
CTSRD Dr Peter G. Neumann (SRI) and Dr Robert N. M. Watson (Cambridge)
Jonathan Anderson, Ross Anderson, David Chisnall, Nirav Dave, Brooks Davis, Rance DeLong, Khilan Gudka, Steven Hand, Asif Khan, Myron King, Ben Laurie,
Patrick Lincoln, Anil Madhavapeddy, Ilias Marinos, Andrew W. Moore, Simon W. Moore, Alan Mujumdar, Steven J. Murdoch, Robert Norton, Philip Paeps, Michael Roe,
John Rushby, Hassen Saidi, Muhammad Shahbaz, Stacey Son, Richard Uhler, Jonathan Woodruff, Bjoern A. Zeeb

Approved for public release. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/
presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

Dr Peter G.
Neumann

Dr Nirav
Dave

Dr Robert N. M.
Watson

Dr Michael
Roe

Dr Hassen
Saidi

Mr Rance
DeLong

Mr Jonathan
Woodruff

Mr Stacey
Son

Members of the CTSRD team and its external oversight group at our May 2011 review meeting in Cambridge, UK

Joe Stoy (Bluespec), Jonathan Woodruff (Cambridge), Ben Laurie (Google), Ross Anderson (Cambridge),
Virgil Gligor (CMU), Philip Paeps (Cambridge), Li Gong (Mozilla), Peter Neumann (SRI)

Simon Cooper, Michael Roe (Cambridge), Robert Watson (Cambridge), Howie Shrobe (DARPA),
Steven Murdoch (Cambridge), Sam Weber (NSF), Jonathan Anderson (Cambridge), Simon Moore (Cambridge)

Anil Madhavapeddy (Cambridge), Dan Adams (DARPA), Rance DeLong (LynuxWorks),
Jeremy Epstein (SRI), Hassen Saidi (SRI)

Mr Brooks
Davis

Dr David
Chisnall

Mr Khilan
Gudka

Mr Robert
Norton

Mr Bjoern A.
Zeeb

Many Cambridge members of the CTSRD team meeting for an August 2012 project photo in Cambridge, UK

Jonathan Woodruff, Richard Clayton, Mchael Roe, Ross Anderson, David Chisnall, Robert Watson

Khilan Gudka, Robert Norton, Simon Moore

CTSRD is developing a principled, formally-supported, robust, programmer-
friendly, high-performance and incrementally adoptable hardware/software platform
designed for efficient implementation of the principle of least privilege. Software
security structures and design principles are reinforced by:

• Capability Hardware Enhanced RISC Instructions (CHERI)
• Security Oriented Analysis of Application Programs (SOAAP)
• Temporally Enforced Security Logic Assertions (TESLA)

CTSRD adopts a hybrid approach, able to run existing C-language operating
systems and application software while supporting gradual adoption of its novel
protection features for critical Trusted Computing Bases (TCBs) and high-risk
components. CTSRD allows programmers to wipe the slate clean incrementally.

Bluespec Extensible RISC Implementation (BERI)
BERI is a platform for research into the hardware-software interface:

• 64-bit MIPS ISA FPGA soft CPU core
• Off-the-shelf open-source software stack

 including FreeBSD, LLVM, and applications

Bluespec is a high-level hardware description
language that facilitates hardware design-space
exploration. BERI runs in a cycle-accurate simulation, and in Altera FPGA-based
Terasic DE4 boards at 100 MHz and the Xilinx-based NetFPGA 10G boards.

Apache

FreeBSD

Hypervisor
Xen/MIPS?

BERI

clang/LLVM, BSD ELF tools

Reference applications

Reference compiler/toolchain

Reference operating system

Reference hypervisor

Hardware research stack

X.org ChromiumPostgres

C simulation FPGA synthesis
tPad / DE4 / NetFPGA10G

Hardware simulation/
implementation substrates ...

...

CHERI tablet and rack-mount BlueHive array, based on Terasic's DE4 FPGA board. CHERI CPUs support
fine-grained compartmentalization, mitigating broad classes of known and unknown vulnerabilities.

CHERI extensions to Clang/LLVM
We have added compiler back-end support for CHERI features to the LLVM
compiler infrastructure and begun experimenting with C extensions via the Clang
front end. This includes hardware enforcement of language rules and informal
patterns and new extensions. For example, the hardware can enforce immutability
and bounds checking on pointers and safely sharing memory between mutually-
distrusting compartments. We next plan
to extend support to higher-level
languages, including enforcing object
encapsulation in Objective-C, even with
C code doing arbitrary pointer arithmetic.

int aFunction(const __capability int *x)
{

// This will abort at run time:
*(__capability int) x = 42;
return *x;

}

Formal verification of the CHERI microprocessor
In collaboration with Bluespec, Inc. we have provided a translation from BSV
intermediate representations to Seri, a high-level Haskell-based constraint language.
This provides a path to reason
about BSV designs in Sal, PVS,
or Yices. Combined with our
CHERI2 prototype, we will
soon begin formal verification
of the CHERI implementation,
including ISA-level properties
and pipeline correctness.

CheriBSD: Adapting UNIX for hardware capabilities
CheriBSD is an adaptation of the widely used FreeBSD operating system to support
CHERI's protection features. CHERI sandboxes replace capability-mode UNIX
processes in Capsicum, supporting orders of magnitude more compartmentalization
granularity. We have made modest changes to support capability-aware software:

• The kernel maintains per-thread capability register state.
• The kernel enforces that system calls are made only by unsandboxed user code.
• A software capability invocation exception handler has been implemented.

CheriBSD supports tablet, desktop, server, and embedded demonstration scenarios.

CHERI1 and CHERI2 hardware prototypes
We have developed two prototypes of the 64-bit CHERI processor based on BERI,
both able to boot FreeBSD and run a full suite of open-source applications as well as
act as a testbed for fine-grained, hardware-supported compartmentalization:

• CHERI1 employs a conventional approach to pipelined processor implementation
in Bluespec, focused on a performant contemporary implementation. This has
been the primary software prototyping and demonstration platform to date.

• CHERI2 uses a stylised form of Bluespec intended to support formal verification
techniques through a mapping from Bluespec into PVS. CHERI2 also implements
initial support for multi-threading and multi-core.

Security Oriented Analysis of Application Programs (SOAAP)
Experience with Capsicum shows that
adapting programs for compartmentalization
is difficult, leading to problems with
correctness, performance, complexity, and
critically, security. SOAAP is a set of
semi-automated techniques to assist
programmers with compartmentalization.

Compartmentalization hypotheses are
explored through source-code annotations
describing sandboxing strategy (e.g.,
sandbox creation, rights delegation, and
RPC forwarding). Security goals and
properties (such as information flow
constraints and past vulnerabilities) can
also be labeled in program source code.

SOAAP uses static and dynamic analysis to
engage developers in interactive dialogue,
identifying potential correctness bugs (e.g.,
data inconsistencies), and security breaches
(e.g., information leaks). SOAAP builds on
Clang, LLVM, Valgrind, and DTrace.

Hybrid code blending
general-purpose ISA and
capabilities

Legacy application code
compiled only for general-
purpose ISA

Per-address space
memory management
and capability executive

High-assurance capability-
only code; stand-alone or
"pools of capabilities"

Hybrid
Capsicum

kernel

Kernel address space executive

Device
drivers

Network
stack

Hybrid
Chromium

web
browser

Java
Script

Xen hypervisor with conventional VM
and capability interfaces

C++ RT

Pure
capability
OS and

application
software

stack
Address space executive Address space executive

CHERI

In
de

pe
nd

en
t c

ap
ab

ilit
y

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

Address space executive

Pure
capability

application
stack

zlib

Capsicum
kernel

Kernel VM and allocator

Network
stack

Xen hypervisor

libc malloc

Commodity CPU

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s
su

pp
or

te
d

by
 p

ag
ed

 V
M

Classic
UNIX

application

zlib

Chromium
web

browser

Java
Script

C++ RT

libc malloc

Device
drivers

...

An incrementally adoptable hybrid capability system model
CHERI evaluates capabilities prior to MMU virtual address translation, giving each
UNIX process, and the kernel, its own capability system. Unmodified sandboxed
programs fetch instructions, and load and store data implicitly via reserved
capability registers. Capability-aware and legacy MIPS code can be combined,
allowing unmodified programs to use compartmentalised libraries.

Thanks to its hybrid capability architecture, CHERI can be adopted one software
component at a time. CHERI provides immediate security benefits for critical
software, while offering a long-term capability system vision motivated by the
principle of least privilege ‒ with access to a complete software stack from day one.

Capability Hardware Enhanced RISC Instructions (CHERI)
CHERI provides a fine-grained protection model within address spaces,
complementing existing virtual-memory based process models by providing efficient
and more programmable support for application compartmentalization:

• Uses a reduced instruction set computer (RISC) approach, providing tools for
compiler and operating system writers while minimizing hardware complexity.

• Targets low-level software TCBs: OS kernels, language runtimes and web
browsers, as well as high-risk data processing such as video decoding.

• Allows simultaneous implementation of different security models, reflecting
diverse OSs, programming languages, and application requirements.

CHERI ISA-level testing and verification
CHERI and CHERI2 implement both the 64-bit MIPS and CHERI ISAs. This
requires significant testing and analyses:

• We have created a PVS model of the CHERI
 ISA to reason about security properties and
 check the expected results of tests
• We have developed an extensive MIPS and

 CHERI ISA test suite (thousands of tests).
• We have implemented a fuzzing suite to detect

 pipeline and exception-handling bugs.

cSetLength(s : CMachine, cd : Register,
 cb : Register, rt : DWord) :
 CMachine =
 IF registerAccessible(s, cd) AND
 registerAccessible(s, cb) AND
 s`registers(cb)`tag AND
 s`registers(cb)`unsealed AND
 0 <= rt AND
 rt <= s`registers(cb)`length THEN
 s WITH [
 registers := s`registers WITH [
 (cd) := s`registers(cb) WITH [
 length := rt
]
]
] ELSE
 cException(s)
 ENDIF

!219/+=1>#
&1:>7,2(#

J#

?/@#3/A*)9/2#B*-/#
@*9'#C,))/7#C,2,0/9/2)#

#D#C1))*E-/#/C'/0/2,-#+,C,E*-*9(#C,2,0/9/2)#

+9(C/# 0C/20)# 1C/20)#

19(C/#FGH#E*9)I#

E,)/#FGH#E*9)I#

-/>A9'#FGH#E*9)I#

+9(C/# 0C/20)#

/,772#FGH#E*9)I#

E,)/#FGH#E*9)I#

-/>A9'#FGH#E*9)I#

+9(C/# 0C/20)#

E,)/#FGH#E*9)I#

-/>A9'#FGH#E*9)I#

B-6-#7-1-85.569#

72K*#7-1-85.569#

J>K1L/7#
L8M*=6#7-1-85.569#

Instruction
Fetch

Register
Fetch Decode Execute Memory

Access

Capability Coprocessor

Instruction
Cache MMU: TLB Data

Cache

Memory

Control Coprocessor

Register File

A RISC approach to capability system security
CHERI extends MIPS with additional capability registers, which represent the
current thread's security context. Application code utilizes data capabilities to
provide low-level memory safety linked to program constructs, and object
capabilities to implement efficient security domain switching. Thread context
switches are security domain switches, offering a number of potential hardware
implementations of object invocation, including hardware message passing facilities.

With CHERI, domain switching and shared memory between security domains are
potentially orders of magnitude faster than conventional MMU-based designs –
allowing orders of magnitude greater software compartmentalization to be deployed
within our most sensitive and highest risk software components. Subdivision within
kernel and application address spaces using capabilities allows software to play by
single address space rules, avoiding distributed system programming problems.

Compartmentalized "fetch" programConventional "fetch" program

Kernel

main
loop

vulnerable
HTTP fetch

logic

Kernel

Conventional
UNIX process

Capability mode process

main
loop

vulnerable
HTTP fetch

logic

Capsicum and the application compartmentalization motivation
Programmers are turning to application compartmentalization to mitigate inevitable
vulnerabilities: software is decomposed into sandboxed components, each with only
the rights it requires to function. This approach employs the principle of least
privilege: as granularity increases, rights delegated to individual sandboxes decrease.
As vulnerabilities are exploited, only the rights of the affected component are leaked,
forcing attackers to exploit many more vulnerabilities to accomplish the same goals.

The Capsicum hybrid capability model developed by Cambridge
and Google blends contemporary OS design with capability
system security, addressing semantic mismatches between OS
features and application compartmentalization. Rights are
delegated using capabilities, unforgeable tokens of authority.
Capability-mode processes have access only to explicitly
delegated rights as the use of OS global namespaces is denied.

However, compartmentalization scalability – utilization of increasing numbers of
sandboxes – is constrained by performance and programmability limitations of
current hardware and software. Today's CPU instruction set architectures (ISAs)
reflect a 1990s design consensus conflating virtualization and protection, limiting
protection scalability. Compartmentalizing applications using IPC-linked processes
also introduces distributed systems programming problems for local applications.

Current systems are exposed to greater threats, demanding dramatically increased
use of compartmentalization, placing strain on protection and programming models
designed for less risky workloads. CTSRD is developing clean-slate technologies to
support large-scale deployment of compartmentalization for the first time.

Temporally Enhanced Security Logic Assertions (TESLA)
TESLA allows programmers to describe
temporal properties of security-critical
software. For instance, in the inset example,
a programmer specifies that calls to the
ffs_write() function must be proceeded by a
successful mac_vnode_check_write() call, but
this check is missing in one code path
through the VM paging system.

Programmers can write TESLA assertions in
C, allowing tight integration with the code
they describe ‒ including C type checking ‒
or in the domain-specific Temporal Event
Assertion Language (TEAL). Assertions are
converted into finite-state automata that are
driven by software events observed by
instrumentation. This allows us to validate
security properties at runtime.

TESLA is implemented as a Clang analysis
tool, which interprets assertions, and a suite
of LLVM-based tools that instrument code
and implement automata.

syscallenter()

vn_rdwr()

mac_vnode_check_write()

ffs_write()

tassert(
 previously(mac_vnode_check_write() == 0)
)

vop_stdputpages()

vnode_pager_generic_putpages()

enter(syscallenter) security_check(17,12) == 0 enter(syscallenter)

(*,*,*)

(*,*,*)

(17,12,0) (17,12,0)

match "a.c:120#0", x, y

TEAL compiler

LLVMTESLA "optimiser"Clang

TESLA analyser
C

Manifest
(TESLA IR)

Translate

Codegen object
filesCompile Instrument

TEAL

Extract

