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1 A simple formulation of First-Order Logic

The subsequent theory development illustrates single-sorted intuitionistic
first-order logic with equality, formulated within the Pure framework.

theory First Order_Logic
imports Pure
begin

1.1 Abstract syntax

typedecl i
typedecl o

judgment Trueprop :: o = prop (<> 5)

1.2 Propositional logic

axiomatization false :: 0o (<L)
where falseE [elim]: L = A

axiomatization imp :: 0 = 0 = o (infixr (— 25)
where impI [intro]: (A = B) = A — B
and mp [dest: A— B=— A = B

axiomatization conj :: 0 = 0 = o (infixr (\) 35)
where conjl [intro]: A= B = A A B
and conjD1: AN B= A
and conjD2: AN B= B

theorem conjE [elim]:
assumes A A B
obtains A and B

(proof)



axiomatization disj :: 0 = 0 = o (infixr «v)» 30)
where disjE [elim]: AVB—= (A= ()= (B= ()= C
and disjl! [intro]: A = AV B
and disjI2 [intro]: B— AV B

definition true :: o (<T)»)
where T =1 — |

theorem truel [intro]: T
{proof)

definition not :: 0 = o («= _» [40] 40)
where - A=4 — 1L

theorem not! [intro]: (A = 1) = - A
{proof)

theorem notE [elim]: -~ A = A = B
{proof)

definition iff :: 0 = 0 = o (infixr «— 25)
where A +— B=(A — B) A (B — A)

theorem iffI [introl:
assumes A — B
and B — A
shows A +— B

(proof)

theorem iff! [elim]:
assumes A +— B and A
shows B

(proof)

theorem iff2 [elim]:
assumes A +— B and B
shows A

(proof)

1.3 Equality

axiomatization equal :: i = i = o (infixl (=) 50)
where refl [intro]: © = x
and subst: x = y=— Pz =— Py



theorem trans [trans]: 1 =y = y =2 =z = 2
{proof)

theorem sym [sym]: z =y = y ==

(proof)

1.4 Quantifiers

axiomatization All :: (i = 0) = o (binder V) 10)
where alll [intro]: (Nz. Pz) = Vz. Pz
and allD [dest]: Vz. Pz = Pa

axiomatization Ez :: (i = 0) = o (binder «3» 10)
where ezl [intro]: P o = 3z. Pz
and ezE [elim|: 3z. Pz = (\z. Pz = C) = C

lemma (3z. P (fz)) — (3y. Py)
(proof)

lemma (3z. Vy. Rz y) — (Vy. Jz. Rz y)
(proof)

end

2 Foundations of HOL

theory Higher_Order__Logic
imports Pure
begin

The following theory development illustrates the foundations of Higher-
Order Logic. The “HOL” logic that is given here resembles [2] and its
predecessor [1], but the order of axiomatizations and defined connectives has
be adapted to modern presentations of A-calculus and Constructive Type
Theory. Thus it fits nicely to the underlying Natural Deduction framework
of Isabelle/Pure and Isabelle/Isar.

3 HOL syntax within Pure

class type
default__sort type

typedecl o
instance o :: type (proof)

instance fun :: (type, type) type (proof)

judgment Trueprop :: o = prop (<> 5)



4 Minimal logic (axiomatization)

axiomatization imp :: 0 = 0 = o (infixr (— 25)
where impl [intro]: (A = B) = A — B
and impFE [dest, trans]: A — B = A = B

axiomatization All :: (‘a = 0) = o (binder «V» 10)
where alll [intro]: (Nz. Pz) = Vz. Pz
and allE [dest]: Vz. Px = P a

lemma atomize_imp [atomize]: (A => B) = Trueprop (A — B)
{proof)

lemma atomize all [atomize]: (Nz. P x) = Trueprop (Vz. P x)
{proof)

4.0.1 Derived connectives

definition Fulse :: o
where False =V A. A

lemma FalseE [elim]:
assumes Fualse
shows A

(proof)

definition True :: o
where True = False — Fualse

lemma Truel [intro]: True

(proof)

definition not :: 0 = o (<= _» [40] 40)
where not = AA. A — Fulse

lemma notl [intro]:
assumes A = Fulse
shows — A

{proof)

lemma notE [elim]:
assumes - 4 and A
shows B

(proof)

lemma notE" A —= - A = B
(proof)



lemmas contradiction = notE notE’ — proof by contradiction in any order

definition conj :: 0 = 0 = o (infixr (\) 35)
where ANB=V(C.(A— B — (C)— C

lemma conjl [intro]:
assumes A and B
shows A A B

(proof)

lemma conjE [elim):
assumes A A B
obtains A and B

(proof)

definition disj :: 0 = 0 = o (infixr V) 30)
where AV B=V(C.(A— (C) — (B— C) — C

lemma disjI1 [intro]:
assumes A
shows A vV B

{proof)

lemma disjI2 [intro]:
assumes B
shows A vV B

{proof)

lemma disjE [elim]:
assumes A V B
obtains (a) A | (b) B
(proof)

definition Fz :: ('a = 0) = o (binder «3» 10)
where 3z. Pz =V C. V2. Pz — C) — C

lemma ezl [intro]: P a = 3. Pz
{proof)

lemma ezE [elim]:
assumes Jz. Pz
obtains (that) x where P z

(proof)



4.0.2 Extensional equality

axiomatization equal :: 'a = 'a = o (infixl <= 50)
where refl [intro]: @ = «
and subst: 1t =y =— Px = Py

abbreviation not_equal :: 'a = 'a = o (infixl <#) 50)
where z # y = - (z = y)

abbreviation iff :: 0 = 0 = o (infixr +—» 25)
where A +— B=A=2D8

axiomatization
where ext [intro]: (Nz. fr=g2) = f=yg
and iff [intro]: (A — B) —= (B=—= A) = A +— B
for fg:'a="b

lemma sym [sym]: y =z if z =y
(proof )

lemma [trans]: t =y = Py = Pz
{proof)

lemma [trans]: Pz — 2=y = Py

{proof)

lemma arg cong: fo = fyifz =y

{proof)

lemma fun_cong: fx =gz if f =g

(proof)

lemma trans [trans|: e =y = y =2 =z =2
{proof)

lemma iff1 [elim]: A +— B=— A = B

(proof)

lemma iff2 [elim]: A+— B=—= B = A
{proof)

4.1 Cantor’s Theorem

Cantor’s Theorem states that there is no surjection from a set to its powerset.
The subsequent formulation uses elementary A-calculus and predicate logic,
with standard introduction and elimination rules.

lemma iff contradiction:
assumes *: - A «— A
shows C



(proof)

theorem Cantor: = (3f :'a = 'a= 0. VA. Jz. A = fzx)
(proof)

4.2 Characterization of Classical Logic

The subsequent rules of classical reasoning are all equivalent.

locale classical =

assumes classical: (- A = A) = A

— predicate definition and hypothetical context
begin

lemma classical contradiction:
assumes - A — Fulse
shows A

(proof)

lemma double_negation:
assumes - - A
shows A

(proof)

lemma tertium_non_datur: AV = A
(proof )

lemma classical cases:
obtains A | - A

(proof)
end

lemma classical_if cases: classical
if casess N\AC. (A= C) = (A= (C)=C
(proof)

5 Peirce’s Law
Peirce’s Law is another characterization of classical reasoning. Its statement
only requires implication.

theorem (in classical) Peirce’s Law: (A — B) — A) — A
(proof)
6 Hilbert’s choice operator (axiomatization)

axiomatization Eps :: (‘a = 0) = ‘a
where somel: P x = P (Eps P)



syntax _ Eps :: pttrn = o = ‘a («(<indent=38 notation=<binder SOME»»SOME
_./_)»|0,10] 10)

syntax_ consts _ Fps = Eps

translations SOME z. P = CONST Eps (Az. P)

It follows a derivation of the classical law of tertium-non-datur by means of
Hilbert’s choice operator (due to Berghofer, Beeson, Harrison, based on a
proof by Diaconescu).

theorem Diaconescu: AV — A
(proof)

This means, the hypothetical predicate classical always holds uncondition-
ally (with all consequences).

interpretation classical
(proof)

thm classical
classical _contradiction
double__negation
tertium__non__datur
classical cases
Peirce’s Law

end
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