

Notable Examples in Isabelle/Pure

January 18, 2026

1 A simple formulation of First-Order Logic

The subsequent theory development illustrates single-sorted intuitionistic first-order logic with equality, formulated within the Pure framework.

```
theory First_Order_Logic
  imports Pure
begin
```

1.1 Abstract syntax

```
typeddecl i
typeddecl o

judgment Trueprop :: o ⇒ prop (⟨_⟩ 5)
```

1.2 Propositional logic

```
axiomatization false :: o (⟨⊥⟩)
  where falseE [elim]: ⊥ ⇒ A
```

```
axiomatization imp :: o ⇒ o ⇒ o (infixr ⟨→⟩ 25)
  where impI [intro]: (A ⇒ B) ⇒ A ⇒ B
    and mp [dest]: A ⇒ B ⇒ A ⇒ B
```

```
axiomatization conj :: o ⇒ o ⇒ o (infixr ⟨∧⟩ 35)
  where conjI [intro]: A ⇒ B ⇒ A ∧ B
    and conjD1: A ∧ B ⇒ A
    and conjD2: A ∧ B ⇒ B
```

```
theorem conjE [elim]:
  assumes A ∧ B
  obtains A and B
  {proof}
```

axiomatization *disj* :: $o \Rightarrow o \Rightarrow o$ (**infixr** $\langle\vee\rangle$ 30)
where *disjE* [*elim*]: $A \vee B \Rightarrow (A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow C$
and *disjI1* [*intro*]: $A \Rightarrow A \vee B$
and *disjI2* [*intro*]: $B \Rightarrow A \vee B$

definition *true* :: o ($\langle\top\rangle$)
where $\top \equiv \perp \rightarrow \perp$

theorem *trueI* [*intro*]: \top
 $\langle proof \rangle$

definition *not* :: $o \Rightarrow o$ ($\langle\neg_\rangle$ [40] 40)
where $\neg A \equiv A \rightarrow \perp$

theorem *notI* [*intro*]: $(A \Rightarrow \perp) \Rightarrow \neg A$
 $\langle proof \rangle$

theorem *notE* [*elim*]: $\neg A \Rightarrow A \Rightarrow B$
 $\langle proof \rangle$

definition *iff* :: $o \Rightarrow o \Rightarrow o$ (**infixr** $\langle\leftrightarrow\rangle$ 25)
where $A \leftrightarrow B \equiv (A \rightarrow B) \wedge (B \rightarrow A)$

theorem *iffI* [*intro*]:
assumes $A \Rightarrow B$
and $B \Rightarrow A$
shows $A \leftrightarrow B$
 $\langle proof \rangle$

theorem *iff1* [*elim*]:
assumes $A \leftrightarrow B$ **and** A
shows B
 $\langle proof \rangle$

theorem *iff2* [*elim*]:
assumes $A \leftrightarrow B$ **and** B
shows A
 $\langle proof \rangle$

1.3 Equality

axiomatization *equal* :: $i \Rightarrow i \Rightarrow o$ (**infixl** $\langle=$ 50)
where *refl* [*intro*]: $x = x$
and *subst*: $x = y \Rightarrow P x \Rightarrow P y$

```
theorem trans [trans]:  $x = y \Rightarrow y = z \Rightarrow x = z$ 
   $\langle proof \rangle$ 
```

```
theorem sym [sym]:  $x = y \Rightarrow y = x$ 
   $\langle proof \rangle$ 
```

1.4 Quantifiers

```
axiomatization All ::  $(i \Rightarrow o) \Rightarrow o$  (binder  $\langle \forall \rangle$  10)
```

```
  where allI [intro]:  $(\bigwedge x. P x) \Rightarrow \forall x. P x$ 
  and allD [dest]:  $\forall x. P x \Rightarrow P a$ 
```

```
axiomatization Ex ::  $(i \Rightarrow o) \Rightarrow o$  (binder  $\langle \exists \rangle$  10)
```

```
  where exI [intro]:  $P a \Rightarrow \exists x. P x$ 
  and exE [elim]:  $\exists x. P x \Rightarrow (\bigwedge x. P x \Rightarrow C) \Rightarrow C$ 
```

```
lemma  $(\exists x. P (f x)) \rightarrow (\exists y. P y)$ 
   $\langle proof \rangle$ 
```

```
lemma  $(\exists x. \forall y. R x y) \rightarrow (\forall y. \exists x. R x y)$ 
   $\langle proof \rangle$ 
```

```
end
```

2 Foundations of HOL

```
theory Higher_Order_Logic
  imports Pure
  begin
```

The following theory development illustrates the foundations of Higher-Order Logic. The “HOL” logic that is given here resembles [2] and its predecessor [1], but the order of axiomatizations and defined connectives has been adapted to modern presentations of λ -calculus and Constructive Type Theory. Thus it fits nicely to the underlying Natural Deduction framework of Isabelle/Pure and Isabelle/Isar.

3 HOL syntax within Pure

```
class type
default_sort type

typedecl o
instance o :: type  $\langle proof \rangle$ 
instance fun ::  $(type, type) type$   $\langle proof \rangle$ 

judgment Trueprop ::  $o \Rightarrow prop$  ( $\langle \_ \rangle$  5)
```

4 Minimal logic (axiomatization)

axiomatization *imp* :: $o \Rightarrow o \Rightarrow o$ (**infixr** \rightarrowtail 25)
 where *impI* [*intro*]: $(A \Rightarrow B) \Rightarrow A \rightarrow B$
 and *impE* [*dest, trans*]: $A \rightarrow B \Rightarrow A \Rightarrow B$

axiomatization *All* :: $('a \Rightarrow o) \Rightarrow o$ (**binder** \forall 10)
 where *allI* [*intro*]: $(\bigwedge x. P x) \Rightarrow \forall x. P x$
 and *allE* [*dest*]: $\forall x. P x \Rightarrow P a$

lemma *atomize_imp* [*atomize*]: $(A \Rightarrow B) \equiv \text{Trueprop} (A \rightarrow B)$
 <proof>

lemma *atomize_all* [*atomize*]: $(\bigwedge x. P x) \equiv \text{Trueprop} (\forall x. P x)$
 <proof>

4.0.1 Derived connectives

definition *False* :: o
 where *False* $\equiv \forall A. A$

lemma *FalseE* [*elim*]:
 assumes *False*
 shows *A*
 <proof>

definition *True* :: o
 where *True* $\equiv \text{False} \rightarrow \text{False}$

lemma *TrueI* [*intro*]: *True*
 <proof>

definition *not* :: $o \Rightarrow o$ (\neg [40] 40)
 where *not* $\equiv \lambda A. A \rightarrow \text{False}$

lemma *notI* [*intro*]:
 assumes *A* $\Rightarrow \text{False}$
 shows $\neg A$
 <proof>

lemma *notE* [*elim*]:
 assumes $\neg A$ **and** *A*
 shows *B*
 <proof>

lemma *notE'*: $A \Rightarrow \neg A \Rightarrow B$
 <proof>

lemmas *contradiction* = *notE* *notE'* — proof by contradiction in any order

definition *conj* :: $o \Rightarrow o \Rightarrow o$ (**infixr** \wedge 35)
where $A \wedge B \equiv \forall C. (A \rightarrow B \rightarrow C) \rightarrow C$

lemma *conjI* [*intro*]:
assumes *A and B*
shows *A \wedge B*
{proof}

lemma *conjE* [*elim*]:
assumes *A \wedge B*
obtains *A and B*
{proof}

definition *disj* :: $o \Rightarrow o \Rightarrow o$ (**infixr** \vee 30)
where $A \vee B \equiv \forall C. (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow C$

lemma *disjI1* [*intro*]:
assumes *A*
shows *A \vee B*
{proof}

lemma *disjI2* [*intro*]:
assumes *B*
shows *A \vee B*
{proof}

lemma *disjE* [*elim*]:
assumes *A \vee B*
obtains (a) *A* | (b) *B*
{proof}

definition *Ex* :: $('a \Rightarrow o) \Rightarrow o$ (**binder** \exists 10)
where $\exists x. P x \equiv \forall C. (\forall x. P x \rightarrow C) \rightarrow C$

lemma *exI* [*intro*]: $P a \implies \exists x. P x$
{proof}

lemma *exE* [*elim*]:
assumes $\exists x. P x$
obtains (that) *x* **where** *P x*
{proof}

4.0.2 Extensional equality

axiomatization *equal* :: $'a \Rightarrow 'a \Rightarrow o$ (**infixl** \leftrightarrow 50)

where *refl* [*intro*]: $x = x$

and *subst*: $x = y \Rightarrow P x \Rightarrow P y$

abbreviation *not_equal* :: $'a \Rightarrow 'a \Rightarrow o$ (**infixl** \neq 50)

where $x \neq y \equiv \neg (x = y)$

abbreviation *iff* :: $o \Rightarrow o \Rightarrow o$ (**infixr** \leftrightarrow 25)

where $A \leftrightarrow B \equiv A = B$

axiomatization

where *ext* [*intro*]: $(\bigwedge x. f x = g x) \Rightarrow f = g$

and *iff* [*intro*]: $(A \Rightarrow B) \Rightarrow (B \Rightarrow A) \Rightarrow A \leftrightarrow B$

for *f g* :: $'a \Rightarrow 'b$

lemma *sym* [*sym*]: $y = x \text{ if } x = y$

⟨proof⟩

lemma [*trans*]: $x = y \Rightarrow P y \Rightarrow P x$

⟨proof⟩

lemma [*trans*]: $P x \Rightarrow x = y \Rightarrow P y$

⟨proof⟩

lemma *arg_cong*: $f x = f y \text{ if } x = y$

⟨proof⟩

lemma *fun_cong*: $f x = g x \text{ if } f = g$

⟨proof⟩

lemma *trans* [*trans*]: $x = y \Rightarrow y = z \Rightarrow x = z$

⟨proof⟩

lemma *iff1* [*elim*]: $A \leftrightarrow B \Rightarrow A \Rightarrow B$

⟨proof⟩

lemma *iff2* [*elim*]: $A \leftrightarrow B \Rightarrow B \Rightarrow A$

⟨proof⟩

4.1 Cantor's Theorem

Cantor's Theorem states that there is no surjection from a set to its powerset. The subsequent formulation uses elementary λ -calculus and predicate logic, with standard introduction and elimination rules.

lemma *iff_contradiction*:

assumes *: $\neg A \leftrightarrow A$

shows *C*

$\langle proof \rangle$

theorem *Cantor*: $\neg (\exists f :: 'a \Rightarrow 'a \Rightarrow o. \forall A. \exists x. A = f x)$
 $\langle proof \rangle$

4.2 Characterization of Classical Logic

The subsequent rules of classical reasoning are all equivalent.

```
locale classical =
  assumes classical:  $(\neg A \Rightarrow A) \Rightarrow A$ 
  — predicate definition and hypothetical context
begin

  lemma classical_contradiction:
    assumes  $\neg A \Rightarrow False$ 
    shows  $A$ 
   $\langle proof \rangle$ 

  lemma double_negation:
    assumes  $\neg \neg A$ 
    shows  $A$ 
   $\langle proof \rangle$ 

  lemma tertium_non_datur:  $A \vee \neg A$ 
   $\langle proof \rangle$ 

  lemma classical_cases:
    obtains  $A \mid \neg A$ 
   $\langle proof \rangle$ 

end

lemma classical_if_cases: classical
  if cases:  $\bigwedge A C. (A \Rightarrow C) \Rightarrow (\neg A \Rightarrow C) \Rightarrow C$ 
   $\langle proof \rangle$ 
```

5 Peirce's Law

Peirce's Law is another characterization of classical reasoning. Its statement only requires implication.

theorem (in *classical*) *Peirce's Law*: $((A \rightarrow B) \rightarrow A) \rightarrow A$
 $\langle proof \rangle$

6 Hilbert's choice operator (axiomatization)

axiomatization *Eps* :: $('a \Rightarrow o) \Rightarrow 'a$
where *someI*: $P x \Rightarrow P (Eps P)$

```

syntax _Eps :: ptrn  $\Rightarrow$  o  $\Rightarrow$  'a ((indent=3 notation=binder SOME)SOME
_./__)[0, 10] 10)
syntax_consts _Eps  $\Rightarrow$  Eps
translations SOME x. P  $\Leftarrow$  CONST Eps ( $\lambda$ x. P)

```

It follows a derivation of the classical law of tertium-non-datur by means of Hilbert's choice operator (due to Berghofer, Beeson, Harrison, based on a proof by Diaconescu).

theorem *Diaconescu*: $A \vee \neg A$
 \langle proof \rangle

This means, the hypothetical predicate *classical* always holds unconditionally (with all consequences).

interpretation *classical*
 \langle proof \rangle

```

thm classical
  classical_contradiction
  double_negation
  tertium_non_datur
  classical_cases
  Peirce's_Law

```

end

References

- [1] A. Church. A formulation of the simple theory of types. *Journal of Symbolic Logic*, 5:56–68, 1940.
- [2] M. J. C. Gordon. HOL: A machine oriented formulation of higher order logic. Technical Report 68, University of Cambridge Computer Laboratory, 1985.