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1 Performance with Perceptual and L1 Loss

In our experiments, we follow the exact same training protocol as reported in
the original papers for image colorization, denoising ans super-resolution. We
found that the addition of Transformation Consistency Regularization (TRC) in
a semi-supervised fashion results in substantial performance boost when mean-
squared error (L2) is used as a loss function. In this section, we evaluate the
efficacy of TRC for image super-resolution application when L2 loss (Eq. 3 in
the main paper) is replaced with perceptual loss [2, 3] or L1 loss [7].

While pixel level L2 loss is a commonly used SISR protocol, Ledig et al. in
SRGAN designed a loss function based on the perceptually relevant character-
istics of images [4] for image super-resolution. To show TCR is robust to the
selection of the loss function, we perform additional experiments relying on us-
ing loss function that is closer to the perceptual similarity. For an unlabeled
data sample ui and its geometric transform T (ui), to compute the perceptual
loss, we extract the feature maps from from a pre-trained VGG-19 network φ(·)
[6] and compute the euclidean distance between the two. Mathematically, the
perceptual loss Lp(u) is given by:
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Here fθ(·) is the super-resolution model used in our experiments, rB is the
number of unsupervised samples fed to the network per batch and Tm(·) is the
m-th geometric transformation. To train the model, we equivalently change the
supervised loss in Eq. 2 (main paper) to the following:
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The feature representations as extracted from deeper layers of the VGG net-
work, which convey more information about the content of the images [5, 2, 4].
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(a) Performance improvement using
Perceptual loss for training.
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(b) Performance improvement using L1

loss for training.

Fig. 1: The plots shows the efficacy of our method for various types of loss functions
for image super-resolution. We show the PSNR values for baseline models (using only
supervised data), model trained with addition of our TCR but using only labeled data,
and finally models trained using our semi-supervised paradigm. The addition of unsu-
pervised data while training provides substantial improvement in image reconstruction.

Fig. 1a shows a comparison of our semi-supervised scheme using perceptual loss
with a baseline model while incrementing the percentage of data used in super-
vised fashion. Our method consistency results in a significant performance boost
compared to its supervised counterpart. Compared to the pixel-level MSE loss,
we acheive a lower PSNR value using the perceptual loss, which is consistent
with the findings of SR-GAN [4].

We further evaluate the performance of TRC using pixel-wise L1 loss for
training the image super-resolution model. Fig. 1b shows a comparison of our
semi-supervised scheme using L1 loss with a baseline model while incrementing
the percentage of data used in supervised fashion.

This goes on to show that the proposed semi-supervised method effectively
leverages information from unlabeled data performing equally well under various
reconstruction loss terms.

2 Additional Experiments

We further show the potential of our semi-supervised learning method in appli-
cations like movie colorization, denoising and generation of high resolution of
video clips.

2.1 Movie Colorization

Transformation Consistency Regularization (TRC) can go a long way in coloriza-
tion of old movies/video clips requiring an artist to colorize only a few frames.
To demonstrate the efficacy of our semi-supervised learning (SSL) algorithm for
movie colorization we use Blender Foundation’s open source short film ‘Big Buck
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Fig. 2: The figure shows a comparison between our semi-supervised method and the
model trained in a completely supervised fashion for colorization. Both the models use
only 1% of the training frames as labeled. Our method results in an average absolute
gain of 6.0 dB compared to the supervised counterpart. Best viewed in color.

Fig. 3: A snapshot of the video showing comparison between our semi-supervised
method and the model trained in a completely supervised fashion for super-resolution
(upscale factor 4×). Both the models use only 1% of the training frames as labeled.
Our method results in an average absolute gain of 5.7dB compared to the supervised
counterpart. Best viewed when zoomed.

Bunny’ [1]. We divide the movie into train and test set with each comprising of
510 and 43 seconds respectively. In our SSL settings for image colorization, we
made use of only 1% of the total training frames in supervised fashion, while
rest were fed into the TCR term. We achieve an absolute gain of 6.0 dB in PSNR
using our semi-supervised method as compared to the supervised model trained
with the same percentage of training data. Fig. 2 shows a snapshot from the
video.

2.2 Movie Super Resolution

Following the same setting, we show how TRC can be used to enhance the
resolution of movies by capturing only a few frames at a higher resolution. For
this application we use the short film ‘Elephants Dream’ [1]. The movie frames
are divided into train and test sets with each comprising of 600 and 54 seconds
respectively. We again use only 1% of the total training frames in supervised
fashion. Our method results in an absolute gain of 5.7 dB (for up-scaling 4×)
and 2.9 dB (for up-scaling 3×) compared to the supervised baseline. Fig. 3 shows
a snapshot from the video for upscale factor 4×.
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Fig. 4: Qualitative results showing comparison between reconstructed images using our
model and supervised baseline models for single image super-resolution. The column
title indicates the percentage of data used for training the model. The last column
shows our results where we use only 20% of the entire dataset as labeled and rest in
an unsupervised fashion. Best viewed when zoomed.
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