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Abstract

The choice of a loss function is an important factor when
training neural networks for image restoration problems,
such as single image super resolution. The loss function
should encourage natural and perceptually pleasing results.
A popular choice for a loss is a pre-trained network, such
as VGG, which is used as a feature extractor for computing
the difference between restored and reference images. How-
ever, such an approach has multiple drawbacks: it is com-
putationally expensive, requires regularization and hyper-
parameter tuning, and involves a large network trained on
an unrelated task. Furthermore, it has been observed that
there is no single loss function that works best across all
applications and across different datasets. In this work, we
instead propose to train a set of loss functions that are ap-
plication specific in nature. Our loss function comprises a
series of discriminators that are trained to detect and penal-
ize the presence of application-specific artifacts. We show
that a single natural image and corresponding distortions
are sufficient to train our feature extractor that outperforms
state-of-the-art loss functions in applications like single im-
age super resolution, denoising, and JPEG artifact removal.
Finally, we conclude that an effective loss function does not
have to be a good predictor of perceived image quality, but
instead needs to be specialized in identifying the distortions
for a given restoration method.

1. Introduction
The success of deep learning over the past several years

has led to extensive use of Convolutional Neural Networks
(CNNs) on a wide range of image restoration tasks, such as
single-image super resolution or denoising. One of the crit-
ical choices effecting CNNs performance is the loss func-
tion. A popular mean-squared error (MSE or L2) loss often
results in blurry, splotchy [38] or unnatural looking images
as the reconstructed image tends to be an average of poten-
tial solutions, which may not lie on the natural image man-
ifold [3]. Generative Adversarial Networks (GANs) [11]
can ensure that resulting images lie on such a manifold, but

when used alone, may result in images that are substantially
different from the input [3]. Furthermore, GANs are chal-
lenging to train due to the instability of their optimization
problem.

A new category of loss functions, which has recently
gained noticeable popularity, employs neural networks as
feature extractors. Most commonly, the loss is computed as
the L2 distance between the activations of the hidden lay-
ers of a trained image classification network (e.g. a VGG
network [28]). Such losses have been successful in training
learning-based image restoration models. However, a major
drawback of these loss functions is that they use large image
classification networks as feature extractors. This not only
makes the training process memory intensive, but also fo-
cuses on image regions which are more salient for the task
of image classification. Recently, Zhang et al. [37] tried to
overcome this shortcoming by introducing a Learned Per-
ceptual Image Patch Similarity (LPIPS) metric. They cali-
brated existing pre-trained classification networks on a new
dataset of human perceptual similarity judgments. How-
ever, this approach still requires an extensive dataset for
training the feature extractor. Furthermore, LPIPS/VGG
features need to be complemented with an L2 loss term to
offer acceptable performance, which involves the need to
carefully tune weights of both loss terms.

In this work, we explore the question of what makes a
good loss function for an image restoration task, such as sin-
gle image super resolution, denoising and JPEG artifact re-
moval. It has been observed that there is no single loss func-
tion that works best across different applications [4, 6, 14].
This motivates the need to a novel set of loss functions that
do not aim to be universal, but instead are task-specific. In
this work, we propose our task-specific Multi-Scale Dis-
criminative Feature (MDF) loss function, which is trained
on a single natural image. Despite very lightweight train-
ing, our loss outperforms popular feature-wise (perceptual)
losses, which have been trained on very large datasets. This
is possible, because our loss does not learn the distribution
of natural images but instead is trained to penalize the task
specific distortions at different image scales. The latter task
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is more relevant for a loss function and much easier, thereby
can be learned with as little as a single training image. Fur-
thermore, we show that our loss function performs better as
a regularization term in an adversarial setting than the VGG
loss. An extensive comparison in terms of objective metrics
and subjective image quality study shows that our loss func-
tion outperforms the state-of-the-art losses for varied image
restoration tasks across different datasets.

2. Related work
In recent years, the search of an optimal perceptual loss

function has gained much attention. Below, we differentiate
between hand-crafted losses, which rely on existing metrics,
feature-wise losses, where image statistics are extracted us-
ing deep learning models, and distribution losses, where the
loss pushes the solution to the manifold of natural images.
Hand-crafted losses: Zhao et. al [38] have studied visual
quality of images produced by the image super-resolution,
denoising and demosaicing algorithms using L2, L1, SSIM
[33] and MS-SSIM [34] as loss functions. Images, pro-
duced by the algorithms trained with the combination of
L1 and MS-SSIM losses attained the best quality as mea-
sured by objective quality metrics. That result was closely
followed by the L1 loss used on its own. Ding et al. [6]
compared a number of image quality metrics used as a loss
function in image reconstruction methods. They found that
many of the popular quality metrics do not have properties
that could warrant good reconstruction results.
Feature-wise losses: Similarity between the reference and
the generated image can be computed in the feature space of
deep CNNs. This class of losses are often called perceptual
losses as they are meant to optimize the perceptual quality
rather than the pixel differences. However, since these loss
functions do not explicitly model perceptual processing, we
use a more descriptive name of feature-wise losses.

Authors in [15] used the L2 norm between the features of
the reference and test images extracted from the VGG [28]
network as a loss function to train style-transfer and super-
resolution algorithms. Here the VGG network was trained
on ImageNet dataset [25]. Authors in [37] (LPIPS) have
noted that features learned while training the network for
image quality assessment task might better capture percep-
tual similarity between the target and generated image. The
work used the features of several networks (untrained VGG,
VGG trained on the ImageNet dataset, and on image qual-
ity dataset) to predict image quality. The authors observed
that hidden representations of all tested deep models encode
features important for perceptual similarity. However, deep
features at various levels vary in their capacity to model per-
ceived quality. The work of [29] proposed a methodology
for selecting deep features of pre-trained CNNs that have
the strongest relationship with the perceptual similarity.

However, training image restoration algorithms reliant

only on the features extracted from the deep network as a
loss is unstable [3]. Due to pooling in the hidden layers, the
network implementing the function is often not bijective,
meaning that different inputs to the function may result in
identical latent representations [3]. Therefore, feature-wise
losses are often used in conjunction with a regularization
term, such as L2 or L1 norms, and require careful tuning
of the weights of each loss component. Delbracio et. al
[4] proposed a modification to penalize the VGG features
of the reference and the predicted image based on the 1D-
Wassertein distance [31, 24]. However, this method again
relies on L1 normalization for training to achieve acceptable
results.
Distribution loss (GAN): Many image restoration algo-
rithms are inherently ill-posed. For example images pro-
duced by super-resolution or denoising algorithms can have
acceptable perceptual quality while not precisely matching
the ground-truth. These algorithms can be optimized to pro-
duce images that lie on the natural image manifold, con-
strained by the similarity to the ground truth distribution.
To ensure that the first requirement is met, many works
have relied on GANs [11]. In such a setting, the image-
generation algorithm has two loss terms: the discriminator,
trained to differentiate between the generated and natural
images, and a term constraining the generator network to
produce images close to the ground truth. In [35, 13] au-
thors used L1 norm to regularize the training. Similarly
the works of [8, 16] used the feature-wise VGG-based loss
to constraint the generator. Some other works combined
both hand-crafted and feature-wise losses [26, 32]. Others
have introduced regularization based on the feature loss of
the discriminator [30, 14]. To avoid regularization in train-
ing for SISR the work of [2] proposed to use the consis-
tency enforcing module. The module can wrap any SISR
architecture, making it satisfy the consistency constraint – a
down-sampled version of the image reconstructed with the
network must be close to the low-resolution input.

Inability of the losses to generalize over different im-
age restoration applications and over varied datasets raises
the need of a task-specific loss function. In the following
section, we introduce our proposed loss function which is
trained to identify and thereby successfully remove the dis-
tortions for a given image restoration task in hand.

3. Multi-Scale Discriminative Feature Loss
Feature-wise (perceptual) loss functions, such as a pre-

trained VGG-Net is commonly used as a feature extractor
when training image restoration models. Additionally, ad-
versarial loss is often used as a regularizer to push the so-
lution to the natural image manifold using a discriminator
network that is trained to differentiate between distorted and
the natural images [16]. However, a fundamental weakness
of these methods is that they aim at learning the distribution
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Figure 1: Graphical illustration of the two phases of our loss. Phase 1 denotes the adversarial training of the discriminators.
The generated image is produced by the scale-specific generator Gk, which takes as input the upscaled output of the previous
level ỹk−1 ↑ρ added with the task specific distortions zk. For SISR, no distortions are added (zk = 0). The levels are
sequentially trained from the coarsest scale to the finest. In Phase 2, the discriminators are frozen and used as feature
extractors over whose outputs an L2 distance is measured between the ground-truth training image xi and the restoration
output x̃i. The distance is measured between the two images at every scale k and intermediate layers of the discriminator
||ϕk

l (xi)− ϕk
l (x̃i)||22.

of natural images using large training datasets, which is less
relevant for a loss function. In this paper, we introduce our
Multi-Scale Discriminative Feature (MDF) loss, which,
instead is trained to penalize the task specific distortions that
are introduced iteratively to the generator at various stages
of training, making the trained discriminator specialized in
identifying the distortions for a given restoration method.
Unlike VGG and LPIPS networks, which were trained for
image classification and the prediction of image quality, re-
spectively, our feature extractor networks are trained for the
task that is directly relevant to restoration task in hand. Fur-
thermore, this task is much easier than learning the entire
distribution of natural images and thereby can be achieved
with as little as a single training image.

The foundations of our loss function are based on the
following propositions:
Proposition 1: Networks employed as feature extractors for
the loss should be trained to be sensitive to the restoration
error of the input image. This makes the feature space more
suitable for penalizing the distortions during training for
that specific task.
Proposition 2: Learning natural-image manifold, which is
the task often attributed to discriminators, is a much harder
task and is less relevant for the feature-wise loss function.
The loss function should be able to detect relevant distor-
tions regardless of image content, i.e. be content invariant.

To validate both propositions, we design a new feature-
wise loss. The feature-space comprises the intermediate
activations of the set of discriminator networks trained as
a single-image GAN [27] specialized in removing task-
specific distortions from a seed image. We denote the seed

image by y to differentiate it from the training images, de-
noted by {xi}Ni=1, which are used for learning the restora-
tion task. The proposed loss function is trained in a multi-
scale manner so that it is sensitive to the relevant distortions
at multiple scales. The seed image can have a different size
from the training images, can depict a different type of a
scene, or can be a synthetic image. Below we revisit the
training procedure for our multi-scale discriminators and
operation of MDF loss on image restoration tasks.

3.1. Phase 1: Training the discriminators

We use the architecture of SinGAN [27] to train the
multi-scale discriminators on a single seed image in a task
specific manner. A set of generators {Gk}Kk=1 and a set of
discriminators {Dk}Kk=1 are instantiated for a pre-defined
set of K scales. Conventionally, scale 1 is the coarsest level
and scale K is the finest (the original image). In our experi-
ments, we chose K = 8, resulting in 8 sets of discriminators
in the MDF loss. The seed image at scale k, yk, is obtained
by downsampling (using Lanczos filter) the original image
by a factor of ρ(K−k), where ρ = 2.

For each scale of training, the generator takes as input
the upscaled output of the lower scale after adding the task
specific artifacts to it : ỹk = Gk(ỹk−1 ↑ρ + zk). Here
zk is the distortion added to the upsampled output of the
lower scale ỹk−1 ↑ρ. For the first scale of training, the
input to the generator is the original image downsampled
by a factor of ρ(K−1) and then distorted by the task-specific
error. We have experimented with the generator that was
taken directly from SISR network but we did not observe a
substantial improvement in performance. Phase 1 of Fig. 1



provides a graphical illustration of the training scheme.
In contrast to the protocol used for training a single im-

age GAN [27], we use application-specific distortion zk

while training. For image denoising, zk is Gaussian Noise
of a magnitude randomly sampled from a uniform distribu-
tion of [0,55] on a pixel scale of (0,255). For JPEG arti-
fact removal, the upscaled output from the previous scale is
compressed with a JPEG quality chosen randomly between
7 and 10, before being fed to the finer scale. However, for
the task of Single-Image Super Resolution (SISR), no dis-
tortion is added (zk = 0) and the upscaled output from the
previous scale is directly fed to the next level.

The corresponding discriminator at scale k takes as in-
put the generated image ỹk and produces a map of [0, 1]
activations ũk = Dk(ỹk) with the same dimensionality as
ỹk. Alternatively, the discriminator can be supplied with
the downscaled seed image yk, resulting in the activation
map uk. The discriminator is trained to distinguish patches
of the seed image from patches of the generated image and,
therefore, the activations of uk are pushed towards 1 and
those of ũk are pushed towards 0. The number of such acti-
vations in the map depends on the number of convolutional
layers in the discriminator and their kernel size. In our case,
each activation corresponds to an 11×11 patch in the in-
put. Training is done sequentially across scales. The coars-
est scale is trained for 3000 iterations, then the weights are
frozen and the next scale is trained, and so on. The training
loss for the k-th GAN is comprised of an adversarial term
and a reconstruction term:

max
Gk

min
Dk

Ladv(G
k, Dk) + αLrec(G

k) (1)

The reconstruction loss Lrec employed is the MSE loss be-
tween the generated ỹk and the ground truth image yk to
ensure faithful generation of the output image. The recon-
struction loss weight α is set at 100. Selection of the loss
function and the hyper-parameters are based on [27].

It must be noted that addition of the above distortions
(Gaussian Noise and JPEG compression artifacts) to the
seed image at various scales makes the discriminator sen-
sitive to such artifacts but agnostic to the image content.
The main benefit of our discriminative loss function is that
it does not require thousands of images to be trained on,
instead a single natural image and knowledge of the distor-
tions are sufficient to provide state-of-the-art results.

3.2. Phase 2: Training for image restoration

In this phase, the trained discriminators are used as the
loss function for an image restoration task. For all restora-
tion tasks we use latent embeddings after every ReLU layer
of the trained discriminators as features. We denote the em-
beddings by ϕk

l (x) meaning the output of the l-th layer of
the discriminator for the k-th scale. The output of the whole

Table 1: Comparison of the properties of our proposed loss
against other competing losses.

Loss function Training
overhead

Memory
overhead Multi-scale Inference

GPU (ms)
Backpropogation

time (ms) Regularization

L2 None None No 1.2 1.0 –
L1 None None No 1.2 1.0 –

SSIM [33] None None No 12 1.6 –
MS-SSIM [34] None None Yes 24 6.5 –

VGG [15] 1.3M images 58.9MB No 27 21.8 Required
LPIPS [37] 161k images 1 9.1MB No 31 17.5 Required

MS-SSIM +L1 [38] None None Yes 25 8.2 –
Ours One image 4.2MB No2 11 4.0 –

discriminator is then ϕk
L(x), where L is the total number of

layers. If xi is the ground-truth for the i-th training image
and x̃ is its reconstruction, then our MDF loss is:

L =

K∑
k=1

L∑
l=1

||ϕk
l (x)− ϕk

l (x̃)||22 (2)

A subtle but crucial aspect of our loss is that the discrim-
inators are not applied to the scales on which they were
trained. If the seed image has dimensions Hy × Wy , the
training input (both seed and synthetic) to the discrimina-
tor Dk will have dimensions Hy/ρ

(K−k) × Wy/ρ
(K−k).

However, the input to the discriminator during phase 2 of
training will not be scaled and it will be Hi ×Wi, the size
of the xi.

4. Comparison of loss functions
In this section, we evaluate the efficacy of our MDF loss

on a variety of image restoration tasks that rely on CNN ar-
chitectures and also as a regularization term in an adversar-
ial training (Sec. 4.4). We compare our loss with the most
widely used loss functions, listed in Table 1, including the
perceptual loss [10, 15]. In all cases, we train the models
on the training portion of the DIV2K dataset [1] and use for
testing DIV2K (the validation set), Berkeley Segmentation
Data (BSD 500) [19] and real world mobile phone captured
images from the DPED dataset [12]. The best model is se-
lected based on the validation loss.

Note that both VGG and LPIPS losses must be combined
with the L2 loss to produce acceptable results. For fair
comparison, we conducted a hyper-parameter search over
the scalar λ controlling the weight of the feature-wise loss
function. We searched over the values in {λ : λ = 10k, k =
−3, .., 3} for super-resolution and the values of 0.01 and 1
for other applications, due to computational cost. The re-
sults of these experiments can be found in the appendix.
In our experiments across all restoration applications, we
found the best results are produced when λ = 1 for VGG
and λ = 0.1 for LPIPS loss. Note that unlike VGG and
LPIPS, our MDF loss function does not require addition of
L2 regularization while training. It is also worth noting that
our MDF loss function is less computationally expensive

1This is training on top of a pre-trained network using 1.3M images
2Only training of discriminators is performed in a multi-scale fashion.



Ground Truth L2 L1 SSIM MS-SSIM VGG LPIPS MS-SSIM + L1 Ours

Figure 2: SISR results for EDSR [18] trained using different loss functions. Top row shows a sample image from BSD [19],
second row from the DIV2K validation [1] and the bottom row from DPED dataset [12]. The results for our loss are sharper
and have fewer artifacts across all datasets. Best viewed when zoomed. Additional results are provided in the SM.

Ground Truth L2 L1 SSIM MS-SSIM VGG LPIPS MS-SSIM + L1 Ours

Figure 3: Results for denoising using DnCNN model [36] trained using different losses. Top row shows a sample image from
BSD [19] and second row from the DIV2K validation [1]. Our loss improves noise reduction, especially in the uniform areas
of an image. Best viewed when zoomed. Additional results are provided in the SM.

and has a much lower memory overhead compared to VGG
and LPIPS (refer to Table 1).

Single-image super resolution Here, we evaluate our
proposed loss for the task of SISR, which aims at esti-
mating a High-Resolution (HR) image from a given Low-
Resolution (LR) image. For SISR, we use two state-of-the-
art architectures, namely Enhanced Deep Super-Resolution
(EDSR) [18] and SR-ResNet [16]. The LR image is gen-
erated by downsampling the original HR image by a factor
of 4 using bicubic filter. For training, we randomly extract
96× 96 patches from the dataset and perform data augmen-
tation with 90◦, 180◦ and 270◦ rotations, and horizontal and
vertical flips. Each model is trained for 500 epochs with an
initial learning rate of 0.001 with gradual rate scheduling.

Image denoising We train the DnCNN architecture pro-
posed by Zhang et al. [36]. The training set is generated
by adding Gaussian noise with the standard deviation ran-
domly selected from the uniform distribution of [0,55]. We

use SGD with a weight decay of 0.0001 with Nestrov mo-
mentum optimizer for training. Each model is trained for 50
epochs with an exponential learning rate scheduling from
0.1 to 10−4 with the momentum parameter set to 0.9.

JPEG artifact removal For this application, we use the
same DnCNN [36] as for the denoising. During training we
feed in images compressed with the JPEG codec with the
quality factor of 10 as in [7, 9]. We perform data augmen-
tation with 90◦ image rotation, vertical and horizontal flips.
The model is trained with Adam optimizer and the learning
rate set to 1e − 4. The test images are compressed with a
quality factor of 10 and a more challenging factor of 7.

4.1. Qualitative results

In Figs. 2 and 3 we provide qualitative results for SISR
and image denoising respectively. The examples for other
applications can be found in the appendix. Furthermore, we
include an extensive set of results at the original resolution
in a separate HTML report. The visual results consistently
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Figure 4: Violin plots illustrating the distribution of the PSNR [dB] ↑ and LPIPS ↓ values across different losses across all applications
for two datasets. Note that the y-axis is reversed for LPIPS so that the quality improves towards the top of each plot. The error bars show
the 95% confidence intervals for the mean (magenta) and the 5th percentile (black). The latter CIs were computed by bootstrapping. The
red asterisks indicate that one-tailed t-test on the means gives statistically significant difference at α = 0.05. It is worth noting that our
loss produced fewer images with low quality values.

indicate that our task-specific loss can produce sharper, less
noisy images with fewer artifacts. The differences are the
most noticeable in the flat areas of the images.

4.2. Quantitative results

The quantitative results for all four applications are
shown as distributions in Fig. 4 for two test datasets:
DIV2K and BSD. We report the quantitative results in tab-
ular form and provide additional results for DPED dataset
in the appendix. The differences in means (magenta dots in
Fig. 4) are small but statistically significant for most com-
parisons (one-tailed t-test with H1 show that the quality
score is higher for our method, red ∗ symbols are shown
if the difference is significant at α = 0.05). The means,
however, are not the best indicator of performance of dif-
ferent losses. This is because the differences in loss func-
tions are mostly visible in smooth or flat parts of the im-
ages, which occupy only small percentage of all pixels but

have a substantial impact on the perceived image quality (as
demonstrated in Sec. 4.3). The advantage of our loss is bet-
ter visible for the worst-case results, shown in Fig. 4 as the
lower 5th percentile of values (black asterisks). In majority
of the comparison, MDF loss produces fewer images with
low quality values, especially in terms of LPIPS.

4.3. Subjective quality assessment

Objective metrics such as PSNR or LPIPS, can be unre-
liable in predicting the perceptual quality of images. They
also do not capture the practical significance of the percep-
tual difference; we do not know whether the improvement
of 0.5 dB is going to be appreciated by an average observer.
For that reason, we ran perceptual experiments on the Ama-
zon Mechanical Turk crowd-sourcing platform.

For best sensitivity of the test, we used full-design
pairwise-comparison protocol [23]. In each trial, partici-
pants were presented with 3 side-by-side images: one refer-
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Figure 5: Subjective experiment in JND units (the higher, the
better). Error bars denote 95% confidence intervals. The legend is
same as Fig. 6.
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Figure 6: Perception-distortion trade-off for the tested losses.
The axes have been reversed so that the lowest distortion is shown
on left and the highest perceptual quality at the bottom as in [3].

ence and two generated by the image reconstruction meth-
ods, each with different loss function from the BSD dataset.
Participants were asked to select the image that appeared
closer to the reference. For fair comparison, we randomly
selected 50 images from testset. Thus, every loss function
was compared to every other loss 50 times. Overall, we
collected 1400 comparisons for each restoration method.

In each Human Intelligence Task (HIT) we included
nine pairwise comparison trials and one (for denoising and
JPEG artifact removal) or two (EDSR and SR-ResNet) ad-
ditional pairwise comparisons with an obvious outcome to
screen the results against the participants who misunder-
stood the task. If a participant made a mistake in those
comparisons, we excluded that HIT. Overall we discarded
4.2% and 14.2% comparisons for SISR with EDSR and SR-
ResNet respectively, 7.1% comparisons for denoising and
9.2% comparisons for JPEG artifact removal.

For each application we aggregated collected compar-
isons and performed Just Noticeable Difference (JND)
(Thurstonian) scaling on the results using the method from
[23]. The results express the quality difference in JND units.
One JND unit means that 75% of the population will select

one method over another (from a pair). The results of the
scaling, plotted in Fig. 5, show consistent improvement of
our method over other losses. MS-SSIM + L1 performed
the second best for SISR on the EDSR, with MDF having an
advantage of 0.05 JND. For other applications, MDF shows
a substantial improvement over all competing losses.

To gain further insights, in Fig. 6 we visualize the results
as the perception-distortion trade-off [3], which shows the
distortion (PSNR) on the x-axis and the JND quality values
on the y-axis (reversed scale). The results across all appli-
cations clearly show that the proposed MDF loss results in
both the lowest distortion and the highest perceived quality.
The results for EDSR show drastic difference in the per-
formance as measured by PSNR and subjective experiment.
MDF and L2 – the best and the worst performing losses,
differ only by 0.09 PSNR, but have 2.4 JND difference in
the perceptual quality, corresponding to 94.7% of the popu-
lation selecting the results produced by MDF.

4.4. Comparison with adversarial loss

Our MDF loss can be also used as a reconstruction term
when training a GAN architecture for image restoration.
For this experiment, we chose the task of SISR and used
state-of-the-art GAN based method — ESRGAN [32]. The
model trained with the MDF loss function alongside the ad-
versarial loss achieves a PSNR of 25.37 dB as compared to
the weighted combination of VGG and MSE loss function’s
25.06 dB. Both the models are trained using the DIV2K
dataset and inference is run on the BSD dataset. Since,
models trained with adversarial loss are known to produce
lower PSNR values, we further conducted a subjective study
to predict the perceptual quality of the images. We ran a
pairwise comparison study on 50 randomly selected images
from the testing dataset with each pairwise comparison per-
formed four times. MDF has an advantage over VGG loss
function and was selected in 58% of the comparisons.

5. Ablation analysis

The ablation studies test the importance of task-specific
MDF, the choice of seed image, the number of images used
to train the discriminator and the number of discriminator
scales. The latter two studies are described in the appendix.

Task-specific distortions Here we test whether the loss
trained on one task can serve as a feature extractor for an-
other. We train DnCNN for JPEG artifact removal using
MDF with introduced either noise or JPEG distortions (dif-
ferent vectors zk). The task-specific discriminator gained
moderate performance increase in terms of PSNR (25.75 dB
for MDF JPEG and 25.61 dB for MFD noise) but resulted
in images of much better visual quality, as shown in Fig. 8.
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Figure 7: Ablation study on changing the image used for training our MDF loss function. It can be seen that natural images
provide visually better results as compared to synthetic images. Best viewed when zoomed.

Ground Truth MDF noiseMDF JPEG

Figure 8: Example results for JPEG artifact removal when
trained on task-specific MDF JPEG and MDF noise. Task-
specific MDF results in improved visual quality.

Seed image We study the effect of using different natural
and synthetic images for training our MDF loss function.
Fig. 7 shows 5 seed images including 2 natural and 3 syn-
thetic ones that were used to train the discriminators. Pyra-
mid Permutation image has been created by a random per-
mutation of pixel order on each level of the Laplacian pyra-
mid. Such permutation distorts image second-order statis-
tics, but preserves the composition of the spatial spectrum.
Pink Noise image contains 1/f2 noise that is typical for natu-
ral images. Contrast Rings image contains concentric rings
whose contrast is reduced towards the centre to cover the
range of edges of all orientations and contrast magnitudes.
The results of SISR (EDSR), shown in the bottom part of
Fig. 7, indicate that the visual quality of the super-resolved
images is best for natural images and is degraded as the
statistics of the training image is distorted. However, from
the results for all the applications, the visual quality of the
restored images is more dependent on the nature of distor-
tions added (zk) than the choice of the seed image.

6. Image quality metrics and loss functions
Provided with the results of our subjective quality ex-

periment from the previous section, we further test whether
a good loss function is also a good image quality metric.
Here, we used each loss function as a quality predictor for
the improved version of the TID2013 dataset [21]. The
dataset is one of the most accurate (due to large number
of comparisons), is scaled in JND units, and contains suffi-
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Figure 9: Per-
formance of loss
functions on the task
of image quality
prediction versus per-
formance as objective
functions. Results
do not show strong
correlation. Markers
are consistent with
Fig. 5

ciently large number of conditions (over 4000 images). In
Fig. 9 we plot the Spearman Rank Order Correlation Co-
efficient (SROCC) with the subjective scores from the im-
proved TID2013 against the JND values from our subjec-
tive experiment. High SROCC value indicate that the loss
is a good predictor of image quality. The scatter plot shows
little correlation; the best quality predictors are not neces-
sarily the best loss functions. This is an important finding
because it puts in question whether loss functions should
be optimized for prediction of image quality. Additional
experiments to investigate the performance of various loss
functions as quality predictors are provided in the appendix.

7. Conclusions
In this paper, we have shown several observations that go

against the common assumptions of what make a good loss.
We demonstrated that a small multi-scale discriminator net-
work, trained to detect application-specific distortions, can
serve as a better feature-wise loss than large networks, such
as VGG, which have been trained on large datasets. This
shows that learning a natural image manifold, semantic,
or style features may not be essential for an effective loss
function. Instead, the loss needs to penalize errors specific
for restoration task in hand. Our subjective assessments re-
veal that the restored images generated using models trained
with a task specific loss function are consistently chosen by
human observers to be closer to the reference images.



Appendix
This appendix includes additional details that could not

be included in the main paper due to the lack of space.
This comprises: a) manifold assumption validation and vi-
sual comparison with SR-GAN discriminator as compared
to our multi-scale discriminators; b) quantitative results in
terms of average PSNR and LPIPS for all application across
3 benchmark datasets c) qualitative results for the JPEG
artefact removal application; d) ablation study on the num-
ber of seed images and the number of discriminators of the
Multi-Scale Discriminative Feature (MDF) loss; e) hyper-
parameter tuning for the VGG and LPIPS feature-wise loss
functions; and f) performance of loss functions as quality
predictors.

1. Image manifold assumption

The main objective of GANs [11] in image restoration
is to learn a discriminator model that differentiates between
image manifolds [17, 35, 22, 20, 5]. This is based on the
hypothesis that input samples (e.g. noisy images) and their
corresponding ground truth samples lie on two different
manifolds. The generator model thereby learns a mapping
function from one manifold to another, resulting in photo-
realistic images closer to the natural image manifold [16, 5].

However, in this paper, we propose that learning the nat-
ural image manifold, which is often the task attributed to
the discriminator, is less important than being able to detect
errors introduced by the generator. Moreover, learning the
natural image manifold requires the GAN to be trained with
thousands of natural and fake images, making the training
process computationally intensive. Here, we show that our
task-specific discriminators, trained on a single image, can
be used as feature extractors for the loss function because
they learn the generator errors rather than the natural image
manifold.

To validate this claim, a multi-scale discriminator trained
on a single image for the task of JPEG artefact removal is
employed as feature extractor. We randomly sample 100
natural images from the ILSVRC validation dataset [25].
From these images we generate a) JPEG compressed im-
ages using a compression quality between 7 and 10, b)
blurry image samples by downsampling and upsampling the
images by a factor of 4 using bi-linear filter and c) scram-
bled images by randomly permuting the pixels on each level
of the Laplacian pyramid. Such permutations distort the
second-order statistic, but preserve the composition of the
spatial spectrum. The JPEG trained discriminator is used to
extract the latent feature space of each set of images. The
feature space for each image is the average across the chan-
nels and the resulting feature vector is reduced to a dimen-
sionality of 3 using t-SNE for visualization. Fig. 10 shows
the plot of the features from each set of images. The visual-

Original image Blur JPEG artefactPermuted

Figure 10: Manifold assumption validation: The figure
shows the 3D t-SNE plots of the latent feature vectors ex-
tracted from diverse sets of images using multi-scale dis-
criminators trained for the JPEG artefact removal task. Our
JPEG-tuned discriminator cannot differentiate between the
original and permuted images (middle plot), yet is a very
effective feature-extractor for a loss function for JPEG task.

ization shows that the discriminator does not learn the natu-
ral image manifold and cannot discriminate between natural
and randomly permuted images. It also cannot discriminate
between blurred and original images, but performs well in
detecting JPEG artifacts regardless of image content.

1.1. Image manifold comparison

In this section, we repeat the experiment conducted
above, instead this time for a fully trained SR-GAN [16]
discriminator. This further bolsters our claim that the task-
specific discriminators of our MDF loss function learn to
detect the generator distortions instead of the entire natural
image manifold. This thereby allows our MDF loss func-
tion, trained on a single image, to be used to effective fea-
ture extractors between the generated and the reference im-
age.

We chose the same sample of 100 natural images from
the ILSVRC validation dataset [25]. From these images we
generated a) JPEG compressed images using a compres-
sion quality between 7 and 10, b) blurry image samples
by downsampling and upsampling the images by a factor
of 4 using bi-linear filter and c) scrambled images by ran-
domly permuting the pixels on each level of the Laplacian
pyramid. Such permutations distort the second-order statis-
tic, but preserve the composition of the spatial spectrum.
A trained SR-GAN discriminator is used to extract the la-
tent feature space of each set of images. The feature space
for each image is chosen after the Global Average Pooling
(GAP) layer of the network. We used t-SNE to reduce the
dimensionality of the feature vector to 3 for visualization.
Fig. 11 shows the plot of the features from each set of im-
ages. The visualization shows that the discriminator of SR-
GAN learns the natural image manifold (unlike our multi-
scale discriminator) and can discriminate between natural
and randomly permuted images. However, it cannot dis-
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Figure 11: Manifold assumption validation: The figure
shows the 3D t-SNE plots of the latent feature vectors ex-
tracted from diverse sets of images using an SR-GAN dis-
criminator trained on DIV2K dataset [1]. The SR-GAN
discriminator cannot differentiate between the original and
jpeg images (right plot), thereby cannot be used as an effec-
tive feature extractor to detect and remove distortions.

criminate between the JPEG compressed and original im-
ages, making it an inferior feature extractor to detect and
remove distortions.

2. Quantitative results
The quantitative results for all four applications are

shown as distributions in Fig. 12 for real world mobile
phone captured images from DPED dataset [12]. The dif-
ferences in means (magenta dots in Fig. 12) are small but
statistically significant for most comparisons (one-tailed t-
test with H1 show that the quality score is higher for our
method, red ∗ symbols are shown if the difference is sig-
nificant at α = 0.05). The means, however, are not the
best indicator of performance of different losses. This is
because the differences in loss functions are mostly visible
in smooth or flat parts of the images, which occupy only
small percentage of all pixels but have a substantial impact
on the perceived image quality (as demonstrated in Sec. 4.3
of the main paper). The advantage of our loss is better visi-
ble for the worst-case results, shown in Fig. 12 as the lower
5th percentile of values (black asterisks). In majority of
the comparison, MDF loss produces fewer images with low
quality values, especially in terms of LPIPS. We also re-
port the quantitative results in terms of average PSNR and
LPIPS in Table. 3.

3. JPEG artefact removal results
In this section, we provide qualitative results show-

ing comparison between three sample reconstructed images
from the BSD Test Set using our (MDF) loss with various
other loss functions for the task of JPEG artefact removal
application. The test images are compressed with a qual-
ity factor of 10 and a more challenging factor of 7. Fig. 14
shows the results for the compression quality factor 7. The

Table 2: Ablation study on training the SISR model (EDSR)
using different scales of our loss. The scale number repre-
sents the number of scales included in the MDF loss. The
inference results are reported for the BSD dataset.

Scales 1 2 3 5 7 8

PSNR ↑ 22.55 23.89 24.43 24.89 25.27 25.70
LPIPS ↓ 0.392 0.357 0.354 0.311 0.305 0.286

performance of the various loss functions seems to be com-
parable for the quality factor of 10, however, our model sub-
stantially provides artefact removal, especially in the uni-
form areas of the image for a much challenging codec qual-
ity of 7. The same was also observed in the subjective ex-
periment conducted (see Sec. 4.3 of the main paper).

4. Ablation study

4.1. Scales of Discriminators

Since our MDF loss function comprises a series of dis-
criminators trained on a single image at various scales, we
need to select the optimal number of scales (the hyper-
parameter K in Equation 2 of the main paper) to achieve the
best performance. We perform an ablation study on training
the EDSR model [18] using only the coarsest scale discrim-
inator and subsequently adding finer scales. We observe a
significant increase in quality of the images generated with
the increase in the number of discriminators. As shown in
Table 2, our loss performs the best when all 8 scales are
employed.

Number of seed images Next we investigate the impact
of increasing the number of seed images while training the
MDF loss function. The plot in Fig. 13 shows that the per-
formance of EDSR increases by only 0.03 dB when trained
on 4 images and then it saturates. We did not observe any
improvement in visual quality. Because the increase in per-
formance in negligible when adding more seed images, we
used a single image for training in our results.

5. Hyper-parameter tuning for VGG and
LPIPS

In Fig. 15 we show the qualitative results for the trade-
off between the MSE and LPIPS/VGG network compo-
nents in the joint loss function. For fair comparison, we
conducted a hyper-parameter search over the scalar λ con-
trolling the weight of the feature-wise loss function. We
searched over the values in {λ : λ = 10k, k = −3, .., 3}.
The greater λ parameter is, the more LPIPS/VGG compo-
nents contribution is. In our experiments across all image
restoration applications, we found the best results are pro-
duced when λ = 1 for VGG and λ = 0.1 for LPIPS loss.



Table 3: Comparison of our proposed Multi-Scale Discriminative Feature (MDF) loss function with other losses on 3 public
benchmark datasets for four tested applications. Results show PSNR [dB] ↑ / LPIPS ↓. The numbers in red indicate the best
performance and the ones in blue the second best.

Dataset L2 L1 SSIM MS-SSIM VGG LPIPS MS-SSIM + L1 Ours
Single Image Super-Resolution (EDSR [18])

DIV2K 28.70 / 0.342 29.22 / 0.315 29.21 / 0.293 28.70 / 0.342 28.10 / 0.278 28.34 / 0.283 28.87 / 0.283 29.51 / 0.276
DPED 26.99 / 0.415 27.26 / 0.394 27.22 / 0.369 27.00 / 0.367 26.54 / 0.361 26.76 / 0.366 26.88 / 0.368 27.48 / 0.351
BSD 25.28 / 0.320 25.66 / 0.304 25.52 / 0.309 24.70 / 0.301 24.44 / 0.298 24.49 / 0.296 25.08 / 0.306 25.70 / 0.286

Single Image Super-Resolution (SR-ResNet [16])
DIV2K 27.57 / 0.343 27.76 / 0.321 27.05 / 0.325 27.20 / 0.320 26.83 / 0.301 27.00 / 0.307 27.49 / 0.313 27.95 / 0.295
DPED 27.03 / 0.428 27.41 / 0.403 26.54 / 0.381 26.89 / 0.380 26.34 / 0.372 26.45 / 0.372 27.32 / 0.385 27.50 / 0.367
BSD 24.56 / 0.337 24.68 / 0.328 24.07 / 0.370 24.18 / 0.364 23.19 / 0.315 23.42 / 0.310 24.48 / 0.336 25.07 / 0.293

Image Denoising [36]
DIV2K 29.75 / 0.233 29.55 / 0.236 29.47 / 0.275 29.62 / 0.263 30.80 / 0.215 29.61 / 0.215 30.05 / 0.225 31.25 / 0.192
DPED 30.24 / 0.218 29.87 / 0.230 29.48 / 0.261 29.60 / 0.255 31.23 / 0.195 30.09 / 0.191 31.15 / 0.203 31.36 / 0.181
BSD 29.92 / 0.240 29.71 / 0.248 29.39 / 0.285 29.55 / 0.262 30.40 / 0.203 29.81 / 0.203 30.39 / 0.214 30.42 / 0.192

JPEG Artefact Removal [36]
DIV2K 26.50 / 0.303 26.71 / 0.295 26.32 / 0.295 26.37 / 0.301 26.48 / 0.315 26.27 / 0.281 26.50 / 0.299 26.77 / 0.261
DPED 26.20 / 0.305 26.15 / 0.301 25.95 / 0.298 26.05 / 0.305 26.01 / 0.307 25.87 / 0.296 26.12 / 0.305 26.53 / 0.276
BSD 25.64 / 0.316 25.71 / 0.310 25.43 / 0.309 25.49 / 0.313 25.54 / 0.308 25.39 / 0.308 25.52 / 0.312 25.75 / 0.293
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Figure 12: Additional violin plots illustrating the distribution of the PSNR [dB] ↑ and LPIPS ↓ values for DPED dataset
[12] for all applications. Note that the y-axis is reversed for LPIPS so that the quality improves towards the top of each
plot. The error bars show the 95% confidence intervals for the mean (magenta) and the 5th percentile (black). The latter CIs
were computed by bootstrapping. The red asterisks indicate that one-tailed t-test on the means gives statistically significant
difference at α = 0.05. It is worth noting that our loss produced fewer images with low quality values.

Additional qualitative results are provided in the HTML re-
port.

6. Image quality metrics and loss functions
To further investigate the performance of loss functions

as quality predictors, we generated a set of images that were
distorted by blur, noise, added sinusoidal grating, contrast
and brightness changes. The distortions were generated
so that they degraded the image in equal steps of PSNR.

Fig. 16 presents an example of images with introduced dis-
tortions at three PSNR levels. The experiment shows a fail-
ure case of PSNR, predicting the same quality even though
the distortions due to contrast and brightness are much less
objectionable than the others to a human observer.

In Fig. 17, we show the loss values computed for the
increasing amount of distortions of different types for dif-
ferent loss functions. Despite the same PSNR value, the
distortions due to noise, blur and added sinusoidal wave
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Figure 13: Performance of EDSR model with the increasing
the number of seed images used for training the MDF loss
function. Note that PSNR increases only by 0.03 dB and
saturates for larger number of images. The inference results
are reported for the BSD dataset.

are much more noticeable than those due to contrast and
brightness change (refer to Fig. 16). The loss functions
derived from quality metrics (SSIM, MS-SSIM) and also
feature-wise losses (VGG, LPIPS) penalize more the distor-
tions that result in higher degradation of quality. In contrast,
MDF losses penalize the most the distortions that are rele-
vant for a given task: blur in case of SISR (MDF SR), blur
and noise in case of denoising, and contrast followed by the
mixture of all distortions in case of JPEG artifact removal.
This is another example demonstrating that an effective loss
(MDF) function does not need to predict image quality.
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Ground Truth L2 L1 SSIM MS-SSIM VGG LPIPS MS-SSIM + L1 Ours

Figure 14: Results for JPEG artefact removal (compression quality = 7) using DnCNN model [36] trained using different
losses. Our loss improves artefact reduction, especially in the uniform areas of an image. Qualitative results in terms of
PSNR and LPIPS are reported in Table 3. Best viewed when zoomed.

Ground Truth 𝛌=0 𝛌=0.01 𝛌=0.1 𝛌=1

Average PSNR 25.28 dB 25.03 dB 24.30 dB 24.44 dB 21.21 dB
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Figure 15: Comparison of the single-image super resolution (SISR) results (EDSR) when trained using a weighted sum of
VGG/LPIPS and MSE feature-wise losses: MSE + λVGG/LPIPS. The average PSNR is reported for the entire test set.
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Figure 16: Examples of images used to test the sensitivity of loss functions to different types of distortions. We introduced
artifacts so that the each distortion results in the same PSNR level (across each row). Here we provide examples of images at
20 dB, 30 dB and 40 dB. Note that the perceived quality differs between the columns despite the same PSNR level.
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Figure 17: Loss values for the increasing amount of distortions of different types. The distortion levels have been generated
to result in equal PSNR values, shown on the x-axis. Despite the same PSNR value, the distortions due to noise, blur and
added sinusoidal wave are much more noticeable than those due to contrast and brightness change (refer to Fig. 16). The
MDF loss accurately predicts the perceived magnitude of task specific distortions for which it is trained.



References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 126–135, 2017. 4, 5,
10

[2] Y. Bahat and T. Michaeli. Explorable super resolution. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2713–2722, 2020. 2

[3] Y. Blau and T. Michaeli. The perception-distortion tradeoff.
In 2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6228–6237, 2018. 1, 2, 7

[4] Mauricio Delbracio, Hossein Talebi, and Peyman Milanfar.
Projected distribution loss for image enhancement. arXiv
preprint arXiv:2012.09289, 2020. 1, 2

[5] Emily Denton, Soumith Chintala, Arthur Szlam, and Rob
Fergus. Deep generative image models using a lapla-
cian pyramid of adversarial networks. arXiv preprint
arXiv:1506.05751, 2015. 9

[6] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P. Simoncelli.
Comparison of full-reference image quality models for opti-
mization of image processing systems. In International Jour-
nal of Computer Vision, pages 1573–1405. Springer Interna-
tional Publishing, 2021. 1, 2

[7] Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou
Tang. Compression artifacts reduction by a deep convolu-
tional network. In Proceedings of the IEEE International
Conference on Computer Vision, pages 576–584, 2015. 5

[8] Alexey Dosovitskiy and Thomas Brox. Generating im-
ages with perceptual similarity metrics based on deep net-
works. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, page
658–666, Red Hook, NY, USA, 2016. Curran Associates Inc.
2

[9] Leonardo Galteri, Lorenzo Seidenari, Marco Bertini, and Al-
berto Del Bimbo. Deep generative adversarial compression
artifact removal. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4826–4835, 2017. 5

[10] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Tex-
ture synthesis using convolutional neural networks. In Ad-
vances in neural information processing systems, pages 262–
270, 2015. 4

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 27, pages 2672–2680. Curran Associates,
Inc., 2014. 1, 2, 9

[12] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth
Vanhoey, and Luc Van Gool. Dslr-quality photos on mobile
devices with deep convolutional networks. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3277–3285, 2017. 4, 5, 10, 11

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), July
2017. 2

[14] Younghyun Jo, Sejong Yang, and Seon Joo Kim. Investigat-
ing loss functions for extreme super-resolution. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 424–425, 2020. 1, 2

[15] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016. 2, 4

[16] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681–4690,
2017. 2, 5, 9, 11

[17] Chuan Li and Michael Wand. Combining markov random
fields and convolutional neural networks for image synthesis.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2479–2486, 2016. 9

[18] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 136–144, 2017. 5, 10, 11

[19] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-
ume 2, pages 416–423, July 2001. 4, 5

[20] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep
multi-scale video prediction beyond mean square error.
arXiv preprint arXiv:1511.05440, 2015. 9

[21] Aliaksei Mikhailiuk, Marı́a Pérez-Ortiz, and Rafał K. Man-
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