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Abstract
Banding is a type of quantisation artefact that is visible

when a low-texture region is coded with insufficient bit-depth.
While banding is a well-known problem, the visibility of band-
ing on high-dynamic range displays is not well-studied. To ad-
dress this issue, we conducted a psychophysical study to measure
banding detection at a wide range of luminances (0.1 cd/m2–
10,000 cd/m2). Our stimuli were gradients modulated along
three colour directions: black-white, red-green, and yellow-
violet. We found that banding detection was a function of both
luminance and colour direction. Detection was the poorest at
0.1 cd/m2, improving with increasing luminance up to 100 cd/m2,
then remaining at the same level up to 10,000 cd/m2. With these
results, we developed and validated a banding detection model
that relies on the contrast sensitivity function (CSF) of the visual
system, and hence, predict the visibility of banding artefacts in a
perceptually accurate way.

Introduction
Digitally representing colour requires the conversion of

continuous into discrete colour values. If the number of bits
used to represent the digital value is too low, the quantised image
shows edges where there should be none (Fig. 1). These false
edges are referred to as banding or contouring artefacts, and they
tend to occur in low-texture regions where the pixel values vary
smoothly, as in the sky or the ocean. Banding artefacts are aggra-
vated by edge-enhancing and contrast-normalizing mechanisms
in the early human visual system, which amplify the perceived
brightness and colour difference at the banding edges and lead to
illusions such as the Chevreul illusion [1].

As there is an immense amount of image and video data that
are created, shared, and stored daily, it is critical to understand
how to find the optimal trade-off between highest visual quality
with no banding artefacts and minimum bit-depth. For example,
high-definition streaming is only possible with lossy video cod-
ing [2], but the loss may lead to unattractive banding. For some
applications, such as medical imaging, illusory bands may even
result in incorrect diagnosis [3].

Thus, it is useful to develop a model that predicts when visi-
ble banding artefacts occur. However, existing models have been
designed for standard-dynamic range (SDR) displays, with a typ-
ical peak luminance of 200 cd/m2. With increasing adoption of
high-dynamic range (HDR) displays, it is important to develop a
model that encompasses the wide range of luminance levels that
can be shown in HDR, from mesopic (e.g., highway at night) to
high photopic (e.g., sunny day).

In this paper, we develop and validate a perceptually moti-
vated model of banding that spans a wide range of luminance lev-
els. Our model improves upon Denes et al.’s [4] Fourier-based,
analytic formulation of banding artefacts, incorporating a con-
trast sensitivity function (CSF) for stimuli at luminance levels be-
tween 0.0002 cd/m2to 10000 cd/m2[5]. Our model also operates
on physical units of luminance and contrast, rather than relative
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Figure 1: Sample stimuli. The stimuli were 2D gradients mod-
ulated along the three axes of the DKL colour-opponency space
[6]. Values in DKL are linear combinations of L-, M-, and S-
cone responses.

pixel values, and is therefore device- and content-independent.

Related Work
Hundreds of patents have been filed for debanding or decon-

touring algorithms for printed media and digital displays. How-
ever, fewer studies have looked at building a model of banding
detection, and very few have developed perceptually motivated
ones. Below, we review some models of banding that rely on
some intuition about what is perceptually important for banding.

Banding Detection in SDR
The majority of the banding detection models [7, 2, 8, 9]

work by finding groups of pixels that share the same pixel value
and identifying the boundaries between the grouped regions. If
RGB values of the grouped regions only have a small difference,
the pixel groups may represent quantised zones of a gradient,
meaning that edge between the groups is a candidate banding
artefact. Then, it is a matter of determining whether the candidate
artefact is likely to be visible to the human observer.

Some of those models use banding artefact size as a mea-
sure of visibility. Bhagavathy et al.’s [7] multi-scale method is
an early example that incorporated the role of size by checking
for candidate artefacts at multiple neighbourhood sizes. Baugh
et al.’s [2] method indirectly incorporates the role of size by find-
ing a distribution of pixel groups, since heavily quantised images
have an uneven distribution of groups due to large swaths of ho-
mogeneous regions. Baugh et al. also propose the Banding In-
dex, where BI < .9 is reported to be a reasonably good threshold
for identifying badly quantised images or frames. This method
works with H.264/AVC video coding [10], and is thus appropri-
ate for detecting artefacts in HD streamed video. Wang et al.’s [9]
method emphasizes the length of the candidate banding artefact.
In addition, this method considers the coherence of the candidate
artefact. If the candidate artefact is sharp and clean (coherent),
then it is more likely to be visible. Notably, Wang et al. validated
their method with a subjective study, measuring mean opinion
scores (MOS).

Other methods depend on edge detection. Tu et al. [11] pro-



posed BBAND (Blind Banding Artefact Detector). This method
does not rely on an initial pixel grouping step, but rather, edge
detection with the Sobel filter. Then, the algorithm computes the
visibility of that edge. The edge is less likely to be visible when
surrounded by high-luminance regions and high-texture regions.
The edge is more likely to be visible when it is long. The authors
also validated their method using the MOS dataset from Wang et
al. [9]. In another work, Lee et al. [8] first detect non-smooth
regions by reducing the bit-depth. Edges are then detected using
a directional contrast feature measuring how much the intensity
of a pixel differs from its 8 neighboring pixels in four horizontal,
vertical, diagonal and anti-diagonal directions. A content-based
empirical threshold is used to categorize edges as natural (larger
than the threshold) or visible banding artefacts (smaller than the
threshold).

While the above studies have incorporated some intuitive
knowledge of what contributes to banding artefacts, very few
studies have incorporated a model of the early visual system.
Daly and Feng [12] is an exception, relying on the spatio-
temporal characteristics of the human contrast sensitivity func-
tion. An important contribution is the Fourier analysis of the
banding artefact by treating it as the error between the quantised
and the continuous images. In particular, the authors note that
a key determinant of banding visibility is the fundamental fre-
quency of the error signal. Denes et al. [4] follow Daly and
Feng’s analysis, extending the work to chromatic components.
Importantly, Denes et al. approximate the error signal with a saw-
tooth function. The Fourier transform of the saw-tooth function
has a simple closed-form solution and can be rapidly evaluated,
making the method appropriate for the authors’ intended appli-
cation to Virtual Reality (VR).

Banding Detection in HDR
Compared to SDR, banding detection in HDR images and

videos is less investigated. In a series of psychophysical experi-
ments, Boitard et al. [13] identified the minimum bit-depth that
is required per colour component to represent HDR colour pixels
without introducing any banding artefacts. However, a detection
model was not provided and the maximum luminance level eval-
uated was 50 cd/m2.

In another study, Song et al. [14] address the banding arte-
facts that are visible in HDR frames generated by inverse tone
mapping SDR video frames. The frames are compressed using
legacy video encoders such as HEVC [15]. Banding artefacts are
detected using the weighted average of the residual banding level
ratio and the Mean Squared Error (MSE) between 12-bit inverse
tone mapped and reference HDR video frames, as the goal of the
method is to make quantisation steps of an inverse tone mapped
12-bit HDR video frames similar to those of the reference 12-
bit HDR video frames. The residual banding level ratio is the
ratio of the highest quantisation step after and the quantisation
step before the filtering process in a picture region. The MSE en-
sures that only banding artefacts are smoothed and that edges in
the original image are preserved. The banding detection metric
in [14] requires a quantised HDR signal for which quantisation
steps do not yield visible banding.

Su et al. [16] proposed a banding detection metric referred
to as False Contouring Detection (FCD) which returns the num-
ber of potential visible banding artefacts in a picture or picture
area. The metric detects the contouring edges using median fil-
tering and then evaluates each edge as visible if their contrast is
higher than its visible contrast threshold calculated using a CSF,
and as invisible otherwise. For each visible contouring edge that
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Figure 2: We model banding detection as a question of detecting
the error signal [12, 4]. The error is well-approximated by a saw-
tooth function. The fundamental frequency carries most of the
energy of the Fourier spectrum, and therefore is the key determi-
nant of artefact visibility. For error signals of the same amplitude,
a shallow gradient results in a lower fundamental frequency than
a steeper one.

is detected in a picture the FCD is incremented by one in value.
Azimi et al. [17] treated visible banding artefacts in HDR

colour pixels as visible colour differences between quantised
HDR pixels using 10-bit per colour channel and continuous ref-
erence pixels. Such visible colour changes were measured us-
ing CIE DE2000 [18] colour difference metric. It was shown
in [17] that while colours that are closer to the white point of
the Rec.2020 gamut require more code-words than 1024 (10-bit
range) to represent colours without visible changes, colours at the
border of the gamut (more saturated colours) can be represented
with fewer bits.

Our Work
Our approach follows and extends the work of Daly and

Feng [12] and Denes et al. [4] to high-dynamic range. Similar as
in those works, we use Fourier analysis to predict the visibility
of the error signal. For a colour image I(x,y,c) and its quantised
counterpart Iq(x,y,c), the quantisation error is

E(x,y,c) = I(x,y,c)− Iq(x,y,c) (1)

where x and y are the location in the image and c is the colour
channel (Fig. 2).

E(x,y,c) is the colour difference, or the contrast, between
I(x,y,c) and Iq(x,y,c). Banding detection can be framed as a
question of the sensitivity to this error. In particular, it can be
framed as a question of whether E(x,y,c) exceeds the contrast
detection threshold t of the human observer. By definition, error
signal below the contrast threshold has low probability of detec-
tion and can be safely ignored.

In general, contrast thresholds are a function of colour [19],
luminance [20], and spatial frequency [21]. This dependence is
modelled by the CSF, which describes the inverse of the ampli-
tude needed for threshold detection; it shows the sensitivity of
the human visual system to a particular spatial frequency at the
given colour and luminance. Having an accurate CSF is there-
fore important for reliably modelling banding detection. Here,
we use a CSF capable of predicting contrast thresholds between
0.0002 cd/m2and 10,000 cd/m2, 0.125 and 32 cycles per degree
(cpd), and for any arbitrary colour direction [5], which was made
possible by combining multiple datasets [22, 23, 24, 25, 26].

Experiment
We conducted an experiment to investigate banding detec-

tion thresholds across a wide range of luminances, from mesopic



(0.1 cd/m2) to high photopic (10,000 cd/m2), for banding arte-
facts modulated along three opponent-colour directions: achro-
matic, red-green, and yellow-violet.

Methods
Apparatus

The experiment was conducted on a custom-built HDR dis-
play with a peak luminance of 37,000 cd/m2. The display con-
sisted of an LCD panel extracted from an iPad 3/4 retina display
(9.7”, 2048 × 1536 px; product code: LG LP097QX1) and a
DLP projector (Optoma X600,1024× 768 px). The display had
a maximum contrast ratio of 1,000,000:1 and an effective reso-
lution of 2048× 1536 px. Each channel and each display could
reproduce 10 bits: 8 bits via display and 2 additional bits via
spatio-temporal dithering. The effective bit-depth of HDR dis-
play was higher than either the LCD or the DLP, because of the
combined modulation of LCD and DLP.

The viewing distance was 91 cm, such that the display occu-
pied the central 12.4 ◦× 9.3 ◦of the visual field, with an angular
resolution of 165 ppd (pixels per visual degree). The experiment
room was completely dark, eliminating direct or reflected source
of light falling on the screen. The room conditions were compli-
ant with the recommendations in BT.500.

Stimuli
The stimuli were coloured 2D gradients (Figure 1) defined

in the Derrington-Krauskopf-Lennie (DKL) colour-opponency
space [6] with D65 white point. The DKL colour space is lin-
ear transformation of the LMS colour space, putting the origin at
the white point and modulating along achromatic, red-green, and
yellow-violet directions:

∆DKL =


∆A

∆R

∆V

=


1 1 0

1 − L0

M0
0

−1 −1
L0 +M0

S0




∆L

∆M

∆S

 (2)

where L0,M0,S0 were D65 white point in LMS coordinates using
CIE 2006 cone fundamentals [27]. ∆L,∆M,∆S were the gradient
modulations in LMS space, and ∆DKL = [∆A, ∆R, ∆V ] were the
modulations in DKL space, corresponding to modulations along
the achromatic, red-green, and yellow-violet directions, respec-
tively. Using the DKL colour space allowed us to define the
gradients in a device-independent, physiologically accurate op-
ponent colour space.

The relative gradient was defined as:

G(x,y,c) =


(

xs
r l
− l

2

)( y
r l

)
c = csel

0 otherwise
, (3)

where x and y were the pixel coordinates, and c was one of
the three colour components (achromatic, red-green, or yellow-
violet) selected by csel, the colour component for which the gra-
dient was generated. r was the angular display resolution in pix-
els per degree (165 in our experiment), and l was the width and
height the the stimulus in degrees (4.5). In our experiment, we
used s = 0.3556,0.0889, and 0.4444 for achromatic, red-green
and yellow-violet components, respectively.

Then, the gradient was added to D65 background of the de-
sired luminance Y :

I(x,y,c) = Y ·(WD65(c)+G(x,y,c)) , (4)

where WD65 = [1, 0, 0 ] was the chromaticity of D65 white point
in DKL space. The gradient was quantised directly in the DKL
colour space:

Gq = round
(

G
t

)
t , (5)

where t was the quantisation step.

Observers
Four observers (1 female, 3 males; mean age = 35.25) from

[ anonymised location(s) ] participated in the experiment. All
observers had optically corrected 20/20 vision. All had normal
colour vision, tested using Ishihara colour plates. Two of the
observers were authors; the others were naı̈ve to the experiment
procedure. All observers were familiar with the concept of quan-
tisation and banding artefacts.

Procedure
The experiment consisted of three colour direc-

tions(achromatic, red-green, yellow-violet) presented at six
luminances (0.1, 1, 10, 100, 1000, and 10,000 cd/m2), for a total
of 12 conditions. As pilot experiments did not reveal influence
of condition order, we presented the conditions in increasing
order of luminance, in order to spare the time required for dark
adaptation between conditions. Within a luminance level, the
trials for different colour directions were presented in randomly
interleaved order.

Each condition consisted of 25 to 35 4-alternative forced
choice (4AFC) trials. In each trial, observers saw four randomly
oriented gradients in a 2×2 arrangement. Three of the four gra-
dients were displayed without quantisation; the fourth was quan-
tised. The task was to identify the quantised gradient. The stimuli
remained visible on the display until observer made a response.

We used QUEST, an active sampling procedure for psy-
chophysical experiments [28], to sample the quantisation levels.
A psychometric function was fitted to the 4AFC responses to es-
timate the detection threshold. Each observer completed the ex-
periment in 1.5 hours.

Results
Fig. 3 shows the results. The detection threshold for band-

ing was s a function of both luminance and colour direction of the
gradient. A lower threshold means that the banding was harder to
see. On average, the detection threshold was the lowest for red-
green, followed by achromatic, and the highest for yellow-violet.
This is consistent with what we know about the CSF: red-green
contrast sensitivity is much higher than the achromatic, which is
in turn more sensitive than yellow-violet.

In addition, there was an effect of stimulus luminance. At
mesopic to low photopic levels (0.1–10 cd/m2), detection thresh-
olds decreased as a function of increasing luminance. However,
at medium to high photopic levels (≥10 cd/m2), the detection
thresholds stayed constant as a function of luminance.

This is interesting, because Wuerger et al. [24] found that
the achromatic CSF has a noticeable U-shape as a function of lu-
minance, with the threshold at 10,000 cd/m2, being much higher
than at 100 cd/m2. However, CSFs are defined for detecting
wavelet-like stimuli, which consist of a single spatial frequency.
Thus, our results suggest that the CSF alone is insufficient for
predicting detection in images that contain multiple spatial fre-
quencies, as in banding artefacts. In comparison, red-green and
yellow-violet CSFs saturate with increasing luminance, which is
qualitatively consistent with the detection thresholds for banding.
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Figure 3: Results of the experiment (n=4 for achromatic and red-
green; n=3 for yellow-violet). The gradients were defined along
three opponent colour directions of the DKL colour space (achro-
matic, red-green, yellow-violet).

Using these results, we developed a model of banding de-
tection that decomposes the error signal into its frequency com-
ponents while also handling a wide range of luminances. Our
findings significantly extend Denes et al.’s work [4], as they only
tested luminance up to middle photopic levels (22 cd/m2).

Modelling
Our model imitates the physiological process of detection

by simulating opponent colour channels and multiple spatial fre-
quency channels. First, the model transforms the gradient into
DKL opponent colour space. Then, in each colour channel, the
model decomposes the quantisation error E(x,y,c) into its spa-
tial frequency components. Rather than numerically transform
E(x,y,c) into the Fourier domain, we follow Denes et al. [4]
and represent E(x,y,c) as a saw-tooth function (Fig. 2), whose
Fourier transform has an analytical solution. For a single line y
and a colour channel c, the Fourier transform of the quantisation
error is

F (E(x,y,c)) =
1
2
− 1

π

∞

∑
k=1

h
k

sin
(

kπx
w

)
(6)

where w is the width, or the period, of the saw-tooth (visual de-
grees) and h is the height of each saw-tooth step. h is determined
by the quantization step t,

h = t Y (7)

See also Eq. 5. Therefore, the amplitude of the kth frequency
component is

αk =−
h

kπ
, k = 1,2, ... (8)

and its frequency (in cycles per degree) is

ωk =−
k
w
, (9)

where w is the period in pixels. We found that the accuracy of the
prediction does not improve beyond the first five Fourier com-
ponents. For a given slope s of the gradient, the period of the
sawtooth can be computed as

w =
h

Y s
(10)

It should be noted that the slope s changes across the 2D gradi-
ent stimulus (Fig. 1) and we do not know at what slope triggers
banding detection in human observers. This issue is discussed
later.
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Figure 4: Banding detection model. The error signal is trans-
formed into the Fourier domain resulting in the spatial frequen-
cies (ωc,k) and amplitudes (αc,k) of the banding artefacts. We
find the detection threshold using a CSF, which we convert into
detection probability.

The model then uses the CSF [5] to compute the probability
of detecting the error signal at that frequency and colour channel.

Pdetc,k = 1− exp
(

ln(0.5)
CSF(αc,k,ωc,k)

)
(11)

where CSF(·) returns the inverse of the detection threshold,
1− exp(·) is the psychometric function for converting contrast
thresholds into probability of detection, and ln(0.5) sets the con-
trast threshold at Pdet = 0.5 at the detection threshold.

To find the overall probability of detection, we combine the
probability of detection per channel,

Pdet = 1 − ∏
c∈{CA,CR,CV}

∞

∏
k=1

Pdetc,k (12)

To find the banding detection threshold, we run a binary
search on CSF(·) simultaneously across all colour and spatial
frequency channels to find the quantisation step t that yields
Pdet = 0.5.

Results
In Fig. 5, we plot the model predictions with the data. The

data are plotted in green, as are the model predictions that assume
the same slopes that we used in the experiment. The model qual-
itatively reproduces the detection thresholds: the model predicts
that banding artifacts in the red-green direction are more visible
than in the achromatic direction, which is in turn more visible
than yellow-violet. Within each colour direction, the model also
reproduces the qualitative behaviour of thresholds decreasing be-
tween 0.1 cd/m2and 10 cd/m2, then staying about the same from
10 cd/m2to 10000 cd/m2.

However, the data consistently are below the model predic-
tions for the same slope, meaning that human observers are able
to see banding artefacts better than predicted by the model. For
the achromatic direction, the data align well with the model pre-
diction for s = 0.1778. This is interesting: although the gradients
in our experiment were defined to have a slope of s = 0.3556
on one edge, the slope becomes gradually shallower towards the
other edge and reaching zero (Fig. 1), such that the slope was
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Figure 5: Top row. Model predictions. The data (green dots) are qualitatively consistent when we use the model prediction is based on
the same gradient slope s that we used in the experiment (green lines). However, the data are even better predicted when we assume
shallower slopes (other coloured lines). Bottom row: Visualisation of slopes depicted in top and middle rows.

s = 0.1778 near the centre of the stimulus. Indeed, for quantisa-
tion errors of the same amplitude, shallower gradient slopes re-
sult in a lower fundamental frequency (Fig. 2). As the visual sys-
tem is better at detecting lower frequencies than higher frequen-
cies, this means that quantisation errors are easier to detect for
shallower gradients. Similarly, the red-green and yellow-violet
predictions are also more consistent with the data when we as-
sume a shallower slope. However, whereas the red-green data
are well-captured by assuming a shallower slope (s = 0.0222),
the predicted detection threshold for yellow-violet is higher than
the data at lower luminances.

Conclusions

Banding artefacts pose a greater problem in HDR than SDR,
due to the wider luminance range. We investigated banding de-
tection for a wide range of luminance (mesopic to high photopic),
and for three opponent colour directions (achromatic, red-green,
yellow-violet). This allowed us to develop a perceptually moti-
vated model of banding detection for HDR images and for any
arbitrary colour direction. While Wang et al. [9], Tu et al. [11],
and Su et al. [16], also developed perceptually motivated models,
ours has the advantage that it deals specifically with luminance
coding, operating on physical units of luminance and contrast,
rather than relative pixel values. Denes et al.’s [4] model also
operates on physical units, but our model has the advantage of
using a more recent, more perceptually accurate CSF capable of
predicting banding detection in a much larger dynamic range,
and therefore, is more reliable for HDR colour changes. While
more work remains to be done, our model provides a first step to
a more rigorous approach to banding detection in HDR.
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