
The seL4 Capability
System

The seL4 Capability
System

(A user’s perspective)

The seL4 Capability
System

(A user’s perspective)
(Circa 2013)

The seL4 Capability
System

(A user’s perspective)
(Circa 2013)

Matthew P. Grosvenor

A little history

A little (user) history

A little (user) history
• 2008 - Advanced Operating Systems (Heiser et.al)

• Built an OS personality on OKL4 (in 12 weeks)

• Nov 2008 - Joined NICTA

• Summer intern - 12 weeks

• Which became 18 moths PT for course credit

500 days of seL4

1. Wrote the first draft of what would become the
seL4 User Manual

2. Tried to solve this problem:

• How do you write capalloc()

• How do you write capfree()

500 days of seL4

1. Wrote the first draft of what would become the
seL4 User Manual

2. Tried to solve this problem:

• How do you write capalloc()

• How do you write capfree()

Why was this
so hard???

Part I: The really good ideas in the seL4
Capability System

The seL4 Kernel
• L4 family micro-kernel, realtime OS**

• About 10,000 lines of C, and a few hundred lines of Asm

• first “general purpose” “kernel” to be fully verified

• Machine checked refinement proof that

• the (ARM) C code implements an executable Haskell
model

• the Haskell model implements a high level specification

• Capability based

seL4 Protection

• Capabilities using MMU / rings for protection.

• All dynamic allocation in the kernel handled via
capability system. No dynamic memory
allocation in the kernel!

• All system calls are capability “invocations”

seL4 Protection

• Capabilities using MMU / rings for protection.

• All dynamic allocation in the kernel handled via
capability system. No dynamic memory
allocation in the kernel!

• All system calls are capability “invocations”

seL4 System Objects
Ideal world for seL4: everything is physically
memory mapped

seL4 System Objects
Ideal world for seL4: everything is physically
memory mapped

Mem

Physical memory

0x00 0xFFF

seL4 System Objects
Ideal world for seL4: everything is physically
memory mapped

Mem

Physical memory

VGA NICMem Mem

Some memory is “special” (devices), so we carve
it out into special ranges

0x00 0xFFF0x10 0x11 0x55A 0x66A

seL4 System Objects
Ideal world for seL4: everything is physically
memory mapped

VGA NICMem MemKernel

Physical memory

0x00 0xFFF0x10 0x11 0x55A 0x66A

Allocate some memory to the kernel

seL4 System Objects
Ideal world for seL4: everything is physically
memory mapped

VGA NICMem MemKernel

Physical memory

0x00 0xFFF0x10 0x11 0x55A 0x66A

Everything else becomes a memory object

VGA Mem NIC Mem

seL4 System Objects
Ideal world for seL4: everything is physically
memory mapped

VGA NICMem MemKernel

Physical memory

0x00 0xFFF0x10 0x11 0x55A 0x66A

Nothing special about devices, just memory

Mem Mem Mem Mem

seL4 System Objects
Ideal world for seL4: everything is physically
memory mapped

VGA NICMem MemKernel

Physical memory

0x00 0xFFF0x10 0x11 0x55A 0x66A

Nothing special the devices, : just memory
(corner case: but, physical addresses matter for
these, discussed later)

Mem Mem Mem Mem

seL4 System Objects
Real world for seL4: everything is physically
memory mapped + plus a couple of extras

VGA NICMem MemKernel

Physical mem

0x00 0xFFF0x10 0x11 0x55A 0x66A

Mem Mem Mem Mem

0x01 0x02 0x03 0x04

I/O ports IRQs …

0x05 0x06 0x07

seL4 System Objects
Real world for seL4: everything is physically
memory mapped + plus a couple of extras

VGA NICMem MemKernel

Physical mem

0x00 0xFFF0x10 0x11 0x55A 0x66A

Mem Mem Mem Mem

0x01 0x02 0x03 0x04

I/O ports IRQs …

0x05 0x06 0x07
Ignore these

More on seL4 Objects
• All objects have a “type” (more in a moment)

• All objects are power of 2 sized

• All objects are power of 2 aligned

• Have some kind of physical address (mostly
mem mapped)

• Reside in the “object space” or physical memory
space

More on seL4 Objects
• All objects have a “type” (more in a moment)

• All objects are power of 2 sized

• All objects are power of 2 aligned

• Have some kind of physical address (mostly
mem mapped)

• Reside in the “object space” or physical
memory space

Object Types
• Untyped objects - default type

• “memory objects”, in seL4 called “untyped”

• Typed Objects:

• TCB - Thread control block (object)

• Page Directory / Page Table (objects)

• IPC end point / AsyncIPC endpoint (objects)

• Capability Objects (called “Cap Nodes” or “CNodes”)

seL4 Capabilities
• Access to every object is mediated though a capability.

• seL4 “syscalls” are capability “invocations” on objects

• e.g.. Map a page, start a thread etc.

• seL4 Caps:

• 16B - Stored in a “CNode” object

• Store object type and physical address

• Access control (R/W/E/M) flags

• Include the capability derivation tree (more later)

Capabilities and Objects

VGA NICMem MemKernel

Physical mem
0x00 0xFFF0x10 0x11 0x55A 0x66A

CNode Mem Mem Mem

Capability Node (object) contains a list of
capabilities which are (roughly) fat pointers to other

objects in the system

Capabilities and Objects

VGA NICMem MemKernel

Physical mem
0x00 0xFFF0x10 0x11 0x55A 0x66A

CNode Mem Mem Mem

Capability Node (object) contains a list of
capabilities which are (roughly) fat pointers to other

objects in the system

Capability Addressing
Capability Node Object

Capability Addressing

Cap Cap Cap

Capability Node Object

Capability Addressing

Cap Cap CapCNode
Cap

Capability
Node Object

Capability Node Object

Capability Addressing
Capability Node Object

Cap Cap CapCNode
Cap

Capability
Node Object

0x00 0xFF

0x0 0xF

Capability Addressing

• Each address is a 32bit number or index into a
CNode

• Each CNode has a number of slots

• Each CNode has a “guard” value and length.

• Sometimes you need a depth as well

Capability Address Space

Cap Cap CapCNode
Cap

0x00 0xFF

0x0 0xF

Capability Address Space

Cap Cap CapCNode
Cap

0x00 0xFF

0x0 0xF

256 slots

16 slots

Capability Address Space

Cap Cap CapCNode
Cap

Capability
Node Object

0x00 0xFF

0x0 0xF

0x0000

16b guard

4bit guard

256 slots

16 slots0x0

(Guarded Page Table)

Capability Address Space

Cap Cap CapCNode
Cap

Capability
Node Object

0x00 0xFF

0x0 0xF

0x0000

16b guard

4bit guard

256 slots

16 slots0x0

(Guarded Page Table)

Capability Address Space

Cap Cap CapCNode
Cap

Capability
Node Object

0x00 0xFF

0x0 0xF

0x0000

16b guard

4bit guard

256 slots

16 slots0x0

(Guarded Page Table)

Cap

Capability Address Space

Cap Cap CapCNode
Cap

Capability
Node Object

0x00 0xFF

0x0 0xF

0x0000

16b guard

4bit guard

256 slots

16 slots0x0

0x00000103

Cap

Address =

Capability Address Space

Cap Cap CapCNode
Cap

Capability
Node Object

0x00 0xFF

0x0 0xF

0x0000

16b guard

4bit guard

256 slots

16 slots0x0

0x00000103

Cap

Address =

Capability Address Space

Cap Cap CapCNode
Cap

Capability
Node Object

0x00 0xFF

0x0 0xF

0x0000

16b guard

4bit guard

256 slots

16 slots0x0

0x00000103

Cap

Address =

Capability Address Space

Cap Cap CapCNode
Cap

Capability
Node Object

0x00 0xFF

0x0 0xF

0x0000

16b guard

4bit guard

256 slots

16 slots0x0

0x00000103

Cap

Address =

Capability Address Space

Cap Cap CapCNode
Cap

Capability
Node Object

0x00 0xFF

0x0 0xF

0x0000

16b guard

4bit guard

256 slots

16 slots0x0

0x00000103

Cap

Address =

More on seL4 Objects
• All objects have a “type” (more in a moment)

• All objects are power of 2 sized

• All objects are power of 2 aligned

• Have some kind of physical address (mostly
mem mapped)

• Reside in the “object space” or physical
memory space

seL4 Spaces

• “object space” or physical memory space

• “capability space” (cspace)

• Capability derivation space

Capability Derivation Space
Untyped

Untyped Untyped Untyped Untyped

CNode

TCB Page Dir Page TbleUntyped Untyped

seL4 Spaces

• “object space” or physical memory space

• “capability space” (cspace)

• Capability derivation space

• Virtual memory space (vspace)

Virtual Memory Space
TCB Page

Directory
Page

Directory

seL4 Spaces
• “object space” or physical memory space

physical memory addresses

• “capability space” (cspace) capability
addresses

• Capability derivation space (derivation tree)

• Virtual memory space (vspace) virtual memory
addresses

Part II: Why the ideas in Part I were bad ideas

seL4 Spaces
• “object space” or physical memory space

physical memory addresses

• “capability space” (cspace) capability
addresses

• Capability derivation space (derivation tree)

• Virtual memory space (vspace) virtual memory
addresses

seL4 Spaces
• “object space” or physical memory space

physical memory addresses

• “capability space” (cspace) capability
addresses

• Capability derivation space (derivation tree)

• Virtual memory space (vspace) virtual memory
addresses

As a seL4 programmer, you have to think
in 4 different address spaces at the same

time.

seL4 Spaces
• “object space” or physical memory space

physical memory addresses

• “capability space” (cspace) capability
addresses

• Capability derivation space (derivation tree)

• Virtual memory space (vspace) virtual memory
addresses

None of these are available (queriable) by
usersapce**

The root process

• Hard coded into the OS image

• At boot time, is given a description of the boot
capability state “boot info”.

• No virtual memory (stack only)

• A few (16-256) “free” capability node slots

Bootinfo

• A “machine parseable” description of the boot time
state of the CSpace

• Includes some hints about special “untyped”
memory regions for devices (eg VGA)

And now the problem

• Given:

• an initial set of capabilities (bootinfo)

• a running root process

• How do you arbitrarily allocate/deallocate
capabilities?

Book Keeping

• If you make changes to the default CSpace, you
need to bookkeep them.

Book Keeping

• If you make changes to the default CSpace, you
need to bookkeep them.

• Where do you put the book-keeping?

Book Keeping

• If you make changes to the default CSpace, you
need to bookkeep them.

• Where do you put the book-keeping? Virtual
memory.

Book Keeping

• If you make changes to the default CSpace, you
need to bookkeep them.

• Where do you put the book-keeping? Virtual
memory.

• But where do you get/put the capabilities for the
virtual memory?

Book Keeping
• If you make changes to the default CSpace, you

need to bookkeep them.

• Where do you put the book-keeping? Virtual
memory.

• But where do you get/put the capabilities for the
virtual memory? Make changes to the capability
space.

Book Keeping
• If you make changes to the default CSpace, you

need to bookkeep them.

• Where do you put the book-keeping? Virtual
memory.

• But where do you get/put the capabilities for the
virtual memory? Make changes to the capability
space.

Capability Allocation
Problem

• Given the current state of the system, can I derive:

• The capability I want, which may involve generating
many extra capabilities (eg. 128MB cap -> 8M x 16B
IPC cap.)

• Enough CNode caps to store all of the above.

• Enough Page table capabilities, to allocate memory to
store the book-keeping changes above.

• A plan to execute the changes to the CSpace and
VSpace

Capability Deallocation
Problem

• If I revoke a capability

• Will a CNode become empty?

• With the exception of the CNode cap itself.

• Will the book-keeping become empty

• With the exception of the CNode and VSpace
caps

• Can I make a plan for executing these changes

Capability Alloc / Dealloc

• I spent 18 months on this problem

• Had to write a constraint solver that would run in
static memory (stack only).

• “Aurora” project. More info available.

Conclusion

• seL4 makes some really sensible decisions about
how to make and manage caps.

• These turn out to be very hard to program against

• Please write programs against your API before you
build your OS.

For more info

• https://github.com/seL4/seL4

• https://sel4.systems/

• http://ssrg.nicta.com.au/projects/seL4/

Backups

IPC in seL4
• Dirty (clever) secret, there are no “syscalls” in seL4, they

are all IPCs.

• IPCs are sent to an endpoint. Which is a capability that
may be received in the kernel or by another application

• IPCs are done with a “rendezvous” style, one process
must call send the other must call read.

• Async IPC is a 32 bit register with bits that may be flipped.

• Async IPC is used for delivering interrupts.

