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1 A simple formulation of First-Order Logic

The subsequent theory development illustrates single-sorted intuitionistic
first-order logic with equality, formulated within the Pure framework.
theory First_Order_Logic

imports Pure
begin

1.1 Abstract syntax
typedecl i
typedecl o

judgment Trueprop :: o ⇒ prop (‹_› 5 )

1.2 Propositional logic
axiomatization false :: o (‹⊥›)

where falseE [elim]: ⊥ =⇒ A

axiomatization imp :: o ⇒ o ⇒ o (infixr ‹−→› 25 )
where impI [intro]: (A =⇒ B) =⇒ A −→ B

and mp [dest]: A −→ B =⇒ A =⇒ B

axiomatization conj :: o ⇒ o ⇒ o (infixr ‹∧› 35 )
where conjI [intro]: A =⇒ B =⇒ A ∧ B

and conjD1 : A ∧ B =⇒ A
and conjD2 : A ∧ B =⇒ B

theorem conjE [elim]:
assumes A ∧ B
obtains A and B
〈proof 〉
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axiomatization disj :: o ⇒ o ⇒ o (infixr ‹∨› 30 )
where disjE [elim]: A ∨ B =⇒ (A =⇒ C ) =⇒ (B =⇒ C ) =⇒ C

and disjI1 [intro]: A =⇒ A ∨ B
and disjI2 [intro]: B =⇒ A ∨ B

definition true :: o (‹>›)
where > ≡ ⊥ −→ ⊥

theorem trueI [intro]: >
〈proof 〉

definition not :: o ⇒ o (‹¬ _› [40 ] 40 )
where ¬ A ≡ A −→ ⊥

theorem notI [intro]: (A =⇒ ⊥) =⇒ ¬ A
〈proof 〉

theorem notE [elim]: ¬ A =⇒ A =⇒ B
〈proof 〉

definition iff :: o ⇒ o ⇒ o (infixr ‹←→› 25 )
where A ←→ B ≡ (A −→ B) ∧ (B −→ A)

theorem iffI [intro]:
assumes A =⇒ B

and B =⇒ A
shows A ←→ B
〈proof 〉

theorem iff1 [elim]:
assumes A ←→ B and A
shows B
〈proof 〉

theorem iff2 [elim]:
assumes A ←→ B and B
shows A
〈proof 〉

1.3 Equality
axiomatization equal :: i ⇒ i ⇒ o (infixl ‹=› 50 )

where refl [intro]: x = x
and subst: x = y =⇒ P x =⇒ P y
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theorem trans [trans]: x = y =⇒ y = z =⇒ x = z
〈proof 〉

theorem sym [sym]: x = y =⇒ y = x
〈proof 〉

1.4 Quantifiers
axiomatization All :: (i ⇒ o) ⇒ o (binder ‹∀ › 10 )

where allI [intro]: (
∧

x. P x) =⇒ ∀ x. P x
and allD [dest]: ∀ x. P x =⇒ P a

axiomatization Ex :: (i ⇒ o) ⇒ o (binder ‹∃ › 10 )
where exI [intro]: P a =⇒ ∃ x. P x

and exE [elim]: ∃ x. P x =⇒ (
∧

x. P x =⇒ C ) =⇒ C

lemma (∃ x. P (f x)) −→ (∃ y. P y)
〈proof 〉

lemma (∃ x. ∀ y. R x y) −→ (∀ y. ∃ x. R x y)
〈proof 〉

end

2 Foundations of HOL
theory Higher_Order_Logic

imports Pure
begin

The following theory development illustrates the foundations of Higher-
Order Logic. The “HOL” logic that is given here resembles [2] and its
predecessor [1], but the order of axiomatizations and defined connectives has
be adapted to modern presentations of λ-calculus and Constructive Type
Theory. Thus it fits nicely to the underlying Natural Deduction framework
of Isabelle/Pure and Isabelle/Isar.

3 HOL syntax within Pure
class type
default_sort type

typedecl o
instance o :: type 〈proof 〉
instance fun :: (type, type) type 〈proof 〉

judgment Trueprop :: o ⇒ prop (‹_› 5 )
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4 Minimal logic (axiomatization)
axiomatization imp :: o ⇒ o ⇒ o (infixr ‹−→› 25 )

where impI [intro]: (A =⇒ B) =⇒ A −→ B
and impE [dest, trans]: A −→ B =⇒ A =⇒ B

axiomatization All :: ( ′a ⇒ o) ⇒ o (binder ‹∀ › 10 )
where allI [intro]: (

∧
x. P x) =⇒ ∀ x. P x

and allE [dest]: ∀ x. P x =⇒ P a

lemma atomize_imp [atomize]: (A =⇒ B) ≡ Trueprop (A −→ B)
〈proof 〉

lemma atomize_all [atomize]: (
∧

x. P x) ≡ Trueprop (∀ x. P x)
〈proof 〉

4.0.1 Derived connectives
definition False :: o

where False ≡ ∀A. A

lemma FalseE [elim]:
assumes False
shows A
〈proof 〉

definition True :: o
where True ≡ False −→ False

lemma TrueI [intro]: True
〈proof 〉

definition not :: o ⇒ o (‹¬ _› [40 ] 40 )
where not ≡ λA. A −→ False

lemma notI [intro]:
assumes A =⇒ False
shows ¬ A
〈proof 〉

lemma notE [elim]:
assumes ¬ A and A
shows B
〈proof 〉

lemma notE ′: A =⇒ ¬ A =⇒ B
〈proof 〉
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lemmas contradiction = notE notE ′ — proof by contradiction in any order

definition conj :: o ⇒ o ⇒ o (infixr ‹∧› 35 )
where A ∧ B ≡ ∀C . (A −→ B −→ C ) −→ C

lemma conjI [intro]:
assumes A and B
shows A ∧ B
〈proof 〉

lemma conjE [elim]:
assumes A ∧ B
obtains A and B
〈proof 〉

definition disj :: o ⇒ o ⇒ o (infixr ‹∨› 30 )
where A ∨ B ≡ ∀C . (A −→ C ) −→ (B −→ C ) −→ C

lemma disjI1 [intro]:
assumes A
shows A ∨ B
〈proof 〉

lemma disjI2 [intro]:
assumes B
shows A ∨ B
〈proof 〉

lemma disjE [elim]:
assumes A ∨ B
obtains (a) A | (b) B
〈proof 〉

definition Ex :: ( ′a ⇒ o) ⇒ o (binder ‹∃ › 10 )
where ∃ x. P x ≡ ∀C . (∀ x. P x −→ C ) −→ C

lemma exI [intro]: P a =⇒ ∃ x. P x
〈proof 〉

lemma exE [elim]:
assumes ∃ x. P x
obtains (that) x where P x
〈proof 〉
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4.0.2 Extensional equality
axiomatization equal :: ′a ⇒ ′a ⇒ o (infixl ‹=› 50 )

where refl [intro]: x = x
and subst: x = y =⇒ P x =⇒ P y

abbreviation not_equal :: ′a ⇒ ′a ⇒ o (infixl ‹ 6=› 50 )
where x 6= y ≡ ¬ (x = y)

abbreviation iff :: o ⇒ o ⇒ o (infixr ‹←→› 25 )
where A ←→ B ≡ A = B

axiomatization
where ext [intro]: (

∧
x. f x = g x) =⇒ f = g

and iff [intro]: (A =⇒ B) =⇒ (B =⇒ A) =⇒ A ←→ B
for f g :: ′a ⇒ ′b

lemma sym [sym]: y = x if x = y
〈proof 〉

lemma [trans]: x = y =⇒ P y =⇒ P x
〈proof 〉

lemma [trans]: P x =⇒ x = y =⇒ P y
〈proof 〉

lemma arg_cong: f x = f y if x = y
〈proof 〉

lemma fun_cong: f x = g x if f = g
〈proof 〉

lemma trans [trans]: x = y =⇒ y = z =⇒ x = z
〈proof 〉

lemma iff1 [elim]: A ←→ B =⇒ A =⇒ B
〈proof 〉

lemma iff2 [elim]: A ←→ B =⇒ B =⇒ A
〈proof 〉

4.1 Cantor’s Theorem

Cantor’s Theorem states that there is no surjection from a set to its powerset.
The subsequent formulation uses elementary λ-calculus and predicate logic,
with standard introduction and elimination rules.
lemma iff_contradiction:

assumes ∗: ¬ A ←→ A
shows C
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〈proof 〉

theorem Cantor : ¬ (∃ f :: ′a ⇒ ′a ⇒ o. ∀A. ∃ x. A = f x)
〈proof 〉

4.2 Characterization of Classical Logic

The subsequent rules of classical reasoning are all equivalent.
locale classical =

assumes classical: (¬ A =⇒ A) =⇒ A
— predicate definition and hypothetical context

begin

lemma classical_contradiction:
assumes ¬ A =⇒ False
shows A
〈proof 〉

lemma double_negation:
assumes ¬ ¬ A
shows A
〈proof 〉

lemma tertium_non_datur : A ∨ ¬ A
〈proof 〉

lemma classical_cases:
obtains A | ¬ A
〈proof 〉

end

lemma classical_if_cases: classical
if cases:

∧
A C . (A =⇒ C ) =⇒ (¬ A =⇒ C ) =⇒ C

〈proof 〉

5 Peirce’s Law

Peirce’s Law is another characterization of classical reasoning. Its statement
only requires implication.
theorem (in classical) Peirce ′s_Law: ((A −→ B) −→ A) −→ A
〈proof 〉

6 Hilbert’s choice operator (axiomatization)
axiomatization Eps :: ( ′a ⇒ o) ⇒ ′a

where someI : P x =⇒ P (Eps P)
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syntax _Eps :: pttrn ⇒ o ⇒ ′a (‹(‹indent=3 notation=‹binder SOME››SOME
_./ _)› [0 , 10 ] 10 )
syntax_consts _Eps 
 Eps
translations SOME x. P 
 CONST Eps (λx. P)

It follows a derivation of the classical law of tertium-non-datur by means of
Hilbert’s choice operator (due to Berghofer, Beeson, Harrison, based on a
proof by Diaconescu).

theorem Diaconescu: A ∨ ¬ A
〈proof 〉

This means, the hypothetical predicate classical always holds uncondition-
ally (with all consequences).
interpretation classical
〈proof 〉

thm classical
classical_contradiction
double_negation
tertium_non_datur
classical_cases
Peirce ′s_Law

end
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