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Introduction

• UNIX File System (UFS)

• Capsicum: practical capabilities for UNIX

• Whoops, a concurrency vulnerability

• Model checking file system containment

• Conclusions
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The UNIX File System 
(UFS)

3



The UNIX file system

• Persistent object storage for UNIX

• Hierarchical, user-specified name space

• Also used for IPC

• DAC + MAC

➡ A security API
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Typical APIs

• Open a file for I/O
int open(char *path, int flags, ...);

• Change directory
int chdir(char *path);

• Rename a file or directory
int rename(char *from, char *to);
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Looking up a path
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Capsicum: practical 
capabilities for UNIX
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CVEs in Jan-Aug 2009CVEs in Jan-Aug 2009
Firefox 85
Safari 59

IE 48
Chrome 39

Flash 35
source; Justin Foster, OWASPsource; Justin Foster, OWASP
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UNIX process
ambient authority

Browser process
ambient authority

Renderer process
capability mode

Renderer process
capability mode ...

Kernel

Traditional UNIX application Capsicum logical application

becomes
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Logical applications



Hierarchical delegation 
with capabilities
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File capabilities
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at(2) APIs

• Variations accepting directory descriptors:
int renameat(int fromfd, char *from,
             int tofd, char *to);

• Avoid intermediate lookup state/costs

• Use at(2) calls to delegate directories

• Grant rights to objects under capability
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Directory delegation
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Derived capabilities
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Implementing under
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• Reject at(2) on absolute paths

• Reuse existing namei lookup code

• Require directory capability argument

• If “..” is looked up relative to starting 
directory, return ENOTCAPABLE



A concurrency 
vulnerability
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• Multiple computational processes 
execute at the same time and may 
interact with each other

• Concurrency leads to the
appearance of non-determinism
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Concurrency



Concurrency 
vulnerabilities

• When incorrect concurrency 
management leads to vulnerability

• Violation of specifications

• Violation of user expectations

• Passive - leak information or privilege

• Active - allow adversary to extract 
information, gain privilege, deny service...

18



From concurrency bug 
to security bug

• Vulnerabilities in security-critical interfaces

• Races on arguments and interpretation

• Atomic “check” and “access” not possible

• Data consistency vulnerabilities

• Stale or inconsistent security metadata

• Security metadata and data inconsistent
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Concurrency attacks 
on APIs

• System call API bridges “untrusted” 
userspace and “trusted” kernel

• Attacker’s goal to manipulate APIs and 
trigger security incorrectness in “trusted” 
implementation

• In software, usually done using multiple 
client threads/processes and system calls, 
LPCs, or RPCs to a multithreaded server
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Concurrency 
vulnerabilities
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• Most race conditions are time-of-check-to-
time-of-use (TOCTTOU)

• This vulnerability is not TOCTTOU

• Bisbey 1978 “unexpected concurrency”

• Security failure due to programmer not 
understanding concurrency opportunity
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The vulnerability

• Bypass containment if any writable 
directory capabilities passed to sandbox

• Dual-core notebook required ~100,000 
loops to exploit

• Exploits non-atomic namespace lookup 
relative to other operations

• A performance feature we can’t remove!



Why formal methods?
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• Serious but subtle concurrency 
vulnerability with unclear implications

• Namespace containment widely used in 
UNIX; chroot and beyond

• Want to show that other combinations of 
name space calls can’t trigger similar 
vulnerabilities



Model checking

• Summary: Clarke, Emerson, Sifakis 2007 
Turing Award lecture; Comm ACM 2009

• Finite state machine represents system 
under analysis

• Express safety properties in temporal logic

• Exhaustively check model conformance

• Common in protocol, hardware verification
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The goal

• Model the relationship between the 
attacker and the file system implementation

• Want to explore all possible interleavings 
of events the attacker can trigger

• Validate critical assertions
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The model

• Selected SPIN model checker

• 222-line Promela model of system/attacker

• Model a finite set of concurrent processes, 
each with a limited system call vocabulary

• Finite-sized file system (8 nodes);
Initial path configuration similar to picture

• Assertion: multi-“..” lookups fail
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Solution space
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Approach Performance Functionality Security

Remove subtree 
delegation

✔ ✘ ✔

Namespace walk ✘ ✔ ✘

Limit namespace 
concurrency

✘ ✔ ✔ (NFS: ✘)

Limit “..” ✔ ✘ ✔



Limitations

• Hand-crafted Promela mode - significantly 
different semantics and implementation 
from kernel code

• Finite process count

• Limited system call vocabulary

• Limited file system size

• Want stronger “can’t name root” assertion
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Conclusion

• Capsicum: practical capabilities for UNIX

• Concurrency vulnerability with serious 
real-world implications for Capsicum

• Applied model checking

• Improved our confidence in security / 
performance / functionality trade-off
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Q&A
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