
Formally proving nonforgeability of capabilities
(work in progress)

Kyndylan Nienhuis and Peter Sewell

April 23, 2016



Security properties of CHERI

CHERI guarantees certain properties such as:1

I “Nonbypassability of the capability mechanism”
I “Nonforgeability of capabilities”
I “Integrity of the tags”

These properties allow higher level guarantees:
I “The separation kernel will provide controlled sharing among

different virtual machine partitions, and otherwise strict
isolation.”

We are investiging how to formally prove them.

1From CHERI Formal Methods Report §2.2, §3.2 and §10.3



Formally stating the properties

What does “controlled violation” mean in the following?
I The specifications of CCall and CReturn allow “controlled

violation of inductive preservation of capability monotonicity.”

What does “controlled sharing” mean in the following?
I “The separation kernel will provide controlled sharing among

different virtual machine partitions, and otherwise strict
isolation.”

To formally prove them, we need to make these statements precise.



Nonforgeability of capabilities

Let si+1 be the state obtained by executing one instruction at state
si . The capabilities in the PCC or registers of any of those states
are reachable from s0 (the red or purple cells).

s0 s1 . . . sn . . .
PCC
Cap registers
Caps in memory
BranchDelayPCC
BranchPCC

We want to abstract away from executions, and define the
reachable capabilities just in terms of the capabilities in s0 (the
blue or purple cells).



Nonforgeability of capabilities - 2

We recursively define the set A of available capabilities of s0.
I PCC , BranchPCC , BranchDelayPCC , CapReg(i) ∈ A

for all register indices i ,
I If cap ∈ A and cap′ ≤ cap then cap′ ∈ A

(e.g. cap′ has less permissions, or specifies a smaller region of
memory than cap),

I If cap ∈ A and cap allows us to load cap′ from memory, then
cap′ ∈ A (we have not yet formally defined this).

Our goal is to prove reachable caps ⊆ available caps.



State of proof

We prove with induction to i that the PCC and cap registers of si
are available in s0. We have proved the induction step for

I All the 122 instructions that do not change the PCC or cap
registers,

I 10 of the 32 instructions that do change the PCC or cap
registers,

I Exception handling for all instructions.

All proofs are in Isabelle/HOL using the Isabelle export of the L3
model of CHERI. There are 2708 lines of general lemmas and
tactics, and 1720 specifically about this proof.



State of proof - 2

Of the remaining 22 instructions
I 18 change the memory; here we need to precisely define which

capabilities are available in the memory.
I 2 seal and unseal caps; here we need to precisely define under

what conditions a sealed capability is available.
I 2 decrease the permissions of caps; we think these are easy to

prove.



Open questions

We are not sure whether the following is intentional:
I The specified region of a capability can overflow: a capability

with base 263 and length 264 − 1 can be turned into one with
base 0 and length 263 − 1.

I If there are multiple TLB hits, then the behaviour is undefined
(according to the L3 model), which might mean that the CLC
instruction can load any capability.


