Non-uniform B-Spline Subdivision Using Refine and Smooth

Tom Cashman¹ Neil Dodgson¹ Malcolm Sabin²

¹Computer Laboratory University of Cambridge

²Numerical Geometry Ltd

Twelfth IMA Conference on The Mathematics of Surfaces

Outline

1 Introduction
Refine and smooth
Motivation

Blossoming

2 Approaches to non-uniform refine and smoot Degree independent Schaefer's algorithm

Refine and smooth subdivision

• Lane-Riesenfeld – uniform B-spline subdivision

Refine and smooth subdivision

• Lane-Riesenfeld – uniform B-spline subdivision

- Refine
 - polygon lengthened by adding points

Refine and smooth subdivision

Lane-Riesenfeld – uniform B-spline subdivision

- Refine
 - · polygon lengthened by adding points
- and Smooth
 - each step creates another polygon
 - points moved using local filters
- More smoothing steps for higher degree

• Building on Zorin & Schröder and Stam

- Building on Zorin & Schröder and Stam
- Extraordinary points are tractable with local smoothing

- Building on Zorin & Schröder and Stam
- Extraordinary points are tractable with local smoothing
- Efficiency

- Building on Zorin & Schröder and Stam
- Extraordinary points are tractable with local smoothing
- Efficiency
- Our aim: a knot insertion algorithm that is
 - non-uniform,
 - general degree, and uses
 - refine and smooth

Outline

- Introduction
 Refine and smooth
 Motivation
 Blossoming
- 2 Approaches to non-uniform refine and smooth Degree independent Schaefer's algorithm Symmetric algorithm

Adapting Lane-Riesenfeld

For Lane-Riesenfeld...

- Subdivision uses one refine and multiple smooth steps
- Smoothing filters compute a new point from two old points
- Smoothing filters compute the midpoint of two old points

Adapting Lane-Riesenfeld

For Lane-Riesenfeld...

- Subdivision uses one refine and multiple smooth steps
- Smoothing filters compute a new point from two old points
- Smoothing filters compute the midpoint of two old points
- Intermediate smoothing steps compute the subdivision result for lower degree

Adapting Lane-Riesenfeld

We want a non-uniform algorithm, where...

- Subdivision uses one refine and multiple smooth steps
- Smoothing filters compute a new point from two old points
- Smoothing filters compute the midpoint of two old points
- Intermediate smoothing steps compute the subdivision result for lower degree

Revisiting our requirements

We want a non-uniform algorithm, where...

- Subdivision uses one refine and multiple smooth steps
- Smoothing filters compute a new point from two old points
- Intermediate smoothing steps compute the subdivision result for lower degree

Revisiting our requirements

We want a non-uniform algorithm, where...

- Subdivision uses one refine and multiple smooth steps
- Smoothing filters compute a new point from two old points
- Intermediate smoothing steps compute the subdivision result for lower degree

Schaefer's algorithm is asymmetric

The asymmetry in Schaefer's algorithm makes it hard to use on surfaces

Revisiting our requirements

We want a non-uniform algorithm, where...

- Subdivision uses one refine and multiple smooth steps
- Smoothing filters compute a new point from two old points

Revisiting our requirements

We want a non-uniform algorithm, where...

- Subdivision uses one refine and multiple smooth steps
- Smoothing filters compute a new point from two old points
- Intermediate smoothing steps are symmetric

$$\tau_0 \tau_1 \tau_2 \tau_3 \tau_4$$

$$\tau_{\scriptscriptstyle 1}\tau_{\scriptscriptstyle 2}\tau_{\scriptscriptstyle 3}\tau_{\scriptscriptstyle 4}\tau_{\scriptscriptstyle 5}$$

$$\tau_{\scriptscriptstyle 1}\tau_{\scriptscriptstyle 2}\tau_{\scriptscriptstyle 3}\tau_{\scriptscriptstyle 4}\tau_{\scriptscriptstyle 5}$$

$$\tau_{\scriptscriptstyle 2}\tau_{\scriptscriptstyle 3}\tau_{\scriptscriptstyle 4}\tau_{\scriptscriptstyle 5}\tau_{\scriptscriptstyle 6}$$

Summary

- There are non-uniform analogues of the Lane-Riesenfeld refine and smooth algorithm
- Different requirements lead to different approaches
- A symmetric algorithm may lead to subdivision schemes generalising NURBS
- Taking this work further
 - Elegantly handling multiple knots
 - Extraordinary points

