweave’s usability
in the face of such failures. We plan to explore failure
diagnostics in future work.

C. Weaving Practical Programs

In §III-A4, we defined the policy-weaving problem for a
simple imperative language. However, the weaving problem
and our policy weaver can be extended to handle programs
written in practical programming languages, such as C, in
which programs may have multiple recursive procedures, or
manipulate compound datatypes. In particular, capweave
weaves programs in the LLVM intermediate language [16].

A key strength of Capsicum is that a program that runs
on Capsicum may run code injected by an attacker (e.g.,
via a stack-smashing attack [20]), and yet can still satisfy
a non-trivial security policy. Thus, in practice it is critical
that our policy weaver be able to correctly weave programs
that can run injected code. We could implement such a
weaver by extending the language semantics and policy-
weaving problem described in §III-A2 and §III-A4 in a
straightforward way. The only change we would need to
make is that the policy weaver would not be able to choose
what Capsicum primitives the woven program will execute
after it executes specified program points at which the
program might run injected code.

A programmer who uses capweave must understand his
program sufficiently well to define a correct policy in terms
of program actions paired with capabilities. Furthermore, in
practice, the size of a policy may not differ significantly

from the size of the code required to instrument the policy.
However, the key utility of capweave is that it allows
the programmer to reason purely in terms of capabilities
that the program must hold over its execution. Because
a programmer’s ultimate goal is to write a program that
holds desired capabilities, this reasoning is strictly easier
than determining desired capabilities and then rewriting the
program to use the intricate Capsicum primitives to induce
the capabilities.

More sophisticated programming tools could further ease
the burden of using capweave by, e.g., inferring a likely
policy from the callsites of system calls that manipulate
descriptors. Such a tool need only determine the capabilities
that the program requires as it executes, and discharge to
capweave the problem of instrumenting the program to
hold the required capabilities. To evaluate fully the utility of
capweave and related tools would require a comprehensive
programmer study. We leave this as future work.

IV. PRACTICAL EXPERIENCE AND EXPERIMENTS

We carried out a set of experiments to evaluate the prac-
tical utility of capweave. The experiments were designed
to answer the following questions:

1) Does capweave allow a programmer to rewrite a
program with less effort and with higher assurance
than if he manually rewrote the program to invoke
Capsicum’s primitives?

2) Does capweave rewrite real-world programs to en-
force practical policies efficiently?

3) Do programs produced by capweave behave compa-
rably, both in terms of correctness and performance,
to programs manually modified by an expert to satisfy
the same policy?

To answer these questions, we applied capweave to a set
of UNIX utilities—all of which had previously demonstrated
security vulnerabilities—so that the instrumented program
satisfied a policy that thwarted the vulnerabilities. The
programs and policies were derived from either previous
work done in developing Capsicum [10], discussions with
Capsicum system and application developers on the Cap-
sicum mailing list [13], or collaborative work with security
researchers at MIT Lincoln Laboratory (MITLL).

The capweave implementation is 35k lines of OCaml,
and uses the LLVM OCaml API, which corresponds closely
to the LLVM API provided for C and C++. capweave takes
as input programs in the LLVM intermediate representation
(called bitcode), and outputs instrumented programs as bit-
code as well. As a result, it can be inserted into any compiler
toolchain that compiles a source program to LLVM bitcode
in some intermediate phase.
capweave generates instrumentation code as a multi-

dimensional array that defines what Capsicum primitive
should be called as each program point is executed. While
the generated code likely cannot be understood easily by a

programmer, the instrumentation transducer (§III-B) can be
recovered from the generated array. The transducer could
perhaps be used by a programmer to more easily understand
the instrumentation.

The results of our experiments demonstrate that
capweave is useful for rewriting programs for Capsicum.
In particular:

1) For each of our subject programs, a programmer could
apply capweave by annotating their program with
only 4–11 lines of code, and writing a policy, ex-
pressed purely in terms of Capsicum capabilities, that
could be represented with 35–114 lines of our policy
language. Thus, capweave can be applied to rewrite
programs to satisfy explicit, declarative policies with
minimal effort.

2) capweave wove all programs in less than five min-
utes, except for the PHP CGI interpreter, which took
46 minutes Thus, capweave is efficient enough to
be applied to programs in, say, a nightly build system,
and in many cases could be integrated into a compiler
toolchain used in an edit-compile-run cycle.

3) Programs rewritten by capweave to satisfy a given
policy match programs manually written by an ex-
pert to satisfy the same policy, and run with over-
head within 4% of unwoven programs on practical
workloads. Thus, in practice, capweave produces
programs that behave comparably to those written by
an expert programmer.

A. Methodology

To answer the experimental questions presented in §IV,
we applied capweave to weave a set of UNIX utilities
as security and performance benchmarks. In this section,
we describe each of the benchmarks, and then describe the
experiments that we performed on each benchmark.

1) Benchmark Programs and Policies: We now describe
each of the benchmark programs and policies used, including
its role as a security-critical application, and the source of
its policy. While each policy used was inspired by a known
vulnerability in the benchmark, each policy restricts the
capabilities of large portions of its program’s execution. For
example, the policies for bzip2 and gzip strongly limit
the capabilities of both programs while they execute their
compression and decompression functions. Each policy thus
potentially mitigates a large class of vulnerabilities that may
be unknown when the policy was written. The policy also
explicitly describes the limitations of any program rewritten
to satisfy the policy, and thus the limits on any attacker who
compromises the rewritten program.

bzip2 and gzip: The compression programs bzip2
and gzip can be used by a trusted user to compress data
from an untrusted source. On BSD systems, they are often
used by root to decompress application packages. The
compression and decompression functions of bzip2 and

gzip are heavily optimized and quite complex, and have
exhibited security vulnerabilities in the past [3], [4]. An
attacker who can control the inputs to bzip2 and gzip
can craft an input that allows him to execute arbitrary code
with the privileges of the user who invoked bzip2 or gzip.

We defined a capweave policy that strictly limits the
abilities of an attacker who compromises bzip2 or gzip.
The policy restricts bzip2 and gzip to execute with
only the capability to read from the source file that holds
uncompressed data and write to the file opened to store the
compressed output. An attacker who compromises a version
of bzip2 or gzip that satisfies such a policy can compro-
mise the integrity of the output files of bzip2 or gzip,
but cannot carry out other malicious actions. For instance,
the attacker cannot overwrite arbitrary files. Our capweave
policies for bzip2 and gzip were inspired by previous
work on manually writing programs for Capsicum [10], [21].

php-cgi: Executing programs written in web script-
ing languages, such as PHP, raises multiple security issues.
First, analyzing, monitoring, and restricting the behavior
of a program written in a scripting language is inherently
difficult. Second, a maliciously-crafted web program can
potentially compromise the interpreter that executes it, and
then perform any action on its host system that is allowed
for the user who launched the interpreter [5].

We defined a capweave policy for the PHP CGI inter-
preter php-cgi that allows the interpreter to only read from
and write to files defined by a small set of simple, easily-
audited checking functions. Our policy strictly limits the file
I/O of php-cgi itself, and thus indirectly limits the I/O of
any PHP script that the interpreter executes. We defined the
policy by collaborating with a group of researchers from
MITLL.

tar: The tar archiving utility archives sets of files
into a single file. Unfortunately, past versions of tar have
contained vulnerabilities that allow an attacker who controls
the inputs to tar to run injected code with the privileges
of the user who invoked tar [6], [7].

We defined a capweave policy that strictly limits the
abilities of an attacker who compromises tar. The policy
restricts tar to execute vulnerable functions without am-
bient authority. An attacker who compromises a version of
tar that satisfies such a policy can compromise the integrity
of output files opened by tar, but cannot carry out other
malicious actions.

tcpdump: tcpdump is a widely-used network-facing
application that historically has been the target of many
exploits. tcpdump takes as input a Berkeley Packet Filter
(BPF), and a device from which to read packets. In a correct
execution, it reads packets from the device, matches them
against the input BPF, and if the packet matches, prints
the packet to standard output. Unfortunately, the packet-
matching code in tcpdump is complex; in previous versions
of tcpdump, an attacker who controls the network input to

tcpdump can craft a packet that allows him to take control
of the process executing tcpdump [1].

We defined a capweave policy for tcpdump that
strictly limits the power of an attacker who is able to
compromise tcpdump. In previous work on Capsicum [10],
the Capsicum developers instrumented tcpdump so that
it could only read from its input network device and
write to standard output. The Capsicum developers later
found through testing that this instrumentation did not allow
tcpdump to resolve network addresses in a packet, and the
developers revised the instrumentation of tcpdump so that
only a small, trusted DNS resolver could open files. The
capweave policy for tcpdump describes the policy that the
revised instrumentation satisfies.

wget: The wget downloader, its vulnerabilities,
and its capweave policy were discussed in §II. Our
policy for wget was inspired by discussion on the
Capsicum-developer mailing list and known vulnerabilities
of wget [2], [13].

B. Experimental Procedure

For each of the benchmark programs and policies de-
scribed in §IV-A1, we defined the benchmark’s policy in
the capweave policy language, and applied capweave to
the program and policy. We also obtained a version of each
program that was manually modified to satisfy the policy. In
previous work, the Capsicum developers manually rewrote
bzip2, gzip, and tcpdump to satisfy informal versions
of the policies described in §IV-A1. We recompiled these
versions with the LLVM compiler so that we could compare
their runtime overhead with the runtime overhead of the pro-
grams woven by capweave. We manually instrumented the
other three benchmarks to satisfy each of their policies. The
woven and manually instrumented programs were compiled
with the default optimization of each benchmark (“-O2” for
each program). capweave was applied to optimized LLVM
bitcode.

We ran bzip2, gzip, php-cgi, tcpdump, and wget
on the test workloads included in the source distribution of
each program. We ran tar to archive its own source direc-
tory. We ran each original benchmark, woven benchmark,
and manually rewritten benchmark on the benchmark’s test
suite, and compared the executions. In particular, we counted
the number of tests that each of the benchmark programs
passed, and measured the runtime performance overhead of
the rewritten programs compared to the original benchmark.
Because the total time taken by each benchmark on the
test workloads supplied with the source was often less than
a second, we also measured performance on larger, more
realistic workloads.

To validate that the woven programs mitigated attacks
according to their policy, we introduced into each program a
“backdoor” that attempted to carry out an attack disallowed
by the program’s policy. We then ran the woven program on

an input that triggered the backdoor, and observed that the
goal of the attack was not achieved.

C. Analysis of Results

The results of our experiments are given in Tab. I.
(The performance numbers reported in Tab. I are from the
test workloads included in the source distribution of each
program. Performance on larger, more realistic workloads
is discussed below.) For each benchmark, Tab. I contains
three groups of measurements of our experience weaving
the benchmark. The first group (cols. 3–5) measures the
complexity of the policy for which the benchmark was
woven, and contains the number of lines of code in which
each policy is represented in our policy language, as well
as the size of the policy DFA constructed by capweave.
The number of lines of policy-language code (“Lines”)
indicates that the policy language supported by capweave
can express practical policies concisely.

The second group of measurements in Tab. I (cols. 6–7)
measures the performance of capweave, and contains the
time and peak memory used by capweave. Each bench-
mark was woven on a server that has sixteen 2.4 GHz cores
and 32 GB of memory, although the capweave implemen-
tation executes sequentially. The running time (cf. “Weaving
Time”) and peak memory (cf. “Weaving Mem.”) indicate
that capweave could be included in the edit-compile-run
toolchain of many programs of small-to-medium size, and
could be included in the nightly build system of a program of
large size. The running time and peak memory also indicate
that the performance of capweave is strongly determined
by the size of the policy, in particular the size of the policy-
automaton alphabet, more than the size of the input program
(cf. “States”, “Alpha. Size”, “Weaving Time”, and “Weaving
Mem”).

The third group of measurements in Tab. I (cols. 8–
15) measures the performance of programs rewritten by
capweave, and contains the number of reference tests
that the unwoven (i.e., baseline) program passed (“Tests”),
the number of tests passed by the woven version of each
benchmark (“OK”), the number of program points at which
capweave added instrumentation (“Woven Points”), the
number of functions that the benchmark executes in a
synchronous fork (“Interproc. Funcs.”), the runtime of
the baseline program (“Base”), the runtime of the woven
program expressed as a multiple of the runtime of the
baseline (“Woven Overhead”), the runtime of the hand-
woven program as a multiple of the runtime of the baseline
(“Hand Overhead”), and the percentage overhead of the
runtime of the woven program over the runtime of the hand-
woven program (“capweave/ Hand”). The geometric mean
of all “capweave/ Hand” values is 1.298 (i.e., capweave
overhead is 29.8%). Each benchmark was run on a host
machine with eight 2.2 GHz processors and 6 GB of

Program Features Policy Size Weaver Woven-Program Performance
Prog. Name Size Lines States Alpha. Weaving Weaving Tests OK Woven Interproc. Base (s) Woven Hand capweave/

(KLOC) Size Time Memory Points Funcs. Overhd. Overhd. Hand (%)
bzip2-1.0.6 8 70 5 5,156 4m57s 0.3 GB 6 6 66 1 0.593 1.099 0.909 20.90
gzip-1.2.4 9 68 5 1,787 3m26s 0.2 GB 2 2 55 1 0.036 1.278 1.111 15.03
php-cgi-5.3.2 852 114 11 15,777 46m36s 25.3 GB 11 2 213 2 0.289 1.938 1.170 65.64
tar-1.25 108 49 8 143 0m08s 0.2 GB 1 1 62 2 0.156 21.917 13.301 64.78
tcpdump-4.1.1 87 52 6 223 0m09s 0.3 GB 29 27 88 1 1.328 1.224 0.981 24.77
wget-1.12 64 35 3 549 0m10s 0.2 GB 4 4 246 1 4.539 1.106 1.096 0.91

Table I
EXPERIMENTAL DATA FOR A SET OF BENCHMARKS PROGRAMS AND POLICIES. THE FIELDS OF THE TABLE ARE DISCUSSED IN §IV-C. IN THIS TABLE,
THE PERFORMANCE NUMBERS REPORTED ARE THOSE FROM THE TEST WORKLOADS INCLUDED IN THE SOURCE DISTRIBUTION OF EACH PROGRAM.

PERFORMANCE ON A LARGER, MORE REALISTIC WORKLOAD IS DISCUSSED IN §IV-C.

memory, in a Capsicum virtual machine with one processor
and 2 GB of memory.

Each woven program behaved identically to its corre-
sponding hand-woven program on each test, and behaved
identically to its corresponding unwoven program on each
test, except for some tests included with tcpdump and
php-cgi. The woven tcpdump failed tests included with
tcpdump that gave a filepath to a file containing a secret
key for decrypting IPsec ESP packets, instead of giving the
secret key directly on the command line. The tcpdump
policy specified that the woven tcpdump should not be
able to open any file except for the input network device,
and hence could not open the file containing the secret key.
The woven php-cgi failed tests included with php-cgi
because no weaving of php-cgi can simultaneously satisfy
the policy specified by the MITLL group and pass all of the
tests. For example, the MITLL policy does not allow a PHP
program to create a new file in its current directory. The
woven php-cgi thus failed any test in which a program
tried to create a file for output in its current directory.
tcpdump and php-cgi thus illustrate one key aspect of
capweave: capweave allows a programmer to specify
the capabilities that a program should hold throughout an
execution, and automatically obtain a program that holds
the specified capabilities. However, a programmer still must
determine manually whether the capabilities specified by
a particular policy strike an acceptable balance between
the security requirements of the program and its original
functionality.

The number of program points at which capweave
introduced instrumentation (i.e., “Woven Points”) was small
relative to the size of each benchmark. Furthermore, the
number of functions that each woven benchmark executed
between a synchronous fork and join (i.e., “Interproc.
Funcs”) was small, and matched the number of functions
that each hand-woven benchmark executed between a syn-
chronous fork and join (and thus likely was minimal).
However, woven versions of bzip2, gzip, php-cgi, and
wget incurred noticeable overhead. We suspected that the
woven versions of these programs would introduce the most

overhead on small workloads, because on such workloads,
the fixed overhead of executing a synchronous fork and
join dominates the overall runtime of the program.

To measure the performance of the woven programs
on larger workloads, we generated a 1 GB file of source
code from the Capsicum kernel source tree, and used it as
a workload for bzip2, gzip, and wget. The unwoven
bzip2 compressed the large file in 25m31s, and the woven
bzip2 compressed the large data with 4% overhead over
the baseline time. The unwoven gzip compressed the large
file in 5m27s, and the woven gzip compressed the large
data with 3% overhead over the baseline time. The unwoven
wget downloaded the large file from a server on the same
local network in 1m06s, and the woven wget downloaded
the large data with −4% overhead over the baseline time,
indicating that the overhead of the weaving is obscured by
noise introduced by network traffic. Thus, the maximum
overhead of the woven programs over unwoven programs
is 4%, and geometric mean of all the overheads is 1%. The
overhead for php-cgi depends entirely on how frequently
an input PHP script opens files over the course of its
execution.

The woven versions of tar and tcpdump introduced
noticeable overhead on operations that execute frequently
on all workloads, such as a procedure in tar that reads
data into a buffer, or a procedure in tcpdump that resolves
network addresses to names. The per-operation overhead
induces an enormous overhead in tar in particular, and
illustrates another limitation of capweave: some policies
induce capweave to introduce costly primitives, such as
fork, at program points that induce considerable overhead,
whereas capweave might be able to instrument other pro-
gram points that induce much less overhead. The overhead
of the hand-woven program, while less than the overhead
of the capweave-woven program, is still considerable:
in our experience, weaving tar efficiently is a difficult
problem, and one that could benefit significantly from further
automatic-tool support. In future work, we hope to address
this limitation by extending capweave to use a cost metric,
and generalizing the game solver to find optimal strategies

for quantitative games [22].

V. RELATED WORK

Capability systems: Karger [23] introduced a capa-
bility system that mitigates the effects of an attack by
a malicious program run on the system. The Capsicum
operating system [10] provides security primitives to support
isolating components of a program in sandboxes that run
with different capabilities based on UNIX file descriptors.
This paper describes the capweave tool, which greatly
eases the burden of using Capsicum by allowing policies to
be stated as a separate specification that capweave weaves
into the program automatically.

Security monitors: Operating systems that provide
security system calls, such as Capsicum, HiStar [11],
Wedge [24] etc., allow an application developer to define
program-specific policies (where the nature of the policy
depends on the security primitives offered by the operating
system). In contrast, Mandatory Access Control (MAC) op-
erating systems, such as [25]–[27] only support system-wide
policies described in terms of standard system events. Such
policies cannot refer to important events in the execution
of a particular program, but many practical policies can
only be defined in terms of such events [28]. UNIX can
monitor programs to ensure that they satisfy policies if the
program correctly uses the setuid system call, but in
general this approach suffers the same shortcomings as MAC
systems. In comparison, systems with security primitives
allow an application to signal key events in its execution to
the operating system. Watson has described the challenges
of developing an access-control system, and has surveyed
recent implementations of such systems [29].

An Inline Reference Monitor (IRM) rewriter takes a policy
expressed as an automaton and instruments a target program
with an IRM, which executes in the same memory space as
the program, and halts the program if it attempts to perform
some sequence of actions that would violate the policy [28],
[30]. Edit automata [31] generalize IRMs by also supressing
or adding security-sensitive events to ensure that the program
satisfies a policy. Because an IRM (or edit automaton)
executes in the same memory space as the program that it
monitors, it can enforce policies defined over arbitrary events
in the execution of the program. However, for the same
reason, an IRM can only monitor the execution of managed
code. In comparison, systems with security primitives can
safely and efficiently monitor programs composed largely
of unmanaged code [10], [11].

Writing programs for security monitors: Prior work
on programming aids for systems with security primitives
automatically verifies that a program instrumented to use the
Flume OS [9] primitives enforces a high-level policy [32],
automatically instruments programs to use the primitives of
the HiStar OS to satisfy a policy [33], and automatically
instruments programs [32] to use the primitives of the Flume

OS [9]. However, the languages of policies used in the
approaches presented in [33], [34] are not temporal, and
cannot clearly be applied to other systems with security
primitives. The weaving algorithm presented in this paper
applies a known automata-theoretic weaving algorithm [15],
and can, in principle, be applied in multiple settings. The
main contribution of this paper is to describe how the
automata-theoretic algorithm can be applied as an engine
to rewrite programs for a practical capability system.

In the privsep project [35], OpenSSH was rewritten
manually to execute using a trusted, privileged parent pro-
cess and an unprivileged child process. A programmer can
use the Privman [36] library to manually compartmentalize
a UNIX daemon into high and low-privilege processes.
Previous work [37], [38] automatically partitions programs
so that high and low-confidentiality data are processed
by separate processes, or on separate hosts. The SOAPP
project [39] proposes a semi-automatic technique in which
a programmer annotates a program with a hypothetical sand-
box, and a program analysis validates that the sandbox does
not introduce unexpected program behavior. The SOAPP
approach is similar in spirit to [32], which uses model
checking to verify that a programmer-proposed partitioning
and set of calls to security primitives satisfies a given
policy. In contrast, capweave automatically infers where to
invoke library functions that cause the program to execute in
different processes (if necessary), and rewrites the program
accordingly.

Skalka and Smith [40] present an algorithm that takes
a Java program instrumented with capability-based security
checks, and attempts to show statically that some checks
are always satisfied. Hamlen et al. [41] verify that programs
rewritten by an IRM rewriter are correct. Thus, the work
in both of those papers concerns identifying superfluous
capability checks in managed programs, whereas our work
concerns how to infer the correct placement of primitives to
restrict the capabilities of unmanaged programs.

Safety games: Safety games have been studied as a
framework for synthesizing reactive programs and control
mechanisms [14], [42]. Previous work describes algorithms
that take a safety game, determine which player can always
win the game, and synthesize a winning strategy for the
winning player [14]. The key contribution of our work is
to demonstrate that such game-theoretic problems can be
applied in practice to rewrite programs to enforce a security
policy.

VI. CONCLUSION

New operating systems, such as the Capsicum capability
system, define powerful system-level primitives for secure
programming, but such primitives are non-trivial to use. This
paper presents a policy-weaver for Capsicum, capweave,
that takes from a programmer an uninstrumented program
and a high-level policy that describes correct behavior of the

program. capweave automatically infers where to invoke
security primitives and rewrites the program accordingly.
In practice, capweave produces programs that match the
behavior and performance of programs manually modified
by an expert. capweave is designed so that a Capsicum Ar-
chitect can easily add, remove, or update new programming
libraries as they continue to be developed.

Acknowledgments: We gratefully acknowledge the
work of the Capsicum development team, in particular Pawel
Dawidek, Khilan Gudka, and Ben Laurie, in developing Cap-
sicum and manually instrumenting programs for Capsicum.
We thank Michael Zhivich and Jeffrey Seibert at MITLL
for developing the capweave policy for PHP. We thank
our shepherd, Niels Provos.

Supported, in part, by DARPA and AFRL under contracts
FA8650-10-C-7088 and FA8750-10-C-0237. The views,
opinions, and/or findings contained herein are those of the
authors and should not be interpreted as representing the
official views or policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the
Department of Defense.

REFERENCES

[1] “CVE-2007-3798,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2007-3798, July 2007.

[2] “CVE-2004-1488,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CAN-2004-1488, Feb 2005.

[3] “CVE-2010-0405,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2010-0405, April 2010.

[4] “Vulnerability note VU#381508,” http://www.kb.cert.org/
vuls/id/381508, July 2011.

[5] “Vulnerability note VU#520827,” http://www.kb.cert.org/
vuls/id/520827, May 2012.

[6] “CVE-2007-4476,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2007-4476, Aug 2007.

[7] “GNU Tar and GNU Cpio rmt read () function buffer
overflow,” http://xforce.iss.net/xforce/xfdb/56803, Mar 2010.

[8] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and R. Mor-
ris, “Labels and event processes in the Asbestos operating
system,” in SOSP, 2005.

[9] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris, “Information flow control for
standard OS abstractions,” in SOSP, 2007.

[10] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway,
“Capsicum: Practical capabilities for UNIX,” in USENIX
Security, 2010.

[11] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières,
“Making information flow explicit in HiStar,” in OSDI, 2006.

[12] “FreeBSD 9.0-RELEASE announcement,” http:
//www.freebsd.org/releases/9.0R/announce.html, Jan. 2012.

[13] “cl-capsicum-discuss – Capsicum project discussion list,”
https://lists.cam.ac.uk/mailman/listinfo/cl-capsicum-discuss,
2012.

[14] R. Alur, S. L. Torre, and P. Madhusudan, “Modular strategies
for recursive game graphs,” in TACAS, 2003.

[15] W. R. Harris, S. Jha, and T. W. Reps, “Secure programming
via visibly pushdown safety games,” in CAV, 2012.

[16] C. Lattner, http://llvm.org/, Nov. 2011.

[17] R. Alur and P. Madhusudan, “Visibly pushdown languages,”
in STOC, 2004.

[18] S. Graf and H. Saı̈di, “Construction of abstract state graphs
with PVS,” in CAV, 1997.

[19] W. R. Harris, S. Jha, T. Reps, J. Anderson, and R. N. M. Wat-
son, “Declarative, temporal, and practical programming with
capabilities,” http://minds.wisconsin.edu/handle/1793/64927,
University of Wisconsin-Madison, Tech. Rep. TR1785, 2013.

[20] A. One, “Smashing the stack for fun and profit,” Phrack
Magazine, vol. 49, no. 14, 1998.

[21] “Using Capsicum for sandboxing,” http://www.links.org/?p=
1242, April 2012.

[22] A. Ehrenfeucht and J. Mycielski, “Positional strategies for
mean payoff games,” International Journal of Game Theory,
vol. 8, no. 2, 1979.

[23] P. A. Karger, “Limiting the damage potential of discretionary
trojan horses,” in IEEE S&P, 1987.

[24] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge:
Splitting applications into reduced-privilege compartments,”
in NSDI, 2008.

[25] P. Loscocco and S. Smalley, “Integrating flexible support for
security policies into the Linux operating system,” in USENIX
Annual Technical Conference, 2001.

[26] O. S. Saydjari, “Lock : An historical perspective,” in ACSAC,
2002.

[27] C. Wright, C. Cowan, J. Morris, and S. S. G. Kroah-Hartman,
“Linux security modules: General security support for the
Linux kernel,” in Found. of Intrusion Tolerant Systems, 2003.

[28] Ú. Erlingsson and F. B. Schneider, “IRM enforcement of Java
stack inspection,” in IEEE S&P, 2000.

[29] R. N. M. Watson, “A decade of OS access-control extensibil-
ity,” Commun. ACM, vol. 56, no. 2, Feb. 2013.

[30] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in CCS, 2005.

[31] J. Ligatti, L. Bauer, and D. Walker, “Edit automata: Enforce-
ment mechanisms for run-time security policies,” Int. J. Inf.
Sec., vol. 4, no. 1-2, 2005.

[32] W. R. Harris, N. A. Kidd, S. Chaki, S. Jha, and T. Reps, “Ver-
ifying information flow control over unbounded processes,”
in FM, 2009.

[33] P. Efstathopoulos and E. Kohler, “Manageable fine-grained
information flow,” in EuroSys, 2008.

[34] W. R. Harris, S. Jha, and T. Reps, “DIFC programs by
automatic instrumentation,” in CCS, 2010.

[35] N. Provos, “Privilege separated OpenSSH,” http://www.citi.
umich.edu/u/provos/ssh/privsep.html, Aug 2003.

[36] D. Kilpatrick, “Privman: A library for partitioning applica-
tions,” in USENIX Annual Technical Conference, 2003.

[37] D. Brumley and D. X. Song, “Privtrans: Automatically
partitioning programs for privilege separation,” in USENIX
Security Symposium, 2004.

[38] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng, “Secure web application via automatic parti-
tioning,” in SOSP, 2007.

[39] K. Gudka, R. N. M. Watson, S. Hand, B. Laurie, and A. Mad-
havapeddy, “Exploring compartmentalization hypothesis with
SOAPP,” in AHANS 2012, 2012.

[40] C. Skalka and S. F. Smith, “Static enforcement of security
with types,” in ICFP, 2000.

[41] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Certified
in-lined reference monitoring on .NET,” in PLAS, 2006.

[42] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-
time temporal logic,” in FOCS, 1997.

