
Notable Examples in Isabelle/Pure

January 18, 2026

1 A simple formulation of First-Order Logic

The subsequent theory development illustrates single-sorted intuitionistic
first-order logic with equality, formulated within the Pure framework.
theory First_Order_Logic

imports Pure
begin

1.1 Abstract syntax
typedecl i
typedecl o

judgment Trueprop :: o ⇒ prop (‹_› 5)

1.2 Propositional logic
axiomatization false :: o (‹⊥›)

where falseE [elim]: ⊥ =⇒ A

axiomatization imp :: o ⇒ o ⇒ o (infixr ‹−→› 25)
where impI [intro]: (A =⇒ B) =⇒ A −→ B

and mp [dest]: A −→ B =⇒ A =⇒ B

axiomatization conj :: o ⇒ o ⇒ o (infixr ‹∧› 35)
where conjI [intro]: A =⇒ B =⇒ A ∧ B

and conjD1 : A ∧ B =⇒ A
and conjD2 : A ∧ B =⇒ B

theorem conjE [elim]:
assumes A ∧ B
obtains A and B
〈proof 〉

1

axiomatization disj :: o ⇒ o ⇒ o (infixr ‹∨› 30)
where disjE [elim]: A ∨ B =⇒ (A =⇒ C) =⇒ (B =⇒ C) =⇒ C

and disjI1 [intro]: A =⇒ A ∨ B
and disjI2 [intro]: B =⇒ A ∨ B

definition true :: o (‹>›)
where > ≡ ⊥ −→ ⊥

theorem trueI [intro]: >
〈proof 〉

definition not :: o ⇒ o (‹¬ _› [40] 40)
where ¬ A ≡ A −→ ⊥

theorem notI [intro]: (A =⇒ ⊥) =⇒ ¬ A
〈proof 〉

theorem notE [elim]: ¬ A =⇒ A =⇒ B
〈proof 〉

definition iff :: o ⇒ o ⇒ o (infixr ‹←→› 25)
where A ←→ B ≡ (A −→ B) ∧ (B −→ A)

theorem iffI [intro]:
assumes A =⇒ B

and B =⇒ A
shows A ←→ B
〈proof 〉

theorem iff1 [elim]:
assumes A ←→ B and A
shows B
〈proof 〉

theorem iff2 [elim]:
assumes A ←→ B and B
shows A
〈proof 〉

1.3 Equality
axiomatization equal :: i ⇒ i ⇒ o (infixl ‹=› 50)

where refl [intro]: x = x
and subst: x = y =⇒ P x =⇒ P y

2

theorem trans [trans]: x = y =⇒ y = z =⇒ x = z
〈proof 〉

theorem sym [sym]: x = y =⇒ y = x
〈proof 〉

1.4 Quantifiers
axiomatization All :: (i ⇒ o) ⇒ o (binder ‹∀ › 10)

where allI [intro]: (
∧

x. P x) =⇒ ∀ x. P x
and allD [dest]: ∀ x. P x =⇒ P a

axiomatization Ex :: (i ⇒ o) ⇒ o (binder ‹∃ › 10)
where exI [intro]: P a =⇒ ∃ x. P x

and exE [elim]: ∃ x. P x =⇒ (
∧

x. P x =⇒ C) =⇒ C

lemma (∃ x. P (f x)) −→ (∃ y. P y)
〈proof 〉

lemma (∃ x. ∀ y. R x y) −→ (∀ y. ∃ x. R x y)
〈proof 〉

end

2 Foundations of HOL
theory Higher_Order_Logic

imports Pure
begin

The following theory development illustrates the foundations of Higher-
Order Logic. The “HOL” logic that is given here resembles [2] and its
predecessor [1], but the order of axiomatizations and defined connectives has
be adapted to modern presentations of λ-calculus and Constructive Type
Theory. Thus it fits nicely to the underlying Natural Deduction framework
of Isabelle/Pure and Isabelle/Isar.

3 HOL syntax within Pure
class type
default_sort type

typedecl o
instance o :: type 〈proof 〉
instance fun :: (type, type) type 〈proof 〉

judgment Trueprop :: o ⇒ prop (‹_› 5)

3

4 Minimal logic (axiomatization)
axiomatization imp :: o ⇒ o ⇒ o (infixr ‹−→› 25)

where impI [intro]: (A =⇒ B) =⇒ A −→ B
and impE [dest, trans]: A −→ B =⇒ A =⇒ B

axiomatization All :: (′a ⇒ o) ⇒ o (binder ‹∀ › 10)
where allI [intro]: (

∧
x. P x) =⇒ ∀ x. P x

and allE [dest]: ∀ x. P x =⇒ P a

lemma atomize_imp [atomize]: (A =⇒ B) ≡ Trueprop (A −→ B)
〈proof 〉

lemma atomize_all [atomize]: (
∧

x. P x) ≡ Trueprop (∀ x. P x)
〈proof 〉

4.0.1 Derived connectives
definition False :: o

where False ≡ ∀A. A

lemma FalseE [elim]:
assumes False
shows A
〈proof 〉

definition True :: o
where True ≡ False −→ False

lemma TrueI [intro]: True
〈proof 〉

definition not :: o ⇒ o (‹¬ _› [40] 40)
where not ≡ λA. A −→ False

lemma notI [intro]:
assumes A =⇒ False
shows ¬ A
〈proof 〉

lemma notE [elim]:
assumes ¬ A and A
shows B
〈proof 〉

lemma notE ′: A =⇒ ¬ A =⇒ B
〈proof 〉

4

lemmas contradiction = notE notE ′ — proof by contradiction in any order

definition conj :: o ⇒ o ⇒ o (infixr ‹∧› 35)
where A ∧ B ≡ ∀C . (A −→ B −→ C) −→ C

lemma conjI [intro]:
assumes A and B
shows A ∧ B
〈proof 〉

lemma conjE [elim]:
assumes A ∧ B
obtains A and B
〈proof 〉

definition disj :: o ⇒ o ⇒ o (infixr ‹∨› 30)
where A ∨ B ≡ ∀C . (A −→ C) −→ (B −→ C) −→ C

lemma disjI1 [intro]:
assumes A
shows A ∨ B
〈proof 〉

lemma disjI2 [intro]:
assumes B
shows A ∨ B
〈proof 〉

lemma disjE [elim]:
assumes A ∨ B
obtains (a) A | (b) B
〈proof 〉

definition Ex :: (′a ⇒ o) ⇒ o (binder ‹∃ › 10)
where ∃ x. P x ≡ ∀C . (∀ x. P x −→ C) −→ C

lemma exI [intro]: P a =⇒ ∃ x. P x
〈proof 〉

lemma exE [elim]:
assumes ∃ x. P x
obtains (that) x where P x
〈proof 〉

5

4.0.2 Extensional equality
axiomatization equal :: ′a ⇒ ′a ⇒ o (infixl ‹=› 50)

where refl [intro]: x = x
and subst: x = y =⇒ P x =⇒ P y

abbreviation not_equal :: ′a ⇒ ′a ⇒ o (infixl ‹ 6=› 50)
where x 6= y ≡ ¬ (x = y)

abbreviation iff :: o ⇒ o ⇒ o (infixr ‹←→› 25)
where A ←→ B ≡ A = B

axiomatization
where ext [intro]: (

∧
x. f x = g x) =⇒ f = g

and iff [intro]: (A =⇒ B) =⇒ (B =⇒ A) =⇒ A ←→ B
for f g :: ′a ⇒ ′b

lemma sym [sym]: y = x if x = y
〈proof 〉

lemma [trans]: x = y =⇒ P y =⇒ P x
〈proof 〉

lemma [trans]: P x =⇒ x = y =⇒ P y
〈proof 〉

lemma arg_cong: f x = f y if x = y
〈proof 〉

lemma fun_cong: f x = g x if f = g
〈proof 〉

lemma trans [trans]: x = y =⇒ y = z =⇒ x = z
〈proof 〉

lemma iff1 [elim]: A ←→ B =⇒ A =⇒ B
〈proof 〉

lemma iff2 [elim]: A ←→ B =⇒ B =⇒ A
〈proof 〉

4.1 Cantor’s Theorem

Cantor’s Theorem states that there is no surjection from a set to its powerset.
The subsequent formulation uses elementary λ-calculus and predicate logic,
with standard introduction and elimination rules.
lemma iff_contradiction:

assumes ∗: ¬ A ←→ A
shows C

6

〈proof 〉

theorem Cantor : ¬ (∃ f :: ′a ⇒ ′a ⇒ o. ∀A. ∃ x. A = f x)
〈proof 〉

4.2 Characterization of Classical Logic

The subsequent rules of classical reasoning are all equivalent.
locale classical =

assumes classical: (¬ A =⇒ A) =⇒ A
— predicate definition and hypothetical context

begin

lemma classical_contradiction:
assumes ¬ A =⇒ False
shows A
〈proof 〉

lemma double_negation:
assumes ¬ ¬ A
shows A
〈proof 〉

lemma tertium_non_datur : A ∨ ¬ A
〈proof 〉

lemma classical_cases:
obtains A | ¬ A
〈proof 〉

end

lemma classical_if_cases: classical
if cases:

∧
A C . (A =⇒ C) =⇒ (¬ A =⇒ C) =⇒ C

〈proof 〉

5 Peirce’s Law

Peirce’s Law is another characterization of classical reasoning. Its statement
only requires implication.
theorem (in classical) Peirce ′s_Law: ((A −→ B) −→ A) −→ A
〈proof 〉

6 Hilbert’s choice operator (axiomatization)
axiomatization Eps :: (′a ⇒ o) ⇒ ′a

where someI : P x =⇒ P (Eps P)

7

syntax _Eps :: pttrn ⇒ o ⇒ ′a (‹(‹indent=3 notation=‹binder SOME››SOME
_./ _)› [0 , 10] 10)
syntax_consts _Eps
 Eps
translations SOME x. P
 CONST Eps (λx. P)

It follows a derivation of the classical law of tertium-non-datur by means of
Hilbert’s choice operator (due to Berghofer, Beeson, Harrison, based on a
proof by Diaconescu).

theorem Diaconescu: A ∨ ¬ A
〈proof 〉

This means, the hypothetical predicate classical always holds uncondition-
ally (with all consequences).
interpretation classical
〈proof 〉

thm classical
classical_contradiction
double_negation
tertium_non_datur
classical_cases
Peirce ′s_Law

end

References

[1] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[2] M. J. C. Gordon. HOL: A machine oriented formulation of higher order
logic. Technical Report 68, University of Cambridge Computer Labora-
tory, 1985.

8

	A simple formulation of First-Order Logic
	Abstract syntax
	Propositional logic
	Equality
	Quantifiers

	Foundations of HOL
	HOL syntax within Pure
	Minimal logic (axiomatization)
	Derived connectives
	Extensional equality

	Cantor's Theorem
	Characterization of Classical Logic

	Peirce's Law
	Hilbert's choice operator (axiomatization)

