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Figure 1: Existing protocols for evaluating single-image HDR reconstruction methods directly compare the reconstructed HDR
images with the reference, as depicted by the blue shaded rectangle. This is unreliable due to large tone and color differences
between the reference and reconstructed HDR images. We demonstrate that the accuracy of metrics can be much improved if
we correct for camera-response-curve inversion errors before computing image quality using existing full-reference metrics as
shown in the green shaded rectangle. Still, the metrics can detect only very large image differences in this task and conducting
a controlled experiment is the recommended option.

ABSTRACT
As the problem of reconstructing high dynamic range (HDR) images
from a single exposure has attracted much research effort, it is
essential to provide a robust protocol and clear guidelines on how
to evaluate and compare new methods. In this work, we compared
six recent single image HDR reconstruction (SI-HDR) methods
in a subjective image quality experiment on an HDR display. We
found that only two methods produced results that are, on average,
more preferred than the unprocessed single exposure images. When
the same methods are evaluated using image quality metrics, as
typically done in papers, the metric predictions correlate poorly
with subjective quality scores. The main reason is a significant tone
and color difference between the reference and reconstructed HDR
images. To improve the predictions of image quality metrics, we
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propose correcting for the inaccuracies of the estimated camera
response curve before computing quality values.We further analyze
the sources of prediction noise when evaluating SI-HDR methods
and demonstrate that existing metrics can reliably predict only
large quality differences.
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1 INTRODUCTION
The remarkable improvement in deep learning for image recon-
struction problems over the last few years has produced numerous
CNN-architectures that try to restore high dynamic range (HDR)
information from a single standard dynamic range (SDR) image.
However, unlike related problems such as super-resolution and
denoising, the objectives of single image HDR reconstruction (SI-
HDR) are not well defined. While most SI-HDR methods are trained
to recover the physical HDR radiance values, we found that they
perform poorly in this task. Despite this, many SI-HDR methods
provide appreciable image enhancement that improves the qual-
ity of resulting images. These two tasks have radically different
goals [Didyk et al. 2008], making it difficult to automatically com-
pare competing methods with image quality metrics.

Another issue is that most methods are evaluated on datasets
with similar distributions to training images, which provides an
unfair advantage. To ensure fair evaluation, we collected a new SI-
HDR dataset — a diverse set of HDR images with SDR counterparts,
which were generated using a physically accurate camera model.

With a pairwise comparison experiment on a subset of the SI-
HDR dataset, we demonstrate that some SI-HDR methods show
promising image enhancement results, even though the reconstruc-
tions are far from HDR references. Surprisingly, two out of the six
tested methods are more likely to decrease quality than improve it.
The existing protocol for automatic evaluation conceals such results
because most image quality metrics are more suitable for the as-
sessment of the restoration task rather than the enhancement task.
When comparing a reconstructed image with the reference HDR,
metrics tend to be highly sensitive to shifts in tone and color due
to incorrect camera response function (CRF) estimation [Eilertsen
et al. 2021]. As a result, artifacts objectionable to humans, particu-
larly in saturated regions of the input image, have less influence on
the metric scores than slight changes in tone and color.

To remedy this, we propose an improved SI-HDR evaluation
protocol that includes CRF correction, which significantly boosts
the predictions of most metrics. We then compare an extensive
list of quality metrics and identify those that highly correlate with
the results of our experiment. The selected metrics reproduced the
subjective rankings within predicted error bounds when run on the
larger evaluation dataset. To estimate these bounds, we identified
various sources of noise in the predictions and, for selected metrics,
estimated the difference in metric scores necessary to claim an
improvement above the noise level. Such differences are substantial
for most metrics, suggesting that only large quality differences
provide a reliable claim in the assessment of SI-HDR methods.

The main contributions of this work are: (a) new dataset for eval-
uation of SI-HDR reconstruction methods (Section 3); (b) report on
the performance of those methods (Section 6); (c) better protocol for
their assessment (Section 7.2); and (d) analysis of metric prediction
error and caveats of using quality metrics for SI-HDR (Section 7.4).
Code and data for this paper can be found at the project web page1.

1Project web page: https://www.cl.cam.ac.uk/research/rainbow/projects/sihdr_
benchmark

2 RELATEDWORK
In this section, we discuss evaluation protocols to validate SI-HDR
methods. For brevity, we do not review each method and refer to
[Wang and Yoon 2021] for an overview of deep HDR imaging.

SI-HDR methods can be most reliably evaluated in a large-scale
perceptual study on an HDR display. However, this is a tedious
task, and most works instead rely on objective metrics to show
the improvement of a newly proposed method. To measure the
difference between the output of an SI-HDR method and the ref-
erence, metrics are usually applied directly or after a linear trans-
formation, such as a global scaling with the image median or some
other percentile. The comparison could use a dedicated HDR met-
ric, such as HDR-VDP-2 or 3 [Mantiuk et al. 2011], or SDR met-
rics, such as PSNR, SSIM [Wang et al. 2004] or LPIPS [Zhang et al.
2018], on tone-mapped HDR values. Instead of tone mapping, which
may strongly reduce contrast, it has been suggested to use the PU-
transform [Mantiuk and Azimi 2021] or 𝜇-law transform [Kalantari
and Ramamoorthi 2017]. Some existing works directly apply SDR
metrics on linear HDR images. This should be avoided since lin-
ear radiance values are perceptually non-uniform and incorrectly
represent perceived differences [Mantiuk 2016].

There are several potential problems with existing protocols.
First, test data, camera simulation, and comparison methods differ
substantially between evaluations, making it impossible to compare
results between papers. Second, as demonstrated in [Eilertsen et al.
2021], results are easily dominated by the ability of a particular
method to invert the CRF (𝑔 in Eq. 1). This affects all pixels in an im-
age and obscures the evaluation of recovered HDR information in,
e.g., saturated regions of the image. Third, new SI-HDR reconstruc-
tion methods are often evaluated on images generated by a similar
camera simulation as training images, which is likely to introduce
a bias towards the proposed method since it could be better at in-
verting the CRF. Finally, comparisons are often performed using
HDR metrics without properly calibrating the compared images.

A recent attempt at an independent and standardized evaluation
was presented as a part of the HDR single and multi-frame imaging
challenge in the New Trends in Image Restoration and Enhance-
ment (NTIRE) CVPR workshop [Pérez-Pellitero et al. 2021]. The
methods were evaluated on a new HDR dataset, using PSNR on
linear and tone-mapped images. Their work overcomes some of the
issues with diverse evaluation conditions, but problems around CRF
dominance and metric calibration are yet to be addressed. In this
work, we aim to address the remaining issues by (1) introducing an
explicit CRF correction step to prevent CRF dominance, (2) identi-
fying SI-HDR metrics based on a thorough subjective experiment.

3 SI-HDR DATASET
As most existing HDR datasets were used to train SI-HDR methods,
we create a new dataset for the purpose of this evaluation. The new
dataset needs to be sufficiently large and diverse in scene content
and dynamic range.Most importantly, we need to guarantee that the
data was not used to train any of the methods we compare. In this
section, we describe our HDR data collection and SDR simulation,
as well as the SI-HDR methods used in comparisons.

https://www.cl.cam.ac.uk/research/rainbow/projects/sihdr_benchmark
https://www.cl.cam.ac.uk/research/rainbow/projects/sihdr_benchmark
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3.1 Multi-exposure stacks
183 HDR images were captured using a Canon 5D Mark III full-
format DSLR camera. The scenes were selected to cover a wide
range of image content and lighting conditions. Each scene is com-
posed of up to 7 RAW exposures and merged into an HDR image
using the estimator that accounted the photon noise [Hanji et al.
2020]. Next, a simple color correction was applied using a reference
white point and all images were resized to 1920×1280 pixels.

3.2 Camera simulation
From the reference HDR scenes𝐻 represented in a linear RGB color
space, we generated SDR images 𝐿 using the camera simulation

𝐿𝑖 = 𝑞 (min{1, 𝑔(𝑒 𝐻𝑖 + 𝜂 (𝐻𝑖 ))}) , (1)

where 𝑖 is the pixel index, 𝑒 is the exposure,𝑔 is the CRF, 𝜂 is camera
noise, and 𝑞 denotes quantization to the desired bit-depth. We used
the popular normal approximation of the camera noise model [Foi
et al. 2008; Hanji et al. 2020; Hasinoff et al. 2010],

𝜂 ∼ N(0, 𝛼𝐻𝑖 + 𝛽) , (2)

where 𝛼 and 𝛽 are camera and ISO specific noise parameters that
represent signal-dependent photon noise and signal-independent
static noise respectively. For all images, we simulated the Canon
EOS-1Ds with 𝑒 = 1/30 sec and ISO 800.

We used the measured CRFs from the dataset in [Grossberg
and Nayar 2003]. This collection contains a wide variety of CRFs,
including measurements from analogue slide film which are not
representative of modern digital cameras. Thus, we performed 𝑘-
means clustering of CRFs with 5 clusters, and only used the cluster
with a mean closest to the overall mean. This cluster contains
85 different CRFs with shapes that are representative of modern
cameras. For each SDR simulation, we randomly picked a CRF from
this set and individually selected a scene-specific exposure so that
either 3% or 5% of pixels were saturated.

3.3 SI-HDR methods
We tested six deep-learning SI-HDR methods from the literature,
DrTMO [Endo et al. 2017], HDR-CNN [Eilertsen et al. 2017], Ex-
pandNet [Marnerides et al. 2018], HDR-GAN [Lee et al. 2018], Sin-
gleHDR [Liu et al. 2020], and Mask-HDR [Santos et al. 2020]. The
selection includes frequently occurring methods in SI-HDR eval-
uations (DrTMO, HDR-CNN, and ExpandNet), as well as more
recent ones (SingleHDR and Mask-HDR), including an adversar-
ially trained network (HDR-GAN). While most methods directly
predict linear HDR images as the output of the respective network,
DrTMO and HDR-GAN predict exposure stacks.

Ideally, all methods would be retrained on a standardized dataset
but unfortunately, such dataset is not available. Moreover, retrain-
ing existing methods typically results in worse performance due
to differences in data preparation, choice of camera simulation,
augmentation, and hyper-parameter tuning. Instead, we test the
methods on a new unseen dataset using the models that have been
trained by the respective authors. We include an interactive viewer
in the supplementary to compare the quality of reconstructions
produced by all methods over a variety of scenes.

4 CRF CORRECTION
As noted in [Eilertsen et al. 2021], SI-HDR methods typically fail to
invert the CRF, making the resulting colors and tones different from
the reference HDR images. The inaccuracies in CRF reconstruction
are often so large, that the images are too different to be reliably
compared in a subjective image quality experiment. We later show
that such differences are also a major reason for the failure of
image quality metrics. Hence, we developed a simple method that
improves CRF inversion so that our evaluation can focus on the
reconstruction of saturated pixels.

The goal of this step is to find a global smooth color mapping
function, R3→R3, that corrects for the inaccurate CRF reconstruc-
tion, without interfering with the reconstruction of saturated pixels.
To achieve this, we fit the coefficients of a polynomial basis function.

Performing the correction on log RGB values works well in most
cases. However, in some situations this produced visible artifacts,
especially for pixels with highly saturated colors. Instead, we first
perform the optimization on the luma values 𝑃 encoded using the
PQ transfer function [Miller et al. 2013], 𝑃𝑖 = 𝑃𝑄 (𝑌𝑖 ), where𝑌𝑖 is the
luminance of a pixel. As PQ encoding expects absolute luminance
values, we normalize by the median and scale with a factor 500 prior
to encoding. The value of 500 was found empirically to produce
good results. Next, to find the luminance mapping between the
reference HDR image 𝑃 and the SI-HDR output 𝑃 , we solve:

argmin
𝑤1,...,𝑤4
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where subscripts 1, ..., 𝑁 denote pixel indices, and the four coeffi-
cients𝑤𝑘 describe a third-degree polynomial. Then, we optimize
the mapping of the CIE chromatic coordinates 𝑢 ′𝑣 ′:

argmin
𝑤1,1,...,𝑤8,2
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where 𝑢 ′
𝑖
and 𝑣 ′

𝑖
are the chromaticity coordinates of the SI-HDR

reconstruction for pixel 𝑖 , while 𝑢𝑖 and 𝑣𝑖 are those of the refer-
ence HDR image. The 16 coefficients 𝑤𝑘,𝑐 describe third-degree
polynomials for each channel, with cross-channel dependencies.

In practice, we solve both optimization problems by minimizing
the squared error,

Ŵ = argmin
W

| |XW − Y| |22 + 𝜆 | |W −W0 | |22, (5)

where the first term corresponds to Eq. (3) or Eq. (4), i.e. where
X, W, and Y are the pixel values of the reconstructed image, the
polynomial weights, and the pixel values of the reference image,
respectively. The formulation includes a Tikhonov regularization
term, with strength 𝜆. This is applied to penalize extreme values
in the coefficient matrix Ŵ, which cause color distortions in the
corrected image. The weight penalization is performed against the
point W0, which is set with the weights that result in identity
mapping of color/luminance values (all coefficients are 0 except for
the linear term which is set to 1, i.e. 𝑤3 = 1 in Eq. 3 and 𝑤6,1 =
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1,𝑤7,2 = 1 in Eq. 4). The solution of the minimization problem is:

Ŵ = (X𝑇X + 𝜆I)−1 (X𝑇Y + 𝜆W0), (6)

where I is the identity matrix. Given that the matrix X is of size
𝑁 ×𝐾 , we use 𝜆 = 0.01𝑁 /𝐾 for the chrominance correction (Eq. 4),
which makes the regularization invariant to image resolution and
the degree of the polynomial. We use no regularization (𝜆 = 0) for
the luminance correction (Eq. 3).

5 SUBJECTIVE EVALUATION
The goal of the experiment was to obtain a possibly accurate mea-
sure of the gain (or loss) of visual quality that can be achieved by
each SI-HDR method. We used the method of paired comparisons,
as it was shown to provide higher sensitivity than direct rating
methods [Perez-Ortiz et al. 2020].

Display. The images were shown on a 32" Asus ProArt PA32UCX
4k, HDR monitor. The monitor was set to use the PQ1000 response
curve and was calibrated with a spectroradiometer (Specbos 1221).
We noted that the displayed values had luminance 30% lower than
expected (mapped PQ values vs. measurements). This was compen-
sated for with our colorimetric calibration. The viewing distance
was restricted to approximately 80 cm, resulting in an effective
display resolution of 77 pixels per degree.

Images. We selected a subset of 27 HDR images from the SI-
HDR dataset. The images, shown in Figure 2, were selected for a
wide variety of content: portraits, nature, cities, indoor and outdoor,
daylight and night time scenes. While we attempted to run the
experiment directly on the results of SI-HDRmethods, we found the
images differ too much in tone and color to be compared. Instead,
we used the images with the corrected CRF (Section 4) so that
the participants judged the ability of the methods to reconstruct
saturated pixels rather than their subjective opinion about tone
and color of each image. The images were further cropped to a
resolution of 1888×1280 so that two images could be shown side-
by-side on our 4K monitor. Their exposure was adjusted so that the
saturation point mapped to 100 cd/m2 on the display. The range
of luminance from 100 to 1000 cd/m2 was used to reproduce the
reconstructed pixel values. In total, the quality was assessed for 27
images (contents) × 2 exposures × (6 methods + HDR reference +
SDR input) = 432 conditions.

Experimental procedure. The participants were shown a pair of
images side by side and were asked to select "the image of higher
quality — the one that better resembles a natural scene and con-
tains fewer distortions" (the wording from the briefing form). The
images were compared within blocks showing the same content
and generated using different SI-HDR methods. Both SDR input
and HDR reference images were included in the comparison. An
active sampling method, ASAP [Mikhailiuk et al. 2021], was used
to maximize the accuracy of the collected data. ASAP determines a
batch of comparisons that maximizes the information gain and was
shown to outperform heuristics, such as the Swiss chess system.

Participants. 14 volunteers participated in the experiment, each
completing a full batch of comparisons scheduled by ASAP. Be-
cause ASAP ensures that each condition is compared at least once
in each batch (builds a minimum-spanning tree), it means that each

tested condition was compared at least 14 times with another con-
dition. For reference, this is higher than 9 comparisons collected
for TID2013 dataset [Ponomarenko et al. 2015] or 2-5 comparisons
collected for BAAPS [Zhang et al. 2018].

Scaling and outlier rejection. The results of pairwise comparison
was scaled under Thurstone’s case V model into Just-Objectionable-
Difference (JODs) using the pwcmp software [Perez-Ortiz and Man-
tiuk 2017]. A difference of 1 JOD unit means that 75% of observers
select one condition over another. We used the same software to
identify the potential outliers and removed the data for one ob-
server. To account for measurement error, we report bootstrapped
confidence intervals in all plots.

6 RESULTS: SI-HDR BENCHMARK
The results aggregated across all contents and exposures are shown
in the left of Figure 3. For individual results, we refer to Figure 3 in
the supplementary. The results are shifted with respect to the input
SDR image, so that positive JOD values indicate improvement in
quality and negative values indicate degradation of quality. The
right plot indicates the percentage of images that were assessed to
be better, same or worse than the SDR input image. Per image JOD
of more than 0.5 or less than -0.5 was used to distinguish between
better and worse. The results show the rather disappointing perfor-
mance of SI-HDR methods — many methods more often degrade
the quality of an input image rather than improve it. This level of
performance shows the difficulty of the task. It is worth noting that
high fail rate is not uncommon for similar challenging tasks, such
as image inpainting, and such techniques are still useful, but they
require manual screening of the results.

We encourage the reader to inspect individual images included
in the project web page. As an example of successful reconstruction,
we highlight image 177. We show the reconstructed portion of the
image for all the methods in the top row of Figure 4. Even though
the reconstructed colors are quite different from the HDR refer-
ence, all the reconstructions improve on the SDR input image with
clipped colors. In the middle row of Figure 4 we show image 052,
for which ExpandNet, HDR-CNN and MaskHDR show moderate
improvement by boosting the saturated region in a convincing man-
ner, but DrTMO and HDR-GAN introduce objectionable artifacts.
Finally, in the bottom row of Figure 4 we show image 123, for which
all methods failed to reconstruct large saturated regions. The JOD
scores in Figure 1 in the supplementary reflect the plausibility of
hallucinated regions.

7 QUALITY METRICS FOR SI-HDR
To identify an automatic evaluation procedure that correlates with
our results from Section 6, we start by looking at the reliability
of existing SI-HDR evaluation methods. Then, we propose an im-
proved protocol, which accounts for the random nature of quality
assessment and the inaccuracies of quality metrics.

We identified a range of metrics, both full-reference, and no-
reference, listed in Table 1. All the metrics either supported direct
comparison of HDR images (HDR-VDP-2 and -3, FovVideoVDP) or
were suitably adopted. For this, we used the PU21 transform [Man-
tiuk and Azimi 2021], 𝜇-transform [Kalantari and Ramamoorthi
2017] or a global tone-mapping operator [Reinhard et al. 2002].
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Figure 2: The subset of HDR images from SI-HDR dataset used for the subjective evaluation, tone mapped with a global
operator [Mantiuk et al. 2008] for visualization. We selected a wide variety of content covering nature, portraits, cities, indoor
and outdoor, dalight and night scenes.
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Figure 3: Preference of the SI-HDR method results. Left: The
bars indicate the preference in JOD units, relative to the
source SDR image. Negative values indicate that on average
the method produced less preferable result than the non-
processed source image. Right: The bars indicate the percent-
age of images in which the method produced better, same or
worse image than the input SDR image.

Figure 4: Reconstructions by various methods of selected
scenes from the subjective data. Please check the interactive
HTML viewer in the supplementary to assess the quality of
reconstructions for other scenes.

Table 1: List of quality metrics used in our evaluation.

Metric Reference
required

HDR
metric Details

PSNR ✓ ✗
Widely used ratio to measure noise
relative to the signal in log units

SSIM
[Wang et al. 2004] ✓ ✗

Popular quality measure that relies on
block-wise correlations

MS-SSIM
[Wang et al. 2003] ✓ ✗ Multi-scale version of SSIM

VIF
[Sheikh and Bovik 2006] ✓ ✗

Employs natural scene statistics (NSS)
models to measure enhancement

FSIM
[Zhang et al. 2011] ✓ ✗

Low-level feature similarity index
based on the visual system

VSI
[Zhang et al. 2014] ✓ ✗

Weighted average of local quality
maps guided by visual saliency

LPIPS
[Zhang et al. 2018] ✓ ✗

Perceptual similarity metric across
CNN architectures

HDR-VDP-2 and 3
[Mantiuk et al. 2011] ✓ ✓

Low-level vision model, works on
HDR images

FovVideoVDP
[Mantiuk et al. 2021] ✓ ✓

Low-level vision model for images,
video and foveation

BRISQUE
[Mittal et al. 2012] ✗ ✗

Support vector regression trained
on IQA dataset

NIQE
[Mittal et al. 2013] ✗ ✗

Distance between NSS-based
features to those from a database

PIQE
[Venkatanath N et al. 2015] ✗ ✗

Averaged block-wise distortion
estimation

NIMA
[Talebi and Milanfar 2018] ✗ ✗

Object recognition CNNs re-purposed
as a blind metric

PU21 maps linear RGB color values into approximately perceptu-
ally uniform units (accounting for glare and contrast sensitivity).
The 𝜇-transform offers a logarithmic scaling with empirically se-
lected parameters. The images passed to all metrics were scaled in
absolute units representing physical color emitted from our display.
For metrics that required display geometry (HDR-VDP-2, HDR-
VDP-3, FovVideoVDP), we matched the configuration of our experi-
ment (77 ppd). Finally, we clamped values above 1000 cd/m2 as they
exceed the peak luminance of our display.

Quality can be assessed both with respect to the HDR reference
image (reconstruction task) and relative to the input SDR image
(enhancement task). To test whether the latter is more suitable, we
included VIF, a metric capable of assessing image enhancement.
We append -SDR to the metric name when SDR input is used as a
reference and -HDR otherwise.
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7.1 Existing validation protocols
To test the suitability of popular metrics, we followed the standard
protocol used to evaluate image quality metrics [Ponomarenko et al.
2015], and computed the rank-order (Spearman) correlations be-
tween metric predictions and JOD values for individual conditions.
This gave us very low correlation values, especially for no-reference
metrics. The highest correlation was 0.47 for PU21-PSNR. When
we computed the correlations for the images after CRF correction
(Section 4), the highest correlation increased to 0.55 for HDR-VDP-3,
which is still too low to provide meaningful predictions. Our initial
assessment hints that none of the existing metrics is suitable for
predicting the quality of images reconstructed by SI-HDR methods.
Please check Table 1 in the supplementary for the complete list of
correlations.

However, this evaluation protocol does not reflect the standard
quantitative evaluation for SI-HDR methods. SI-HDR methods are
typically compared by averaging metric scores across multiple im-
ages and comparing the means. When we compute the correlations
of averaged metric scores with subjective JOD values for all the
scenes (plotted in Figure 3), they are much higher. We suspect
that this is due to the poor performance of quality metrics in as-
sessing the absolute level of impairment. Each metric introduces
per-content bias, which reduces correlation with the subjective
data. However, such biases cancel out when the quality values are
averaged across content, and the resulting scores correlate much
better with the subjective data.

To ensure a fair assessment for each metric given our data, we
generated 2000 bootstrap samples for each estimated correlation
by randomizing (sampling with replacement) both the participants
and the selection of images [Mooney and Robert D. Duval 1993].
Each sample involved independently scaling the JOD values using
a subset of data. Our bootstrapping simulated 2000 outcomes of
the experiment to capture the variance we can expect due to mea-
surement noise. To compute the average correlations, we use the
unbiased estimator given by [Olkin and Pratt 1958].

The correlations for averaged metric scores, shown in Figure 5a,
are higher especially for the no-reference PU21-PIQE metric (𝜌 =

0.83) and PU21-VSI (𝜌 = 0.78). However, these are not metrics
typically used to evaluate SI-HDR methods. Interestingly, the corre-
lations for metrics used in SI-HDR papers (PU21-PSNR, PU21-SSIM,
PU21-LPIPS, and HDR-VDP-2, and 3) are all below 0.64. We can
thus conclude that the metrics used in the SI-HDR papers were
not sensitive enough to differentiate the compared methods and,
therefore, could not provide evidence for the improvement of the
proposed methods. This observation explains why our participants
disagreed with quantitative results in recent SI-HDR papers.

7.2 Improved protocol for SI-HDR evaluation
First, we confirmed the observation from [Eilertsen et al. 2021]
that the inaccuracy in the CRF reconstruction is the major reason
for the poor metric predictions. When metric scores are computed
on images with the CRF correction, we see a major gain in metric
performance (compare Figure 5a and Figure 5b). This is because
even small differences in the CRF, sometimes unnoticeable to the
human eye, result in large metric errors as it affects all pixels in
the image. With the CRF correction, the correlation of PU21-PSNR

Figure 5: Bootstrapped distributions of correlation coef-
ficients for all metrics compared (a) before and (b) after
polynomial correction. "+" denotes unbiased mean correla-
tion [Olkin and Pratt 1958] and "−" (in red) denotes the 5th
percentile (an estimate of the bad-case performance).

jumps from 0.62 to 0.79 and a similar trend is seen for other metrics.
We also attempted computing metric values only on saturated areas
by copying non-saturated pixels from the reference to the test image,
but we did not notice any improvement in metric predictions. The
existing metrics do not seem to cope well with localized distortions.
We intentionally show the distributions of correlation coefficients
in Figure 5 to stress out that any metric evaluation study comes
with a high degree of uncertainty.

We also compared three adaptations of the SDR metrics to HDR
images: PU21 transform [Mantiuk andAzimi 2021], 𝜇-transform [Kalan-
tari and Ramamoorthi 2017] and Reinhard et al. global tone-mapping
operator [Reinhard et al. 2002]. We did not find evidence for sig-
nificant difference between those methods in our application. The
full analysis can be found in the supplementary. In the following
analysis, we will use PU21 due to its stronger perceptual basis.

Our recommendation for the new protocol is to report the results
for PU21-PSNR, because of its simplicity and good performance,
for PU-VSI and HDR-VDP-3, since they are likely to perform well,
and for PU21-PIQE as this is a well performing no-reference metric.
CRF correction must be performed for all metrics except PU21-
PIQE, which performs well without such correction. Our results
motivate the need for an HDR no-reference metric invariant to the
type of distortion. A candidate, proposed by [Banterle et al. 2020],
is restricted to a single kind of distortion. We do not recommend
using PU21-SSIM and PU21-NIMA.

7.3 Validation of quality metrics
Here we investigate whether the selected metrics used with the
new, improved protocol with CRF correction yield good enough
predictions to measure the performance improvement of SI-HDR
methods. To evaluate the methods, we used the remaining 156
images from our dataset (excluding images depicted in Figure 2 since
they were part of the experiment). If the metrics were accurate, the
results shown in Figure 6 should match the subjective results from
Figure 3. While most metrics capture the trend, many incorrectly



Caveats of quality assessment for SI-HDR SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

24

26

28

30

32

M
e

tr
ic

 S
c
o

re

PU21-PSNR

26.4

27.6
27.3

26.3

28 28.1

30.5

32

34

36

38

40

42
HDR-VDP-2 (Q)

35.2

38.3 38.5

34.9

40.4

37
36.5

8

8.2

8.4

8.6

8.8

9

HDR-VDP-3 (Q)

8.32

8.61

8.87

8.3

8.97

8.86
8.96

D
rT

M
O

E
xp

a
n
d
N

e
t

H
D

R
-C

N
N

H
D

R
-G

A
N

M
a
sk

H
D

R
S

in
g
le

H
D

R
S

D
R

 in
p
u
t

0.9

0.92

0.94

0.96

0.98

1

M
e

tr
ic

 S
c
o

re

PU21-SSIM

0.922

0.932

0.917

0.936

0.919

0.948

0.986

D
rT

M
O

E
xp

a
n
d
N

e
t

H
D

R
-C

N
N

H
D

R
-G

A
N

M
a
sk

H
D

R
S

in
g
le

H
D

R
S

D
R

 in
p
u
t

0.98

0.982

0.984

0.986

0.988

0.99

PU21-VSI

0.984

0.987
0.988

0.984

0.989

0.99

0.986

D
rT

M
O

E
xp

a
n
d
N

e
t

H
D

R
-C

N
N

H
D

R
-G

A
N

M
a
sk

H
D

R
S

in
g
le

H
D

R
S

D
R

 in
p
u
t

40

45

50

55

60
PU21-PIQE

55 55.5
56.2

46.2

56.1

50.3

41.6

Figure 6: Ranking bootstrapped distributions for SI-HDR
methods on the validation dataset. For each distribution,
small dashes denote 95% confidence intervals, while the red
errors bars show the minimum measurable increment in
quality for selected metrics (described in Section 7.4).
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Figure 7: Estimated prediction error for 4 selected metrics.
Similar to Figure 5, the distributions were obtained by boot-
strapping the experiment results over the subset of 27 images.
The improvement in quality metric values reported in many
papers falls below the expected accuracy of each metric.

predicted the quality of the input SDR image. Additionally, contrary
to the subjective data, a few metrics assigned higher quality to the
SingleHDR method. Relying on metrics would thus result in an
incorrect ranking of methods with a high likelihood.

7.4 Minimummeasurable increment of quality
Correlation coefficients are difficult to interpret. Even for the metric
with the highest expected correlation (PU21-VSI 𝜌 = 0.87), it is
impossible to say whether this value is good enough to evaluate SI-
HDRmethods. Instead, wewant to determine the smallest difference
in metric scores that can tell us with confidence (at 𝛼 = 0.05) that
one method is better than the other. To do that, we need to account
for all sources of measurement error: (a) due to the selection of
images; (b) due to the measurement error in subjective experiment
results (error bars in Figure 3); and (c) due to the inaccuracy of
a metric. Hidden in the metric error (c) is an inherent difficulty
related to the ill-posed nature of SI-HDR task. In saturated regions,
hallucinated details may be different to the reference, yet perfectly
plausible. To obtain a comprehensive measure, we bootstrapped

the RMSE values. For each bootstrap sample, we found a linear
mapping from JOD values to metric predictions and then computed
RMSE in terms of the metric error.

Such an analysis can be applied only to the metrics that pro-
duce quality values that are (approximately) linearly related to the
perceived magnitude of quality (MOS or JOD). For example, the
strongly non-linear relation between SSIM values and MOS means
that a small difference in SSIM values has a different impact on
perceived quality depending on the absolute SSIM values. There-
fore, for this analysis, we selected only PU21-PSNR, HDR-VDP-2,
HDR-VDP-3, and FovVideoVDP, which are all designed to be well
correlated with the perceived magnitude of distortion.

The distributions of the prediction errors are shown in the top
row of Figure 7. These distributions could be interpreted as an
expected metric error, 𝐸, with respect to the subjective scores. To
use a metric to compare two methods, we are interested in the
error for the difference between two quality metric scores. Since
the distributions are normal (Kolmogorov-Smirnov test, at 𝛼 = 0.05
significance level), we estimated the mean and standard deviation
for the bootstrapped samples. We plotted the cumulative distribu-
tion for the difference in the error estimates (also normal with the
same mean and standard deviation multiplied by

√
2) in the bottom

of Figure 7. The plots show that we need a PU21-PSNR difference
of at least 3.5 dB to be confident that the method with higher PSNR
is on average better (at 5% chance of making an error). The re-
quired minimum differences are also high for other metrics. Since
the improvement in quality reported in most papers falls below
these amounts, it casts doubts on the reliability of the evaluation
performed solely with objective quality metrics.

8 CONCLUSIONS
The evidence from our subjective quality assessment experiment
indicates that the overall progress in single-image HDR reconstruc-
tion is less impressive than reported in the papers. The results
indicate little improvement in the quality of SI-HDR results over
the last five years. In fact, a few of the methods were more likely to
degrade image quality than improve it.

We believe that a critical reason for the lack of visible progress
is the wrong use of quality metrics and insufficient subjective eval-
uation. We found that metrics commonly used to evaluate SI-HDR
methods have low correlation with subjective scores (𝜌 = 0.62 for
PU21-PSNR). Instead, we propose to compute metric scores on im-
ages that have been corrected for errors in the CRF inversion. We
found PU21-VSI and HDR-VDP-3 to be the best performing met-
rics, but also recommend PU21-PSNR and the no-reference metric
PU21-PIQE, which does not require CRF correction.

Finally, we demonstrate that even the best metrics computed
on CRF-corrected images introduce a substantial prediction error.
Using non-parametric statistics and our subjective results, we es-
timated the minimum improvement in quality scores required to
find the difference between two SI-HDR methods at 𝛼 = 0.05 to
be 3.5 dB for PU21-PSNR. Since most of the papers report much
smaller improvement in quality, there is a high risk that the reported
improvement is due to random errors rather than actual gains in
method performance. While we still recommend computing metric
scores, we also suggest running a subjective quality assessment on
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20-30 randomly selected images from an independent dataset. Our
findings are specific for SI-HDR methods but we believe that our
analysis can be extended to other reconstruction problems, such as
super-resolution or denoising.
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