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Fig. 1. Here, we visualize 3D slices of our novel 5-dimensional contrast sensitivity function, showing interactions between spatial frequency and four other
factors (from left to right): temporal frequency, luminance, eccentricity and size.

A contrast sensitivity function, or CSF, is a cornerstone of many visual
models. It explains whether a contrast pattern is visible to the human eye.
The existing CSFs typically account for a subset of relevant dimensions
describing a stimulus, limiting the use of such functions to either static
or foveal content but not both. In this paper, we propose a unified CSF,
stelaCSF, which accounts for all major dimensions of the stimulus: spatial
and temporal frequency, eccentricity, luminance, and area. To model the 5-
dimensional space of contrast sensitivity, we combined data from 11 papers,
each of which studied a subset of this space. While previously proposed
CSFs were fitted to a single dataset, stelaCSF can predict the data from all
these studies using the same set of parameters. The predictions are accurate
in the entire domain, including low frequencies. In addition, stelaCSF relies
on psychophysical models and experimental evidence to explain the major
interactions between the 5 dimensions of the CSF. We demonstrate the utility
of our new CSF in a flicker detection metric and in foveated rendering.
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1 INTRODUCTION
The spatial and temporal contrast sensitivity of the human visual
system (HVS) has been studied by vision scientists for almost 70
years [De Lange 1952; Robson 1966; Schade 1956]. This form of
measurement touches on a very fundamental aspect of vision, mod-
eling the threshold response to luminance variation. The models of
contrast sensitivity, known as contrast sensitivity functions (CSFs),
explain the magnitude of contrast necessary to detect a pattern
described by the parameters of the CSF. One attractive feature of the
CSFs is that they are end-to-end models, which explain the response
of the visual system (detection) for a given input (luminance pat-
tern). Because of that, CSFs found many applications in image/video
visibility and quality metrics [Andersson et al. 2020; Daly 1992;
Mantiuk et al. 2005, 2021, 2011], compression codecs [Ahumada and
Peterson 1992; Zeng et al. 2002], tone-mapping operators [Mantiuk
et al. 2008], foveated rendering [Tursun et al. 2019] and many other
areas of computer graphics.

The major challenge of measurement and modeling of the CSF is
the large number of parameters describing the stimulus. All CSFs ac-
count for spatial frequency, but equally important is the background
luminance and size of the stimulus. If we consider moving patterns,
we also need to account for temporal frequencies. If the pattern
is not fixated (i.e., is projected outside fovea), a CSF also needs to
account for the position in the visual field, typically described by
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the eccentricity. Other relevant dimensions include the orientation
of the (sinusoidal) pattern, the chromatic (color) coordinates of the
background, and the chromatic direction of modulation [Wuerger
et al. 2020]. In this work, we focus on the first 5 major dimensions
of the CSF and consider only achromatic patterns. In contrast, most
existing CSFs account for only 3- or 4-dimensions of this space. For
instance, traditional functions can model the visibility of moving
patterns shown in the fovea, or static patterns shown in any part of
the visual field, but not both.

The study of the CSF in 5 dimensions is made especially difficult
as the entire space cannot be measured in a single experiment. This
is due to the combinatorics of high-dimensional functions: consider
that if we were to collect only 10 points along each dimension,
and each measurement took 90 seconds (which is typical for the
30-50 trials this requires), we would need 105×90/3600 = 2 500 h of
experiment for a single observer. For that reason, most measure-
ments of contrast sensitivity consider only a few slices from this
multi-dimensional space.

To model a 5-dimensional CSF, we need to have good coverage of
the parameter space. For that reason, we combine the data from 11
individual studies to build a standardized dataset that allows us to (a)
choose the right visual models and relations; and (b) fit and validate
the model. While previous works on CSF modeling attempted to
fit one dataset at a time, our goal is to have a single model that
can predict the data from all datasets without refitting. Combining
and standardizing contrast sensitivity measurements is a non-trivial
task as the measurements were often done using different protocols,
detection criteria, viewing conditions (natural vs. artificial pupil,
monocular vs. binocular, stabilized vs. unstabilized stimuli, etc.) and
with differences in stimuli. The measurement from multiple sources
can be used together only if the differences between the sources,
for example in the stimulus size, can be accounted for by the CSF
model. For that reason, using the data frommultiple sources requires
modeling all major parameters of the CSF.

The particular selection of the dimensions we model is motivated
by the applications in augmented and virtual reality (AR/VR). We
model both spatial and temporal contrast sensitivity, to allow for
video applications. The effect of luminance is especially important
given the modern display landscape, where available displays can
reach luminance of 10 000 cd/m2. Peripheral vision is of key impor-
tance to presentation on wide field-of-view displays, in particular
in AR/VR. Finally, the model needs to account for the effect of size
to conciliate the difference between datasets we use for modeling.
In summary, our contributions are as follows:

• We created a large dataset of contrast sensitivity data, combin-
ing and standardizing 11 published studies, which we make
publicly available.

• We perform (previously impossible) quantitative analyses of
existing CSF models, demonstrating their ability to predict
the measured data.

• We introduce stelaCSF, a new model encompassing 5 major
parameters of contrast sensitivity, and outperforming existing

functions by a large margin. The code of our model is publicly
available1.

• We demonstrate sample applications of our CSF model to
relevant problems in computer graphics, improving methods
for flicker detection and foveated rendering.

2 RELATED WORK
The method of measuring the eye’s response to sinusoidal gratings
to measure the performance of the human visual system was first
introduced by Schade [1956]. The work models the human visual
system as an analog sequential system with a single channel bound
by the limitations of the optical elements of the eye as well as the
post-retinal systems. Later work by Campbell and Robson [1968] pre-
sented the idea of the visual system as a collection of narrow-band
spatially-tuned channels, analogous to a Fourier decomposition.
The contrast sensitivity function (CSF) was thus hypothesized to be
the envelope formed by the combined response of these individual
spatial channels.
The attempts to model the CSF are too numerous to list in this

short review. We focus on a few representative examples, in partic-
ular those that are commonly used in graphics or are relevant for
our model.
In a series of papers, Rovamo and colleagues measured contrast

sensitivity across sizes [Rovamo et al. 1993], luminance levels [Mu-
stonen et al. 1993], eccentricities [Rovamo et al. 1995; Virsu and
Rovamo 1979], and proposed simple relationships governing the
sensitivity across those dimensions. Because our own modeling
relies on the data and ideas from these papers, we combined the
proposed components and use them as a baseline model. A Visual
Difference Predictor, proposed by Daly [1992], relies on one of the
most complete models of contrast sensitivity, though details on its
creation are scarce. Barten took a principled approach to modeling
different sources of noise and attenuation found in the visual sys-
tem and proposed both general [Barten 1999] and simplified CSF
formulas [Barten 2003], which have been widely adopted in various
applications and standards, such as SMPTE 2084 and ITU-R 2100.
Although the formula has been derived for photopic (cone-mediated,
daylight) vision, it has also been shown to predict mesopic and sco-
topic data [Barten 2003]. Both Barten [2003] and Yi et al. [2022]
add the dependency of the contrast sensitivity on surround lumi-
nance. Here, we assume that the effect of surround luminance can
be modeled separately as glare and local adaptation [Vangorp et al.
2015].
All the CSFs mentioned so far model the sensitivity as a func-

tion of spatial frequency, size, luminance and eccentricity (except
Barten’s model, which lacks eccentricity), but they do not account
for temporal frequencies. Kelly conducted a systematic study of
spatio-temporal patterns and proposed a spatio-temporal CSF [1979b],
which was later adjusted by Daly [1998] to better describe naturally
observed stimuli shown on a CRT display. This is because Kelly’s
measurements were collected for stimuli that compensated for eye
movements, which strongly shifted the contrast sensitivity towards

1Code and data available at the project web page: https://www.cl.cam.ac.uk/research/
rainbow/projects/stelaCSF and https://github.com/gfxdisp/stelaCSF.
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higher frequencies [Kelly 1979a]. Kelly-Daly’s model, however, does
not account for any other dimensions of the CSF.
Watson and Ahumada made the observation that the logarithm

of contrast sensitivity can be well explained as a linear model of
spatial and temporal frequency, and logarithmic retinal illuminance
(luminance multiplied by the area of the pupil) [Watson and Ahu-
mada 2016]. They named their proposed simplified model of the CSF
the pyramid of visibility (PoV). Although the PoV is very attractive
due to its simplicity, it suffers from one major limitation — it cannot
model the frequencies under 10 cpd and 10Hz. This is the frequency
range that is most visible to the human eye and is a fundamental
part of visual content (for instance, most commercially available VR
headsets can only reproduce values up to 8 cpd). The PoV model
was later extended to account for the effect of eccentricity [Watson
2018].
Ahumada et al. proposed to model spatio-temporal sensitivity

using two temporal channels, motivated by the existence of parvo-
and magnocellular pathways in the visual system [2018]. We take a
similar approach to modeling temporal sensitivity and demonstrate
that a two-channel model can predict a 5-dimensional space of
contrast sensitivity well.
Complementary to the CSF data are the measurements of the

critical flicker fusion frequency (CFF). These measurements capture
the temporal frequency at which sensitivity drops to the boundary
of visibility (as we will explain in Section 3). Krajancich et al. mea-
sured the CFF for eccentricities up to 55 deg, a range of low spatial
frequencies and luminance levels [2021]. They then fit a parametric
model to their data. Although the CFF has many uses, it defines only
the boundary of visibility, and does not explain contrast sensitivity
inside that boundary.
The only model we are aware of which accounts for the same

5 dimensions as stelaCSF, is the contrast sensitivity used in the
FovVideoVDP video quality metric [Mantiuk et al. 2021]. Their
model is a combination of the spatio-chromatic CSF from [Mantiuk
et al. 2020], the cortical magnificationmodel, and Kelly-Daly’smodel,
discussed above. We show in Section 6.2 that this combination
introduces a large prediction error for both low and high spatial
frequencies.

The contrast sensitivitymodels discussed abovewere often shown
to provide excellent fits to data. However, this performance hap-
pened when fitting to one dataset at a time. In contrast to previ-
ous studies, we do not attempt to obtain a perfect fit to individual
datasets, but instead have a single model that can explain all datasets
without refitting.

3 CONTRAST DETECTION
We now explain the notation used throughout the rest of the paper
and introduce the fundamental concepts of contrast sensitivity. This
section is meant to provide an introduction to contrast sensitivity
and its measurements to those who are less familiar with this topic.
The majority of the CSF data comes from experiments with co-

sine (or sine) gratings, modulated in the spatial or both spatial and
temporal dimensions:

𝑠 (𝑥, 𝑡) = 𝐿0 +𝑚 cos 2𝜋𝜌𝑥 cos 2𝜋𝜔𝑡 [ cd/m2] , (1)

Gaussian
aperture

Cosine
gra�ng

Fig. 2. Gabor patches of constant size and decreasing frequency (top left).
Gabor patches of constant number of cycles and decreasing frequency
(bottom left). The luminance profile of the right-most patch (right).

where 𝑥 represents spatial horizontal coordinates in visual degrees,
𝑡 is time in seconds, 𝐿0 is the luminance of the background in cd/m2,
𝜌 is the spatial frequency in cycles per degree (cpd), 𝜔 is the tem-
poral frequency in Hz and𝑚 is the modulation of the grating. Some
authors use a relative modulation𝑚rel = 𝑚/𝐿0. Here, we will use
a regular modulation to distinguish it from contrast, introduced
later. The grating does not need to be horizontal, as one in Eq. (1),
and the equation can be easily modified to generate grating of any
orientation. To restrict the size of a grating, the stimulus is typically
limited by a square or circular aperture, with either a smooth or
sharp boundary. More recent measurements use a Gaussian function
to restrict the aperture:

𝑠 ′(𝑥,𝑦, 𝑡) = 𝑠 (𝑥, 𝑡) exp
(
−𝑥

2 + 𝑦2

2𝜎2

)
[ cd/m2], (2)

where 𝜎 controls the size of the aperture. If the Gaussian function
above is used, the stimulus is known as a Gabor patch. An example
of such a patch is shown in Figure 2. If the stimulus size is adjusted
to show the same number of 𝜆-cycles,

𝜎 =
𝜆

2𝜌
[deg] , (3)

the stimulus is described as having constant cycles. If the size of the
stimulus is constant regardless of the spatial frequency, the stimulus
is described as being constant size. A similar exposure window
is also often introduced in the temporal dimension to restrict the
duration of a stimulus.

Contrast detection data for gratings is typically reported in units
of Michelson contrast:

𝑐 =
𝐿max − 𝐿min
𝐿max + 𝐿min

=
𝑚

𝐿0
, (4)

where 𝐿max and 𝐿min are the maximum and minimum luminance of
the stimulus, as shown in Figure 2. For sine/cosine gratings, Michel-
son contrast is equivalent to the modulation amplitude𝑚 divided
by the background luminance 𝐿0 (both from Eq. (1)). The maximum
contrast value is 1, as a contrast above 1 would result in negative
luminance values in Eq. (1). Many papers report threshold values in
units of sensitivity, which is the inverse of detection contrast:

𝑆 =
1
𝑐
=
𝐿0
𝑚

. (5)
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Table 1. The datasets used in our study. A (∗) means that we obtained the data directly from the authors. In the remaining cases, the data were scanned from
plots in the relevant publication.

Dataset Name
Spatial freq. Temporal freq. Luminance Eccentricity Area

Stimulus Criterioncpd Hz cd/m2 deg deg2
(visual field)

Modelfest
[Watson
2000] (∗)

1.12 - 30 ✗ 30 0 0.003 -
0.78

Gabor patch Contrast
detection

HDR-VDP
CSF [Mantiuk
et al. 2011]
(∗)

0.125 - 32 ✗ 0.002,
0.02, 0.2,
2, 20, 150

0 0.07, 0.78,
7.06

Fixed cycles
Gabor patch

Contrast
detection

HDR CSF
[Wuerger
et al. 2020]
(∗)

0.125,
0.25, 0.5,
1, 2, 4, 6,
12, 24

✗ 0.002,
0.02, 0.2,
2, 200,
2000,
10000

0 0.05 - 50 Fixed cycles
Gabor patch

Contrast
detection

Rovamo et al.
[1993]

0.125,
0.25, 0.5,
1, 2, 4, 8,
16, 32

✗ 50 0 0.003 -
980

Grating with
rectangular
aperture

Contrast
detection

Robson
[1966]

0.5 - 30 0.5 - 32 20 0 6.25 Grating with
rectangular
aperture

Contrast
detection

Laird et al.
[2006]

4, 8, 16 9.2 - 31.4 60 0 4.75 Gabor patch Contrast
detection

Snowden
et al. [1995]

0.25, 1, 2,
4, 5, 10,
20

0.8 - 55.7 0.02 - 870 0 0.25, 1,
4.01

Gabor patch Contrast
detection

Virsu and
Rovamo
[1979]

0.5 - 16 ✗ 10 0, 5, 10,
15, 20, 25,
30 (nasal)

19.65 Grating with
circular
aperture

Contrast
detection

Virsu et al.
[1982]

1 - 22.6 1, 18 10 0, 1.5, 4,
7.5, 14, 30
(nasal)

1.57 Grating with
semi-circular
aperture

Contrast
detection

Wright and
Johnston
[1983]

0.25, 2, 6,
9

0, 0.25, 8,
16

100 0 - 12
(superior)

0.75, 2.35,
36

Grating with
rectangular
aperture

Contrast
detection

Anderson
et al. [1991]

0.15 - 10 8 225 8, 25, 40,
55 (nasal,
temporal,
inferior,
superior)

0.78, 19.6 Gabor patch Direction of
motion
discrimination

Because the maximum contrast is 1, the minimum sensitivity value
is also 1.
The goal of contrast detection experiments is to find the small-

est contrast 𝑐 , at which the stimulus is detected in 𝑝thr percent of
the cases, where 𝑝thr varies from 0.75 to 0.83, depending on the
experimental procedure. This percentage is typically measured us-
ing an n-alternative-force-choice (2AFC, 3AFC,...) protocol, in which
𝑛 stimuli are shown sequentially or side-by-side and the observer
needs to select the one that contained the stimulus or showed a

different orientation from the rest. Such experiments require that
the stimulus is measured multiple times at the same and at different
contrasts 𝑐 , so that a smooth function could be fitted to the collected
observations — i.e. to the probabilities of providing a correct answer
at a given contrast 𝑐 . Such a fitted function, known as a psychomet-
ric function, is used to estimate the contrast 𝑐 at which probability
reaches 𝑝thr. A faster, but less precise protocol may involve amethod
of adjustment, in which an observer directly controls 𝑐 and confirms
their choice once the stimulus starts to become visible or invisible.

ACM Trans. Graph., Vol. 41, No. 4, Article 145. Publication date: July 2022.
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Such a protocol typically results in higher variance, as it measures
subjective judgments (i.e. whether the observer thinks the stimulus
has become invisible) rather than objective performance (can the
observer detect the stimulus). Another problem is that the threshold
can be influenced by the direction in which the adjustment is made
— from visible to invisible contrast or vice versa. To alleviate this,
the threshold is often measured multiple times in each direction.
It must be stressed that the stimuli are always shown on cali-

brated monitors of sufficient bit-depth (typically 10-12 bits), that
can reproduce the linear units of luminance. At very high spatial
frequencies, the linear grating from Eq. (2) will be attenuated by the
optics of the eye (low-pass filtered), and the participant will see a
flat field of luminance 𝐿0. If the same grating is shown on a non-
calibrated monitor, the observer will notice the bias in luminance in
the shape of the Gaussian aperture, resulting in incorrect detection
thresholds.

The spatial or temporal frequency at which the sensitivity 𝑆 = 1
(or sometimes 𝑆 = 2) is assumed to be the boundary of visibility.
It marks the highest frequency that can be seen by the eye. For
temporal frequencies, that point is known as the critical flicker
frequency (CFF) [Hartmann et al. 1979; Tyler and Hamer 1990, 1993].

It is also important to stress that the CSF is meant to predict only
low-contrast, just-visible (near-threshold) differences, shown on a
uniform background. The CSF alone does not explain well-visible
(supra-threshold) differences or the visibility of patterns shown on
patterned backgrounds as it does not account for contrast constancy
[Georgeson and Sullivan 1975] nor for contrast masking [Legge
and Foley 1980]. However, it is a building block of models that
account for those effects [Daly 1992; Mantiuk et al. 2011]. CSF also
cannot predict the effect of crowding, which results in lower rate of
identification when a pattern in periphery is surrounded by other
patterns [Pelli et al. 2004]. The CSF is not a linear model of the
visual system as even early vision is highly non-linear and cannot
be approximated using linear band-pass or low-pass filters (with
the exception of high spatial and temporal frequencies).

4 DATASETS
The 11 datasets that we used to model, fit and validate CSFs, are
listed in Table 1. These were selected to (a) provide good coverage
of interactions in the 5-dimensional space of contrast sensitivity;
(b) were measured for Gabor patches and cosine gratings, which
can be modeled by a CSF. For some of the datasets, we were able to
obtain the data directly from the authors. For the rest, the data was
collected by scanning points from the plots in the corresponding
papers using WebPlotDigitizer software [Rohatgi 2021] . Some of
the experiments were performed by 20–25 observers (HDR-CSF),
while others were collected only by the study’s author (Robson).
We did not distinguish between these cases, and fitted the models
to the average observer data. Our fitting procedure accounted for
individual differences, as we will explain in Section 6.

Spatial frequency is typically well represented and the data spans
the range from 0.125 to 32 cpd across all datasets. 6 of the datasets
were measured for a range of temporal frequencies, while static stim-
uli were used for the rest. We assumed that all static stimuli had the

temporal frequency of 0Hz (we ignore the drift due to the move-
ment of a fixated eye). Most datasets were measured for the photopic
luminance levels between 10 and 100 cd/m2, but we also included
the datasets with scotopic luminance down to 0.002 cd/m2 and one
dataset that measured contrast sensitivity up to 10 000 cd/m2. For
all dataset that controlled eccentricity, we registered the position
in the visual field (nasal, temporal, superior, inferior) to account
for the anisotropy of the extrafoveal vision. When a stimulus is
presented at larger eccentricities on a flat display and observer’s
visual axis is perpendicular to the display, the effective spatial fre-
quency is increased because of foreshortening (see. [Mantiuk et al.
2021, 3.1]). The studies we rely on avoided this issue by tilting the
display so that it was facing the eye [Virsu and Rovamo 1979, Fig.1]
removing the need for additional adjustments.Some datasets relied
on constant-cycles stimuli (HDR-CSF) but most used constant size
stimuli. When the dataset used a smooth Gaussian aperture, we
assumed that the area of the stimulus corresponded to the area of a
disk with a radius equal to the standard deviation of the Gaussian
aperture.

5 MODEL
Our goal is to find a general model that accounts for all major di-
mensions of achromatic contrast sensitivity: spatial and temporal
frequency, luminance, size and eccentricity. The predictions should
be accurate for the entire visible range of each dimension, including
low spatial and temporal frequencies down to 0.1 cpd and 0Hz, and
the full visible range of luminance, from scotopic to the bright pho-
topic light levels. To ensure that the model can generalize, we want
to predict the data from all 11 datasets using the same parametric
fit of the model. We do not expect to fit all datasets perfectly as
the measurement conditions were often too different. However, the
fits should be plausible. Whenever possible, we base our model on
existing psychophysical models of contrast sensitivity, or support
the choice with relevant research. If a certain aspect of contrast
sensitivity is not well represented in any of the datasets, we opt for
a simpler model.

5.1 Size and spatial frequency
Larger patterns are more likely to be detected. Rovamo et al. noted
that the sensitivity to vertical gratings (square aperture) is propor-
tional to the square root the grating area multiplied by the spatial
frequency [Rovamo et al. 1993]. For square-shaped gratings, the
sensitivity happens to be proportional to the number of cycles in
the grating:

𝑆 ∝
√
𝑎 𝜌 = 𝑑 𝜌 [cyc] , (6)

where 𝑎 is the area of the stimulus in deg2, 𝜌 is the spatial frequency
in cycles-per-degree (cpd), and 𝑑 is the length of the side of the
square aperture in degrees. However, the sensitivity increases only
to a certain critical area, 𝑎c, which Rovamo et al. modeled as:

𝑎c =
𝑎0

1 + (𝜌/𝜌0)2
[deg] , (7)

where 𝑎0 = 270 deg and 𝜌0 = 0.65 cpd. This quantity is easier to
interpret as the critical number of cycles (√𝑎𝑐 𝜌) over which we can
integrate, which is plotted in the top-left of Figure 3.

ACM Trans. Graph., Vol. 41, No. 4, Article 145. Publication date: July 2022.
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Fig. 3. Top: the critical number of cycles (left) and area (right) that limits
the extent of spatial integration. Bottom: The relative sensitivity for the
patterns of fixed area (left) or the fixed number of cycles (right), as predicted
by Rovamo et al. model (dashed lines) and our model (continuous lines).

Rovamo et al. propose to model area-dependent contrast sensitiv-
ity as:

𝑆R (𝜌, 𝑎) = 𝑆m

√︂
𝑎c

1 + 𝑎c/𝑎 𝜌 𝑂𝑇𝐹 (𝜌) , (8)

where 𝑆m is the peak sensitivity, 𝑂𝑇𝐹 (𝜌) is the optical transfer
function of the eye, modeled as a low-pass filter. The strength of
this model is that it not only accounts for spatial integration, but
also for the drop of sensitivity at low spatial frequencies, as shown
in the bottom-left of Figure 3. It is well known that the sensitivity
strongly depends on the number of displayed cycles at low spatial
frequencies [Savoy and McCann 1975] and the model accounts for
that (see Figure 3 bottom-left, dashed lines). However, the model
also has two weaknesses: contrary to the data from [Wuerger et al.
2020], it shows no drop of sensitivity at low frequencies for constant-
cycle Gabors (see Figure 3 bottom-right, dashed lines, and also
Figure 10); and the OTF cannot account for the loss of sensitivity
at high frequencies outside the fovea [Anderson et al. 1991, Fig. 5].
Because of that, we modify the original model so that it relies on
the truncated log-parabola [Ahumada and Peterson 1992]:

𝑆A (𝜌, 𝑎, 𝐿) = 𝑆m (𝐿)
√︂

𝑎c
1 + 𝑎c/𝑎 𝜌 𝑆LP (𝜌) , (9)

where the truncated log-parabola is:

𝑆LP (𝜌) =

1 − 𝑘a if 𝜌 < 𝜌m and 𝑆LP < 1 − 𝑘a

10
− (log10 𝜌−log10 𝜌m (𝐿))2

2𝑘b otherwise
(10)

𝜌m controls the position of the peak of the parabola as a function
of luminance and will be introduced in Section 5.3. 𝑘b controls
its bandwidth, and 𝑘a is responsible for limiting the drop at low
frequencies. The sensitivity functions for patterns of different areas
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Fig. 4. The responses of the two temporal channels, tuned to low and high
temporal frequencies.

and different numbers of cycles are shown in the bottom part of
Figure 3.

Because spatial integration does not depend on luminance [Mus-
tonen et al. 1993], nor on eccentricity [Rovamo et al. 1995] we do
not need to account for the interaction of those parameters.

5.2 Temporal frequency
It is argued that visual information is processed by two temporal
channels: one responsible for encoding of low temporal frequencies
and another for high temporal frequencies. When researchers argue
that this separation stems from the retina, these channels are known
as sustained and transient channels respectively [Burbeck and Kelly
1980; Hammett and Smith 1992]. If instead researchers point to the
LGN or cortex, the channels are called parvocellular and magnocel-
lular channels [Merigan et al. 1991]. Without making arguments
about the site of temporal channel separation, we will denote the
low frequency channel by the subscript S and the high frequency
channel by T . The response of temporal channels is often expressed
by a cascade of exponential filters, which introduces complexity
into modeling. We found that the steady-state responses can be
well-approximated by the generalized exponential functions:

𝑅S (𝜔) = exp

(
−𝜔

𝛽S

𝜎S

)
(11)

and:

𝑅T (𝜔) = exp
©«−

���𝜔𝛽T − 𝜔
𝛽T
0

���2
𝜎T

ª®®¬ , (12)

where𝜔 is the temporal frequency in Hz, 𝛽S , 𝜎S , 𝛽T and 𝜎T are the
parameters of the model. The responses of the temporal channels
are plotted in Figure 4.

5.3 Luminance
In dim light, contrast sensitivity increases in proportion to the square
root of retinal illuminance, according to the DeVries-Rose law, but in
bright light contrast sensitivity follows Weber’s law and is indepen-
dent of illuminance [Rovamo et al. 1995]. The recent sensitivity data
from [Wuerger et al. 2020], measured up to 10 000 cd/m2, shows that
this statement is not entirely accurate as the sensitivity at very high
luminance, above 1000 cd/m2, starts to drop. Luminance also causes
the shift of the CSF towards lower frequencies, as the reduction of
sensitivity with luminance is stronger for high frequencies. Those
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Fig. 5. The peak sensitivity (left) and frequency (right) for the patterns of
0Hz (blue) and 16Hz (red). The grating is shown with a disk aperture of
the radius 1.5 deg. The dashed line shows the slope corresponding to the
DeVries-Rose law.

effects have different characteristics for sustained and transient tem-
poral channels. We model both effects of luminance separately for
the two temporal channels as:

𝑆m,S (𝐿) = 𝑘s1,S

(
1 +

𝑘s2,S
𝐿

)−𝑘s3,S (
1 −

(
1 +

𝑘s4,S
𝐿

)−𝑘s5,S )
𝑆m,T (𝐿) = 𝑘s2,T𝐿

𝑘s1,T

(13)

and the effect on the peak frequency shift as:

𝜌m,S (𝐿) = 𝑘𝜌1,S

(
1 +

𝑘𝜌2,S
𝐿

)−𝑘𝜌3,S
𝜌m,T (𝐿) = 𝑘𝜌,T

(14)

where 𝐿 is luminance in cd/m2, 𝑘... are the parameters of the model,
𝑆m,S/T is the luminance-dependent sensitivity from Eq. (9), and
𝜌m,S/T is responsible for the shift of peak frequency in Eq. (10).

It should be noted that those functions do not define the location
of the peak of the CSF, as the peak is affected by the area-dependent
component from Eq. (9). The peaks of our model are found numeri-
cally, and plotted in Figure 5. This plot shows that the sensitivity of
the low-frequency channel (S) increases approximately according
to the DeVries-Rose law at low luminances, then smoothly transi-
tions to a short Weber region (flat), and drops at high luminance
levels. The high-frequency channel (T ) follows the DeVries-Rose
law in the entire range of luminance as we did not find data showing
the transition to the Weber region. The peak frequency strongly
depends on the size of the stimulus and can vary between 0.1 and
3 cpd.

5.4 Eccentricity
Contrast sensitivity is highest in the fovea and decreases with ec-
centricity (distance from the center of fovea in visual degrees), most
likely due to the reduced density and larger pooling area of the gan-
glion cells [Anderson et al. 1991]. This effect is typically explained
by the cortical magnification [Strasburger et al. 2011]. It relies on the

observation that the visibility of patterns in the fovea and periphery
can be matched by enlarging the pattern by a factor that depends
on eccentricity (the inverse of the cortical magnification) [Virsu
and Rovamo 1979]. If we want to account for cortical magnification,
we need to reduce the size of the stimulus and increase its spatial
frequency by a factor given by the cortical magnification (see for
example [Mantiuk et al. 2021, Sec. 3.6]).

We have experimented with multiple variants of the cortical mag-
nification models and found them to be inconsistent with several
datasets. The change of temporal frequency by the cortical magni-
fication factor results in a very strong shift of the peak of the CSF
towards lower frequencies, which cannot be observed in the data
plotted in Figure 15 nor in Figure 16. The dashed lines in those plots
indicate the model that employs cortical magnification but fails to
predict the data. For this reason, we employed a simpler model that
relies on the linear relation between log-sensitivity, eccentricity and
the cycles of the underlying frequency [Watson 2018].

We model the drop of sensitivity with eccentricity 𝑒 in the same
way as [Watson 2018]:

𝑆ecc (𝑒, 𝜌) = 10 ˆ𝑘e1𝜌𝑒+ ˆ𝑘e2𝑒 (15)

The effect of eccentricity and spatial frequency on sensitivity is
shown in Figure 6, 1st row and 4th column. The original model does
not account for the anisotropy of peripheral vision; the reduction
of sensitivity is slower in the nasal than in the temporal direction
[Anderson et al. 1991]. We account for that by fitting a separate set
of parameters for the nasal and other directions in the visual field.
We find those parameters separately and interpolate between the
orientations in the visual field:

ˆ𝑘e𝑖 = 𝛼𝑘e𝑖 + (1 − 𝛼)𝑘e𝑖,nasal where 𝑖 = 1, 2 and

𝛼 = min
{
1,

����𝜃 − 180
90

����} (16)

𝜃 is the orientation in the visual field in deg. 𝜃 = 0 corresponds to
the temporal and 𝜃 = 180 to the nasal directions; i.e. it is an angular
coordinate for the right eye.

5.5 Final model
The final value of contrast sensitivity in the 5-dimensional space is
predicted by combining the components introduced in the previous
sections:

𝑆 (𝜌,𝜔, 𝐿, 𝑎, 𝑒) =
𝑆ecc (𝑒, 𝜌)

(
𝑅S (𝜔) 𝑆A,S (𝜌, 𝑎, 𝐿) + 𝑅T (𝜔) 𝑆A,T (𝜌, 𝑎, 𝐿)

) (17)

The two temporal channels, with the temporal frequency responses
𝑅S and 𝑅T , are independent and have different sensitivity charac-
teristic (𝑆A,S/T ). The model assumes the same drop of sensitivity
with eccentricity, 𝑆ecc, which is independent from stimulus size,
luminance and temporal frequency. This assumption is a neces-
sary simplification, however, it results in worse predictions at high
temporal frequencies, as we will explain in Section 6.3.

6 MODEL FITTING
In this section we compare how well stelaCSF and existing models
can predict the data from multiple datasets. For fair comparison, we
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Table 2. The fitted parameters of stelaCSF.

Part Parameters

Size and spatial
freq.

𝑘a,S = 0.1037, 𝑘b,S = 0.0002193, 𝑘a,T =

0.0002733, 𝑘b,T = 1.751,
Temporal chan-
nels

𝛽S = 1.331, 𝜎S = 5.7934, 𝛽T = 0.1898,
𝜎T = 0.1231,

Luminance 𝑘s1,S = 68.95, 𝑘s2,S = 59.50, 𝑘s3,S = 0.1643,
𝑘s4,S = 7.548𝑒 − 7, 𝑘s5,S = 7.773𝑒9, 𝑘𝜌1,S =

1.621, 𝑘𝜌2,S = 36.66, 𝑘𝜌3,S = 0.2558,
𝑘s1,T = 0.5008, 𝑘s2,T = 57.35, 𝑘𝜌,T =

0.02675,
Eccentricity 𝑘e1 = 0.019, 𝑘e2 = 0.02967, 𝑘e1,nasal =

0.01939, 𝑘e2,nasal = 0.01136

optimize the free parameters of each model. Below we explain the
optimization procedure.
To be able to fit contrast sensitivity models to multiple datasets,

we need to introduce a per-dataset adjustment factor, 𝑠𝑑 . It is a gain
control parameter which shifts the CSF up or down in log-space and
does not influence the shape of the function. This factor is necessary
to account for all the differences in stimuli and the experimental
procedure that are not explained by the parameters of the CSF. It
also accounts for the individual differences, as some datasets were
collected for just one observer. Ideally, we want this factor to be
close to 1. Therefore, our fitting loss function is:

L =
1
𝑁

∑︁
𝑑

∑︁
𝑖

(
log10 𝑆𝑖,𝑑 − 𝑠𝑑 log10 𝑆𝑖,𝑑

)2
+ 𝜆

𝐷

∑︁
𝑑

(log10 𝑠𝑑 )2 (18)

where 𝑑 = 1, . . ., 𝐷 is the index of the dataset, 𝑖 is the index of a
stimulus in the dataset, 𝑁 is the total number of stimuli, 𝑆𝑖,𝑑 and
𝑆𝑖,𝑑 are the reference and predicted sensitivity values. We set 𝜆 to
0.01. In all our experiments, we fix 𝑠𝑑 = 1 for the ModelFest dataset.
We fit all models using a quasi-Newton method implemented in
Matlab’s fminunc function.

The parameters of the fitted stelaCSF are listed in Table 2. Figure 6
visualizes all 5 dimensions of our model by plotting slices across
two selected dimensions. It shows how the CSF changes its shape
between low and high-pass depending on all other parameters (1st
column); that the visibility of higher temporal frequencies depends
mostly on luminance (2nd column and 2nd row); that the effect
of eccentricity is predicted as a linear function of eccentricity (4th
column); and that size depends only on spatial frequency as the
vertical shift can account for all other dimensions (5th column).

The CSF can be used to determine the boundary of visibility — the
surface at which the detection contrast is maximum (1) and there-
fore sensitivity is also 1. We numerically determined the boundary
of visibility, and plotted it in Figure 7. The top two plots compare
the pyramid of visibility (PoV) [Watson and Ahumada 2016] with
stelaCSF, showing the missing apex with low spatio-temporal fre-
quencies for PoV and a more intricate shape for stelaCSF. Because
we model all 5 dimensions, we can find the boundary of visibility as
the function of eccentricity and size for stelaCSF (the two bottom
plots).

Table 3. RMSE prediction error of contrast sensitivity models in dB. The
columns correspond to the set of dimensions (and datasets) that was used
with each model. The large font numbers correspond to the result for the
entire dataset, while smaller font numbers denote the results of 5-fold
cross-validation, representing the mean and standard deviation across all
folds. Mark "✗" means that the model does not support the given set of
dimensions.

Model 𝜌 , 𝐿, 𝑎 𝜌 , 𝐿, 𝑒 , 𝑎 𝜌 , 𝜔 , 𝐿, 𝑒 , 𝑎

Barten’s CSF 4.58 4.47±0.70 ✗ ✗

VDP CSF 6.88 10.02±2.76 8.76 11.34±0.55 ✗

Rovamo’s CSF 4.23 6.15±0.75 5.63 8.33±0.78 ✗

fvvdpCSF 3.71 4.52±0.78 6.36 7.55±0.46 7.92 10.55±1.10
stelaCSF 3.11 4.47±0.70 4.09 5.19±0.51 4.16 5.91±0.25

6.1 Model comparison
One challenge of comparing CSF models is that contrast sensitivity
data cannot be easily split into datasets used for testing and training.
This is because each dataset typically contains uniformly spaced
samples across a few select slices of the 5th dimensional space. If a
model is tested on a few slices of that space, the measure of error is
not representative for the entire space. For that reason, we perform
5-fold cross-validation within each dataset (leave-one-out, 5 splits)
and use all datasets for both training and testing. We also follow
the approach from other works [Ahumada et al. 2018; Watson and
Ahumada 2005] and report the result for the entire dataset without
train/test split. The error is reported as root-mean-square-error
(RMSE), represented in dB units:

E = 20
√︄

1
𝑁

∑︁
𝑑

∑︁
𝑖

(
log10 𝑆𝑖,𝑑 − 𝑠𝑑 log10 𝑆𝑖,𝑑

)2
[dB] , (19)

where 𝑁 is the total number of data points.
Even though the popular CSF models, such as that of Barten

[Barten 2003], do not account for all five dimensions of contrast
sensitivity, it is interesting to see how they perform compared to
our model. For that purpose, we separately compared 3-, 4- and
5-dimensional CSFs. The 3-dimensional CSFs are all those that ac-
count for spatial frequency (𝜌), luminance (𝐿) and area (𝑎). The
4-th dimensional CSFs add eccentricity (𝑒) and 5-th dimensional
also include the temporal frequency (𝜔). For the test with 3- and
4-dimensional CSFs, we used a subset of datasets that excluded the
missing dimensions.

We included in the comparison Barten’s [2003] and the CSF from
VDP paper [Daly 1992], as they are widely used. We also imple-
mented the model proposed by Rovamo et al. [1995] and combined
it with the models of spatial integration [Rovamo et al. 1993], and
cortical magnification [Virsu and Rovamo 1979]. The only existing
CSF model that accounts for all 5 dimensions is the one proposed in
the FovVideoVDP paper [Mantiuk et al. 2021], which we will abbre-
viate as fvvdpCSF. We found it impractical to compare stelaCSF with
the pyramid of visibility (PoV) [Watson 2018; Watson and Ahumada
2016] because (a) the PoV does not account for the effect of stimulus
size resulting in large prediction errors; and (b) the PoV cannot pro-
vide valid predictions when both spatial and temporal frequencies
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Fig. 6. Five dimensions of stelaCSF visualized for all combinations of pairs of parameters. The other parameters were set as follows: 𝜌 = 1 [cpd], 𝜔 = 0 [Hz],
𝐿 = 30 [ cd/m2 ], 𝑎 = 3.14 [deg2], 𝑒 = 0 [deg] (temporal eccentricity).

are less than 10 deg and 10Hz respectively, which restricts the data
it can be tested on.
For a fair comparison, we fitted the parameters of each model

separately for the 3-, 4- and 5-dimensional CSF comparison. To
decide on the set of parameters that should be fitted, we tested
whether including a parameter improved the fit and did not result
in implausible predictions, such as a sharp rise in sensitivity at high
frequencies. The latter test was performed by inspecting the plots
similar to the ones shown in Figure 6.

The overall performance for all models is shown in Table 3. The
results indicate that stelaCSF can explain the datasets better than

existing models, regardless of the number of considered dimensions.
The differences in the fitting errors between stelaCSF and fvvdpCSF
were compared using 𝐹 -test and AIC [Akaike 1974]. The model fits
while using stelaCSF were significantly improved compared to fvvd-
pCSF (𝐹19,855 = 87.4889, 𝑝 < .0005). The AIC difference was 907.06.
The prediction error of 3-4 dB is comparable to individual variations
and the measurement errors found in the CSF studies (around 3 dB
for nAFC). The detailed results, with per-dataset prediction errors
and plots for each case, can be found on our project’s web page10.
The results for the 5-dimensional CSFs are discussed in the next
section.
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Fig. 7. The boundary of visibility for the pyramid of visibility [Watson
and Ahumada 2016] (top, left) and stelaCSF (rest). The plots represent
isosurfaces at which 𝑆 = 1 (note that this is different from the pyramids
shown in [Watson and Ahumada 2016]).
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Fig. 8. Predictions for the ModelFest dataset [Watson and Ahumada 2005].
Continuous lines: stelaCSF; dashed lines: fvvdpCSF. This notation is followed
in all figures.

6.2 Detailed results
In this section we discuss the predictions of stelaCSF and fvvdpCSF
shown separately for each dataset. Both models were fitted to all
datasets (models reported in the right-most column of Table 3). The
predictions are plotted in Figures 8–18. We will use continuous lines
for the predictions of stelaCSF and dashed lines for fvvdpCSF.
In Figure 8 we plot only the data points for Gabor patches from

the ModelFest dataset [Watson and Ahumada 2005] and omit the
stimuli with complex patterns as those cannot be predicted by a CSF
alone. In Section 7.1 we show how such complex patterns can be
predicted using stelaCSF combined with an energy model. Although
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Fig. 9. Predictions for the HDR-VDP dataset [Mantiuk et al. 2011] for dif-
ferent frequencies (top) and stimulus sizes (bottom). The size is expressed
as the radius of the Gaussian envelope.

ModelFest offers little challenge for most CSF models, it is one of
the most robustly measured datasets, with measurements repeated
across several laboratories. Therefore, we use this dataset to anchor
the absolute predictions of the models (set 𝑠𝑑 = 1 from Eq. (18) for
this dataset).
HDR-VDP [Mantiuk et al. 2011] and HDR-CSF [Wuerger et al.

2020] datasets cover a wide range of luminance (from 0.002 to
10 000 cd/m2) and stimulus sizes. The difference between the two
datasets is that the HDR-VDP dataset was measured with a constant
size stimulus (mostly 3 deg diameter) up to 200 cd/m2, and the HDR-
CSF dataset with a constant number of cycles (mostly 1 cycle) and
up to 10 000 cd/m2. Figure 9 and Figure 10 show that stelaCSF and
fvvdpCSF well predict both datasets, including the sensitivity drop
above 200 cd/m2 (something that most CSF models fail to predict).
fvvdpCSF predictions are less plausible for low frequencies at high
luminance (Figure 10, right).

The Rovamo et al. dataset [Rovamo et al. 1993] demonstrates how
sensitivity varies with the area of a stimulus. The predictions of both
models, shown in Figure 11, do a good job of capturing the slope of
the raise in sensitivity and the saturation beyond the critical area.
The predictions for low and high frequencies are offset vertically
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from the data points, suggesting that the sensitivity changes with
frequency cannot be predicted well for this dataset.
The datasets of Robson [1966] and Laird et al. [2006] contain

variation of both spatial and temporal frequencies. The former was
measured for a single observer but a large range of frequencies,
while the latter was measured for 15 observers, but contains fewer
data points. The predictions for the Robson dataset in Figure 12 show
large discrepancies between the models, with stelaCSF predicting

8 16 32

Temporal frequency [Hz]

   1

  10

 100

S
e
n
s
it
iv

it
y

4 cpd

8 16 32

Temporal frequency [Hz]

8 cpd

8 16 32

Temporal frequency [Hz]

16 cpd

Fig. 13. Predictions for the Laird et al. dataset [2006].

both band-pass and low-pass characteristic of spatio-temporal con-
trast sensitivity much better. The dataset of Laird et al. (Figure 13)
was too limited to capture the differences between the models. We
also attempted to predict the data from Kelly [1979a; 1979b], how-
ever, we found his data to be to different from all other datasets
because of the stabilization of the stimuli on the retina used in his
study.

The measurements of Snowden et al. [1995] extend that of Robson
by capturing the changes in spatio-temporal contrast sensitivity
with luminance. This dataset is important as it let us calibrate the
parameters of the high-frequency (T ) channel of stelaCSF. The pre-
dictions, shown in Figure 14, indicate that both models can account
for the changes of luminance, though stelaCSF predictions are much
more accurate.
The remaining datasets capture the changes of sensitivity with

eccentricity. Virsu and Rovamo measured the changes of sensitivity
with eccentricity for static gratings in [1979] and then extended their
measurement to 1Hz and 18Hz temporal modulations in [1982]. The
predictions, shown in Figures 15 and 16, demonstrate that stelaCSF
captures the trends well, though with lower accuracy at high spatial
and temporal frequencies. Those prediction errors are consistent
for all the datasets from Rovamo’s lab. The very narrow band-pass
characteristic shown in the left of Figure 15 could not be reproduced
by our model as it is inconsistent with the other datasets. fvvdpCSF
captured the changes of sensitivity at the eccentricity but with very
large errors at low spatial frequencies.
The measurements of Wright and Johnston [1983] captured the

changes of sensitivity with eccentricity for several combinations of
both spatial and temporal frequencies, testing the 3 major dimen-
sions of the models. The predictions, shown in Figure 17, indicate
that a simple linear model used in stelaCSF (and in [Watson 2018])
provides an excellent fit to the data. A more complex cortical mag-
nification model used in fvvdpCSF gave less plausible predictions.
Finally, in Figure 18, we show the predictions for the dataset of

Anderson et al. [1991], who measured contrast sensitivity at four
eccentricities but separately for different directions in the visual
field (temporal, superior, nasal, inferior). They showed that the sensi-
tivity drop with eccentricity is slower for the nasal direction, which
motivated adding the position of the visual field to stelaCSF. The
stelaCSF predictions align well with the data for low and medium
frequencies, though they do not capture the rapid drop of sensitivity
at high frequencies. We suspect that the prediction errors, which are
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larger than for the other datasets, are caused by the different crite-
rion used to collect the data: discrimination of the motion direction
instead of contrast detection (refer to Table 1). fvvdpCSF predicts a
much shallower CSF and does not account for the position on the
visual field.
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6.3 Limitations
stelaCSF should be able to predict CFF measurements by finding
the highest temporal frequency at which the sensitivity is equal to
1. However, we found the predictions to be not accurate enough
to recommend using our model at high temporal frequencies. In
Figure 19 we plot the predictions of stelaCSF and fvvdpCSF over the
CFF data from [Krajancich et al. 2021]. While stelaCSF captures the
trends in the data, it does not predict the increase in CFF at medium
eccentricities and it mispredicts the trend at very low frequencies
(below 0.04 cpd). Such an increase in the CFF (and therefore in
sensitivity) is not present in our contrast sensitivity datasets (see
Figure 17) but was reported for other CFF measurements [Hartmann
et al. 1979, Fig.3–4], [Tyler and Hamer 1990, Fig.7]. We suspect that
this characteristic can only be observed for low spatial and high
temporal frequencies and higher luminance levels. The predictions
of fvvdpCSF show that the cortical magnification component used
in that model is also unable to predict this effect.
Koenderink et al. measured the CSF for moving patterns at ec-

centricities and at three levels or luminance [1978]. They found
that while the sensitivity in the fovea decreased with luminance
according to the de Vries-Rose behavior, it stayed constant at large
eccentricities (up to 50 deg) according to the Weber law. However,
this effect was not observed for static gratings in [Rovamo et al.
1995]. stelaCSF does not model interactions between luminance and
eccentricity, and therefore cannot account for the effect observed
by Koenderink et al.
As discussed in Section 6.1, existing CSF data does not allow

for robust testing of CSF models using an independent subset of
data not previously used for training. While this poses the risk of
overfitting, this is mitigated by (a) fitting to all 11 datasets; and (b)
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Fig. 20. Predictions of the contrast energy model for the complete set of 43
stimuli from the ModelFest dataset [Watson and Ahumada 2005].

using much fewer model parameters than data points. A CSF model
should ideally be validated on a set of new measurements, randomly
sampled from the 5D space and not used for training. However,
collecting new measurements was outside the scope of this paper.

7 APPLICATIONS
In this section, we demonstrate three practical applications of our
new CSF model to problems in computer graphics.

7.1 Contrast energy model
CSF models the detection thresholds of Gabor patches of isolated
frequency and cannot directly predict thresholds for more com-
plex patterns, which involve multiple frequencies. Due to this, we
used the ModelFest Gabor stimuli (1–14) when fitting CSF models,
as other stimuli contain complex patterns which the CSF cannot
predict alone. However, Watson and Ahumada showed that a sim-
ple contrast energy model could predict complex patterns near the
detection threshold [2005]:

𝐸 (𝑀,𝑐) = 1
𝑤2

∑︁
(𝜌𝑥 ,𝜌𝑦 )

(
𝑐𝔉(𝑀) (𝜌𝑥 , 𝜌𝑦) 𝑆 (𝜌,𝜔0, 𝐿0, 𝑎, 𝑒)

)2
, (20)

where𝑀 is the nominal modulation of a pattern (2D array with the
values in the range -1 to 1), 𝑐 is its contrast, and 𝔉 is the discrete
Fourier transform. Summation is performed over all discrete hori-
zontal and vertical coefficients 𝜌𝑥 and 𝜌𝑦 .𝑤 is the width of a pixel
in visual degrees (1/120 deg for ModelFest). The orientation-invariant
frequency 𝜌 passed to stelaCSF (𝑆 from Eq. (17)) can be calculated

as 𝜌 =

√︃
𝜌2𝑥 + 𝜌2𝑥 . The spatial pooling is typically performed in the

spatial, rather than frequency domain. However, as the exponent is
equal to 2, we can use the Plancherel theorem to avoid the inverse
Fourier transform and integrate the energy in the frequency domain.
Because the contrast energy model performs spatial pooling, the
area parameter 𝑎 must be set to a value larger than the actual size

ACM Trans. Graph., Vol. 41, No. 4, Article 145. Publication date: July 2022.



145:14 • Mantiuk et al.

of the stimulus. We set 𝑎 to four times the size (8.532). The other pa-
rameters were set according to the ModelFest stimuli: 𝐿0 = 30 cd/m2,
𝜔0 = 0Hz, and 𝑒 = 0 deg.

The model assumes that a pattern is detected when its contrast
energy is above a certain threshold 𝐸thr. Denoting the contrast
detection threshold for 𝑖-th ModelFest stimulus as 𝑐 (𝑖)det, we have:

𝐸thr = 𝐸 (𝑀 (𝑖) , 𝑐 (𝑖)det) =
(
𝑐
(𝑖)
det

)2
𝐸 (𝑀 (𝑖) , 1) (21)

so that the threshold for each stimulus is:

𝑐
(𝑖)
det =

√︄
𝐸thr

𝐸 (𝑀 (𝑖) , 1)
(22)

𝐸thr can be found by optimizing for the smallest prediction error.
There is also a closed-form solution to this optimization problem,
which can be computed as the squared geometric mean of the prod-
ucts 𝑐 (𝑖)GT

√︁
𝐸 (𝑀 (𝑖) , 1) across the dataset, where 𝑐 (𝑖)GT is the ground

truth detection contrast.
The predictions of this simple model, shown in Figure 20, demon-

strate that it can indeed predict ModelFest measurements for com-
plex patterns (stimuli 15-43). The lower than expected detection
thresholds at higher frequencies (stimuli 7–10), reflect the height-
ened sensitivity of stelaCSF at those frequencies (see Figure 8). The
prediction error of 3.65 dB is higher than that of models fitted specif-
ically to the ModelFest dataset. However, we only used the simplest
form of the energy models from those proposed in [Watson and
Ahumada 2005], and did not attempt to fit the CSF. Such a simple
model can work well for low-contrast patterns, which are not af-
fected by contrast masking. To model masking, the CSF should be
integrated with more complex visual models, such as VDP [Daly
1992] or HDR-VDP [Mantiuk et al. 2011].

7.2 Flicker Detection
In this Section, we demonstrate a practical use of stelaCSF as a com-
ponent of a flicker detection algorithm. Flicker may arise in display
presentation under several conditions, but is chiefly due to large
luminance changes at low refresh rates - both factors that affect con-
trast sensitivity. The threshold visibility of flicker is often modeled
using the critical flicker fusion frequency (CFF, see Section 3).
Denes and Mantiuk [2020] propose an algorithm to detect per-

ceptible flicker in images. One component of obtaining the desired
prediction is the decomposition of flickering image pairs in the spa-
tial frequency domain, followed by filtering through a CSF. Denes
and Mantiuk use the Pyramid of Visibility (PoV) [Watson and Ahu-
mada 2016] in their implementation. Notably, this model is designed
to account only for high frequencies (>10Hz or >10 cpd) and, in its
original form, does not model eccentricity. To address these limi-
tations, we modified Denes and Mantiuk’s flicker detector to use
stelaCSF. Apart from changing the CSF model, we modified the spa-
tial frequency calculation for the Laplacian pyramid to the updated
formula from [Mantiuk et al. 2021]. Finally, we reduce the three
fitted parameters of the PoV used in their work to a single parameter
controlling the absolute sensitivity of the model.

In order to test the modified flicker predictor, we compare against
results presented in the validation experiment of the recent work of
Krajancich et al. [2021]. This study gathered CFF data for a variety
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Fig. 21. A flicker detection algorithm [Denes and Mantiuk 2020] was ex-
tended to use stelaCSF, and is used to predict the validation results of work
by Krajancich et al. [2021]. The top row shows condition I, unseen stimulus,
where a fixed Gabor is presented flickering at various frequencies. The bot-
tom row shows condition II, 𝑓𝑠 dependence, where flickering Gabors of fixed
size but varying spatial frequency are shown at a single temporal frequency.
We reproduce the mean DMOS score of the user study on the left, the result
obtained by the authors’ model in the center, and show the novel results of
our modified algorithm on the right.

of spatial and temporal frequencies, luminance levels, and eccentric-
ities. The authors also present a flicker detection model, which is
obtained by mathematical modeling of the parameters used to gen-
erate the flickering Gabor stimuli used in their study. The model of
Krajancich et al. accounts for the background luminance, but ignores
image content. Despite this limitation, in their validation study the
authors show improvement over traditional flicker-unaware metrics
like SSIM, PSNR, and VMAF when predicting the visibility of flicker
introduced by adding a Gabor over a static image. Alternative flicker-
aware metrics, such as that proposed by Denes and Mantiuk, were
not considered for comparison as they did not model eccentricity.
As shown in Figure 21, with the introduction of stelaCSF, the

algorithm is able to accurately predict the detection of flicker for
the conditions studied in the experiment, including accounting for
the previously missing effect of eccentricity.

Fig. 22. A prediction of our CFF
detector based on the work
of Denes and Mantiuk. Original
scene from Sitzmann et al..

Note that although we obtain
performance similar to the Kra-
jancich et al. model as measured
by Pearson’s 𝑟 and 𝑝 values, the
flicker detector using stelaCSF
is much more general. The new
method can predict flicker for
any image and distortion type,
and is not limited to Gabors. Fur-
thermore, unlike the model pre-
sented by Krajancich et al., this
flicker detector is not limited to
binary outputs (visible or not),
and can disambiguate between
affected areas of an image and
give localized probability esti-
mates, as illustrated in Figure 22.
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Fig. 23. In the top row, we show the foveation profiles presented in prior art for a display with 11.5 ppd, contrasted against our automatically generated
profile (top-left). Note that at low eccentricities, foveation is not applied. Next, the sensitivity values for the foveated regions of each method is calculated
(top-middle). The sensitivity predicted by stelaCSF for each sampling factor is shown (top-right). The bottom row repeats this simulation for a display with
23 ppd, demonstrating that previous foveation methods become suboptimal with a change in resolution.

7.3 Foveated rendering
As display parameters such as resolution, luminance and frame
rate continue to increase, computational resources are strained to
produce high-quality results at higher sampling rates. Foveated
rendering aims to decrease the cost to render or transmit information
by reducing the detail level at which it is generated in areas away
from the users’ gaze. Such methods are typically based on models
of peripheral vision [Guenter et al. 2012; Patney et al. 2016].

While some modern methods like the one presented by Tursun et
al. [2019] employ explicit CSF-aware optimization processes to gen-
erate optimal simplification profiles, these can be computationally
expensive. Instead, most techniques employ a fixed fall-off profile to
reduce the sampling rate with eccentricity, based on the results of
a perceptual experiment. Although this method can produce good
results, our work shows that significant changes in peripheral sen-
sitivity can occur due to changes in ancillary variables like display
resolution. These changes could degrade the performance of such
manually-developed foveation profiles.

To estimate the perceptual impact of foveated rendering, we first
obtained the foveation profiles presented by Patney et al. [2016]
and Guenter et al. [2012] as presented in the former’s publication
(Figure 23 top left). We then model the frequency profile of the
hardware used in their work (Oculus Dev Kit 2, 110◦ FOV, 11.5 ppd,
estimated 100 cd/m2 luminance).We calculate the Nyquist frequency
for each sampling factor as 𝜌𝑖 = 𝜌𝑖−1/2 and 𝜌1 = ppd/2, obtaining
values of 5.75, 2.9, 1.4, and 0.7 cpd. We use stelaCSF to estimate
the sensitivity to the Nyquist frequency of each sampling level
(Figure 23 top right), and calculate the sensitivity of blended layers
through linear interpolation as follows: 𝑆𝛼

𝑖/𝑖+1 = (𝛼/𝑆𝑖 + (1−𝛼)/𝑆𝑖+1)−1,
since we are blending contrast, which is the inverse of sensitivity.
This allows us to calculate the sensitivity profile of both foveated
rendering methods at each eccentricity value (Figure 23 top middle).

As an alternative, we use stelaCSF to automatically generate a
foveation profile by finding the highest simplification magnitude
at each eccentricity that stays below a given threshold of sensitiv-
ity. We chose the threshold as the maximum value calculated for
Patney and colleagues’ [2016] method, 7.3. Although their original
method was limited to 4 sampling steps, we are able to simulate
more aggressive downsampling, choosing to go up to 5 steps in this
simulation. First, we note that the foveation profiles we examine are
similar to our automatic curve when examined at 11.5 ppd. How-
ever, this changes when a different display is simulated using our
framework: in the bottom row of Figure 23, we repeat the same
steps for a display with double the ppd (23) of that used by the au-
thors. This increases the Nyquist frequency, reducing the sensitivity
across the periphery, making the previous foveation profiles overly
conservative. Our stelaCSF-based foveation is able to automatically
generate a perceptually optimal curve, predicted to be spatially in-
distinguishable from the original, and enabling computational gains
when considered in tandem with practical engineering limitations.

8 CONCLUSIONS
The CSF is a practical model of the visual system that can help
in assessing the visibility of artifacts. It is also a key component
of more complex visual models, or visual metrics. However, by
itself contrast sensitivity is a reliable measure only for patterns that
are well specified by its main characteristics: spatial and temporal
frequency, luminance, size and eccentricity. In this paper we provide
a practical model that accounts for all these dimensions and explains
a large volume of psychophysical data.
While it is possible to fit any function to the data, an arbitrary

function is unlikely to explain the sparsely measured space of con-
trast sensitivity. For that reason, stelaCSF builds on existing findings
and visual models, such as Rovamo et al.’s relation between sensitiv-
ity and the product of square-root area and frequency, or Watson’s
observation that the effect of eccentricity can be explained by linear
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relations. Our selection of models and relevant relations is based
on both empirical evidence reflected in 11 examined datasets, and
findings reported in the vision literature.
We believe our model could be improved in terms of prediction

at higher temporal frequencies, such as those collected in CFF mea-
surements. Our model also does not consider chromatic contrast
sensitivity [Mantiuk et al. 2020; Wuerger et al. 2020].

stelaCSF opens possibilities for numerous applications, especially
in the space of novel VR/AR technologies. These often suffer from
spatio-temporal artifacts, which can be characterized and then as-
sessed in the 5-dimensional space of stelaCSF. We demonstrate
this on two example applications in detecting visible flicker and
estimating sampling factors for foveated rendering.
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