Notable Examples in Isabelle/Pure

January 18, 2026

1 A simple formulation of First-Order Logic

The subsequent theory development illustrates single-sorted intuitionistic
first-order logic with equality, formulated within the Pure framework.

theory First Order_Logic
imports Pure
begin

1.1 Abstract syntax

typedecl i
typedecl o

judgment Trueprop :: o = prop (<> 5)

1.2 Propositional logic

axiomatization false :: 0o (<L)
where falseE [elim]: L = A

axiomatization imp :: 0 = 0 = o (infixr (— 25)
where impI [intro]: (A = B) = A — B
and mp [dest: A— B=— A = B

axiomatization conj :: 0 = 0 = o (infixr (\) 35)
where conjl [intro]: A= B = A A B
and conjD1: AN B= A
and conjD2: AN B= B

theorem conjE [elim]:
assumes A A B
obtains A and B

(proof)



axiomatization disj :: 0 = 0 = o (infixr «v)» 30)
where disjE [elim]: AVB—= (A= ()= (B= ()= C
and disjl! [intro]: A = AV B
and disjI2 [intro]: B— AV B

definition true :: o (<T)»)
where T =1 — |

theorem truel [intro]: T
{proof)

definition not :: 0 = o («= _» [40] 40)
where - A=4 — 1L

theorem not! [intro]: (A = 1) = - A
{proof)

theorem notE [elim]: -~ A = A = B
{proof)

definition iff :: 0 = 0 = o (infixr «— 25)
where A +— B=(A — B) A (B — A)

theorem iffI [introl:
assumes A — B
and B — A
shows A +— B

(proof)

theorem iff! [elim]:
assumes A +— B and A
shows B

(proof)

theorem iff2 [elim]:
assumes A +— B and B
shows A

(proof)

1.3 Equality

axiomatization equal :: i = i = o (infixl (=) 50)
where refl [intro]: © = x
and subst: x = y=— Pz =— Py



theorem trans [trans]: 1 =y = y =2 =z = 2
{proof)

theorem sym [sym]: z =y = y ==

(proof)

1.4 Quantifiers

axiomatization All :: (i = 0) = o (binder V) 10)
where alll [intro]: (Nz. Pz) = Vz. Pz
and allD [dest]: Vz. Pz = Pa

axiomatization Ez :: (i = 0) = o (binder «3» 10)
where ezl [intro]: P o = 3z. Pz
and ezE [elim|: 3z. Pz = (\z. Pz = C) = C

lemma (3z. P (fz)) — (3y. Py)
(proof)

lemma (3z. Vy. Rz y) — (Vy. Jz. Rz y)
(proof)

end

2 Foundations of HOL

theory Higher_Order__Logic
imports Pure
begin

The following theory development illustrates the foundations of Higher-
Order Logic. The “HOL” logic that is given here resembles [2] and its
predecessor [1], but the order of axiomatizations and defined connectives has
be adapted to modern presentations of A-calculus and Constructive Type
Theory. Thus it fits nicely to the underlying Natural Deduction framework
of Isabelle/Pure and Isabelle/Isar.

3 HOL syntax within Pure

class type
default__sort type

typedecl o
instance o :: type (proof)

instance fun :: (type, type) type (proof)

judgment Trueprop :: o = prop (<> 5)



4 Minimal logic (axiomatization)

axiomatization imp :: 0 = 0 = o (infixr (— 25)
where impl [intro]: (A = B) = A — B
and impFE [dest, trans]: A — B = A = B

axiomatization All :: (‘a = 0) = o (binder «V» 10)
where alll [intro]: (Nz. Pz) = Vz. Pz
and allE [dest]: Vz. Px = P a

lemma atomize_imp [atomize]: (A => B) = Trueprop (A — B)
{proof)

lemma atomize all [atomize]: (Nz. P x) = Trueprop (Vz. P x)
{proof)

4.0.1 Derived connectives

definition Fulse :: o
where False =V A. A

lemma FalseE [elim]:
assumes Fualse
shows A

(proof)

definition True :: o
where True = False — Fualse

lemma Truel [intro]: True

(proof)

definition not :: 0 = o (<= _» [40] 40)
where not = AA. A — Fulse

lemma notl [intro]:
assumes A = Fulse
shows — A

{proof)

lemma notE [elim]:
assumes - 4 and A
shows B

(proof)

lemma notE" A —= - A = B
(proof)



lemmas contradiction = notE notE’ — proof by contradiction in any order

definition conj :: 0 = 0 = o (infixr (\) 35)
where ANB=V(C.(A— B — (C)— C

lemma conjl [intro]:
assumes A and B
shows A A B

(proof)

lemma conjE [elim):
assumes A A B
obtains A and B

(proof)

definition disj :: 0 = 0 = o (infixr V) 30)
where AV B=V(C.(A— (C) — (B— C) — C

lemma disjI1 [intro]:
assumes A
shows A vV B

{proof)

lemma disjI2 [intro]:
assumes B
shows A vV B

{proof)

lemma disjE [elim]:
assumes A V B
obtains (a) A | (b) B
(proof)

definition Fz :: ('a = 0) = o (binder «3» 10)
where 3z. Pz =V C. V2. Pz — C) — C

lemma ezl [intro]: P a = 3. Pz
{proof)

lemma ezE [elim]:
assumes Jz. Pz
obtains (that) x where P z

(proof)



4.0.2 Extensional equality

axiomatization equal :: 'a = 'a = o (infixl <= 50)
where refl [intro]: @ = «
and subst: 1t =y =— Px = Py

abbreviation not_equal :: 'a = 'a = o (infixl <#) 50)
where z # y = - (z = y)

abbreviation iff :: 0 = 0 = o (infixr +—» 25)
where A +— B=A=2D8

axiomatization
where ext [intro]: (Nz. fr=g2) = f=yg
and iff [intro]: (A — B) —= (B=—= A) = A +— B
for fg:'a="b

lemma sym [sym]: y =z if z =y
(proof )

lemma [trans]: t =y = Py = Pz
{proof)

lemma [trans]: Pz — 2=y = Py

{proof)

lemma arg cong: fo = fyifz =y

{proof)

lemma fun_cong: fx =gz if f =g

(proof)

lemma trans [trans|: e =y = y =2 =z =2
{proof)

lemma iff1 [elim]: A +— B=— A = B

(proof)

lemma iff2 [elim]: A+— B=—= B = A
{proof)

4.1 Cantor’s Theorem

Cantor’s Theorem states that there is no surjection from a set to its powerset.
The subsequent formulation uses elementary A-calculus and predicate logic,
with standard introduction and elimination rules.

lemma iff contradiction:
assumes *: - A «— A
shows C



(proof)

theorem Cantor: = (3f :'a = 'a= 0. VA. Jz. A = fzx)
(proof)

4.2 Characterization of Classical Logic

The subsequent rules of classical reasoning are all equivalent.

locale classical =

assumes classical: (- A = A) = A

— predicate definition and hypothetical context
begin

lemma classical contradiction:
assumes - A — Fulse
shows A

(proof)

lemma double_negation:
assumes - - A
shows A

(proof)

lemma tertium_non_datur: AV = A
(proof )

lemma classical cases:
obtains A | - A

(proof)
end

lemma classical_if cases: classical
if casess N\AC. (A= C) = (A= (C)=C
(proof)

5 Peirce’s Law
Peirce’s Law is another characterization of classical reasoning. Its statement
only requires implication.

theorem (in classical) Peirce’s Law: (A — B) — A) — A
(proof)
6 Hilbert’s choice operator (axiomatization)

axiomatization Eps :: (‘a = 0) = ‘a
where somel: P x = P (Eps P)



syntax _ Eps :: pttrn = o = ‘a («(<indent=38 notation=<binder SOME»»SOME
_./_)»|0,10] 10)

syntax_ consts _ Fps = Eps

translations SOME z. P = CONST Eps (Az. P)

It follows a derivation of the classical law of tertium-non-datur by means of
Hilbert’s choice operator (due to Berghofer, Beeson, Harrison, based on a
proof by Diaconescu).

theorem Diaconescu: AV — A
(proof)

This means, the hypothetical predicate classical always holds uncondition-
ally (with all consequences).

interpretation classical
(proof)

thm classical
classical _contradiction
double__negation
tertium__non__datur
classical cases
Peirce’s Law

end

References

[1] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56—-68, 1940.

[2] M. J. C. Gordon. HOL: A machine oriented formulation of higher order
logic. Technical Report 68, University of Cambridge Computer Labora-
tory, 1985.



	A simple formulation of First-Order Logic
	Abstract syntax
	Propositional logic
	Equality
	Quantifiers

	Foundations of HOL
	HOL syntax within Pure
	Minimal logic (axiomatization)
	Derived connectives
	Extensional equality

	Cantor's Theorem
	Characterization of Classical Logic

	Peirce's Law
	Hilbert's choice operator (axiomatization)

