
Volume 33 (2014), Number 2 pp. 1–13 COMPUTER GRAPHICS forum

Shading curves: vector-based drawing
with explicit gradient control

Henrik Lieng, Flora Tasse, Jiří Kosinka, Neil A. Dodgson

The Computer Laboratory, University of Cambridge, UK

40

0

User-adjustable
shading profile

Curves and colours

Intermediate rendering of surfaces
(depth buffer)

Depth buffer combined with
flat-shaded image

Figure 1: Drawing with shading curves. Left: input curves, colours, and a shading profile at the given curve location. In this
example, the shading profile represents difference in luminance to the colour of its related region. That is, the luminance at the
curve in the resulting image is the luminance of the yellow-ish colour plus 40. Middle: intermediate image extracted from the
depth buffer of rendered surfaces created with our framework. The shapes of the surfaces are dictated by the shading profiles.
Right: combining the flat colour image with the luminance modification produces the final result.

Abstract
A challenge in vector graphics is to define primitives that offer flexible manipulation of colour gradients. We pro-
pose a new primitive, called a shading curve, that supports explicit and local gradient control. This is achieved
by associating shading profiles to each side of the curve. These shading profiles, which can be manually manip-
ulated, represent the colour gradient out from their associated curves. Such explicit and local gradient control is
challenging to achieve via the diffusion curve process, introduced in 2008, because it offers only implicit control
of the colour gradient. We resolve this problem by using subdivision surfaces that are constructed from shading
curves and their shading profiles.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Gene-
ration—Generation, Graphics Utilities

1. Introduction

Vector graphics provides a powerful framework for draw-
ing compelling 2D imagery. An important aspect of such
drawing is to be able to control colour gradients [OBW∗08,
FSH11]. Currently, there are three ways to manually manip-
ulate colour gradients: diffusion curves (DCs) [OBB∗13],
the linear gradient tool, and the gradient mesh tool. The
last two tools are found in vector drawing applications like
Adobe Illustrator and CorelDRAW (gradient mesh is called
‘mesh fill’ in Corel DRAW).

Our approach is related to the DC primitive. A DC is a
freeform curve (modelled as a B-spline curve) that is associ-
ated with colours on each side of the curve. These colours are
smoothly propagated, or diffused, filling the entire image. Its
advantage is that it is associated with a natural type of input
whilst supporting smooth propagation of colours [OBB∗13].
By contrast, the linear gradient tool does not support smooth
propagation of colours (although it can be associated with
freeform curves) and the gradient mesh tool is restricted to
rectangular control meshes and does not support freeform
curves as input (although it produces smooth propagation of

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

(a) (b) (c) (d)

Figure 2: Our shading curve supports manipulation of shading profiles, which dictate how the colour, associated with a shad-
ing curve, propagates out from the curve. Such shading profiles can give rise to a wide range of effects. In (a) and (b), the
colouring related to an S-shaped curve is largely controlled via shading profiles. In (c), the extent of a cast shadow is controlled
principally by moving the enlarged control point. In (d), a specular highlight is created with a bell-like profile. We also refer to
the supplementary video, which demonstrates interactive manipulation of shading profiles.

colours). However, a limitation of DCs is that they do not
support explicit control of the colour gradient (Sections 3
and 6).

To achieve explicit control of the gradient of the colour
that is related to the curve, instead of performing diffusion,
we associate shading profiles to each side of the curve. Fig-
ure 1(top) shows how shading of two rings can be achieved
with such shading profiles. First, the boundary curves are
drawn, defining the shapes of the objects. A bounded region
can be associated with a colour, resulting in a flat-shaded
image with a colour defined in each region. Additionally,
each side of a curve is associated with a luminance or colour
adjustment value. This value specifies the modification in
luminance (or colour) of the underlying colour of the flat-
shaded image. Then, a shading profile, which can be man-
ually adjusted, represents the resulting profile of the lumi-
nance (or colour) adjustment in the perpendicular direction
to the curve. Figure 2 shows the influence of shading pro-
files on the resulting image. While our primitive can be em-
ployed in many artistic settings, it is particularly motivated
by the problem of drawing shade and light (Section 3). We
therefore refer to our primitive as a shading curve.

It is not clear how one could use diffusion to propa-
gate colours in accordance with shading profiles (Section 6).
First-order DCs [OBW∗08] are restricted to (colour) value
constraints and do not natively support manipulation of the
colour gradient. By contrast, second-order DCs [FSH11],
support first-derivative constraints to alter the colour gradi-
ent in a given direction. However, these first-derivative con-
straints are restricted to zero derivatives, which cannot rep-
resent a general shading profile. For that reason, we chose to
use a method different from diffusion and employ Catmull-
Clark subdivision surfaces constructed from shading curves
and their associated profiles. Catmull-Clark subdivision is
related to several attractive properties, such as the local con-
vex hull property and local support [dB78, PR08], which
have enabled us to demonstrate explicit and local control of
the colour gradient. A challenge faced with this approach is
to convert the shading curve primitive to control meshes for
Catmull-Clark subdivision. A robust solution to this problem
is presented in Section 4.2.

Derivative
constraints

Without derivative
constraints

With derivative
constraints

First-order DCs

Second-order DCs

Input curves and colours

Diffusion
barrier

Without diffusion barrier With diffusion barrier

Figure 3: Influence of DCs on colour propagation. The re-
sults with first-order DCs and second-order DCs were drawn
with prototype software provided in OBW∗08 and FSH11,
respectively. The dashed regions (bottom right) illustrate
that second-order DCs’ derivative constraints give rise to
different types of behaviour depending on the local configu-
ration of value constraints.

In summary, our contributions are a new way to define
smooth gradient profiles for vector graphics and a robust so-
lution for determining the locations of control points for sub-
division surfaces from freeform curves.

2. Related work

As mentioned earlier, controlling colour gradients is cur-
rently achieved with three approaches: diffusion curves, the
linear gradient tool, and the gradient mesh tool. In Section 6,
we compare our approach with all of these three methods. In
this section, we describe previous solutions proposed in the
literature to alter the colour gradient with diffusion curves
and alternative methods to achieve shading effects with vec-
tor graphics.

First-order DCs are rasterised via Laplacian diffusion
[OBW∗08] (thus solving the PDE ∆ f = 0). The Dirichlet
boundary conditions associated with the PDE (specifying
values of the unknown function) correspond to the colours

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.



Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

associated with each side of the freeform curve drawn by the
artist. That is, Laplacian diffusion is performed by diffus-
ing colours specified at curves to the image domain, which
produces a harmonic colour function.

Laplacian diffusion does not natively support manipula-
tion of the colour gradient. However, several extensions have
been suggested to achieve some degree of manipulation:
Gaussian blurring can be used to smooth the sharp transi-
tion across the curve [OBW∗08], weights for rational har-
monic functions can be utilised to alter the relative influence
of a boundary condition [BEDT10], and diffusion barriers
have been proposed to limit the extent of the colour propa-
gation [BEDT10] (Figure 3(top)).

Gradient control can be achieved by higher-order inter-
polation. To this end, the DC primitive has been extended
to second-order interpolation with the bi-Laplacian opera-
tor [FSH11,BBG12] (thus solving the PDE ∆

2 f = 0). Curves
and points related to Neumann boundary conditions (deriva-
tives of the unknown function) can be specified. Derivative
curves constrain the first derivative to zero either along the
curves or across the curves [BBG12].

While the zero-derivative constraints provide a way to
manipulate the gradient of the colour function [FSH11,
BBG12], they do not achieve explicit colour gradient con-
trol. We have found these constraints to have two types of
behaviour on the colour function, as demonstrated in Fig-
ure 3(bottom). The first type of behaviour suppresses the
propagation of colour. This can be seen in the top por-
tion of the example, where the black colour is suppressed
(red-dashed region). This is because there are only white
point constraints located normal to the derivative curve; the
other black point constraints are occluded by tear curves (the
boundary of the apple). The colour of the white point con-
straint located normal to the curve is therefore propagated to
the zero-derivative curves. In the bottom portion of the im-
age, however, both black and white constraints are located
normal to the zero-derivative curves, without being occluded
by tear curves. In this scenario, the derivative curves give
rise to a wavy-shaped colour profile (blue-dashed region).
As a consequence of these two different types of behaviours,
zero-derivative constraints can give rise to unpredictable be-
haviour because their influence on the colour gradient de-
pends on the spatial configuration of neighbouring colour
constraints. By contrast, our approach lets the user manip-
ulate the colour gradient out from curve locations explicitly
without being influenced by neighbouring curves, as demon-
strated in the supplementary video and in Figure 2.

An alternative way to shade vector-based drawings is to
convert the image into a pseudo-3D representation (that is,
a normal vector is associated with each pixel) or a full 3D
representation (with depth coordinates and normal vectors).
Standard 3D shading techniques can then be used to shade
the image. If normal vectors have been extracted, a local
shading model, like Phong shading, is suitable [WTBS07,

WOBT09, SBSS12] and if depth information has been ex-
tracted, global rendering methods, like path tracing, can be
used [SKČ∗14].

We decided not to pursue this line of research. The ra-
tionale for this decision is that estimating normal vectors
and depth information in the general setting of 2D images
is challenging and therefore prone to give a result other than
that desired by the artist. A manual method, like ours, pro-
vides the user with a type of input that is directly associ-
ated with the resulting image: the input colours are associ-
ated with the colours of the objects and the shading profile
represents the propagation of those colours. Note that we are
not arguing that manual methods are ‘better’ than automatic
methods. However, we do argue that a user of future drawing
technology should be allowed to draw shading and abstract
colourings manually. There is therefore incentive to improve
such manual drawing technologies.

Alternatively, one can model full 3D representations,
purely via the 2D domain, which can be later rendered and
viewed in traditional 3D applications [Joh02, JC08, OSJ11,
AJC11]. Such methods typically inflate bounded domains to
surfaces, using input curves as boundary conditions. Note
that several methods employ Laplacian diffusion to achieve
such inflation (e.g. [JC08, AJC11], which is similar to how
diffusion curves are used for colour diffusion. In this respect,
Andrews et al. [AJC11] provide several mechanisms to ad-
just the gradient of the surface using internal curves, an ap-
proach akin to our slope curves and the zero-derivative con-
straints employed by Finch et al. In general, however, such
methods are not directly suitable for colour interpolation be-
cause additional aspects, such as avoiding colour saturation,
would have to be incorporated. Note that a reconfiguration
of 2D-to-3D modelling methods that employ Laplacian dif-
fusion would correspond to first- and second-order diffusion
curves, which we compare against in Section 6.

Finally, Olsen et al. [OSJ11] use the distance transform
for the inflation of their surfaces, which can seem similar to
our usage of the distance transform (Section 4). However,
the two methods employ the distance transform for differ-
ent purposes. The method of Olsen et al. uses the distance
transform to inflate their meshes (that is, defining z coordi-
nates). By contrast, our solution uses the distance transform
to place the boundary of the shading from a given curve (that
is, defining (x,y) coordinates). Our use of the distance trans-
form in this setting is therefore novel, as further described in
Section 4.

3. Drawing with shading curves

The shading curve is inspired by chiaroscuro draw-
ing [Cen54] (Figure 4). We suggest the following approach
to drawing with shading curves:

1. Draw areas of constant tone with curves, including object
boundaries and main tonal areas.

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.



Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

Stage 1 Stage 2 Stage 3

Figure 4: Drawing chiaroscuro with a traditional method
(top; images from Civ05) and with the shading curve (bot-
tom). Such drawing can be performed in three stages.
Stage 1: outline object boundaries and main tonal areas.
Stage 2: fill in each area with a tone or colour, and with
the shading curve: define the extent of the propagation
of colours (green and red quads and triangles). Stage 3:
smooth out the colours or tones, and with the shading curve:
adjust shading profiles globally and locally.

2. Fill in each individual area with constant colour and se-
lect the influence of that colour to adjacent areas.

3. Smooth out the colours with shading profiles. Refine
colours and tones locally by adjusting the attributes of
the shading curves.

In addition to the shading curve primitive, we have found
it helpful to treat boundary curves and interior curves dif-
ferently. Thus, we have implemented two types of shading
curves with different behaviour. The first type of curve, the
boundary curve, defines a sharp transition across the curve.
It is therefore suitable for object boundaries since they are
typically defined as hard edges (e.g., Figure 2(c)). By con-
trast, the second type of curve, the slope curve, defines a
smooth transition across the curve. Slope curves are useful
for shading highlights and transitions within the object inte-
rior, such as specular highlights and cast shadows from other
objects (e.g., Figure 2(d)).

4. Manipulation and rasterisation of shading curves

In this section, we present the framework for defining and
rendering shading curves. Figure 5 shows the pipeline of the
framework and the supplementary video shows interactive
manipulation of shading curves. Our framework takes, as in-
put, a set of cubic B-spline curves in 2D. A set of attributes
is associated with either side of each curve. These attributes
are stored along with the curve control points. A user can
chose to globally manipulate attributes, by selecting curves,
or to perform local manipulations, by selecting curve con-
trol points. From this set of inputs, our framework creates
3D control meshes, which define Catmull-Clark subdivision
surfaces. The depth buffer of an OpenGL rendering is then
used to create the desired effect, implemented as either a lu-
minance alteration or a colour profile.

Input curve with three
attributes:
- extent
- height
- shape

Control mesh projected
to the image plane

Corresponding
subdivision surface

Created 3D control mesh

Surface rendered as a height map Height map projected to 2D

height

image plane
extent

shape

Figure 5: Creating a 3D control mesh from a curve. At-
tributes used to control the shape of the corresponding sur-
face are associated with the curve: an extent attribute is as-
sociated with the extent of the mesh in the image plane per-
pendicular to the curve, a height attribute is associated with
the height of the mesh perpendicular to the image plane, and
a shape attribute defines the shape of the surface normal to
the curve. The resulting subdivision surface can be used for
various effects. In this example, a green colouring is created
from the depth buffer of the surface rendering.

There are two computational steps involved in our pipe-
line: creating 3D control meshes from curves (Section 4.2)
and rendering the surfaces (Section 4.3). The framework is
computationally efficient and the user is able to refine the in-
put interactively. Note that both computational steps must be
performed if shading curves are moved in the image plane.
In contrast, it is not necessary to re-create the 3D control
meshes if curves are not moved (e.g., control meshes do not
have to be re-created if shading profiles are manipulated).

Before the computational steps are presented, we need
formal definitions of the input curves and the output control
meshes. These definitions are presented next.

4.1. Definitions

An input B-spline curve is defined by a sequence of n con-
trol points Qi = (xi,yi), i = 1, . . . ,n (Figure 6(left)). The 2D
unit normal vector of the curve at the position related to Qi,
computed from the curve’s first derivative [dB78], is denoted
Ni. It is assumed that the normal vectors are consistently
oriented. Three attributes, extent, height, and shape, are at-
tached to each control point:

• extent, ei ∈ R+
0 : defines the extent of the mesh in the di-

rection Ni from Qi.
• height, hi ∈ R: defines the height of the mesh in the per-

pendicular direction to the image plane at Qi.
• shape, ((αi,2,βi,2),(αi,3,βi,3));αi, j,βi, j ∈ [0,1] ⊂ R: de-

fines the shape of the surface profile from Qi towards Ni.

Figure 7 illustrates how these shading profiles can be edited
in a user interface by manipulating curves (rendered as cubic

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.



Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

Q1; h1 = e1 = 0

Q2; h2 = e2 = 20

Q3; h3 = e3 = 10

Q4; h4 = e4 = 0

P1,{1,2,3,4}

P4,{1,2,3,4}

P2,1

P2,2

P2,3

P2,4

P2,2

P2,3

P2,4

P3,4

P3,2

P3,3 P3,1

P3,2
P3,3

P3,4

Figure 6: Notational labels added to the example given in
Figure 5. There is no notational difference between the two
control meshes associated with the curve. In this illustration,
they are marked in red and green colours and the black con-
trol points are shared.

(αi,3,βi,3)

(αi,2,βi,2)

(αi,3,βi,3)

(αi,2,βi,2)

Figure 7: The three attributes of a shading curve manipu-
lated in our prototype user interface: shape – the shading
profile – is manipulated by the inner control points of a cu-
bic Bézier curve. The extent and height (strength) attributes
are edited with sliders. The red/green colourings are used to
separate the two sides of the curve.

Bézier curves) defined in a normalised coordinate system.
The extent and height attributes are, in our prototype system,
edited via sliders.

With the input curves and attributes defined, the output 3D
control meshes are now described. A control mesh is cre-
ated on the side of the curve related to the direction of Ni.
A mesh in the opposite direction −Ni can also be created.
Note that there is no requirement that both meshes are cre-
ated and they can be treated as completely separate. In our
prototype system, the user can manually enable or disable
the meshes on either side of the curve. Additionally, con-
trol meshes are created separately for each curve. Given a

set of disjoint curves, our framework therefore creates a set
of disjoint control meshes. If multiple curves are joined at a
junction point, the related control meshes can be merged (see
the supplementary document, Section 1, for implementation
details).

The 3D control points derived from and associated with
Qi are defined as Pi, j = (xi, j,yi, j,zi, j), i = 1, . . . ,n; j =
1, . . . ,m, where n is the number of control points associated
with Qi and m is the number of control points associated with
the shading profile (Figure 6(right)). We have found m = 4
sufficient to demonstrate our results in Section 5. A rectan-
gular grid of size n×m is initially assumed to be created out
from the curve. However, some quads will later be deliber-
ately degenerated to triangles.

The coordinates (xi,4,yi,4) represent the location of the
‘outermost’ control points, Pi,4, of the mesh. A naïve defi-
nition of this point is:

(xi,4,yi,4) = Qi +Niei. (1)

This solution, however, can give rise to folding artefacts
when the surface is projected to 2D. Note that this prob-
lem has been encountered previously in vector graphics (see
the supplementary document, Section 2, for a brief review).
However, previous solutions are not robust to the geometri-
cal layout of the input curves. Placing (xi,4,yi,4) is therefore
the principal problem of our framework. We present a robust
solution to this problem in Section 4.2.

The z, or ‘height’, coordinates are now defined. The con-
trol points along the original curve, Pi,1, are set according
to the corresponding height attribute. We can assume that
the effect of the surface, being adjustment in luminance or
colour, should fair out to have zero effect at the ‘other’ end
of the control mesh at Pi,4. That is, surface values of z = 0
do not alter the image. Given the related curve control points
Qi = (xi,yi,0), the following coordinates can now be de-
fined:

Pi,1 = (xi,yi,hi);

Pi,{2,3} = αi,{2,3}
(
Pi,1−Qi

)
+βi,{2,3}

(
Pi,4−Qi

)
;

zi,4 = 0.

The control points Pi,{2,3} related to the shape attribute are
therefore placed on the plane defined by Pi,1, (xi,yi,0), and
Pi,4, ensuring that the profile is indeed modelled in the direc-
tion towards Pi,4.

By default, the height attribute defines changes in lumi-
nance using the LAB colour space. To support coloured pro-
files, the RGB colour space can optionally be used. Each
curve therefore has an optional colour attribute C on each
side.

We have so far treated the control meshes on each side of
the curves as separate meshes. Thus, the transition across a
curve will typically be discontinuous. However, one might
wish to model a smooth transition across the curve. To this

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.



Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

Figure 8: Slope (top) and boundary (bottom) curves. Slope
curves compose single smooth surfaces and boundary curves
compose two separate surfaces.

Condition 1: no overlaps Condition 2: no folds

Figure 9: When the 3D control meshes are projected to
the (x,y)-plane, overlaps between meshes and folds are un-
wanted. The rows of the meshes have been coloured with a
constant colour to highlight the folding artefacts.

end, we have implemented two types of curves: boundary
curves for discontinuous transitions and slope curves for
continuous transitions (Figure 8). The only technical differ-
ence between these two types of curves is that, for each i, the
Pi,1 on both sides of a slope curve are merged; that is, they
appear only once in the control mesh. The slope curve, now
only associated with a single (merged) control mesh, there-
fore gives rise to a single smooth surface defined on both
sides of the curve.

All coordinates of the 3D control mesh have now been
introduced. In the supplementary document, Section 1, we
describe additional aspects related to these meshes, includ-
ing design decisions at junctions, high curvature points, and
curve-end points.

4.2. Defining the coordinates related to extent

In this section, we describe our solution to the placement
of the ‘outermost’ mesh control points related to the extent
attribute. This placement captures the extent of the shading
profile out from the curve. Before presenting our solution
(Section 4.2.2), we describe this problem in more detail.

4.2.1. Problem description

To discuss this problem, we need some idea of what we
mean by a ‘good’ solution. Informally speaking, the con-
trol meshes should behave naturally and should not give
rise to visual artefacts when applied to images. Such visual

Input curve Discrete distance 
transform surface

Medial axis Paths of three particles

Q1

e1 e3

Q3

Q2

Figure 10: Our solution traces particles on the DT sur-
face. The particles follow the gradient of the surface. Con-
sequently, they are implicitly traced along the MA.

artefacts appear when the following conditions are violated.
When the control meshes are projected to the 2D image, they
should:

• Condition 1: not overlap each other;
• Condition 2: not fold.

Figure 9 illustrates the visual artefacts related to the two
conditions. Mathematically, when either of these conditions
is violated, the resulting function defined by the projected
surfaces gives rise to discontinuities. Such discontinuities
should be avoided since they represent sharp jumps in the
image, like image edges. Instead, the resulting function
should be smooth across the image, unless colour jumps are
specifically specified by, for example, drawing two curves in
separate layers.

Note that we are only concerned with the extents of the
control meshes projected to the 2D plane. This projection
is defined by simply neglecting the z coordinate. To this
end, we will, in the remainder of this section, refer to the
mesh control points Pi, j as 2D points with the coordinates
(xi, j,yi, j). Additionally, let the line Pi,1–Pi,4 be Li and the
curve defined by Pi,4 be the approximate offset curve of the
input curve.

4.2.2. Solution

Our solution performs a single step of tracing on the distance
transform [RP66] (DT) surface given by the input curves.
The 3D coordinates of a DT surface point are defined as an
(x,y) position in image plane and z, the distance to the clos-
est curve point at (x,y) (Figure 10). This surface has many
useful properties:

• The gradient at any point not positioned at an input curve
or at the medial axis (MA) [Blu67] of the set of input
curves points in the direction normal to the curve;

• The slope of this gradient is 45 degrees;
• C0 creases in the surface relate to the input curves and the

MA;
• The slope along the MA is less than or equal to 45 de-

grees;
• Stationary points (not related to curve points) and local

extrema on the surface lie on the medial axis transform.

A conceptual solution is now described. Imagine a parti-
cle dropped on the DT surface for each Qi along Ni. Such a

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.



Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

particle is dropped infinitely close to the curve point associ-
ated with Qi in the direction of Ni (that is, it is dropped on
the correct side of the curve). These particles then follow the
gradient field on the DT surface.

According to the properties of the DT surface, the parti-
cles behave as follows (Figure 10). As time increases, they
move ‘upwards’ along the direction of the gradient, towards
the MA. When the MA is reached, they will continue to
move along the MA until they reach a local extremum and
then remain stationary. Eventually, all particles will reach a
local extremum or the edge of the domain (i.e., the image
border). A particle also turns stationary if its z coordinate
(i.e., its DT value) equals the extent attribute.

A control point Pi,4 is placed on the location of its related
stationary particle. Quads related to Qi and Qi+1 (that is: the
quads defined by Pi,1, Pi+1,1, Pi+1,4, and Pi,4) are degener-
ated to triangles if their related particles coincide (that is: if
Pi,4 = Pi+1,4, they merge into a single control point). Our
implementation of this solution traces pixels on the discrete
distance transform of the input curves (see the supplemen-
tary document, Section 3, for implementation details).

4.2.3. Discussion

Our solution satisfies Conditions 1 and 2, as long as the input
curves do not intersect (in such cases, the curves can be triv-
ially split): Control meshes of neighbouring curves do not
overlap (Condition 1) as the meshes are constrained by the
MA. Meshes do not fold (Condition 2) as the paths created
by the particles only merge; they do not cross.

The offset curve defined by Pi,4 is restricted by the MA.
However, one might wish to extend the shading profile fur-
ther. A future investigation could be to verify whether a
weighted distance transform [KKB96] can be used for this
purpose. This extension would increase the complexity of
the curve primitive since a weight needs to be attached to it.

4.3. Rendering

The process of creating the final image from the control
meshes is straightforward: subdivide the control meshes
given by Pi, j, render the surfaces off screen, and then apply
these surfaces to the underlying image.

In our prototype system, we allow users to associate a
colour with each image region bounded by the input curves.
This approach produces a flat-shaded image and represents
the ‘underlying’ image. This image is supplemented with a
rendering of the surfaces to produce the resulting image.

We render our surfaces as Catmull-Clark subdivision sur-
faces. Since a surface must interpolate its boundary curve
(defined by Qi) in the image plane, boundary subdivision
rules are used [DKT98]. We have used two subdivision steps
to produce our results. In some cases, where the surface is

Figure 11: Image shaded with our tool by a user with no
artistic training in less than 10 minutes. We provided the user
with the input curves (bottom right) which we traced from an
image of Sonic c©SEGA.

stretched over a large area, three subdivision steps can pro-
duce a visually smoother result. Note that increasing to three
subdivision levels still provides an interactive system in our
setup.

To create a complete per-pixel shading profile for the im-
age, we render the Catmull-Clark surfaces using OpenGL
off-screen rendering. The shading image, S, is then extracted
from the depth buffer. The camera parameters are set so that
depth values directly correspond to the height attributes; thus
S ∈ [−100,100] for luminance and S ∈ [0,1] for colour.

Finally, this shading image is applied to the underlying
image I producing the resulting image R. Luminance adjust-
ment in the LAB luminance channel L is performed by:

RL = IL +S.

The two other colour channels are set by the corresponding
channels in I.

In the setting of colour adjustment, the result is created
by linearly interpolating between the original image and an
image, IC, defined with the piece-wise constant colour C:

R = S× IC +(1−S)I.

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.



Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

b - Axe

c - Ninja d - Face

f - Vampire girle - Hong Kong, written in Chinese

a - Teapot

g

Increase

Increase of
height attribute

Increase

Increase

Figure 12: Images drawn with our system.

5. Results

The shading curve is adaptable to a wide range of visual-
isations. In this section, we discuss various types of visu-
alisations that can be drawn using shading curves and we
describe ways in which this primitive can be used. The pro-
totype system was informally tested with novice users (Fig-
ure 11), which indicated that the primitive is easy to learn
and use. Furthermore, we achieved interactive editing with
our implementation. The Sonic image (Figure 11) has most
surfaces (172) in a single layer. On a system running Ubuntu
12.04 on an Intel Core i7 CPU (870, 2.93GHz x8), timing for
the DT tracing was 18 milliseconds and 70 milliseconds for
the rendering of the subdivision surfaces. The performance
for subdivision could be further improved with a GPU im-
plementation [NLMD12], where we should expect a perfor-
mance boost of at least one order of magnitude, according to
timings on such implementations.

Recall from Section 3 the three-stage approach to drawing
with the shading curve: (1) outline objects and main tonal
areas, (2) fill in colours and define the influence of those
colours, and (3) smooth out colours with shading profiles. In
the following, we present ways in which the final stage can
be performed efficiently.

Figure 12(a–b) shows cartoon-like images created using
the default settings ((αi,2,βi,2) = (0.15,1.0);(αi,3,βi,3) =
(0.4,0.0);hi =±20;ei = 3% of the image diagonal); height
is manually set negative for dark shadings. Adding slope
curves to such images, as in Figure 12(d), can induce more
glossy looks. Simulated 3D effects can be achieved by vary-
ing the attributes along the curves (Figure 12(c–d)). Increas-
ing or decreasing the height at selective locations along
boundary curves adds a sense of location of the main light
sources in the scene, as well as their strength (Figure 12(g)).
The two other parameters, extent and shape, are then varied

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.



Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

(a)

(b)

(αi,2,βi,2)

(αi,3,βi,3)

(αi,2,βi,2)

(αi,3,βi,3)

Figure 13: Shading profiles for various effects. Image at left,
image with overlaid control mesh at right. (a) The chin is em-
phasised with a wavy profile. (b) The 3D shape of the glasses
is conveyed by the use of strong light and sharp fall off of the
profiles.

to give the shading form. Extent is typically set equal for all
control points along a boundary at the preferred offset. Note
that if the extent is set too large, the surfaces will extend
to local maxima in the DT. See Figure 2(a) for an example
where the extent is set further than the MA, forcing many
‘outer’ mesh points to be placed on a local maximum. This
can be dealt with by the artist by decreasing the extents. Such
editing is analogous to editing using the width tool in Adobe
Illustrator.

The shading profile is the most important factor for cre-
ating various types of shadings (Figures 2 and 13). Varying
the first shape point related to Pi,2 between (0,0)− (0,1)
(βi,2 = 0) in the normalised coordinate system creates a
steep shading fall-off, and is suitable for more diffuse con-
ditions. On the other hand, varying this shape point between
(0,1)− (1,1) (αi,2 = 1) creates a stronger profile out from
the boundary and is suitable for depicting cast shadows and
shading highlights. The second shape point, defining Pi,3,
should be placed along (0,0)−(1,0) (αi,3 = 0) for a smooth
fall-off to zero at Pi,4. The location of this fall-off in the im-
age is then controlled by this shape point. The offset curve
defined by Pi,3 can also be shown in the main editing window
so that the artist can directly visualise this fall-off.

Figures 14 and 15 show multi-layered images shaded with
the chiaroscuro-inspired drawing technique. Each area is de-
fined as single layer and is blended with the underlying flat-
shaded image with either screen or multiply blending modes.

6. Comparisons with related work

Recall from Section 1 that there are three previous methods
to manipulate colour gradients in vector graphics: DCs, the

First-order DCs Second-order DCs Shading curve

Figure 16: Shading a sphere, a tube, and a doughnut with
three different methods. The comparison between the two
diffusion curve methods is fair and accurate, as the inputs
are the same. However, the comparison to shading curves
is inaccurate, as the inputs are fundamentally different from
DCs and they are defined separately in different user inter-
faces. The results for the diffusion curve methods are from
FSH11.

linear gradient tool, and the gradient mesh tool. In this sec-
tion, we discuss the differences between these methods and
our approach.

6.1. Comparisons with diffusion curves

Recall that there are two types of DCs: first-order DCs and
second-order DCs. In the following, we compare both of
these two primitives with our shading curve.

First-order diffusion curves

The naïve first-order DCs primitive (that is, not assuming
additional attributes like blur or weights) is simpler than our
primitive. The DC primitive can be associated with a sin-
gle attribute on each side of the curve: colour. By contrast,
our method requires the additional width attribute (assuming
that height and shape are fixed). In certain types of scenarios,
where colour images produced by Laplacian diffusion pro-
vide acceptable results, the DC primitive can be preferable
as less input is required.

The disadvantage of first-order DCs, compared to the
shading curve, is that they are limited to harmonic solutions.
The artist is therefore constrained to first-order diffusion
conditions. Figure 16 demonstrates this point: the solution of
first-order DCs is only smooth away from constraints. Thus,
this solution produces creases along curves, which can only
be smoothed by post-processing operations such as image
blurring. By contrast, methods with control over derivatives

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.



Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

Figure 14: Drawing with the chiaroscuro-inspired drawing technique. The smaller images, in the centre of the figure, comprise
regions that are each shaded with a single flat colour. The larger images at left and right are these same images shaded off
using the proposed shading curve framework. Curves were traced from images from c©Evie Moore, switchplane.com (left), and
c©sha-x-dow.deviantart.com (right).

multiply

screen

screen

screen

multiply

Figure 15: Using inspiration from vector shade trees LMPB∗13, our method, along with some artistic skill, can give rise to
depictions of complex materials.

Figure 17: Informal comparison between our method (left
two images) and second-order diffusion (right two im-
ages) [FSH11].

and gradients, such as the shading curve and second-order
DCs, support smoothness across input curves.

Second-order diffusion curves

The limitations of first-order DCs motivated Finch et al.
[FSH11] to propose second-order DCs. The PDE is now
constrained by RGB colours and derivative constraints. In
the framework proposed by Finch et al., a curve associated
with derivative constraints forces the derivative of the colour
function to zero either across the curve or along the curve.
See Figure 17 for an informal visual comparison with our
method.

The mathematical differences between our method (sub-

division – Catmull-Clark spline surfaces) and second-order
DCs (PDEs – thin-plate spline surfaces) give rise to practical
differences between the two approaches (see the supplemen-
tary document, Section 4, for a brief introduction to these
two types of surfaces). The advantage of DCs is related to
vivid colourings. Our method uses surfaces as interpolants
between an underlying image and colour or luminance asso-
ciated with shading curves. Thus, colour propagation is con-
trolled along a shading curve and can only be manipulated in
its perpendicular direction with shading profiles. While DCs
do not support the flexibility of shading profiles, they sup-
port points as constraints. A point constraint adds boundary
constraints to its four nearest pixels. In this way, the colour-
ing of an object can be separated from the curves defining
the object’s boundary by placing point constraints inside the
object. This approach can be preferred over drawing ‘spe-
cial’ curves, as required by shading curves, to achieve cer-
tain colourings (see the supplementary document, Section 5,
for a practical example).

Aspects where the shading curve is preferable over DCs
include local gradient control, layering, and computational
efficiency:

• The shading profile, modelled with Catmull-Clark subdi-
vision, provides a local way to model colour gradients.

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.



Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

The extents of the edits are local because the control
meshes are directly created from the extent attribute of
the shading curve. The shading profile is guaranteed to in-
fluence only locally the colour/luminance function owing
to local behaviour of Catmull-Clark surfaces. By contrast,
DCs do not provide a way to locally control the colour
gradient. Instead of curved profiles, representing the gra-
dient of the colour/luminance function in a given direc-
tion, DCs’ derivative constraints are restricted to forcing
the derivative to zero in a given direction (Section 2).
Thus, DCs do not possess the same degree of freedom
for manipulating the colour gradient. Additionally, the
boundary conditions of DCs are global constraints, in-
fluencing the entire colour function. Providing a similar
mechanism to the shading profile with DCs is therefore
challenging (see the supplementary document, Section 4,
for supporting information on this claim).
• DCs are not particularly suitable for layering. In image

compositing, the spatial extent of a layer should be eas-
ily defined. This is ensured with the shading curve us-
ing the extent attribute. By contrast, the solution of DCs
must be well defined inside the boundary specified by the
DCs. This boundary must be explicitly defined by curves,
meaning that influences of open curves and point con-
straints are not easily constrained. In practice, single ob-
jects, fully enclosed by curves or the image border, can
be separated into layers. Local effects like specular high-
lights, however, would not typically be treated by layering
and should be incorporated as a single layer to ensure that
their effects are smoothly blended with each other.
• Interactive performance is easily achieved with our me-

thod. Even the naïve CPU implementation provides ac-
ceptable performance. On the other hand, a diffusion pro-
cess solves a large, sparse, linear system which is naï-
vely time consuming. Approximate solutions with low-
resolution CPU finite element methods [BBG12] or high-
resolution (re-evaluation-only) boundary element meth-
ods [IKCM13] need to be employed in order to achieve
interactive speeds with second-order DCs.

In the supplementary document, Section 4, we discuss
additional practical aspects related to this comparison. Ad-
ditionally, observations from drawing sessions with novice
users indicated that a tool based on shading curves would be
easier to learn compared to second-order DCs and drawing
sessions with professional designers indicated that our prim-
itive can complement the current suite of tools (see the sup-
plementary document, Section 7, for details on these draw-
ing sessions).

6.2. Comparisons with the linear gradient tool

Illustrator’s brush tool supports linear and radial directions
of colour gradients both along and across a brush stroke.
The feature of applying the gradient across the stroke, named
‘gradient on a stroke’, was added in version CS6 (2012). A

Shading curve
Illustrator’s 
brush tool

Shading curve

Illustrator’s brush
tool

Figure 18: Visual comparisons between the shading curve
and Illustrator’s brush tool. Top: Two types of artefacts pro-
duced with Illustrator’s tool are highlighted: the transition
between the brush colouring and the underlying layer is not
smooth, as shown in the cross section, and folds give rise
to C0 crease artefacts, as shown inside the red ellipse. The
comparisons are relatively fair as a similar type of input is
defined for both methods.

linear or radial gradient is defined as an editable univariate
colour function (a curve in colour space) applied in a given
(linear or radial) direction. The gradient-on-a-stroke feature
is similar to the shading curve since it can be combined with
Illustrator’s width tool, introduced in version CS5 (2010), to
define editable colour gradients out from curves in a given
extent. While the extent can be varied along the curve, using
the width tool, the colour gradient must remain constant for
the entire stroke.

Mathematically speaking, the gradient-on-a-stroke tool
and the shading curve are different. Although both are de-
fined similarly, Illustrator’s brush tool is associated with a
univariate colour function and the shading curve is associ-
ated with a univariate shading profile, the rendering of the
two primitives is fundamentally different. Illustrator’s tool
renders the brush primitive with reference to its associated
colour profile. By contrast, our method creates a bivariate
colour/luminance function (i.e., a surface), shaped according
to the shading profile. The rendering of the shading curve is
related to the surface instead of being directly produced from
the original shading profile. With Illustrator’s method, with-
out any reference to a smooth surface, it is not clear how
smooth colour profiles can be achieved.

Hence, there are three potential sources of visual artefacts
in Illustrator’s tool: the rendering procedure, the deformation
procedure, and blending with underlying layers. Figure 18
shows images coloured with Illustrator’s tool, where arte-
facts are visible. In comparison, our rendering procedure,

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.



Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

using subdivision surfaces, produces smooth profiles with-
out discontinuities.

6.3. Comparisons with the gradient mesh tool

Illustrator’s gradient mesh tool allows the user to edit smooth
(bivariate) colour functions with rectangular control meshes.
Colours and first derivative constraints are associated with
mesh control points. The control of the colour gradient is
similar, but not equal, to our method. While Illustrator’s tool
does not support shading profiles, the derivative constraints
directly correspond to the first derivative of the colour func-
tion out from given locations in the image. Additionally,
colours can be edited in the object interior at points (and
not curves), which is not supported with our method.

A major disadvantage of gradient meshes is that they are
restricted to rectangular control meshes. They do not sup-
port freeform curves as input, which is a more natural type
of input in drawing. This difference is identical to the differ-
ence between DCs and gradient meshes. Limitations related
to rectangular control meshes for drawing are well estab-
lished; see [OBW∗08] for more discussion on this restric-
tion and arguments to why control meshes are undesirable
compared to curves in the setting of 2D drawing.

7. Conclusion

We have proposed shading curves as a new primitive for
vector graphics. Shading curves are associated with shad-
ing profiles, defining the colour gradient out from curves.
Our primitive is converted to 3D control meshes and ren-
dered as Catmull-Clark subdivision surfaces. Catmull-Clark
subdivision is related to several attractive properties, such as
the local convex hull property and local support, which have
enabled us to demonstrate explicit and local control of the
colour gradient. Such local control is challenging to achieve
with (bi-)Laplacian diffusion, which is used to render images
created using diffusion curves.

Acknowledgements

Lieng was supported by a grant from the Norwegian Gov-
ernment. Tasse was supported by a Google European Doc-
toral Fellowship and an IDB Cambridge International Schol-
arship. Kosinka was supported by the Engineering and Phys-
ical Sciences Research Council [EP/H030115/1].

References

[AJC11] ANDREWS J., JOSHI P., CARR N.: A linear variational
system for modeling from curves. Computer Graphics Forum 30,
6 (Sept. 2011), 1850–1861. 3

[BBG12] BOYÉ S., BARLA P., GUENNEBAUD G.: A vectorial
solver for free-form vector gradients. ACM Trans. Graph. 31, 6
(2012), 173:1–9. 3, 11

[BEDT10] BEZERRA H., EISEMANN E., DECARLO D., THOL-
LOT J.: Diffusion constraints for vector graphics. In Proc. NPAR
(2010), vol. 10, ACM, pp. 35–42. 3

[Blu67] BLUM H.: A transformation for extracting new descrip-
tors of shape. Models for the Perception of Speech and Visual
Form 1 (1967), 362–380. 6

[Cen54] CENNINI C. D.: The Craftsman’s Handbook: “Il Libro
dell’ Arte”. (D. V. Thompson, Trans.). Dover Publications, Mi-
neola, USA, 1954. Original work published early 15th century.
3

[Civ05] CIVARDI G.: Drawing Light & Shade: Understanding
Chiaroscuro. (L. Black, Trans.). Search Press Limited, Tunbridge
Wells, UK, 2006 (Original work published 2005). 4

[dB78] DE BOOR C.: A Practical Guide to Splines. Springer,
New York, USA, 1978. 2, 4

[DKT98] DEROSE T., KASS M., TRUONG T.: Subdivision
surfaces in character animation. In Proc. SIGGRAPH (1998),
vol. 25, ACM, pp. 85–94. 7

[FSH11] FINCH M., SNYDER J., HOPPE H.: Freeform vector
graphics with controlled thin-plate splines. ACM Trans. Graph.
30, 6 (2011), 166:1–10. 1, 2, 3, 9, 10

[IKCM13] ILBERY P., KENDALL L., CONCOLATO C., MC-
COSKER M.: Biharmonic diffusion curve images from boundary
elements. ACM Trans. Graph. 32, 6 (2013), 219:1–12. 11

[JC08] JOSHI P., CARR N. A.: Repoussé: Automatic inflation of
2D artwork. In Proc. SBM (Aire-la-Ville, Switzerland, Switzer-
land, 2008), Eurographics Association, pp. 49–55. 3

[Joh02] JOHNSTON S. F.: Lumo: Illumination for cel animation.
In Proc. NPAR (New York, NY, USA, 2002), ACM, pp. 45–ff. 3

[KKB96] KIMMEL R., KIRYATI N., BRUCKSTEIN A. M.: Sub-
pixel distance maps and weighted distance transforms. Journal
of Mathematical Imaging and Vision 6, 2-3 (1996), 223–233. 7

[LMPB∗13] LOPEZ-MORENO J., POPOV S., BOUSSEAU A.,
AGRAWALA M., DRETTAKIS G.: Depicting stylized materials
with vector shade trees. ACM Trans. Graph. 32, 4 (2013), 118:1–
10. 10

[NLMD12] NIESSNER M., LOOP C., MEYER M., DEROSE T.:
Feature-adaptive GPU rendering of Catmull-Clark subdivision
surfaces. ACM Trans. Graph. 31, 1 (2012), 6:1–11. 8

[OBB∗13] ORZAN A., BOUSSEAU A., BARLA P., WINNE-
MÖLLER H., THOLLOT J., SALESIN D.: Diffusion curves: a
vector representation for smooth-shaded images. Commun. ACM
56, 7 (2013), 101–108. 1

[OBW∗08] ORZAN A., BOUSSEAU A., WINNEMÖLLER H.,
BARLA P., THOLLOT J., SALESIN D.: Diffusion curves: a vector
representation for smooth-shaded images. ACM Trans. Graph.
27, 3 (2008), 92:1–8. 1, 2, 3, 12

[OSJ11] OLSEN L., SAMAVATI F., JORGE J.: Naturasketch:
Modeling from images and natural sketches. Computer Graphics
and Applications 31, 6 (Nov 2011), 24–34. 3

[PR08] PETERS J., REIF U.: Subdivision Surfaces. Springer,
New York, USA, 2008. 2

[RP66] ROSENFELD A., PFALTZ J. L.: Sequential operations in
digital picture processing. J. ACM 13, 4 (1966), 471–494. 6

[SBSS12] SHAO C., BOUSSEAU A., SHEFFER A., SINGH K.:
Crossshade: shading concept sketches using cross-section curves.
ACM Trans. Graph. 31, 4 (2012), 45:1–11. 3

[SKČ∗14] SÝKORA D., KAVAN L., ČADÍK M., JAMRIŠKA
O., JACOBSON A., WHITED B., SIMMONS M., SORKINE-
HORNUNG O.: Ink-and-ray: Bas-relief meshes for adding global

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.

http://graphics.berkeley.edu/papers/Andrews-ALV-2011-09/
http://graphics.berkeley.edu/papers/Andrews-ALV-2011-09/
http://dx.doi.org/10.1145/2366145.2366192
http://dx.doi.org/10.1145/2366145.2366192
http://dx.doi.org/10.1145/1809939.1809944
http://dx.doi.org/10.1145/1809939.1809944
http://dx.doi.org/10.1145/2070781.2024200
http://dx.doi.org/10.1145/2070781.2024200
http://dx.doi.org/10.1145/2508363.2508426
http://dx.doi.org/10.2312/SBM/SBM08/049-055
http://dx.doi.org/10.2312/SBM/SBM08/049-055
http://dx.doi.org/10.1145/508530.508538
http://dx.doi.org/10.1007/BF00119840
http://dx.doi.org/10.1007/BF00119840
http://dx.doi.org/10.1145/2461912.2461972
http://dx.doi.org/10.1145/2077341.2077347
http://dx.doi.org/10.1145/2483852.2483873
http://dx.doi.org/10.1145/2483852.2483873
http://dx.doi.org/10.1145/1360612.1360691
http://dx.doi.org/10.1145/1360612.1360691
http://dx.doi.org/10.1109/MCG.2011.84
http://dx.doi.org/10.1109/MCG.2011.84
http://dx.doi.org/10.1145/321356.321357
http://dx.doi.org/10.1145/2185520.2185541


Lieng et al. / Shading curves: vector-based drawing with explicit gradient control

illumination effects to hand-drawn characters. ACM Trans.
Graph. 33, 2 (2014), 16:1–15. 3

[WOBT09] WINNEMÖLLER H., ORZAN A., BOISSIEUX L.,
THOLLOT J.: Texture design and draping in 2D images. Com-
puter Graphics Forum 28, 4 (2009), 1091–1099. 3

[WTBS07] WU T.-P., TANG C.-K., BROWN M. S., SHUM H.-
Y.: Shapepalettes: Interactive normal transfer via sketching.
ACM Trans. Graph. 26, 3 (2007), 44:1–6. 3

c© 2015 The Author(s)
c© 2015 The Eurographics Association and Blackwell Publishing Ltd.

http://dx.doi.org/10.1145/2591011
http://dx.doi.org/10.1145/2591011
http://dx.doi.org/10.1111/j.1467-8659.2009.01486.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01486.x
http://dx.doi.org/10.1145/1276377.1276432

