Notable Examples in Isabelle/Pure

September 11, 2023

1 A simple formulation of First-Order Logic

The subsequent theory development illustrates single-sorted intuitionistic first-order logic with equality, formulated within the Pure framework.
theory First__Order__Logic
imports Pure
begin

1.1 Abstract syntax

typedecl i
typedecl o
judgment Trueprop :: o \Rightarrow prop (_ 5)

1.2 Propositional logic

axiomatization false :: o (\perp)
where false $E[$ elim] $: \perp \Longrightarrow A$

```
axiomatization \(\mathrm{imp}:: o \Rightarrow o \Rightarrow o \quad\) (infixr \(\longrightarrow\) 25)
    where impI [intro]: \((A \Longrightarrow B) \Longrightarrow A \longrightarrow B\)
        and \(m p\) [dest]: \(A \longrightarrow B \Longrightarrow A \Longrightarrow B\)
axiomatization conj :: \(o \Rightarrow o \Rightarrow o \quad(\) infixr \(\wedge 35)\)
    where conjI [intro]: \(A \Longrightarrow B \Longrightarrow A \wedge B\)
        and conjD1: \(A \wedge B \Longrightarrow A\)
        and conjD2: \(A \wedge B \Longrightarrow B\)
theorem conjE [elim]:
    assumes \(A \wedge B\)
    obtains \(A\) and \(B\)
proof
    from \(\langle A \wedge B\rangle\) show \(A\)
```

```
    by (rule conjD1)
    from }\langleA\wedgeB\rangle\mathrm{ show }
    by (rule conjD2)
qed
```

```
axiomatization disj :: \(o \Rightarrow o \Rightarrow o \quad(i n f i x r \vee 30)\)
    where disjE [elim]: \(A \vee B \Longrightarrow(A \Longrightarrow C) \Longrightarrow(B \Longrightarrow C) \Longrightarrow C\)
        and disjI1 [intro]: \(A \Longrightarrow A \vee B\)
        and disjI2 [intro]: \(B \Longrightarrow A \vee B\)
```

definition true :: o (\top)
where $T \equiv \perp \longrightarrow \perp$
theorem trueI [intro]: \top
unfolding true_def ..
definition not :: $o \Rightarrow o\left(\neg _[40] 40\right)$
where $\neg A \equiv A \longrightarrow \perp$
theorem notI [intro]: $(A \Longrightarrow \perp) \Longrightarrow \neg A$
unfolding not_def ..
theorem notE [elim]: $\neg A \Longrightarrow A \Longrightarrow B$
unfolding not_def
proof -
assume $A \longrightarrow \perp$ and A
then have \perp..
then show B..
qed
definition iff $:: o \Rightarrow o \Rightarrow o$ (infixr \longleftrightarrow 25)
where $A \longleftrightarrow B \equiv(A \longrightarrow B) \wedge(B \longrightarrow A)$
theorem iffI [intro]:
assumes $A \Longrightarrow B$
and $B \Longrightarrow A$
shows $A \longleftrightarrow B$
unfolding iff_def
proof
from $\langle A \Longrightarrow B\rangle$ show $A \longrightarrow B$..
from $\langle B \Longrightarrow A\rangle$ show $B \longrightarrow A$.
qed
theorem iff1 [elim]:
assumes $A \longleftrightarrow B$ and A

```
    shows B
proof -
    from }\langleA\longleftrightarrowB\rangle\mathrm{ have }(A\longrightarrowB)\wedge(B\longrightarrowA
    unfolding iff_def.
    then have }A\longrightarrowB.
    from this and }\langleA\rangle\mathrm{ show B ..
qed
theorem iff2 [elim]:
    assumes }A\longleftrightarrowB\mathrm{ and }
    shows }
proof -
    from }\langleA\longleftrightarrowB\rangle\mathrm{ have }(A\longrightarrowB)\wedge(B\longrightarrowA
        unfolding iff_def.
    then have }B\longrightarrowA\mathrm{ ..
    from this and <B\rangle show A ..
qed
```


1.3 Equality

axiomatization equal $:: i \Rightarrow i \Rightarrow o \quad($ infixl $=50)$
where refl [intro]: $x=x$
and subst: $x=y \Longrightarrow P x \Longrightarrow P y$
theorem trans [trans]: $x=y \Longrightarrow y=z \Longrightarrow x=z$
by (rule subst)
theorem sym [sym]: $x=y \Longrightarrow y=x$
proof -
assume $x=y$
from this and refl show $y=x$
by (rule subst)
qed

1.4 Quantifiers

axiomatization $\mathrm{All}::(i \Rightarrow o) \Rightarrow o \quad($ binder $\forall 10)$ where allI [intro]: $(\bigwedge x . P x) \Longrightarrow \forall x . P x$ and allD [dest]: $\forall x . P x \Longrightarrow P a$
axiomatization $E x::(i \Rightarrow o) \Rightarrow o \quad($ binder $\exists 10)$
where $e x I$ [intro]: $P a \Longrightarrow \exists x . P x$
and $e x E[$ elim $]: \exists x . P x \Longrightarrow(\bigwedge x . P x \Longrightarrow C) \Longrightarrow C$
$\operatorname{lemma}(\exists x . P(f x)) \longrightarrow(\exists y . P y)$
proof
assume $\exists x . P(f x)$
then obtain x where $P(f x)$..
then show $\exists y$. P y..

qed

```
lemma }(\existsx.\forally.Rxy)\longrightarrow(\forally.\existsx.Rxy
proof
    assume }\existsx.\forally.Rx
    then obtain x where }\forally.Rxy.
    show }\forally.\existsx.Rx
    proof
        fix y
        from 〈\forally.R x y〉 have R x y ..
        then show \existsx.R x y ..
    qed
qed
end
```


2 Foundations of HOL

```
theory Higher_Order_Logic
    imports Pure
begin
```

The following theory development illustrates the foundations of HigherOrder Logic. The "HOL" logic that is given here resembles [2] and its predecessor [1], but the order of axiomatizations and defined connectives has be adapted to modern presentations of λ-calculus and Constructive Type Theory. Thus it fits nicely to the underlying Natural Deduction framework of Isabelle/Pure and Isabelle/Isar.

3 HOL syntax within Pure

class type
default_sort type
typedecl o
instance o :: type ..
instance fun :: (type, type) type ..
judgment Trueprop :: o \Rightarrow prop (_ 5)

4 Minimal logic (axiomatization)

axiomatization $\mathrm{imp}:: o \Rightarrow o \Rightarrow o \quad(\operatorname{infixr} \longrightarrow 25)$
where impI [intro]: $(A \Longrightarrow B) \Longrightarrow A \longrightarrow B$ and impE [dest, trans]: $A \longrightarrow B \Longrightarrow A \Longrightarrow B$
axiomatization $A l l::\left({ }^{\prime} a \Rightarrow o\right) \Rightarrow o$ (binder $\left.\forall 10\right)$

```
    where allI [intro]: (\bigwedgex. P x)\Longrightarrow \Longrightarrowx. P x
    and allE [dest]: }\forallx.Px\LongrightarrowP
lemma atomize_imp [atomize]: (A\LongrightarrowB) = Trueprop (A\longrightarrowB)
    by standard (fact impI, fact impE)
lemma atomize_all [atomize]: (\bigwedgex. P x) \equiv Trueprop ( }\forallx.Px
    by standard (fact allI, fact allE)
```


4.0.1 Derived connectives

```
definition False :: o
    where False }\equiv\forallA.
lemma FalseE [elim]:
    assumes False
    shows A
proof -
    from 〈False〉 have }\forallA.A by (simp only: False_def
    then show A ..
qed
definition True :: o
    where True \equiv False \longrightarrow False
lemma TrueI [intro]: True
    unfolding True_def ..
definition not ::o =o (\neg_[40] 40)
    where not \equiv\lambdaA.A\longrightarrowFalse
lemma notI [intro]:
    assumes }A\Longrightarrow\mathrm{ False
    shows \negA
    using assms unfolding not_def ..
lemma notE [elim]:
    assumes }\negA\mathrm{ and }
    shows B
proof -
    from }\langle\negA\rangle\mathrm{ have }A\longrightarrow\mathrm{ False by (simp only: not_def)
    from this and }\langleA\rangle\mathrm{ have False ..
    then show B ..
qed
lemma notE': A\Longrightarrow\negA\LongrightarrowB
    by (rule notE)
```

lemmas contradiction $=$ notE $\operatorname{not} E^{\prime}-$ proof by contradiction in any order

```
definition conj :: o=>o=>o (infixr ^ 35)
    where A\wedge B\equiv\forallC. (A\longrightarrowB\longrightarrowC)\longrightarrowC
lemma conjI [intro]:
    assumes }A\mathrm{ and }
    shows }A\wedge
    unfolding conj_def
proof
    fix C
    show }(A\longrightarrowB\longrightarrowC)\longrightarrow
    proof
        assume }A\longrightarrowB\longrightarrow
        also note <A>
        also note \langleB\rangle
        finally show C}\mathrm{ .
    qed
qed
lemma conjE [elim]:
    assumes }A\wedge
    obtains }A\mathrm{ and }
proof
    from }\langleA\wedgeB\rangle\mathrm{ have *: (A 
        unfolding conj_def ..
    show A
    proof -
        note * [of A]
        also have }A\longrightarrowB\longrightarrow
        proof
            assume }
            then show }B\longrightarrowA.
        qed
        finally show ?thesis .
    qed
    show B
    proof -
        note * [of B]
        also have }A\longrightarrowB\longrightarrow
        proof
            show B}\longrightarrowB.
        qed
        finally show ?thesis.
    qed
qed
```

```
definition disj :: o=>o=>o (infixr \vee 30)
    where A\veeB\equiv\forallC.(A\longrightarrowC)\longrightarrow(B\longrightarrowC)\longrightarrowC
lemma disjI1 [intro]:
    assumes }
    shows }A\vee
    unfolding disj_def
proof
    fix C
    show }(A\longrightarrowC)\longrightarrow(B\longrightarrowC)\longrightarrow
    proof
        assume A\longrightarrowC
        from this and <A\rangle have C ..
        then show (B\longrightarrowC)\longrightarrowC ..
    qed
qed
lemma disjI2 [intro]:
    assumes B
    shows }A\vee
    unfolding disj_def
proof
    fix C
    show }(A\longrightarrowC)\longrightarrow(B\longrightarrowC)\longrightarrow
    proof
        show }(B\longrightarrowC)\longrightarrow
        proof
            assume B\longrightarrowC
            from this and \langleB\rangle show C ..
        qed
    qed
qed
lemma disjE [elim]:
    assumes }A\vee
    obtains (a) A | (b) B
proof -
    from }\langleA\veeB\rangle\mathrm{ have }(A\longrightarrow\mathrm{ thesis })\longrightarrow(B\longrightarrow\mathrm{ thesis })\longrightarrow\mathrm{ thesis
        unfolding disj_def ..
    also have }A\longrightarrow\mathrm{ thesis
    proof
        assume }
        then show thesis by (rule a)
    qed
    also have }B\longrightarrow\mathrm{ thesis
    proof
        assume B
        then show thesis by (rule b)
```

```
    qed
    finally show thesis .
qed
definition Ex :: ('a=>o) =>o (binder \exists 10)
    where }\existsx.Px\equiv\forallC.(\forallx.Px\longrightarrowC)\longrightarrow
lemma exI [intro]: Pa\Longrightarrow\existsx. P x
    unfolding Ex_def
proof
    fix C
    assume Pa
    show ( }\forallx.Px\longrightarrowC)\longrightarrow
    proof
        assume }\forallx.Px\longrightarrow
        then have Pa\longrightarrowC ..
        from this and \langleP a\rangle show C ..
    qed
qed
lemma exE [elim]:
    assumes \existsx. P x
    obtains (that) }x\mathrm{ where P x
proof -
    from 〈\existsx. P x` have }(\forallx.Px\longrightarrow\mathrm{ thesis) }\longrightarrow\mathrm{ thesis
        unfolding Ex_def ..
    also have }\forallx.Px\longrightarrow\mathrm{ thesis
    proof
        fix }
        show P x }\longrightarrow\mathrm{ thesis
        proof
            assume P x
            then show thesis by (rule that)
            qed
    qed
    finally show thesis .
qed
```


4.0.2 Extensional equality

axiomatization equal $::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow o \quad($ infixl $=50)$
where refl [intro]: $x=x$
and subst: $x=y \Longrightarrow P x \Longrightarrow P y$
abbreviation not_equal $::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow o \quad($ infixl $\neq 50)$
where $x \neq y \equiv \neg(x=y)$
abbreviation iff $:: o \Rightarrow o \Rightarrow o \quad($ infixr $\longleftrightarrow 25)$

```
    where \(A \longleftrightarrow B \equiv A=B\)
axiomatization
    where ext [intro]: \((\bigwedge x . f x=g x) \Longrightarrow f=g\)
    and iff [intro]: \((A \Longrightarrow B) \Longrightarrow(B \Longrightarrow A) \Longrightarrow A \longleftrightarrow B\)
    for \(f g::{ }^{\prime} a \Rightarrow{ }^{\prime} b\)
lemma sym [sym]: \(y=x\) if \(x=y\)
    using that by (rule subst) (rule reft)
lemma [trans]: \(x=y \Longrightarrow P y \Longrightarrow P x\)
    by (rule subst) (rule sym)
lemma [trans]: \(P x \Longrightarrow x=y \Longrightarrow P y\)
    by (rule subst)
lemma arg_cong: \(f x=f y\) if \(x=y\)
    using that by (rule subst) (rule refl)
lemma fun_cong: \(f x=g x\) if \(f=g\)
    using that by (rule subst) (rule refl)
lemma trans [trans]: \(x=y \Longrightarrow y=z \Longrightarrow x=z\)
    by (rule subst)
lemma iff1 [elim]: \(A \longleftrightarrow B \Longrightarrow A \Longrightarrow B\)
    by (rule subst)
lemma iff2 [elim]: \(A \longleftrightarrow B \Longrightarrow B \Longrightarrow A\)
    by (rule subst) (rule sym)
```


4.1 Cantor's Theorem

Cantor's Theorem states that there is no surjection from a set to its powerset. The subsequent formulation uses elementary λ-calculus and predicate logic, with standard introduction and elimination rules.

```
lemma iff_contradiction:
    assumes *:\negA\longleftrightarrowA
    shows C
proof (rule notE)
    show ᄀ A
    proof
        assume A
        with * have }\negA.
        from this and }\langleA\rangle\mathrm{ show False ..
    qed
    with * show A ..
qed
```

```
theorem Cantor: \neg(\existsf::' }a=>\mp@subsup{|}{}{\prime}a=>o.\forallA.\existsx.A=fx
proof
    assume }\existsf:: 'a a ' a mo.\forallA.\existsx.A=f
    then obtain f:: ' }a>\mp@subsup{|}{}{\prime}a=>o\mathrm{ where *: }\forallA.\existsx.A=fx.
    let ?D = \lambdax. ᄀf fx
    from * have }\existsx\mathrm{ . ? D = f x ..
    then obtain a where ?D = fa ..
    then have ?D a \longleftrightarrowfaa using refl by (rule subst)
    then have }\negfaa\longleftrightarrow\mp@code{faa.
    then show False by (rule iff_contradiction)
qed
```


4.2 Characterization of Classical Logic

The subsequent rules of classical reasoning are all equivalent.
locale classical =
assumes classical: $(\neg A \Longrightarrow A) \Longrightarrow A$

- predicate definition and hypothetical context
begin
lemma classical_contradiction:
assumes $\neg A \Longrightarrow$ False
shows A
proof (rule classical)
assume $\neg A$
then have False by (rule assms)
then show A..
qed
lemma double_negation:
assumes $\neg \neg A$
shows A
proof (rule classical_contradiction)
assume $\neg A$
with $\langle\neg \neg A\rangle$ show False by (rule contradiction)
qed
lemma tertium_non_datur: $A \vee \neg A$
proof (rule double_negation)
show $\neg \neg(A \vee \neg A)$
proof
assume $\neg(A \vee \neg A)$
have $\neg A$
proof
assume A then have $A \vee \neg A$..
with $\langle\neg(A \vee \neg A)\rangle$ show False by (rule contradiction)
qed
then have $A \vee \neg A$..
with $\prec \neg(A \vee \neg A)$ s show False by (rule contradiction)

```
    qed
qed
lemma classical_cases:
    obtains }A|\neg
    using tertium_non_datur
proof
    assume }
    then show thesis ..
next
    assume }\neg
    then show thesis ..
qed
end
lemma classical_if_cases: classical
    if cases: }\AC.(A\LongrightarrowC)\Longrightarrow(\negA\LongrightarrowC)\Longrightarrow
proof
    fix }
    assume *:\negA\LongrightarrowA
    show }
    proof (rule cases)
        assume A
        then show }A\mathrm{ .
    next
        assume }\neg
        then show A by (rule *)
    qed
qed
```


5 Peirce's Law

Peirce's Law is another characterization of classical reasoning. Its statement only requires implication.

```
theorem (in classical) Peirce's_Law: \(((A \longrightarrow B) \longrightarrow A) \longrightarrow A\)
proof
    assume \(*:(A \longrightarrow B) \longrightarrow A\)
    show \(A\)
    proof (rule classical)
        assume \(\neg A\)
        have \(A \longrightarrow B\)
        proof
            assume \(A\)
            with \(\langle\neg A\rangle\) show \(B\) by (rule contradiction)
        qed
        with \(*\) show \(A\)..
    qed
```


6 Hilbert's choice operator (axiomatization)

```
axiomatization Eps :: (' }a=>0)=>\mp@subsup{}{}{\prime}
    where someI: P x P (Eps P)
syntax_Eps:: pttrn =>o m'a ((3SOME _./_) [0, 10] 10)
```

It follows a derivation of the classical law of tertium-non-datur by means of Hilbert's choice operator (due to Berghofer, Beeson, Harrison, based on a proof by Diaconescu).
theorem Diaconescu: $A \vee \neg A$
proof -
let $? P=\lambda x .(A \wedge x) \vee \neg x$
let ? $Q=\lambda x .(A \wedge \neg x) \vee x$
have a : ? $P(E p s ? P)$
proof (rule someI)
have \neg False ..
then show ? P False ..
qed
have b : ? $Q($ Eps ? Q)
proof (rule someI)
have True ..
then show? Q True ..
qed
from a show ?thesis
proof
assume $A \wedge E p s ? P$
then have A..
then show ?thesis ..
next
assume $\neg E p s ? P$
from b show ?thesis
proof
assume $A \wedge \neg E p s ? Q$
then have A..
then show ?thesis ..
next
assume Eps?Q
have neq: ? $P \neq ? Q$
proof
assume $? P=? Q$
then have Eps ?P \longleftrightarrow Eps? Q by (rule arg_cong)

```
            also note 〈Eps? Q〉
            finally have Eps ? P.
            with \(\langle\neg\) Eps ? P \(\rangle\) show False by (rule contradiction)
    qed
    have \(\neg A\)
    proof
        assume \(A\)
        have \(? P=? Q\)
        proof (rule ext)
            show ? \(P x \longleftrightarrow\) ? \(Q x\) for \(x\)
            proof
                assume ? \(P x\)
                then show ? \(Q x\)
                proof
                    assume \(\neg x\)
                    with \(\langle A\rangle\) have \(A \wedge \neg x\)..
                    then show ?thesis ..
                next
                    assume \(A \wedge x\)
                    then have \(x\)..
                    then show ?thesis ..
                qed
            next
                assume ? \(Q x\)
                then show ? \(P x\)
                proof
                    assume \(A \wedge \neg x\)
                    then have \(\neg x\)..
                    then show ?thesis..
                next
                    assume \(x\)
                    with \(\langle A\rangle\) have \(A \wedge x .\).
                    then show?thesis ..
                qed
            qed
        qed
        with neq show False by (rule contradiction)
        qed
        then show ?thesis ..
        qed
    qed
qed
```

This means, the hypothetical predicate classical always holds unconditionally (with all consequences).
interpretation classical
proof (rule classical_if_cases)
fix $A C$
assume $*: A \Longrightarrow C$

```
        and **:\negA\LongrightarrowC
    from Diaconescu [of A] show C
    proof
        assume A
        then show C by (rule *)
    next
        assume }\neg
        then show C by (rule **)
    qed
qed
thm classical
    classical contradiction
    double_negation
    tertium_non_datur
    classical_cases
    Peirce's_Law
end
```


References

[1] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56-68, 1940.
[2] M. J. C. Gordon. HOL: A machine oriented formulation of higher order logic. Technical Report 68, University of Cambridge Computer Laboratory, 1985.

