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1 OVERVIEW
This supplementary document contains additional results and analy-
sis for the FovVideoVDP paper [Mantiuk et al. 2021]. This document
contains:

• Section 2: Additional plots of the contrast sensitivity function
used in the metric.

• Section 3: The description of the masking models compared
in the main paper (Figure 16 in the main paper).

• Section 4: Timings of FovVideoVDP compared to other quality
metrics.

• Section 6: Additional results and analysis for the FovDots
dataset.

• Section 7: Description and results of the merging experiment
used to bring multiple datasets into the same quality units.

2 CONTRAST SENSITIVITY FUNCTION
The contrast sensitivity function is typically plotted as a function
of frequency. This, however, often obfuscates the fact that other
dimensions, such as size and luminance, also have substantial impact
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on sensitivity. In Figure 1 we plot the CSF as a function of these two
dimensions.

 0.01   0.1     1    10   100  1000 10000

Luminance [cd/m2]

   1

  10

 100
S

e
n

s
it
iv

it
y

=0.5 [cpd]

=1 [cpd]

=2 [cpd]

=4 [cpd]

=8 [cpd]

=16 [cpd]

=32 [cpd]

0 2 4 6 8

Size [deg2]

=0.5 [cpd]

=1 [cpd]

=2 [cpd]
=4 [cpd]

=8 [cpd]

=16 [cpd]

=32 [cpd]

Fig. 1. Luminance contrast sensitivity from [Wuerger et al. 2020] plotted as
a function of luminance and size of the stimulus in [deg2]. The size was set
to 3 deg2 for the left plot and luminance to 100 cd/m2 for the right plot.

3 CONTRAST MASKING MODELS
We provide additional details on the masking models we used in
our ablation study here.
One of the first models that was proposed to explain contrast

masking relies on a contrast transducer [Foley 1994; Legge and Fo-
ley 1980; Watson and Solomon 1997]: a function that transforms
physical (Michelson) contrast into the perceived contrast response.
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The response of the visual system to a contrast difference is ex-
pressed as the absolute difference of the response of two transducers:

𝐷𝑏,𝑐 (𝒙) =
���𝔱(𝐶 ′ test

𝑏,𝑐
(𝒙)) − 𝔱(𝐶 ′ ref

𝑏,𝑐
(𝒙))

��� , (1)

where 𝐶 ′ test
𝑏,𝑐

is the contrast of the test image and 𝐶 ′ ref
𝑏,𝑐

is the
contrast in the reference image, both normalized by the sensitivity
(Eq.(13) in the main paper). The transducer function models the
divisive gain control as:

𝔱(𝐶, 𝑆) = sgn(𝐶) |𝐶 |𝑝
𝑍0 + (𝑘 |𝐶 |∗𝐻 )𝑞 , (2)

where the nominator represents the excitatory response of the
neurons and the denominator represents the inhibitory signal; 𝑝 , 𝑞
and 𝑘 are the parameters of the model (typically 𝑝 = 2.3, 𝑞 = 2 and
𝑘 = 1 [Watson and Solomon 1997]) and sgn(·) is the sign function.
𝑍0 controls the influence of the sensitivity function and is in the
range 1-4. 𝐻𝜎 is a convolution kernel (we use a Gaussian) that pools
inhibitory signals from neighboring spatial locations. Equation 2 is
one of the masking model variants we tested in our ablation study.
Another variant was an adaptation of the threshold elevation

function proposed in the book chapter on the VDP metric [Daly
1993]:
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where the threshold elevation function is defined as:

𝑇𝑒 (𝐶𝑚𝑎𝑠𝑘
𝑏,𝑐

(𝒙)) =
(
1 +

(
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)𝑏 )1/𝑏
, (4)

the constants are defined as

𝑘1 =𝑊 1−(1−𝑄)−1 𝑘2 =𝑊 (1−𝑄)−1−1 , (5)

where𝑊 = 6, 𝑄 = 0.7 and 𝑏 = 4.0. The slope of the threshold
elevation function 𝑠 was a free parameter that we optimized for the
best model fit.

4 TIMINGS
The execution times for Matlab’s implementation of FovVideoVDP
(both CPU and GPU), and several other metrics are shown in Fig-
ure 2. The timings are shown separately for images and video. The
execution times were collected on a computer outiftted with an Intel
Core i7-7800X CPU and a NVIDIA GeForce RTX 2080 GPU. The
reported times are averaged over 5 runs and the standard deviations
are shown as error bars.

The GPU implementation of FovVideoVDP is two orders of mag-
nitude faster than HDR-VDP-3, which is another metric that models
early-visual perception. It is also faster than most metrics of moder-
ate complexity, although this is mostly because the computations
are performed on a GPU while other metrics are computed on the
CPU. It should be noted that not every metric can be ported as
efficient GPU code. Short execution times are important to enable
assessing the quality of high resolution images and video.
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Fig. 2. This figure shows a comparison of the execution time of our metric
to other metrics for images (top) and video (bottom). More details on other
quality metrics can be seen in Table 1 of the main text.
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Fig. 3. Prediction error of the variants of the metric that use either both or
only a single temporal channel.

5 ABLATIONS AND VARIANTS (CONT.)
Here we describe further ablations and variants of our metric. This
complements the Ablations and variants section in the main paper.

Temporal channels. One of the key features of our metric is that
it separates the video signal into two temporal channels: sustained
and transient. We investigated how the prediction performance
changes when only the sustained channel is used. The result of
that study, shown in Figure 3, indicate that the metric without the
transient channel is unable to correctly predict the results of our
new FovDots dataset. This shows the importance of FovDots, as it
contains artifacts that cannot be found in the other datasets.
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Fig. 4. Prediction error of the variants of the metric that use different
representations of contrast.

Contrast representation. Our metric encodes contrast as a Weber
fraction: Δ𝐿/𝐿𝑎 , where Δ𝐿 represents the amplitude (the value of the
coefficient in the Laplacian pyramid) and 𝐿𝑎 is the adaptation lumi-
nance (refer to Eq.(7) in the main paper). This is different from some
other visual metrics, such as VDP and HDR-VDP, which include a
photo-receptor non-linearity stage and encode contrast at the early
stage of the model. This type of non-linearity transforms luminance
into photoreceptor response units, which account for luminance
masking (or Weber’s law).
One of the simplest forms of photoreceptor non-linearity is the

logarithmic function. It can be shown that the logarithmic function
is a luminance transducer that is derived from Weber’s law; the
function that accounts for the fact that visual system is sensitive
to ratios of luminance rather than absolute luminance values. We
introduced the logarithmic function in the first stage of our metric,
before any temporal or spatial filters. This results in contrast coding
being simplified to:

𝐶𝑏,𝑐 (𝒙) = L′
𝑏,𝑐

(𝒙) ≈ 𝑙𝑜𝑔10
G𝑏,𝑐 (𝒙)
G𝑏+1,𝑐 (𝒙)

. (6)

L′ represent the Laplacian pyramid of logarithmic values. Note
that, as compared to contrast coding in the original version of the
metric, there is no need to divide the values by the adaptation
luminance (𝐿𝑎) to account for Weber’s law. The right-hand side
of the equation shows that this contrast encoding approximates
logarithmic contrast.

One challenge of introducing a photoreceptor non-linearity is that
it makes the contrast units incompatible with the units used in con-
trast sensitivity functions. We address this problem by converting
the CSF sensitivity to logarithmic contrast:

𝑆 ′
𝑒𝑥 𝑓 𝑜𝑣

(·) = log−110

(
1

𝑆𝑒𝑥 𝑓 𝑜𝑣 (·)
+ 1

)
, (7)

where 𝑆 ′
𝑒𝑥 𝑓 𝑜𝑣

represents sensitivity as the inverse of logarithmic
contrast.

The results for themetric optimized using our original contrast en-
coding (Weber contrast) and using logarithmic contrast are shown in
Figure 4. A significant drop in performance can be seen when using
logarithmic contrast. Since adding this non-linearity also increases
the complexity of the metric, we could not justify introducing early
logarithmic contrast coding in our metric.

Pooling. Our pooling model involves multiple 𝑝-norms, each us-
ing a different exponent. The higher exponent values make the met-
ric more sensitive to the largest difference values. Such a "winner-
takes-all" strategy is a common pattern found in many mechanisms
of the visual system. For example, an exponent between 2 and 3 is
found to explain the data on fusion of binocular contrast. However,
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Fig. 5. Prediction error of the variants of the metric that optimized different
parameters of the pooling function. The names correspond to the 𝛽 expo-
nents that were optimized: pixels — 𝛽𝒙 ; frames — 𝛽𝑓 ; spatial-channels —
𝛽𝑏 ; and temporal channels — 𝛽𝑐 .

large exponent values also make the metric less stable; metric pre-
dictions end up relying mostly on few very high values. For that
reason, we restricted the values of all exponents to be less than 3.
When we tried to optimize for all pooling parameters at once

(as well as all other metric parameters), we could not achieve good
results. For that reason, we optimized one pooling parameter at
a time (together with the parameters of the CSF and the masking
model) while keeping the remaining exponents equal to 1. When
we found the optimum exponent together with a set of other met-
ric parameters, we used those as an initial parameter set for the
optimization and added an additional pooling parameter.

The results of optimizing the pooling function, shown in Figure 5,
indicate that optimization of a larger number of exponents does not
necessarily lead to better performance. The best performance was
obtained with optimized 𝛽𝒙 and 𝛽𝑐 (controlling the summation of
pixels and temporal channels), while the other exponents were set
to 1.

6 FOVEATED RENDERING DATASET: ADDITIONAL
RESULTS

Here we present the full results from our foveated rendering experi-
ment as described in Section 4 in the main paper.

The results of the pairwise comparison experiments were scaled
under Thurstone model V assumptions [Perez-Ortiz and Mantiuk
2017], reducing the comparison rank matrices to linear scales of
perceived quality in just-objectionable-difference (JOD) units. 95%
confidence intervals were estimated using bootstrapping.
As shown in Figure 7, the sampling percentage 𝑠 , the temporal

anti-aliasing factor 𝛽 , velocity 𝑣 , and contrast 𝑐 all have a noticeable
impact on quality. As expected, the higher the sampling percentage,
the better the perceived quality; artifacts are also less noticeable
on lower values of 𝑐 . Velocity has an interesting impact on the
shapes of the curves, resulting in monotonically decreasing quality
(as a function of 𝛽) when there is no motion (𝑣 = 0), to convex
or monotonically increasing quality curves for higher velocities.
This agrees with the intuition that, for stationary stimuli, temporal
artifacts are highly objectionable, while for moving stimuli, the
trade-off is non-trivial.
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Fig. 6. Results of the psychophysical experiment for 𝑌 = 32.5 cd/m2 for all pairings of contrast (𝑐) and velocity (𝑣) as a function of the spatio-temporal trade-off
factor (𝛽). Colors indicate sampling rate (𝑠). Error bars denote 95% confidence intervals.

Fig. 7. Results of the psychophysical experiment for 𝑌 = 65 cd/m2.
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Table 1. Result of n-way ANOVA for content and condition parameters of
the foveated rendering dataset

Sum Sq. Mean Sq. F p

velocity 792.96 396.48 569.05 0.00
contrast 1084.83 542.42 778.51 0.00
luminance 0.25 0.25 0.37 0.55
beta 962.21 481.11 690.51 0.00
sampling % 7835.47 3917.74 5622.98 0.00

We performed the experiment on two different mean luminance
values: 32.5 cd/m2 and 65 cd/m2, both falling within the photopic
range of vision. As shown in Figures 6 and 7, the quality curves
measured at these different luminance levels show no substantial
difference in the shape or magnitude of quality. We speculate that
this is due to the limited dynamic range of both the display and our
measurements.
To quantitatively analyze the quality curves, we first sampled

each quality point assuming normal distributions described by the
scaled quality values and their corresponding errors with 𝑁 = 35
samples (identical to the number of observers). N-way ANOVA, as
shown in Table 1, confirms the visual analysis, revealing a signifi-
cant difference with 𝑝 << 0.05 for each free parameter, except for
luminance.

7 DATASET MERGING EXPERIMENT
To align the quality scores from DeepFovea and LIVE-FBT-FCVR
datasets, we performed a quality matching experiment.

Stimuli. 15 video sequences were selected from each DeepFovea
and LIVE-FBT-FCVR datasets, 30 in total. The videos were selected
by stratified sampling across the range of subjective quality scores
(5 strata) to ensure that the selection covered all quality levels. The
reference and test videos were concatenated with a short blank in
between so that they could be viewed one after another, always in
the same order. The videos were converted to grayscale because (a) it
let us simplify the experiment, and (b) the majority of tested metrics
ignore color information. A red cross was added at the intended
gaze position (center of each video) and the videos were encoded at
the high quality settings of h265. The videos were assigned random
identifiers, which did not reveal the distortion level or any other
information.
To provide participants with quality anchors, we also prepared

an HTML web page with example images from the UPIQ dataset
at the JOD quality levels of 4, 5, .., 10. Only images containing
compression or banding artifacts were selected to facilitate matching
to the h264/h265 artifacts found in the two video datasets.

Participants. 8 expert participants were recruited for this experi-
ment. Due to COVID-19 restrictions, they were asked to complete
the experiment at home, on a display that had a diagonal size of
24" or more. They were provided with a table of viewing distances
corresponding to different screen dimensions.

Experimental procedure. Each expert was asked to view videos
enlarged to the full screen size, to keep the viewing distance and to
keep the gaze on the fixation cross. They were instructed that those

videos are intended for foveated viewing and they were all familiar
with the concept. They were asked to rate each video using a JOD
scale, including fractional numbers if the video fell between two
JOD levels shown in the training web page Answer were submitted
using an online form.

Results. We excluded from the results the data from a single ex-
pert, who consistently rated all videos at a much lower JOD than
the rest, likely because they failed to maintain proper fixation on
the target throughout the experiment.The mean JOD ratings of se-
lect videos for both datasets are shown in Figure 8. The plots show
that the relation between the native quality scores of each dataset
(DMOS or MOS) and JODs can be explained by a linear regression.
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Fig. 8. This figure shows the results of the dataset merging experiment.
Crosses with error bars indicate the rating of stimuli from the DeepFovea or
LIVE-FBT-FCVR datasets using the JOD scale. Error bars indicate standard
error.
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