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Shape2Vec: semantic-based descriptors for 3D shapes, sketches and images
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Figure 1: Cross-modal shape retrieval examples using different input modalities. From the top: a sketch, a word, a synthetic depthmap,
a natural image and a 3D model query. Each object has its ground-truth class displayed below it. We represent all these modalities in
a common vector space of words, making it possible to assess semantic similarity and perform cross-modal retrieval. Relevant objects are
highlighted in dark cyan.

Abstract1

Convolutional neural networks have been successfully used to com-2

pute shape descriptors, or jointly embed shapes and sketches in a3

common vector space. We propose a novel approach that lever-4

ages both labeled 3D shapes and semantic information contained5

in the labels, to generate semantically-meaningful shape descrip-6

tors. A neural network is trained to generate shape descriptors that7

lie close to a vector representation of the shape class, given a vec-8

tor space of words. This method is easily extendable to range scans,9

hand-drawn sketches and images. This makes cross-modal retrieval10

possible, without a need to design different methods depending on11

the query type. We show that sketch-based shape retrieval using12

semantic-based descriptors outperforms the state-of-the-art by large13

margins, and mesh-based retrieval generates results of higher rele-14

vance to the query, than current deep shape descriptors.15

Keywords: shape descriptor, word vector space, semantic-based,16

depthmap, 2D sketch, deep learning, CNN17

Concepts: •Computing methodologies → Shape representa-18

tions; Image representations;19

SIGGRAPH Asia 2016 Technical Papers, December 5-8, 2016, Macao
ISBN: 978-1-4503-ABCD-E/16/07
DOI: http://doi.acm.org/10.1145/9999997.9999999

1 Introduction20

Shape retrieval is increasingly important in light of the recent tech-21

nological advancements in shape acquisition and the growing on-22

line repositories of 3D models. The problem consists of retriev-23

ing from a collection of models, shapes most similar to a given24

query. The underlying challenge is assessing the similarity be-25

tween the query and objects in the collection. Biasotti et al. [2015]26

identify shape similarity though descriptors as one of the preva-27

lent approaches in the literature. Shapes are represented by multi-28

dimensional vectors called descriptors or signatures, and a chosen29

metric over the shape descriptor space is used to assess similarity.30

We propose Shape2Vec, a method for computing semantic-based31

descriptors, that can be used to compute semantic similarity be-32

tween shapes, sketches, images, depth maps, and words. We show33

that retrieval based on Shape2Vec descriptors outperforms previous34

sketch-based shape retrieval methods [Wang et al. 2015b] by 49%35

better average precision. This impressive improvement in perfor-36

mance is due to capturing semantic features as well as visual fea-37

tures in the descriptors.38

Recently, deep convolutional neural networks (CNN) have been39

tremendously successful for learning discriminative shape descrip-40

tors [Wu et al. 2015; Su et al. 2015; Masci et al. 2015]. These41

networks learn descriptors that minimize the distance between sim-42

ilar shapes, and maximize the distance between shapes from differ-43

ent classes. Other methods embed both 3D shapes and images [Li44

et al. 2015b], or sketches [Wang et al. 2015b], in the same vector45
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space. This makes it possible to search 3D models given an image46

query, or a sketch query. This is often referred to as cross-modal47

retrieval. Shape2Vec is a CNN that embeds both shapes and words48

in a common vector space, and thus learns semantically-meaningful49

descriptors.50

Shape2Vec is inspired by the deep visual-semantic embedding51

model (DeViSE) [Frome et al. 2013] for image classification.52

DeViSE addresses two shortcomings of previous classification53

methods: they attempt to assign images to a small discrete num-54

ber of selected classes and treat all labels as disconnected. CNN-55

based shape descriptors share the same limitations. DeViSE ad-56

dresses these problems in image classification by leveraging both57

labeled images and semantic information from an unannotated text58

corpus. The text corpus is used to generate vector representations59

of words, and a CNN is trained to embed images in the word vec-60

tor space. This transfers semantic information from the text corpus61

to visual object recognition, and produces semantically-meaningful62

image descriptors. We investigate how well leveraging both seman-63

tic information and visual information can improve 3D shape de-64

scriptors. Moreover, we train an additional CNN to learn similarly65

described sketches and images, using a fixed word vector space.66

This allows similarity assessment between all the different modali-67

ties, as illustrated by cross-modal shape retrieval results in Figure 1.68

This is, to the best of our knowledge, the first attempt to represent69

such a large number of modalities in a word vector space. DeViSE70

[Frome et al. 2013] embeds one modality, namely natural images, in71

a word vector space using one language model. In contrast, we em-72

bed several modalities including 3D shapes. We also evaluate two73

different language models. Semantic-based shape retrieval has been74

explored in the past by representing shapes based on attributes such75

as “natural”, “flexibility”, “fly”, “swim”, and “rectilinearity” [Gong76

et al. 2013]. Our work uses word embeddings in a vector space,77

which provides a continuous representation that encodes semantic78

information. CNN have been used to embed 3D shapes and images79

[Li et al. 2015b] or sketches [Wang et al. 2015b] in a common vec-80

tor space. However, these methods train one or two connected CNN81

with pairs of semantically similar input from each modality. We82

take a different approach by fixing a word vector space and training83

separate, disconnected, CNN to embed each modality in this fixed84

vector space.85

Generating semantic-based descriptors has several benefits beyond86

cross-modal retrieval. One of them is the ability to support text87

queries that are not in the small set of classes used for training. This88

make text-based retrieval more flexible and not restricted to known89

class labels. Users can use new text queries and, receive relevant90

results if the query is semantically close to a known shape class.91

This paper makes the following contributions:92

1. A novel language model for vector representation of words,93

restricted to physical objects and based on human-labeled se-94

mantic relationships between objects (Section 5.2).95

2. Embedding of 2D depthmaps, 3D shapes, 2D sketches and96

natural images in a word vector space (Section 6).97

3. Cross-modal shape retrieval with semantic-based embeddings98

(Section 7).99

4. Fine-tuning of a CNN trained over synthetic depthmaps for100

the embedding of real-world RGB-D images (Section 7.5).101

2 Related Work102

Shape retrieval has traditionally used view-based global descrip-103

tors such as spherical harmonics [Kazhdan et al. 2003], or Bag-of-104

features (BOF) retrieval systems that represent a shape by encoding105

local features. These use hand-crafted features to assess similarity.106

Learning features from training examples can improve this assess-107

ment. In that direction, CNN have become increasingly popular for108

representing shapes.109

Deep shape descriptors 3D Shapenets [Wu et al. 2015] rep-110

resent shapes as probability distributions of binary variables on111

a voxel grid, by training a convolutional deep belief network.112

Retrieval based on these descriptors outperforms previous hand-113

crafted view-based shape descriptors such as Spherical harmonics114

[Kazhdan et al. 2003]. One of the limitations of using 3D volumes115

as input is the loss in detail when shapes are voxelised. Su et al.116

[2015] propose a Multi-view CNN (MVCNN) which consists of117

learning descriptors from 2D rendered views and learning how to118

integrate these image-based descriptors in a single shape descrip-119

tor. They outperform 3D Shapenets by a large margin (49.2% to120

80.2% average precision). Our work on 3D shape description is121

similar to MVCNN in that we use rendered depthmaps to gener-122

ate image-based descriptors. It differs by the fact our descriptors123

are embedded in a word vector space while MVCNN image de-124

scriptors encode only visual features. Generating shape descriptors125

based on multiple views can be time-consuming and challenging126

for real-time retrieval. Bai et al. [2016] propose real-time shape re-127

trieval, using GPU acceleration and two inverted files (GIFT). Their128

reported results show that GIFT outperforms hand-crafted meth-129

ods and MVCNN on datasets with about 10K shapes divided into130

classes. However, MVCNN outperforms GIFT on a larger dataset,131

ShapenetCore, of about 51, 300 models from 55 classes subdivided132

into subclasses. We show that Shape2Vec outperforms GIFT on133

ShapenetCore, across all performance metrics, and retrieves results134

with higher relevance than MVCNN. Geodesic CNN [Boscaini135

et al. 2016; Masci et al. 2015] extends CNN to non-Euclidean man-136

ifolds and generates intrinsic shape descriptors, invariant to pose137

changes. However the use of a geodesic local coordinate system138

means it has limited support for noisy shapes like range scans.139

The above methods learn shape descriptors for mesh-based re-140

trieval. Another class of CNN in shape understanding embed mod-141

els and other modalities in a joint vector space for cross-modal re-142

trieval applications.143

Joint embedding of shapes and other modalities Wang et144

al. [2015b] jointly train two connected CNN (Siamese networks),145

one for 2D rendered views and the other for hand-drawn sketches.146

They feed the networks with pairs of views and sketches from the147

same class and use a loss function based on within-domain as well148

as cross-domain similarity. They outperformed previous state-of-149

art in the SHREC’14 Large-scale Sketch-based Shape Retrieval150

Challenge [Li et al. 2014b]. We show (Section 7.2) that sketch-151

based retrieval using Shape2Vec descriptors for sketches and shapes152

achieves a better performance (22.8% to 72% AP). Li et al. [2015b]153

embed natural images of objects in a shape embedding space by154

training a CNN using realistic rendered images of shapes. The em-155

bedding space is constructed using non-linear Multi-Dimensional156

Scaling (NMDS) on pairwise similarities of training 3D models.157

A CNN is then trained to embed images in this embedding space.158

Our method shares some similarities with this approach: we use a159

fixed embedding space based on a single modality (text in our case),160

and one of our language models is based on NMDS over pairwise161

semantic similarities between words. On the other hand, we em-162

bed more modalities than images, making Shape2Vec applicable163

to a wide variety of tasks. Wang et al. [2015a] learn a joint em-164

bedding of depth and color images for RGB-D object recognition.165

Their results on multi-modal classification show 10% improvement166

in accuracy over using only RGB channels or depth images. We167
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analyse retrieval on a challenging dataset consisting of RGB-D im-168

ages, taken by normal users in uncontrolled settings (Section 7.5).169

Convolutional Neural Networks Deep learning for shape repre-170

sentation has been inspired by the recent success of CNN in image171

classification [Krizhevsky et al. 2012]. CNN are composed of sev-172

eral layers of linear and non-linear operators that are learned jointly173

to perform a given task such as classification and feature extraction174

[Karpathy 2015]. Through these layers, CNN automatically learn175

increasingly complex feature maps. The main building blocks of176

modern CNN are: convolution layers (Conv) based on banks of177

learnable filters, an activation function such as the rectifier linear178

unit (ReLU), pooling layers (MaxPool) to reduce the spatial size179

of feature maps, and fully-connected layers (FC) that correspond180

to traditional single-hidden-layer neural network common for lo-181

gistic regression. Dropout [Srivastava et al. 2014] is often used to182

overcome overfitting due to a large number of parameters, by turn-183

ing off or on neurons during a training iteration based on a given184

probability.185

There are several deep learning frameworks that efficiently imple-186

ment the above building blocks, such as Berkeley Caffe [Jia et al.187

2014] and Google Tensorflow [Abadi et al. 2015]. We use Tensor-188

flow.189

The next sections describe how we use CNN to compute semantic-190

based descriptors.191

3 Shape2Vec overview192

Shape2Vec generates semantic-based shape descriptors that corre-193

spond to vector representations of the shape class label. In this sec-194

tion, we provide an overview of Shape2Vec and present the datasets195

that are used for training and testing in the rest of the paper.196

3.1 Shape2Vec197

We generate shape descriptors as follows. Descriptors are first198

generated for depthmaps taken from multiple viewpoints. These199

depthmap descriptors are averaged to obtain a 3D shape descriptor200

(descriptors for images and sketches are discussed in Section 4.3).201

Assuming a known method for converting words to their vectorial202

representation (we use Word2Vec and WordNet, see Section 5),203

we generate depthmap descriptors in two stages: classification to204

predict depthmap labels and encoding to produce semantically-205

meaningful descriptors.206

Classification The first stage trains a CNN to predict depthmaps207

labels, similarly to the DeViSE model for natural images [Frome208

et al. 2013]. This CNN learns class-specific visual features in209

depthmaps. The softmax function is applied to the final layer of210

the CNN to output vectors that represent class probabilities. We211

will refer to this CNN as the Softmax classifier.212

Encoding This stage fine-tunes the parameters learned in the213

Softmax classifier by training it to generate, in the final layer,214

depthmap descriptors similar to vector representations of depthmap215

labels. Only the parameters in the FC layers are updated during216

this second training, to preserve the visual features learned in the217

Conv layers. This CNN, which we will often referred to as the218

encoder, can be evaluated as a classifier by returning the nearest219

word to a depthmap descriptor as the predicted class. We will use220

this approach to compare the classification accuracy of the Softmax221

classifier and the encoder.222

Figure 2: Overview of the system. Assuming a known vector space
of words, Shape2Vec generates semantic-based depthmap descrip-
tors in two steps. Top: class-specific visual features in depthmaps
are learned by training a Softmax classifier to predict depthmap
classes. In this case,a class is represented by an index between 0
and K − 1, where K is the number of classes. The classifier out-
puts class probabilities. Bottom: the parameters learned for object
classification are fine-tuned in a second CNN, which is trained to
generate a depthmap descriptor close to the word embedding of
the depthmap class. The output is a vector similar to a word em-
bedding. There are three differences between the two CNNs: the
representation of the class label (an index vs a vector), the output
layer (class probabilities vs descriptors), and the loss function.

Word embeddings in a vector space The previous step as-223

sumes a known method for computing vector representations of224

words. Such methods are often referred to as language models. We225

select two language models and evaluate how they affect semantic-226

based descriptors. The first is based on Word2Vec [Mikolov et al.227

2013], an unsupervised encoder for words, trained using words con-228

texts in a large text corpus. The embedding space generated by229

Word2Vec often contains millions of words including concepts and230

verbs. To obtain an embedding space restricted to objects, we pro-231

pose also a novel language model based on Wordnet, a hierarchy of232

synonym sets (synsets). We select a subset of synsets representing233

physical entities and learn vector representations of these synsets234

using non-linear Multidimensional Scaling (NMDS) on their pair-235

wise semantic similarities. Despite our initial hypothesis that the236

Wordnet approach would be better, our results show that Word2Vec237

is superior to WordNet.238

To train a CNN for shapes, sketches and images, large training239

datasets are needed. The next section describes the dataset sources240

used for the results presented in this paper.241

3.2 Datasets242

Deep CNN require large amounts of data for training that will not243

overfit. In order to evaluate cross-modal retrieval, our choice of244

datasets is limited to those with more than one modality.245
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Figure 3: 2D visualisation of selected class label embeddings in
Word2Vec. Embeddings are projected in 2D using parametric t-
SNE [van der Maaten 2009].

SHREC’14 Large Sketch-based Shape Retrieval Challenge246

This dataset [Li et al. 2014b; Li et al. 2015a] is the largest avail-247

able that contains both labeled sketches and 3D shapes. It consists248

of data from previous datasets of shapes [Li et al. 2014a] and hand-249

drawn sketches [Eitz et al. 2012]. The collection has an unbalanced250

set of 8, 987 3D models and a balanced set of 13, 180 sketches from251

171 classes. We denote the set of shapes by SHREC14-3D and252

the set of sketches by SHREC14-Sketch. For each 3D model,253

we generate depth images from 12 views located at the vertices254

of a bounding icosahedron, for fast computation. We aggregate255

depthmaps class predictions or semantic-based descriptors by aver-256

aging. An alternative method consisting of assigning more weights257

to views that show more area of the shape (view entropy) does not258

impact classification or retrieval. We denote the set of depthmaps259

by SHREC14-Depth.260

ImageNet subset ImageNet [Russakovsky et al. 2015] is a large261

database of images organized according to the Wordnet hierarchy262

[Fellbaum 1998]. Wordnet itself is database of words grouped into263

sets of synonyms or synsets. ImageNet contains about 21, 841264

synsets, with an average of 500 images per synset. Subsets of265

ImageNet are commonly used for Computer Vision challenges266

such as image classification [Krizhevsky et al. 2012]. From the267

171 classes in the SHREC14-3D dataset, only 144 had matching268

synsets in Imagenet. For computational purposes, we download at269

most 100 images per matching synset. We refer to the resulting270

dataset as IMAGENET-Sub.271

272

We split the datasets above for training, validation and testing. First273

we set aside 20% of each dataset for testing. SHREC14-Sketch274

was already divided into a training and a testing dataset. To decide275

on the CNN configurations and hyperparameters, we use a small276

validation set: 20% of the training dataset. The assignment of277

an object to a split is random. We will attach the terms -Train,278

-Val, -Test, or -All to the dataset name to refer to a particular279

split or the complete dataset. For instance, to generate depthmap280

descriptors, we train the Softmax classifier and the encoder on281

SHREC14-Depth-Train.282

283

We later show results on a dataset of real RGB-D images [Choi284

et al. 2016] (Section 7.5) and ShapeNetCore, which is the largest285

academic shape dataset to date [Chang et al. 2015] (Section 8). The286

next sections describe each of the building blocks of Shape2Vec.287

4 Learning shape classes288

This section describes classification of depthmaps using CNN, as289

well as results of similar CNN classifiers for other modalities such290

as sketches.291

4.1 Depthmaps292

We train a CNN for depthmap classification, similarly to DeViSE.293

The CNN parameters will be fine-tuned later to learn semantic em-294

beddings of depth images. The chosen network architecture is295

based on AlexNet [Krizhevsky et al. 2012], consisting of about296

60 million parameters. AlexNet has been successfully used for a297

wide range of computer vision tasks such as image classification298

[Krizhevsky et al. 2012], shape retrieval [Su et al. 2015] and sketch299

recognition [Yu et al. 2015].300

AlexNet is a multi-layer network consisting of one input layer, a301

combination of 5 Conv+MaxPool layers and 3 FC layers. The clas-302

sical AlexNet has Local Response Normalization (LRN) layers ap-303

plied at the end of the first two Conv+MaxPool layers. LRN is304

supposed to provide lateral inhibition present in real neurons, but305

in practice, there was no improvement in the depthmap classifica-306

tion accuracy with LRN added. On the other hand, removing it307

improves learning speed. Setting initial parameters of the neural308

net using parameters optimized for image classification has been309

successful for shape recognition [Su et al. 2015]. We use the same310

scheme here, and initialize the CNN with parameters learned for311

image classification in the ImageNet challenge [Krizhevsky et al.312

2012] and made available by Caffe [Jia et al. 2014]. Parameters are313

updated during training to minimize the Softmax loss, which was314

also used in AlexNet. The Softmax loss or cross-entropy loss given315

input depthmap i is316

Li = − log

(
efyi∑K−1
j=0 efj

)
(1)

where yi is the true label of input i, K is the number of classes, and317

f is the Softmax function. This function is defined by:318

fj =
ezj∑K−1

k=0 ezk
, (2)

where zi is an output of the last FC layer i.e. a score for each class319

given the input depthmap. Softmax takes a vector of real-valued320

class scores, and normalises them so that they sum up to 1.0. The321

output can be interpreted as unnormalized log probabilities for each322

class. The total loss L is the mean of individual losses Li over a323

batch of training input, plus regularization terms such as L2 regu-324

larization that encourages parameters to be small. We use Adagrad325

[Duchi et al. 2011] for the optimisation. Adagrad is an adaptive326

learning rate method that adaptively determine how much individ-327

ual parameters should be updated based on the previous behaviour328

of their gradients.329

The method above trains a network to output class probabilities,330

given an input depthmap. Parameter optimization converges after331

100 epochs (epoch=number of times the whole training dataset is332

processed). Note that SHREC14-Depth-Train consists of 107, 844333

views. Classification accuracy on SHREC14-Depth-Test is 77.9%.334

This is the top-1 or nearest-neighbour accuracy, where the classifier335

returns the correct class as the best match.336

4.2 3D models337

Class probabilities of all 12 depthmaps of a shape are averaged338

to predict its class. Assigning weights according to view entropy339
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Figure 4: 2D visualisation of selected class label embeddings in
Wordnet-based vector space (WN).

does not affect performance. The Softmax classifier recognises 3D340

shape classes with an accuracy of 87.7% on SHREC14-3D-Test341

and 96.5% on SHREC14-3D-All. In contrast, Tatsuma et al. gen-342

erate shape descriptors using Super Vector encoding of view-based343

features and achieve an accuracy of 86.8% on SHREC14-3D-All344

when the nearest neighbour class is returned as the predicted class345

[Li et al. 2015a]. This indicates that the Softmax classifier is better346

on average at predicting shape classes.347

4.3 2D sketches and natural images348

We also train two separate CNN using the same architecture to clas-349

sify sketches and natural images.350

The sketch classifier achieves an accuracy rate of 72.6% on351

SHREC14-Sketch-Test, lower than the state-of-the-art SketchNet352

[Yu et al. 2015] accuracy of 74.9% on a larger dataset of sketches353

from 250 classes. Thus SketchNet, which uses an ensemble of354

CNNs with a similar architecture to our Softmax classifier, per-355

forms slightly better on average.356

The image Softmax classifier achieves 43.2% accuracy, which is357

significantly lower compared to other modalities. This is because,358

contrary to depthmaps and sketches, an image can contain multiple359

objects. The input data is more complex, and our classifier overfits360

on the training data. With larger training data, the classifier may361

learn invariance to background. Note that the original AlexNet362

network won the 2012 ImageNet image classification task [Rus-363

sakovsky et al. 2015] (1 million images from 1000 classes) with a364

top-5 accuracy rate of 83.5%. In contrast, we achieve a top-5 accu-365

racy of 70.2%, using IMAGENET-Sub which has 14, 100 images366

from 144 classes.367

We report the accuracy results above and compare them with clas-368

sification based on the semantic-based encoder in Section 6. Once369

trained for classification, the CNN are ready to be fine-tuned to gen-370

erate semantic-based descriptors close to word embeddings.371

5 Learning word embeddings372

This section focuses on learning a language model, that maps words373

in a text corpus to vectors in the Euclidean space. We present one374

language model from the natural language processing literature and375

propose a new language model.376

5.1 Word2Vec377

Word2Vec [Mikolov et al. 2013] belongs to the class of vector space378

models that map words to a continuous vector space, such that se-379

mantically similar words correspond to nearby points. In particular,380

the Word2Vec neural network efficiently learns word embeddings381

from unannotated text, such that words that occur in the same con-382

text are mapped to vectors with a small cosine distance. It captures383

both semantic and syntactic relationships, and supports basic al-384

gebraic operations such as “king − man + woman = queen”.385

Word2Vec propose two architectures to learn word vector represen-386

tations: Continuous Bag-Of-Words model (CBOW) and Skip-Gram387

models. CBOW predicts a word (e.g. “mat”) given its context (“the388

cat sits on the”). The number of words used to determine a context389

is based on a window size. On the other hand, Skip-Gram predicts390

source context words from a target word. CBOW is faster while391

Skip-Gram performs better on small training data.392

We chose CBOW for fast computation and use an open source im-393

plementation of Word2Vec [Mikolov et al. 2013] that generates a394

large model from a public corpus of 8 billion words tokenized into395

a set of 1, 111, 684 single- and multi-word terms. The model pro-396

duces 500-dimensional word embeddings, based on CBOW, using397

a 10-word window size. Figure 3 visualizes vector representations398

of a subset of SHREC14-3D labels in 2D. Note how mammals are399

grouped together, as well as vehicles. The visualization indicates400

that Word2Vec learns semantic relationships between words.401

Although Word2Vec seems to accurately capture semantic similar-402

ities between words, it contains more than 1 million words, a large403

fraction of which are not nouns and even fewer are names of phys-404

ical objects. We propose a second language model, restricted to405

physical entities and based on ground-truth semantic relationships406

labeled by humans.407

5.2 Non-linear multi-dimensional scaling using Word-408

net409

Wordnet [Fellbaum 1998] is a taxonomy curated by humans, that410

establishes how synsets (sets of synonyms) are related in a hier-411

archical structure. For instance “carnivore” has as children “dog”412

and “cat”, and each has their own children which are different dog413

and cat species. In this taxonomy, semantic similarity between414

two words is based on the shortest path between them. One of415

the widely used metrics in Wordnet is the wup similarity [Wu and416

Palmer 1994]. wup measures the relatedness between two synsets417

by considering their depth in the taxonomy and the depth of their418

lowest common subsumer (most specific ancestor) lcs:419

wup(A,B) = 2
depth(lcs(A,B))

depth(A) + depth(B)
. (3)

wup provides an implicit representation of the space of synsets,420

but it can not be plugged directly into the CNN described in Sec-421

tion 4. A vector representation of words is required. We learn422

these wup-based vector representations using non-linear Multidi-423

mensional scaling (NMDS) [Kruskal 1964]. Given pairwise wup424

distances between a set of words, we use NMDS to generate 100-D425

vectors for each word, such that Euclidean distance between two426

word vector representations is close to the original wup distance427

between the words. Wordnet contains 155, 287 words organized in428

117, 659 synsets. We reduce this number since computing pairwise429

wup similarities is expensive.430

We restrict the list of synsets to those that are within r = 5 edges431

in the Wordnet tree, to classes in the training dataset. We set432

r = 5, after preliminary experiments with r ranging from 3 to 8.433
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The selected value of the parameter r is a compromise between434

computational cost and vocabulary size. This not only restricts the435

vocabulary to words representing physical objects, but reduces the436

complexity of pairwise similarity comparisons and NMDS. The fi-437

nal vocabulary consists of 12, 008 words, from 171 classes present438

in training. We use 100 dimensions in this language model, as op-439

posed to 500 used for Word2Vec because the vocabulary size is 3440

orders of magnitude smaller, compared to 1 million words vocab-441

ulary in the Word2Vec model. Preliminary 2D visualization of442

500-D embeddings of the SHREC14-3D class labels showed poor443

performance. To visualise the embeddings in 2D, we compute a444

matrix of pairwise cosine distances between label vectors. The ma-445

trix is used to learn 2D embeddings using t-SNE [van der Maaten446

2009], which is the standard method for mapping high-dimensional447

vectors to 2D for visualisation purposes. Figure 4 shows a visual-448

ization of selected class labels using 100-D embeddings. Similar449

classes such as mammals are tightly grouped and far away from un-450

related classes such as vehicles. We denote the proposed language451

model by WN, for Wordnet.452

We manually create a one-to-one mapping of SHREC14-3D class453

labels between the Wordnet and Word2Vec vocabularies, so that454

either language model can be used. Given these two vector rep-455

resentations of words in a vector space, the Softmax classifier is456

modified and fine-tuned to generate shape embeddings that lie in457

the same vector space.458

6 Learning semantic-based shape descrip-459

tors460

We present how the Softmax classifier, described in Section 4, is461

modified to generate semantic-based descriptors.462

6.1 Depthmaps463

The last layer of the Softmax classifier outputs class probabilities464

for each class in SHREC14-Depth. We change this layer, and the465

loss function to obtain an encoder that learn depthmap embeddings.466

The penultimate layer now outputs a L2-normalized descriptor with467

the same dimensionality as the word vector space. The loss function468

is selected such that the network is trained to output descriptors that469

are close to the vector representation of the depthmap class label.470

We investigate the influence of three loss functions:471

• L2 loss: Often referred to as the Euclidean loss, it generates472

descriptors that are as close to the class vector representations473

as possible, according to the L2 norm. Let v(yi) be the vector474

representation of the class yi then the loss associated with the475

input i is:476

Ll
i = ||si − v(yi)||2 (4)

where si is the generated shape descriptor.477

• Cosine Distance: This minimizes cosine distance between478

shape descriptors, and their associated class. We investigate479

this loss function because words in the both language models480

are compared using cosine similarity.481

Lc
i = 1− si.v(yi) (5)

• Rank hinge loss: The above loss functions only attempt to482

select shape descriptors close to correct or positive class,483

without taking into account negative classes. The hinge loss484

was successfully used in the visual-semantic model of images485

[Frome et al. 2013], to ensure that image descriptors were far486

from negative classes with a given margin. The loss function487

is488

Lh
i =

∑
j 6=yi

max(0, α− si.v(yi) + si.v(j)) (6)

where α is the margin, set in our implementation to 0.3 based489

on empirical results on a small validation dataset.490

The Conv layers in the neural net are fixed and only parameters491

of FC layers are updated to minimize the selected loss function.492

Thus, visual features learned during classification are preserved.493

We chose the same optimization method, Adagrad, used for training494

classifiers in Section 4.495

A 3D shape descriptor is obtained by averaging its depthmap de-496

scriptors, similarly to how class probabilities were aggregated. We497

refer to CNN based on L2 loss, Cosine Distance loss and Hinge loss498

as L2-W2V, CosineDist-W2V, and HingeLoss-W2V respectively499

when Word2Vec is used. We replace -W2V with WN when refer-500

ring to an encoder based on WN embeddings. Classification and501

retrieval accuracy are reported on all six methods, in addition to the502

Softmax classifier described in Section 4 when applicable.503

Shape embedding visualisation Figure 5 shows 2D visualisa-504

tions of shapes from a subset of classes. Note that for the pur-505

pose of visualisation, we choose parametric t-SNE [van der Maaten506

2009] for all 2D projections in this paper, as opposed to the tradi-507

tional t-SNE, so that parameters can be learned for projecting word508

embeddings to 2D, and then used for shape embeddings. Figure509

5 shows two projections of shape descriptors trained with the L2510

loss, using the Word2Vec and the WN models. Note how with an511

encoder based on Word2Vec, shapes from the same class form clus-512

ters, indicating that the distance between them is small as expected.513

In contrast WN does not discriminate between shapes from similar514

classes such as “chair”, “bench”, and “table”, while shapes from515

unrelated classes are clearly separated.516

Semantic-based classification We compare how well the en-517

coder classifies depthmaps, by selecting the word whose vector518

representation is closest to a depthmap descriptor, as the predicted519

class. Top-k accuracy retrieves the first k most confident classes for520

a depthmap and returns 1 if one of them is correct. Table 1 shows521

classification results per loss function and language model, com-522

pared to the Softmax classifiers in Section 4. Note that by returning523

words close to embeddings as predicted classes, the size of possi-524

ble results is no longer limited to the 171 labels in the SHREC-3D525

dataset. It is expanded to the whole vocabulary of the underlying526

language model. In Table 1, we include accuracy results where527

predicted classes are restricted to classes in the dataset.528

Results show that L2-W2V and CosineDist-W2V outperform the529

other four encoders, with SHREC14-Depth-Test top-1 accuracy of530

77.7% and SHREC14-3D-Test top-1 accuracy of 87.4%. It has531

similar top-1 accuracy to the Softmax classifier even though the532

size of possible guessed classes is 1 million when using Word2Vec.533

HingeLoss-W2V performs slightly worse at 86% on 3D shapes534

compared to the former, but HingeLoss-WN has a dramatic drop in535

performance at 21.6%. This suggests that the hinge loss or hinge536

margin is not appropriate for the WN language model. Note how-537

ever, that HingeLoss-WN shows a significant improvement, espe-538

cially in top-10 accuracy when the predicted class is restricted to539

one of the 171 classes in the training dataset. Also note that irre-540

spective of the loss function, WN-based embeddings perform worse541

than Word2Vec embeddings, which supports our interpretation of542

2D visualisation of shape embeddings in both vector spaces.543
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Shape embeddings in Word2Vec (L2-W2V)

Shape embeddings in WN (L2-WN)

Figure 5: 2D projections of 3D shape descriptors embedded in
word vector spaces.

6.2 Hand-drawn sketches and natural images544

We generate semantic-based descriptors for 2D sketches using the545

above methods. The sketch Softmax classifier is fine-tuned to546

learn sketch embeddings in a word vector space. On SHREC14-547

Sketch-Test, the classifier achieves a top-1 accuracy rate of 72.6%.548

Once the sketches are embedded in a vector space, L2-W2V and549

CosineDist-W2V semantic-based classification has a similar top-1550

accuracy of 72%. Table 2 shows accuracy results per loss func-551

tion and language model. The observations made for 3D shapes,552

regarding accuracy per loss function and language model, also hold553

for sketches.554

In contrast to both shapes and sketches, semantic-based image clas-555

sification accuracy significantly drops compared to the image Soft-556

max classifier (a drop of 5% in top-1 accuracy and 35% in top-10557

accuracy). This indicates a loss of visual information when em-558

bedding images in a word vector space. DeViSE, which inspired559

Shape2Vec, reports a drop of performance of 2% accuracy com-560

pared to the Softmax classifier [Frome et al. 2013]. This suggests561

the larger drop of performance here is due to the small training562

dataset for images and the complex nature of images. DeViSE563

uses Word2Vec as its language model, but differs from Shape2Vec564

in one significant aspect. In Shape2Vec, the language model re-565

mains fixed throughout the encoder training, whereas DeViSE up-566

dates the weights of the neural network that generates vector rep-567

resentations of words. Thus, its final vector space is adapted to the568

image dataset. This could help limit the drop in image classification569

accuracy when images are embedded. We chose neither to update570

the language model nor to adapt it to a specific dataset, so that simi-571

larity can be assessed between descriptors generated from different572

CNN. Fine-tuning the language model to a dataset might otherwise573

have a negative impact on cross-modal retrieval.574

Depthmaps 3D models
Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

Softmax classifier 0.779 0.936 0.962 0.877 0.962 0.980
L2-W2V 0.774 0.832 0.837 0.874 0.922 0.928
L2-W2V* 0.774 0.862 0.866 0.874 0.943 0.950
L2-WN 0.537 0.633 0.668 0.583 0.701 0.756
L2-WN* 0.655 0.811 0.845 0.723 0.887 0.910
CosineDist-W2V 0.777 0.835 0.843 0.874 0.926 0.932
CosineDist-W2V* 0.777 0.867 0.872 0.874 0.945 0.950
CosineDist-WN 0.538 0.639 0.676 0.592 0.709 0.767
CosineDist-WN* 0.654 0.813 0.849 0.727 0.885 0.911
HingeLoss-W2V 0.732 0.856 0.871 0.860 0.936 0.944
HingeLoss-W2V* 0.734 0.903 0.913 0.861 0.961 0.966
HingeLoss-WN 0.185 0.247 0.289 0.216 0.284 0.336
HingeLoss-WN* 0.504 0.795 0.842 0.579 0.878 0.916

Table 1: Top-k classification accuracy for depthmaps (SHREC14-
Depth-Test) and 3D models (SHREC24-3D-Test). Classification
based on an encoder can output any of the words in the language
model vocabulary. The number of possible classes is 1, 000, 000
(Word2Vec) or 12, 000 (WN). A star (*) indicates results where out-
put classes were restricted to one of the 171 class labels in the train-
ing dataset. This provides a fairer comparison against the Softmax
classifier. Note how this restriction does not affect top-1 accuracy
for encoders based on Word2Vec, but significantly improves the ac-
curacy of WN-based encoders. It also improves top-5 and top-10
accuracies for all encoders.

Hand-drawn sketches Natural images
Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

Softmax classifier 0.726 0.923 0.959 0.430 0.702 0.800
L2-W2V 0.723 0.780 0.787 0.381 0.444 0.454
L2-W2V* 0.723 0.818 0.823 0.382 0.505 0.527
L2-WN 0.585 0.679 0.713 0.261 0.341 0.382
L2-WN* 0.664 0.804 0.833 0.321 0.475 0.534
CosineDist-W2V 0.725 0.776 0.785 0.387 0.446 0.455
CosineDist-W2V* 0.725 0.818 0.825 0.388 0.511 0.533
CosineDist-WN 0.587 0.681 0.715 0.275 0.354 0.392
CosineDist-WN* 0.667 0.799 0.835 0.338 0.485 0.547
HingeLoss-W2V 0.544 0.713 0.752 0.427 0.567 0.596
HingeLoss-W2V* 0.596 0.835 0.860 0.435 0.667 0.687
HingeLoss-WN 0.345 0.437 0.501 0.175 0.222 0.268
HingeLoss-WN* 0.581 0.784 0.823 0.308 0.481 0.544

Table 2: Top-k classification accuracy for 2D sketches (SHREC14-
Sketch-Test) and natural images (IMAGENET-Sub-Test). The star
refers to results where the predicted classes are restricted to those
used in training.

7 Retrieval applications575

We investigate shape retrieval performance on five types of queries:576

3D shape, 2D sketch, natural image, text and natural RGB-D577

images. Performance is evaluated using these standard criteria:578

Precision-recall curve (PR), Average mean precision (AP), Near-579

est Neighbor (NN), First/SecondTier (FT/ST) and normalised Dis-580

counted Cumulative Gain (DCG). We also report results on one ad-581

ditional metric, the E-Measure (E). E is the harmonic mean of pre-582

cision and recall for the topK = 32 retrieval and has been reported583

by previous retrieval methods on the datasets used here. We denote584

this additional metric by E@32.585
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NN FT ST
Ours (L2-W2V) 0.953 0.916 0.952
Ours (L2-W2V) SHREC14-3D-Test 0.998 0.849 0.898
Ours (L2-WN) 0.894 0.749 0.864
Ours (CosineDist-W2V) 0.954 0.917 0.953
Ours (CosineDist-WN) 0.895 0.746 0.862
Ours (HingeLoss-W2V) 0.920 0.747 0.878
Ours (HingeLoss-WN) 0.901 0.773 0.882
Bai (GIFT) 0.889 0.567 0.689
Tatsuma (LCDR-DBSVC) 0.865 0.528 0.661

E@32 DCG AP
Ours (L2-W2V) 0.373 0.975 0.937
Ours (L2-W2V) SHREC14-3D-Test 0.333 0.935 0.866
Ours (L2-WN) 0.326 0.929 0.788
Ours (CosineDist-W2V) 0.374 0.975 0.937
Ours (CosineDist-WN) 0.326 0.928 0.785
Ours (HingeLoss-W2V) 0.314 0.933 0.791
Ours (HingeLoss-WN) 0.329 0.937 0.810
Bai (GIFT) N/A N/A N/A
Tatsuma (LCDR-DBSVC) 0.255 0.823 0.541

Table 3: Comparison of mesh-based retrieval on SHREC14-3D-
All. Although previous methods report results on the complete
dataset and use machine learning techniques, none of them uses
class assignments in SHREC14-3D. For a fairer comparison, we
present the top retrieval performance of Shape2Vec, using only
shapes never seen during training as queries.

NN FT ST
Ours (L2-W2V) 0.714 0.697 0.748
Ours (L2-WN) 0.599 0.523 0.598
Ours (CosineDist-W2V) 0.713 0.696 0.742
Ours (CosineDist-WN) 0.594 0.517 0.594
Ours (HingeLoss-W2V) 0.388 0.303 0.431
Ours (HingeLoss-WN) 0.557 0.506 0.590
Wang (Siamese) 0.239 0.212 0.316
Tatsuma (SCMR-OPHOG) 0.160 0.115 0.170

E@32 DCG AP
Ours (L2-W2V) 0.360 0.811 0.720
Ours (L2-WN) 0.306 0.707 0.546
Ours (CosineDist-W2V) 0.359 0.810 0.718
Ours (CosineDist-WN) 0.304 0.705 0.540
Ours (HingeLoss-W2V) 0.200 0.576 0.326
Ours (HingeLoss-WN) 0.292 0.696 0.529
Wang (Siamese) 0.140 0.496 0.228
Tatsuma (SCMR-OPHOG) 0.079 0.376 0.131

Table 4: Comparison of sketch-based retrieval on SHREC14-
Sketch-Test and SHREC14-3D-All.

7.1 Mesh-based shape retrieval586

We evaluate shape retrieval on SHREC14-3D-All, as done in previ-587

ous retrieval methods on the same dataset. Table 3 presents the re-588

sults of this evaluation against LCDR-DBSVC [Li et al. 2014a] and589

GIFT [Bai et al. 2016]. GIFT had the best reported performance on590

the shape dataset. L2-W2V improves on LCDR-SBSV by a 40%591

AP difference (54.1% to 93.7%) and on GIFT by a 29.1% ST dif-592

ference. In fact, all semantic-descriptors outperform state-of-the-593

art, including HingeLoss-WN at 81% AP. Note however that when594

evaluating retrieval on the complete dataset, shapes that were used595

for training are included, which produces a biased result. When we596

restrict evaluation of our method to SHREC14-3D-Test, L2-W2V597

has a 86.6% AP, still outperforming LCDR-DBSVC by a differ-598

ence of 32% AP and GIFT by a 23.7% ST difference.599
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Figure 6: Precision recall of mesh-based retrieval and sketch-
based retrieval on the SHREC14 dataset.

The significant improvement is partly due to deep learning, which600

automatically learns class-specfic descriptors from the 3D shapes.601

In contrast LCDR-DBSVC learns how to encode hand-crafted local602

features from a separate set of unclassified models. GIFT generates603

view descriptors by training a CNN on 54, 728 unrelated models604

from ModelNet [Wu et al. 2015] divided into 461 categories. In605

Section 8, we compare Shape2Vec against GIFT and MVCNN, us-606

ing training and testing splits of the same dataset, ShapenetCore.607

7.2 Sketch-based Shape retrieval608

We report evaluation of retrieval from the complete shape dataset609

using SHREC14-Sketch-Test [Li et al. 2014b], upon which all610

state-of-the-art sketch-based methods report retrieval results. Fig-611

ure 6 and Table 3 show comparison of performance against two612

recent sketch-based shape retrieval methods, including recent work613

on joint embedding of sketches and 3D models denoted by Wang614

(Siamese) [Wang et al. 2015b]. Again, Shape2Vec outperforms615

state-of-the-art by large margins, with L2-W2V improving on616

Wang (Siamese) by a 49% AP performance (22.8% to 72.0%).617

We believe that Shape2Vec shows significant improvement over618

previous work because it does not rely on learning distance metrics619

across modalities. Rather, it finds embeddings of these modalities620

in a common vector space, and as long as the embedding of each621

modality maps to similar points, high retrieval performance will622

be achieved. The results of semantic-based classification on both623

sketches and shapes showed comparable performance to the Soft-624

max classifier (Section 6), indicating that even when embedded in a625

word vector space, little information on visual features is lost. Thus626

Shape2Vec is able to achieve these two tasks across domains with627

little trade-off: capture discriminative visual features and provide a628

common embedding.629
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NN FT ST
Ours (L2-W2V) 0.376 0.374 0.420
Ours (L2-WN) 0.300 0.259 0.324
Ours (CosineDist-W2V) 0.375 0.379 0.426
Ours (CosineDist-WN) 0.304 0.264 0.328
Ours (HingeLoss-W2V) 0.334 0.279 0.376
Ours (HingeLoss-WN) 0.288 0.262 0.331

E@32 DCG AP
Ours (L2-W2V) 0.199 0.570 0.394
Ours (L2-WN) 0.162 0.504 0.283
Ours (CosineDist-W2V) 0.202 0.574 0.399
Ours (CosineDist-WN) 0.161 0.508 0.286
Ours (HingeLoss-W2V) 0.176 0.539 0.306
Ours (HingeLoss-WN) 0.161 0.502 0.285

Table 5: Comparison of image-based shape retrieval on
IMAGENET-Sub-Test and SHREC14-3D-All.

NN FT ST
Ours (L2-W2V) 0.754 0.659 0.715
Ours (L2-WN) 0.673 0.491 0.552
Ours (CosineDist-W2V) 0.749 0.659 0.710
Ours (CosineDist-WN) 0.655 0.476 0.543
Ours (HingeLoss-W2V) 0.743 0.611 0.690
Ours (HingeLoss-WN) 0.480 0.407 0.511

E@32 DCG AP
Ours (L2-W2V) 0.283 0.742 0.689
Ours (L2-WN) 0.245 0.632 0.530
Ours (CosineDist-W2V) 0.283 0.741 0.690
Ours (CosineDist-WN) 0.245 0.623 0.519
Ours (HingeLoss-W2V) 0.281 0.726 0.662
Ours (HingeLoss-WN) 0.226 0.554 0.424

Table 6: Comparison of text-based shape retrieval on the 171 class
labels and SHREC14-3D-All.

7.3 Image-based Shape retrieval630

For each image in IMAGENET-Sub-Test, we retrieve similar 3D631

shapes according to their embeddings. Table 5 summarizes the632

image-based retrieval performance. Note the low performance of633

the top-performing method CosineDist-W2V, which shows 39.9%634

AP. This is expected, based on the poor accuracy of the Softmax635

classifier and semantic-based classifier on images.636

Because we constructed our own image dataset to match the classes637

in the shape dataset, we do not perform quantitative comparison638

against competing image-based shape retrieval. Also note that cur-639

rent methods on joint image-shape embedding are trained using640

synthetic images obtained by realistic rendering of 3D shapes in641

selected scenes [Li et al. 2015b]. In contrast, we use real images642

which are more diverse and complex.643

7.4 Text-based Shape retrieval644

One of the main motivations behind embedding shape descriptors645

in a space of words is the ability to use text queries not yet seen646

during training. However, this is difficult to show empirically, with-647

out attaching multiple classes to each shape for testing. We show648

retrieval performance of 3D shapes, based on text queries in the649

dataset. Given each of the 171 classes, we retrieve the most similar650

3D shapes, based on their embeddings. Intuitively, the first result is651

the 3D shape most representative of that word. Table 6 summarizes652

our findings. L2-W2V has 75.4% NN performance, representing653

the probability of finding a 3D representative shape in the first re-654

NN FT ST
Ours (L2-W2V) 0.640 0.658 0.724
Ours (L2-WN) 0.555 0.516 0.645
Ours (CosineDist-W2V) 0.654 0.660 0.724
Ours (HingeLoss-W2V) 0.603 0.590 0.708
Ours (HingeLoss-WN) 0.467 0.446 0.641
Ours (CosineDist-WN) 0.563 0.546 0.662

E@32 DCG AP
Ours (L2-W2V) 0.147 0.848 0.693
Ours (L2-WN) 0.107 0.804 0.536
Ours (CosineDist-W2V) 0.142 0.846 0.692
Ours (HingeLoss-W2V) 0.131 0.830 0.627
Ours (HingeLoss-WN) 0.084 0.760 0.457
Ours (CosineDist-WN) 0.113 0.815 0.567

Table 7: Comparison of RGBD-based retrieval on the Stanford test
dataset.

sult. Text-based retrieval shows lower performance compared to655

sketch-based and mesh-based retrieval, which may suggest that not656

only do shape and sketch embeddings capture semantics, they also657

contain additional information such as visual features.658

7.5 Range scan-based shape retrieval659

We trained the depthmap encoders on clean synthetic depthmaps.660

These depthmaps are different from real-world depth images since661

the latter often contain cluttered scenes, including background. We662

fine-tune the depthmap encoder on real-world range scans using a663

dataset of RGB-D images taken in realistic conditions.664

Large Stanford RGB-D Dataset This is a recent dataset of RGB-665

D images [Choi et al. 2016], where human participants were given666

scanning devices and asked to scan objects in their everyday life,667

with no supervision and no control over what objects will be se-668

lected or from which distance they will be scanned. The authors669

identified 398 sequences from nine classes they use for mesh re-670

construction. The set of labels we have used so far has 6 matching671

labels in the RGB-D dataset, namely: “bench”, “table”, “chair”,672

“minibike”, “sofa” and “pot”. From each sequence we extract a673

frame every 10 seconds in the first 5 minutes. This provides a674

dataset of 2, 704 RGB-D images. Note that this dataset is partic-675

ularly challenging due to thte variety of scanning environments,676

cluttered scenes and background. Directly testing the depth images677

using the CNN trained on synthetic depthmaps is not appropriate678

since they are different modalities. Thus, we fine-tune the synthetic679

depthmap encoder using 80% of the RGB-D dataset for training680

and 20% for testing. This dataset was recently released and has not681

yet being used for classification or retrieval, thus we cannot report682

comparison against state-of-the-art.683

Depth-based retrieval Figure 7 shows examples of retrieval us-684

ing depth images. It shows that even in ambiguous scenes, such685

as the depth scan of a minibike (middle), relevant results are still686

retrieved. The last example in Figure 7 shows a table scan con-687

fused with chair models. On average Shape2Vec achieves AP per-688

formance of 69.3% on real-world depth images. This is impressive689

considering the complexity and variations in the depth images.690

Our evaluation of RGBD-based retrieval indicates that Shape2Vec691

can be fine-tuned to generate embeddings for new shape types.692

This section described different types of queries supported by693

Shape2Vec. To our knowledge, this is the first method adaptable to694

such a wide range of cross-modal retrieval tasks. Note that although695
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chair chair chair chair chair chair chair chair chair

chair television television television television television television television television
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Figure 7: Results of shape retrieval based on RGB-D images. Each row shows the top eight results for a query, with a depthmap (top) or an
image (bottom). This illustrates how image-based retrieval can underperforms compared to depthmap queries.

we use the same architecture for each modality, it is not necessary.696

Distinctive CNN could be trained to generate shape embeddings, as697

long as the word vector space remains fixed and the loss function is698

selected to reduce the distance between the input descriptor and its699

label embedding. Our comparison against previous mesh-based re-700

trieval has been limited to those methods who have reported results701

on SHREC14-3D. It did not include state-of-art methods that use702

deep learning on larger datasets. For completeness, the next section703

compares Shape2Vec against other CNN-based shape descriptors.704

8 Comparison against other deep shape de-705

scriptors706

Savva et al. [2016] present results of the SHREC’16 Large-Scale707

3D Shape Retrieval using ShapeNetCore. This dataset was col-708

lected by Chang et al. [2015], for the specific purpose of deep learn-709

ing. It is five times larger than SHREC14-3D, and contains about710

51, 300 shapes from 55 classes, each subdivided into subclasses.711

The competing methods in the SHREC’16 challenge are based on712

deep neural networks and the top performing method is Multi-view713

CNN (MVCNN) [Su et al. 2015], which was presented in Section714

2. MVCNN trains one CNN to generate descriptors of 2D ren-715

dered views and use a second CNN to aggregate view descriptors716

into shape descriptors. We are interested in how Shape2Vec com-717

pares to MVCNN, since the latter is the most related work in the 3D718

domain. The authors publicly released the rendered images used to719

generate their reported results. To provide a fair comparison against720

their method, we use their dataset of 12 rendered views per shape.721

The viewpoints used by MVCNN for rendering are based on the722

assumption that the shapes in the dataset are consistently aligned,723

which is the case for ShapenetCore. We use the same split of train-724

ing, validation, and testing sets used in the challenge.725

To generate shape descriptors, we follow the approach described in726

Sections 4–6, and focus on L2-W2V which has shown better per-727

formance than alternative encoders. More specifically, we gener-728

ate view descriptors in two steps: a Softmax classifier is trained to729

learn view subclasses and, then, it is modified to learn view embed-730

dings in the Word2Vec vector space. View descriptors are averaged731

to form a shape descriptor. We report retrieval results when only732

shapes in ShapenetCore-Test are used for querying and retrieval, as733

done by other methods in the SHREC’16 challenge.734

Table 8 shows performance metrics generated with evaluation code735

provided by the contest organisers. The table shows additional re-736

trieval metrics than the ones we have used so far: precision (P),737

recall (R) and the F-score (F) at N , where N is the number of re-738

trieved objects. We report unweighted averages (microALL) and739

weighted averages (macroALL) to adjust for differences in class740

sizes, as done by Savva et al. [2016]. The DCG metric is the only741

performance metric that takes subclasses into consideration, by as-742

signing higher relevance to results that match both the main class743

and subclass of the query.744
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microALL
P@N R@N F@N DCG AP

Ours (L2-W2V) 0.778 0.698 0.709 0.915 0.871
Su (MVCNN) 0.770 0.770 0.764 0.899 0.873
Bai (GIFT) 0.706 0.695 0.689 0.896 0.825

macroALL
P@N R@N F@N DCG AP

Ours (L2-W2V) 0.565 0.615 0.545 0.878 0.792
Su (MVCNN) 0.571 0.625 0.575 0.865 0.817
Bai (GIFT) 0.444 0.531 0.454 0.850 0.740

Table 8: Comparison against other CNN-based shape retrieval
methods, on ShapenetCore-Test. Micro-averaged results (top)
present performance metrics averaged over classes, and macro-
averaged results (bottom) show unweighted average over the
dataset. The normalised DCG metric uses a graded relevance that
assigns more weight to retrieved results that match both the main
class and the subclass of the query.
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Figure 8: Precision-recall curves of selected CNN-based methods
on ShapenetCore-Test. This indicates that our method, Shape2Vec
has comparable results to MVCNN when relevance is not graded.

Results show that Shape2Vec has comparable performance to745

MVCNN [Su et al. 2015], when subclasses are not taken into ac-746

count. On microALL, MVCNN has an AP of 87.3%, compa-747

rable with Shape2Vec 87.2% AP. This is best illustrated by the748

PR curves in Figure 8. However Shape2Vec generate results with749

higher relevance, as indicated by the improvement in DCG perfor-750

mance (89.9% to 91.5% on microALL and 86.5% to 87.8% on751

macroALL).752

Shape2Vec ability to generate results with higher relevance is due753

to the fact that it leverages semantic information and thus, retrieves754

results that are semantically close to the query.755

GIFT [Bai et al. 2016] was described in Section 2 as the state-756

of-the-art in real-time shape retrieval. GIFT generates multi-view757

descriptors, similarly to MVCNN and Shape2Vec, but uses an in-758

dex structure for multi-view matching to achieve fast retrieval. Re-759

sults show that both Shape2Vec and MVCNN outperform GIFT.760

This suggests that the CNN-based aggregator in MVCNN and761

Shape2Vec semantic-based descriptors are useful for better simi-762

larity assessment.763

9 Discussion764

This section discusses observations made for different stages of765

training and evaluation, as well as possibilities for future work.766

Language model choice Word2Vec outperforms the Wordnet-767

based WN vector space for each cross-modal retrieval task. Note768

that WN only uses 100 dimensions compared to the 500 used by769

Word2Vec. A larger vector space may capture more information770

and explain the performance difference. Furthermore, Word2Vec771

captures both syntactic and semantic relationships, while WN is772

only based on semantic similarity. Furthermore, we only explored773

one manifold learning technique, NMDS, for learning a vector774

space based on semantic relatedness. Other techniques could be775

investigated, that learn embeddings from semantic similarities.776

Loss function We investigated training of shape embeddings us-777

ing three different loss functions. L2 loss consistently performed778

the best, closely followed by Cosine distance loss and finally hinge779

loss. Hinge loss with WN had significantly poorer performance780

compared to the rest. This may be related to the choice of the mar-781

gin parameter. It will be interesting to see how this parameter af-782

fects retrieval based on the language model used.783

Fusing depthmap descriptors Shape descriptors are obtained784

by averaging depthmap descriptors. MVCNN indicates that bet-785

ter performance can be achieved by training a CNN to aggregate786

view descriptors. We expect such a learning approach to improve787

shape description. Other architectures beyond AlexNet could be788

explored. Different network models may be more appropriate for789

some modalities. In particular, Geodesic CNN [Masci et al. 2015]790

could be used to generate pose-invariant shape embeddings.791

Multi-modal retrieval Learning approaches could be used to ex-792

tract the most useful features from multiple modalities.793

Shape2Vec algebraic operations. One of the main advantages794

of Word2Vec is its ability to perform basic algebraic operations795

such as additions and subtractions in the vector space, that corre-796

spond to semantically meaningful results. An interesting avenue797

for future work would explore whether shape embeddings based on798

this language model share these properties and if not, how the CNN799

architecture could be modified to support such algebraic operations.800

10 Conclusion801

We have explored learning of semantic-based shape descriptors802

from training data. More specifically, we propose a supervised803

method for generating shape descriptors that are embedded in a804

word vector space, making it possible to perform shape-based and805

text-based queries. We showed that the same technique could be806

used for sketches, images and RGB-D images, making it possi-807

ble to compare all these modalities with one another. Using these808

semantic-based embeddings, we reported results on a sketch-based809

shape retrieval benchmark. Shape2Vec outperformed state-of-the-810

art by an AP difference of 49%. This suggests that the proposed811

method is particularly suited for cross-modal shape retrieval. The812

substantial improvement on previous work is due to the leverage of813

semantic information in language models. Thus, similarity assess-814

ment is based on both semantic and visual features. We showed that815

the proposed method could also be used to perform shape retrieval816

using RGB-D images taken by normal users in uncontrolled set-817

tings. Our research raises several questions that will be interesting818

to investigate in future work.819
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