
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (‘CTSRD’) and FA8750-11-C-0249 (‘MRC2’). The views, opinions,
and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

CheriBSD
Hybrid-capability OS prototype

Robert N. M. Watson
Brooks Davis, Simon W. Moore, Peter G. Neumann, JonathanWoodruff,

JonathanAnderson, Hadrien Barral, Ruslan Bukin, David Chisnall, Nirav Dave,
Lawrence Esswood, Khilan Gudka, Alexandre Joannou, Chris Kitching, Ben Laurie,

A.Theo Markettos, Alan Mujumdar, Steven J. Murdoch, Robert Norton, Philip Paeps,
Alex Richardson, Michael Roe, Colin Rothwell, Hassen Saidi, Stacey Son, MunrajVadera,

Hongyan Xia, and Bjoern Zeeb

University of Cambridge, SRI International

CHERI Microkernel Workshop – 23 April 2016

CHERI software models

• Source and binary compatibility: common C-language idioms, various ABIs

• Unmodified code: Existing n64 code runs without modification

• Hybrid code: e.g., used solely in return addresses, for annotated data/code
pointers, for specific types, stack pointers, etc.; n64-interoperable.

• Pure-capability code: ubiquitous data-pointer protection, strong Control Flow
Integrity (CFI). Non-n64-interoperable.

• CHERI Clang/LLVM prototype generates code for all three
2

More compatible Safer

Unmodified
All pointers are
registers

Hybrid
Annotated and automatically selected

pointers are capabilities

Pure-capability
All code and data

pointers are capabilities

Software deployment models

3

OS kernel

Address-space executive

Address-space executive

Legacy application
+

capability libraries
Address-space executive

Pure-capability
application

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s

Hybrid capability/MMU OSes

Capability-based
OS with legacy

libraries

CHERI CPU

libsslzlibzlib zlibzlib class1
libssl

class2

libssllibssl

Single address space

Hybrid MMU-capability models: protection and
compartmentalization within virtual address spaces

Single-address-space systems
are possible but not yet our focus

Key software hypotheses
• Viable composition of capability and MMU models for software

• E.g., CHERI complements paged VM in practical systems

• CHERI capabilities can be usefully applied to program constructs

• E.g., heap/stack allocations, code pointers, return addresses

• E.g., kernel-provided memory mappings, static + run-time linking

• Strong binary and source-code compatibility; incremental deployment

• E.g., selected libraries, applications within a larger system

• Platform for compartmentalization research

• Libraries/applications are efficiently/easily compartmentalized

• But also kernel code (in due course)

4

CheriBSD
• Based on open-source FreeBSD operating system

• “Minimalist” kernel adaptation

• Process model, VM, debugging, signals support capabilities

• E.g., thread state includes capability registers

• E.g., tags preserved for swapped anonymous memory

• Kernel actually compiled with MIPS, not CHERI, compiler

• Multiple process ABIs: hybrid MIPS and CheriABI

• Fine-grained, in-address-space compartmentalization model

• Kernel-assisted domain transition, fault handling

• libcheri object-capability runtime

5

Userspace

Sj

Multiple process ABIs

• 64-bit MIPS ABI supports highly compatible hybrid code
execution, traditional pointer-based system calls

• CheriABI binaries/processes are pure-capability code
throughout; system-call interface enforces user model

6

Kernel
CheriABI shim

Userspace

Si Sk

MIPS ABI Pure-capability ABIHybrid ABI

Demonstration applications
• Pure-capability libraries and applications

• Pure-capability compilation of all key system libraries and
increasing number of commands – e.g., OpenSSL, OpenSSH

• Strong memory protection for heap, stack; control-flow
integrity for minimally modified or unmodified applications

• Library compartmentalization

• Transparent, efficient sandboxing of security-critical libraries

• tcpdump compartmentalization

• Fine-grained: multiple domain transitions per packet

• Otherwise (essentially) unmodified userspace

7

Next directions
• Short-term: complete pure-capability userspace

• CHERI-aware run-time linking, multithreading

• Remainder of C (and C++) pure-capability userspace

• LLDB debugger support

• Short-term: selected capability use and CFI within the kernel

• E.g., in CheriABI, for user-originated pointers, network stack

• Longer-term: selectively compartmentalized kernel

• CHERI-based microkernel within CheriBSD kernel

• Longer-term: non-volatile memory + capabilities

• Semantics for tagged capabilities within filesystem objects

8

BACKUP SLIDES

9

Kernel Changes

10

Component File Lines + Lines -

Machine-dependent
headers

19 1424 11

CHERI initialization 2 49 4

Context management 2 392 10

Exception handling 3 574 90

Memory copying 2 122 0

Virtual memory 5 398 27

Object capabilities 2 883 0

System calls 2 76 0

CheriABI 6 2855 0

Signal delivery 3 327 71

Process
monitoring/debugging

3 298 0

Kernel debugger 2 264 0

