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Introduction Motivation

NURBS

• Non-Uniform Rational B-Splines

• NURBS curves are used in 2D (and 3D)

• NURBS surfaces use a rectangular control grid

• Industry standard for Computer-Aided Design (CAD)
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Introduction Motivation

Subdivision Surfaces

• Control meshes without a rigid rectangular grid

• Vertices with irregular valency are called extraordinary points

• Used heavily in animation since ‘Geri’s Game’ (Pixar, 1997)
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Introduction Motivation

A Brief History of Subdivision Surfaces

NURBS
Surfaces

Non-uniform,
low degree

Uniform,
general
degree

means “⊂”

Uniform,
low degree

1978
Catmull-Clark,
Doo-Sabin
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extraordinary

points

1987 Loop,
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Other regular
surfaces

1998 Sederberg et al.

2001 Zorin & Schröder, Stam

NURBS-compatible subdivision?
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Introduction Background

Knot Insertion

• B-splines are pieces of polynomial meeting at knots

• Uniform B-splines have even spacing between the knots

• Subdivision inserts more knots
• Bringing the control polygon closer to the curve

t = 0
t = 3

t = 4
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Introduction Background

Refine and smooth subdivision

• Lane-Riesenfeld – uniform B-spline subdivision

• Refine
• polygon lengthened by adding points

• and Smooth
• each step creates another polygon
• points moved using local filters

• More smoothing steps for higher degree
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Introduction Background

Why Refine and Smooth?

NURBS
Surfaces
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low degree
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Introduction Background

Problem statement

We want a knot insertion algorithm that is

• non-uniform,

• general degree, and uses

• refine and smooth
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Introduction Blossoming

The polar form of a polynomial

Polynomials of degree d ∼=
Symmetric d-affine maps
(polar form or blossom)

P(t) = p(t, t, . . . , t, t)

bx2 + cx + d = b(x1x2) + c( x1+x2
2 ) + d

ax3 + bx2 + cx + d =
a(x1x2x3) + b( x1x2+x2x3+x1x3

3 )

+c( x1+x2+x3
3 ) + d

Properties: symmetric, multiaffine, diagonal
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Introduction Blossoming

Blossoming and B-spline control points

Control points are the blossom evaluated at consecutive knots

P(t)

4
7

8
9

13
15

p(1, 3, 4)

p(3, 4, 7) p(4, 7, 8)

p(7, 8, 9)

p(8, 9, 13)

p(9, 13, 15) p(13, 15, 16)

p(15, 16, 19)
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Introduction Blossoming

Blossoming and knot insertion

τ0 τ1 τ2 τ3 τ4

t0 t1 t2 t3

Insert knots ti : τi ≤ ti ≤ τi+1

A
τiΨ

B
Ψτk

tjΨ
C C =

τk − tj
τk − τi

A +
tj − τi

τk − τi
B

D
τi tjΨ

E
τiΨτm

F
Ψtkτm

tjΨtk
J
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Approaches to non-uniform refine and smooth
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Approaches to non-uniform refine and smooth Degree independent

Adapting Lane-Riesenfeld

For Lane-Riesenfeld. . .

• Subdivision uses one refine and multiple smooth steps

• Smoothing filters compute a new point from two old points

• Smoothing filters compute the midpoint of two old points

• Intermediate smoothing steps compute the subdivision
result for lower degree
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Approaches to non-uniform refine and smooth Degree independent

Adapting Lane-Riesenfeld

We want a non-uniform algorithm, where. . .

• Subdivision uses one refine and multiple smooth steps

• Smoothing filters compute a new point from two old points

• Smoothing filters compute the midpoint of two old points

• Intermediate smoothing steps compute the subdivision
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Approaches to non-uniform refine and smooth Degree independent

Maintaining degree independence

• But intermediate polygons that compute lower degree
subdivision introduce constraints on τ and t
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Approaches to non-uniform refine and smooth Schaefer’s algorithm

Revisiting our requirements

We want a non-uniform algorithm, where. . .

• Subdivision uses one refine and multiple smooth steps

• Smoothing filters compute a new point from two old points

• Smoothing filters compute the midpoint of two old points

• Intermediate smoothing steps compute the subdivision
result for lower degree
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Approaches to non-uniform refine and smooth Schaefer’s algorithm

Schaefer’s algorithm is asymmetric

The asymmetry in
Schaefer’s algorithm

makes it hard to use on
surfaces
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Approaches to non-uniform refine and smooth Symmetric algorithm

Revisiting our requirements

We want a non-uniform algorithm, where. . .

• Subdivision uses one refine and multiple smooth steps

• Smoothing filters compute a new point from two old points

• Intermediate smoothing steps are symmetric

• Intermediate smoothing steps compute the subdivision
result for lower degree
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Approaches to non-uniform refine and smooth Symmetric algorithm
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Approaches to non-uniform refine and smooth Symmetric algorithm

Even degree. . . and multiple knots
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Outlook

Summary

• There are non-uniform analogues of the Lane-Riesenfeld
refine and smooth algorithm

• In fact there are several, each for different requirements

• A symmetric algorithm may lead to subdivision schemes
generalising NURBS

• Multiple knots fit into a common framework

• Next step: extraordinary points
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Outlook

Extraordinary points
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