
Connecting the Dot Dots
Model Checking Concurrency in Capsicum

ASA-4
21 July 2010

Robert N. M. Watson
Jonathan Anderson

Introduction

• UNIX File System (UFS)

• Capsicum: practical capabilities for UNIX

• Whoops, a concurrency vulnerability

• Model checking file system containment

• Conclusions

2

The UNIX File System
(UFS)

3

The UNIX file system

• Persistent object storage for UNIX

• Hierarchical, user-specified name space

• Also used for IPC

• DAC + MAC

➡ A security API

4

Typical APIs

• Open a file for I/O
int open(char *path, int flags, ...);

• Change directory
int chdir(char *path);

• Rename a file or directory
int rename(char *from, char *to);

5

Looking up a path

6

root

tmp

..
tmp

..

etc

etc
..

passwd

passwd
hard link

open("/etc/passwd", O_RDONLY)

root

etc
passwd

etc

passwd

File descriptor array

Process

Root directory

Current working
directory

Capsicum: practical
capabilities for UNIX

7

CVEs in Jan-Aug 2009CVEs in Jan-Aug 2009
Firefox 85
Safari 59

IE 48
Chrome 39

Flash 35
source; Justin Foster, OWASPsource; Justin Foster, OWASP

8

UNIX process
ambient authority

Browser process
ambient authority

Renderer process
capability mode

Renderer process
capability mode ...

Kernel

Traditional UNIX application Capsicum logical application

becomes

9

Logical applications

Hierarchical delegation
with capabilities

Apache Apache
Worker 1

Apache
Worker 2

Logical Application

/
etc var

apache passwd www

site1 site2

10

File capabilities

11

root

tmp

..
tmp

..

etc

etc
..

passwd

passwd
hard link

File descriptor array

Process

Root directory

Current working
directory

!

!

File capability

READ

at(2) APIs

• Variations accepting directory descriptors:
int renameat(int fromfd, char *from,
 int tofd, char *to);

• Avoid intermediate lookup state/costs

• Use at(2) calls to delegate directories

• Grant rights to objects under capability

12

Directory delegation

13

root

tmp

..
tmp

..

sandbox

foo

..

..

sandbox

foo

bar

..
bar

File descriptor array

Process

Root directory

Current working
directory

!

!

Directory capability

ATBASE, FCHDIR,
FSTAT, CREATE,

DELETE, LOOKUP...

!

Derived capabilities

14

root

tmp

..
tmp

..

sandbox

foo

..

..

sandbox

foo

bar

..
bar

File descriptor array

Process

Root directory

Current working
directory

!

!

Directory capability

ATBASE, FCHDIR,
FSTAT, CREATE,

DELETE, LOOKUP...

!

Directory capability

ATBASE, FCHDIR,
FSTAT, CREATE,

DELETE, LOOKUP...

!

Implementing under

15

• Reject at(2) on absolute paths

• Reuse existing namei lookup code

• Require directory capability argument

• If “..” is looked up relative to starting
directory, return ENOTCAPABLE

A concurrency
vulnerability

16

• Multiple computational processes
execute at the same time and may
interact with each other

• Concurrency leads to the
appearance of non-determinism

17

Concurrency

Concurrency
vulnerabilities

• When incorrect concurrency
management leads to vulnerability

• Violation of specifications

• Violation of user expectations

• Passive - leak information or privilege

• Active - allow adversary to extract
information, gain privilege, deny service...

18

From concurrency bug
to security bug

• Vulnerabilities in security-critical interfaces

• Races on arguments and interpretation

• Atomic “check” and “access” not possible

• Data consistency vulnerabilities

• Stale or inconsistent security metadata

• Security metadata and data inconsistent

19

Concurrency attacks
on APIs

• System call API bridges “untrusted”
userspace and “trusted” kernel

• Attacker’s goal to manipulate APIs and
trigger security incorrectness in “trusted”
implementation

• In software, usually done using multiple
client threads/processes and system calls,
LPCs, or RPCs to a multithreaded server

20

21

root

tmp

..
tmp

..

..
bar

bar

openat(foofd, "bar/../..");
renameat(foofd, "bar", sandboxfd, "bar");

..
!

tmp

sandbox

foo

bar

..
rename

File descriptor array

Process

Root directory

Current working
directory

"

"

Directory capability

ATBASE, FCHDIR,
FSTAT, CREATE,

DELETE, LOOKUP...

"

Directory capability

ATBASE, FCHDIR,
FSTAT, CREATE,

DELETE, LOOKUP...

"

Concurrency
vulnerabilities

22

• Most race conditions are time-of-check-to-
time-of-use (TOCTTOU)

• This vulnerability is not TOCTTOU

• Bisbey 1978 “unexpected concurrency”

• Security failure due to programmer not
understanding concurrency opportunity

23

The vulnerability

• Bypass containment if any writable
directory capabilities passed to sandbox

• Dual-core notebook required ~100,000
loops to exploit

• Exploits non-atomic namespace lookup
relative to other operations

• A performance feature we can’t remove!

Why formal methods?

24

• Serious but subtle concurrency
vulnerability with unclear implications

• Namespace containment widely used in
UNIX; chroot and beyond

• Want to show that other combinations of
name space calls can’t trigger similar
vulnerabilities

Model checking

• Summary: Clarke, Emerson, Sifakis 2007
Turing Award lecture; Comm ACM 2009

• Finite state machine represents system
under analysis

• Express safety properties in temporal logic

• Exhaustively check model conformance

• Common in protocol, hardware verification

25

The goal

• Model the relationship between the
attacker and the file system implementation

• Want to explore all possible interleavings
of events the attacker can trigger

• Validate critical assertions

26

The model

• Selected SPIN model checker

• 222-line Promela model of system/attacker

• Model a finite set of concurrent processes,
each with a limited system call vocabulary

• Finite-sized file system (8 nodes);
Initial path configuration similar to picture

• Assertion: multi-“..” lookups fail

27

Solution space

28

Approach Performance Functionality Security

Remove subtree
delegation

✔ ✘ ✔

Namespace walk ✘ ✔ ✘

Limit namespace
concurrency

✘ ✔ ✔ (NFS: ✘)

Limit “..” ✔ ✘ ✔

Limitations

• Hand-crafted Promela mode - significantly
different semantics and implementation
from kernel code

• Finite process count

• Limited system call vocabulary

• Limited file system size

• Want stronger “can’t name root” assertion

29

Conclusion

• Capsicum: practical capabilities for UNIX

• Concurrency vulnerability with serious
real-world implications for Capsicum

• Applied model checking

• Improved our confidence in security /
performance / functionality trade-off

30

Q&A

31

