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Appendix 1: Proof of MVUE

Here we use the Lehmann-Scheffe theorem to show that with no static noise,
the Poisson Estimator φ̂ppne is the unique minimum variance unbiased estimator
(MVUE). We state the theorem and a few related definitions first. In this section,
the per pixel notation is dropped and unless explicitly stated otherwise, every
summation and product is indexed by i going from 1 to N, which identifies each
image in a stack of size N .

Definition 1 (Sufficient statistic). Let ~U denote a random vector sampled
from a distribution that has joint pdf or pmf f(~u; θ) parameterized by θ ∈ Ω. Let

S = g(~U) be a statistic whose PDF or PMF is fS(s; θ). S is a sufficient statistic

for θ if f(~u;θ)
fS(s;θ) = h(~u) where h(~u) does not depend on θ.

Definition 2 (Complete family). Let the random variable S have a PDF or
PMF that is a member of the family {fS(s; θ)|θ ∈ Ω}. Let w(S) be a function
of S. If the expectation E[w(S)] being zero for every θ ∈ Ω requires that w(S)
be zero for every s in the support of fS(s; θ), then the family {fS(s; θ)|θ ∈ Ω} is
called a complete family.

Theorem 1 (Lehmann and Scheffe). Let ~U denote a random vector sampled
from a distribution that has joint PDF or PMF f(~u; θ) parameterized by θ ∈ Ω.

Let S = g(~U) be a sufficient statistic for θ, and let the family {fS(s; θ)|θ ∈ Ω}
be complete. If there is a function of S that is an unbiased estimator of θ, then
this function of S is the unique MVUE of θ.

Proof. Let xiti be denoted as ui, then φ̂ppne =
∑
ui∑
ti

. Let ~u denote (u1, u2, ...uN ),

a random vector with joint PMF f(~u;φ). Let s =
∑
ui. We first show that s is

a sufficient statistic for φ.

According to Equation 1, ui ∼ Pois(φ ti) if we assume no static noise. Since
each ui is independent,

f(~u;φ) =
∏ (φti)

uie−φti

ui!
= e−

∑
φtiφ

∑
ui

∏
(ti)

ui

∏ 1

ui!
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s ∼ Pois(
∑
φti) is a compound Poisson distribution with PMF

fS(s;φ) =
(
∑
φti)

se−
∑
φti

s!
=
φs(

∑
ti)

se−
∑
φti

s!

Then,

f(~u;φ)

fS(s;φ)
=

(
∑
ti)

s
∏

(ti)
ui

s!
∏
ui!

,

which does not depend on φ. Therefore, s =
∑
ui is a sufficient statistic for φ

by definition. Next, we show that the family {fS(s;φ)|φ > 0} is complete.

Suppose a function w(s) of s is such that E[w(s)] = 0 for every φ > 0. We
want to show that this requires w(s) = 0 for every s >= 0. First, we know that
for all φ > 0,

0 = E[w(s)] =

∞∑
s=0

w(s)fS(s;φ) =

∞∑
s=0

w(s)
(
∑
φti)

se−
∑
φti

s!

= e−
∑
φti

∞∑
s=0

w(s)
φs(

∑
ti)

s

s!

Since e−
∑
φti is nonzero,

∑∞
s=0 w(s) (

∑
ti)

s

s! φs is a power series of φ which con-

verges to zero for all φ > 0. Therefore its coefficients must be zero. Since (
∑
ti)

s

s!
is also non-zero, w(s) must be zero for every s >= 0, which completes the proof
of {fS(s;φ)|φ > 0} being a complete family.

At last, note that φ̂ppne is an unbiased estimator of φ (this is also true for
nonzero static noise):

E[φ̂ppne] =

∑
E[ui]∑
ti

=

∑
φti∑
ti

= φ

And since φ̂ppne is a function of a sufficient statistic for φ, φ̂ppne is the unique
MVUE of φ by the Lehmann-Scheffe theorem.

Appendix 2: Noise Parameter Validation

The fits for all color channels of the tested cameras are depicted in Fig. 1. These
are computed from the calibration box. We also qualitatively compare real versus
simulated noise in Fig. 2. This comparison further confirms the accuracy of our
noise parameters and shows that our model (Eq. 1) can effectively simulate the
camera capture process. Since ground truth data is unavailable for real images,
we relied on such simulations to compare different high dynamic range (HDR)
estimators and different capture strategies.
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Fig. 1: Computed relative standard deviations plotted against average pixel value
for all color channels of tested cameras
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Fig. 2: The first image on the top (a) is the average of 100 images captured with
exposure time and gain equal to 1. This is in practice a noise-free image that
serves as the ground truth. The two images on the left (b) show a ground truth
image with added synthetic noise (Eq. 1 in the main paper), and the images of
the right (c) were captured with the camera parameters shown on the right. The
images demonstrate that simulated noise is very close to real noise captured by
the camera. All the images were captured using the Canon T1i and presented
without white balance and using gamma correction to depict noise in RAW
images.
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(a) Hat-shaped (b) NPNE (c) Variance-weighted

(d) Iterative EM (e) PPNE

Fig. 3: HDR reconstructions using different estimators given an exposure stack of
three images captured by the Canon T1i at ISO 3200. The images were gamma-
encoded for visualization (γ = 2.2).

Fig. 4: Comparison of the estimators on a few more challenging scenes with high
noise. These scenes correspond to “Cottage” and “Street” in Table 2 in the main
text.



6 P. Hanji et al.

Fig. 5: Three HDR capture strategies: an exposure time stack, a gain stack and
a burst of the same exposures. Different line styles represent the separation in
either exposure time or gain between the images.

Appendix 3: Qualitative comparison

Here, we show a few more real scenes (Figs 3 and 4) for visual inspection. Quan-
titative comparison of the estimators for the “Cottage” and “Street” scenes
depicted in Fig 4 are provided in Table 2. For these scenes, the ground truth is
obtained by capturing five images separated by four stops with ISO 100. Subse-
quently, the noisy image stack for testing the estimators is captured using three
images at a much higher ISO of 12800 for “Cottage” and 6400 for “Street”. For
the other two outdoor scenes “House” and “Trees”, we could not employ such a
strategy due to the unavoidable movement of leaves and clouds. Instead, we cap-
tured five images at ISO 800 and used all the images to obtain the ground truth.
Then, only the three shortest exposures were used to compare the estimators.

Appendix 4: Different Capture Scenarios

In most of our examples, we used image stacks with varying exposure time.
However, some cameras employ two other strategies instead: they take a stack of
images with the same exposure but different gains [1], or a stack (burst) of images
with the same settings [3, 2]. Both strategies share an advantage since all images
have the same amount of motion blur, thus eliminating possible artifacts. The
gain stack allows us to capture images with shorter exposure times and therefore
less camera shake and image burst produces images of the same brightness that
are easier to align. Here, we want to compare how each capture strategy compares
in terms of average signal-to-noise ratio (SNR) and dynamic range.

We use the same Monte Carlo (MC) simulations as in Section 5 to quantify
the increase in SNR and dynamic range with increasing number of images in
a stack. We simulated the Sony α7r1 and used the PPNE estimator for all
reconstructions. The SNR is computed as an average across the tested range
of 24 stops in decibels. The dynamic range is reported as the number of stops
between the highest registered radiance and the radiance at which the ratio
σ/Y = 1. In Fig. 5 each scenario is shown with a different color line and the
line-styles indicate the separations between exposures (1, 2 or 4 stops). The
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results indicate that an exposure time stack is the best strategy to increase both
the dynamic range and SNR. However, if shorter exposure times are required,
the gain stack is the best way to increase dynamic range and burst is better for
improving SNR.

Appendix 5: Extended plots

We conducted additional experiments in high-noise conditions and using gain
modulated input stacks. These are analyzed in Sections. 5.2 and 5.1 of the main
text. Extended versions of the plots are provided here. Fig. 6 splits the error for
an input gain stack into bias and standard deviation. Finally, Fig. 7 depicts the
effect of increasing static noise (by 2×, 4× and 8×) in the inputs.
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Fig. 6: Results for gain modulation: relative biases (left column) and standard
deviations (right column) for gain stacks obtained using MC simulation. Gains
of the inputs are logarithmically spaced between the minimum and maximum
values recorded for each sensor. The minimum gain is fixed to 1, while the
maximum is 32 for the Sony α7r1 and 16 for the Canon T1i.
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Fig. 7: Results with high-noise: observed relative errors for MC simulation of
Sony α7r3 for the logarithmic input gradient. The combined effect of bias and
standard deviation is plotted for all the analytical estimators. The deviation
observed for the hat-shaped estimator is due to the negative bias visible in the
earlier plots (Fig. 3 and Fig. 6).


