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I. INTRODUCTION

HIS supplementary file contains additional information

that we could not include in the main paper due to
space considerations. Below we describe: (i) the experimental
procedure for the cross-dataset and within dataset pairwise
comparisons; (ii) justification for the linear complexity of the
model for psychometric scaling; (iii) detailed architecture of
the PU-PieApp; (iv) selection procedure for datasets included
in UPIQ (v) detailed architecture of the multitask network; (vi)
Maximum Differentiation (MAD) competition for the tested
metrics; (vii) example images from the UPIQ dataset.

II. EXPERIMENTAL PROTOCOL FOR DATASET MERGING

Here we include additional details about the design of the
experiments for collecting required cross-dataset and within
dataset quality measurements. In order to produce a mean-
ingful unified quality scale using pairwise comparisons for
a specific single IQA dataset one needs a) comparisons of
distorted to pristine quality reference image, b) within-content
comparisons to scale different levels of distortion for the
same distortion type and c) cross-content comparisons [1], to
connect all content and put them on the same quality scale.
For rating this would be equivalent to having observers rate
images across all distortions and distortion levels during the
same session, instead of having separate experiments. In the
case of selected datasets, all of these considerations were
taken into account when original data was collected, i.e. each
dataset has a self-contained unified quality scale. To align these
datasets we need to connect disjoint scales through pairwise
comparisons and also find the relationship between rating and
pairwise comparison judgments within each of the datasets.
This means that for every disjoint rating dataset we need to
collect within dataset comparisons and link all datasets with
across dataset comparisons.

A. Displays and stimuli

For the presentation on the HDR display we transform all
images from either gamma-corrected (SDR) or relative linear
(HDR) pixel value to absolute linear colorimetric units in the
Rec. 709 colour space [2]. The peak luminance of the images
was matched to the peak luminance of the displays used to
collect original datasets. The images were also displayed with
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the same angular resolution (in pixels per visual degree) as in
the original experiments. When the image size exceeded the
size of our display, we provided a simple panning interface
in which observers could use a trackball to inspect different
portion of the image.

B. Experimental Procedure and Participants

We extended the data collected in original datasets and
follow-up studies for TID2013 [3], [4] and LIVE [5] datasets
with two additional pairwise comparison experiments. In all
cases, comparisons to be performed were selected so that
compared images were of similar quality, excluding obvious
comparisons so as to maximise informativeness of the col-
lected data. Note that this is a common approach in pairwise
comparison experiments and the basis for active sampling
approaches [5].

In the first experiment we collected only comparisons within
the dataset, i.e. comparing images of the same dataset.
This is necessary for finding the relationship between rating
measurements and pairwise comparisons. It is only necessary
for rating-based datasets, which means we excluded TID2013
from this experiment since we used previously collected
pairwise comparisons and rating measurements [3], [4]. We en-
sured that all three types of previously mentioned comparisons
were covered: to reference, within-content and cross-content.
After the first experiment, all the data could be scaled, since
we had comparisons to a common reference for all datasets.

For the second experiment we compared conditions exclu-
sively from different datasets, connecting each dataset to the
rest. Images were chosen to uniformly cover the quality scale.
We performed several iterations of the pair selection. After
conducting a pairwise comparison experiment on a small batch
of comparisons, we re-scaled the dataset with newly collected
comparisons and selected the next batch from the new scale.

Observers were asked to compare two distorted images
and choose the one with better quality with respect to their
reference. The reference image could be viewed by pressing
and holding a space bar. The observer was asked to see
the reference images at least once for each comparison. The
order of comparisons in every experiment was randomized.
We ensure that ITU recommendations [6] were met. And that
the time for performing one experiment did not exceed 30
minutes, so as to prevent observer tiredness from influencing
the experiment outcomes. Each selected pair of images was
compared by 6 participants, with each participant completing
approximately 300 trials. Overall 6000 new comparisons were
collected from 20 participants.
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III. RELATIONSHIP BETWEEN PAIRWISE COMPARISONS
AND MEAN OPINION SCORES

Watson [7] studied the correlation between rating scales and
results of pairwise comparisons in the context of psychometric
scaling of pairwise preference probabilities. He found that the
degree of agreement between two scales, for the case of video
compression, is relatively high. The work reports a quadratic
relationship between MOS and scaled PWC, with a very small
quadratic coefficient. On the contrary [1] shows that there is
a strong linear relationship between MOS and PWC scaling
results. Here we test both assumptions to validate, if the linear
relationship is indeed sufficient.

To compare goodness of fit we report adjusted R? statistic
- Rgdj, which, unlike simple R? accounts for the number of
model parameters in explaining the variance in the data [8]:
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where n is the number of data points in the dataset, p is the
number of parameters, excluding the constant term, y and y
true and predicted response variables and ¥ is the mean of y.

We fit 1°* 274 and 3"¢ order polynomials into the JOD,
obtained from pairwise comparisons, and MOS of TID2013
[9] and LIVE [10] image quality datasets. Figure 12 shows
the scatter plot of the scores and fitted polynomials. An
important observation can be drawn — the model describing the
relationship between JOD and MOS for image quality must be
monotonic, as an increase/decrease in the quality of an image
should result in the increase/decrease of the scores in both
scales. Violation of this requirement is visible in the example
of 37¢ order fit into the scores from LIVE dataset.
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Fig. 12: Polynomial fits into the JOD and MOS scores of three
subjective image and video quality datasets.

The results of computing R? q; are given in Table I. There
is only slight increase in R? q; for TID2013 and LIVE datasets
for 2" and 3"¢ order polynomials. Non-linear relationship is
thus hard to justify given the need for additional constraints
on the function to be monotonic.

IV. UPIQ DATASET SELECTION

To ensure the accuracy of the data in the UPIQ dataset,
candidate datasets were screened with a pilot experiment. We

TABLE I: dej statistic for polynomial fits describing the
relationship between MOS and JOD.

| Dataset [ 1% order [ 2" order [ 377 order ‘

TID2013 0.77 0.79 0.79
LIVE 0.87 0.89 .89
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Fig. 13: Scatter plot of the empirical probability p;; obtained
from our experiment and difference in the DMOS scores
obtained by [11]. Two scales have little correlation with the
SROCC of 0.27.

ran a series of within-dataset pairwise comparisons to verify
if the ranking of the scores elicited from our subjective study
is consistent with the ranking provided in the dataset. Where
the scores in the original dataset have shown to have little or
no correlation with the data in our experiment, the dataset was
not included in UPIQ. Figure 13 shows the scatter plot of the
empirical probabilities found in our subjective experiment for
a set of image pairs, compared between six and ten times,
versus their difference in the MOS scale obtained by [11].
We verify if the data collected by [11] or us is more
consistent we run an additional Maximum Differentiation
(MAD) experiment [12]. The pairs of images with the most
inconsistent scores are given in Figure 14. One of the advan-
tages of the experimental procedure employed for the data
collection in UPIQ is the ability to flip between reference
and test image during the experiment. Observers were thus,
particularly sensitive to the JPEG blocking artefacts in the
large smooth areas of the skies of the lake and sunset images.

V. PIEAPP DETAILED ARCHITECTURE

For every input patch m of reference R and distorted A
images the feature extraction (FE) network has two outputs:
y(™) from the input passing through the whole network and
x("™) formed by concatenation of the flattened outputs of layers
at different depths of the network. The score computation (SC)
network takes two inputs: the difference between 7" — 2",
which is passed through a fully connected layer, predicting
patch-wise error s and the difference yg%m) — yféxm), which is
passed through another fully connected layer, producing the
patch-wise weight w(™). The two outputs s(") and w(™),
are then used to produce the weighted average of all per
patch scores — a quality score of the entire image s4. Note,
that passing two reference images through the network will

result in the :cg{m) — :L'(Am) = 0, thus the output of the
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Fig. 14: Representation of image pairs where collected pair-
wise comparisons and original DMOS scores from [11] dis-
agree. In each pair the image on the left is the one which has
higher DMOS and lower quality from our experiment and the
other way around on the right.
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Fig. 15: (a) The feature extraction network takes image patches
as an input and has two outputs: one from a patch passing
through the whole network and another formed from skip
connection. The network has 11 convolutional layers with
2 x 2 max-pooling after every even layer. (b) The score
computation network computes patch-wise weights and scores,
the weighted average produces the final score

quality estimation function f(A, B), will be constant, defined
by the bias of the score computation network. The detailed
architecture of the PieAPP network is shown in Figure 15.
a) Alternative Architectures: We experiment with a num-
ber of CNN architectures to find the one that generalizes
the best. Since the CNN-based metric can be trained end-to-
end, it could potentially learn the PU-transform. We replaced
the PU-transform with a logarithmic function followed by

TID2013 Narw. TID2013 | LIVE | TID2013 LIVE
LIVE Korsh. Narw. Narw. Korsh. Korsh.
0.46 0.27 0.33 0.46 0.26 0.10

TABLE II: SROCC between the difference in quality scores
sA — $p, where A and B are images from different datasets
and empirical probability p;; for the multitask network.
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Fig. 16: Multitask network. The network is trained to predict
original scores from individual datasets. Similar to the scaling
procedure the network learns the implicit quality s4 and
parameters a and b for each dataset. To constraint the scores
we set parameters of TID dataset a” = 1, b7 = 0.
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scaling to the 0-1 range and then trained the network. The
prediction error was much higher for the logarithmic function
(root-mean-squared error (RMSE) 0.68) compared to the PU-
transform (RMSE 0.47). This confirms that the PU is beneficial
for quality predictions in SDR/HDR images even for CNN-
based metrics.

VI. MULTITASK NETWORK

Collecting data is time consuming and expensive, hence a
method capable of learning the implicit unified quality without
the need for additional data is desirable. To verify if our
network is capable of learning this implicit quality and cross-
dataset relationship, we train the network using a multitask
learning approach, where it is assumed that all datasets share
the same feature representation for quality but since scales
are relative the quality scores might be scaled differently. The
architecture of the network is given in Figure 16. The f(A, B)
part of the network is the same as PU-PieApp and produces a
score s 4, which is assumed to be a unified quality for disjoint
datasets. Similar to our scaling procedure from Section 3 of
the main paper the scores from individual datasets are linked
with the unified s4 via a linear relationship. For example the
quality score sﬁ for LIVE dataset would be predicted with
a’ x s + b, where a” and b” are learnt parameters. These
parameters from individual datasets are treated and learnt as
individual tasks. Since quality scores are relative, we constraint
them by setting parameters of TID2013 dataset a” = 1 and
bl = 0. To allow for faster convergence we standardized
scores from the separate datasets. The training procedure for
the multitask network was the same as for the DPIQM.

Similar to Section 4.3 in the main paper we compute the
correlation between the difference in quality scores s4 — sp,
where A and B are images from different datasets and empir-
ical probability p;;. The detailed results are given in Table II.
Neither of the cross-dataset relationships is well captured by
the multitask network.
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Fig. 17: MAD competition for tested metrics. High values in
the row indicate high success of the attack by the metric in the
corresponding row on the metric in the corresponding column.

VII. MAXIMUM DIFFERENTIATION COMPETITION

We have also performed MAD analysis on the test split
of the UPIQ dataset. For a pair of metrics we select pairs
of conditions that have different qualities according to the
tested quality metric and similar according to the benchmark
quality metric. Thus for two quality metrics M* and M? with
scores in JOD units we select conditions o; and o; following
arg max,; (|M] — Mj|— M} — M?|) subject to |[M} —M?| <
1 JOD. Instead of aggressiveness and resistance used in
[13], we quantify the performance of a metric by measuring
its ability to classify a pair of images as of the same or
of different quality. If the absolute difference in JOD units
between two images in the UPIQ dataset is < 1, we assume
that the conditions are similar in quality, otherwise they are
different in quality. We then report precision - the number of
pairs correctly ranked and identified as different by the tested
quality metric, divided by the total number of selected pairs
(100 in our case). The results are given in Figure 17. Each
entry of the matrix is the precision of the test metric from the
corresponding row when paired against the benchmark quality
metric from the corresponding column.

PU-Pie-APP (re-trained) exhibits the best performance both
in identifying different in quality (first horizontal row) and
similar in quality (first vertical column) conditions when
paired with any of the metrics. However, when paired with
HDRVDP2-2, PU-PieAPP performs almost on par. Second
best performance is attained by PU-FSIM, which has very
similar performance to FSIM without PU-transform. Never-
theless, PU-FSIM exhibits stronger performance when paired
with metrics accounting for the dynamic range.

VIII. EXAMPLES OF THE DATASET

Figures 18 and 19 show sample images from the unified
dataset at JOD = —1 and —2 and are intended to be a

visual subjective validation of the final scale. These levels
were selected to show images from all four datasets, as images
from the HDR datasets (Korshunov and Narwaria) have quality
scores above -2 JOD only. Each figure contains four separated
sections, each associated to a different dataset. Each section
has two rows: distorted and reference images. For display
purposes HDR images were converted to SDR with gamma

correction: .

Ispr \ 22
I = 255 . 3
HDR ( 955 ) 3)

As the perceived image quality depends on the display lumi-
nance, the SDR images in the figures might be masking or
amplifying some image distortions. Thus figures are intended
to be an approximate demonstration of the final image quality
scale. Nevertheless, images from different datasets at the
same JOD level have similar distortion severity. Without our
unified photometric image quality dataset (UPIQ) it would be
impossible to compare image scores across datasets. Most of
the HDR images are distorted only locally, with the overall
image quality not deteriorating significantly, as opposed to
images from SDR datasets that had uniform distortions applied
to them. Narwaria mostly has panorama images, where local
distortions are less noticeable due to the size of the image.
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Fig. 18: A selection of images from the four combined datasets at approximately —1 JOD level. Each dataset has two rows:
distorted and reference images. We converted HDR images to SDR with gamma correction and gamma 2.2. Images from
different datasets at the same JOD level have similar distortion severity. Without a unified dataset it would be impossible to
compare image scores across datasets.
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Fig. 19: A selection of images from the four combined datasets at approximately —2 JOD level. Each dataset has two rows:
distorted and reference images. We converted HDR images to SDR with gamma correction and gamma 2.2. Images from
different datasets at the same JOD level have similar distortion severity. Without a unified dataset it would be impossible to
compare image scores across datasets.



