The effect of viewing distance and display peak
luminance — HDR AV1 video streaming quality
dataset

Lukas Krasula
Netflix Inc.

Dounia Hammou
University of Cambridge
United Kingdom
dh706@cl.cam.ac.uk

Abstract—While it is well recognized that the visibility of
distortions is affected by the viewing distance and display peak
luminance, very few datasets control those conditions, and also
few video quality metrics can account for them. To address this
gap, we collected a new video quality dataset, HDR-VDC, which
captures the quality degradation of HDR content due to AV1
coding artifacts and the resolution reduction. The quality drop
was measured at two viewing distances, corresponding to 60 and
120 pixels per visual degree, and two display mean luminance
levels, 51 and 5.6 nits. In contrast to the existing datasets that
use direct rating protocol, we employ a highly sensitive pairwise
comparison protocol with active sampling and comparisons
across viewing distances to ensure possibly accurate quality
measurements. We also provide the first publicly available dataset
that measures the effect of display peak luminance and includes
HDR videos encoded with AV1. Our results indicate that the effect
of both viewing distance and display luminance is significant,
and it reduces the visibility of coding and upsampling artifacts
on dimmer displays or those seen from a further distance. The
dataset is available at https://doi.org/10.17863/CAM.107964 and
the code at https://github.com/gfxdisp/HDR-VDC.

Index Terms—subjective video quality assessment, video
streaming, AV1 encoding, high dynamic range, display peak lumi-
nance, viewing distance, effective resolution, pairwise comparison

I. INTRODUCTION

It is recognized that viewing distance and display peak
luminance affect the visibility of video streaming distortions
[1]-[3]. High-frequency distortions become less visible as
the viewing distance increases and the display luminance is
reduced — both effects predicted by the contrast sensitivity
function [4]. Yet, very few datasets control those conditions,
and also few video quality metrics can account for them.

In this paper, we introduce the “Viewing and Display
Conditions Dataset” (HDR-VDC), a new HDR video quality
assessment dataset designed to capture the effect of viewing
distance and display luminance on the visibility of video
streaming distortions (we consider the visibility of distortions
as the only indicator of quality in this study). Here, we
consider distortions due to video compression and lower
resolution of the streamed content — two dominant distortions
in video streaming. The dataset is collected for modern 4K
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HDR content, both camera-captured and computer-generated
(video games and animation), encoded with AV1 codec [5].

In contrast to existing datasets exploring the effect of
viewing distance [1], [2], our goal is to measure the quality
as accurately as possible so that even if both effects are
subtle, they can be reliably captured. For that reason, we
employ a pairwise comparison protocol with active sampling
(ASAP [6]), which provides much better sensitivity than direct
rating methods [7]. Moreover, we include cross-condition
comparisons, in which content shown at two different distances
is directly compared. Those measures should provide accurate
measurements. The dataset is also the first to measure the
effect of display luminance on the visibility of streaming
distortions and is one of the few publicly available datasets
that measure the quality of AV1-encoded 4K HDR10 videos.

This paper is meant to introduce the dataset. A follow-
up publication will provide a complete analysis of the video
metric performance on the dataset and considerations for
modeling both effects.

II. RELATED WORK
A. HDR Video quality assessment datasets

In recent years, the adoption of HDR video formats has led
to numerous studies aimed at assessing the quality of HDR
videos to benchmark the various HDR video quality metrics.

Azimi et al. [8], [9], Rerabek et al. [10], and Narwaria et al.
[11] were among the first to do so. They studied the effect of
multiple distortions, such as noise, blur, and compression, on
the perception of distortions in 2048 x 1080 / 1920x 1080 HDR
video content. Furthermore, Pan et al. [12] and Athar et al.
[13] were the first to study the effect of compression artifacts
on 4K HDR (PQ or HLG encoded) high framerate videos.
However, none of these datasets were made publicly available.
The LIVE-HDR [14] presented the first large-scale quality
dataset of 4K HDR10 videos, in which HEVC compression
and upscaling artifacts were considered — the two main
distortions in video streaming. Following that, Shang et al. [15]
studied the effect of different HDR live streaming scenarios on
sports content. Krasula et al. [16], on the other hand, presented
the first at home-study for collecting a 4K HDR10 subjective



quality dataset. Nonetheless, the two latter datasets were also
not made publicly available.

In contrast to these works, our dataset is the first publicly
available 4K HDR10 dataset that studies the AV1 compression
artifacts, as well as four display and viewing conditions: two
viewing distances and two display luminance levels.

B. The effect of viewing distance and display luminance on
perceptual quality

Many studies investigated the effect of viewing distance on
the perceptual quality of both images and videos, notably, the
visibility of distortions due to compression, noise, and others.

Authors in [17]-[19] studied the effect of viewing distance
on the visibility of image distortions. Similarly, Amirpour et
al. [2] and Sugito et al. [1] studied the effect of viewing
distance on video distortions. All studies reported similar
findings: the distortions are less visible (affect the quality less)
at larger viewing distances. Conversely, Kufa et al. [20] and
Keller et al. [21] studied the effect of viewing distance on the
perceptual preference of high-resolution over lower-resolution
videos. The results from both studies report a decrease in the
preference for high-resolution videos (decrease in the visibility
of upscaling distortions) with the increase in viewing distance.

All the studies above employed direct rating protocols. In
contrast, Mikhailiuk et al. [3] measured the visually lossless
thresholds for JPEG and WebP distortions across two viewing
distances and luminance levels using the adaptive QUEST pro-
cedure and the 4-alternative-force-choice protocol. Such a pro-
tocol gives accurate measurements of the compression settings
at which the distortions become imperceptible. Nonetheless,
their study was limited to images, and the measured visually
lossless thresholds cannot be easily transferred to the full range
of quality degradations.

Compared to other works, our study focuses on video
streaming applications in the context of modern and diverse
4K HDR content, as seen at varying viewing conditions. We
employ the pairwise comparison protocol and perform com-
parisons across viewing distances for accurate measurements
of video quality.

III. SUBJECTIVE EXPERIMENT

The main goal of this subjective study is to measure the
effect of display and viewing conditions on the distortions’
visibility for high-resolution and high-dynamic range videos.
Thus, we collect a new 4K HDR video quality dataset under
four display and viewing conditions — the combination of two
viewing distances and two display luminance levels.

A. Source Sequences

It is crucial to select a balanced and diverse set of HDR
source sequences to capture the content-dependent effects
in addition to the effects of viewing conditions. Hence, we
collected 50 HDR10, 4K (3840 x 2160) / 1080p (1920 x
1080) video sequences from various sources [22]-[25], which
included natural camera-captured, animated and computer-
generated (gaming) content. Although we focused on modern

4K content, we also selected a few full-HD sequences from
the color-graded Stuttgart dataset [25] as those contained a
much larger dynamic range than other available content.

All sequences are characterized by a bit depth of 10 bits,
a YUV 4:2:0 chroma sampling, SMPTE ST2084 (PQ) EOTF,
and BT.2020 primaries. Moreover, all sequences were clipped
into 5 to 11-second videos while avoiding abrupt or awkward
end cuts that may disturb the viewing experience. Furthermore,
all videos were stored in a raw format to calculate the video
information indices defined below.

Under the recommendation of ITU-T P.910 [26], for each
source sequence, we calculated the spatial and temporal infor-
mation indices of the videos. However, the standard indices
alone do not capture HDR characteristics. Thus, we included
two other indices: the dynamic range (computed as the median
of the differences between the logarithm of the brightest
luminance value and the darkest luminance value from the
low-pass filtered luma channel of each frame) and median
luminance. These four indices were used to select 16 reference
videos from the 50 collected source sequences by employing
the k-means algorithm [27], where the input of the algorithm
is the video sequences’ indices, and the number of clusters is
16, as the number of reference videos. Then, one video was
selected from each cluster in order to provide a diverse set
of content. The thumbnails for all selected reference videos
are shown in Figure 1, and index plots for those are shown in
Figure 2.

B. Encoding Space

A careful design of the encoding space is imperative for our
specific study objectives. Because our focus is not solely on
the effect of distortions on perceived quality but rather on the
effect of display and viewing conditions on the visibility of
distortions arising from video streaming, we design a concise
distortion space that spans a broad range of perceptual quality.

The encoding space consists of two distinct types of distor-
tions: compression artifacts and upscaling artifacts. The SVT-
AV1 codec (v1.5.0) [5], [28], [29] was selected for introducing
compression artifacts, while the Lanczos filter (¢ = 3) [30]
was employed to upscale videos to the display full resolution
(4K). SVT-AV1 was selected as a representative modern video
codec offering good performance.

Each video sequence was first downscaled to one of the
three resolutions, namely 4K (3840 x 2160 / unchanged),
1080p (1980 1080), and 720p (1280 x 720), and then encoded
with AV1 (using a preset of four) to produce videos at three bit
rates. The compression levels were determined by employing
3 constant rate factors (CRF) values separately for each source
sequence, resulting in three quality levels: “High”, “Medium”,
and “Low”.

To ensure a perceptual separation between the three bit rates,
we compressed each source video at its native resolution using
CRF values ranging from 1 to 63. The ColorVideoVDP metric
(v0.3) [31] was employed to guide the selection of the final
CRF values to ensure a similar distance in quality between
the low and medium quality and the medium and high quality.
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Fig. 1: Screenshots of the selected reference videos (The sequences are tone mapped to BT.709 for visualization).

TABLE I: CRF settings of the test videos. The same CRF value was used across all resolutions. The reference videos used

high-quality CRF at the highest resolution.

Video sequence index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
High quality CRF 7 9 9 5 9 9 9 9 7 7 11 7 9 7 7 7
Medium quality CRF 43 37 43 33 35 41 49 37 43 33 45 27 37 37 36 55
Low quality CRF 61 58 62 62 53 59 62 60 60 51 59 55 58 56 52 62
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Fig. 2: Scatter plots and corresponding convex hulls of Spatial

Information / Temporal Information and Dynamic Range /

Luminance Median of the selected reference videos. The

indexes reported next to each scatter point correspond to the

indexes in Figure 1.

Moreover, we ensured that the high-quality sequence attained a
quality exceeding 9.5 (on a 10-point scale) when compared to
the uncompressed video while concurrently ensuring a real-
time playback of the videos using our hardware. The CRF
values were selected for the native resolution and used across
all other resolutions. The selected CRF values for each source
video are reported in Table I.

Our experiment design required real-time playback of three
4K HDR videos at the same time and without dropping frames.
To ensure that, we had to use 4K video compressed at high-
quality settings (reported in Table I) as the reference. We
ensured that the compression distortions were imperceptible
in the reference videos.

C. Experimental procedure

Following the BT.2100-2 recommendations [32] for HDR
viewing, two viewing distances were considered in the exper-
iment: 1.6 and 3.2 of display height (an effective resolution of
approximately 60 ppd and 120 ppd), as well as two display lu-
minance levels: a bright display (peak luminance of 700 cd/m?
and a mean luminance of 51 cd/m? as measured from a color
patch covering 5% of the display using the Konica Minolta
Chroma Meter CS-200) and a dim display (peak luminance of
600 cd/m? and a mean luminance of 5.6 cd/m?). The dimmer
screen was simulated using an OpenGL fragment shader that
reduced the luminance of all pixels by a factor of 8 (in a linear
RGB color space).

To ensure the high accuracy of our measurements across
the display and viewing conditions, we employed a pairwise
comparison protocol [33], combined with an active sampling
method (ASAP [6]), which can maximize the information gain
from each comparison and reduce the number of required
comparisons. The pairwise comparison protocol was shown
to provide higher sensitivity than direct rating (e.g., ACR)
[7]. This is especially important when measuring the effect of
viewing conditions, which could be relatively small compared
to the measurement noise associated with direct rating.

In each trial of the experiment, the participants were pre-
sented with a pair of test videos of the same content, played
simultaneously on two displays (LG OLED Evo G2, see the
details below). The participants could view the corresponding
reference videos by holding the space key. A short blank
screen was shown when switching between test and reference
videos so that the temporal change could not be used to
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Fig. 3: The viewing configurations corresponding to the com-
bination of the two viewing distances, shown on either left
or right display, where each display was rotated to ensure a
perpendicular viewing angle to the screen center. The cross-
viewing distance configurations had the far display either on
the right (middle column) or left (not shown). The order of
the viewing configurations was randomly selected for each
participant.

Fig. 4: The experimental setup for the near-near viewing
setting session and bright display luminance block.

identify the distortions. The participants were instructed to
select the test video that is closer to the reference rather than
explicitly selecting the video that looks better. This criterion
allowed us to measure the visibility of distortions rather than
the overall perceived quality.

We split the experiment into four sessions, each lasting
one hour. In each session, we present the test videos in a
different viewing setting to guarantee that participants compare
the test conditions across all four combinations of compared
viewing distances and display positions (see Figure 3). A
chinrest was used to control viewing distance. Furthermore,
the screens were rotated so that the viewing angle was always
perpendicular to the screen center (as shown in Figure 3).

Each session was composed of two blocks, each with a
different display luminance: either bright or dim. To adapt the
eye to the new luminance level, a random noise texture with
the mean luminance corresponding to the next luminance level
was displayed for 20 seconds during the transition between
the two blocks of the session. Note that we did not allow
for comparisons or pairs shown at different display luminance
levels. We experimented with such cross-peak-luminance com-
parisons in a pilot experiment, but we found the observers’
selection was strongly biased towards the brighter display. To

minimize the learning effect, the order of the sessions was
randomized between the participants, as well as the order of
the display luminance blocks in each session. An overview of
the setup of the experiment is shown in Figure 4.

D. Display and Viewing Conditions

Two LG OLED Evo G2 55-inch 4K HDRIO displays
were used to conduct the experiment, each with firmware
version 3.0.10. The HDR mode selected for both displays
was “Cinema Home (User Settings)”. To prevent any unin-
tended alterations to the video content, all auto adjustments
and enhancements were disabled. Furthermore, global sticky
reduction (GSR) and temporal peak luminance control (TPC)
were turned off in the service menu to maintain consistent
luminance throughout the experiment and across participants.

Both displays were connected to the workstation equipped
with an NVIDIA GeForce RTX 3080 GPU using a 4K HDMI
2.1 cable capable of transferring HDR content at their respec-
tive framerates for real-time video playback. The workstation
operated on Windows 10, with HDR mode enabled for both
display connections. The GStreamer 1.22.6 player was used for
the hardware decoding and playback of the videos within the
Psychtoolbox 3.0.19 framework [34]. Lanczos (a = 3) filter
was implemented as an OpenGL fragment shader to upsample
videos to 4K resolution.

The experiment was conducted in a controlled environment
within a dim room, maintaining an ambient illumination of
approximately 0lux throughout the experiment.

E. Participants

A total of 30 volunteers (16 females and 14 males) par-
ticipated in the experiment, aged between 13 and 52 years
(median age of 24 years and mean age of 26 years), where
8 of them were familiar with HDR. 25 of the participants
completed all four sessions, resulting in a total number of
25762 pairwise comparisons. All participants had normal color
vision, as indicated by the Ishihara test, and all of them had
normal or corrected to normal visual acuity of at least 20/25,
as measured by the Snellen test. Preceding the experiment,
participants were provided with a briefing form outlining the
experiment objectives and instructions, alongside a consent
form, which they signed on their first session. Furthermore,
a brief training session was provided during their first session
to familiarize participants with the experiment setup and to
ensure their full understanding of the provided instructions.
During each session, the participants were given a break
lasting 5 to 10 minutes after running the experiment for 25
minutes. Additionally, participants could initiate a break at
any point by pressing the ‘F’ key. This setup allowed the
participants to run each session with no noticeable fatigue. The
experiment was approved by the departmental ethics board,
and all participants were rewarded for their participation.

IV. EXPERIMENTAL RESULTS
A. Subjective score scaling

The results obtained from the pairwise comparison were
scaled into Just-Objectionable-Difference (JOD) units using
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Thurstone’s Case V observer model [33]. The difference of
1JOD unit signifies that one condition is chosen as closer to
the reference 75% of the time. All reference videos (highest
resolution and bitrate) were assumed to be the same node
during scaling to ensure a common quality scale across con-
tents and viewing conditions. Given that the JOD scores are
relative, reference conditions were assumed to have a nominal
quality of 10. The scaling was performed within the sets of
conditions that were compared in the experiment — within
the same content and within the same display luminance level.
Furthermore, to quantify the precision of our quality scores,
confidence intervals were computed using bootstrapping with

500 samples, as outlined in [33].

B. The effect of viewing distance and display luminance

The results across all participants and all contents are re-
ported in Figure 5. The figure shows the JOD scores averaged
over all video contents but plotted separately for each viewing
condition. The figure reveals a consistent pattern, wherein
observers are less likely to notice the drop of quality at lower
bitrates or lower resolution when the video is shown from
a further distance or at a lower luminance level. Notably,
the distortions from AV1 compression at a medium level
on 4K videos and the downscaling of videos to 1080p are
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imperceptible (~10JOD) when observed on a dim display
seen from a further distance. The difference between the
viewing conditions is substantial, especially at low resolution
and low bit-rate — at 720p resolution and low bit rate, there
is over 2JOD difference in quality between a bright display
seen from near and a dim display seen from far. This clearly
shows that video quality cannot be accurately assessed when
the display and viewing conditions are not controlled.

This trend is also evident when analyzing the distribution
of the JOD scores of all contents and test conditions for each
viewing distance and display luminance level, as shown in
Figure 6. The top row of the figure illustrates the effect of
the viewing distance on the distribution of the JOD scores
for each fixed display peak luminance. We can observe again
that the quality scores are higher for a larger viewing distance
(top row) or lower luminance (bottom row), confirming that
the distortions are less noticeable when seen from a greater
distance and at lower luminance.

To investigate this effect on a per-content basis, we plot the
quality-bitrate curve, often referred to as the bitrate ladder, for
each viewing distance and display luminance level in Figure 7.
The results for this content confirm the overall trend, showing
the significant effect of the display and viewing conditions.
For example, if we want to deliver a quality of 9JODs, we
can stream at 1.7 Mbps for the content seen on a dim display
from a far distance, but we need to increase the bitrate to
8.5 Mbps for a bright display seen from a near distance.

To analyze the statistical significance of the viewing dis-

tance and the display peak luminance independently of the
content and distortions, we employ a 5-way analysis of vari-
ance (ANOVA) model on the JOD distribution of each condi-
tion, in which the five factors represent the content, bitrate,
video resolution, viewing distance, and display luminance
level. Because the quality scores distributions are derived by
bootstrapping (with 500 samples), we selected 30 random
samples from each distribution, corresponding to the number
of observers. The results of the test revealed that both the
viewing distance and display luminance level had a significant
effect (p-value < 0.05) on the JOD scores. The effect size, eta
squared (%), was 0.101 for the viewing distance factor and
0.015 for the display luminance level factor, indicating that
the viewing distance has a medium effect on the perception
of distortions, while the display luminance has a small effect.

V. CONCLUSION

In this paper, we introduced a new HDR-VDC dataset
capturing how the quality of streamed 4K HDR10 AV1 video
varies across two viewing distances and two display luminance
levels. The most important observation is that both viewing
distance and display peak luminance significantly affect the
visibility of streaming distortions. This amounts to very sub-
stantial differences in bitrate required to deliver the desirable
quality, which depends on the viewing conditions. We hope
that this dataset will help to test and develop quality metrics
that account for the viewing conditions and bring attention to
the important problem of controlling display peak-luminance
and viewing distance in video quality studies.
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