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We present a 3D eye model fitting algorithm for use in gaze estimation, that operates
on pupil ellipse geometry alone. It works with no user-calibration and does not
require calibrated lighting features such as glints. Our algorithm is based on fitting
a consistent pupil motion model to a set of eye images. We describe a non-iterative
method of initialising this model from detected pupil ellipses, and two methods of
iteratively optimising the parameters of the model to best fit the original eye images.
We also present a novel eye image dataset, based on a rendered simulation, which
gives a perfect ground truth for gaze and pupil shape. We evaluate our approach using
this dataset, measuring both the angular gaze error (in degrees) and the pupil repro-
jection error (in pixels), and discuss the limitations of a user-calibration–free approach.

Keywords: gaze estimation, eye model, pupil detection, glint-free

Introduction

Camera-based eye tracking approaches are normally
divided into two stages: eye/pupil detection and gaze-
estimation based on the eye or pupil information.
Eye/pupil detection algorithms normally work in 2D
image space; a common approach is to detect the pupil
as an ellipse in 2D. Gaze estimation algorithms then at-
tempt to convert this eye/pupil information into a gaze
vector or point of regard.

Most gaze estimation algorithms can be classified
into two groups: regression-based and model-based.
Regression-based algorithms assume that there is some
unknown relationship between the detected eye pa-
rameters and the gaze. They then approximate this re-
lationship using some form of regression — often this
is polynomial regression, although there are also ap-
proaches using neural networks. Model-based ap-
proaches instead attempt to model the eye and thus the
gaze. Given the detected eye/pupil parameters, these
adjust the model (e.g. rotate the eye) to fit the data, and
output the gaze information. We refer the reader to the
in-depth survey by Hansen and Ji (2010).

Both approaches require some form of personal cal-
ibration, either to find the parameters of the regression
function or to fit the eye model to the current user. Nor-
mally this consists of an interactive calibration, where
the user is asked to look at several points at known lo-
cations; for example, many studies use a 9-point grid
calibration. Model-based approaches often use anthro-
pomorphic averages to decrease the number of variable

parameters, however they normally still require some
amount of calibration.

Additionally, many approaches use glints or Purk-
inje images as additional data in either the calibration
(e.g. to obtain corneal curvature) or inference (e.g. us-
ing the glint–pupil vector rather than the pupil position
alone). These are reflections of a light source from vari-
ous parts of the cornea or lens. However, these require
one or more calibrated light sources and can be fairly
difficult to detect under uncontrolled lighting condi-
tions. Some approaches also use multiple cameras to
build a 3D model of the eye from stereo information.

However, there are many use cases where such high-
quality, controlled and calibrated lighting is not avail-
able. There is an increasing amount of research into
“home-made” cheap eye-trackers, where a webcam is
mounted on glasses frames, and illuminated either by
visible light or IR LEDs (Agustin, Skovsgaard, Hansen,
& Hansen, 2009; Chau & Betke, 2005; Tsukada, Shino,
Devyver, & Kanade, 2011). Figure 1 is an example of
such an eye-tracker, built in our lab by the first author.
In such systems, it can be difficult or even impossible
to calibrate the positions of the lights, so glint-free ap-
proaches must be used.

We present a model-base gaze estimation approach
that does not require any interactive calibration from
the user, only requires a single camera, and does not
require calibrated lights for glint information. Instead,
we only require multiple images of the pupil from a
head-mounted camera.

We evaluate our approach using a new dataset, cre-
ated by rendering a highly-realistic 3D model of the eye
and surrounding areas. Using a rendering rather than
real video allows us to calculate the ground truth with
perfect accuracy, rather than relying on another form
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Figure 1. An example of a cheap, head-mounted eye tracker,
build in our lab, which uses webcams and roughly positioned
IR LED lighting.

of measurement. We also discuss the limitations of a
fully-automatic system.

Our approach

Our approach is based on the projective geometry of
the pupil. After detecting the pupil as an ellipse in the
image, we approximate the orientation and position of
the original circular pupil contour in 3D. By combin-
ing information from multiple frames, we build an eye
model based on assumptions on how the motion of the
pupil is constrained.

In our model, we do not consider the offset between
the optical axis and the visual axis— that is, we calcu-
late the gaze vector rather than the sight vector. While
this means that the model cannot be directly used to
calculate the point of regard, the offset between the
gaze and sight vectors is constant per individual, and
can either be approximated by anthropomorphic aver-
ages or trivially be found using a single point calibra-
tion.

We also do not consider head motion. Since we as-
sume that the camera is head-mounted, we can operate
entirely in camera space—this means that the gaze vec-
tor returned is relative to the camera. For a gaze-track-
ing system that requires gaze in world space, we expect
the camera’s position and orientation to be externally
tracked. The transformation from camera space would
simply amount to a single rotation and translation.

Our approach proceeds as follows. We first detect
the pupil ellipse in each image independently. We
use our pupil detection algorithm (Świrski, Bulling, &
Dodgson, 2012), which gives us a pupil ellipse (fig. 2)
and a set of edge points from which the pupil was cal-
culated.

Once we have the pupil ellipses in all the images, we
independently unproject each one as a circle in 3D. We
then combine the information from these 3D circles to

Figure 2. The pupil ellipse, in magenta, detected by our pupil
tracking algorithm (Świrski et al., 2012)

create a rough model of the pupil motion. Finally, we
optimise the model parameters to best fit the original
image data.

Our approach of using a 3D eye model combined
with an optimisation step is similar to Tsukada et al.
(2011). However, this work manually sets the 3D eye
model parameters and only refines the per-frame pupil
parameters, whereas we automatically estimate and re-
fine all of the parameters.

We describe the stages of our approach in detail in
the following sections.

Two-circle unprojection

The first stage of our algorithm ‘unprojects’ each
pupil ellipse into a 3D pupil circle — that is, we find
a circle whose projection is the given ellipse. Many
approaches simplify this unprojection by assuming
a scaled orthogonal or weak perspective projection
model, where the unprojection can be calculated using
simple trigonometry (Schnieders, Fu, & Wong, 2010;
Tsukada et al., 2011). However, weak perspective is
only an approximation to full perspective, and it is
valid only for distant objects that lie close to the opti-
cal axis of the camera. When the pupil is close to the
camera, or far away from the optical axis of the cam-
era, the weak perspective approximation begins to fail.
Instead, we assume a full perspective projection with a
pinhole camera model.

Under a a full perspective projection model, the
space of possible projections of the pupil circle can be
seen as a cone with the pupil circle as the base and cam-
era focal point as the vertex. The pupil ellipse is then
the intersection of this cone with the image plane.

This means that the circular unprojection of the el-
lipse can be found by reconstructing this cone, using
the ellipse as the base. The circular intersection of this
cone will then be the pupil circle (fig. 3). We find the
circular intersection using the method of Safaee-Rad,
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Figure 3. We unproject the pupil ellipse by constructing a
cone through the camera focal point and pupil ellipse on
the image plane. We then find circular intersections of this
cone— at any given distance, there are two solutions for the
intersection (green and red).

Tchoukanov, Smith, and Benhabib (1992). This unpro-
jection operation gives us a pupil position, a gaze vec-
tor, and a pupil radius

pupil circle = (p,n,r) (1)

If necessary, the gaze is flipped so that it points ‘to-
wards’ the camera.

There are two ambiguities when unprojecting an el-
lipse. The first is a distance–size ambiguity; any per-
spective unprojection from 2D into 3D is ill-posed, and
there is no way to tell if the pupil is small and close,
or large and far away. We resolve this by setting r to an
arbitrary value in this stage, and finding the true radius
in later stages of the algorithm.

The second is that there are two solutions when
finding the fixed-size circular intersection of the con-
structed cone, symmetric about the major axis of the el-
lipse, arising from solving a quadratic (shown in green
and red in figure 3). At this stage of the algorithm, we
do not disambiguate between these two cases, and re-
turn both solutions, denoted as

(p+,n+,r),(p−,n−,r) (2)

Model initialisation
To estimate the gaze, we consider only the pupil ori-

entation and location, and so we do not require a full
model of the eye. In fact, we wish to model only the
pupil and its range of motion, and not the iris or the
eyeball itself.

Therefore, instead of modelling the pupil as a hole
in the iris of a spherical eyeball, we model it as a disk
laying tangent to a rotating sphere. This sphere has the
same centre of rotation as the eyeball. The gaze is then

the normal of the disk, or equivalently a radial vector
from the sphere centre to the pupil centre.

Sphere centre estimate
For each eye image, we consider the pupil circle

(pi,ni,ri), where i is the index of the image. Given our
pupil model, we wish to find a sphere which is tangent
to every pupil circle. Since each pupil circle is tangent
to the sphere, the normals of the circles, ni, will be ra-
dial vectors of the sphere, and thus their intersection
will be the sphere’s centre.

However, there are two problems with this ap-
proach, corresponding to the two ambiguities in the
ellipse unprojection. Firstly, we do not know the true
3D position of each pupil circle, only the position un-
der the assumption that the pupil is of a certain size. If
the pupil radius ri did not change between frames, as
the relative unprojected positions would be correct up
to scale. This is the case for approaches which use the
iris contour rather than the pupil contour. However,
due to pupil dilation, we cannot make this assumption.
Secondly, we have two circles for each ellipse, rather
than one, and we do not know which one of the two
circles— (p+

i ,n
+
i ,r) or (p−i ,n

−
i ,ri)— is correct.

We resolve both of these problems by considering
the intersection of projected normal vectors ñ±i in 2D
image-space rather than 3D world-space. In this case,
the distance–size ambiguity disappears by construc-
tion, as we are using the same projection which orig-
inally introduced it. The two-circle ambiguity also dis-
appears: both projected normal vectors are parallel:

ñ+
i ∝ ñ−i . (3)

Similarly, the line between the two projected circle cen-
tres, p̃+

i and p̃−i , is parallel to ñ±i . This means that:

∃s, t ∈ R. p̃+
i = p̃−i + sñ+

i = p̃−i + tñ+
i . (4)

which means that we can arbitrarily choose either one
of the two solutions for this stage.

We thus find the projected sphere centre c̃ by calcu-
lating an intersection of lines. These lines correspond
to the projected gaze: each line passes through the pro-
jected pupil centre and lies parallel to the projected
pupil normal (figure 4). Formally, we find the inter-
section of the set of lines Li, where

Li = { (x,y) = p̃i + sñi | s ∈ R } (5)

Since there may be numerical, discretisation or mea-
surement error in these vectors, the lines will almost
certainly not intersect at a single point. We instead find
the point closest to each line in a least-squares sense, by
calculating

c̃ =

(
∑

i
I− ñiñT

i

)−1(
∑

i
(I− ñiñT

i )p̃i

)
(6)
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Figure 4. To find the centre of the sphere, we intersect the pro-
jected gaze vectors of each pupil. The projected sphere centre
is estimated to be near the intersection of these lines.

We then unproject the projected sphere centre c̃ to
find the 3D sphere centre c. Again, there is a size–dis-
tance ambiguity in the unprojection, which we resolve
by fixing the z coordinate of c.

Sphere radius estimate
Once we have the projected sphere centre c̃, we note

that each pupil’s normal ni has to point away from the
sphere centre c:

ni · (c−pi)> 0 (7)

and therefore the projected normal ñi has to point away
from the projected centre c̃:

ñi · (c̃− p̃i)> 0 (8)

Furthermore, since they are symmetric about the major
axis of the ellipse ñ+

i and ñ−i point in opposite direc-
tions, which means that one will point towards c̃, and
one will point away from it. This allows us to disam-
biguate between the two-circle problem, by choosing
the circle (pi,ni,ri) whose projected normal ñi points
away from c̃.

We can now use the unprojected pupils to estimate
the sphere radius R. Since each pupil lies on the sphere,
this should be the distance between pi and the c—how-
ever once again, due to the distance–size ambiguity in
the pupil unprojection, and the potentially changing
actual pupil size, we cannot use pi directly.

Instead, we consider a different candidate pupil cen-
tre p̂i, which is another possible unprojection of p̃i, but
potentially at a different distance. This means that this
point has to lie somewhere along the line of possible
unprojections of p̃i, which is the line passing through
pi and the camera centre.

Figure 5. For each candidate pupil circle (red), we consider
the possible unprojections of its centre pi (orange line). We
intersect this line with the gaze line from the sphere centre
(blue line) to find p̂i (orange cross), which is the centre of a
circle that lies tangent to the sphere (dashed red). The dis-
tance from the sphere centre (blue cross) to p̂i is the sphere
radius.

We want the circle (p̂i,ni, r̂i) to be consistent with our
assumptions: that the circle lies tangent to the sphere
whose centre is c. This means that we want ni to be
parallel to the line from c to p̂i.

Given these two constraints, p̂i can be found by in-
tersecting the line from c to p̂i — the gaze line from the
centre of the sphere— with the line passing through pi
and the camera centre— the projection line of pi (figure
5). Since lines in 3D almost certainly do not cross, we
once again find the least-squares intersection point.

The sphere radius R is then calculated by finding the
mean distance from the sphere centre to each pupil cen-
tre.

R = mean({ Ri = ‖p̂i− c‖ | ∀i }) (9)

Consistent pupil estimate
Given the sphere, calculated above, we want the

pupil circles to lay tangent to the surface. For each
pupil, we wish for its centre to lie on the sphere, and
for its projection to be p̃i. Due to the distance–size am-
biguity, it is almost certain that the circle (pi,ni,ri) will
not lie on the sphere. We therefore want to calculate a
new circle, (p′i,n′i,r′i), where

p′i = spi (10)

p′i = c+Rn′i (11)
r′i
z′i
=

ri

zi
(12)

The last of these defines r′i as ri scaled by perspective.
To find p′i, we wish to find a value of s such that spi

lies on the surface of the sphere (c,R), which can be
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calculated as a line–sphere intersection. This gives two
solutions, of which we take the nearest. n′i and r′i are
then trivially calculated. Note that as part of this pro-
cess, we discard the original gaze vector ni.

Once these steps are taken, we have a rough model
of the pupil motion, where every pupil circle lies tan-
gent to the surface of a certain sphere.

Model optimisation

We parametrise our model using 3+3N parameters,
where N is the number of pupil images. These param-
eters represent the 3D position of the sphere, c, and for
each pupil, its position on the sphere (as two angles, θ

and ψ) and its radius r.
From the previous initialisation steps, we obtain a

set of parameters approximating the original detected
pupil ellipses. We then wish to optimise these parame-
ters so that the projected pupil ellipses best fit the orig-
inal eye image data. The result of the optimisation is a
set of circles in 3D, all of which are constrained to lie
tangent to a sphere. The normals of these circles corre-
spond to the gaze vector of the user, and the projected
ellipses are a good fit for the pupils in the images.

We investigate two metrics for defining the “best fit”.
The first is an region comparison, where we attempt to
maximise the contrast between the inside and outside
of each pupil. The second is a point distance, where we
attempt to minimise the distance of each pupil ellipse
from the pupil edge pixels found by the pupil tracker.

Region contrast maximisation
The first metric we use is a region contrast metric.

Simply put, it requires that the pupil ellipse be dark on
the inside and light on the outside, and for the differ-
ence in brightness of the inside and outside to be max-
imal.

For each pupil image, we consider a thin band
around the interior and exterior of the pupil ellipse, R+

and R− (figure 6). These are defined as

R+ =
{

x
∣∣ x ∈ R2,0 < d(x)≤ w

}
(13)

R− =
{

x
∣∣ x ∈ R2,−w < d(x)≤ 0

}
(14)

where w is the width of the band (we use w = 5px),
and d(x) is a signed distance function of a point to the
ellipse edge, positive inside the ellipse and negative
outside. As calculating the distance of a point to the
ellipse edge is non-trivial, we use an approximate dis-
tance function, described in the later “Ellipse distance”
section.

We then find the mean pixel value of each region –
that is, we find

µ± = mean
({

I(x)
∣∣ x ∈ R±

})
(15)

where I(x) is the image value at x.

Figure 6. To optimise the model, we consider a thin band
around the interior (R+) and exterior (R−) of each pupil el-
lipse. We maximise contrast by maximising the difference in
the average pixel value inside these two regions.

This can be rewritten as a weighted average

µ± =

∫
B±(d(x)) · I(x) dx∫

B±(d(x)) dx
(16)

(17)

where

B+(t) =
{

1 if 0 < t ≤ w
0 otherwise

(18)

B−(t) =
{

1 if −w < t ≤ 0
0 otherwise

(19)

so that B±(d(x)) is 1 when x ∈ R±, and 0 otherwise.
B±(t) can then be defined using the Heaviside func-

tion

B+(t) = H(t)−H(t−w) (20)

B−(t) = H(t +w)−H(t) (21)

This gives a closed definition of “mean pixel value
in the region”. Our contrast metric per ellipse is then
simply

E = µ−−µ+ (22)

which increases when the interior region becomes
darker, or the exterior region becomes lighter. We then
maximise the contrast over all ellipses, that is, for the
parameter vector p we find

argmax
p

∑
i

Ei (23)

We maximise this using gradient ascent — specifically,
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method (Nocedal & Wright, 1999).
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Figure 7. The soft step function, Hε.

Since we are dealing with discrete pixels rather than
a continuous image space, the above weighted integral
becomes a weighted sum over pixels. This introduces
discretisation issues in the differentiation, as the differ-
ential of H(t) is 0 everywhere except at t = 0.

To ameliorate these issues, we take the approach of
Zhao, Chan, Merriman, and Osher (1996) of using a
regularised version of the Heaviside function, Hε(t),
which provides a smooth, continuous unit step rather
than an immediate step. We use smootherstep (Ebert,
Musgrave, Peachey, Perlin, & Worley, 2002):

Hε(t) =


1 if t ≥ ε

0 if t ≤−ε

6
( t+ε

2ε

)5−15
( t+ε

2ε

)4
+10

( t+ε

2ε

)3 otherwise
(24)

which defines a sigmoid for t between −ε and ε, and
behaves like the Heaviside function otherwise (figure
7). We use ε = 0.5px. Note that limε→0 = Hε(t).

It is interesting to note what happens as w tends to 0.
The integrals over B+(t) and B−(t) tend towards path
integrals over the ellipse contour, and so:

lim
w→0

∫
B±(d(x)) dx =

∮
1 dt (25)

lim
w→0

∫
B±(d(x)) · I(x) dx =

∮
I(x(t)) dt (26)

This means that µ+ and µ− tend towards being the av-
erage value of the pixels along the circumference of the
ellipse C:

lim
w→0

µ± =
1
C

∮
I(x(t)) dt (27)

As µ+ and µ− approach the ellipse boundary from op-
posite “sides”, their difference (scaled by w) can be in-
terpreted as a differential of this average value across

Figure 8. The edge pixels for a detected pupil ellipse. We
wish to minimise the distance of all of these edge points to
their respective ellipses.

the ellipse boundary:

lim
w→0

E
w

= lim
w→0

µ−−µ+

w

=
∂

∂r
1
C

∮
I(x(t)) dt

(28)

This bears a strong resemblance to the integrodifferen-
tial operator used by Daugman for pupil and iris detec-
tion (Daugman, 2004).

Edge distance minimisation
The second metric we use is an edge pixel distance

minimisation. From the pupil detection, we obtain a
list of edge pixel locations which were used to define
the given pupil ellipse (fig. 8). Then, for each repro-
jected pupil ellipse, we wish to minimise the distances
to the corresponding edge pixels.

We minimise these distances using a least-squares
approach. For each ellipse, we consider the set of edge
pixels E = {e}. We wish to minimise the squared dis-
tance of each edge pixel to the ellipse edge; that is, we
wish to minimise

∑
e∈E

d(e)2 (29)

where d(x) is a signed distance function of a point x to
the ellipse edge, defined in the next section.

We then wish to do optimise the parameters to min-
imise this distance over all ellipses

argmax
p

∑
i

∑
e∈Ei

d(e)2 (30)

Note that this is a minimisation of a sum of squares.
Thus, we can use a least squares minimisation algo-
rithm— we use the Levenberg-Marquadt implementa-
tion in Ceres Solver, a C++ least squares minimisation
library (Agarwal & Mierle, n.d.).
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Ellipse distance
Both metrics above require a function d(x) which is

a signed distance of the point x to the the ellipse edge,
positive inside the ellipse an negative outside.

Calculating the true Euclidean distance of a point to
an ellipse is computationally expensive, requiring the
solution of a quartic. Instead, we transform the image
space so that the ellipse becomes the unit circle, find the
signed distance to this circle, and scale by the major ra-
dius of the ellipse to get an approximate pixel distance.

While this does not give a true Euclidean distance, it
is a good approximation for ellipses with low eccentric-
ity, and we have found it to be sufficient for our needs.
It is also very efficient to calculate this distance over a
grid of pixels, as the transformation can be represented
by a matrix multiplication, and this matrix can be pre-
computed for each ellipse rather than being computed
for every pixel.

Automatic differentiation
For both of the above optimisations, we need to cal-

culate the gradient of the metric with respect to the
original parameters. To avoid both having to calculate
the gradient function by hand, and the inaccuracy of
numeric differentiation, we employ automatic differen-
tiation (Rall, 1981).

Notice that any implementation of a function will,
ultimately, be some composition of basic operations,
such as addition, multiplication or exponentiation, or
elementary functions such as sin, cos or log. For any
of these, we can already calculate the derivative of any
value trivially; by repeatedly applying the chain rule,
we can then calculate the value of the derivative of any
arbitrary composition of these functions.

Automatic differentiation works based on this obser-
vation. Every basic operation or elementary function is
redefined to take a pair of inputs: a value and its differ-
entials. These functions are then rewritten to simulta-
neously compute both the output value and its differ-
entials, applying the chain rule to the input differentials
where appropriate. For example, the sin function

f (x) = sin(x) (31)

is rewritten as the simultaneous calculation of value
and gradient:

f
(〈

x,
dx
d p

〉)
=

〈
sin(x),cos(x)

dx
d p

〉
(32)

Thus, for every function, the values of the differ-
entials of that function can be calculated at the same
time as the value of the function itself, by repeating the
above reasoning. In particular, this can be done for our
metric functions. Each parameter is initialised with a
differential of 1 with respect to itself, and 0 with re-
spect to all other differentials; passing these annotated

parameters through the metric function gives a vector
of differentials of the function with respect to each pa-
rameter. This can be implemented simply in C++ using
operator overloading and function overloading.

Note that, while the individual basic function differ-
entiations are performed manually (this is, it is the pro-
grammer who specifies that d

d p sin(x) = cos(x) dx
d p ), this is

not symbolic differentiation. This is because symbolic
differentiation operates on a symbolic expression of the
entire function, and returns a symbolic expression de-
scribing the differential, whereas automatic differentia-
tion only operate on the values of the differential at any
given point.

Performing the differentiation as described above
would increase the runtime by O(3+3N), as we would
have to calculate the differential with respect to all
O(3+3N) parameters. However, the bulk of each met-
ric calculation is performed on each pupil indepen-
dently. Since pupils are independent of each other —
that is, each pupil only depends on the 3 sphere pa-
rameters and its own 3 parameters— we can pass only
the 6 relevant parameters to the part of the calculation
dealing with only that pupil, hence only imparting a
constant runtime increase for the bulk of the calcula-
tion.

Evaluation
We evaluate our algorithm by calculating the gaze

error and pupil reprojection error on a ground truth
dataset. We evaluate both optimisation metrics, and
compare them to naïve ellipse unprojection.

Ground truth dataset
To evaluate our algorithm, we chose to work en-

tirely under simulation, so that we would have perfect
ground truth data. We took a model of a head from the
internet (Holmberg, 2012), and modified it slightly in
Blender to add eyelashes, control of pupil dilation, and
changed the texture to be more consistent with infra-
red eye images. We then rendered an animation of the
eye looking in various directions, with the pupil dilat-
ing and constricting several times (fig. 9). This dataset,
as well as the 3D model used to generate it, are publi-
cally available1.

It is often argued that simulation can never accu-
rately emulate all the factors of a system working in
real life, however we argue that simulated data is per-
fectly appropriate for evaluating this sort of system.

Firstly, using simulated images gives a fully con-
trolled environment; in particular measurements of
gaze direction, pupil size or camera position can be
specified precisely. In real images, on the other hand,
this information is obtained by additional measure-
ment, by using another system, assumptions on where

1 http://www.cl.cam.ac.uk/research/rainbow/
projects/eyemodelfit/
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Figure 9. Examples of rendered images from our ground truth dataset.

Figure 10. A comparison of the angular gaze error, in degrees,
of naïve unprojection and our approach.

Figure 11. A comparison of the pupil ellipse reprojection er-
ror, in pixels, of the pupil tracker input and our approach.

Table 1
Mean and standard deviation of the angular gaze error.

Mean Std. dev.
Ellipse Unprojection 3.5558 4.2385
Unoptimised Model 2.6890 1.5338

Region Contrast Maximisation 2.2056 0.1629
Edge Distance Minimisation 1.6831 0.3372

Table 2
Mean and standard deviation of the ellipse error.

Mean Std. dev.
Pupil Tracker 3.9301 5.8056

Unoptimised Model 4.4420 4.9157
Region Contrast Maximisation 2.1194 1.1354

Edge Distance Minimisation 2.7474 2.7615

the user is looking or manual labelling. All of these are
prone to error, while the ground truth from simulation
data is perfect by definition.

Secondly, we argue that modern image rendering
techniques are closing the gap between simulation and
real life. Our simulation includes eyelashes, skin de-
formation, iris deformation, reflections, shadows and
depth-of-field blur. Furthermore, future work on ren-
dered datasets could include further simulation of
real-world variables, such as varying eye shapes, eye
colours, different lighting conditions, environmental
reflections, or motion blur. We believe that this is an
area with vast potential for future work.

In short, we argue that, while simulation is not per-
fect, the quality of simulated images is approaching
that of real images, and the benefits of perfect ground
truth data far outweigh the issues of simulation.

Results
We measured the angular gaze error of our ap-

proach, using both optimisation metrics, and compared
it against the error from simple ellipse unprojection,
and the error of the model before optimisation. Figure
10 shows a graph of these results, and Table 1 shows a
summary.

The simple ellipse unprojection had, as expected, the
highest gaze error. We found that this approach par-
ticularly suffers when the pupil fit is poor, as there is
no regularisation of the resulting gaze vector (fig. 12).
This results in significant gaze errors, as high as 29◦.
This gaze data would not be suitable for eye tracking
without some form of smoothing or outlier rejection.

We were surprised to find that an unoptimised ver-
sion of the model gave good gaze data, both in terms of
mean and variance. This is the model after only the ini-
tialisation, before applying any form of optimisation.

8
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Figure 12. Example of a poor initial pupil ellipse fit, with a
gaze error of 29.1◦.

We believe that this is in large part due to a good ini-
tialisation of the sphere centre and radius, and the last
stage of the initialisation which discards gaze informa-
tion and only uses pupil centre information. While the
ellipse shape may be wrong, and thus give bad gaze
data, the ellipse does tend to be in vaguely the right
area. By discarding the gaze in the latter stage of the
initialisation, we obtain a gaze estimate based on the
sphere radial vector rather than the ellipse shape, and
this tends to be more reliable.

However, the optimisation stage reduces the error
further. We found that on this dataset, the edge dis-
tance minimisation gave a lower mean gaze error than
the region contrast maximisation (Table 1). We are not
certain why this is the case, however we suspect that
it is a case of over-optimisation. The lower variance of
the region contrast maximisation gaze error supports
this hypothesis.

We also investigated the reprojection error of the
pupils, in pixels. We used the Hausdorff distance, as
described by Świrski et al. (2012), to compare projec-
tions of the pupils against the ground truth. We also
calculated the ellipse fit error of the output of the initial
pupil tracking stage. Figure 11 shows a graph of these
results, and Table 2 shows a summary.

We were not surprised that the unoptimised model
had higher reprojection error than the pupil tracker. In-
terestingly, however, the optimised model had lower
reprojection error than the pupil tracker, for both op-
timisation metrics. It is not immediately obvious that
this should be the case; the pupil tracker is designed
only to find and fit the pupil ellipse, whatever size or
shape it may be, while our model imposes additional
constraints on the possible shapes and locations of the
pupils. Thus, we would expect the pupil tracker to
over-fit the pupil ellipse. However, we have found that,
in the case of bad pupil information such as occlusions
or weak edges, the constraints on the optimised model
provide additional information where the pupil tracker

Figure 13. The ellipse fit from Figure 12 after region contrast
maximisation. The ellipse reprojection error is 1.77 px, and
the gaze error is 2.25◦. The dark green circle is the outline of
the optimised model’s sphere.

Figure 14. The ellipse fit from Figure 12 after edge distance
minimisation. Note that in the original pupil fit, the left side
of the ellipse was a good fit, while the right side was a poor
fit. This is also the case in the optimised ellipse, as the quality
of the edge distance minimisation is limited by the output
of the pupil tracker. However, the optimised ellipse is still a
better fit due to to the constraints imposed by the model and
the other images in the dataset.

has none, and thus limit the magnitude of the error (fig.
13 and 14).

Of the two optimisation metrics, we found that the
region contrast maximisation had a smaller mean re-
projection error than the edge distance minimisation,
as well as a far smaller variance. This is because the
edge distance minimisation metric uses the output of
the pupil tracker; namely, the list of edge points used
to fit the original ellipse. When there is a bad pupil
fit, this information is poor, and so the edge distance
minimisation will also give poor results (fig. 14). The
region contrast minimisation, on the other hand, works
directly on the image pixels, and so is independent of
the pupil tracker (fig. 13).

9
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These pupil reprojection results present an interest-
ing insight when combined with the gaze error results.
Although the region contrast maximisation has a lower
reprojection error than the edge distance minimisation,
it has a higher gaze angle error. Similarly, the pupil
tracking has a lower ellipse error than the reprojected
unoptimised model, yet the unprojected ellipses have a
higher gaze error. It appears therefore that an improve-
ment in pupil ellipse fitting does not necessarily cor-
relate with an improvement in gaze accuracy, and that
the dominant factor in establishing a good gaze vector
is finding the correct sphere centre rather than a good
fit of the pupil contour.

Conclusion

We have presented a novel algorithm for fitting a 3D
pupil motion model to a sequence of eye images, with
a choice of two different metrics for fitting the model.
Our approach does not require user calibration, cali-
brated lighting, or any prior on relative eye position or
size, and can estimate gaze to an accuracy of approxi-
mately 2◦ (see Table 1).

We have also introduced a novel eye image data set,
rendered from simulation, which provides a perfect
ground truth for pupil detection and gaze estimation.
We have evaluated our algorithm on this dataset, and
have found it to be superior in terms of gaze angle er-
ror to previous approaches which did not constrain the
pupil motion. We have also found that the 2D pupil el-
lipses calculated as a side-effect of the model fitting are
superior to the ellipses found by current pupil track-
ing algorithms, but that a better ellipse fit does not nec-
essarily correlate with better gaze estimation, and that
even poor ellipse fits result in a surprisingly good gaze
vector.

We believe that our algorithm, in particular the re-
gion contrast minimisation optimisation, is close to the
limit of how good an ellipse fitting approach can be,
especially given issues such as depth-of-field blur or
the fact that real pupils are not perfectly circular. De-
spite this, the gaze error is relatively high compared
to calibration-based approaches. Therefore, we believe
that our algorithm approaches the limit of accuracy
one can obtain purely from a geometric analysis of the
pupil, and any significant improvements in gaze accu-
racy can only be obtained through collecting additional

data (such as user calibration) rather than by improv-
ing the pupil ellipse fit.

Although our approach does not achieve the gaze
accuracy of systems that include user calibration, our
approach is accurate enough for approximate gaze es-
timation. Furthermore, our pupil motion model could
be used as part of a user-calibrated gaze estimation; as
an initialisation, a first pass approximation, or for reg-
ularisation.
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