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CHERI software models

• Source and binary compatibility: common C-language idioms, various ABIs

• Unmodified code: Existing n64 code runs without modification

• Hybrid code: e.g., used solely in return addresses, for annotated data/code 
pointers, for specific types, stack pointers, etc.; n64-interoperable.

• Pure-capability code: ubiquitous data-pointer protection, strong Control Flow 
Integrity (CFI). Non-n64-interoperable.

• CHERI Clang/LLVM prototype generates code for all three
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Software deployment models

3

OS kernel

Address-space executive

Address-space executive

Legacy application 
+

capability libraries
Address-space executive

Pure-capability
application

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s

Hybrid capability/MMU OSes

Capability-based 
OS with legacy 

libraries

CHERI CPU

libsslzlibzlib zlibzlib class1
libssl

class2

libssllibssl

Single address space

Hybrid MMU-capability models: protection and 
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Key software hypotheses
• Viable composition of capability and MMU models for software

• E.g., CHERI complements paged VM in practical systems

• CHERI capabilities can be usefully applied to program constructs

• E.g., heap/stack allocations, code pointers, return addresses

• E.g., kernel-provided memory mappings, static + run-time linking

• Strong binary and source-code compatibility; incremental deployment

• E.g., selected libraries, applications within a larger system

• Platform for compartmentalization research

• Libraries/applications are efficiently/easily compartmentalized

• But also kernel code (in due course)
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CheriBSD
• Based on open-source FreeBSD operating system

• “Minimalist” kernel adaptation

• Process model, VM, debugging, signals support capabilities

• E.g., thread state includes capability registers

• E.g., tags preserved for swapped anonymous memory

• Kernel actually compiled with MIPS, not CHERI, compiler

• Multiple process ABIs:  hybrid MIPS and CheriABI

• Fine-grained, in-address-space compartmentalization model

• Kernel-assisted domain transition, fault handling

• libcheri object-capability runtime
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Userspace

Sj

Multiple process ABIs

• 64-bit MIPS ABI supports highly compatible hybrid code 
execution, traditional pointer-based system calls

• CheriABI binaries/processes are pure-capability code 
throughout; system-call interface enforces user model 
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Demonstration applications
• Pure-capability libraries and applications

• Pure-capability compilation of all key system libraries and 
increasing number of commands – e.g., OpenSSL, OpenSSH

• Strong memory protection for heap, stack; control-flow 
integrity for minimally modified or unmodified applications

• Library compartmentalization

• Transparent, efficient sandboxing of security-critical libraries

• tcpdump compartmentalization

• Fine-grained: multiple domain transitions per packet

• Otherwise (essentially) unmodified userspace
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Next directions
• Short-term: complete pure-capability userspace

• CHERI-aware run-time linking, multithreading

• Remainder of C (and C++) pure-capability userspace

• LLDB debugger support

• Short-term: selected capability use and CFI within the kernel

• E.g., in CheriABI, for user-originated pointers, network stack

• Longer-term: selectively compartmentalized kernel

• CHERI-based microkernel within CheriBSD kernel

• Longer-term: non-volatile memory + capabilities

• Semantics for tagged capabilities within filesystem objects
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BACKUP SLIDES
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Kernel Changes
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Component File Lines + Lines -

Machine-dependent 
headers

19 1424 11

CHERI initialization 2 49 4

Context management 2 392 10

Exception handling 3 574 90

Memory copying 2 122 0

Virtual memory 5 398 27

Object capabilities 2 883 0

System calls 2 76 0

CheriABI 6 2855 0

Signal delivery 3 327 71

Process 
monitoring/debugging

3 298 0

Kernel debugger 2 264 0


