Notable Examples in Isabelle/Pure

January 18, 2026

1 A simple formulation of First-Order Logic

The subsequent theory development illustrates single-sorted intuitionistic
first-order logic with equality, formulated within the Pure framework.

theory First Order_Logic
imports Pure
begin

1.1 Abstract syntax

typedecl i
typedecl o

judgment Trueprop :: o = prop (<> 5)

1.2 Propositional logic

axiomatization false :: 0o (<L)
where falseE [elim]: L = A

axiomatization imp :: 0 = 0 = o (infixr (— 25)
where impI [intro]: (A = B) = A — B
and mp [dest: A— B=— A = B

axiomatization conj :: 0 = 0 = o (infixr (\) 35)
where conjl [intro]: A= B = A A B
and conjD1: AN B= A
and conjD2: AN B= B

theorem conjE [elim]:
assumes A A B
obtains A and B
proof
from <A A B) show A



by (rule conjD1)
from (A A B) show B
by (rule conjD2)
qed

axiomatization disj :: 0 = 0 = o (infixr «v)» 30)
where disjE [elim]: AVB—= (A= ()= (B= ()= C
and disjl! [intro]: A = AV B
and disjI2 [intro]: B— AV B

definition true :: o (<T»)
where T = 1 — |

theorem truel [intro]: T
unfolding true_ def ..

definition not :: 0 = o (<= _» [40] 40)
where ~ A =4 — L

theorem notl [intro]: (A = 1) = - A
unfolding not_def ..

theorem notE [elim]: -~ A = A = B
unfolding not_def
proof —
assume A — 1 and A
then have | ..
then show B ..
qed

definition iff :: 0 = 0 = o (infixr «— 25)
where A +— B=(A — B) A (B— A)

theorem iffI [intro]:

assumes A — B

and B — A

shows A +— B

unfolding iff def
proof

from <A =— B)> show A — B ..

from <B — A) show B — A ..
qed

theorem iff1 [elim]:
assumes A +— B and A



shows B
proof —
from (A +— B> have (A — B) A (B — A)
unfolding iff def .
then have A — B ..
from this and (A> show B ..
qed

theorem iff2 [elim]:
assumes A «+— B and B
shows A
proof —
from (A +— B> have (A — B) A (B — A)
unfolding iff def .
then have B — A ..
from this and «B> show A ..
qed

1.3 Equality

axiomatization equal :: ¢ = i = o (infix]l =) 50)
where refl [intro]: @ = «
and subst: 1t =y =— Px = Py

theorem trans [trans|: 1 =y = y =2z = 2z = 2
by (rule subst)

theorem sym [sym]: z =y —= y ==
proof —
assume z = y
from this and refl show y = ¢
by (rule subst)
qged

1.4 Quantifiers

axiomatization All :: (i = 0) = o (binder V) 10)
where alll [intro|: (N\z. Pz) = Vz. Pz
and allD [dest]: Vz. Pz = P a

axiomatization Fz :: (i = 0) = o (binder «3» 10)
where ex] [intro]: P a = Jz. Pz
and ezE [elim|: 3z. Pz = (\z. Pz = C) = C

lemma (3z. P (fz)) — 3y. Py)
proof
assume Jz. P (f z)
then obtain z where P (fz) ..
then show Jy. Py ..



qed

lemma (3z.Vy. Rzy) — (Vy. 32. Rz y)
proof
assume Jz. Vy. Rz y
then obtain z where Vy. Rz y ..
show Vy. dz. Rz y
proof
fix y
from <Vy. Rz y> have Rz y ..
then show J3z. Rz y ..
qed
qed

end

2 Foundations of HOL

theory Higher Order_Logic
imports Pure
begin

The following theory development illustrates the foundations of Higher-
Order Logic. The “HOL” logic that is given here resembles [2] and its
predecessor [1], but the order of axiomatizations and defined connectives has
be adapted to modern presentations of A-calculus and Constructive Type
Theory. Thus it fits nicely to the underlying Natural Deduction framework
of Isabelle/Pure and Isabelle/Isar.

3 HOL syntax within Pure

class type
default__sort type

typedecl o
instance o :: type ..

instance fun :: (type, type) type ..

judgment Trueprop :: o = prop (<> 5)

4 Minimal logic (axiomatization)
axiomatization imp :: 0 = 0 = o (infixr (— 25)
where impI [intro]: (A = B) = A — B
and impE [dest, trans]: A — B = A = B

axiomatization All :: ('a = 0) = o (binder V) 10)



where alll [intro]: (Nz. Pz) = Vz. Pz
and allE [dest]: Vz. Px = P a

lemma atomize_imp [atomize]: (A => B) = Trueprop (A — B)
by standard (fact impl, fact impE)

lemma atomize all [atomize]: (Az. P x) = Trueprop (Vz. P x)
by standard (fact alll, fact allE)

4.0.1 Derived connectives

definition Fulse :: o
where False =V A. A

lemma FalseE [elim]:
assumes Fulse
shows A
proof —
from «False» have V A. A by (simp only: False_def)
then show 4 ..
qed

definition True :: o
where True = False — Fulse

lemma Truel [intro]: True
unfolding True_def ..

definition not :: 0 = o (<= _» [40] 40)
where not = AA. A — Fulse

lemma notl [intro]:
assumes A = Fulse
shows - 4
using assms unfolding not_def ..

lemma notE [elim]:
assumes - A and A
shows B
proof —
from - A> have A — False by (simp only: not_ def)
from this and <A) have Fualse ..
then show B ..
qed

lemma notE" A = - A = B
by (rule notE)



lemmas contradiction = notE notE’ — proof by contradiction in any order

definition conj :: 0 = 0 = o (infixr (A\» 35)
where ANB=V(C.(A— B — (C)— C

lemma conjl [intro):
assumes A and B
shows A A B
unfolding conj def
proof
fix C
show (A — B — C) — C
proof
assume A — B — ('
also note <A>
also note (B>
finally show C .
qed
qed

lemma conjE [elim):
assumes A A B
obtains A and B
proof
from <A A B> have x: (A — B — C) — C for C
unfolding conj def ..
show A
proof —
note * [of A
also have A — B — A
proof
assume A
then show B — A4 ..
qed
finally show ?thesis .
qed
show B
proof —
note * [of B]
also have A — B — B
proof
show B — B ..
qed
finally show ?thesis .
qed
qed



definition disj :: 0 = 0 = o (infixr V) 30)
where AV B=V(C. (A —C)— (B—C)—C

lemma disjI1 [intro]:
assumes A
shows A VvV B
unfolding disj def
proof
fix C
show (A — C) — (B— C) — C
proof
assume A — C
from this and <A> have C ..
then show (B — C) — C ..
qged
qed

lemma disjI2 [intro]:
assumes B
shows A V B
unfolding disj def
proof
fix C
show (A — C) — (B— C) — C
proof
show (B — C) — C
proof
assume B — C
from this and <B) show C ..
qed
qed
qed

lemma disjE [elim]:
assumes A V B
obtains (a) A | (b) B
proof —
from <A vV B> have (A — thesis) — (B — thesis) —> thesis
unfolding disj def ..
also have A — thesis
proof
assume A
then show thesis by (rule a)
qed
also have B — thesis
proof
assume B
then show thesis by (rule b)



qed
finally show thesis .
qed

definition Fz :: (‘a = 0) = o (binder «3» 10)
where 3z. Pz =V C. V2. Pz — C) — C

lemma exl [intro]: P a = Jz. Pz
unfolding Fz_def
proof
fix C
assume P a
show (Vz. Pz — C) — C
proof
assume Vz. Pz — C
then have Pa — C ..
from this and <P a» show C' ..
qed
qed

lemma exE [elim]:
assumes Jz. P x
obtains (that) x where P z
proof —
from <3z. P 2> have (Vz. P x — thesis) — thesis
unfolding Fxz_def ..
also have Vz. P x — thesis
proof
fix z
show P x — thesis
proof
assume P z
then show thesis by (rule that)
qed
qed
finally show thesis .
qed

4.0.2 Extensional equality

axiomatization equal :: ‘a = ‘a = o (infixl =) 50)
where refl [intro]: ©z = x
and subst: x =y =— Pz = Py

abbreviation not_equal :: ‘a = 'a = o (infix] %> 50)
where z £ y = - (z = y)

abbreviation iff :: 0 = 0 = o (infixr «+—» 25)



where A+ B=A=1B

axiomatization
where ext [intro]: (Nz. fr=g2) = f=yg
and iff [intro]: (A— B) —= (B—= A) —= A+— B
for fg:'a="b

lemma sym [sym|: y =z if z = y
using that by (rule subst) (rule refl)

lemma [trans]: t =y = Py = Pz
by (rule subst) (rule sym)

lemma [trans]: Pz = 2=y = Py
by (rule subst)

lemma arg cong: fo = fyifz =y
using that by (rule subst) (rule refl)

lemma fun_cong: fx =gz if f =g
using that by (rule subst) (rule refl)

lemma trans [trans|: s =y = y =2 = =2
by (rule subst)

lemma iff! [elim]: A +— B = A = B
by (rule subst)

lemma iff2 [elim]: A <— B=—= B = A
by (rule subst) (rule sym)

4.1 Cantor’s Theorem

Cantor’s Theorem states that there is no surjection from a set to its powerset.
The subsequent formulation uses elementary A-calculus and predicate logic,
with standard introduction and elimination rules.

lemma iff contradiction:
assumes *: 7 A «— A
shows C
proof (rule notE)
show — A
proof
assume A
with * have = A ..
from this and <A) show Fulse ..
qged
with * show 4 ..
qed



theorem Cantor: = (3f :: 'a = 'a = 0. VA. J2. A = f2x)
proof
assume 3f 1 ‘a = ‘a = 0. VA Jx. A=fz
then obtain f :: ‘a = 'a = o where x: VA. Jz. A = fz ..
let D =MXz. - fzxzx
from x have 3z. ?D = fx ..
then obtain a« where ?D = fa ..
then have 7D a <— f a a using refl by (rule subst)
then have - faa+— faa.
then show Fulse by (rule iff _contradiction)
qed

4.2 Characterization of Classical Logic

The subsequent rules of classical reasoning are all equivalent.

locale classical =

assumes classical: (- A = A) = A

— predicate definition and hypothetical context
begin

lemma classical contradiction:
assumes - A =— Fualse
shows A

proof (rule classical)
assume — A
then have Fulse by (rule assms)
then show A4 ..

qed

lemma double_negation:

assumes - - A

shows A
proof (rule classical _contradiction)

assume - A

with <— = 4> show False by (rule contradiction)
qed

lemma tertium_non_datur: AV - A
proof (rule double negation)
show — = (A V = 4)
proof
assume — (A V = A)
have -~ 4
proof
assume A then have A v - 4 ..
with (= (A vV = A)) show False by (rule contradiction)
qged
then have A Vv = A4 ..
with (= (A vV = A)) show False by (rule contradiction)

10



qed
qed

lemma classical cases:
obtains A | - A4
using tertium__non__ datur
proof
assume A
then show thesis ..
next
assume — A
then show thesis ..
qed

end

lemma classical_if cases: classical
if casess N\AC. (A= 0)—= (-A= ()= C
proof
fix A
assume *: = A =— A
show A
proof (rule cases)
assume A
then show A .
next
assume — A
then show A by (rule *)
qed
qed

5 Peirce’s Law

Peirce’s Law is another characterization of classical reasoning. Its statement
only requires implication.

theorem (in classical) Peirce’s Law: (A — B) — A) — A
proof
assume *: (A — B) — A
show A
proof (rule classical)
assume — A
have A — B
proof
assume A
with <= Ay show B by (rule contradiction)
qed
with * show 4 ..
qed

11



qed

6 Hilbert’s choice operator (axiomatization)

axiomatization Eps :: ('a = 0) = 'a
where somel: Pz = P (Eps P)

syntax _ Eps :: pttrn = o = ‘a («(xindent=38 notation=<binder SOME»»SOME
_./_)»|0,10] 10)

syntax_ consts _ Fps = Eps

translations SOMFE z. P = CONST Eps (Az. P)

It follows a derivation of the classical law of tertium-non-datur by means of
Hilbert’s choice operator (due to Berghofer, Beeson, Harrison, based on a
proof by Diaconescu).

theorem Diaconescu: AV = A
proof —
let P =Xz. (AANzZ)V -z
let 2Q =MXe. (AN—-2)Vx

have a: ?P (Eps ?P)
proof (rule somel)
have - Fulse ..
then show ?P Fulse ..
qed
have b: 2Q (Eps ?Q)
proof (rule somel)
have True ..
then show ?Q True ..
qed

from a show ?thesis
proof
assume A A Eps ?P
then have A ..
then show ?thesis ..
next
assume — Eps 7P
from b show ?thesis
proof
assume A A - Eps 20Q)
then have A ..
then show ?thesis ..
next
assume Eps ()
have neq: 7P # 2Q
proof

12



assume ?P = 2()
then have Eps P «+— Eps ?Q by (rule arg_cong)
also note <Eps ?7Q»
finally have Eps ?P .
with <= Eps P> show False by (rule contradiction)
qed
have - A
proof
assume A
have 7P = 2Q)
proof (rule ext)
show ?P z <— ?Q x for z
proof
assume ?P x
then show 7Q) x
proof
assume - ¥
with (4> have A A =z ..
then show ?thesis ..
next
assume A A z
then have z ..
then show ?thesis ..
qed
next
assume ?Q ¢
then show 7P z
proof
assume A A -z
then have - z ..
then show ?thesis ..
next
assume z
with (4> have A A z ..
then show ?thesis ..
qed
qged
qed
with neq show False by (rule contradiction)
qed
then show ?thesis ..
qed
qed
qed

This means, the hypothetical predicate classical always holds uncondition-
ally (with all consequences).

interpretation classical
proof (rule classical if cases)

13



fix A C
assume *x: A — C

and *x: = A — C
from Diaconescu [of A] show C
proof

assume A

then show C by (rule x)
next

assume - A

then show C by (rule *x)
qed

qed

thm classical
classical__contradiction
double__negation
tertium__non__datur
classical cases
Peirce’s Law

end

References

[1] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56-68, 1940.

[2] M. J. C. Gordon. HOL: A machine oriented formulation of higher order
logic. Technical Report 68, University of Cambridge Computer Labora-
tory, 1985.

14



	A simple formulation of First-Order Logic
	Abstract syntax
	Propositional logic
	Equality
	Quantifiers

	Foundations of HOL
	HOL syntax within Pure
	Minimal logic (axiomatization)
	Derived connectives
	Extensional equality

	Cantor's Theorem
	Characterization of Classical Logic

	Peirce's Law
	Hilbert's choice operator (axiomatization)

