
Notable Examples in Isabelle/Pure

January 18, 2026

1 A simple formulation of First-Order Logic

The subsequent theory development illustrates single-sorted intuitionistic
first-order logic with equality, formulated within the Pure framework.
theory First_Order_Logic

imports Pure
begin

1.1 Abstract syntax
typedecl i
typedecl o

judgment Trueprop :: o ⇒ prop (‹_› 5)

1.2 Propositional logic
axiomatization false :: o (‹⊥›)

where falseE [elim]: ⊥ =⇒ A

axiomatization imp :: o ⇒ o ⇒ o (infixr ‹−→› 25)
where impI [intro]: (A =⇒ B) =⇒ A −→ B

and mp [dest]: A −→ B =⇒ A =⇒ B

axiomatization conj :: o ⇒ o ⇒ o (infixr ‹∧› 35)
where conjI [intro]: A =⇒ B =⇒ A ∧ B

and conjD1 : A ∧ B =⇒ A
and conjD2 : A ∧ B =⇒ B

theorem conjE [elim]:
assumes A ∧ B
obtains A and B

proof
from ‹A ∧ B› show A

1

by (rule conjD1)
from ‹A ∧ B› show B

by (rule conjD2)
qed

axiomatization disj :: o ⇒ o ⇒ o (infixr ‹∨› 30)
where disjE [elim]: A ∨ B =⇒ (A =⇒ C) =⇒ (B =⇒ C) =⇒ C

and disjI1 [intro]: A =⇒ A ∨ B
and disjI2 [intro]: B =⇒ A ∨ B

definition true :: o (‹>›)
where > ≡ ⊥ −→ ⊥

theorem trueI [intro]: >
unfolding true_def ..

definition not :: o ⇒ o (‹¬ _› [40] 40)
where ¬ A ≡ A −→ ⊥

theorem notI [intro]: (A =⇒ ⊥) =⇒ ¬ A
unfolding not_def ..

theorem notE [elim]: ¬ A =⇒ A =⇒ B
unfolding not_def

proof −
assume A −→ ⊥ and A
then have ⊥ ..
then show B ..

qed

definition iff :: o ⇒ o ⇒ o (infixr ‹←→› 25)
where A ←→ B ≡ (A −→ B) ∧ (B −→ A)

theorem iffI [intro]:
assumes A =⇒ B

and B =⇒ A
shows A ←→ B
unfolding iff_def

proof
from ‹A =⇒ B› show A −→ B ..
from ‹B =⇒ A› show B −→ A ..

qed

theorem iff1 [elim]:
assumes A ←→ B and A

2

shows B
proof −

from ‹A ←→ B› have (A −→ B) ∧ (B −→ A)
unfolding iff_def .

then have A −→ B ..
from this and ‹A› show B ..

qed

theorem iff2 [elim]:
assumes A ←→ B and B
shows A

proof −
from ‹A ←→ B› have (A −→ B) ∧ (B −→ A)

unfolding iff_def .
then have B −→ A ..
from this and ‹B› show A ..

qed

1.3 Equality
axiomatization equal :: i ⇒ i ⇒ o (infixl ‹=› 50)

where refl [intro]: x = x
and subst: x = y =⇒ P x =⇒ P y

theorem trans [trans]: x = y =⇒ y = z =⇒ x = z
by (rule subst)

theorem sym [sym]: x = y =⇒ y = x
proof −

assume x = y
from this and refl show y = x

by (rule subst)
qed

1.4 Quantifiers
axiomatization All :: (i ⇒ o) ⇒ o (binder ‹∀ › 10)

where allI [intro]: (
∧

x. P x) =⇒ ∀ x. P x
and allD [dest]: ∀ x. P x =⇒ P a

axiomatization Ex :: (i ⇒ o) ⇒ o (binder ‹∃ › 10)
where exI [intro]: P a =⇒ ∃ x. P x

and exE [elim]: ∃ x. P x =⇒ (
∧

x. P x =⇒ C) =⇒ C

lemma (∃ x. P (f x)) −→ (∃ y. P y)
proof

assume ∃ x. P (f x)
then obtain x where P (f x) ..
then show ∃ y. P y ..

3

qed

lemma (∃ x. ∀ y. R x y) −→ (∀ y. ∃ x. R x y)
proof

assume ∃ x. ∀ y. R x y
then obtain x where ∀ y. R x y ..
show ∀ y. ∃ x. R x y
proof

fix y
from ‹∀ y. R x y› have R x y ..
then show ∃ x. R x y ..

qed
qed

end

2 Foundations of HOL
theory Higher_Order_Logic

imports Pure
begin

The following theory development illustrates the foundations of Higher-
Order Logic. The “HOL” logic that is given here resembles [2] and its
predecessor [1], but the order of axiomatizations and defined connectives has
be adapted to modern presentations of λ-calculus and Constructive Type
Theory. Thus it fits nicely to the underlying Natural Deduction framework
of Isabelle/Pure and Isabelle/Isar.

3 HOL syntax within Pure
class type
default_sort type

typedecl o
instance o :: type ..
instance fun :: (type, type) type ..

judgment Trueprop :: o ⇒ prop (‹_› 5)

4 Minimal logic (axiomatization)
axiomatization imp :: o ⇒ o ⇒ o (infixr ‹−→› 25)

where impI [intro]: (A =⇒ B) =⇒ A −→ B
and impE [dest, trans]: A −→ B =⇒ A =⇒ B

axiomatization All :: (′a ⇒ o) ⇒ o (binder ‹∀ › 10)

4

where allI [intro]: (
∧

x. P x) =⇒ ∀ x. P x
and allE [dest]: ∀ x. P x =⇒ P a

lemma atomize_imp [atomize]: (A =⇒ B) ≡ Trueprop (A −→ B)
by standard (fact impI , fact impE)

lemma atomize_all [atomize]: (
∧

x. P x) ≡ Trueprop (∀ x. P x)
by standard (fact allI , fact allE)

4.0.1 Derived connectives
definition False :: o

where False ≡ ∀A. A

lemma FalseE [elim]:
assumes False
shows A

proof −
from ‹False› have ∀A. A by (simp only: False_def)
then show A ..

qed

definition True :: o
where True ≡ False −→ False

lemma TrueI [intro]: True
unfolding True_def ..

definition not :: o ⇒ o (‹¬ _› [40] 40)
where not ≡ λA. A −→ False

lemma notI [intro]:
assumes A =⇒ False
shows ¬ A
using assms unfolding not_def ..

lemma notE [elim]:
assumes ¬ A and A
shows B

proof −
from ‹¬ A› have A −→ False by (simp only: not_def)
from this and ‹A› have False ..
then show B ..

qed

lemma notE ′: A =⇒ ¬ A =⇒ B
by (rule notE)

5

lemmas contradiction = notE notE ′ — proof by contradiction in any order

definition conj :: o ⇒ o ⇒ o (infixr ‹∧› 35)
where A ∧ B ≡ ∀C . (A −→ B −→ C) −→ C

lemma conjI [intro]:
assumes A and B
shows A ∧ B
unfolding conj_def

proof
fix C
show (A −→ B −→ C) −→ C
proof

assume A −→ B −→ C
also note ‹A›
also note ‹B›
finally show C .

qed
qed

lemma conjE [elim]:
assumes A ∧ B
obtains A and B

proof
from ‹A ∧ B› have ∗: (A −→ B −→ C) −→ C for C

unfolding conj_def ..
show A
proof −

note ∗ [of A]
also have A −→ B −→ A
proof

assume A
then show B −→ A ..

qed
finally show ?thesis .

qed
show B
proof −

note ∗ [of B]
also have A −→ B −→ B
proof

show B −→ B ..
qed
finally show ?thesis .

qed
qed

6

definition disj :: o ⇒ o ⇒ o (infixr ‹∨› 30)
where A ∨ B ≡ ∀C . (A −→ C) −→ (B −→ C) −→ C

lemma disjI1 [intro]:
assumes A
shows A ∨ B
unfolding disj_def

proof
fix C
show (A −→ C) −→ (B −→ C) −→ C
proof

assume A −→ C
from this and ‹A› have C ..
then show (B −→ C) −→ C ..

qed
qed

lemma disjI2 [intro]:
assumes B
shows A ∨ B
unfolding disj_def

proof
fix C
show (A −→ C) −→ (B −→ C) −→ C
proof

show (B −→ C) −→ C
proof

assume B −→ C
from this and ‹B› show C ..

qed
qed

qed

lemma disjE [elim]:
assumes A ∨ B
obtains (a) A | (b) B

proof −
from ‹A ∨ B› have (A −→ thesis) −→ (B −→ thesis) −→ thesis

unfolding disj_def ..
also have A −→ thesis
proof

assume A
then show thesis by (rule a)

qed
also have B −→ thesis
proof

assume B
then show thesis by (rule b)

7

qed
finally show thesis .

qed

definition Ex :: (′a ⇒ o) ⇒ o (binder ‹∃ › 10)
where ∃ x. P x ≡ ∀C . (∀ x. P x −→ C) −→ C

lemma exI [intro]: P a =⇒ ∃ x. P x
unfolding Ex_def

proof
fix C
assume P a
show (∀ x. P x −→ C) −→ C
proof

assume ∀ x. P x −→ C
then have P a −→ C ..
from this and ‹P a› show C ..

qed
qed

lemma exE [elim]:
assumes ∃ x. P x
obtains (that) x where P x

proof −
from ‹∃ x. P x› have (∀ x. P x −→ thesis) −→ thesis

unfolding Ex_def ..
also have ∀ x. P x −→ thesis
proof

fix x
show P x −→ thesis
proof

assume P x
then show thesis by (rule that)

qed
qed
finally show thesis .

qed

4.0.2 Extensional equality
axiomatization equal :: ′a ⇒ ′a ⇒ o (infixl ‹=› 50)

where refl [intro]: x = x
and subst: x = y =⇒ P x =⇒ P y

abbreviation not_equal :: ′a ⇒ ′a ⇒ o (infixl ‹ 6=› 50)
where x 6= y ≡ ¬ (x = y)

abbreviation iff :: o ⇒ o ⇒ o (infixr ‹←→› 25)

8

where A ←→ B ≡ A = B

axiomatization
where ext [intro]: (

∧
x. f x = g x) =⇒ f = g

and iff [intro]: (A =⇒ B) =⇒ (B =⇒ A) =⇒ A ←→ B
for f g :: ′a ⇒ ′b

lemma sym [sym]: y = x if x = y
using that by (rule subst) (rule refl)

lemma [trans]: x = y =⇒ P y =⇒ P x
by (rule subst) (rule sym)

lemma [trans]: P x =⇒ x = y =⇒ P y
by (rule subst)

lemma arg_cong: f x = f y if x = y
using that by (rule subst) (rule refl)

lemma fun_cong: f x = g x if f = g
using that by (rule subst) (rule refl)

lemma trans [trans]: x = y =⇒ y = z =⇒ x = z
by (rule subst)

lemma iff1 [elim]: A ←→ B =⇒ A =⇒ B
by (rule subst)

lemma iff2 [elim]: A ←→ B =⇒ B =⇒ A
by (rule subst) (rule sym)

4.1 Cantor’s Theorem

Cantor’s Theorem states that there is no surjection from a set to its powerset.
The subsequent formulation uses elementary λ-calculus and predicate logic,
with standard introduction and elimination rules.
lemma iff_contradiction:

assumes ∗: ¬ A ←→ A
shows C

proof (rule notE)
show ¬ A
proof

assume A
with ∗ have ¬ A ..
from this and ‹A› show False ..

qed
with ∗ show A ..

qed

9

theorem Cantor : ¬ (∃ f :: ′a ⇒ ′a ⇒ o. ∀A. ∃ x. A = f x)
proof

assume ∃ f :: ′a ⇒ ′a ⇒ o. ∀A. ∃ x. A = f x
then obtain f :: ′a ⇒ ′a ⇒ o where ∗: ∀A. ∃ x. A = f x ..
let ?D = λx. ¬ f x x
from ∗ have ∃ x. ?D = f x ..
then obtain a where ?D = f a ..
then have ?D a ←→ f a a using refl by (rule subst)
then have ¬ f a a ←→ f a a .
then show False by (rule iff_contradiction)

qed

4.2 Characterization of Classical Logic

The subsequent rules of classical reasoning are all equivalent.
locale classical =

assumes classical: (¬ A =⇒ A) =⇒ A
— predicate definition and hypothetical context

begin

lemma classical_contradiction:
assumes ¬ A =⇒ False
shows A

proof (rule classical)
assume ¬ A
then have False by (rule assms)
then show A ..

qed

lemma double_negation:
assumes ¬ ¬ A
shows A

proof (rule classical_contradiction)
assume ¬ A
with ‹¬ ¬ A› show False by (rule contradiction)

qed

lemma tertium_non_datur : A ∨ ¬ A
proof (rule double_negation)

show ¬ ¬ (A ∨ ¬ A)
proof

assume ¬ (A ∨ ¬ A)
have ¬ A
proof

assume A then have A ∨ ¬ A ..
with ‹¬ (A ∨ ¬ A)› show False by (rule contradiction)

qed
then have A ∨ ¬ A ..
with ‹¬ (A ∨ ¬ A)› show False by (rule contradiction)

10

qed
qed

lemma classical_cases:
obtains A | ¬ A
using tertium_non_datur

proof
assume A
then show thesis ..

next
assume ¬ A
then show thesis ..

qed

end

lemma classical_if_cases: classical
if cases:

∧
A C . (A =⇒ C) =⇒ (¬ A =⇒ C) =⇒ C

proof
fix A
assume ∗: ¬ A =⇒ A
show A
proof (rule cases)

assume A
then show A .

next
assume ¬ A
then show A by (rule ∗)

qed
qed

5 Peirce’s Law

Peirce’s Law is another characterization of classical reasoning. Its statement
only requires implication.
theorem (in classical) Peirce ′s_Law: ((A −→ B) −→ A) −→ A
proof

assume ∗: (A −→ B) −→ A
show A
proof (rule classical)

assume ¬ A
have A −→ B
proof

assume A
with ‹¬ A› show B by (rule contradiction)

qed
with ∗ show A ..

qed

11

qed

6 Hilbert’s choice operator (axiomatization)
axiomatization Eps :: (′a ⇒ o) ⇒ ′a

where someI : P x =⇒ P (Eps P)

syntax _Eps :: pttrn ⇒ o ⇒ ′a (‹(‹indent=3 notation=‹binder SOME››SOME
_./ _)› [0 , 10] 10)
syntax_consts _Eps
 Eps
translations SOME x. P
 CONST Eps (λx. P)

It follows a derivation of the classical law of tertium-non-datur by means of
Hilbert’s choice operator (due to Berghofer, Beeson, Harrison, based on a
proof by Diaconescu).

theorem Diaconescu: A ∨ ¬ A
proof −

let ?P = λx. (A ∧ x) ∨ ¬ x
let ?Q = λx. (A ∧ ¬ x) ∨ x

have a: ?P (Eps ?P)
proof (rule someI)

have ¬ False ..
then show ?P False ..

qed
have b: ?Q (Eps ?Q)
proof (rule someI)

have True ..
then show ?Q True ..

qed

from a show ?thesis
proof

assume A ∧ Eps ?P
then have A ..
then show ?thesis ..

next
assume ¬ Eps ?P
from b show ?thesis
proof

assume A ∧ ¬ Eps ?Q
then have A ..
then show ?thesis ..

next
assume Eps ?Q
have neq: ?P 6= ?Q
proof

12

assume ?P = ?Q
then have Eps ?P ←→ Eps ?Q by (rule arg_cong)
also note ‹Eps ?Q›
finally have Eps ?P .
with ‹¬ Eps ?P› show False by (rule contradiction)

qed
have ¬ A
proof

assume A
have ?P = ?Q
proof (rule ext)

show ?P x ←→ ?Q x for x
proof

assume ?P x
then show ?Q x
proof

assume ¬ x
with ‹A› have A ∧ ¬ x ..
then show ?thesis ..

next
assume A ∧ x
then have x ..
then show ?thesis ..

qed
next

assume ?Q x
then show ?P x
proof

assume A ∧ ¬ x
then have ¬ x ..
then show ?thesis ..

next
assume x
with ‹A› have A ∧ x ..
then show ?thesis ..

qed
qed

qed
with neq show False by (rule contradiction)

qed
then show ?thesis ..

qed
qed

qed

This means, the hypothetical predicate classical always holds uncondition-
ally (with all consequences).
interpretation classical
proof (rule classical_if_cases)

13

fix A C
assume ∗: A =⇒ C

and ∗∗: ¬ A =⇒ C
from Diaconescu [of A] show C
proof

assume A
then show C by (rule ∗)

next
assume ¬ A
then show C by (rule ∗∗)

qed
qed

thm classical
classical_contradiction
double_negation
tertium_non_datur
classical_cases
Peirce ′s_Law

end

References

[1] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[2] M. J. C. Gordon. HOL: A machine oriented formulation of higher order
logic. Technical Report 68, University of Cambridge Computer Labora-
tory, 1985.

14

	A simple formulation of First-Order Logic
	Abstract syntax
	Propositional logic
	Equality
	Quantifiers

	Foundations of HOL
	HOL syntax within Pure
	Minimal logic (axiomatization)
	Derived connectives
	Extensional equality

	Cantor's Theorem
	Characterization of Classical Logic

	Peirce's Law
	Hilbert's choice operator (axiomatization)

