
CTSRD CRASH-worthy
Trustworthy

Systems
Research and
DevelopmentPeter G. Neumann, Robert N. M. Watson, Ross Anderson, Jonathan Anderson, Steven Hand, Patrick Lincoln, Anil Madhavapeddy, Andrew W. Moore, Simon Moore, Steven J. Murdoch, Philip Paeps, Michael Roe, John Rushby, Hassen Saidi, Jonathan Woodruff.

6. TCB security policy implementations are often artifacts of security
policy rather than its direct representation as security policies. Testing
the correspondence between a policy and its implementation is often
difficult, as security policies are often temporal properties, and
software assertions test only instantaneous properties. Programmers
must resort to verbose, time-consuming, and error-prone manual
instrumentation and state management to test critical properties such as:
• Check before use (¬accessed(c, v) UNTIL checked(c, v))
• Eventual audit (accessed(v) → FINALLY audited(v))
• Software and protocol state machines
• Security meta-data life cycles and memory safety

1. The Capability Hardware Enhanced RISC Instructions (CHERI) CPU
architecture is motivated by the compartmentalisation problem: current
instruction set architectures (ISAs) are unable to easily or efficiently
represent decomposed software designs implementing the principle of
least privilege. This problem results from conceptual mismatch with
Memory Management Unit (MMU)-based virtual address separation:
Translation Look-aside Buffer (TLB)-related performance costs scale
disproportionately to increase in compartmentalisation granularity. Virtual
addressing also makes it harder to develop and debug compartmentalised
software. As a result, software developers are deterred from decomposing
applications to mitigate security vulnerabilities or map distributed system
security policies into local enforcement primitives.

CTSRD is a principled, formally supported, robust, programmer-friendly, high-performance, and incrementally adoptable hardware/software platform designed for efficient software implementation of the principle of least privilege. Software security structures and design principles are reinforced by Capability
Hardware Enhanced RISC Instructions (CHERI) and Temporally Enforced Security Logic Assertions (TESLA). CTSRD adopts a hybrid approach, able to run existing operating systems and applications while supporting gradual adoption of advanced security features beginning with critical trusted computing bases
(TCBs) and high-risk software components. CTSRD allows programmers to wipe the slate clean — one piece at a time.

#define tassert_syscall(exp) \
 tesla_assert(\
 TESLA_THREAD, /* per-thread events */ \
 syscallenter(), /* start event */ \
 syscallret(), /* stop event */ \
 (exp)) /* assertion to test */

int
vn_rdwr(enum uio_rw rw, struct vnode *vp, ...,
 struct ucred *active_cred, struct ucred *file_cred,
 ...)
{
 if (rw == UIO_WRITE) {
 tassert_syscall(previously(mac_vnode_check_write(
 active_cred, file_cred, vp) == 0));
 tassert_syscall(eventually(audit_submit()));
 }
 ...
}

1. Software author writes TESLA-
annotated C source code

2.TESLA clang plugin extracts
assertions, generates specfiles
and assertion implementations
in a dependency pass.

3. clang, augmented by the TESLA
instrumentation plugin, compiles
original and generated source code,
inserting instrumentation as needed

Original application C
source code with

TESLA annotations

TESLA
instrumentation
specification file

Generated C code
for assertions libtesla

runtime library

Compiled and
instrumented application

that enforces TESLA
assertions

Optional external
TEAL scripts

#include <netinet/tcp_fsm.h>

automaton tcp_connect() {

 void active_close(struct tcpcb *tp) {
 tp->t_state = TCPS_FIN_WAIT_1;
 either {
 tp->t_state = TCPS_CLOSING;
 tp->t_state = TCPS_TIME_WAIT;
 } or {
 tp->t_state = TCPS_FIN_WAIT_2;
 tp->t_state = TCPS_TIME_WAIT;
 }
 tp->t_state = TCPS_CLOSED;
 tcp_free(tp); exit;
 };

 void established(struct tcpcb *tp) {
 tp->t_state = TCPS_ESTABLISHED;
 either {
 active_close(tp->t_state);
 } or {
 tp->t_state = TCPS_CLOSE_WAIT;
 tp->t_state = TCPS_LAST_ACK;
 optional { tp->t_state = TCPS_CLOSED; }
 }
 tcp_free(tp); exit;
 };

 void main(struct tcpcb *tp) {
 tp->t_state = TCPS_CLOSED;
 either {
 tp->t_state = TCPS_LISTEN;
 optional { tp->t_state = TCPS_CLOSED; }
 tcp_free(tp);
 } or {
 optional { tp->t_state = TCPS_SYN_SENT; }
 either {
 tp->t_state = TCPS_SYN_RECEIVED;
 either {
 established (tp->t_state);
 } or {
 active_close(tp->t_state);
 }
 } or {
 established (tp->t_state);
 }
 } or {
 tcp_free(tp); exit;
 }
}
}

24

16

{CLOSED}

14

{Func_prologue_tcp_free}

29

(established == 1) (established == 0)

21

22

{CLOSE_WAIT}

{LAST_ACK}

{LAST_ACK}

17

1

active_close=1

8

{FIN_WAIT_1}

5

{FIN_WAIT_1}

11

2

{Func_prologue_tcp_free}

(active_close == 1)

(active_close == 0)

9

{FIN_WAIT_2}

4

{TIME_WAIT}

6

{CLOSING}

{CLOSED}

{TIME_WAIT}

34

35

{CLOSED}

{Func_prologue_tcp_free}

28

58

{CLOSED}

32

{CLOSED}

39

{CLOSED}

54

{CLOSED}

43

{CLOSED}

{Func_prologue_tcp_free}

{LISTEN}

{LISTEN}

{SYN_SENT} {SYN_SENT}

56

established=0

50

{SYN_RECEIVED}

46

{SYN_RECEIVED}

active_close=0

48

established=1

{ESTAB} {ESTAB}{ESTAB} {ESTAB}

!"#$%&'#()
*#+(,-".)

!"

/%0)1%234$%")536%)
03$7)8-44%,)8-"-9%$%"4)

):)8#443;6%)%87%9%"-6)&-8-;363$.)8-"-9%$%"4)

&$.8%) 98%"94) #8%"94)

#$.8%)<=>);3$4?)

;-4%)<=>);3$4?)

6%(2$7)<=>);3$4?)

&$.8%) 98%"94)

%-,,")<=>);3$4?)

;-4%)<=>);3$4?)

6%(2$7)<=>);3$4?)

&$.8%) 98%"94)

;-4%)<=>);3$4?)

6%(2$7)<=>);3$4?)

#$%$"&$'$()*)%+"

&,-."&$'$()*)%+"

@(A#B%,)
/(0.1%"&$'$()*)%+"

tes
la_

sy
sc

all
_re

tur
n

mac_vnode_check_write(cred, vp) == 0

previously(mac_vnode_check_write(cred, vp) == 0) true

audit_submit()

trueeventually(audit_submit())

tes
la_

as
se

rt

unknown

au
dit

_s
ub

mit

Point and quantified TESLA expressions Events over time

unknown

tes
la_

sy
sc

all
_e

nte
r

tes
la_

as
se

rt

mac
_v

no
de

_c
he

ck
_w

rite

Events over timePoint and quantified TESLA expressions

expression evaluated !

!expression evaluated

int
vn_rdwr(enum uio_rw, struct vnode *vp, ...,
 struct ucred *active_cred, struct ucred
 *file_cred, ...)
{
 if (rw == UIO_WRITE) {
 tassert_syscall(previously(mac_vnode_check_write(
 active_cred, file_cred, vp) == 0));
 tassert_syscall(eventually(audit_submit());
 ...
}

TESLA assertion system

C Analysis

Spec
instrumentation.cTEAL

Compiler

Codegen
object
files

Parsing

Clang

Analysis

TESLA

Instrumentation

assertions

Approved for public release. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract
FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the
official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

Members of the CTSRD team and its external oversight group at our May 2011 review meeting in Cambridge, UK

Joe Stoy (Bluespec), Jonathan Woodruff (Cambridge), Ben Laurie (Google), Ross Anderson (Cambridge),
Virgil Gligor (CMU), Philip Paeps (Cambridge), Li Gong (Mozilla), Peter Neumann (SRI)

Simon Cooper, Michael Roe (Cambridge), Robert Watson (Cambridge), Howie Shrobe (DARPA), Steven Murdoch (Cambridge),
Sam Weber (NSF), Jonathan Anderson (Cambridge), Simon Moore (Cambridge)

Anil Madhavapeddy (Cambridge), Dan Adams (DARPA), Rance DeLong (LynuxWorks),
Jeremy Epstein (SRI), Hassen Saidi (SRI)

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive

High-assurance capability-only code; stand-alone or "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web

browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application
+ kernel

stack
libc executive libc executive

CHERI

OCaml runtime

In
de

pe
nd

en
t c

ap
ab

ilit
y

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

Capsicum
kernel

Kernel VM and allocator

Network
stack

Xen hypervisor

libc malloc

Commodity CPU

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s
su

pp
or

te
d

by
 p

ag
ed

 V
M

Classic
UNIX

application

zlib

Chromium
web

browser

Java
Script

C++ RT
OCaml runtime

OCaml
application

stack

libc malloc libc malloc

Device
drivers

CHERI processor and software

!"#$$#"#
!%#
!&#
'#
'#
'#

!(%#

)*+*,-.#/0,123*#
!*4536*,3#

/7#

7-1-85.569#!*4536*,3#

1*,:3# 2691*# 8-3*# .*+46;#
1*,:3# 2691*# 8-3*# .*+46;#
1*,:3# 2691*# 8-3*# .*+46;#

'#
'#
'#

1*,:3# 2691*# 8-3*# .*+46;#

1*,:3# 2691*# 8-3*# .*+46;#7/7#

7!"#<4*+*,-.#10,123*#=-1-85.569>#
7!%#
7!&#

7!(%#

Hybrid code blending general-purpose registers
and capabilities

Legacy application code compiled for general-
purpose registers

Per-address space memory management and
capability executive

High-assurance capability-only code; stand-
alone or in "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application +
kernel
stacklibc executive libc executive

CHERI

OCaml runtimeIn
de

pe
nd

en
t c

ap
ab

ilit
y

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

5. CHERI's 64-bit MIPS-derived CPU prototype is written in the Bluespec
hardware description language (HDL), which facilitates rapid prototyping
and design space exploration. As a starting point for our hybrid software
stack, we have selected Cambridge's FreeBSD-derived Capsicum hybrid
capability operating system. We are adapting the clang and LLVM
compiler suite to directly support protection features in a modified IR. This
software foundation will allow us to experiment with new ISA security
features while running with a complete software stack from day one.
We are investigating a mapping from Bluespec into SRI's Evidentiary Tool
Bus (ETB), including PVS, SAL, and the Yices SMT solver, offering the
promise of a formal grounding from hardware up — a technique we also
hope to extend to verifying hardware and software in composition.
CHERI is incrementally adoptable with immediate security benefits,
while still offering a long-term capability system vision motivated by the
principle of least privilege. System developers will be able to wipe the slate
clean — one piece at a time.

10. TESLA is implemented using a clang/LLVM-based C instrumentation
framework and the libtesla run-time library. Assertions are converted into
C, and the TESLA clang plug-in instruments function prologues, epilogues,
assignment through types, and other language-visible events. libtesla
provides synchronisation and state management for in-flight automata.
Fired assertions can trigger a kernel panic, stack trace, or DTrace probes
that perform programmer, administrator, or user-scripted actions.

8. TESLA's simple assertion language adds temporal quantifiers
previously and eventually to the C assertion syntax, allowing assertions
to refer to past and future events scoped to a timeline and programmer-
selected ordering (per-thread or global).
Assertions can also be expressed directly as automata using the TESLA
Assertion Language (TEAL). Below, TESLA validates FreeBSD's TCP
implementation by checking that assignments to the tcpcb.t_state field
conform to the the TCP protocol specification. This technique can also be
used to validate cryptographic protocol conformance (e.g., IPSEC or SSH).

9. We plan to add new assertion types checking sampled data
distributions over time and real-time properties. This will allow us to
validate cryptographic and network protocol properties such as sequence
number non-reuse within a window, and timely protocol rekeying.

Dr. Peter G Neumann Dr. Robert N. M. Watson Dr. Simon Moore Mr. Jonathan Woodruff Dr. Anil Madhavapeddy

Mr. Rance DeLongMr. Jonathan Anderson Mr. Ben Laurie Dr. Patrick LincolnDr. Hassen Saidi

2. CHERI addresses these problems through efficient and compiler-
friendly hardware primitives to support the object-capability security
model. In CHERI, manipulation of protection properties is as natural and
lightweight as code and data manipulation is in commodity CPUs today.
Capability registers supplement general-purpose registers, allowing
protection to be managed directly by the compiler. CHERI's capability
features allow a large number of simultaneous and frequently switching
security domains to co-exist efficiently, utilising more scalable data and
code caches in the CPU rather than the TLB. Tagged memory allows
capabilities, code, and data to co-exist in system memory.
CHERI takes a reduced instruction set computer (RISC) approach to
capabilities, providing tools for compiler and operating system writers
while minimising hardware complexity. CHERI's primitives allow
simultaneous implementation of different security models, reflecting
diverse OS, programming language, and application requirements.

3. CHERI targets low-level software TCBs: OS kernels, language run-
times, and web browsers, as well as high-risk data processing such as
video decoding. CHERI's hybrid capability architecture allows
capabilities to be adopted one software component at a time, transparently
to other components. CHERI sandboxes unmodified RISC code by
indirecting loads and stores via general-purpose registers through a
reserved capability register. CHERI's composition of capabilities and the
MMU places capability environments "above" the virtual address space.
Subdivision of address spaces using capabilities allows compartmentalised
applications to operate efficiently, but also play by single address space
rules, avoiding distributed system programming problems.

4. Within an address space, a thread's security context is entirely
captured by its capability register set: thread context switches are security
context switches. CHERI is a multithreaded processor supporting low-
latency message passing of general-purpose and capability registers.
This translates into efficient protected subsystem invocation, orders of
magnitude faster than can be supported in MMU-based hardware designs.

7. Temporally Enforced Security Logic Assertions (TESLA) employs
ideas from model checking, projecting assertions into software as
continuously validated automata. Programmers represent properties in a
simple temporal assertion language or explicit automata:
• close to the code they describe,
• at arbitrary points in control flow,
• using similar syntax, types, and identifiers, as the program, and
• with to reference local and global program state.

