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Consolidated Dataset and Metrics
for High-Dynamic-Range Image Quality
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Abstract—Increasing popularity of high-dynamic-range (HDR)
image and video content brings the need for metrics that
could predict the severity of image impairments as seen on
displays of different brightness levels and dynamic range. Such
metrics should be trained and validated on a sufficiently large
subjective image quality dataset to ensure robust performance.
As the existing HDR quality datasets are limited in size, we
created a Unified Photometric Image Quality dataset (UPIQ)
with over 4,000 images by realigning and merging existing
HDR and standard-dynamic-range (SDR) datasets. The realigned
quality scores share the same unified quality scale across all
datasets. Such realignment was achieved by collecting additional
cross-dataset quality comparisons and re-scaling data with a
psychometric scaling method. Images in the proposed dataset
are represented in absolute photometric and colorimetric units,
corresponding to light emitted from a display. We use the new
dataset to retrain existing HDR metrics and show that the dataset
is sufficiently large for training deep architectures. We show the
utility of the dataset on brightness aware image compression.

Index Terms—High Dynamic Range, Image Quality Dataset,
Image Quality Metric

I. INTRODUCTION

IMAGE quality assessment metrics, such as peak signal to
noise ratio (PSNR) and structural similarity index measure

(SSIM) are widely used in image compression, reconstruction,
and enhancement [1], [2], [3], [4], [5]. However, most image
quality assessment (IQA) metrics do not account for display
characteristics such as the dynamic range and brightness of the
display, influencing the perceived image quality. For example,
compression artifacts are more visible on a bright HDR
display, than on a dimmed mobile phone [6]. The plethora
of display types motivates the need for a new, photometric
IQA metric that accounts for absolute image luminance and
can operate on both HDR and SDR images. Throughout this
work we use the term metric to refer to image quality metric
rather than to a distance function in a metric space.

The primary limitation to developing an HDR image quality
metric has been the lack of a unified large-scale subjective
image quality dataset. Although attempts have been made
to adapt and verify performance of SDR metrics on HDR
content [7], [8], [9], [10], [11] those have not been thoroughly
tested due to the lack of a unified dataset. The absence of
a large unified dataset also prevented the development of
metrics based on machine learning for HDR images, which
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require large amounts of versatile and heterogeneous data to
train. While recent machine-learning-based SDR image quality
metrics relied on large crowd-sourcing studies [12], [13], [14],
these are not straight forward to conduct for HDR content as
it requires an HDR display and controlled viewing conditions.

The available subjective image quality datasets [15], [16],
[11], [17], [18], [19], [12], [13], [20], are insufficient in
isolation, as they are limited in terms of the number of images,
diversity of distortion types and image sizes. These datasets
cannot be easily combined, due to the use of different experi-
mental protocols and the relative nature of the quality scales,
which precludes comparing quality scores across datasets.
Moreover, incomparable quality scales across datasets prevent
the use of absolute scores as a mean of benchmarking IQA
metrics, forcing to rely on correlation coefficients computed
individually on each dataset. This work addresses these issues.
Instead of following the common practice of collecting a
dataset from scratch, we argue for consolidation of exist-
ing datasets and focus on combining SDR and HDR image
quality datasets to create the largest photometric subjective
IQA dataset to date with a unified quality scale. We use the
dataset to re-train existing full-reference metrics, including
deep architectures.

Our contributions can be summarized as follows: (i) we
perform a series of subjective image quality assessment exper-
iments and construct the largest subjective HDR IQA dataset
to date (UPIQ) using psychometric scaling [21]. The dataset
contains 3779 SDR and 380 HDR images from four existing
IQA datasets; (ii) we show the necessity and advantages of the
psychometric scaling by comparing it to other strategies for
merging datasets; (iii) we use the new dataset to retrain and
benchmark existing HDR metrics. We show that the proposed
dataset is sufficiently large for deep architectures by training
a convolutional neural network (CNN)-based full-reference
photometric image quality metric. The advantage of training
on the unified dataset is shown in comparison with training on
a single dataset and performing multi-task learning on disjoint
datasets; (iv) the utility of training HDR metrics on the new
dataset is shown in an application to image compression. The
new dataset1, code and metrics are available online2.

II. RELATED WORK

In this section we set the context for the problem and
provide a brief review on existing IQA datasets as well as
the HDR and SDR objective quality metrics.

1UPIQ dataset: https://doi.org/10.17863/CAM.68372
2Project page: https://www.cl.cam.ac.uk/research/rainbow/projects/upiq/
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A. Existing IQA Datasets

To train and validate image quality metrics, one requires
a dataset where image quality scores are obtained from hu-
man observer judgements. Two most common experimental
protocols for collecting such a dataset are ranking and rating
experiments. In rating experiments, observers are asked to
assign a numeric quality score to each image. All judgments
are then averaged to produce Mean Opinion Scores (MOS).
In ranking, observers are asked to compare two or more
images and order them according to their quality. Ranking
results can be then mapped to a one-dimensional quality
scale using psychometric scaling [22], [23], [24], [25]. The
most commonly used ranking protocol is pairwise comparison,
where a pair of images is compared at a time. Advantages of
pairwise comparisons over rating are the lower cognitive load
on observers and a more accurate scale [26]. Unlike rating,
scores produced by psychometric scaling are interpretable
– distance between any two scores can be mapped to the
probability of one condition being selected over another [25].

Although many subjective IQA datasets exist, they are far
from ideal. For example, the largest currently available SDR
dataset, BAPPS [13], offers only a single distortion type per
content (where we define content as the scene depicted in
the image) — therefore machine learning based metrics may
struggle to learn how to scale the magnitude of a distortion.
Moreover, image quality scores were not measured extensively,
with only two judgments per 64×64 pixel patches rather than
full-sized images. Another recently collected large-scale SDR
dataset [12], contains pairwise preference probability, i.e. the
likelihood of an image in a pair of being more similar to the
reference. Even though authors collected a large number of
comparisons per image (> 10), only within-content compar-
isons were performed, thus making the cross-content quality
scores less reliable. Similarly authors in [27] collected a large
scale SDR dataset with MOS. These datasets are not publicly
available. Existing HDR IQA datasets [11], [18], [16] are
significantly smaller than SDR datasets, more homogenous in
the versatility of their contents and distortions. These datasets
are thus insufficient for the applications outlined in this paper.
To remedy these limitations, in this work we combine HDR
datasets with much larger SDR datasets.

Since collecting large amount of IQA measurements is
time consuming and costly, it is preferable to reuse existing
datasets. The idea of combining subjective IQA datasets has
been considered before. Authors in [11] align subjective scores
of HDR datasets using objective quality metrics. The method
assumes that the quality predictions from multiple objective
metrics can be used to find the transformation of quality
scores from one dataset to another. However, this approach is
problematic when combining SDR and HDR datasets as very
few metrics can reliably predict absolute quality of both SDR
and HDR images. In contrast to that work, we conduct a set
of subjective experiments to measure the relative cross-dataset
quality and then use psychometric scaling [21] procedure to
bring all datasets to a unified quality scale.

Datasets can be collected more efficiently using active sam-
pling methods, which choose the measurements that maximize

the information gain [28], [29]. Another approach is to use
quality metrics to find the conditions for which the metrics
disagree the most and help to differentiate the performance of
those metrics (MAD competition) [30], [31]. Those methods,
however, are not intended for merging the existing large
datasets.

B. Quality Assessment Criteria

There are at least three common criteria related to im-
age quality: aesthetics, visibility and impairment. Aesthetic
judgements deal with the quality of an image as judged
by commonly established photographic rules — appropriate
use of lighting, contrast, and image composition. Here, the
quality may be perceived in terms of creative composition
and execution of an image, rather than artifacts [32]. As an
example, tone-mapping metrics, which assess the reproduction
of HDR images on regular monitors, estimate the aesthetics
of tones, brightness, details and colors [33], [34]. Visibility
metrics predict whether a difference between a pair of images
is going to be visible, but they do not assess the magnitude
of a distortion [35], [36]. They also produce visual difference
maps rather than a single quality score. The focus of this work
are impairment metrics, which assess the quality of images
distorted by noise, blur, compression, and other artifacts. Here,
we only consider full-reference metrics, for which the original
undistorted image is available.

C. Existing Approaches to IQA

Metrics vary in the number of trainable parameters and
therefore the amount of data required to train them. The
simplest metrics, such as PSNR and SSIM [37], are designed
to capture image statistics that is deemed to be important for
detecting distortions. These metrics do not have any trainable
parameters. Other metrics involve modeling relevant charac-
teristic of visual system, such as contrast masking or contrast
sensitivity [38], [35]. Because those metrics rely on the exist-
ing psychophysical models, they have only a few parameters
to train. Another common approach is to extract a number of
hand-crafted features and then use a machine-learning model
to predict quality based on those [39], [40], [41], [42]. The
last group of methods relies on deep-learning methods to both
learn the features relevant for quality and the function that
would map those features into image quality [43], [44], [13],
[12], [45], [46]. Deep learning methods have achieved the
state-of-the-art performance on several benchmarks, however,
they are susceptible to the quality and quantity of the training
data. If data are scarce, which is common in IQA, given the
difficulty in collecting the human judgements, the model will
fail to generalize.

D. Training Robust Deep Learning models

Transfer learning is often used to alleviate the problem
of insufficient and noisy data when training deep-learning
models. For example, authors in [44], [47], [48], [49] pre-
trained a CNN model on image classification tasks, arguing
that learned features would capture image statistics important
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for IQA. Others [13], [50] pre-trained the network on the
quality predictions of the hand-crafted quality metrics, and
then fine-tuned on the subjective image quality scores. Authors
in [51] exploited yet another approach — they first pre-
trained the network to classify distortions. The risk of this
approach, however, is that it can overfit the model to the
given set of distortions. Machine learning metrics can also be
trained to rank pairs of images rather than rating them [46],
[12], [13]. The advantage of such approach is that training
can be performed directly on the pairwise comparison data.
However, the shortcoming of this approach is that it discards
meaningful information by converting the quality scores to a
binary classification problem. Although all these approaches
can improve the ability of the ML-metrics to generalize, they
do not alleviate the need for a larger and diverse IQA dataset,
an issue widely acknowledged in most works [52].

E. Influence of a Display on the Perceived Image Quality

SDR metrics typically operate on 8-bit gamma-encoded
pixel values and ignore display characteristics, such as its
brightness and resolution and viewing conditions such as
viewing distance. Such an approach was justifiable in the era
of cathode ray tube (CRT) monitors with very similar char-
acteristic. However, current display devices can vary widely.
For example, peak display luminance can vary from 5 cd/m2

for a dimmed mobile phone to 6 000 cd/m2 for a bright HDR
display. One way to account for display brightness is to
represent both SDR and HDR images in absolute colorimetric
units, so that, for example RGB=[100 100 100], corresponds
to white color (D65) of 100 cd/m2. This changes the paradigm
of assessing image quality from device-independent measure-
ments (e.g. PSNR on gamma-encoded pixels), to device-
specific measurements, which require knowledge of the target
display. While this introduces additional difficulty of selecting
display parameters, it is a necessary step for quality assessment
on modern displays, and especially those with HDR capabili-
ties. The standardization of reference display parameters may
simplify this step in the future.

1) Display model: Most modern displays can be modelled
using a gain-gamma-offset model [53]. Such a model trans-
forms gamma-encoded color values into absolute linear color
values as follows:

Clin = (Lpeak − Lblack)CγsRGB + Lblack, (1)

where γ = 2.2, Clin is a linear color value, CsRGB is the
gamma-encoded color value for one of the channels (R, G or
B) and Lpeak and Lblack are peak and black luminance levels
of the display, respectively.

2) Photometric image quality metrics: As the dynamic
range of a display affects the visibility of distortions of a
viewed image, a reliable quality metric should be able to
account for it. We will refer to the metrics that operate on
physical photometric/luminance values as photometric quality
metrics. HDR quality metrics, such as HDR visual difference
predictor (HDR-VDP) [35] or HDR video quality measure
(HDR-VQM) [38]) are photometric and account for a large
range of luminance produced by HDR displays.

Fig. 1: PU-transform mapping physical luminance in cd/m2

into approximately perceptually uniform units.

3) Extending SRD metrics to HDR images: SDR metrics
can also be adapted to operate on photometric quantities [54].
For that, the absolute luminance values are converted into
Perceptually Uniform (PU) or logarithmic values, with the
former achieving better results [7], [18]. This transformation
is necessary as the response of the human eye to luminance is
not linear. Perceptually uniform values are then passed to an
SDR image quality metric.

PU-transform [7] was derived from the contrast sensitivity
function (CSF) that predicts detection thresholds of the human
visual system across a broad range of luminance adaptation
conditions. The transform was designed to ensure that the
smallest perceivable change in luminance (just-noticeable-
difference or detection threshold) is mapped to a constant
change in the PU values. This was achieved by a numerical
solution of:

PU(L) =

∫ L

Lmin

1

T (l)
dl , (2)

where Lmin is the minimum luminance to be encoded and
T (l) is the detection threshold at the absolute luminance
l. The shape of PU-transform is shown in Figure 1. The
transformation is typically stored as a look-up table. The
transformation is further constrained to map luminance values
typically reproduced on SDR displays (0.8-80 cd/m2) to
0 − 255 range (8-bit encoding). This ensures that metric
predictions for SDR images in the PU domain are comparable
to those computed on the original SDR pixel values.

Similar procedure can be applied to evaluate quality of
SDR images when they are shown on displays with different
brightness. Before passing through the PU-transform an SDR
image is first transformed to luminance emitted from a display,
assuming a model of that display, such as the one in Equation
1. The full pipeline of making SDR image quality metrics
photometric is given in Figure 2.

Authors in [55] used the PU-transform to adapt a no-
reference deep SDR IQA metric to operate on HDR images.
The model in [55] had to rely on a metric trained on SDR
images due to the absence of a sufficiently large HDR dataset.
In this work, we provide such a HDR dataset enabling us to
train a deep HDR IQA metric on both SDR and HDR images.

III. PSYCHOMETRIC SCALING

In this section we extend a probabilistic model from our
previous work [21] to combine quality measurements from dif-
ferent datasets and from two different experimental protocols:
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Fig. 2: Extending SDR metrics to photometric values. An
SDR image is first converted from gamma-corrected pixel
values to linear luminance values, via a display model. For
HDR images the “Display model” is omitted, as those already
store luminance values. Luminance values are then passed via
the PU-transform to obtain perceptually uniform values. The
images in PU domain are then passed to an SDR image quality
metric.

ranking and rating. In the previous work, we demonstrated how
mixing the scores from these protocols could lead to higher
precision for a single dataset [21]. In this work, we extend the
idea from our previous work to mix the scores from different
datasets and realign them to a common unified scale. The
scaling method and the experimental protocol are generalisable
to mixing other subjective assessment datasets where rating
and ranking preference aggregation methodologies are used.

A. Observer Model

To build a quality scale, certain assumptions need to be
made about how observers respond and perceive quality. Such
assumptions are encapsulated in the observer model. This
model is needed because observers vary in their notions of
quality (inter-observer variance), and their opinions are also
likely to change when they repeat the same experiment (intra-
observer variance).

Let q be an N-dimensional variable whose individual com-
ponents qi ∈ R represent the underlying true quality of
condition i, and N is the number of conditions. We use the
term condition to refer to an object or an item to be compared;
in our case a condition represents an image content with
certain distortion type and at a certain level.

According to the widely used Thurstone’s model Case V
[24], perceived quality is normally distributed and the standard
deviation σ is known. We can then introduce ri as the random
variable associated with the measured quality, ri ∼ N (q̂i, σ).
Here the mean of the distribution approximates the true quality
qi and the standard deviation is assumed to be the same for
all conditions.

B. Scaling Fundamentals

Psychometric scaling aggregates pairwise comparisons into
a (generally) uni-dimensional quality scale. The collected data
can be represented in a count matrix C, where element cij
contains the number of times condition i was chosen over

condition j. Then, the probabilities of selecting one condition
over another can be directly estimated from this matrix:

p̂ij =
cij

cij + cji
, i 6= j , (3)

where p̂ij represents the probability that condition i is per-
ceived as of better quality than j.

The main aim of psychometric scaling model is then to re-
cover the true quality scores from these estimated probabilities.
For the assumed model, the probability of choosing i over j
should match the cumulative normal distribution Φ over the
difference ri − rj :

P (ri > rj) = P (ri − rj > 0) = Φ

(
qi − qj√

2σ

)
, (4)

where σ dictates the relationship between distances in the scale
and probabilities of better quality. A common approach is to
select σ so that a probability of 0.75 (in the midway between
a random guess and being completely certain) is mapped to
a distance of 1 unit in the quality scale. The difference of 2
units then corresponds to the probability of 0.91 and so on.

A common approach for scaling pairwise comparisons is
to use maximum likelihood estimation. That is, we estimate
the difference in quality scores maximizing the probability of
observing collected data C. The probability that i was selected
over j in exactly cij trials from the total number of nij =
nji = cij + cji trials is given by the Binomial distribution:

L(qi, qj |cij , cji) =

=
(
cij+cji
cij

)
P (ri > rj)

cij (1− P (ri > rj))
cji . (5)

To scale all compared conditions, we maximise the product of
the likelihood for all pairs of conditions:

argmax
q2,...,qn

∏
i,j∈Ω

L(qi − qj |cij , nij), (6)

where Ω is the set of all pairs for which at least one
comparison has been made. A more detailed discussion of
the psychometric scaling can be found in [25].

C. Mixing Pairwise Comparisons and Rating

Our main assumption for mixing the two protocols, rating
and ranking, is that different psychophysical experiments aim
to recover the same latent ground truth variable q by different
means. For pairwise comparisons, quality scores are recovered
by psychometric scaling and for rating, approximated by mean
opinion scores (MOS). We further assume that the relationship
between the MOS values (denoted as π) and the quality
values resulting from psychometric scaling (denoted as r) is
monotonic. We validated several polynomial relationships in
supplementary. Similar to previous literature [11] we found
that for image quality assessment the relationship was well
described by a linear model:

ri = a · πi + b , (7)

where a and b are the parameters and πi ∼ N (qi, c · σ) with
c compensating for varying measurement accuracy/observer
models for both of these experimental protocols. Because
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rating protocols often use different rating scales (1–5 or 0–
100) and because different protocols result in different inter-
and intra-observer variation, we optimize for separate set of
parameters a, b and c for each dataset.

Given that MOS values are generally measured in a contin-
uous scale and we are assuming the same randomly distributed
observer model, the probability of observing mik (single rating
measurement for ith condition and kth observer) can be
expressed using the density function of the normal distribution:

f(mik|qi, a, b, c) =
1√

2πa2c2σ2
e−

((a·mik+b)−qi)
2

2a2c2σ2 . (8)

Assuming independence between observers, the likelihood of
observing ratings from J observers for N conditions aggre-
gated in M is:

P (M|q, σ, a, b, c) =

N∏
i=1

J∏
k=1

f(mik|qi, σ, a, b, c). (9)

To recover latent scores q from both measurements, the
posterior probability can be factorised as:

P (q, a, b, c|C,M, σ) ∝
P (q) · P (C|q, σ) · P (M|q, a, b, c, σ), (10)

where P (q = N ( 1
N

∑N
i=1 qi, σ)) is a Gaussian prior. As we

found in our earlier work [25], the prior improves the precision
of the scaling when the number of measured comparisons (per
pair of conditions) is low. The prior introduces bounds on the
score values in the presence of unanimous answers, which
put no upper bound on the distance between the recovered
scores. The conditional independence of C and M given q
is assumed. P (C|q, σ) is computed as in Eq. 5 assuming
independence between measurements. P (M|q, a, b, c, σ) is
computed using the density function of the normal distribution.
We infer the quality scores q, and the parameters a, b, c using
maximum likelihood estimation. As scales are relative, we
constrain the scores for all reference images (without any
distortion) in all datasets to be zero (qi = 0 for each i that
represents a reference image).

Since likelihood functions are scale invariant, we can fix
σ to any value without loss of generality. In our case we fix
σ = 1.048, so that a distance of 1 unit between two conditions
indicates that 75% of observers can see the difference between
two conditions, allowing the interpretation of distances in the
scale. These units are often referred to as Just-Objectionable-
Differences (JODs) [21].

IV. UNIFIED PHOTOMETRIC IQA DATASET (UPIQ)

Our goal is to create a large dataset consisting of both SDR
and HDR images, with the image quality scores on a unified
quality scale with JOD units. This is achieved by selecting ex-
isting SDR and HDR datasets, collecting additional cross and
within-dataset comparisons, and scaling all the measurements
together. We call our dataset UPIQ (“You Pick”) — Unified
Photometric Image Quality. Before our work, the largest HDR
IQA dataset contained only 240 conditions [18]. Our dataset,
has 4159 images, making it the largest and the most diverse
HDR image quality dataset to date. Unlike most IQA datasets,
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Fig. 3: Distribution of log-luminance per dataset.

images in our dataset are provided in absolute photometric
units cd/m2 and scores are provided in interpretable JOD units.

A. Selected Datasets

We selected four existing datasets—two SDR (TID2013
[15] and LIVE [17]) and two HDR (Korshunov [18] and
Narwaria [16]), which we summarize in Table I. All four
datasets span very large dynamic range, as shown in Figure 3.
Despite a large number of available IQA datasets, only a few
of them meet our criteria and could be included in UPIQ. Some
datasets were constructed for the purpose of no-reference
quality assessment [56], [57], [58] and do not contain reference
images [20]. Other datasets contained a single distortion per
content, thus they provided no means to scale the magnitude of
a distortion [20], [19], [59]. For some datasets, the image size
was too small for a proper judgement of image quality [60].
While we attempted to scale some datasets, we found their
quality scores to be too inconsistent with our measurements
to be included in UPIQ [11]. We provide additional details on
the dataset selection in the supplementary.

B. Dataset Alignment Experiments

To align quality scores from different datasets, we need
to perform several types of pairwise comparisons, illustarted
in Figure 4. Comparisons within a single dataset (within-
content, cross-content and with-reference) are needed to bring
the quality values to a common scale of JOD units. This is
especially important for the datasets with only MOS (rating)
values as these are provided in an arbitrary scale. We need
to find the relationship between MOS and JOD values by
estimating the associated parameters (a, b and c in Eq. (7)).
The cross-dataset comparisons are necessary to ensure that
the quality values are comparable across the datasets. Because
different datasets usually do not share the same content, cross-
dataset comparisons tend to be also cross-content comparisons.
Cross-content comparisons have been shown to be of the
similar difficulty as within-content comparisons [21] and they
significantly improve the accuracy of a quality scale [26], [61].

a) Displays and stimuli: The data necessary for align-
ment were collected on two different displays. Comparison of
SDR to SDR images were performed on a color calibrated
32” SDR Samsung S32D850T display with 2560 × 1440
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TABLE I: Characteristics of the chosen IQA datasets

Name Dynamic
range Experiment No.

images
No.

distortions
No.

contents
Image sizes

(h×w pixels)
LIVE [17] SDR MOS 779 5 29 512×768

TID2013 [15] SDR PWC 3000 24 25 348×512
Narwaria [16] HDR MOS 140 2 10 1080×1920

Korshunov [18] HDR MOS 240 3 20 1080×944

100
Quality

(from rating)

0
Quality

(from pairwise comparisons)

0Quality
(unified scale)

Within-content comparisons
(Collected by us for datasets with rating)

Comparisons with the reference
(Collected by us for datasets with rating)

Cross-content comparisons
(Сollected by us for datasets with rating)

Cross-dataset comparisons
(Collected by us)

Worst WorstBest

Best

Best

Worst

Reference

Scaling 
procedure

Fig. 4: Types of comparisons necessary for dataset alignment. The lines link pairs of images selected for pairwise comparisons.
Within-content comparisons (red solid lines) are most commonly used in pairwise comparison experiments. However, such
datasets often lack comparisons with reference (blue dotted lines), which are useful to provide an absolute anchor of quality.
Cross-content comparisons (green dashed lines) are less common, but can substantially improved the quality of the scale [26].
Finally, cross dataset comparisons (black dash-dotted lines) are necessary to scale the datasets together.

pixels, 300 cd/m2 typical peak luminance and a black level
of ∼0.3 cd/m2. The comparisons involving HDR images were
presented on a custom-built, color-calibrated 10” HDR display
with 2048× 1536 pixels, 15,000 cd/m2 peak luminance and a
black level below 0.01 cd/m2 [62].

We used the display model from Equation 1 to transform
gamma-corrected sRGB colors to linear RGB values shown
on the HDR display. Because we had no information on the
displays used in the SDR image quality studies, we used
the typical parameters of an SDR display: γ = 2.2, the
peak luminance, Lpeak = 100 cd/m2, and the black level,
Lblack = 0.5 cd/m2. For HDR images, we reproduced the
absolute luminance values used in the original studies. The
viewing distance was 90 cm for both the SDR display (51
pixels per degree) and the HDR display. Both HDR and SDR
images, shown on the HDR display, were upscaled by a factor
of 3.2 (50 pixels per degree), making the measurements taken
for the original SDR and HDR studies comparable with ours.

b) Experimental procedure and participants: The ob-
servers were presented with pairs of images and were asked to
select the image of better quality with respect to the reference.
Observers could press and hold the space-bar to view the
reference images. When the image size exceeded the size of
our display, we provided a simple panning interface in which
observers could use a trackball to inspect different portion
of the image. Each participant viewed images in different

order. Each selected pair of images was compared by 6
participants, with each participant completing approximately
300 trials. Overall 6000 new comparisons were collected from
20 participants. Note that this required relatively moderate
experimental effort as compared to collecting the data from
scratch (3000 images in the TID2013 dataset required over
500,000 comparisons). To improve the information gain of
the collected data and to exclude obvious comparisons [28],
paired images were of similar quality.

We conduct two types of experiments. The first is cross-
dataset comparisons. This type of comparisons was only
necessary for rating-based datasets, which means we excluded
TID2013 from this experiment since we used previously
collected pairwise comparisons and rating measurements [61],
[21]. We ensured that all three types of necessary comparisons
were covered: to reference, within-content and cross-content.
After the first experiment, all the data could be scaled, since
we had comparisons to a common reference for all datasets.

For the second experiment we compared conditions ex-
clusively from different datasets, connecting each dataset to
the rest. Images were chosen to uniformly cover the whole
quality scale. We performed several iterations of the pair
selection. After conducting an experiment on a small batch
of comparisons, we re-scaled the dataset with newly collected
comparisons and selected the next batch from the new scale.
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C. UPIQ Dataset Scaling

We combined the newly-collected comparisons with the
original data from the four datasets and from the two follow-up
studies on TID2013 [61] and LIVE [28]. In total, the combined
dataset consists of 571,215 individual pairwise comparisons
and 27,676 rating measurements, which were passed to the
scaling procedure from Section III.

Figure 5 shows the relationships between original quality
values of each dataset and the new JOD values from our
unified dataset. The plots show substantial differences between
the original and rescaled quality scores, suggesting that cross-
dataset scaling and additional measurements have further im-
proved the quality estimates. Note that the original scores of
the TID2013 dataset were obtained with vote counts, reliant
only on within-content comparisons. This approach has proven
to be less accurate as compared to psychometric scaling [61].

D. UPIQ Dataset Validation

The qualitative comparison, showing images at a constant
JOD level, is shown in supplementary. The figures demon-
strate that images at the same JOD level contain comparable
perceived magnitude of distortions. In the following subsec-
tions we compare our scaling with the metrics-based dataset
alignment, and then demonstrate the improvement in pairwise
accuracy.

1) Comparison to previous re-scaling work: Multiple IQA
datasets can be merged together using an iterated nested least-
squares (INLS) algorithm [63]. The algorithm uses existing
objective quality metrics to find the relationship between
conditions in different datasets. The assumption made is that a
weighted combination of metrics should have high correlation
with human judgments. The algorithm iteratively finds weights
for the combination of objective quality metrics and aligns
subjective quality scores from each of the datasets until
convergence. Since no metric exists that has been exhaustively
tested on both SDR and HDR images, we validate the results
using two HDR datasets (Korshunov and Narwaria), which
were aligned with INLS in the previous work [11]. Figure 6
shows that our scaling procedure and the one from [11]
lead to substantially different scores. To determine which
alignment is more consistent with the subjective judgements,
we compute the rank-order correlation between the unpro-
cessed human subjective measurements and scaled values.
Since the collected human judgment data comes in the form
of pairwise comparisons, we compute the correlation between
empirical probability of selecting one condition over another
and differences in quality scores.

The method proposed in [63] relies exclusively on rating and
objective metrics to re-align datasets. Whereas our approach,
uses psychometric scaling, which requires additional pairwise
comparisons to build the unified quality scale. Thus, to ensure
a fair comparison, we perform a five-fold cross-validation on
the collected cross-dataset comparisons. We split cross-dataset
comparisons into five equal-sized partitions. In each fold of the
cross-validation we scale the data from four partitions and use
the fifth partition for validation. The cross-validation results
are given in Table II. For each fold, our model correlates

TABLE II: SROCC between scaled quality scores and empiri-
cal probabilities, for our and metric-based scaling. The values
are reported for each fold of the cross-validation.

Validation Fold 1 2 3 4 5
Psychometric scaling (our) 0.77 0.72 0.62 0.74 0.71
Objective-metric-based [11] 0.67 0.60 0.52 0.52 0.53

better with the subjective judgments, with mean spearman rank
order correlation coefficient (SROCC) of 0.71 versus 0.56 for
the method from [11]. It should be noted that the correlation
values computed in this manner cannot reach high values
because of the measurement noise in the pairwise comparison
data. Figure 7 also shows that the relationship is closer to the
expected cumulative normal function for our method. This is
further confirmed when JOD differences are converted into
probabilities (Equation 4) and plotted in the right panel of
Figure 7. The scaled probabilities are within the confidence
interval of the measured probabilities, confirming that the
scaling procedure leads to the quality values that well reflect
the empirical quality differences.

2) Measuring pairwise accuracy: In this section we pro-
vide interpretation of the SROCC results from our validation
experiment. We will demonstrate that the scale correctly ranks
97% of the pairs that are at least 1 JOD apart.

We first transform the collected data and the produced scale
into pairwise rankings. This is, if the quality of i is higher than
that of j (as measured in the collected pairwise comparison
matrix C) then we set the binary target label tij to +1,
otherwise we set the target tij to -1. This represents the ground
truth pairwise rank averaged across the population. We then
compare this ground truth binary label to our predicted binary
labels t̂ij , following the same procedure but using the output of
the scaling algorithm instead of probabilities. Having ground
truth and predictions, we compute ranking accuracy. For this,
we ran a 10-fold cross-validation. In each iteration we withheld
10% of the compared cross-dataset pairs of conditions for
validation. The remaining 90% of compared pairs were for
scaling. To compute the ranking accuracy, we assume the
minimum threshold distance (in terms of JODs) that is required
for a pair of conditions to be considered, then report the ratio
of the number of correctly ranked considered pairs to the total
number of considered pairs.

Figure 8 shows the accuracy scores for different thresholds
of reliable JOD differences, for both our scale and that of [63].
For conditions > 0.75 JODs apart (where 63% of observers
agreed on the highest quality image, only 13% more than
random choice), our scale has 90% accuracy. That is, 90% of
the pairs which are more than 0.75 JODs apart are correctly
ranked by our psychometric scaling. The difference with [63]
is very significant with our scale being consistently much more
accurate across different thresholds.

3) Cross-dataset scaling versus multi-task learning: The
final hypothesis we tested is whether a multi-task deep-
learning network can implicitly infer the relation between the
datasets and thus can be used to merge datasets without the
need for additional data. In this approach, the neural network
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for one of the cross-validation folds. Purple lines represent the
training comparisons and black lines the test comparisons

is trained to predict the scores of the four individual datasets
(tasks). The network consisted of two parts. The first part
predicts a common score. The second part maps the common
score via simple linear regressors, different for each dataset, to
the original quality values collected in each dataset. Both parts
were trianed jointly end-to-end. The details of the architecture
are provided in supplementary. This experiment, however, was
unsuccessful. The average SROCC between the common score
predicted by the multi-task network and the ground truth
pairwise comparisons, was only 0.27 for cross-dataset pairs.

V. APPLICATIONS

In this section we show how our UPIQ dataset is useful to
train CNN-based metrics and benchmark existing HDR quality
metrics. We further show how metrics trained on our dataset
can be used for brightness-aware image compression.

A. Training Data-driven HDR Metric

UPIQ is a sufficiently large image quality dataset to enable
us to train from scratch a CNN-based image quality metric
to predict quality of both SDR and HDR images. The metric
combines the ideas behind PU encoding [7] (Section II-E)
and a recently proposed CNN architecture for image quality
assessment (PieAPP), [12]). We will refer to this metric as
PU-PieAPP.

a) Architecture: The diagram of the deep metric archi-
tecture is shown in Figure 9. The metric takes as input a pair
of test and reference images and produces a single quality
score sA in JODs. To account for the dynamic range of the
displayed images, the input images need to be transformed
into the display domain. This is achieved by a display model
from Equation 1 for SDR images, or by scaling color values
according to the presentation conditions from the original
papers for HDR images. Then, the resulting trichromatic
color values (with Rec. 709 primaries [64]) are converted
into approximately perceptually uniform units using the PU-
transform (Section II-E), which is applied individually to each
color channel. Such encoded images are fed into the PieAPP
architecture, which combines a pair of feature extraction
networks with shared weights with the score computation
network, both identical to the one used in [12]. The detailed
architecture is provided in supplementary.

We train the network on 64 × 64 patches. To densely
cover the whole image, the image is stratified by a uniform
grid and patches are sampled at random positions in each
grid cell (jittered sampling). The grid size is selected to
give approximately square cells. In training, we extract 1024
patches per image. We found that 1024 was the largest number
of patches that we could process on our GPU. When testing,
we sampled twice the number of 64 × 64 patches needed to
cover the image. This number was optimal in terms of the
time vs. performance trade off.

b) Training: In contrast to [12], we train the network as
regression rather than learning-to-rank. Our scaling procedure
achieves the same goals as learning-to-rank, but offers a more
accurate observer model and allows us to split the problem
into two separate steps of scaling and learning. We train the
network from scratch, using Adam optimizer on 4 NVIDIA
P100 GPUs. Every tested architecture was run for 500 epochs
and the model with the best performance on the validation set
was saved (using 60-20-20 split into training, validation and
test sets).

B. Benchmark of HDR Quality Metrics

Although HDR image quality metrics have been compared
in many studies [18], [11], [9], none of them could test the
metrics on an extensive dataset such as UPIQ. Therefore, we
use UPIQ to test existing HDR metrics.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0 0.2 0.4 0.6 0.8 1-40 -30 -20 -10 0 10
0

0.2

0.4

0.6

0.8

1

-2 0 2 4

Fig. 7: Right two plots: scatter plots for five folds (distinguished by colors and shape); difference in quality scores in the scale
constructed with objective quality metrics [11] OMi - OMj versus empirical probability, pij , of one image i being selected
over image j (left); and difference in quality scores in our scale JODi − JODj versus pij (center). Our scale is clearly better
aligned with the measurements. The right plot: the same as the centre plot but for the entire dataset (no folds) and plotted
as the probability instead of JOD difference. The shaded area denotes a 90% confidence interval for the measurements (pij).
The 75% preference (1 JOD) is denoted by the black vertical and horizontal lines. Our scaling procedure brings the quality
differences within the confidence interval of the measurements.

Fig. 8: Accuracy of classifying cross-dataset conditions into
better/worse after alignment with the proposed method. Higher
value of Threshold JODs means that more conditions are
excluded from training and testing sets. Shaded region is 95%
confidence interval.
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Fig. 9: The pipeline used to train PU-PieAPP on absolute
scores. Images first pass through the display model and are
then fed to the PU-transform. The feature extraction network
with shared weights (w) extract representations, which are
passed to the score computation network.

Here we consider full-reference metrics, which are either
adapted to HDR content using PU-transform: PU-PSNR, PU-
SSIM [37], PU-FSIM [65], or are designed to work with HDR
data: HDR-VQM [38], HDRVDP-2.2 [35], [66] and NLP [67].
We also evaluate no-reference metrics, adapting them to the
HDR content with PU-transform: PU-BRISQUE [40], PU-
PIQE [41] and PU-NIQE [42], due to their widespread use

and competitive performance. Finally, we adapted existing
SDR CNN-based metrics to HDR content using the PU-
transform: PU-KonCept512 [14] (no-reference) and original
PU-PieApp (original) [12] (full-reference). We did not re-
train deep metrics on UPIQ, but used weights provided by
the authors. For comparison, we also include full reference
PSNR and FSIM metrics, not adapted to the HDR content.

Most objective metrics predict values that are non-linearly
related to absolute quality in JOD units. The scatter plot of
the considered metrics predictions versus those of the JOD’s is
provided in Figure 10. Since our goal is to predict the absolute
quality, we need to map metric predictions to JODs. We follow
a standard approach [17] and fit a logistic function mapping
objective quality o into absolute JOD units q(o):

q(o) =
a1

1 + ea2(o−a3)
+ a4o+ a5, (11)

where a1, . . . , a5 are fitted parameters. Fitting a logistic func-
tion is necessary for computing performance measures, RMSE
and PLCC, but it also helps to scale objective metric results
into interpretable and comparable units of JODs. For example,
while the result of PU-SSIM of 0.98 is difficult to interpret,
the result of -1 JODs tell us that 75% of the population will
notice the difference.

For fair comparison, we use the same 5-fold split into 80-
20% training and testing dataset when fitting psychometric
function for the tested metrics. In each fold a different portion
of the entire dataset is tested while ensuring that no content is
shared between training and testing sets. We also make sure
that each subset (TID2013, LIVE, Narwaria and Korshunov)
was split in the same 80-20 ratio. Note that since PU-PieAPP
(re-trained) is trained on the quality scores from UPIQ dataset,
we do not need to fit the logistic function into its prediction.

a) Cross-content validation: The most common ap-
proach to the validation of learning-based quality metrics is
the split into training and testing sets that contain different
content but share distortion types. Note that we took extra
care to isolate the same content in LIVE and TID datasets
as those share some of the reference images. The results for
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Fig. 11: Cross-validation results for all trained metrics, expressed as SROCC, pearson linear correlation coefficient (PLCC)
and root-mean-squared error (RMSE). Error bars denote 95% confidence intervals.

the 5-fold cross-validation on such cross-content splits, shown
in Figure 11, indicate that PU-PieAPP (re-trained) outper-

forms existing hand-crafted metrics. PU-PieAPP shows 30%
improvement to the second-best performing metric, PU-FSIM,
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TABLE III: Test RMSE, SROCC and PLCC for different data partitioning schemes and the best performing metrics. (C-C –
cross-content, C-D – cross-dataset, C-DR – cross-dynamic-range). We remove the listed test portion of the UPIQ from training,
and test on it. Note that the first column (C-C) shows the same data as Figure 11.

Metric C-C
Test:

sel. cont.

C-D
Test:

TID2013

C-D
Test:
LIVE

C-D
Test:

Narwaria

C-D
Test:

Korshunov

C-DR
Test:
HDR

C-DR
Test:
SDR

RMSE
PU-PieAPP 0.47 0.92 0.70 0.68 0.62 0.72 1.29
PU-FSIM 0.66 0.65 0.50 0.26 0.29 0.68 1.39
FSIM 0.70 0.65 0.51 0.45 0.52 1.17 1.61
HDRVDP 0.82 0.88 0.64 0.24 0.21 0.78 1.34
HDRVQM 0.86 1.04 0.68 0.23 0.20 0.39 1.43

SROCC
PU-PieAPP 0.94 0.78 0.87 0.82 0.79 0.74 0.65
PU-FSIM 0.90 0.80 0.96 0.87 0.93 0.71 0.77
FSIM 0.89 0.80 0.96 0.54 0.52 0.45 0.54
HDRVDP 0.84 0.78 0.94 0.94 0.94 0.81 0.82
HDRVQM 0.82 0.71 0.92 0.95 0.95 0.87 0.60

PLCC
PU-PieAPP 0.96 0.78 0.89 0.78 0.75 0.73 0.67
PU-FSIM 0.90 0.89 0.96 0.87 0.90 0.66 0.77
FSIM 0.89 0.89 0.96 0.53 0.66 0.34 0.51
HDRVDP 0.84 0.83 0.93 0.89 0.95 0.72 0.78
HDRVQM 0.82 0.78 0.92 0.89 0.95 0.86 0.62

which is followed by FSIM without the PU-transform. We
later show that the performance difference between PU-metrics
and original metrics is much higher when tested on HDR
datasets (UPIQ is dominated by images from SDR datasets).
No-reference metrics, based on hand-crafted features, exhibit
the worst performance — the PU-transformation applied to the
images distort the statistics that these metrics rely on. Deep
learning based no-reference metric PU-KonCept512 does not
perform well either.

Original PieApp adapted to our dataset with PU-transform,
performs reasonably well on SDR images (SROCC: 0.8764).
However, exhibits poor performance on both HDR datasets
(SROCC: 0.5791). This is expected, as the metric was trained
on SDR images, and the range of PU-transformed HDR
images is larger than that of SDR.

b) Cross-validation schemes: To understand what mix-
ture of data is required to robustly train quality metrics,
we experiment with different data partitioning schemes. For
this experiment, we selected 5 best performing metrics from
Figure 11. Table III lists the training and test data combinations
we tested and the corresponding results.

PU-PieAPP generalizes well when trained cross-content (C-
C), i.e. the training and test set overlap in distortion types
but not in content. However, the performance of this deep-
learning metric drops significantly if one or more datasets are
missing from the training set. This, and the poor performance
of no-reference metrics in Figure 11, show that learning-based
metrics are prone to overfitting when the training dataset is not
sufficiently large.

As expected, SDR metrics exhibit better performance when
tested on SDR datasets. The same holds for metrics aimed
for HDR content – they perform better on HDR datasets. PU-

FSIM and FSIM have similar performance when tested on
SDR datasets. However, when tested on HDR, PU-FSIM per-
forms significantly better compared to FSIM, clearly demon-
strating the need for the PU-transform.

C. Maximum differentiation competition

We use the gMAD [31] procedure to find the pairs of images
that differ the most according to one metric, but are similar
according to another metric. Figure 13 shows a set of failure
cases for the two best performing metrics (PU-PieAPP (re-
trained) and PU-FSIM) when paired against each other in the
gMAD competition. PU-PieAPP tends to correctly capture the
ranking of the images, however underestimates the quality of
images with JPEG artifacts. PU-FSIM fails to account for color
change of the image. PU-FSIM is also too sensitive to contrast
change and not sensitive enough to the structural distortions.

D. Brightness-Adaptive Coding

As HDR metrics account for absolute luminance levels, they
are not only useful for testing the quality of HDR images,
but also open opportunities for new applications such as
brightness-adaptive coding. Such coding adapts the required
bandwidth to the brightness of a display; saving bits on a
dimmed displays and using higher bandwidth when higher
quality is needed for a bright display. We investigate how
PU-PieAPP and PU-FSIM (the two best-performing metrics)
predict the quality of images shown on displays of differ-
ent brightness. Figure 12a shows the quality predictions for
JPEG distortion as a function of peak display luminance. As
expected, both metrics predict that JPEG distortions are less
noticeable when the display is darker. However, the predictions
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Fig. 12: (a) The quality predictions as the function of display peak luminance. The predictions are shown separately for three
distortion levels of JPEG and averaged across contents from TID2013 dataset. (b) Contrast threshold function for a varied
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Fig. 13: Selection of image pairs from the gMAD competition
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defence of the PU-FSIM and in the bottom row the same
for PU-PieAPP (re-trained). Below each pair we report the
difference in the JOD scores between the left and the right
image found in the UPIQ dataset and assigned by each of the
tested metrics.

diverge at luminance levels above 100 cd/m2: PU-FSIM pre-
dicts a decrease in image quality, whereas PU-PieAPP predicts
an improvement. Interestingly, PU-PieAPP’s U-shaped curve
is consistent with the recent measurements [62] of human
contrast detection thresholds. We show an example of these
measurements in Figure 12a.

Next, we use PU-PieApp to control the compression rate
of a standard JPEG codec (the ”quality” parameter) in order
to achieve a distortion at a desirable JOD level. Figure 12c
shows the distribution of the required bit-rate to compress
200 pristine test images at the desired JOD level. The selected
levels signify that about 4% (-0.1 JOD), 16% (-0.3 JOD) or
25% (-0.5 JOD) will correctly indicate a compressed image
from a test and reference pair (discounting 50% guess rate).
The vertical bars in the plot denote the peak luminance levels
of three typical displays: an HDR TV, computer monitor, and
a dimmed mobile phone. The plot shows that the bit-rate

could be substantially reduced when images are shown on a
dimmed mobile phone, but it should be increased for HDR
TV. Furthermore, the difference between brightness levels is
larger for images encoded with high quality. Such information
could be useful, for example, for internet caches that attempt
to reduce the amount of data sent to mobile web browsers.
It is only meaningful to use photometric metrics, trained on
both SDR and HDR images, for such applications as they
can capture the effect of absolute luminance on image quality.
A more detailed validation of such brightness-adaptive image
coding can be found in [68].

VI. CONCLUSIONS

A large scale photometric image quality dataset would
enable the development of deep learning based image quality
metric. However, existing HDR image quality datasets are
small in size and expensive to collect. We remedy this limita-
tion and increase their size by merging together a mixture
of both HDR and SDR datasets. Our merging procedure
requires collecting additional data (cross-dataset comparisons),
however, the experimental effort is much smaller compared to
collecting the dataset from scratch. The accuracy of the result-
ing dataset is much higher than that of alternative procedures
[63], [11]. The proposed dataset merging procedure can be
applied to other quality domains, such as the quality of high-
frame-rate, omni-directional or foveated video.

Another major contribution of this work is Unified Photo-
metric Image Quality dataset (UPIQ), which is the first large-
scale dataset that can be used for training and testing HDR
image quality metrics. Images in our dataset are represented
in absolute photometric and colorimetric units and their quality
scores are represented in the interpretable JOD units [21]. We
use the dataset to (a) train a deep-leaning based quality metric
for HDR images (PU-PieApp); (b) benchmark the state-of-
the-art HDR image quality metrics; and (c) demonstrate how
trained quality metrics can be used for brightness-adaptive
image coding. All those applications demonstrate the benefits
of UPIQ and the need for photometric image quality metrics.
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