CHERI Processor Models

Simon W. Moore

University of Cambridge, SRI International

CHERI Microkernel Workshop – 23 April 2016
Introduction

- CHERI modelled as extensions to 64-bit MIPS ISA
- Different CHERI processor models:
 - Bluespec SystemVerilog (FPGA hardware & cycle accurate simulation; microarchitectural features)
 - Qemu (fast simulator)
 - L3 (formal ISA model)
- Counterpart:
 - ISA test suite
- All processor models are complete and will boot FreeBSD, run applications, etc.
ISA Test Suite

- Code (assembler/C) + known output
- Embodies/encodes our understanding of the correct behavior of the 64-bit MIPS ISA and CHERI extensions
- Used to develop and regression test the models
- N.B. can also test the models against each other
L3 formal model

- L3 – language developed in Cambridge for ISA modeling
 - simple encoding of ISA, so more likely to be correct
 - still challenges in encoding MIPS manual!
- Can export model to HOL4 for formal verification (not currently doing this)
- Can export an ML model for simulation
 - gold model for test-suite results, co-simulation
 - a bit slow but complete and can boot FreeBSD
Qemu

- Fast ISA simulator
- Extended base MIPS model with CHERI support
- Provides a fast model for software development and trace collection
 - relatively easy to use
 - fast I/O
 - doesn’t require you to own FPGA hardware
Bluespec SystemVerilog Hardware

• Bluespec SystemVerilog (BSV) – higher-level hardware description language originally from MIT

• Rich type system and much automatic control-logic synthesis

 • faster design and more likely to be correct

• Implementations:

 • Verilog ➞ FPGA to give ~100MHz design
 • C-model: reasonably fast cycle-accurate simulator

• CHERI and CHERI2 models includes caches, interrupts/PIC, stream trace/debug, multicore

• but slower I/O due to limitations of FPGA board IP
Hardware Instances

CHERI Tablet

CHERI Cloud Servers