
Introduction to CHERI
ASPLOS’22 Edition

Welcome

• Who are we?

• Who are you?

Dr. Nathaniel “Wes” Filardo
MSR Cambridge

Prof. Robert Watson
University of Cambridge

Konrad Witaszczyk
University of Cambridge

Dr. Jonathan Woodruff
University of Cambridge

2

Why Are We Here?

• Familiarize ASPLOS attendees with CHERI architecture and CHERI C
• Large-scale tech-transfer w/ UKRI’s DSbD & Arm Morello chip
• Significant revision of commodity abstract machine

• Bonus takeaway: a working SDK for continued experimentation

3

Prerequisites
Software stack
If you want to work through the exercises with us, you should have read
the Introduction chapter of the CHERI Exercises and Missions book (📖).

Most importantly, you should have:
• Obtained CHERI Compilers and Simulators,

• We recommended to use the CHERI Software Release with Docker;
• You could also spend several hours with the CHERI-RISC-V flavored DIY option.

• Read the instructions for cross-compilation, and
• Tested that you can compile and run programs from the book (👩💻).

We also recommend to join #workshop-asplos22 at https://cheri-cpu.slack.com/ to
discuss the workshop with others.

4

https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/cover/index.html
https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/introduction/get.html
https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/introduction/cross.html
https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/exercises/compile-and-run/index.html
https://cheri-cpu.slack.com/

Approximate Schedule (UTC+1)

09:00 – 10:00 Preliminaries & CHERI Overview (Prof. Robert Watson &| nwf)

10:00 – 10:30 Exercise: CHERI Pointer Integrity (nwf)

10:30 – 11:00 Exercise: CHERI Stack Spatial Safety (nwf)

11:00 – 11:30 Break

11:30 – 12:00 Exercise: CHERI C and Sub-objects (Konrad)

12:00 – 12:30 Exercise: Spatially Safe Heap (nwf)

12:30 – 13:00 Exercise: CHERI C Adaptation (Konrad)

13:00 – 14:00 Lunch

14:00 – 14:30 Microarchitectural Implications of CHERI (Dr. Jon Woodruff)

14:30 – 15:00 Exercise: The CheriABI *nix System Call Interface (nwf)

15:00 – 15:30 Heap Temporal Safety (nwf)

15:30 – 16:00 Break

16:00 – 16:30 Exercise: CHERI C Heap Adaptation (Prof. Robert Watson)

16:30 – 17:00 Scalable Software Compartmentalization (Prof. Robert Watson)

17:00 – 17:30 Open Q&A and Wrap Up 5

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

From CHERI to Morello
Architectural Support for Memory Protection and

Software Compartmentalization

Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Jonathan Anderson, Alasdair Armstrong, Peter Blandford-Baker, John Baldwin, Hadrien Barrel,
Thomas Bauereiss, Ruslan Bukin, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis, Lawrence Esswood,

Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Khilan Gudka, Brett Gutstein, Alexandre Joannou, Mark Johnston,
Robert Kovacsics, Ben Laurie, A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar,

Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, George Neville-Neil, Robert Norton-Wright, Philip Paeps,
Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg, Hassen Saidi,

Peter Sewell, Thomas Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Konrad Witaszczyk,
Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge and SRI International
ASPLOS 2022 – CHERI tutorial – 27 February2022

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249
(“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs. The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

7

CHERI introduction
• CHERI is a new processor technology that

mitigates software security vulnerabilities

• Developed by the University of Cambridge and SRI
International starting in 2010, supported by DARPA

• Arm collaboration from 2014

• Arm Morello CPU, SoC, and board announced 2019,
with support from UKRI; shipping as of Jan 2022

• Today’s talk:

• What is CHERI, how does it work, and is it any good?

• What is a Morello board, and what can I do with one?

An early experimental FPGA-
based CHERI tablet prototype
running the CheriBSD
operating system and
applications, Cambridge, 2013.

8

High-performance Arm
Morello chip able to run a full
CHERI software stack,
Cambridge, 2022

An Introduction to CHERI

• Watson, et al. An Introduction to CHERI,
UCAM-CL-TR-941, September 2019
• Architectural capabilities and the CHERI ISA

• CHERI microarchitecture

• ISA formal modeling and proof

• Software construction with CHERI

• Language and compiler extensions

• OS extensions

• Application-level adaptations

Predates public announcement of Morello

9

What is CHERI?
• CHERI is a processor architectural protection model

• Composes a capability-system model with hardware and software

• Adds new security primitives to Instruction-Set Architectures (ISAs)

• Implemented by microarchitectural extensions to the CPU and SoC

• Enables new security behavior in software

• CHERI mitigates vulnerabilities in C/C++ Trusted Computing Bases

• Hypervisors, operating systems, language runtimes, browsers, ….

• Fine-grained memory protection deterministically closes many arbitrary code
execution attacks, and directly impedes common exploit-chain tools

• Scalable compartmentalization mitigates many vulnerability classes .. even
unknown future classes .. by extending the idea of software sandboxing

10

Processor primitives for software security

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture
(ISA)

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

their own future execution

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity
11

Hardware-software-semantics co-design
• CHERI abstract protection model; concrete ISA

instantiations in 64-bit MIPS, 32/64-bit RISC-V, 64-bit
ARMv8-A

• Formal ISA models, QEMU-CHERI, and multiple FPGA
prototypes

• Formal proofs that ISA security properties are met,
automatic test general from formal model

• CHERI Clang/LLVM/LLD, CheriBSD, C/C++-language
applications

• Repeated iteration to improve {performance, security,
compatibility, ..}

12

Instruction
Fetch

Register
Fetch Decode Execute Writeback

Capability Coprocessor

Instruction Cache MMU: TLB Data Cache

Memory

Memory
Access

L2 Cache

Tag Controller

Implementation on FPGA

CHERI research and development timeline

Years 1-2: Research platform, prototype architecture

Years 2-4: Hybrid C/OS model, compartment model

Years 4-7: Efficiency, CheriABI/C/C++/linker, ARMv8-A

Years 8-11: RISC-V, temporal safety, formal proof
13

CHERI ISA refinement over 10 years

14

Year Version Description

2010-2012 ISAv1
RISC capability-system model w/64-bit MIPS
Capability registers, tagged memory
Guarded manipulation of registers

2012 ISAv2
Extended tagging to capability registers
Capability-aware exception handling
Boots an MMU-based OS with CHERI support

2014 ISAv3
Fat pointers + capabilities, compiler support
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

2015 ISAv4

MMU-CHERI integration (TLB permissions)
ISA support for compressed 128-bit capabilities
HW-accelerated domain switching
Multicore instructions: full suite of LL/SC variants

2016 ISAv5
CHERI-128 compressed capability model
Improved generated code efficiency
Initial in-kernel privilege limitations

2017 ISAv6

Mature kernel privilege limitations
Further generated code efficiency
Architectural portability: CHERI-x86, CHERI-RISC-V sketches
Exception-free domain transition

2019 ISAv7

Architectural performance optimization for C++ applications
Microarchitectural side-channel resistance features
Architecture-neutral CHERI protection model
All instruction pseudocode from a formal model
CHERI Concentrate capability compression
Improved C-language support, dynamic linking, sentry capabilities
Elaborated CHERI-RISC-V ISA
64-bit capabilities for 32-bit architectures
Accelerated tag operations for temporal memory safety

2020 ISAv8

MMU temporal memory-safety assist; e.g., capability dirty bit
Optimizations for sentry capabilities
CHERI-RISC-V privileged support, general maturity
Further C-language semantics improvements

C
apabilities + RISC

C
/C

++ and capabilities

C
om

partm
entalization

128-bit, code efficiency

N
on-M

IPS ISA
s:

A
RM

v8-A
, A

RM
v8-M

, RISC
-V, x86-64

Tem
poral m

em
ory safety

In-kernel use
M

ulticore

Arm Morello architecture
synchronization point

Watson, et al. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 8), UCAM-CL-TR-951, October 2020.

Architectural primitives for software security

15

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture
(ISA)

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

their own future execution

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity

CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers via valid
transformations; invalid pointers cannot be used

• Valid pointers, once removed, cannot be reintroduced solely unless rederived from other valid pointers

• E.g., Received network data cannot be interpreted as a code/data pointer – even previously leaked pointers

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong spatial and temporal memory protection, but
also higher-level policies such as scalable software compartmentalization

16

Globals

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance validity Bounds

CHERI 128-bit capabilities

• Capabilities extend integer memory addresses

• Metadata (bounds, permissions, …) control how it may be used

• Tags protect capability integrity/derivation in registers + memory

Virtual address space
12

8-
bi

t
ca

pa
bi

lit
y

v

1-
bi

t
ta

g

permissions Bounds compressed relative to addressotype

64-bit virtual address

Upper bound

Lower bound

Pointer address
Memory
allocation

17

$pcc

$c4
$c3

$c31

v

v

-
v

GPRs extended to 129 bits

Merged capability register file + tagged memory

• 64-bit general-purpose registers (GPRs) are extended with 64 bits of metadata and a 1-bit validity tag

• Program counter (PC) is extended to be the program-counter capability ($PCC)

• Default data capability ($DDC) constrains legacy integer-relative ISA load and store instructions

• Tagged memory protects capability-sized and -aligned words in DRAM by adding a 1-bit validity tag

• Various system mechanisms are extended (e.g., capability-instruction enable control register, new TLB/PTE
permission bits, exception code extensions, saved exception stack pointers and vectors become capabilities, etc.)

18

General-purpose register file (GPRs)

$ra

$a1
$a0

$pc

vDDC

vEPCC

Control and
status registers

(CSRs)
Physical memory

dd

vCapability

Capability width

-

1-bit tags
added to
DRAM

CHERI-RISC-V formal ISA model
• CHERI RISC-V ISA model extends RISC-V formal ISA specification, in Sail

• Sail RISC-V ISA specification developed by UCam + SRI

• Selected as official RISC-V spec by the Foundation

• Sail is a custom first-order imperative language for expressing ISA specifications, usable by
engineers but with static type checking of bitvector lengths etc.

• The Sail spec is inlined in versions of the unprivileged and privileged RISC-V manuals

• Sail auto-generates a C emulator, theorem-prover definitions, and SMT definitions

• Machinery for configuring model WRT YAML from compliance group

• Readable, precise definition of ISA behavior, usable as test oracle for testing hardware
against and for software bring-up, and providing prover definitions if you want more
rigorous reasoning

• Paper on earlier CHERI-MIPS L3 modelling and proof work at IEEE SSP 2020

• Most recently completed monotonicity proofs for the Arm Morello architecture
19

Architectural primitives for software security

20

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture
(ISA)

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

their own future execution

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity

Example microarchitecture: CHERI-Piccolo microcontroller

21

merged integer &
capability registers

= tag storage

L1 I-cache

DRAM controller Tag Controller

off-chip DRAM

capability arithmetic

capability load/store

capability exceptions

new registers:
PCC, DDC, CSRs

CHERI-Piccolo core

Changes to the Piccolo core (RISC-V 3-stage pipeline):
• capability arithmetic
• capability load/store operations with bounds checking
• extended exception model
• PC becomes a capability (PCC)
• default data capability (DDC)
• new control/status registers
• merged integer & capability register file

Memory subsystem:
• AXI user-field added to transport tag bits & data width

doubled
• caches extended to include tags

DRAM changes:
• New tag controller uses a hierarchical tag table to

efficiently store tag bits backed by top of DRAM

L1 D-cache

Architectural primitives for software security

22

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture
(ISA)

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

their own future execution

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity

Two key applications of the CHERI primitives
1. Efficient, fine-grained memory protection for C/C++

• Strong source-level compatibility, but requires recompilation

• Deterministic and secret-free referential, spatial, and temporal memory safety

• Retrospective studies estimate ⅔ of memory-safety vulnerabilities mitigated

• Generally modest overhead (0%-5%, some pointer-dense workloads higher)

2. Scalable software compartmentalization

• Multiple software operational models from objects to processes

• Increases exploit chain length: Attackers must find and exploit more vulnerabilities

• Orders-of-magnitude performance improvement over MMU-based techniques
(<90% reduction in IPC overhead in early FPGA-based benchmarks)

23

CHERI-based pure-capability process memory

• Capabilities are substituted for integer addresses throughout the address space

• Bounds and permissions are minimized by software including the kernel, run-
time linker, memory allocator, and compiler-generated code

• Hardware permits fetch, load, and store only through granted capabilities

• Tags ensure integrity and provenance validity of all pointers

Memory
StackCode

Heap
Implied
pointer

Explicit
pointer

…

Thread
register

file

PLTs

Globals

captable

DDC

PCC

GPRs

NULL

NULL

NULL

24

Memory protection for the language and the language runtime
• Capabilities are refined by the kernel, run-time linker,

compiler-generated code, heap allocator, …

• Protection mechanisms:

• Referential memory safety

• Spatial memory safety + privilege minimization

• Temporal memory safety

• Applied automatically at two levels:

• Language-level pointers point explicitly at stack and
heap allocations, global variables, …

• Sub-language pointers used to implement control flow,
linkage, etc.

• Sub-language protection mitigates bugs in the language
runtime and generated code, as well as attacks that cannot be
mitigated by higher-level memory safety

• (e.g., union type confusion)

Language-level memory safety

Pointers to heap
allocations

Pointers to stack
allocations

Pointers to
global variables

Pointers to TLS
variables

Function
pointers Pointers to

memory mappings

Pointers to sub-
objects

Sub-language memory safety

GOT
pointersReturn

addresses

PLT entry
pointers

ELF aux arg
pointersStack

pointers

C++ v-table
pointers

Vararg array
pointers

25

What is software compartmentalization?
• Fine-grained decomposition of a larger

software system into isolated
modules to constrain the impact of
faults or attacks

• Goals is to minimize privileges
yielded by a successful attack, and
to limit further attack surfaces

• Usefully thought about as a graph of
interconnected components,
where the attacker’s goal is to
compromise nodes of the graph
providing a route from a point of entry
to a specific target

26

CheriFreeRTOS components and the application execute
in compartments. CHERI contains an attack within
TCP/IP compartment, which access neither flash nor the
internals of the software update (OTA) compartment.

Shared virtual address space

Register
fileProtection

domain
A

Protection
domain

B

Shared
heap

Domain-specific
captables + PLTs

Domain-specific
stacks

Domain-specific
globals

Heap
allocations

Register
file Domain B

heap

Domain A
heap

Cross-
domain

resources

Shared
code

Implied
pointer

Explicit
pointer

CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities,
combined with a constrained non-monotonic domain-transition mechanism

27

Protection
domain A

Protection
Domain B

Flexible set of
shared resources

Compartmentalization scalability

• CHERI dramatically improves compartmentalization scalability

• More compartments

• More frequent and faster domain transitions

• Faster shared memory between compartments

• Many potential use cases – e.g., sandbox processing of each image in a
web browser, processing each message in a mail application

• Unlike memory protection, software compartmentalization requires
careful software refactoring to support strong encapsulation, and
affects the software operational model

Early benchmarks show a 1-to-2
order of magnitude performance
inter-compartment
communication improvement
compared to conventional
designs

28

Microsoft security analysis of CHERI C/C++
• Microsoft Security Research Center (MSRC) study analyzed all

2019 Microsoft critical memory-safety security vulnerabilities

• Metric: “Poses a risk to customers → requires a software
update”

• Vulnerability mitigated if no security update required

• Blog post and 42-page report

• Concrete vulnerability analysis for spatial safety

• Abstract analysis of the impact of temporal safety

• Red teaming of specific artifacts to gain experience

• CHERI, “in its current state, and combined with other mitigations,
it would have deterministically mitigated at least two
thirds of all those issues”

1 | P a g e

Microsoft Security Response Center (MSRC)

SECURITY ANALYSIS OF CHERI ISA
Nicolas Joly, Saif ElSherei, Saar Amar – Microsoft Security Response Center (MSRC)

INTRODUCTION AND SCOPE

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such

as C and C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited

vulnerabilities.

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit

extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag

table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability.

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI’s hybrid mode

could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as

it is the largest CHERI adapted software available today.

CHERI also provides hardware features for application compartmentalization [15]. In this document, we will review only the memory

safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities.

SUMMARY

CHERI’s ISA is not yet stabilized. We reviewed the current revision ϳ, but some of the protections such as executable pointer sealing

is still experimental and likely subject to future change.

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations

requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-

allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include:

x Pure-capability vs hybrid mode

x Chosen heap allocator’s resilience

x Sub-allocation bounds compilation flag

x Linkage model (PC-relative, PLT, and per-function .captable)

x Extensions for additional protections on execute capabilities

x Extensions for temporal safety

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be

less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated.

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019

and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a

security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that

automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of

vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal

safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated

vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI,

but this combination means CHERI looks very promising in its early stages.

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
29

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

3-month CHERI Desktop UKRI pilot study
InnovateUK-funded project at Capabilities Limited to assess the viability of
a CHERI/Morello open-source desktop software stack (on QEMU model):

• Selected slice of open-source desktop stack: X11, Qt, KDE, applications

• Implemented CHERI C/C++ referential and spatial memory protection

• Whiteboarded possible software compartmentalizations

• Evaluated software change as %LoC changed

• Evaluated security via 5-year retrospective vulnerability analysis

http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-
version1-FINAL.pdf

30

http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf

CHERI desktop ecosystem study: Key outcomes

Developed:

• 6 million lines of C/C++ code
compiled for memory safety; modest
dynamic testing

• Three compartmentalization
case studies in Qt/KDE

Evaluation results:

• 0.026% LoC modification rate
across full corpus for memory safety

• 73.8% mitigation rate across full
corpus, using memory safety and
compartmentalization

31

CHERI TRANSITION

32

Morello and CHERI-RISC-V
• We are pursing two CHERI adaptations to post-MIPS ISAs:

• 2014 Joint with Arm, an experimental adaptation of 64-bit ARMv8-A
Arm Morello multicore SoC, development board, etc.
(announced Oct. 2019; experimental SoC shipped 2022)

• 2017 An experimental adaptation of 32/64-bit RISC-V
(open-source research processors on FPGA)

• Complete elaborations of the full hardware-software stack for each ISA:

• All aspects of the architectures (e.g., ARMv8-A VM features, etc.)

• Formal models + proofs, hardware implementations, compilers, OSes

• Potential for transition through both paths

33

CHERI-ARM research since 2014
• Since 2014, in collaboration with Arm, we have been pursuing joint research to

experimentally incorporate CHERI into ARMv8-A:

• Develop CHERI as an architecture-neutral and portable protection model
implemented in multiple concrete architectures

• Refine and extend the CHERI architecture – e.g., capability compression, tagging
µarch, domain transition, and temporal safety

• Apply concept of architecture neutrality to the CHERI-enabled software stack,
including compiler, OS, and applications

• Expand software: large-scale application experiments, OS use, debuggers, …

• Extend work in formal modeling and proofs to an industrial-scale architecture

• Solve arising practical {hardware, software, …} problems as part of the research

• Build evidence, demonstrations, SW templates to support potential CHERI adoption

34

ISCF: Digital Security by Design (UKRI)
• 5-year Digital Security by Design UKRI program: £70M UK gov.

funding, £117M UK industrial match, to create CHERI-ARM
demonstrator SoC + board with proven ISA

• Leap supply-chain gap that makes adopting new architecture difficult
– in particular, validation of concepts in microarchitecture,
architecture, and software “at scale”

• Support industrial and academic R&D (EPSRC, ESRC, InnovateUK)

• Baseline CPU is Neoverse N1; reuses existing SoC/board designs

• Collaborative review distillation of CHERI ISAv8; experimental
additions relating to temporal safety, compartmentalization

• Science designed allowed: Multiple architectural +
microarchitectural design choices for software-based evaluation

• 2020 emulation models; January 2022 Morello board shipped!

35

Digital Security by
Design

Richard Grisenthwaite

SVP Chief Architect and Fellow

Richard.Grisenthwaite@arm.com

37 2019 Arm Limited

UK Research
and Innovation

Challenges with creating substantially new architecture

New
Hardware

New
Software
Models

Required to justify

Required to develop

38 2019 Arm Limited

UK Research
and Innovation

IP Position
• Today’s CPU architectures have largely the same basic functionality

• “Similar but different” approaches to most aspects of system architecture
• Small scale optimisations exist

• This position very beneficial for the porting of system software
• Anything that fundamentally changes the system software architecture is likely to be ignored

• Arm believes that this reality needs to continue with capabilities
• Implication is that we’d like the world’s leading architectures to adopt capabilities
• The Digital Security by Design program

Arm Morello specification

• Experimental application of CHERI ISAv8
to ARMv8-A

• Much richer base ISA .. Much longer spec -
2,155 pages excluding additional material!

• Describes ISA as implemented in Arm
Morello FVP and processor/SoC

• Includes recent features such as sentry and
load-side barrier support

39

40 2019 Arm Limited

UK Research
and Innovation

Morello Board: Capability Hardware Prototype Platform
• Silicon implementation of a Capability Hardware CPU Instruction Set Architecture

• Implements Morello Profile for A-class
Prototype Architecture

• Two clusters each of two Rainier CPUs
• Interconnect and Memory Controller

support for tagged memory
• Two channel DDR4 DRAM interface
• PCIe Gen3 and Gen4 x16 interface
• CCIX (Cache Coherent Interconnect

for Accelerators) interface
• Mid-range GPU, display processor

and HDMI output
• On standard uATX form factor board

Co
re

Si
gh

tS
oC

-6
00

CMN-Skeena (CoreLink CMN-600 based)

CoreLink GIC-600

CoreLink NIC-400

IOFPGA

SCP
Cortex-M7

MCP
Cortex-M7DDR4-2667

DMC-Bing
(DMC-620 based)

CCIXPCIe

MMU-600
Rainier

EL
A

-5
00

Rainier

EL
A

-5
00

DMC-Bing
(DMC-620 based)

HDMI

Mali-D35

Mali-G76

UEFI boot, SCP/MCP FirmwareTrusted Firmware-A

Linux Kernel

Supporting Arm system IP: GIC-600 (Generic Interrupt Controller), MMU-600 (IO MMU), Dynamic
Memory Controller derived from DMC-620, SoC-600 (SoC Debug and Trace), Coherent Mesh Network
derived from CMN-600, NIC-400 (Non-coherent interconnect)
Supporting 3rd party system IP/hardware: PCIe/CCIX Root Complex (PHY and controller), DDR4/3 PHY,
DDR4 memory, IO FPGA
Open-source software stack

CHERI prototype software stack on Morello
• Complete open-source software stack from bare metal up: compilers, toolchain,

debuggers, hypervisor, OS, applications – all demonstrating CHERI
• Rich CHERI feature use, but fundamentally incremental/hybridized deployment
• Aim: Mature and highly useful research and development platform for Morello

41

CHERI-extended Google Hafnium hypervisor

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Morello (funded by DARPA and UKRI)
• FreeBSD kernel + userspace, application stack
• Kernel spatial and referential memory protection
• Userspace spatial, referential, and temporal memory protection
• Co-process compartmentalization
• Intra-process compartmentalization
• Morello-enabled bhyve Type-2 hypervisor
• ARMv8-A 64-bit binary compatibility for legacy binaries

Open-source application suite (KDE, X11, WebKit, Python, OpenSSH, nginx, PostgresQL …)

Android (Arm)
(Morello only)

Linux (Arm)
(Morello only)

Baseline CHERI
Clang/LLVM from
SRI/Cambridge;

Morello
adaptation by
Arm + Linaro

UK EPSRC DSbD research program 2020-2023

• 9 EPSRC projects
funded across 10 UK
universities

• Several InnovateUK
industrial projects
supporting
exploration,
evaluation,
demonstration

42

Some potential software research areas
• Clean-slate OSes and languages

Current research has focused on incremental CHERI adoption
within current software and languages. How would we design new
OSes, languages, etc., assuming CHERI as an ISA baseline?

• Compilers, language runtimes, and JITs

How can we mitigate the performance overheads of more
pointer-dense executions, such as with language runtimes? Are
vulnerabilities in code generated by compilers and JIT susceptible
to mitigation using CHERI? How does CHERI break or potentially
improve current compiler analyses and optimization?

• Further C/C++ protections with CHERI

We have focused on spatial, referential, and temporal memory
safety for C/C++. But the CHERI primitives could assist with
data-oriented protections, garbage collection, type checking, etc.
Could these improve security, and at what performance cost?

• Safe and managed languages

Languages such as Java, Rust, C#, OCaml, etc., offer strong safety
properties, but frequently depend on C/C++ runtimes and FFI-
linked native code. Can CHERI provide stronger foundations for
higher-level language stacks?

• Virtualization

Can memory protection usefully harden hypervisors? Can we
compartmentalize hypervisors? Can CHERI offer a better
mechanism for virtualizing code than an MMU?

• Debuggers and tracing

Debugging/tracing tools rely on high levels of privilege to
operate. How can we reduce their privilege to mitigate
vulnerabilities in these tools? With stronger architectural
semantics, is new dynamic analysis possible?

• Software compartmentalization tools

Granular software compartmentalization offers vulnerability
mitigation through privilege reduction and strong encapsulation.
How should current applications be refactored, and new
applications be designed, to accomplish maintainable and more
secure software?

• Security evaluation and adversarial research

What is the impact of CHERI on known vulnerabilities and
attack techniques? How does a CHERI-aware attacker change
their behavior? Could formal models and proofs support
stronger security arguments for CHERI?

43

Conclusion
CHERI architectural primitives require rich HW and SW evaluation:

• CHERI C/C++ offers strong protection from memory-related attacks

• CHERI compartmentalization has much higher performance than MMU-based
techniques

• Arm Morello integrates CHERI protection into an experimental implementation in
an industrial quality implementation – which we are eager to validate at scale!

Where to learn more:

http://www.cheri-cpu.org/

• Watson, et al. An Introduction to CHERI, Technical Report UCAM-CL-TR-941,
Computer Laboratory, September 2019.

• Watson, et al. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 8), UCAM-CL-TR-951, October 2020.

• Watson, et al. CHERI C/C++ Programming Guide, UCAM-CL-TR-947, June 2020.
44

http://www.cheri-cpu.org/

45

Explaining Output From Prerequisite Exercise

46

./print-pointer-baseline
size of pointer: 8
size of address: 8

./print-pointer-cheri
size of pointer: 16
size of address: 8

./print-capability
cap to int length: 4
cap to cap length: 16

Baseline CHERI-enabled

On baseline arch.,
pointers lower to integer addresses

On CHERI-enabled arch.,
pointers lower to capabilities

sizeof(int)

sizeof(void*)

Exercise: CHERI Pointer Integrity
Introduction

• Spatial safety depends upon reference/pointer integrity
• Pointers must come from other pointers.
• Can’t forge a reference (and associated bounds) arbitrarily

• CHERI tags prevent confusion between data per se and capabilities

📖§2.2 Demonstrate CHERI Tag Protection👩💻!
(& keep 📖 §1.7 Cheatsheet for the CHERI Software Release to hand)

47

https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/exercises/cheri-tags/index.html
https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/introduction/cheatsheet-release.html

Exercise: CHERI Pointer Integrity
Discussion: Contrasting Baseline and CHERI

• Exercise program constructed “the same” pointer two different ways:
• By setting the last byte of a pointer in memory
• By transforming the address of a language-level pointer

RISC-V Baseline
q=0x80ec2000 (0xb7 into buf)
*q=b7
r=0x80ec2000 (0xb7)
*r=b7

CHERI-RISC-V
q=0x3fffdffe00 [rwRW,0x3fffdffd71-0x3fffdfff70] (0x8f into buf)
*q=8f
r=0x3fffdffe00 [rwRW,0x3fffdffd71-0x3fffdfff70] (invalid) (0x8f)
In-address space security exception

48

Exercise: CHERI Pointer Integrity
Discussion: gdb

Program received signal SIGPROT, CHERI protection violation
Capability tag fault caused by register cs1.
main () at ./src/exercises/cheri-tags/corrupt-pointer.c:45

Thread 1 (LWP 100057 of process 1231):
#0 main () at ./src/exercises/cheri-tags/corrupt-pointer.c:45

(gdb) p $_siginfo
$1 = {si_signo = 34, si_errno = 0, si_code = 2, …

_reason = {_fault = {si_trapno = 28, si_capreg = 9}, …

49

AKA PROT_CHERI_TAG

Exercise: CHERI Pointer Integrity
Discussion: Investigating the Opcodes

• CHERI data instructions clear tags, capability instructions preserve
• Tagged capabilities have provenance that is exclusively capability instructions
• Initial tagged quantities provided in registers at boot!

Ptr Op Baseline CHERI

r
Store sb zero, 0(sp) csb zero, 32(csp)

Load ld s0, 0(sp) clc cs1, 32(csp)

q

Load ld a0, 0(sp) clc ca0, 32(csp)

Extract cgetaddr a1, ca0

Mask andi s0, a0, -256 andi a1, a1, -256

Update csetaddr cs1, ca0, a1

50
📚 CHERI Instruction-Set Architecture (Version 8)

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf

Exercise: Stack Data Buffer Overflow
Introduction

• CHERI offers architectural mechanisms for spatially-safe C.
• What does that mean? How does it work in practice?

📖 §2.3 Exercise an inter-stack-object buffer overflow

51

https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/exercises/buffer-overflow-stack/index.html

Exercise: Stack Data Buffer Overflow
Introduction: Stack Layout

• Straightforward buffer overflow:

• Write OOB to lower & damage upper
• C rules this undefined behavior

📖 §2.3👩💻!

void write_buf(char *buf, size_t ix)
{

buf[ix] = 'b’;
}

int main(void)
{

char upper[0x10];
char lower[0x10];

printf("upper = %p, lower = %p, diff = %zx\n",
upper, lower, (size_t)(upper - lower));

/* Assert that these get placed how we expect */
assert((ptraddr_t)upper

== (ptraddr_t)&lower[sizeof(lower)]);

upper[0] = 'a';
printf("upper[0] = %c\n", upper[0]);

write_buf(lower, sizeof(lower));

printf("upper[0] = %c\n", upper[0]);

return 0;
}

lower[14] lower[15] upper[0] upper[1]… …

52

https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/exercises/buffer-overflow-stack/index.html

Exercise: Stack Data Buffer Overflow
Discussion: So, what happened?

RISC-V Baseline
./buffer-overflow-stack-baseline

upper = 0x80d879d0, lower = 0x80d879c0, diff = 10

upper[0] = a

upper[0] = b

CHERI-RISC-V
./buffer-overflow-stack-cheri

upper = 0x3fffdfff50, lower = 0x3fffdfff40, diff = 10

upper[0] = a

In-address space security exception

• Baseline CPU wrote to “16th” position in lower, aliasing upper
• CHERI CPU trapped; kernel delivered fatal SIGPROT

• How did the CHERI CPU know to do that?

53

Exercise: Stack Data Buffer Overflow
Discussion: gdb
Program received signal SIGPROT, CHERI protection violation
Capability bounds fault caused by register ca0.
0x0000000000101ce8 in write_buf (buf=<optimized out>, ix=<optimized out>)
at ./buffer-overflow-stack.c:13
13 buf[ix] = 'b';

(gdb) disass
Dump of assembler code for function write_buf:

0x0000000000101ce0 <+0>: cincoffset ca0,ca0,a1
0x0000000000101ce4 <+4>: li a1,98

=> 0x0000000000101ce8 <+8>: sb a1,0(a0)
0x0000000000101cec <+12>: ret

End of assembler dump.

54

Exercise: Stack data buffer overflow
Discussion: Program .text

void foo(char *buf, size_t ix) {
buf[ix] = 'b';

}

int main(void) { // some lines elided
char lower[0x10];
write_buf(lower, sizeof(lower));

}
RISC-V 64

<write_buf>:
add a0, a0, a1
addi a1, zero, 98
sb a1, 0(a0)
ret

<main>:
addi sp,sp,-48

mv a0,sp
li a1,16
auipc ra,0x0
jalr -86(ra) # <write_buf>

CHERI-RISC-V 64

<write_buf>:
cincoffset ca0, ca0, a1
addi a1, zero, 98
csb a1, 0(ca0)
cret

<main>:
cincoffset csp,csp,-144

cincoffset ca0,csp,48
csetbounds cs0,ca0,16

cmove ca0,cs0
li a1,16
auipc ra,0x0
jalr -138(ra) # <write_buf>

Stores w/o bounds-checking branches

a0 holds address of buf on stack

bounds set at construction;
lower’s size persists in .text

ca0 holds capability to buf

55

Morning Tea (11h00 – 11h30)

56

Exercise: Explore Sub-Object Bounds
Introduction

• CHERI C defaults to bounding to “allocations” or “objects”
• Pointers into arrays and structures inherit bounds from container

• “Sub-object” overflows not stopped by default
• Compilation flags for sub-object bounds hardening

(And directives for fine-tuning in source in 2nd part of exercise; “extra credit”)

📖§2.4 Explore Subobject Bounds

57

https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/exercises/subobject-bounds/index.html

Exercise: Explore Sub-Object Bounds
Introduction: Structure Layout

• Structure representation in memory:

• Fill loop risks buffer overflow
• C rules this, too, undefined behavior

📖 §2.4👩💻!

struct buf {
char buffer[128];
int i;

} b;

#pragma weak fill_buf
void
fill_buf(char *buf, size_t len)
{

for (size_t i = 0; i <= len; i++)
buf[i] = 'b';

}

Buffer[126] Buffer[127] i… …

58

https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/exercises/subobject-bounds/index.html

Exercise: Sub-object Overflow
Part 1 Discussion

RISC-V Baseline and CHERI!
b.i = c

b.i = b

CHERI with Sub-object Hardening
b.i = c

In-address space security exception

Breakpoint 1,

fill_buf (buf=0x103e50

[rwRW,0x103e50-0x103ed4] "",

len=128)

Breakpoint 1,

fill_buf (buf=0x103e50

[rwRW,0x103e50-0x103ed0] "",

len=128)

Capability length:
128 bytes

Capability length:
132 bytes!

59

Exercise: Sub-object Overflow
Part 2 Discussion: Why isn’t this the default?

• C spec defines offsetof() primitive and char* casts
• Software uses containerof() for intrusive data structures
• Especially popular in “systems” and “runtime” code

• In general, incorrect to narrow bounds of pointers to sub-objects?

60

Exercise: Sub-object Overflow
Part 2 Discussion

• Without sub-object bounds narrowing, all caps include full structure
• Applying sub-object bounds everywhere:
• Next pointers grant access to whole intrusive list structure,
• Previous pointers only to next pointers

• Annotations can widen pointers as needed

1

next

prevnp

next

prevnp

3

next

prevnp

61

Exercise: Sub-object Overflow
Part 2 Discussion: Could It be the Default in the Future?

• Counterpoint: offsetof() / containerof() not that common.
• Add static asserts to containerof, enforce sub-objects non-narrowing.
• This is what you saw with -DUSE_CDEFS_CONTAINEROF

62

Exercise: Spatially Safe Heap
Introduction

• Heap memory (malloc) provided by library code
• Responsible for handing out unused, unaliased address space upon request
• For CHERI C runtime, must provide spatial safety too!

• What goes wrong when heap isn’t spatially safe?

📖 §2.5 Exercise heap overflows

63

https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/exercises/buffer-overflow-heap/index.html

Exercise: Spatially Safe Heap
Introduction

Explore two aspects of heap memory:
• Preventing inter-allocation overflow with CHERI bounds
• Reaching allocator metadata via the pointer argument to free despite bounds

and monotonicity

📖 §2.5👩💻!

64

https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/exercises/buffer-overflow-heap/index.html

…

Exercise: Spatially Safe Heap
Discussion for 0x20

RISC-V baseline

b1=0x83e82000 b2=0x83e82020 diff=20

Overflowing by 1
b2 begins: ABBB
Overflowing by 2
b2 begins: AABB

CHERI-RISC-V
sz=20, CRRL(sz)=20
b1=0x407c7000 [rwRW,0x407c7000-0x407c7020]
b2=0x407c7020 [rwRW,0x407c7020-0x407c7040]
diff=20
Overflowing by 1
In-address space security exception

b1[30] b1[31] b2[0] b2[1] …

b1 b2

b1[0] b2[31]

65

Exercise: Spatially Safe Heap
Discussion: Compressed Bounds’ Precision

• Heap allocations occasionally large
• Exposes capability representation

• CHERI capability logically has…
• Address (64 bits), base (64), limit (64)
• Permissions, type, flags, …

• “CHERI Concentrate”: 256 bits in 128
• Base & Limit usually “near” Addr

Length ≤ 4096: 1-byte alignment

Length ≤ 8192: 8-byte alignment

Length ≤ 16384: 16-byte alignment

⁞

66

https://www.microsoft.com/en-us/research/publication/cheri-concentrate-practical-compressed-capabilities/

…

Exercise: Spatially Safe Heap
Discussion for 0x1001

RISC-V baseline

b1=0x840ec000 b2=0x840ed400 diff=1400

Overflowing by 1
b2 begins: BBBB
Overflowing by 401
b2 begins: AABB

CHERI-RISC-V
sz=1001, CRRL(sz)=1008
b1=0x407c7000 [rwRW,0x407c7000-0x407c8008]
b2=0x407c8400 [rwRW,0x407c8400-0x407c9408]
diff=1400
Overflowing by 1
b2 begins: BBBB
Overflowing by 401
In-address space security exception

b1[0x1001]

b1 b2

b1[0] b1[0x1002] b1[0x1008] b1[0x13FF]… b2[0] …… b1[0x1007]

End of request

End of CHERI padding

End of bucket

67

Exercise: Spatially Safe Heap
Discussion (bonus): Representable Regions

CHERI capabilities can be out of
bounds, but not arbitrarily so:
• de facto C takes pointers beyond

bounds and brings them back
• Cap compression means OOB

limited to representable window
• >1/8th object below, >1/4th

above

Authorized
Representable

68

Exercise: Spatially Safe Heap
Discussion (bonus): Non-monoticity in free()

• Popular trick in mallocs: metadata next to data. dlmalloc:

• In baseline arch., free(p) “cheats” to find header & adjacent blocks.
• If malloc() bounds returns, all these are OOB caps on CHERI!

• CHERI-aware heaps find heap metadata from globals (tree, table, …)

free… …footer header alloc 2 header free

p

69

Exercise: Adapt a C Program to CHERI C
Introduction: pointer provenance validity (1/3)

• CHERI C/C++ implement pointers using architectural capabilities;
• Only pointers implemented using valid capabilities can be

dereferenced. Otherwise, a dereference would fire a hardware
exception;
• An integer data type cast to a pointer data type results in a NULL-

derived capability without a tag;
• However, there are data types that can hold pointer or integer values

(e.g., uintptr_t).

📖 §4.2, §4.2.1, CHERI C/C++ Programming Guide

70

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

Exercise: Adapt a C Program to CHERI C
Introduction: pointer provenance validity (2/3)

• In the CHERI memory protection model, capabilities are derived from
a single other capability;
• In CHERI C/C++, a capability can be a result of a complex expression

with multiple data types and casts;
• A variable that can hold a valid capability but should not be used as a

source capability must be appropriately cast to indicate that (e.g., to
an integer data type).

📖 §4.2.3, CHERI C/C++ Programming Guide

71

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

Exercise: Adapt a C Program to CHERI C
Introduction: pointer provenance validity (3/3)

• Ideally, we would like to recompile source code for CheriABI and
automatically gain security;
• Unfortunately, there is a lot of software that use incorrect data types

to hold values that fit in them but have different semantics.

72

Exercise: Adapt a C Program to CHERI C
Introduction: CHERI compiler warnings and errors
• CHERI LLVM can identify capability-related issues and print warnings:

• Loss of provenance (-Wcheri-capability-misuse);
• Ambiguous provenance (-Wcheri-provenance);
• Underaligned capabilities of packed structures (-Wcheri-capability-misuse);
• Underaligned load of capability type (-Wcheri-inefficient).

• Sanitizers (available in the master branch, not in the Summer 2021 release):
• A group of CHERI-specific sanitizers (-fsanitize=cheri);
• Detect capabilities that become unrepresentable when significantly (>1) out-of-bounds

(-fsanitize=cheri-unrepresentable);
• In the future: detect capabilities that are created >1 out-of-bounds.

📖 §6, CHERI C/C++ Programming Guide
📖 Assessing the Viability of an Open-Source CHERI Desktop Software Ecosystem

73

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf

Exercise: Adapt a C Program to CHERI C

📖 §2.6 Adapt a C Program to CHERI C👩💻!

74

https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/exercises/adapt-c/index.html

Exercise: Adapt a C Program to CHERI C
Discussion for -Wcheri-provenance

75

./cat-baseline /etc/hostid
bb5fbb47-10ab-11ec-a609-f5a47707c223

./cat-cheri /etc/hostid
cat-cheri: write(2) failed: Bad address

Exercise: Adapt a C Program to CHERI C
Discussion for -Wcheri-provenance

write(fildes, (const void *)(off + (uintptr_t)buf), nbyte)

Breakpoint 1, _write () at _write.S:4

(gdb) disassemble

Dump of assembler code for function _write:

=> 0x0000000040299130 <+0>: li t0,4

0x0000000040299132 <+2>: ecall

(gdb) info registers ca0 ca1 ca2

ca0 0x1 0x1
ca1 0x40810000 0x40810000

ca2 0x25 0x25

(gdb) ni 2

4 in _write.S

(gdb) info registers ca0 ct0

ca0 0xe 0xe

ct0 0x1 0x1

(gdb) 76

Exercise: Adapt a C Program to CHERI C
Discussion for -Wcheri-provenance

./src/exercises/adapt-c/cat/methods.c:70:43: warning: binary expression
on capability types 'ptroff_t' (aka 'unsigned __intcap') and 'uintptr_t'
(aka 'unsigned __intcap');

it is not clear which should be used as the source of provenance; currently
provenance is inherited from the left-hand side [-Wcheri-provenance]

return (write(fildes, (const void *)(off + (uintptr_t)buf), nbyte));
~~~ ^ ~~~~~~~~~~~~~~

77



Exercise: Adapt a C Program to CHERI C
Discussion for -Wcheri-provenance

78

write(fildes, (const void *)((size_t)off + (uintptr_t)buf), nbyte)

Breakpoint 1, _write () at _write.S:4

(gdb) disassemble

Dump of assembler code for function _write:

=> 0x0000000040299130 <+0>: li t0,4

0x0000000040299132 <+2>: ecall

(gdb) info registers ca0 ca1 ca2

ca0 0x1 0x1
ca1 0xd17d0000000180040000000040810000

0x40810000 [rwRW,0x40810000-0x40811000]

ca2 0x25 0x25

(gdb) ni 2

bb5fbb47-10ab-11ec-a609-f5a47707c223

4 in _write.S

(gdb) info registers ca0 ct0

ca0 0x25 0x25

ct0 0x0 0x0

(gdb)

write(fildes, (const void *)(off + (uintptr_t)buf), nbyte)

Breakpoint 1, _write () at _write.S:4

(gdb) disassemble

Dump of assembler code for function _write:

=> 0x0000000040299130 <+0>: li t0,4

0x0000000040299132 <+2>: ecall

(gdb) info registers ca0 ca1 ca2

ca0 0x1 0x1
ca1 0x40810000 0x40810000

ca2 0x25 0x25

(gdb) ni 2

4 in _write.S

(gdb) info registers ca0 ct0

ca0 0xe 0xe

ct0 0x1 0x1

(gdb)



Exercise: Adapt a C Program to CHERI C
Discussion for -Wcheri-capability-misuse

79

# ./cat-baseline -n /etc/hostid
1 bb5fbb47-10ab-11ec-a609-f5a47707c223

# ./cat-cheri -n /etc/hostid
In-address space security exception (core dumped)



Exercise: Adapt a C Program to CHERI C
Discussion for -Wcheri-capability-misuse

80

Program received signal SIGPROT, CHERI protection violation
Capability tag fault caused by register cs2.
verbose_cat (file=<optimized out>) at

./src/exercises/adapt-c/cat/methods.c:87

(gdb) info registers cs2
cs2 0x4037a400 0x4037a400

(gdb) disassemble $pcc,+4
Dump of assembler code from 0x103094 to 0x103098:
=> 0x0000000000103094 <do_cat+228>: lw a0,16(s2)
End of assembler dump.

(gdb) p fp
$1 = (FILE *) 0x4037a400
(gdb)



Exercise: Adapt a C Program to CHERI C
Discussion for -Wcheri-capability-misuse

81

./src/exercises/adapt-c/cat/methods.c:80:7: warning: cast from provenance-free integer type to 
pointer type will give pointer that can not be dereferenced [-Wcheri-capability-misuse]

fp = (FILE *)file;
^

static void
verbose_cat(long file)
{

(…)
fp = (FILE *)file;

static void
verbose_cat(uintptr_t file)
{

(…)
fp = (FILE *)file;



Exercise: Adapt a C Program to CHERI C
Discussion for -Wcheri-capability-misuse

82

Program received signal SIGPROT, CHERI protection violation
Capability tag fault caused by register cs2.
verbose_cat (file=<optimized out>) at

./src/exercises/adapt-c/cat/methods.c:87

(gdb) info registers cs2
cs2 0x4037a400 0x4037a400

(gdb) disassemble $pcc,+4
Dump of assembler code from 0x103094 to 0x103098:
=> 0x0000000000103094 <do_cat+228>: lw a0,16(s2)
End of assembler dump.

(gdb) p fp
$1 = (FILE *) 0x4037a400
(gdb)

Breakpoint 1, verbose_cat
(file=320992984091701168938624228367068013568) at

./src/exercises/adapt-c/cat/methods.c:87

(gdb) info registers cs2
cs2 0xf17d000000b5a404000000004037a400

0x4037a400 [rwRW,0x4037a400-0x4037c2d0]

(gdb) disassemble $pcc,+4
Dump of assembler code from 0x103082 to 0x103086:
=> 0x0000000000103082 <do_cat+226>: lw a0,16(s2)
End of assembler dump.

(gdb) p fp
$1 = (FILE *) 0x4037a400 [rwRW,0x4037a400-0x4037c2d0]
(gdb)



Lunch (13h00 – 14h00)

83



Toooba CHERI-RISC-V
A superscalar, out-of-order, multi-core reference implementation.

84



History of CHERI Architecture and Innovations

85
2012

ECATS
2017 2021

RISC-V

CHERI-MIPS
+ Embedded OS

CHERI-MIPS
+ FreeBSD

Full Cap-pointer Support
+ LLVM hybrid

LLVM Purecap
Efficient Tag Storage

Capability 
Compression

Revocation

CHERI-RISCV LLVM
CHERI-Piccolo

32-bit RISCV 
Microcontroller

CHERI-FreeRTOS

CHERI-Flute
64-bit Scalar
Pipelined + MMU

CHERI-Toooba
64-bit Superscalar,
Out-of-order, L2 CacheCheriBSD RISC-V



86

CHERI RISC-V Implementations

Piccolo Flute Toooba

Features • 32-bit
• 3-stage pipeline

• 64-bit
• MMU
• 5-stage pipeline

• 64-bit
• Out-of-order, Superscalar
• L2 cache

CHERI challenges • Tag-capable SoC
• Tag controller interaction
• CHERI-RISCV ISA
• User-mode ISA verification
• 3-stage pipeline integration

• High clock speed
• Full system ISA for CHERI
• System ISA verification

• CHERI integration with vastly more 
sophisticated pipeline

New science enabled • CHERI embedded OS structure 
(physical memory)

• CHERI logic in (short) embedded 
pipeline

• Unified register file code performance

• Cross-platform CHERI OS structure • CHERI performance overhead with 
memory reordering

• CHERI implementation overhead for 
"more real" core

• CHERI interaction with speculative 
execution attacks



RISCY-OOO Pipeline (very simplified)

• Parameterisable design, 
with base configuration:

2-way superscalar (n=2)
ROB: 64
Reservation Stations: 16 each
LD Queue: 24, ST Queue: 12
Store Buffer: 4

• Pipeline cleanly expressed, 
easy to work with

87

Fetch Execute Commit
Fetch 1

Fetch 2
TLB

Fetch 3

I $

Decode

FPU

ALU
... n/2

... n

MEM

Rename

n
...

Re
or

de
r B

uff
er

Commit

D $

BTB



Extending Decode and ALU Pipes for CHERI

88

• Straightforward 
extension of Decode
• Add Bluespec

Library functions to 
generic, replicated 
ALU pipeline 
module

Fetch Execute Commit
Fetch 1

Fetch 2
TLB

Fetch 3

I $

Decode

FPU

ALU
... n/2

... n

MEM

Rename

n
...

Re
or

de
r B

uff
er

Commit

D $

BTB

Reuse common
Bluespec capability
library



Register File -> CapReg, Bypasses -> CapPipe

89

• Changed the data type of the 
register file, making it 
parameterizable, and adding 
a reset value parameter 
(nullCap)
• Change data type of the 

bypass network
• In both cases, changing the 

type somewhere and chasing 
the type errors…

Strong typing in Bluespec really 
helps here (very different 
experience than Verilog)

Fetch Execute Commit

Fetch 1

Fetch 2

TLB

Fetch 3

I $

Decode

FPU

ALU
... n/2

... n

MEM

Rename

n
...

Re
or

de
r B

uff
er

Commit

D $

BTB

Re
gi

st
er

 F
ile

By
pa

ss
 N

et
or

k



Program Counter Capability Speculation

90

• Added PCC to all existing PC 
paths, which are highly 
speculated. The Branch 
Target Buffer now includes 
bounds, as well as all 
speculative targets and 
redirection paths.
• These decisions reduce 

friction with original design 
and provide equivalent 
performance to the baseline.

Fetch Execute Commit
Fetch 1

Fetch 2
TLB

Fetch 3

I $

Decode

FPU

ALU
... n/2

... n

MEM

Rename

n
...

Re
or

de
r B

uff
er

Commit

D $

BTB

Widened all speculative PC
paths to hold full PCC

BTB



New Exception Routing

91

• Added exception delivery to 
ALU pipes for capability 
exceptions
• Also added the Capability 

Exception Code to exception 
reporting paths everywhere
• Added new special capability 

registers for changing 
privilege level on exception 
and a register for the 
Capability Exception Code

Fetch Execute Commit
Fetch 1

Fetch 2
TLB

Fetch 3

I $

Decode

FPU

ALU
... n/2

... n

MEM

Rename

n
...

Re
or

de
r B

uff
er

Commit

D $

BTB

Memory could already
throw exceptions and
did not need new path

CSR File



92

• Parameterizable Issue/Commit Width

• All PCs extended to full capability: PCC

• All registers extended to 128-bits
• Memory paths (load/store queues) 

extended to 128-bits
• Some special registers extended to hold 

capabilities, and new capability registers 
added

• Tags added to all caches

CHERI-Toooba – Superscalar Out-of-Order 64b CHERI-RISC-V



93

Sample Optimization: Hierarchical Tag Controller
• Capabilities rendered 

unforgeable by hardware 
tags in registers and 
memory, requiring 129-bit 
hardware words.
• Where to store these tags in 

memory?
• Add a tag table in DRAM 

and emulate a memory of 
129-bit
words using a hardware tag 
table manager with a tag 
cache.

Hierarchical Tag Table

Tag Table in DRAM



94

CHERI Toooba - Area

Tag Controller5%

RegFile
64b -> 128b20%

Load/StoreQ
64b -> 128b20%

PC -> PCC15%

Cap ALU40%

LUT overhead breakdown

FPGA synthesis overview:
• 26% logic overhead (look up tables – LUTs)
• ~0% memory overhead (BRAM)



95

Hardware Performance Monitoring Framework to Measure
and Understand Performance

• Report a variety of architectural/microarchitectural events
• Expose many existing RiscyOO events not previously exposed in 

the SSITH GFE P3
• Support for > 1 increments within a cycle, useful for example 

when reporting retired instructions in a superscalar processor, 
or bulk reporting cycle latencies for memory accesses...

• Events exposed through the RISC-V specified Hardware Performance 
Monitoring (HPM) mechanism
• Privileged mode counter configuration (currently, Berkley 

Bootloader/RISC-V Proxy Kernel support for a statically curated 
set of events)

• User mode counter read (currently, CheriBSD libstatcounters
support to use with benchmarks)

• HPM approach believed generalized enough to be suitable for 
upstream implementation



• CHERI-Toooba dual-core successfully running 
FreeBSD and CheriBSD

• Needed for our work on temporal memory safety
• Allows revocation to proceed concurrently

CHERI-Toooba dual-core

Core 0 Core 1



CheriABI: Spatially Safe UNIX Processes
Introduction

• Have pointedly been ignoring the kernel
• By design, has access to whole program!  Breaks spatial safety??

•📖 §2.7 CheriABI Showcase
• Exercise has two short parts and a longer “extra credit” for the enthusiastic

97

https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/exercises/cheriabi/index.html


CheriABI: Spatially Safe UNIX Processes
Introduction: Confused Deputies

98

• A confused deputy mistakenly uses its own authority when acting
• Hardy’s example:

• Explore two examples here, with the kernel being the deputy

“/home/user/input.f”
“/home/user/output”

input.f

output $$$.log
input.f

“/home/evil/input.f”
“/var/log/$$$.log”

https://dl.acm.org/doi/10.1145/54289.871709


CheriABI: Spatially Safe UNIX Processes
Introduction: Deputy 1: read() and capability bounds

• Consider “read(fd, buf, len)”

• If len is larger than buf target, this could overflow!
• Kernel has access to all of process memory, has no reason to stop writing.

99



CheriABI: Spatially Safe UNIX Processes
Introduction: Deputy 2: mmap() and friends

• Processes want to add and remove pages from their address space
• Kernel exposes system calls mmap(), munmap(), &c.
• Baseline architectures: take integers to identify pages on which to act

• Risk: integers can be forged or corrupted
• Capabilities carry virtual addresses; could completely change their meaning!

📖 §2.7👩💻!

100

https://www.cl.cam.ac.uk/~nwf20/cheri-exercises-book/exercises/cheriabi/index.html


CheriABI: Spatially Safe UNIX Processes
Discussion: read() and capability bounds

101

CheriABI system calls take capabilities, and
voluntarily act with implied restricted authority!

Write OK
lower=0x80922400 upper=0x80922410
Read 0x20 OK; lower[0]=0x10 upper[0]=0x20

Write OK
lower=0x3fffdfff28 upper=0x3fffdfff38
Bad read (Bad address); lower[0]=0x10 upper[0]=0x0

RISC-V Baseline CHERI-RISC-V

Kernel overwrite! Kernel return –EFAULT;
Does not write OOB

Fault detected during copy-out

read(fd, lower, sizeof(lower) + sizeof(upper))



CheriABI: Spatially Safe UNIX Processes
Discussion: mmap() and friends

102

Directly mapped page at p=0x84dc0000

Punching hole in the heap at p=0x83b48000

Directly mapped page at p=0x40139000 [rwRW,0x40139000-0x4013a000]
p.perms=0x7817d
Punching hole in the heap at p=0x407d1000 [rwRW,0x407d1000-0x407d3000]
p.perms=0x6817d
munmap failed: Memory protection violation

RISC-V Baseline CHERI-RISC-V

Map new & unmap OK

Allocator client can
unmap heap pages!

More perms than just rwRW

CHERI-enabled heap allocator clears 
VMAP software permission bit

• CHERI exposes software permission bits uninterpreted by architecture
• CheriBSD uses one of these to indicate ownership of address space, and malloc() clears this bit on returns



Cornucopia: CHERI Heap Temporal Safety
Address Space Quarantine, Revocation

103

• Focused on heap temporal safety
• More complex lifetimes than stack objects, resists static approaches

• Heap pointers end up in globals, stacks, registers, kernel heap, …

• Risk: retain references to free() object, overlap new allocation
• Use After Reallocation: use old reference to access new allocation
• UAF-but-not-UAR less of a concern

• Eliminate UAR by revoking dead references
• UAF left possible, but guaranteed to access old object

• “Dual” of garbage collection: (lazily) enforce free()

Kernel

Stack

Globals
Heap

Address Space

Thread registers



Cornucopia: CHERI Heap Temporal Safety
Kernel Revocation Service

104

Kernel

Stack

Heap

Shadow • Kernel offers revocation service to user programs

• Exposes “shadow bitmap”
• Encodes live/free state of memory, 1 bit per 16 bytes

• Deletes capabilities to addresses with set bits
• Promises to inspect itself as well as user program

• Thread-safe & mostly concurrent implementation
Globals

Thread registers

Address Space



Cornucopia: CHERI Heap Temporal Safety
Quarantine & Batched Revocation

105

Kernel

Stack

Heap

Shadow • On free, allocator…
• marks shadow of object
• holds address space in quarantine

• When quarantine fills, allocator invokes revoker service
• Deletes all capabilities whose targets have marked shadows

• After revocation, safe to reuse address space
• Allocator clears shadow, enqueues address space to free lists

Globals

Thread registers

Address Space



Cornucopia: CHERI Heap Temporal Safety
Per-Page Sweep in More Detail

106

Shadow bitmap

Cache lines w/o tags: skip

Load cap, get (trusted!) base address

Load bitmap bit, CAS NULL if set

…

4K page being swept

…



Cornucopia Architecture
Per-Page “Capability-Dirty” Tracking

Cap-
dirtyable

Cap-
clean

Cap-
dirty

107

Capability store to page; trap

Capability
 sto

re to
 page; TLB AMO

No ca
ps fo

und

on th
is a

lias

No caps found

on any alias

Initial mapping, stores permitted



Cornucopia Architecture
Per-Page Capability Load Generations

108

TTBR PD PT Phys mem

0

1

0

0

1

1-bit generation counter in core

… and in each PTE

Trap: tag set, gen ≠

No trap: tag clear

No trap: tag set, gen =

Loads trap if (loaded CHERI tag set) and (core gen ≠ source page PTE gen)



Cornucopia Architecture
Revoking With Capability Load Generations

109

0

1

0

0

1

0

01

1

1

1

1

Revocation begins by stepping 
global load generation on all cores

As loads cause traps, sweep per page 
and update PTE generation

Background scan visits all pages w/ caps, 
updates PTE generation

1

TTBR PT Phys memPD



Afternoon Tea (16h00 – 16h30)

110



COMPARTMENTALIZATION

111



Architectural primitives for software security

112

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture 
(ISA)

CHERI capabilities are an architectural primitive that 
compilers, systems software, and applications use to constrain 

their own future execution

Software configures and uses capabilities to continuously 
enforce safety properties such as referential, spatial, and 
temporal memory safety, as well as higher-level security 

constructs such as compartment isolation

The microarchitecture implements the capability data type 
and tagged memory, enforcing invariants on their 
manipulation and use such as capability bounds, 

monotonicity, and provenance validity



Two key applications of the CHERI primitives
1. Efficient, fine-grained memory protection for C/C++

• Strong source-level compatibility, but requires recompilation

• Deterministic and secret-free referential, spatial, and temporal memory safety

• Retrospective studies estimate ⅔ of memory-safety vulnerabilities mitigated

• Generally modest overhead (0%-5%, some pointer-dense workloads higher)

2. Scalable software compartmentalization

• Multiple software operational models from objects to processes

• Increases exploit chain length: Attackers must find and exploit more vulnerabilities

• Orders-of-magnitude performance improvement over MMU-based techniques
(<90% reduction in IPC overhead in early FPGA-based benchmarks)

113



Application-level least privilege
Software compartmentalization decomposes software into 
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also as-yet 
undiscovered classes of vulnerabilities and exploits

114



Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Application-level least privilege

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities and exploits

Potential compartmentalization 
boundaries matching reasonable 
user expectations for least privilege
can be found in many user-facing apps. 

E.g., a malicious email attachment 
should not be able  to gain access to 
other attachments, messages, folders, 
accounts, or the system as a whole.



116

HTTP GET
sandbox

5. fetch

URL-specific sandbox
URL-specific sandbox

SSL
sandbox

HTTPS
sandbox

network
sandbox

Code-centred compartmentalisation

D
at

a-
ce

nt
er

ed
 c

om
pa

rtm
en

ta
lis

at
io

n

1. fetch
main loop

http

ssl

ftp

URL-specific sandbox

main loop

http

ssl

ftp

FTP
sandbox

2. fetch
main loop

http

ssl

ftp

HTTP
sandbox

3. fetch
main loop

http

ssl

FTP
sandbox

ftp

SSL
sandbox

HTTP auth
sandbox

4. fetch
main loop

http auth

ssl

FTP
sandbox

ftp http get

• Potential decompositions occupy a compartmentalization space:

• Points trade off security against performance, program complexity

• Increasing compartmentalization granularity better approximates 
the principle of least privilege …

• … but MMU-based architectures do not scale to many processes:

• Poor spatial protection granularity

• Limited simultaneous-process scalability

• Multi-address-space programming model



Virtual memory and capabilities

117

Virtual Memory Capabilities
Protects Virtual addresses and pages References (pointers) to C code, 

data structures

Hardware MMU,TLB, page-table walker Capability registers,
tagged memory

Costs TLB, page tables, page-table 
lookups, shoot-down IPIs

Per-pointer overhead,
context switching

CHERI hybridizes the two models: use the
best combination for any given problem

Compartment scalability Tens to hundreds Thousands or more

Domain crossing IPC In-address-space function calls or 
message passing

Optimization goals Isolation, full virtualization Memory sharing,
frequent domain transitions



What is software compartmentalization?
• Fine-grained decomposition of a larger 

software system into isolated 
modules to constrain the impact of 
faults or attacks

• Goals is to minimize privileges 
yielded by a successful attack, and 
to limit further attack surfaces

• Usefully thought about as a graph of 
interconnected components, 
where the attacker’s goal is to 
compromise nodes of the graph 
providing a route from a point of entry 
to a specific target

118

CheriFreeRTOS components and the application execute 
in compartments. CHERI contains an attack within 
TCP/IP compartment, which access neither flash nor the 
internals of the software update (OTA) compartment.



Shared virtual address space

Register
fileProtection

domain
A

Protection
domain

B

Shared
heap

Domain-specific
captables + PLTs

Domain-specific
stacks

Domain-specific
globals

Heap
allocations

Register
file Domain B

heap

Domain A
heap

Cross-
domain 

resources

Shared
code

Implied
pointer

Explicit
pointer

CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities, 
combined with a constrained non-monotonic domain-transition mechanism

119

Protection 
domain A

Protection 
Domain B

Flexible set of 
shared resources



Compartmentalization scalability

• CHERI dramatically improves compartmentalization scalability

• More compartments

• More frequent and faster domain transitions

• Faster shared memory between compartments

• Many potential use cases – e.g., sandbox processing of each image in a 
web browser, processing each message in a mail application

• Unlike memory protection,  software compartmentalization requires 
careful software refactoring to support strong encapsulation, and 
affects the software operational model

Early benchmarks show a 1-to-2 
order of magnitude performance 
inter-compartment 
communication improvement 
compared to conventional 
designs

120



Operational models for CHERI compartmentalization

• An architectural protection model enabling new software behavior

• As with virtual memory, multiple operational models can be supported

• E.g., with an MMU: Microkernels, processes, virtual machines, etc.

• How are compartments created/destroyed? Function calls vs. message 
passing? Signaling, debugging, …?

• We have explored multiple viable CHERI-based models to date, including:

Isolated dynamic libraries Efficient but simple sandboxing in processes

UNIX co-processes Multiple processes share an address space

• Improved performance and new paradigms using CHERI primitives

• Both will be available in CheriBSD/Morello
121



Proposed operational models:
Isolated libraries and UNIX co-processes

Isolated dynamically linked libraries

• New API loads libraries into in-process sandboxes.
• Calling functions in isolated libraries performs a domain transition, with 

overheads comparable to function calls.
• Simple model eschews asynchrony, independent debugging, etc.

UNIX co-processes

• Multiple processes share a single virtual address space, separated using 
independent CHERI capability graphs.

• CHERI capabilities enable efficient sharing, domain transition.
• Rich model associates UNIX process with each compartment.

• Active area of research; early prototype available for co-processes

122



Kernel

User process X

Sandbox Sandbox 

Userspace domain switcher

Process X rights

Example: Robust shared libraries

• User compartments exist within individual UNIX processes (“robust shared libraries”):

• CHERI isolates compartments within each address spaces

• Compartment switcher is itself a trusted userspace library

• Compartments have strict subset of OS rights of the process

• Intra-process domain switches take no architectural exceptions and do not enter the kernel
• Multiple processes + IPC required if differing OS right sets needed

123

Jump-based
intra-address-space 

CHERI domain switch

User process Y

Process Y rights

Exception-based 
inter-address-space 

MMU context switch



Kernel

Example: CHERI co-process model

• CHERI isolates multiple processes within a single virtual address space

• Kernel-provided trusted compartment switcher runs in userspace (actually a microkernel)

• CHERI-based inter-process memory sharing + domain switching

• A compartment’s OS rights correspond to the owning process

• Inter-process context switches take no architectural exceptions and do not enter the kernel
• CHERI can be pitched as improving IPC performance while retaining a (largely) 

conventional process model 124

User processes X and Y with shared virtual address space

Sandbox 
(process X) 

Sandbox 
(process Y) 

Userspace domain switcher

Jump-based intra-address-
space CHERI domain 

switch also switches kernel 
notion of active process

Process X rights Process Y rights



Co-Processes

• Key insight: With CheriABI, we can safely colocate multiple UNIX 
processes within the same virtual address space using CHERI capabilities

• Kernel constrains capabilities returned to user processes 
such that they can only reach their own pages within address space

• Kernel selectively shares capabilities between processes to 
facilitate fast IPC: shared PTEs, TLB entries

• Cheap exception-free inter-process context switch using 
sealed capabilities, lazy kernel context switch 

• Significantly reduce IPC overhead in compartmentalized/sandboxed 
systems with high process counts and frequent message passing

125



Prototype status
• Sealed switcher service is exposed via vdso-like kernel page in userspace

• New APIs implemented by kernel and libc:

coexecve(2) Create new process environment within current address space
cosetup(2) Set up coprocess services;

Register to invoke or accept calls
coregister(2) Register named coprocess service
colookup(2) Return sealed capabilities for

named coprocess service
cocall(2) Invoke coprocess service
coaccept(2) Donate thread to receive invocations

• coexecve(2), cosetup(2), coregister(2), and colookup(2) are system calls

• cocall(2) and coaccept(2) are libc symbols wrapping sealed-capability invocation of 
the kernel-provided switcher

126



coping benchmark

• Simple IPC benchmark compares pipe(2) IPC and coprocess
communication

• Message-passing (copy) semantics (emulate pipes)

• Send X bytes to service, which returns same X bytes

• Measure overhead as X scales up (and down)

• For now, does not attempt to exploit pointer sharing between processes 
– only the switcher can access memory from both processes

• In the future, will explore pointer passing between processes in 
coprocess-aware RPC libraries to further reduce copies

127



Early results: IPC ping-pong microbenchmark

128

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000 100000 1000000

C
yc

le
s 

on
 F

PG
A

Payload in bytes

Co-process vs. pipe(2) ping-ping
Memory-copy semantics with multi-byte payload

Co-process pipe(2)

Low
er is better

99% 99%

68%

42%

21%

89%

98%
% reduction in cycles for round-trip sending 
a message of X bytes to a second process, 
which then replies with the same bytes back

The fine print: Cycles include IPC setup, amortized over 10,000 iterations of 
the IPC loop. Both processes use the pure-capability ABI using 256-bit 
capabilities. 272-entry TLB, 32K L1 I-Cache, 32K L1 D-Cache, 256K L2 Cache.



Co-process next directions

• Debugging, resource accounting, …, while in a lazily switched process

• Enhancements to IPC APIs, namespaces, …

• Introduce asynchronous cosend(2)/corecv(2) to complement 
synchronous cocall(2)/coacept(2)

• Explore impact of pointer sharing on common RPC libraries and IPC-
based applications:  As knowledge goes up the stack, eliminate copies

• More mature benchmarking and evaluation

• Compare with optimized UNIX IPC: shm + semaphore on multicore

• Experimentation on Arm Morello

129



Q&A

• Thanks for joining us.  We hope you have enjoyed the exercises.
• Remaining time for open Q&A.

• Additional links for your clicking pleasure:
• https://cheri-cpu.org – CHERI project at University of Cambridge
• Publications
• cl-cheri-discuss mailing list

130

https://cheri-cpu.org/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-publications.html
https://lists.cam.ac.uk/sympa/subscribe/cl-cheri-discuss


CheriABI: Spatially Safe UNIX Processes
Discussion (bonus): Process Construction

131

RWX

RX RW

RW

AT_ENTRY AT_PHDR stack

exec()

ca
p 

to
 u

se
rs

pa
ce

C

RW

rtld

heap

mmap()

rw

RW CRW

malloc()

RW

code

R

relro

rtld



CheriABI: Spatially Safe UNIX Processes
Discussion (bonus): Capability Graph

• Pure-capability user programs speak capabilities across kernel syscall boundary
• cap roots come from execve() and mmap() and friends

• Hardware checks all dereference operations

• Consequence: process is confined to transitive closure of register file!

132

Memory
StackCode

Heap
Implied
pointer

Explicit
pointer

…

Thread 
register 

file

PLTs

Globals

captable

DDC

PCC

GPRs

NULL

NULL

NULL



CHERI Tags in Cores and Caches

133

L1D$

Regs

PC

CPU

L1I$

⁞

L2$

⁞

⁞

DRAM

Bigger registers 
hold caps

Tag in register

Tags in data caches

Tag controller

New tag controller, L2$ splits tags & data

Reserved 
RAM for 
tag table


