[sabelle/ HOLCF — Higher-Order Logic

Computable Functions

January 18, 2026

Contents

1 Partial orders

1.1 Type class for partial orders
1.2 Upperbounds.
1.3 Least upper bounds
1.4 Countable chains o000
1.5 Finitechains

2 Classes cpo and pcpo

2.1 Complete partial orders
2.2 Pointed cposo
2.3 Chain-finite and flat cpos
2.4 Discrete cpos

3 Continuity and monotonicity

3.1 Definitions.
3.2 Equivalence of alternate definition
3.3 Collection of continuity rules
3.4 Continuity of basic functions
3.5 Finite chains and flat pcpos

4 Admissibility and compactness

4.1 Definitions
4.2 Admissibility on chain-finite types
4.3 Admissibility of special formulae and propagation
4.4 Compactness

5 Class instances for the full function space

5.1 Full function space is a partial order
5.2 Full function space is chain complete
5.3 Full function space is pointed
5.4 Propagation of monotonicity and continuity

of

6 The cpo of cartesian products
6.1 Unittypeisapcpo
6.2 Product type is a partial order L.
6.3 Monotonicity of Pair, fst, snd
6.4 Product typeisacpo
6.5 Product typeis pointed o oL,
6.6 Continuity of Pair, fst, snd
6.7 Compactness and chain-finiteness

7 Discrete cpo types
7.1 Discrete cpo class instance
7.2 wndiscr ... e

8 Subtypes of pcpos

8.1 Proving a subtype is a partial order
8.2 Proving a subtype is finite oo
8.3 Proving a subtype is chain-finite
8.4 Proving a subtype is completeo

8.4.1 Continuity of Rep and Abs
8.5 Proving subtype elements are compact
8.6 Proving a subtype is pointed 0L,

8.6.1 Strictness of Rep and Abs
8.7 Proving a subtypeisflat o000
8.8 HOLCF type definition package

9 The type of continuous functions

9.1 Definition of continuous function type
9.2 Syntax for continuous lambda abstraction
9.3 Continuous function space is pointed
9.4 Basic properties of continuous functions

9.4.1 Beta-reduction simproc
9.5 Continuity of application.
9.6 Continuity simplification procedure
9.7 Miscellaneous
9.8 Continuous injection-retraction pairs
9.9 Identity and composition
9.10 Strictified functions L.
9.11 Continuity of let-bindings

10 Continuous deflations and ep-pairs
10.1 Continuous deflations L.
10.2 Deflations with finite range
10.3 Continuous embedding-projection pairs.
10.4 Uniqueness of ep-pairs

19
19
20
20
21
21
22
23

24
24
24

24
24
25
25
25
26
26
27
27
28
28

28
28
29
29
30
30
31
32
33
33
34
35
35

10.5 Composing ep-pairso

11 The type of strict products
11.1 Definition of strict product type.
11.2 Definitions of constants
11.3 Case analysis
11.4 Properties of spair
11.5 Properties of sfst and ssnd
11.6 Compactness v v it
11.7 Properties of ssplito
11.8 Strict product preserves flatness

12 The type of lifted values
12.1 Definition of new type for lifting
12.2 Ordering on lifted cpo L.
12.3 Lifted cpo is a partial order oL
12.4 Lifted cpoisacpo
12.5 Lifted cpois pointedo oL
12.6 Continuity of ITup and Ifup
12.7 Continuous versions of constants

13 Lifting types of class type to flat pcpo’s
13.1 Lift asa datatype.
13.2 Liftisflat
13.3 Continuity of case-lift
13.4 Further operations

14 The type of lifted booleans
14.1 Type definition and constructors
14.2 Case analysis
14.3 Boolean connectives L.
14.4 Rewriting of HOLCF operations to HOL functions
14.5 Compactness v v v i

15 The type of strict sums
15.1 Definition of strict sum type
15.2 Definitions of constructors
15.3 Properties of sinl and sinr
15.4 Case analysis
15.5 Case analysis combinator,
15.6 Strict sum preserves flatness L.

16 The Strict Function Type

40

40
40
41
41
42
43
43
44
44

44
44
44
45
45
45
45
46

47
48
48
48
48

49
49
50
o1
52
52

53
53
53
54
55
95
56

56

17 Map functions for various types
17.1 Map operator for continuous function space . . .
17.2 Map operator for product type
17.3 Map function for lifted cpo
17.4 Map function for strict products
17.5 Map function for strict sums
17.6 Map operator for strict function space

18 The cpo of cartesian products
18.1 Continuous case function for unit type
18.2 Continuous version of split function.
18.3 Convert all lemmas to the continuous versions . .

19 Profinite and bifinite cpos
19.1 Chains of finite deflations
19.2 Omega-profinite and bifinite domains
19.3 Building approx chains
19.4 Class instance proofs

20 Defining algebraic domains by ideal completion
20.1 Ideals over a preorder
20.2 Lemmas about least upper bounds
20.3 Locale for ideal completion

20.3.1 Principal ideals approximate all elements
20.4 Defining functions in terms of basis elements . .

21 A universal bifinite domain
21.1 Basis for universal domain
21.1.1 Basis datatype
21.1.2 Basis ordering
21.1.3 Generic take function

21.2 Defining the universal domain by ideal completion

21.3 Compact bases of domains
21.4 Universality of udom

21.4.1 Choosing a maximal element from a finite set

21.4.2 Compact basis take function
21.4.3 Rank of basis elements
21.4.4 Sequencing basis elements

21.4.5 Embedding and projection on basis elements
21.4.6 EP-pair from any bifinite domain into udom

21.5 Chain of approx functions for type udom

57
o7
58
59
59
60
61

62
62
62
62

63
63
63
64
65

66
66
68
68
69
69

22 Algebraic deflations
22.1 Type constructor for finite deflations
22.2 Defining algebraic deflations by ideal completion
22.3 Applying algebraic deflations
22.4 Deflation combinators L L oL

23 Representable domains
23.1 Class of representable domains
23.2 Domains are bifiniteo
23.3 Universal domain ep-pairs
23.4 Type combinators,
23.5 Class instance proofs L.
23.5.1 Universal domain
23.5.2 Liftedcpo o
23.5.3 Strict function space oL
23.5.4 Continuous function space
23.5.5 Strict producto
23.5.6 Cartesian product
23.5.7 Unit typeo
23.5.8 Discretecpo.o Lo
23.5.9 Strict sum
23.5.10Lifted HOL type

24 The unit domain

25 Fixed point operator and admissibility
25.1 Tteration
25.2 Least fixed point operator
25.3 Fixed point induction oL oo
25.4 Fixed-points on product types

26 Package for defining recursive functions in HOLCF
26.1 Pattern-match monad
26.1.1 Runoperator
26.1.2 Monad plus operator
26.2 Match functions for built-in types
26.3 Mutual recursion
26.4 Initializing the fixrec package

27 Domain package
27.1 Continuous isomorphisms
27.2 Proofs about take functions
27.3 Finiteness
27.4 Proofs about constructor functions

85
85
86
87
87
88
88
89
89
90
91
91
92
93
93
94

95

96
96
97
98
99

99

99
100
100
101
102
103

27.5
27.6
27.7
27.8
279

MLsetup
Representations of types
Deflations assets
Proving a subtype is representable
Isomorphic deflations,

27.10Setting up the domain package

28 A compact basis for powerdomains

28.1
28.2
28.3

A compact basis for powerdomains
Unit and plus constructors
Fold operator

29 Upper powerdomain

29.1
29.2
29.3
294
29.5
29.6
29.7
29.8

Basis preorder. L
Type definition o
Monadic unit and plus L.
Inductionrules 0.
Monadic bind
Map . . . o
Upper powerdomain is bifinite
Join ...

30 Lower powerdomain

30.1
30.2
30.3
30.4
30.5
30.6
30.7
30.8

Basispreorder. oL
Type definition L
Monadic unit and plus
Inductionrules
Monadic bind o
Map
Lower powerdomain is bifinite
Join ...

31 Convex powerdomain

31.1
31.2
31.3
314
31.5
31.6
31.7
31.8
31.9

Basis preordero
Type definition
Monadic unit and plus
Inductionrules
Monadic bindo Lo
Map . . . o
Convex powerdomain is bifinite
Join ...
Conversions to other powerdomains

108
108
109
109
110
112

113
113
113
114

115
115
116
116
118
119
120
121
121

122
122
123
124
126
126
127
128
128

32 Powerdomains 138
32.1 Universal domain embeddings 138
32.2 Deflation combinators 138
32.3 Domain class instances 139
32.4 Isomorphic deflations oo 140

32.5 Domain package setup for powerdomains 141

[Pure]

[tHoL

[cpo| [ReADME] [IHOL-Library]

Cfun

Completion | | Cprod | | Deflation | | Sfun | | Sprod |

Map_Functions

Universal

Algebraic		Compact_Basis		
Representable		LowerPD		UpperPD
ConvexPD		Domain		

Powerdomains

HOLCF

THEORY “Cpo”

theory Cpo
imports Main
begin

1 Partial orders

declare [[typedef-overloaded))

1.1 Type class for partial orders

class below =
fixes below :: 'a = 'a = bool
begin

notation (ASCII)
below (infix << 50)

notation
below (infix <C» 50)

abbreviation not-below :: 'a = 'a = bool (infix «Z» 50)
where not-below z y = — below = y

notation (ASCII)
not-below (infix (~<<> 50)

lemma below-eq-trans: a & b — b=c=— a C ¢
(proof)

lemma eg-below-trans: a = b=— bC ¢c = a C ¢
(proof)

end

class po = below +
assumes below-refl [iff]: z C x
assumes below-trans: x Ty —= yC 2 —= 2z C 2
assumes below-antisym: t Cy—= yCz =z =y
begin

lemma eg-imp-below: © =y =z C y
(proof)

lemma boz-below: a T b=—cCa=—=bC d=— cC d
(proof)

lemma po-eq-conv: zt =y+— 2z CyAyLCx

THEORY “Cpo”

{proof)

lemma rev-below-trans: yC 2 —= a2 C y = z C 2
(proof)

lemma not-below2not-eq: x L y = x + y
(proof)

end

lemmas HOLCF-trans-rules [trans] =
below-trans
below-antisym
below-eq-trans
eq-below-trans

context po
begin

1.2 Upper bounds

definition is-ub :: ‘a set = 'a = bool (infix «<|> 55)
where S <| z +— (VyeS. y C z)

lemma is-ubl: (A\z.z€ S=2C u) = S <|u
(proof)

lemma is-ubD: [S <] u; 2 €] =z C u
{proof)

lemma ub-imagel: (A\z. z € S = fz Cu) = (A\z. fz) ‘S <] u
{proof)

lemma ub-imageD: [f ‘S <| u;z € 8] = fz C u
{proof)

lemma ub-rangel: (\i. S i C z) = range S <| z
{proof)

lemma ub-rangeD: range S <| 2 = SiC z
(proof)

lemma is-ub-empty [simp]: {} <] u
{proof)

lemma is-ub-insert [simp): (insert z A) <] y=(z Sy A A <] y)
(proof)

lemma is-ub-upward: [S <|z; 2 Cy] = S <| y

10

THEORY “Cpo” 11

{proof)

1.3 Least upper bounds
definition is-lub :: ‘a set = 'a = bool (infix «<<|> 55)
where S <<|z+— S <]z A Vu. S<|lu— 2zC u)

definition lub :: ‘a set = 'a
where lub S = (THE z. S <<| 1)

end

syntax (ASCII)
-BLub :: [pttrn, 'a set, 'b] = 'b («(<indent=3 notation=<binder LUB»LUB -:-./
) (0,0, 10] 10)

syntax
-BLub :: [pttrn, 'a set, 'b] = ‘b («(<indent=3 notation=<binder | |»|]-€-./ -)»
0,0, 10] 10)

syntax-consts
-BLub = lub

translations
LUB z:A. t &= CONST lub ((M\z. t) < A)

context po
begin

abbreviation Lub (binder «| |» 10)
where | |n. t n = lub (range t)

notation (ASCII)
Lub (binder <LUB » 10)

access to some definition as inference rule

lemma is-lubD1: S <<|z = S <| z
{proof)

lemma is-lubD2: [S <<|z; S <] u] = 2 C u
(proof)

lemma is-lubl: [S <| z; Au. S <|u=2zCu] = S <<| =z
(proof)

lemma is-lub-below-iff: S <<| z = 2 C u +— 5 <| u

(proof)

lubs are unique

THEORY “Cpo” 12

lemma is-lub-unique: S <<|z = S <<|y= 2=y
{proof)

technical lemmas about lub and (<<])
lemma is-lub-lub: M <<| 2 = M <<| lub M
(proof)

lemma lub-eql: M <<| | = lub M =1
(proof)

lemma is-lub-singleton [simpl: {z} <<| z
{proof)

lemma lub-singleton [simp]: lub {z} = =
{proof)

lemma is-lub-bin: © C y = {z, y} <<| y
(proof)

lemma lub-bin: 2 C y = lub {z, y} =y
(proof)

lemma is-lub-mazimal: S <| = 2 € S = S <<| =
(proof)

lemma lub-mazimal: S <|z =z € S = lub S ==z
{proof)

1.4 Countable chains

definition chain :: (nat = 'a) = bool
where — Here we use countable chains and I prefer to code them as functions!
chain Y = (Vi. Yi T Y (Suc 1))

lemma chainl: (N\i. YiC Y (Suc i)) = chain Y
{proof)

lemma chainE: chain Y = Y i C Y (Suc i)
(proof)

chains are monotone functions
lemma chain-mono-less: chain ¥ — i < j— YiLC Yj
(proof)

lemma chain-mono: chain ¥ — i< j=— YiC Yj
(proof)

lemma chain-shift: chain Y = chain (Mi. Y (i + j))
{proof)

THEORY “Cpo” 13

technical lemmas about (least) upper bounds of chains
lemma is-lub-rangeD1: range S <<|z = SiC
{proof)

lemma is-ub-range-shift: chain S = range (A\i. S (i + 7)) <| z = range S <| z
(proof)
lemma is-lub-range-shift: chain S = range (Mi. S (i + j)) <<| = = range S <<|
T
(proof)

the lub of a constant chain is the constant
lemma chain-const [simp]: chain (Ai. c)

{proof)

lemma is-lub-const: range (Az. ¢) <<| ¢

(proof)

lemma lub-const [simpl: (|]i. ¢) = ¢
{proof)

1.5 Finite chains

definition maz-in-chain :: nat = (nat = ‘a) = bool
where — finite chains, needed for monotony of continuous functions
maz-in-chain i C +— (Vj. i <j— Ci= C})

definition finite-chain :: (nat = 'a) = bool
where finite-chain C = (chain C A (Fi. max-in-chain i C))

results about finite chains
lemma maz-in-chainl: (\j. i < j= Y i= Y j) = maz-in-chain i ¥

{proof)

lemma maz-in-chainD: maz-in-chain i ¥ — i < j=— Yi=Yj
(proof)

lemma finite-chainl: chain C = max-in-chain ¢ C = finite-chain C

(proof)

lemma finite-chainE: [finite-chain C; Ai. [chain C; maz-in-chain i C] = R]
=R
{proof)

lemma lub-finchl: chain C = max-in-chain i C = range C <<| C'i
(proof)

lemma lub-finch2: finite-chain C = range C <<| C (LEAST i. maz-in-chain i
0)

THEORY “Cpo” 14

{proof)

lemma finch-imp-finite-range: finite-chain ¥ = finite (range Y)
(proof)

lemma finite-range-has-mazx:
fixes [:: nat = a
and 7 :: ‘a = 'a = bool
assumes mono: N\ij. i <j= r (fi) (fj)
assumes finite-range: finite (range f)
shows 3k. Vi. r (fi) (fk)
(proof)

lemma finite-range-imp-finch: chain ¥ = finite (range Y) = finite-chain Y

(proof)

lemma bin-chain: © C y = chain (Ai. if i=0 then x else y)
{proof)

lemma bin-chainmaz: * T y = max-in-chain (Suc 0) (Ni. if i=0 then z else y)
{proof)

lemma is-lub-bin-chain: * C y = range (Ai::nat. if i=0 then x else y) <<| y
(proof)

the maximal element in a chain is its lub

lemma lub-chain-mazelem: Vi =c=Vi. YiC ¢ = lub (range Y) = ¢
{proof)

end

2 Classes cpo and pcpo
2.1 Complete partial orders

The class cpo of chain complete partial orders
class cpo = po +
assumes cpo: chain S = Jz. range S <<| x

default-sort cpo

context cpo
begin
in cpo’s everthing equal to THE lub has lub properties for every chain

lemma cpo-lubl: chain S = range S <<| (| |i. S 7)
{proof)

THEORY “Cpo” 15

lemma thelubE: [chain S; (|]i. S i) =[] = range S <<| 1
{proof)

Properties of the lub

lemma is-ub-thelub: chain S = Sz C (| |i. S 7)
{proof)

lemma is-lub-thelub: [chain S; range S <| z] = (|Ji. S9) C z
{proof)

lemma [ub-below-iff: chain S = (| |i. S4) C z +— (Vi. S C z)
(proof)

lemma lub-below: [chain S; \i. SiC 2] = (i Si) C =z
{proof)

lemma below-lub: [chain S; x T Si] = « C (|] S i)
{proof)

lemma lub-range-mono: [range X C range Y; chain Y; chain X]| = (|]i. X @)
C (i Y9

(proof)

lemma lub-range-shift: chain Y = (|]i. Y (i + 7)) = (|]i. Y i)
{proof)

lemma mazinch-is-thelub: chain Y = maz-in-chain i Y = ((| |i. Y i) = Y i)
{proof)

the C relation between two chains is preserved by their lubs

lemma [ub-mono: [chain X; chain Y; Ai. X« C Yi] = (i X4) C (i Yi)
{proof)

the = relation between two chains is preserved by their lubs

lemma lub-eq: (N\i. X i=Yi)= (|]i. Xi) = (]¢ Y1)
(proof)

lemma ch2ch-lub:
assumes I1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (Nj. Y ij)
shows chain (\i. | |j. Y ij)
(proof)

lemma diag-lub:
assumes I1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (\j. Y ij)
shows (| |i. | |4 Yij) = (]i Yii)
(proof)

THEORY “Cpo”

lemma ez-lub:
assumes I1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (\j. Y ij)
shows (| |i. | |j. Yij) = (UJ. Ui Yij)

(proof)

end

2.2 Pointed cpos

The class pcpo of pointed cpos

class pcpo = cpo +
assumes least: 3z. Vy. z C y
begin

definition bottom :: 'a (<L)
where bottom = (THE z. Vy. z C y)

lemma minimal [iff]: L C x
{proof)

end

Old "UU" syntax:
abbreviation (input) UU = bottom

Simproc to rewrite L = z to x = L.

(ML)

useful lemmas about L

lemma below-bottom-iff [simp]: ¢ © L +— = L

{proof)

lemma eg-bottom-iff: t = 1L +— z C L
(proof)

lemma bottoml: x C 1 — z = L
(proof)

lemma lub-eg-bottom-iff: chain ¥ = (|]i. Yi) = L +— (Vi. Yi= 1)
{proof)

2.3 Chain-finite and flat cpos

further useful classes for HOLCF domains

class chfin = po +
assumes chfin: chain Y = dn. maz-in-chain n Y
begin

16

THEORY “Cpo” 17

subclass cpo
(proof)

lemma chfin2finch: chain Y = finite-chain Y
(proof)

end

class flat = pcpo +
assumes az-flat: tCy =z =1 Vzr=y
begin

subclass chfin

(proof)

lemma flat-below-iff: tC y+— 2z =1L Vzr=y
{proof)

lemma flat-eq: a # L = a C b= (a = D)
(proof)

end

2.4 Discrete cpos

class discrete-cpo = below +
assumes discrete-cpo [simp]: x C y +— x =y
begin

subclass po
(proof)

In a discrete cpo, every chain is constant

lemma discrete-chain-const:
assumes S: chain S
shows Jz. S = (Ai. x)

(proof)

subclass chfin
(proof)

end

3 Continuity and monotonicity

3.1 Definitions

definition monofun :: (‘a::po = 'b::po) = bool — monotonicity

THEORY “Cpo” 18

where monofun f «+— Vzy. 2 Cy — fz C fy)

definition cont :: (‘a = 'b) = bool
where cont f = (VY. chain Y — range (Mi. f (Y i) <<| f (|]i. Y 9))

lemma contl: (\Y. chain Y = range (A\i. f (Vi) <<| f (L]i. Y i)) = cont f
(proof)

lemma contE: cont f = chain Y = range (Mi. f (Y 7)) <<| f (U7. Y ?)
{proof)

lemma monofunl: (Azy. ¢ C y = fz C fy) = monofun f
(proof)

lemma monofunE: monofun f =z C y = fzC fy
(proof)

3.2 Equivalence of alternate definition

monotone functions map chains to chains

lemma ch2ch-monofun: monofun f = chain Y = chain (\i. f (Y 1))
{proof)

monotone functions map upper bound to upper bounds

lemma ub2ub-monofun: monofun f = range Y <| uw = range (Ni. f (Y 7)) <]
fu
{proof)

a lemma about binary chains

lemma binchain-cont: cont f = x C y = range (Mi::nat. f (if i = 0 then x else
y) <<|fy
(proof)

continuity implies monotonicity

lemma cont2mono: cont f = monofun f

(proof)

lemmas cont2monofunE = cont2mono [THEN monofunFE)

lemmas ch2ch-cont = cont2mono [THEN ch2ch-monofun)

continuity implies preservation of lubs

lemma cont2contiubE: cont f = chain Y = f (| |i. Y i) = (L. f (Y 7))
{proof)

lemma contl2:
fixes f : 'a = b
assumes mono: monofun f

THEORY “Cpo” 19

(;sizlmes below: \Y. [chain Y; chain (Mi. f (Y 9)] = f (Ui Yi)C (e f

shows cont f

(proof)

3.3 Collection of continuity rules

named-theorems cont2cont continuity intro rule

3.4 Continuity of basic functions

The identity function is continuous

lemma cont-id [simp, cont2cont]: cont (Az. x)
{proof)

constant functions are continuous

lemma cont-const [simp, cont2cont]: cont (Az. c)
{proof)

application of functions is continuous
lemma cont-apply:
fixesf::'a='b="cand t:: 'a="b
assumes I: cont (Az. t x)
assumes 2: Az. cont (Ay. fz y)
assumes 3: A\y. cont (Az. fz y)
shows cont (Az. (f z) (t z))

(proof)

lemma cont-compose: cont ¢ = cont (A\z. f x) = cont (A\z. ¢ (f z))
{proof)

Least upper bounds preserve continuity

lemma cont2cont-lub [simp]:
assumes chain: A\z. chain (\i. F i z)
and cont: A\i. cont (Az. Fix)
shows cont (Az. | |i. Fix)

(proof)
if-then-else is continuous

lemma cont-if [simp, cont2cont]: cont f => cont g => cont (Az. if b then f x else
9)
(proof)

3.5 Finite chains and flat pcpos

Monotone functions map finite chains to finite chains.

lemma monofun-finch2finch: monofun f = finite-chain Y = finite-chain (An.

f (Y n)

THEORY “Cpo”

{proof)

The same holds for continuous functions.

lemma cont-finch2finch: cont f = finite-chain ¥ = finite-chain (An. f (Y

{proof)

All monotone functions with chain-finite domain are continuous.

lemma chfindom-monofun2cont: monofun f = cont f
for f :: ‘az:chfin = b
(proof)

All strict functions with flat domain are continuous.

lemma flatdom-strict2mono: f L = 1 = monofun f
for f :: 'a::flat = "b::pepo
(proof)
lemma flatdom-strict2cont: f L = 1 = cont f
for f :: 'a::flat = "b::pcpo
(proof)

All functions with discrete domain are continuous.

lemma cont-discrete-cpo [simp, cont2cont]: cont f
for f :: 'a::discrete-cpo = 'b

(proof)

4 Admissibility and compactness

4.1 Definitions

context cpo
begin

definition adm :: ("a = bool) = bool
where adm P <— (VY. chain ¥ — (Vi. P (Y i)) — P (] Y 1))

lemma admlI: (AY. [chain Y;Vi. P (Yi)] = P (| |i. Yi)) = adm P
(proof)

lemma admD: adm P = chain ¥ = (A\i. P (Y i) = P (|i. Y1)
{proof)

20

n))

lemma admD2: adm (Ax. = P z) = chain Y = P (|]i. Y i) = 3i. P (Vi)

{proof)

lemma triv-adml: Vx. Pt — adm P
(proof)

end

THEORY “Cpo” 21

4.2 Admissibility on chain-finite types

For chain-finite (easy) types every formula is admissible.

lemma adm-chfin [simp]: adm P for P :: 'a::chfin = bool
(proof)

4.3 Admissibility of special formulae and propagation

context cpo
begin

lemma adm-const [simp]: adm (Az. t)
{proof)

lemma adm-conj [simp]: adm (Az. P z) = adm (Az. Q) = adm (Az. P x A
Q z)
{proof)

lemma adm-all [simp]: (A\y. adm (Az. Pz y)) = adm (Az. Vy. Pz y)
(proof)

lemma adm-ball [simp]: (Ny. y € A = adm (Az. P z y)) = adm (Az. VycA.
Pz y)

{proof)

Admissibility for disjunction is hard to prove. It requires 2 lemmas.

lemma adm-disj-lemmal:
assumes adm: adm P
assumes chain: chain Y
assumes P: Vi. 3j>i. P (Y j)
shows P (| |i. Y i)

(proof)

lemma adm-disj-lemma2: Vn:nat. PnV Q@ n = (Vi. 3j>i. Pj) Vv (Vi. 3j>i.
QJ)
(proof)

lemma adm-disj [simp]: adm (Az. P) = adm (Az. Q) = adm (A\z. Pz V
Q z)
{proof)

lemma adm-imp [simp]: adm (Az. = P £) = adm (Az. Q) = adm (A\z. P x
— Q x)
(proof)

lemma adm-iff [simp]: adm (Az. Pz — Q z) = adm (Az. Q v — P 1) =
adm (Az. Pz +— Q z)

{proof)

THEORY “Cpo” 22

end

admissibility and continuity
lemma adm-below [simp]: cont (Az. u) = cont (A\z. v z) = adm (Az. uz C
v x)

{proof)

lemma adm-eq [simp]: cont (Az. u x) = cont (Az. vz) = adm (A\z. vz = v)
(proof)

lemma adm-subst: cont (A\z. t) = adm P = adm (Az. P (t))
{proof)

lemma adm-not-below [simp]: cont (Az. t) = adm (Az. t z £ u)
{proof)

4.4 Compactness

context cpo
begin

definition compact :: 'a = bool
where compact k = adm (Az. k £ z)

lemma compactl: adm (A\z. k £) = compact k
(proof)

lemma compactD: compact k = adm (A\z. k £ x)
{proof)

lemma compacti2: (\Y. [chain Y; 2 C (|]i. Yi)] = 3i. 2 C Y i) = compact
T

{proof)

lemma compactD2: compact & = chain ¥ = z C (| |i. Vi) = Fi. 2 C Y
{proof)

lemma compact-below-lub-iff: compact t = chain Y = z C (| |i. Yi) «+— (4.
zC Yi)
{proof)

end

lemma compact-chfin [simp]: compact © for z :: 'a::chfin
(proof)

lemma compact-imp-maz-in-chain: chain Y = compact (| |i. Y i) = 3i. maz-in-chain
1Y
{proof)

THEORY “Cpo” 23

admissibility and compactness

lemma adm-compact-not-below [simp]:
compact k => cont (A\z. t £) = adm (Az. k Z t)

(proof)

lemma adm-neq-compact [simp]: compact k = cont (A\z. t) = adm (Az. t =
7 k)
{proof)

lemma adm-compact-neq [simp]: compact k = cont (Az. t) = adm (A\z. k #
tz)
(proof)

lemma compact-bottom [simp, intro]: compact L

(proof)

Any upward-closed predicate is admissible.

lemma adm-upward:
assumes P: Az y. [Pz; 2 C y) = Py
shows adm P
(proof)

lemmas adm-lemmas =
adm-const adm-conj adm-all adm-ball adm-disj adm-imp adm-iff
adm-below adm-eq adm-not-below
adm-compact-not-below adm-compact-neq adm-neq-compact

5 Class instances for the full function space

5.1 Full function space is a partial order

instantiation fun :: (type, below) below
begin

definition below-fun-def: (C) = (AMfg.Vz. fz C g x)

instance (proof)
end

instance fun :: (type, po) po

(proof)

lemma fun-below-iff: f C g +— (Vz. fz C g x)
(proof)

lemma fun-belowl: (Az. fr Cgz) = fCg
(proof)

THEORY “Cpo”

lemma fun-belowD: fC g = fz C gz
{proof)

5.2 Full function space is chain complete

Properties of chains of functions.
lemma fun-chain-iff: chain S <— (Vz. chain (\i. S i z))
(proof)

lemma ch2ch-fun: chain S => chain (Ai. S i z)
(proof)

lemma ch2ch-lambda: (Nz. chain (Ni. S i x)) = chain S

{proof)
Type ‘a = b is chain complete
lemma is-lub-lambda: (Az. range (Ni. Yiz) <<| fz) = range ¥ <<| f
{proof)
lemma is-lub-fun: chain S = range S <<| (Az. [|i. Six)
for S :: nat = 'a::type = b
{proof)
lemma lub-fun: chain S = (| |4. S4) = (Az. | i Six)
for S :: nat = 'a::type = 'b
{proof)

instance fun :: (type, cpo) cpo
(proof)

instance fun :: (type, discrete-cpo) discrete-cpo

(proof)

5.3 Full function space is pointed

lemma minimal-fun: (Az. L) C f
{proof)

instance fun :: (type, pcpo) pcpo
(proof)

lemma inst-fun-pcpo: L = (Az. 1)
(proof)

lemma app-strict [simp]: L x = L
(proof)

lemma lambda-strict: (Az. L) = L
{proof)

24

THEORY “Cpo” 25

5.4 Propagation of monotonicity and continuity

The lub of a chain of monotone functions is monotone.
lemma adm-monofun: adm monofun

(proof)
The lub of a chain of continuous functions is continuous.
lemma adm-cont: adm cont

(proof)
Function application preserves monotonicity and continuity.

lemma mono2mono-fun: monofun f = monofun (A\x. fz y)
(proof)

lemma cont2cont-fun: cont f = cont (Az. fz y)
(proof)

lemma cont-fun: cont (Af. f)
(proof)

(ML)

lemma cont (A\f. fz) and cont (\f. fz y) and cont (M\f. fzy 2)
(proof)

Lambda abstraction preserves monotonicity and continuity. (Note (Az. Ay.
fry)=F)
lemma mono2mono-lambda: (A\y. monofun (A\z. f x y)) = monofun f

{proof)

lemma cont2cont-lambda [simp]:
assumes f: Ay. cont (\z. fzy)
shows cont f

(proof)
What D.A.Schmidt calls continuity of abstraction; never used here

lemma contlub-lambda: (Az. chain (Mi. Siz)) = (Az. | |i. Siz) = (] (Az.
Sizx))

for S :: nat = ‘a::type = b

(proof)

6 The cpo of cartesian products

6.1 Unit type is a pcpo

instantiation unit :: discrete-cpo
begin

THEORY “Cpo” 26

definition below-unit-def [simpl: x C (y::unit) +— True

instance
(proof)

end

instance unit :: pcpo
(proof)
6.2 Product type is a partial order

instantiation prod :: (below, below) below
begin

definition below-prod-def: (C) = ApI p2. (fst pI C fst p2 A snd pl C snd p2)
instance (proof)
end

instance prod :: (po, po) po

(proof)

6.3 Monotonicity of Pair, fst, snd

lemma prod-belowl: fst p C fst ¢ = snd p C snd ¢ = p C ¢
(proof)

lemma Pair-below-iff [simp]: (a, b)) C (¢, d) «—aC cADLC d
(proof)

Pair (-,-) is monotone in both arguments
lemma monofun-pairl: monofun (Az. (z, y))

(proof)

lemma monofun-pair2: monofun (Ay. (z, y))
(proof)

lemma monofun-pair: ©1 C 22 — yl C y2 = (a1, yI) C (22, y2)
(proof)

lemma ch2ch-Pair [simp]: chain X = chain Y = chain (Mi. (X i, Y 1))
{proof)

fst and snd are monotone

lemma fst-monofun: x & y = fst x C fst y
(proof)

THEORY “Cpo”

lemma snd-monofun: © C y = snd x C snd y
(proof)

lemma monofun-fst: monofun fst
(proof)

lemma monofun-snd: monofun snd
(proof)

lemmas ch2ch-fst [simp] = ch2ch-monofun [OF monofun-fst]
lemmas ch2ch-snd [simp] = ch2ch-monofun [OF monofun-snd]
lemma prod-chain-cases:

assumes chain: chain Y

obtains A B
where chain A and chain B and Y = (Ai. (4 i, B 1))

(proof)

6.4 Product type is a cpo

27

lemma is-lub-Pair: range A <<| * = range B <<| y = range (Ai. (4 i, B 1))

<<| (=, y)
(proof)

lemma lub-Pair: chain A = chain B = (| Ji. (A4, Bi)) = (] A,] Bi)

for A :: nat = ‘a and B :: nat = b
(proof)

lemma is-lub-prod:
fixes S :: nat = ('a x 'b)
assumes chain S
shows range S <<| (|]i. fst (S i), |] snd (S 1))
(proof)

lemma [ub-prod: chain S = (|]i. S4) = (¢ fst (S i),] snd (S 7))

for S :: nat = ‘a x b
(proof)

instance prod :: (cpo, cpo) cpo
(proof)

instance prod :: (discrete-cpo, discrete-cpo) discrete-cpo

{(proof)

6.5 Product type is pointed

lemma minimal-prod: (L, L) C p
{proof)

THEORY “Cpo” 28

instance prod :: (pcpo, pcpo) pepo
(proof)

lemma inst-prod-pepo: L = (L, 1)
(proof)

lemma Pair-bottom-iff [simp]: (z,y) = L+— =L Ay=1
{proof)

lemma fst-strict [simp]: fst L = L
(proof)

lemma snd-strict [simp]: snd L = L
{proof)

lemma Pair-strict [simp]: (L, 1) = L
(proof)

lemma split-strict [simp]: case-prod f L. =f 1 L
(proof)

6.6 Continuity of Pair, fst, snd

lemma cont-pairl: cont (A\z. (z, y))
(proof)

lemma cont-pair2: cont (Ay. (z, y))
{proof)

lemma cont-fst: cont fst
(proof)

lemma cont-snd: cont snd

(proof)

lemma cont2cont-Pair [simp, cont2cont]:
assumes f: cont (A\z. f)
assumes g: cont (\z. g)
shows cont (Az. (f z, g z))

(proof)
lemmas cont2cont-fst [simp, cont2cont] = cont-compose [OF cont-fst]
lemmas cont2cont-snd [simp, cont2cont] = cont-compose [OF cont-snd)
lemma cont2cont-case-prod:

assumes fI: Aa b. cont (A\z. fx a b)

assumes f2: Az b. cont (Aa. fz a b)
assumes f3: Az a. cont (A\b. fz a b)

THEORY “Cpo” 29

assumes ¢: cont (A\z. g z)
shows cont (Az. case g x of (a, b)) = fz a b)

{proof)

lemma prod-contl:
assumes fI: A\y. cont (Az. f (z, y))
assumes f2: Az. cont (Ay. f (z, y))
shows cont f

(proof)

lemma prod-cont-iff: cont f «+— (Vy. cont (Az. f (z, y))) A (Vz. cont (Ay. [(z,
y)))
(proof)

lemma cont2cont-case-prod’ [simp, cont2cont]:
assumes f: cont (Ap. f (fst p) (fst (snd p)) (snd (snd p)))
assumes ¢: cont (A\z. g z)
shows cont (Az. case-prod (f z) (g z))

{proof)

The simple version (due to Joachim Breitner) is needed if either element
type of the pair is not a cpo.

lemma cont2cont-split-simple [simp, cont2cont]:
assumes Aa b. cont (\z. fx a b)
shows cont (Az. case p of (a, b) = fz ab)

(proof)

Admissibility of predicates on product types.

lemma adm-case-prod [simp]:
assumes adm (Az. Pz (fst (fz)) (snd (f x)))
shows adm (Az. case fz of (a, b) = Pz ab)

{proof)

6.7 Compactness and chain-finiteness
lemma fst-below-iff: fst t C y +— 2 C (y, snd z) for z :: 'a x 'b
(proof)

lemma snd-below-iff: snd t C y «— z C (fst z, y) for z :: ‘a x 'b
(proof)

lemma compact-fst: compact ¥ = compact (fst x)
(proof)

lemma compact-snd: compact x = compact (snd x)
(proof)

lemma compact-Pair: compact © = compact y = compact (z, y)
(proof)

THEORY “Cpodef” 30

lemma compact-Pair-iff [simp|: compact (z, y) +— compact x A compact y
(proof)

instance prod :: (chfin, chfin) chfin
(proof)

7 Discrete cpo types

datatype ‘a discr = Discr 'a:type

7.1 Discrete cpo class instance

instantiation discr :: (type) discrete-cpo
begin

definition ((C) :: ‘a discr = 'a discr = bool) = (=)

instance
(proof)

end

7.2 wundiser

definition undiscr :: 'a::type discr = 'a
where undiscr z = (case x of Discr y = y)

lemma undiscr-Discr [simp]: undiscr (Discr x) = x
{proof)

lemma Discr-undiscr [simp]: Discr (undiscr y) = y
(proof)

end

8 Subtypes of pcpos

theory Cpodef

imports Cpo

keywords pcpodef cpodef :: thy-goal-defn
begin

8.1 Proving a subtype is a partial order

A subtype of a partial order is itself a partial order, if the ordering is defined
in the standard way.

theorem (in below) typedef-class-po:

THEORY “Cpodef” 31

fixes Abs :: 'bi:po = 'a

assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y

shows class.po below

(proof)

lemmas typedef-po-class = below.typedef-class-po [THEN po.intro-of-class)

8.2 Proving a subtype is finite

lemma typedef-finite-UNIV:
fixes Abs :: 'a::type = 'b::type
assumes type: type-definition Rep Abs A
shows finite A = finite (UNIV :: 'b set)

(proof)

8.3 Proving a subtype is chain-finite

lemma ch2ch-Rep:
assumes below: (C) = Az y. Rep z C Rep y
shows chain S = chain (\i. Rep (S 7))

(proof)

theorem typedef-chfin:
fixes Abs :: 'a::chfin = 'b:po
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
shows OFCLASS('b, chfin-class)
(proof)

8.4 Proving a subtype is complete

A subtype of a cpo is itself a cpo if the ordering is defined in the standard
way, and the defining subset is closed with respect to limits of chains. A set
is closed if and only if membership in the set is an admissible predicate.

lemma typedef-is-lubl:
assumes below: (C) = Az y. Rep x C Rep y
shows range (Xi. Rep (S 7)) <<| Rep x = range S <<|

(proof)

lemma Abs-inverse-lub-Rep:
fixes Abs :: ‘a::cpo = 'bipo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and adm: adm (Az. z € A)
shows chain S = Rep (Abs (|]i. Rep (S 7)) = (|4 Rep (S 1))

{proof)

theorem typedef-is-lub:

THEORY “Cpodef” 32

fixes Abs :: 'a::cpo = 'bipo

assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (Az. z € A)

assumes S: chain S

shows range S <<| Abs (| |i. Rep (S 1))

(proof)
lemmas typedef-lub = typedef-is-lub [THEN lub-eql]

theorem typedef-cpo:
fixes Abs :: 'a::cpo = 'biipo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (\z. x € A)
shows OFCLASS('b, cpo-class)

(proof)

8.4.1 Continuity of Rep and Abs

For any sub-cpo, the Rep function is continuous.

theorem typedef-cont-Rep:
fixes Abs :: 'a::cpo = 'b::cpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (A\z. z € A)
shows cont (Az. fx) = cont (Az. Rep (f z))

(proof)

For a sub-cpo, we can make the Abs function continuous only if we restrict
its domain to the defining subset by composing it with another continuous
function.

theorem typedef-cont-Abs:

fixes Abs :: ‘a::cpo = 'bicpo

fixes [:: 'ciiepo = 'az:epo

assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (A\z. x € A)
and f-in-A: N\z. fz € A

shows cont f = cont (Az. Abs (f z))

(proof)

8.5 Proving subtype elements are compact

theorem typedef-compact:
fixes Abs :: 'a::cpo = 'b::cpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y

THEORY “Cpodef” 33

and adm: adm (Az. x € A)
shows compact (Rep k) = compact k

(proof)

8.6 Proving a subtype is pointed

A subtype of a cpo has a least element if and only if the defining subset has
a least element.

theorem typedef-pcpo-generic:
fixes Abs :: 'a::cpo = 'biicpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and z-in-A: z € A
and z-least: N\o. 2 € A= 2C z
shows OFCLASS('b, pcpo-class)

{proof)

As a special case, a subtype of a pcpo has a least element if the defining
subset contains 1.

theorem typedef-pcpo:
fixes Abs :: 'a::pcpo = 'b::cpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1L € A
shows OFCLASS('b, pcpo-class)

{proof)

8.6.1 Strictness of Rep and Abs

For a sub-pcpo where L is a member of the defining subset, Rep and Abs
are both strict.

theorem typedef- Abs-strict:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and bottom-in-A: L € A
shows Abs L. = L

{proof)

theorem typedef-Rep-strict:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and bottom-in-A: 1 € A
shows Rep L = |

{proof)

theorem typedef-Abs-bottom-iff:
assumes type: type-definition Rep Abs A

THEORY “Cfun” 34

and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1 € A
shows 1 € A = (Absz = 1) =(z = 1)
(proof)

theorem typedef- Rep-bottom-iff:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1. € A
shows (Rep z = L) = (z = 1)
(proof)

8.7 Proving a subtype is flat

theorem typedef-flat:
fixes Abs :: 'a::flat = 'b::pcpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and bottom-in-A: L € A
shows OFCLASS('b, flat-class)
(proof)

8.8 HOLCF type definition package
(ML)

end

9 The type of continuous functions

theory Cfun
imports Cpodef
begin

9.1 Definition of continuous function type
definition cfun = {f::'a = 'b. cont [}
cpodef (a, 'b) cfun (<(<notation=<infix —»- —/ -)» [1, 0] 0) = cfun :: ('a =
'b) set
(proof)

type-notation (ASCII)
cfun (infixr «(—>» 0)

notation (ASCII)
Rep-cfun (<(<notation=<infix $»>-$/-)> [999,1000] 999)

notation

THEORY “Cfun” 35

Rep-cfun (<(<notation=<infix -»>--/-)» [999,1000] 999)

9.2 Syntax for continuous lambda abstraction

syntax -cabs :: [logic, logic] = logic
(ML)

Syntax for nested abstractions

syntax (ASCII)
-Lambda :: [cargs, logic] = logic (<(<indent=3 notation=<binder LAM>»LAM -./
) [1000, 10] 10)

syntax
-Lambda :: [cargs, logic] = logic (<(<indent=3 notation=<binder A»A -./ -)»
(1000, 10] 10)

syntax-consts
-Lambda = Abs-cfun

(ML)

Dummy patterns for continuous abstraction
translations

A -t = CONST Abs-cfun (A-. 1)
9.3 Continuous function space is pointed
lemma bottom-cfun: L € cfun

{proof)

instance cfun :: (cpo, discrete-cpo) discrete-cpo
(proof)

instance cfun :: (cpo, pcpo) pcpo
(proof)

lemmas Rep-cfun-strict =
typedef-Rep-strict [OF type-definition-cfun below-cfun-def bottom-cfun]

lemmas Abs-cfun-strict =

typedef-Abs-strict [OF type-definition-cfun below-cfun-def bottom-cfun)
function application is strict in its first argument
lemma Rep-cfun-strict! [simp]: L.z = L

(proof)

lemma LAM-strict [simp]: (A z. 1) = 1
{proof)

THEORY “Cfun” 36

for compatibility with old HOLCF-Version

lemma inst-cfun-pcpo: L = (A z. L)
(proof)

9.4 Basic properties of continuous functions

Beta-equality for continuous functions

lemma Abs-cfun-inverse2: cont f = Rep-cfun (Abs-cfun f) = f
(proof)

lemma beta-cfun: cont f = (A z. fz)u=fu
(proof)

9.4.1 Beta-reduction simproc

Given the term (A z. f z)-y, the procedure tries to construct the theorem (A
z. fz)-y = fy. If this theorem cannot be completely solved by the cont2cont
rules, then the procedure returns the ordinary conditional beta-cfun rule.

The simproc does not solve any more goals that would be solved by using
beta-cfun as a simp rule. The advantage of the simproc is that it can avoid
deeply-nested calls to the simplifier that would otherwise be caused by large
continuity side conditions.

Update: The simproc now uses rule Abs-cfun-inverse2 instead of beta-cfun,
to avoid problems with eta-contraction.

(ML)
FEta-equality for continuous functions
lemma eta-cfun: (A z. f-z) = f
(proof)
Extensionality for continuous functions
lemma cfun-eq-iff: f = g +— Vz. f-x = gx)
(proof)

lemma cfun-eql: (\z. ffo =gz) = f=g
(proof)
Extensionality wrt. ordering for continuous functions
lemma cfun-below-iff: f C g +— (Vz. f-x C g-x)
{proof)
lemma cfun-belowl: (Nz. f2 C gz) = fLC g
{proof)
Congruence for continuous function application

lemma cfun-cong: f = g —= =y = f-x = gy

THEORY “Cfun”

{proof)

lemma cfun-fun-cong: f = ¢ = f-o = gz
(proof)

lemma cfun-arg-cong: t = y = f-x = f-y
(proof)

9.5 Continuity of application

lemma cont-Rep-cfunl: cont (Af. f-x)
(proof)

lemma cont-Rep-cfun?2: cont (Az. f-x)
(proof)

lemmas monofun-Rep-cfun = cont-Rep-cfun [THEN cont2mono]

lemmas monofun-Rep-cfunl = cont-Rep-cfunl [THEN cont2mono)
lemmas monofun-Rep-cfun2 = cont-Rep-cfun2 [THEN cont2mono)

contlub, cont properties of Rep-cfun in each argument
lemma contlub-cfun-arg: chain ¥ = f-(I]i. Y i) = (4. f-(YV 7))
(proof)

lemma contlub-cfun-fun: chain F = (| |i. F i)z = (|]i. F i-x)
{proof)

monotonicity of application

lemma monofun-cfun-fun: f C ¢ = f-x C gx
(proof)

lemma monofun-cfun-arg: t C y = f-x C f-y
{proof)

lemma monofun-cfun: fC g —= 2 C y = f-o C gy
(proof)

ch2ch - rules for the type ‘a — 'b
lemma chain-monofun: chain ¥ = chain (Xi. f-(Y 7))

{proof)

lemma ch2ch-Rep-cfunR: chain Y = chain (A\i. f-(Y ©))
{proof)

lemma ch2ch-Rep-cfunL: chain F = chain (X\i. (F i)-x)
(proof)

37

lemma ch2ch-Rep-cfun [simp]: chain F = chain Y = chain (Ai. (F i)-(Y 7))

THEORY “Cfun” 38

{proof)

lemma ch2ch-LAM [simp]:
(Az. chain (Mi. S iz)) = (Ai. cont (A\x. Six)) = chain (\i. A z. S i)
(proof)

contlub, cont properties of Rep-cfun in both arguments
lemma lub-APP: chain F = chain ¥ = (|]i. Fi-(Y4) = (Ji Fi)-(i YV
i

(proof)
lemma lub-LAM:

assumes Az. chain (\i. F ix)

and Ai. cont (Az. Fix)
shows (| |i. Az. Fiz)=(Axz |]|i Fiz)
(proof)

lemmas lub-distribs = lub-APP lub-LAM

strictness

lemma strictl: fo =1 = f-1L =1
(proof)

type ‘a — 'b is chain complete

lemma [ub-cfun: chain FF = (|]i. F i) = (A z. |]i. F i)
{proof)

9.6 Continuity simplification procedure

cont2cont lemma for Rep-cfun

lemma cont2cont-APP [simp, cont2cont]:
assumes f: cont (\z. f z)
assumes t: cont (Az. t x)
shows cont (Az. (f x)-(t z))

(proof)

Two specific lemmas for the combination of LCF and HOL terms. These
lemmas are needed in theories that use types like 'a — 'b = ’c.

lemma cont-APP-app [simp]: cont f => cont g => cont (Az. ((f z)-(g x)) s)
(proof)

lemma cont-APP-app-app [simp]: cont f = cont ¢ = cont (A\z. ((f z)-(g z)) s
t)

(proof)

cont2mono Lemma for Az. A y. ¢l z y

lemma cont2mono-LAM:

THEORY “Cfun” 39

[Az. cont (Ay. fzy); Ay. monofun (Az. fz y)]
= monofun (Az. A y. fz y)

(proof)
cont2cont Lemma for Axz. A y. fzy

Not suitable as a cont2cont rule, because on nested lambdas it causes expo-
nential blow-up in the number of subgoals.

lemma cont2cont-LAM:
assumes fI1: \z. cont (\y. fzy)
assumes f2: A\y. cont (Az. fz y)
shows cont (Az. A y. fzy)

(proof)
This version does work as a cont2cont rule, since it has only a single subgoal.

lemma cont2cont-LAM' [simp, cont2cont]:
fixes [:: 'a::cpo = 'biicpo = ciicpo
assumes f: cont (Ap. f (fst p) (snd p))
shows cont (Az. A y. fzy)

{proof)

lemma cont2cont-LAM-discrete [simp, cont2cont):
(Ay:'adiscrete-cpo. cont (Az. fzy)) = cont (Az. A y. fzy)
{proof)

9.7 Miscellaneous

Monotonicity of Abs-cfun

lemma monofun-LAM: cont f = cont g = (A\z. fr C gz) = (A z. fz) C
(A z. g x)

(proof)
some lemmata for functions with flat/chfin domain/range types

lemma chfin-Rep-cfunR: chain Y = Vs. IAn. (LUBi. Yi)s= Y ns
for Y :: nat = 'a::cpo — 'b::chfin
(proof)

lemma adm-chfindom: adm (A(u::’'a::cpo — 'bi:chfin). P(u-s))
(proof)

9.8 Continuous injection-retraction pairs

Continuous retractions are strict.

lemma retraction-strict: Vz. f-(¢gz) =2z = f-L = L

{proof)

lemma injection-eq: Vz. f-(g-z) = 2 = (gox = gy) = (x = y)

THEORY “Cfun”

{proof)

lemma injection-below: Vz. f-(g-x) = ¢ = (g-z C g-y) = (z C y)
(proof)

lemma injection-defined-rev: V. f-(gzx) =2 = gz=1 = 2= 1
(proof)

lemma injection-defined: Vz. f-(gx) =2 = 2 # L = gz # L
(proof)

a result about functions with flat codomain

lemma flat-eql: 2 Cy —=zx# 1L =z =y
for z y :: 'a:flat
{proof)

lemma flat-codom: f-x = c = f-L =1V Vz fz=¢)
for c :: 'b::flat
(proof)

9.9 Identity and composition

definition ID :: ‘a — 'a
where ID = (A z. z)

definition cfcomp :: ('b = '¢c) =» (‘la = 'b) = ‘a = 'c
where oo-def: cfcomp = (A fg x. f-(g-1))

abbreviation cfcomp-syn :: ['b — ¢, 'a — 'b] = 'a — 'c (infixr <00) 100)
where f oo g == cfcomp-f-g

lemma ID1 [simp]: ID-z = x
{proof)

lemma cfcompl: (f oo g) = (A z. f-(g-x))
{proof)

lemma cfcomp?2 [simp]: (f oo g)-z = f-(g-x)
(proof)

lemma cfeomp-LAM: cont ¢ = foo (A z. gz) = (A z. f-(g z))
(proof)

lemma cfecomp-strict [simp]: L oo f = L
(proof)

Show that interpretation of (pcpo, -—-) is a category.

e The class of objects is interpretation of syntactical class pcpo.

THEORY “Cfun”

41

o The class of arrows between objects ‘a and 'b is interpret. of ‘a — 'b.

e The identity arrow is interpretation of ID.

e The composition of f and g is interpretation of oo.

lemma ID2 [simp]: f oo ID = f
(proof)

lemma IDS [simp]: ID oo f = f
{proof)

lemma assoc-00: f oo (g oo h) = (f oo g) oo h
(proof)

9.10 Strictified functions

definition seq :: 'a::pcpo — 'b::pcpo — b
where seq = (A z. if z = L then L else ID)

lemma cont2cont-if-bottom [cont2cont, simpl:
assumes f: cont (A\z. f)
and g: cont (Az. g x)
shows cont (Az. if fz = L then L else g x)
(proof)

lemma seg-conv-if: seq-x = (if x = L then L else ID)
(proof)

lemma seg-simps [simp]:
seq- L = L
seqx-L = 1
x # 1L = seqx = ID
(proof)

definition strictify :: (‘a:pcpo — 'biipepo) — 'a — b
where strictify = (A fz. seq-x-(f-x))

lemma strictify-conv-if: strictify-f-x = (if x = L then L else f-x)
(proof)

lemma strictifyl [simp]: strictify-f-L = L
(proof)

lemma strictify2 [simp]: x # L = strictify-f-o = f-x
(proof)

9.11 Continuity of let-bindings

lemma cont2cont-Let:

THEORY “Deflation” 42

assumes f: cont (A\z. f z)

assumes g1: A\y. cont (Az. g x y)
assumes ¢2: Az. cont (Ay. g z y)
shows cont (Az. let y = fzin g xy)
(proof)

lemma cont2cont-Let’ [simp, cont2cont]:
assumes f: cont (A\z. f)
assumes g: cont (Ap. g (fst p) (snd p))
shows cont (Az. let y = fxin g x y)

(proof)

The simple version (suggested by Joachim Breitner) is needed if the type of
the defined term is not a cpo.

lemma cont2cont-Let-simple [simp, cont2cont]:
assumes Ay. cont (A\x. gz y)
shows cont (Az. let y = tin g x y)

{proof)

end

10 Continuous deflations and ep-pairs

theory Deflation
imports Cfun
begin

10.1 Continuous deflations

locale deflation =
fixes d :: 'a — 'a
assumes idem: A\z. d-(d-z) = d-z
assumes below: A\z. d-z C ¢
begin

lemma below-ID: d T ID
(proof)

The set of fixed points is the same as the range.
lemma fizes-eq-range: {z. d-z = =} = range (Az. d-x)

{proof)

lemma range-eg-fizes: range (Az. d-x) = {z. d-x = x}
(proof)

The pointwise ordering on deflation functions coincides with the subset or-
dering of their sets of fixed-points.

lemma belowl:

THEORY “Deflation” 43

assumes f: \z. dz =2 = fax ==z
shows d C f
(proof)

lemma belowD: [f C d; fx = 2] = dz ==z

(proof)

end

lemma deflation-strict: deflation d = d-1L = L
(proof)

lemma adm-deflation: adm (Ad. deflation d)
{proof)

lemma deflation-1D: deflation 1D
{proof)

lemma deflation-bottom: deflation L
(proof)

lemma deflation-below-iff: deflation p = deflation ¢ = p C q +— (Vz. px =
r— qr=2x)
(proof)

The composition of two deflations is equal to the lesser of the two (if they
are comparable).

lemma deflation-below-compl:
assumes deflation f
assumes deflation g
shows f C g = f-(¢gz) = fx
(proof)

lemma deflation-below-comp2: deflation f —> deflation ¢ = [C g = g-(f-z)
= f'x
(proof)

10.2 Deflations with finite range

lemma finite-range-imp-finite-fixes:
assumes finite (range f)
shows finite {z. fz = z}

(proof)

locale finite-deflation = deflation +
assumes finite-fizes: finite {z. d-x = x}

begin

lemma finite-range: finite (range (Az. d-x))

THEORY “Deflation” 44

{proof)

lemma finite-image: finite ((Az. d-z) ¢ A)
{proof)

lemma compact: compact (d-x)
(proof)

end

lemma finite-deflation-intro: deflation d = finite {x. d-x = £} = finite-deflation
d
(proof)

lemma finite-deflation-imp-deflation: finite-deflation d = deflation d
(proof)

lemma finite-deflation-bottom: finite-deflation L
(proof)

10.3 Continuous embedding-projection pairs

locale ep-pair =
fixese: 'a— band p:: 'b — 'a
assumes e-inverse [simp]: N\z. p-(e-x) =z
and e-p-below: Ny. e(py) C y

begin

lemma e-below-iff [simp]: ex C ey +— z C y

(proof)

lemma e-eg-iff [simp]: ex = ey +— x =1y
(proof)

lemma p-eq-iff: e-(px) =2 = e(py) =y = pr=py+—>x=1y

{proof)

lemma p-inverse: (3z. y = e-x) «— e(py) =y

{proof)

lemma e-below-iff-below-p: eex C y <— x C p-y

(proof)

lemma compact-e-rev: compact (e-x) = compact x

(proof)

lemma compact-e:
assumes compact ©
shows compact (e-x)

THEORY “Deflation”

(proof)

lemma compact-e-iff: compact (e-x) <— compact x
{proof)

Deflations from ep-pairs

lemma deflation-e-p: deflation (e oo p)
{proof)

lemma deflation-e-d-p:
assumes deflation d
shows deflation (e oo d oo p)

(proof)

lemma finite-deflation-e-d-p:
assumes finite-deflation d
shows finite-deflation (e oo d oo p)

(proof)

lemma deflation-p-d-e:
assumes deflation d
assumes d: \z. d-z C e(p-x)
shows deflation (p oo d oo €)

(proof)

lemma finite-deflation-p-d-e:
assumes finite-deflation d
assumes d: A\z. d-z C e (p-x)
shows finite-deflation (p oo d oo e)
(proof)

end

10.4 Uniqueness of ep-pairs

lemma ep-pair-unique-e-lemma:
assumes 1: ep-pair el p
and 2: ep-pair e2 p
shows el C e2
(proof)

lemma ep-pair-unique-e: ep-pair el p =—> ep-pair e2 p — el = e2
(proof)

lemma ep-pair-unique-p-lemma:
assumes 1: ep-pair e pl
and 2: ep-pair e p2
shows p1 C p2
(proof)

45

THEORY “Sprod” 46

lemma ep-pair-unique-p: ep-pair e p1 = ep-pair e p2 —> pl = p2
{proof)

10.5 Composing ep-pairs

lemma ep-pair-ID-ID: ep-pair ID ID
(proof)

lemma ep-pair-comp:
assumes ep-pair el pl and ep-pair e2 p2
shows ep-pair (e2 oo el) (pl oo p2)

(proof)

locale pcpo-ep-pair = ep-pair e p
for e :: 'a::pcpo — 'b::pepo
and p :: 'b::pcpo — 'a::pepo
begin

lemma e-strict [simp]: el = L
(proof)

lemma e-bottom-iff [simp]: ex = L +— z = L
{proof)

lemma e-defined: © # L =— ex # L
{proof)

lemma p-strict [simp]: p-L = L
(proof)

lemmas stricts = e-strict p-strict
end

end

11 The type of strict products

theory Sprod
imports Cfun
begin
11.1 Definition of strict product type
definition sprod = {p::’a::pcpo x "b:ipcpo. p = LV (fst p # L A sndp # 1)}

pcpodef (‘a::pepo, 'b:ipepo) sprod («(snotation=<infix strict producty>- @/ -)»
[21,20] 20) =

THEORY “Sprod” 47

sprod :: ('a x 'b) set
{proof)

instance sprod :: ({chfin,pcpo}, {chfin,pcpo}) chfin
(proof)

type-notation (ASCII)
sprod (infixr x> 20)

11.2 Definitions of constants

definition sfst :: (‘a::pepo *x 'b:ipepo) — 'a
where sfst = (A p. fst (Rep-sprod p))

definition ssnd :: ('a::pcpo **x 'bipepo) — b
where ssnd = (A p. snd (Rep-sprod p))

definition spair :: ‘a::pcpo — 'biipepo — (‘a *x 'b)
where spair = (A a b. Abs-sprod (seq-b-a, seq-a-b))

definition ssplit :: ("a::pcpo — 'bipepo — ‘ciipepo) — (Ya xx 'b) — ‘¢
where ssplit = (A f p. seq-p-(f-(sfst-p)-(ssnd-p)))

syntax
-stuple :: [logic, args] = logic («(<indent=1 notation=<mixfix strict tuple»»'(:-,/
1))
syntax-consts
-stuple = spair
translations

—\

(:z, y, 22) = (z, (g, 2:)2)
(:z, y:) = CONST spair-z-y

translations
A(CONST spair-z-y). t = CONST ssplit-(A z y. t)

11.3 Case analysis

lemma spair-sprod: (seq-b-a, seq-a-b) € sprod
(proof)

lemma Rep-sprod-spair: Rep-sprod (:a, b:) = (seq-b-a, seq-a-b)
(proof)

lemmas Rep-sprod-simps =
Rep-sprod-inject [symmetric] below-sprod-def
prod-eq-iff below-prod-def
Rep-sprod-strict Rep-sprod-spair

lemma sprodE [case-names bottom spair, cases type: sprod):
obtains p = 1 | z y where p = (:z, y:) and 2 # L and y # L

THEORY “Sprod” 48

{proof)

lemma sprod-induct [case-names bottom spair, induct type: sprod):
[PLiANvy [# Liy# 1] = P (z, y:)] = Pux
(proof)

11.4 Properties of spair

lemma spair-strict [simp]: (L, y:) = L

{proof)

1

lemma spair-strict2 [simp]: (:z, L:)
{proof)

lemma spair-bottom-iff [simp]: (:z, y:) = L+—z=1LVy=_1
(proof)

lemma spair-below-iff: (ca, b:) C (¢, d:) +—a=1LVb=1LV(aCcAbLCd)
{proof)

lemma spair-eq-iff: (ca, b)) = (t¢, d:) «—a=cAb=dV (a=LVb=1)A
(c=Lvd=1)
{proof)

lemma spair-strict: t = LV y=1 = (z, y:) = L
(proof)

lemma spair-strict-rev: iz, y:) # L =z # L Ay # L
(proof)

lemma spair-defined: [x # L; y # L] = (z, y:) # L
(proof)

lemma spair-defined-rev: (:z, y:) = L =z =1 Vy=_1
(proof)

lemma spair-below: z # L — y # L — (z, y:) C (g, b)) +—2zCa Ay b
(proof)

lemma spair-eq: x # 1L —= y # L = (a,) = (g, b)) «—x=aANy=1b
(proof)

lemma spair-inject: © # L — y # L = (z, y:) = (a, b)) = z=aAy=1»>
(proof)

lemma inst-sprod-pcpo2: 1L = (: 1, L:)
(proof)

lemma sprodE2: (Azy. p = (iz, y:1) = Q) = @

THEORY “Sprod” 49

{proof)

11.5 Properties of sfst and ssnd
lemma sfst-strict [simp]: sfst-L = L

(proof)

lemma ssnd-strict [simp]: ssnd-L = L
{proof)

lemma sfst-spair [simpl: y # L = sfst-(:z, y:) = x
(proof)

lemma ssnd-spair [simp]: © # L = ssnd-(:z, y:) = y
(proof)

lemma sfst-bottom-iff [simp]: sfstp = L +— p= 1
(proof)

lemma ssnd-bottom-iff [simp]: ssnd-p = L +— p= 1
(proof)

lemma sfst-defined: p # 1 = sfst-p # L
(proof)

lemma ssnd-defined: p # 1L = ssnd-p # L
(proof)

lemma spair-sfst-ssnd: (:sfst-p, ssnd-p:) = p
(proof)

lemma below-sprod: x T y +— sfst-x T sfst-y A\ ssnd-x E ssnd-y

(proof)

lemma eg-sprod: © = y «— sfst-x = sfst-y A\ ssnd-x = ssnd-y
{proof)

lemma sfst-below-iff: sfst-x C y +— z C (:y, ssnd-x:)
(proof)

lemma ssnd-below-iff: ssnd-x C y +— x C (:sfst-z, y:)

{proof)

11.6 Compactness

lemma compact-sfst: compact ¥ = compact (sfst-z)
(proof)

lemma compact-ssnd: compact © = compact (ssnd-x)
(proof)

THEORY “Up” 50

lemma compact-spair: compact t = compact y = compact (:z, y:)
{proof)

lemma compact-spair-iff: compact (:x, y:) +— = L V y = L V (compact x A
compact y)
(proof)

11.7 Properties of ssplit
lemma ssplit! [simp): ssplit-f-1L = L
(proof)

lemma ssplit2 [simp]: © # L = y # L = ssplit-f-(:z, y:) = f-zy
(proof)

lemma ssplit3 [simp): ssplit-spair-z = z
(proof)

11.8 Strict product preserves flatness
instance sprod :: (flat, flat) flat
(proof)

end

12 The type of lifted values

theory Up
imports Cfun
begin

12.1 Definition of new type for lifting
datatype ‘a u (<(<notation=<postfiz lifting>>-,)> [1000] 999) = Ibottom | Tup 'a
primrec Ifup :: ('a — 'bipepo) = ‘a u = b

where

Ifup f Ibottom = L
| Ifup f (lup z) = f-x

12.2 Ordering on lifted cpo
instantiation v :: (c¢po) below

begin

definition below-up-def:
©) =
Az y.

THEORY “Up” o1

(case z of
Ibottom = True
| Tup a = (case y of Ibottom = False | Iup b = a C b)))

instance (proof)
end

lemma minimal-up [iff]: Tbottom C z
{proof)

lemma not-Tup-below [iff]: Tup = £ Ibottom
(proof)

lemma Tup-below [iff]: (Tup x C Tup y) = (z C y)
{proof)
12.3 Lifted cpo is a partial order
instance u :: (¢po) po
(proof)
12.4 Lifted cpo is a cpo
lemma is-lub-Tup: range S <<| x = range (Ai. Tup (S 7)) <<| lup x

{proof)

lemma up-chain-lemma:
assumes Y: chain Y
obtains Vi. Y i = Ibottom
| Ak where Vi. Iup (A %) =Y (i + k) and chain A and range Y <<| Iup

(L] A 9)
(proof)

instance u :: (cpo) cpo
(proof)

12.5 Lifted cpo is pointed

instance u :: (¢po) pepo
(proof)

for compatibility with old HOLCF-Version

lemma inst-up-pcpo: L = Ibottom
(proof)

12.6 Continuity of Tup and Ifup

continuity for Tup

THEORY “Up” 52

lemma cont-ITup: cont Iup
(proof)

continuity for Ifup
lemma cont-Ifupl: cont (Af. Ifup f x)
(proof)

lemma monofun-Ifup2: monofun (\z. Ifup f x)
(proof)

lemma cont-Ifup2: cont (Az. Ifup f z)
{proof)

12.7 Continuous versions of constants

definition up :: 'a = ‘a u
where up = (A z. Tup x)

definition fup :: (‘a — ’b:ipcpo) = ‘a u — b
where fup = (A f p. Ifup f p)

translations
case | of XCONST up-z = t = CONST fup-(A z. t)-1
case | of (XCONST up :: 'a)-x = t — CONST fup-(A z. t)-1
A(XCONST up-z). t = CONST fup-(A z. t)

continuous versions of lemmas for ‘a |
lemma Ezh-Up: z = 1L V (3z. 2 = up-x)
(proof)

lemma up-eq [simpl: (up-z = up-y) = (z = y)
(proof)

lemma up-inject: up-x = up-y = x =y
(proof)

lemma up-defined [simp]: up-x # L
(proof)

lemma not-up-less-UU: up-x £ L
(proof)

lemma up-below [simp]: up-z C up-y +— 2 C y

(proof)

lemma upFE [case-names bottom up, cases type: u]: [p = L = Q; \z. p = up-z
— Q] = @
(proof)

THEORY “Lift” 53

lemma up-induct [case-names bottom up, induct type: u]: P L = (Az. P (up-x))
= Pz

{proof)

lifting preserves chain-finiteness

lemma up-chain-cases:

assumes Y: chain Y

obtains Vi. Yi= 1

| A k where Vi. up-(A i) =Y (i + k) and chain A and (| |i. Y i) = up-(|] 1.
A i)

(proof)

lemma compact-up: compact x = compact (up-x)
(proof)

lemma compact-upD: compact (up-z) = compact x
{proof)

lemma compact-up-iff [simpl: compact (up-z) = compact
(proof)

instance u :: (chfin) chfin
(proof)

properties of fup

lemma fup! [simp]: fup-f-L = L
{proof)

lemma fup2 [simp]: fup-f-(up-x) = f-x
(proof)

lemma fup3 [simp]: fup-up-z = x
(proof)

end

13 Lifting types of class type to flat pcpo’s
theory Lift

imports Up

begin

pepodef ‘a::type lift = UNIV :: 'a discr u set
(proof)

lemmas inst-lift-pcpo = Abs-lift-strict [symmetric]

definition

THEORY “Lift” o4

Def :: 'a::type = 'a lift where
Def x = Abs-lift (up-(Discr x))
13.1 Lift as a datatype
lemma lift-induct: [P L; Az. P (Defz)] = Py
(proof)
old-rep-datatype _L::'a::type lift Def
(proof)

1 and Def

lemma not-Undef-is-Def: (x # L) = (3y. x = Def y)
(proof)

lemma lift-definedE: [x # 1; Na. © = Defa — R] = R
(proof)
For z # 1 in assumptions defined replaces z by Def a in conclusion.

(ML)

lemma DefE: Defxr = 1 =— R
(proof)

lemma DefE2: [x = Def s; x = 1] = R
(proof)

lemma Def-below-Def: Def x C Defy +— z =y
{proof)

lemma Def-below-iff [simp]: Def z © y <— Defz =y

(proof)

13.2 Lift is flat

instance lift :: (type) flat

(proof)

13.3 Continuity of case-lift

lemma case-lift-eq: case-lift L fx = fup-(A y. f (undiscr y))-(Rep-lift x)
(proof)

lemma cont2cont-case-lift [simpl:
[Ay. cont (Az. fzy); cont g] = cont (Az. case-lift L (fz) (g z))
(proof)

13.4 Further operations

definition

THEORY “Ir”

95

flift1 :: (Ya:type = 'bipepo) = (‘a lift — 'b) (binder «FLIFT » 10) where

fliftl = (Af. (A z. case-lift L fx))

translations
A(XCONST Def z). t => CONST flift1 (Ax. t)
A(CONST Def z). FLIFT y. t <= FLIFT z y. t
A(CONST Def z). t <= FLIFT x. t

definition
flift2 = (Ya::type = 'butype) = (‘a lift — 'b lift) where
flift2 f = (FLIFT z. Def (f x))

lemma flift1-Def [simp]: fliftl f-(Def z) = (f z)
(proof)

lemma flift2-Def [simp]: flift2 f-(Def) = Def (f)
(proof)

lemma flift1-strict [simp]: flift] f-1 = L
(proof)

lemma flift2-strict [simp]: flift2 f-1 = L
(proof)

lemma flift2-defined [simp]: © # L = (flift2 f)-z # L
(proof)

lemma flift2-bottom-iff [simpl: (flift2 f-x = L) = (z = 1)
(proof)

lemma FLIFT-mono:
(Nz. fz C gz) = (FLIFT z. fx) C (FLIFT z. g)
(proof)

lemma cont2cont-flift1 [simp, cont2cont]:
[Ay. cont (Az. fz y)] = cont (A\x. FLIFT y. f x y)
(proof)

end

14 The type of lifted booleans

theory Tr
imports Lift
begin
14.1 Type definition and constructors

type-synonym tr = bool lift

THEORY “Ir” 56

translations
(type) tr — (type) bool lift

definition TT :: tr
where TT = Def True

definition FF : tr
where FF = Def False

Exhaustion and Elimination for type tr

lemma Exh-tr: t =1L Vv it=TTV t=FF
(proof)

lemma irE [case-names bottom TT FF| cases type: tr]:
[p=L=Q@;p=TT = Q;p=FF = Q] = @
(proof)

lemma tr-induct [case-names bottom TT FF, induct type: tr]:
Pl —= PITT —= PFF = Pz

{proof)

distinctness for type tr

lemma dist-below-tr [simpl:
TTZ | FFZ | TT ¢ FFFF ¢ TT

(proof)

lemma dist-eq-tr [simp]: TT # L FF #+# 1 TT # FF 1 # TT L # FFFF # TT
{proof)

lemma TT-below-iff [simp]: TT C z «— o =TT
{proof)

lemma FF-below-iff [simp]: FF C z +— z = FF
{proof)

lemma not-below-TT-iff [simp]: ¢ X TT <— z = FF
{proof)

lemma not-below-FF-iff [simp|: L FF «— x = TT
(proof)

14.2 Case analysis

definition tr-case :: ‘a::pcpo — 'a — tr — 'a

where tr-case = (A t e (Def b). if b then t else e)
abbreviation cifte-syn :: [tr, ‘c:ipcpo, 'c] = ‘¢ («(¢notation=«mizfix If expres-
sionnIf (-)/ then (-)/ else (-))» [0, 0, 60] 60)

THEORY “Ir”

where If b then el else e2 = tr-case-el-e2-b

translations
A (XCONST TT). t &= CONST tr-case-t- L
A (XCONST FF). t = CONST tr-case-L-t

lemma ifte-thms [simp):
If 1 then el else e2 = L
If FF then el else e2 = e2
If TT then el else e2 = el

(proof)

14.3 Boolean connectives

definition trand :: tr — tr — tr
where andalso-def: trand = (A z y. If z then y else FF)

abbreviation andalso-syn :: tr = tr = tr (- andalso - [36,35] 35)
where = andalso y = trand-z-y

definition tror :: tr — tr — tr
where orelse-def: tror = (A z y. If z then TT else y)

abbreviation orelse-syn :: tr = tr = tr (- orelse - [31,30] 30)
where z orelse y = tror-z-y

definition neg :: tr — tr
where neg = flift2 Not

definition If2 :: tr = ’c:pcpo = 'c = 'c
where If2 Q z y = (If Q then z else y)

tactic for tr-thms with case split

lemmas tr-defs = andalso-def orelse-def neg-def tr-case-def TT-def FF-def

lemmas about andalso, orelse, neg and if

lemma andalso-thms [simp]:
(TT andalso y) = y
(FF andalso y) = FF
(L andalso y) = L
(y andalso TT) =y
(y andalso y) = y

(proof)

lemma orelse-thms [simp]:
(TT orelse y) = TT
(FF orelse y) = y
(L orelse y) = L
(y orelse FF) =y

o7

THEORY “Ssum” o8

(y orelse y) = y
(proof)

lemma neg-thms [simp):
neg-TT = FF
neg-FF = TT
neg- L = L
(proof)
split-tac for If via If2 because the constant has to be a constant

lemma split-If2: P (If2 Qzy) +— (@=L — P L) A(Q=TT — P2x) A
(@ =FF — Py))
{proof)

(ML)

14.4 Rewriting of HOLCF operations to HOL functions

lemma andalso-or: t # 1 = (t andalso s) = FF +— t = FF V s = FF
{proof)

lemma andalso-and: t # 1L = ((t andalso s) # FF) «— t # FF A\ s # FF
{proof)

lemma Def-booll [simp|: Def x # FF +— «
(proof)

lemma Def-bool2 [simp|: Def x = FF «— — x
(proof)

lemma Def-bool3 [simp]: Def x = TT +— =
{proof)

lemma Def-bool [simp]: Def x # TT +— — x
(proof)

lemma If-and-if: (If Def P then A else B) = (if P then A else B)
(proof)

14.5 Compactness

lemma compact-TT: compact TT
(proof)

lemma compact-FF: compact FF
(proof)

end

THEORY “Ssum” 99

15 The type of strict sums

theory Ssum
imports Tr
begin

15.1 Definition of strict sum type

definition ssum =
{p :: tr x (Ya::pepo x 'b:pcpo). p = LV
(fstp =TT A fst (snd p) # L A snd (sndp) = L)V
(fstp = FF A fst (snd p) = L A snd (snd p) # 1)}

pcpodef (‘a::pepo, 'biipepo) ssum (<(«notation=<infix strict sumy- &/ -)» [21,
20] 20) =

ssum :: (tr x 'a x 'b) set

(proof)

instance ssum :: ({chfin,pcpo}, {chfin,pcpo}) chfin
(proof)

type-notation (ASCII)
ssum (infixr <++> 10)

15.2 Definitions of constructors

definition sinl :: ‘a::pcpo — (‘a ++ 'b::pepo)
where sinl = (A a. Abs-ssum (seq-a-TT, a, 1))

definition sinr :: 'b::pecpo — (‘a:pepo ++ 'b)
where sinr = (A b. Abs-ssum (seq-b-FF, L, b))

lemma sinl-ssum: (seq-a-TT, a, L) € ssum
(proof)

lemma sinr-ssum: (seq-b-FF, 1, b) € ssum
{proof)

lemma Rep-ssum-sinl: Rep-ssum (sinl-a) = (seq-a-TT, a, L)
(proof)

lemma Rep-ssum-sinr: Rep-ssum (sinr-b) = (seq-b-FF, L, b)
{proof)

lemmas Rep-ssum-simps =
Rep-ssum-inject [symmetric] below-ssum-def
prod-eq-iff below-prod-def
Rep-ssum-strict Rep-ssum-sinl Rep-ssum-sinr

THEORY “Ssum” 60

15.3 Properties of sinl and sinr

Ordering
lemma sinl-below [simp|: sinl-z T sinl-y +— xz C y

{proof)

lemma sinr-below [simp): sinr-x C sinr-y «— z C y
{proof)

lemma sinl-below-sinr [simpl: sinl-z C sinr-y +— z = 1
{proof)

lemma sinr-below-sinl [simp]: sinr-z C sinl-y +— z = L
(proof)

Equality

lemma sinl-eq [simp]: sinl-x = sinl-y «— z =y

{proof)

lemma sinr-eq [simp]: sinr-x = sinry +— =y
(proof)

lemma sinl-eg-sinr [simp]: sinl-x = sinry «— =L Ay= 1
(proof)

lemma sinr-eg-sinl [simp]: sinr-x = sinly «— =L Ay= 1
(proof)

lemma sinl-inject: sinl-x = sinly = z =y
(proof)

lemma sinr-inject: sinr-x = sinry = r =y
(proof)

Strictness
lemma sinl-strict [simp]: sinl- L = L

{proof)

lemma sinr-strict [simp]: sinr-L = L
(proof)

lemma sinl-bottom-iff [simp]: sinlx = L +— z = L
{proof)

lemma sinr-bottom-iff [simp]: sinr-x = L +— z = L
{proof)

lemma sinl-defined: © # L = sinl-z # L
(proof)

THEORY “Ssum”

lemma sinr-defined: v # L = sinr-x # L
{proof)

Compactness

lemma compact-sinl: compact = compact (sinl-x)
(proof)

lemma compact-sinr: compact z => compact (sinr-r)
(proof)

lemma compact-sinlD: compact (sinl-z) = compact

(proof)

lemma compact-sinrD: compact (sinr-x) = compact
{proof)

lemma compact-sinl-iff [simp]: compact (sinl-x) = compact x
(proof)

lemma compact-sinr-iff [simp|: compact (sinr-z) = compact ©
(proof)

15.4 Case analysis

lemma ssumFE [case-names bottom sinl sinr, cases type: ssuml:
obtains p = L
| z where p = sinl-x and z # L
| y where p = sinr-y and y # L
(proof)

lemma ssum-induct [case-names bottom sinl sinr, induct type: ssum)]:

[r L

Nz. ¢ # L = P (sinl-z);

Ny. y# L = P (sinry)] = Pz
(proof)

lemma ssumE2 [case-names sinl sinr]:
[Az. p = sinl-x = Q; N\y. p = sinry = Q] = Q
{proof)

lemma below-sinlD: p C sinl-x = Jy. p = sinly ANy C z
{proof)

lemma below-sinrD: p C sinr-c = Jy. p=sinry Ay C z
(proof)

15.5 Case analysis combinator

61

definition sscase :: (‘a::pepo — 'c::pepo) — (‘bipepo — '¢) — (‘a ++ 'b) = e

THEORY “Sfun” 62

where sscase = (A fgs. (\(t, z, y). If t then f-x else g-y) (Rep-ssum s))

translations

case s of XCONST sinl-x = t1 | XCONST sinr-y = t2 = CONST sscase-(A x.
t1)-(A y. t2)-s

case s of (XCONST sinl :: 'a)-x = t1 | XCONST sinr-y = t2 — CONST
sscase-(A x. t1)-(A y. 12)-s

translations
A(XCONST sinl-z). t = CONST sscase-(A z. t)-L
A(XCONST sinr-y). t = CONST sscase-L-(A y. t)

lemma beta-sscase: sscase-f-g-s = (A(t, z, y). If t then f-x else g-y) (Rep-ssum s)
(proof)

lemma sscasel [simp]: sscase-f-g-L = L
(proof)

lemma sscase2 [simp]: x # | = sscase-f-g-(sinl-z) = f-z
(proof)

lemma sscased [simp]: y # L = sscase-f-g-(sinr-y) = gy
(proof)

lemma sscasej [simp): sscase-sinl-sinr-z = z
(proof)

15.6 Strict sum preserves flatness
instance ssum :: (flat, flat) flat

{proof)

end

16 The Strict Function Type

theory Sfun
imports Cfun
begin

pcpodef (‘a::pepo, 'biipepo) sfun (infixr <—h 0) ={f e —» 'b. f-L =1}
(proof)

type-notation (ASCII)
sfun (infixr (—>b 0)
TODO: Define nice syntax for abstraction, application.

definition sfun-abs :: ("a::pcpo — 'b::pepo) — (‘a —! 'b)
where sfun-abs = (A f. Abs-sfun (strictify-f))

THEORY “Map-Functions” 63

definition sfun-rep :: (‘a::pcpo —! 'bi:pepo) — 'a — b
where sfun-rep = (A f. Rep-sfun f)

lemma sfun-rep-beta: sfun-rep-f = Rep-sfun f
(proof)

lemma sfun-rep-strictl [simp|: sfun-rep- 1L = L
(proof)

lemma sfun-rep-strict2 [simp|: sfun-rep-f-L = L
(proof)

lemma strictify-cancel: f-1 = 1 = strictify-f = f
(proof)

lemma sfun-abs-sfun-rep [simpl: sfun-abs-(sfun-rep-f) = f
(proof)

lemma sfun-rep-sfun-abs [simpl: sfun-rep-(sfun-abs-f) = strictify-f
(proof)

lemma sfun-eq-iff: f = g <— sfun-rep-f = sfun-rep-g
(proof)

lemma sfun-below-iff: f C g +— sfun-rep-f C sfun-rep-g
(proof)

end

17 Map functions for various types

theory Map-Functions
imports Deflation Sprod Ssum Sfun Up
begin

17.1 Map operator for continuous function space
definition cfun-map :: ('b = 'a) = (‘¢ = 'd) = ('la = '¢) = ('b = 'd)
where cfun-map = (A a b fz. b-(f-(a-x)))

lemma cfun-map-beta [simpl: cfun-map-a-b-f-x = b-(f-(a-x))
(proof)

lemma cfun-map-ID: cfun-map-ID-ID = ID
(proof)

lemma cfun-map-map: cfun-map-f1-g1-(cfun-map-f2-g2-p) = cfun-map-(A z. f2-(f1-x))-(A
. g1-(g2-x))-p

THEORY “Map-Functions” 64

{proof)

lemma ep-pair-cfun-map:

assumes ep-pair el pl and ep-pair e2 p2

shows ep-pair (cfun-map-p1-e2) (cfun-map-el-p2)
(proof)

lemma deflation-cfun-map:
assumes deflation d1 and deflation d2
shows deflation (cfun-map-d1-d2)
(proof)

lemma finite-range-cfun-map:

assumes a: finite (range (Az. a-x))

assumes b: finite (range (\y. b-y))

shows finite (range (A\f. cfun-map-a-b-f)) (is finite (range ?h))
(proof)

lemma finite-deflation-cfun-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (cfun-map-d1-d2)

(proof)

Finite deflations are compact elements of the function space

lemma finite-deflation-imp-compact: finite-deflation d = compact d
(proof)

17.2 Map operator for product type

definition prod-map :: ('a = b)) = (‘¢ = 'd) = 'a x 'c = b x 'd
where prod-map = (A f g p. (f-(fst p), g-(snd p)))

lemma prod-map-Pair [simp]: prod-map-f-g-(z, y) = (f-z, g-y)
(proof)

lemma prod-map-ID: prod-map-ID-ID = ID
(proof)

lemma prod-map-map: prod-map-f1-g1-(prod-map-f2-92-p) = prod-map-(A z. f1-(f2-z))-(A
. g1-(92-7))-p
(proof)

lemma ep-pair-prod-map:

assumes ep-pair el pl and ep-pair e2 p2

shows ep-pair (prod-map-el-e2) (prod-map-p1-p2)
(proof)

lemma deflation-prod-map:
assumes deflation d1 and deflation d2

THEORY “Map-Functions” 65

shows deflation (prod-map-d1-d2)
(proof)

lemma finite-deflation-prod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (prod-map-d1-d2)

(proof)

17.3 Map function for lifted cpo

definition u-map :: (‘a —» b)) = ‘a v — bu
where u-map = (A f. fup-(up oo f))

lemma u-map-strict [simp|: u-map-f-L = L
(proof)

lemma u-map-up [simp]: u-map-f-(up-z) = up-(f-z)
(proof)

lemma u-map-ID: u-map-ID = ID
(proof)

lemma u-map-map: u-map-f-(u-map-g-p) = u-map-(A z. f-(g-x))-p
(proof)

lemma u-map-oo: u-map-(f oo g) = u-map-f oo u-map-g
(proof)

lemma ep-pair-u-map: ep-pair e p => ep-pair (u-map-e) (u-map-p)
(proof)

lemma deflation-u-map: deflation d = deflation (u-map-d)

(proof)

lemma finite-deflation-u-map:
assumes finite-deflation d
shows finite-deflation (u-map-d)
(proof)

17.4 Map function for strict products
definition sprod-map :: (‘a::pcpo — 'b::pepo) — (‘cipepo — 'dipepo) = a ® ¢

- 'b®d
where sprod-map = (A f g. ssplit-(A z y. (:f-z, g-y)))

lemma sprod-map-strict [simpl: sprod-map-a-b-1L = L
(proof)

lemma sprod-map-spair [simp]: © # L — y # L = sprod-map-f-g-(:z, y:) =

(:f-z, g-y:)

THEORY “Map-Functions” 66

{proof)

lemma sprod-map-spair”: f-1 = | = ¢g-L = | = sprod-map-f-g-(:z, y:) = (:f-z,
9y:)
(proof)

lemma sprod-map-ID: sprod-map-1D-ID = ID
(proof)

lemma sprod-map-map:
[ft-L=1;¢91-L = 1] =
sprod-map-f1-g1-(sprod-map-f2-g2-p) =
sprod-map-(A z. f1-(f2-2))-(A z. g1-(g2-x))p
(proof)

lemma ep-pair-sprod-map:

assumes ep-pair el pl and ep-pair e2 p2

shows ep-pair (sprod-map-el-e2) (sprod-map-pl-p2)
(proof)

lemma deflation-sprod-map:
assumes deflation d1 and deflation d2
shows deflation (sprod-map-d1-d2)
(proof)
lemma finite-deflation-sprod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (sprod-map-d1-d2)
(proof)

17.5 Map function for strict sums
definition ssum-map :: (‘a::pcpo — 'b:iipepo) — (‘ciipepo — 'diipepo) = 'a & e
—'b@'d

where ssum-map = (A f g. sscase-(sinl oo f)-(sinr 0o g))

lemma ssum-map-strict [simpl: ssum-map-f-g-L = L
(proof)

lemma ssum-map-sinl [simp]: © # L = ssum-map-f-g-(sinl-z) = sinl-(f-z)
(proof)

lemma ssum-map-sinr [simp]: © # L = ssum-map-f-g-(sinr-z) = sinr-(g-x)
{proof)

lemma ssum-map-sinl”: f-L = | = ssum-map-f-g-(sinl-z) = sinl-(f-z)
(proof)

lemma ssum-map-sinr’: gL = 1 = ssum-map-f-g-(sinr-z) = sinr-(g-z)

THEORY “Map-Functions” 67

{proof)

lemma ssum-map-ID: ssum-map-ID-ID = ID
(proof)

lemma ssum-map-map:
[f1-L=L1;g11=1]=
ssum-map-f1-g1-(ssum-map-f2-92-p) =
ssum-map-(A z. f1-(f2-z))-(A x. g1-(g92-2))p
(proof)

lemma ep-pair-ssum-map:
assumes ep-pair el pl and ep-pair e2 p2
shows ep-pair (ssum-map-el-e2) (ssum-map-p1-p2)

(proof)

lemma deflation-ssum-map:
assumes deflation d1 and deflation d2
shows deflation (ssum-map-d1-d2)

(proof)

lemma finite-deflation-ssum-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (ssum-map-d1-d2)

(proof)

17.6 Map operator for strict function space

definition sfun-map :: ('b::pcpo — 'a::pepo) — (‘cipepo — 'dipepo) — (‘a —! e)
= ('b =!7d)
where sfun-map = (A a b. sfun-abs oo cfun-map-a-b oo sfun-rep)

lemma sfun-map-ID: sfun-map-ID-ID = ID
(proof)

lemma sfun-map-map:
assumes f2-1 = 1 and ¢2-1 = |
shows sfun-map-f1-g1-(sfun-map-f2-92-p) =
sfun-map-(A z. f2-(f1-x))-(A z. g1-(92-x))-p
(proof)

lemma ep-pair-sfun-map:

assumes 1: ep-pair el pl

assumes 2: ep-pair e2 p2

shows ep-pair (sfun-map-p1-e2) (sfun-map-el-p2)
(proof)

lemma deflation-sfun-map:
assumes 1: deflation dl1

THEORY “Cprod”

assumes 2: deflation d2
shows deflation (sfun-map-d1-d2)
(proof)

lemma finite-deflation-sfun-map:
assumes finite-deflation d1
and finite-deflation d2
shows finite-deflation (sfun-map-d1-d2)
(proof)

end

18 The cpo of cartesian products

theory Cprod
imports Cfun
begin
18.1 Continuous case function for unit type

definition unit-when :: ‘a — unit — 'a
where unit-when = (A a -. a)

translations
A(). t = CONST unit-when-t

lemma unit-when [simp|: unit-when-a-u = a

(proof)
18.2 Continuous version of split function
definition csplit :: (‘'a — b = '¢c) = ('a x b)) = 'c

where csplit = (A fp. f-(fst p)-(snd p))

translations
A(CONST Pair z y). t = CONST csplit-(A z y. t)

abbreviation cfst :: ‘a x 'b = 'a
where cfst = Abs-cfun fst

abbreviation csnd :: ‘a x b — b
where csnd = Abs-cfun snd

18.3 Convert all lemmas to the continuous versions

lemma csplit! [simp]: csplit-f-1L = f-1.L
(proof)

lemma csplit-Pair [simpl: csplit-f-(z, y) = f-z-y

68

THEORY “Bifinite” 69

{proof)

end

19 Profinite and bifinite cpos

theory Bifinite
imports Map-Functions Cprod Sprod Sfun Up HOL— Library.Countable
begin

19.1 Chains of finite deflations

locale approz-chain =

fixes approz :: nat = 'a — 'a

assumes chain-approx [simp|: chain (\i. approx i)

assumes lub-approx [simp]: (| |i. approz i) = ID

assumes finite-deflation-approx [simp]: \i. finite-deflation (approz i)
begin

lemma deflation-approx: deflation (approx i)
(proof)

lemma approz-idem: approz i-(approx i-x) = approz i-x

(proof)

lemma approz-below: approx i-x C x
(proof)

lemma finite-range-approx: finite (range (Ax. approx i-x))

(proof)

lemma compact-approx [simp]: compact (approx n-x)
(proof)

lemma compact-eq-approx: compact © = F1i. approx i-x = x

(proof)
end

19.2 Omega-profinite and bifinite domains

class bifinite = pcpo +
assumes bifinite: 3 (a::nat = 'a — 'a). approz-chain a

class profinite = cpo +
assumes profinite: 3 (a::nat = ‘a; — 'a,). approz-chain a

THEORY “Bifinite” 70

19.3 Building approx chains

lemma approz-chain-iso:
assumes a: approz-chain a
assumes [simp]: Az. f-(gz) =«
assumes [simp]: Ay. g-(f-y) =y
shows approx-chain (M\i. f oo a i 0o g)
(proof)

lemma approz-chain-u-map:
assumes approz-chain a
shows approx-chain (\i. u-map-(a 7))
(proof)

lemma approz-chain-sfun-map:
assumes approz-chain a and approx-chain b
shows approz-chain (M\i. sfun-map-(a 7)-(b 7))
(proof)

lemma approz-chain-sprod-map:
assumes approz-chain a and approz-chain b
shows approx-chain (\i. sprod-map-(a ©)-(b ©))
(proof)

lemma approx-chain-ssum-map:
assumes approz-chain a and approz-chain b
shows approx-chain (\i. ssum-map-(a 7)-(b 7))
(proof)

lemma approz-chain-cfun-map:
assumes approz-chain a and approx-chain b
shows approx-chain (N\i. cfun-map-(a 7)-(b 7))
(proof)

lemma approz-chain-prod-map:
assumes approx-chain a and approx-chain b
shows approz-chain (A\i. prod-map-(a ©)-(b 7))
(proof)

Approx chains for countable discrete types.

definition discr-approx :: nat = ’a::countable discr v — 'a discr u
where discr-approx = (Ni. A(up-z). if to-nat (undiscr) < i then up-z else L)

lemma chain-discr-approx [simpl: chain discr-approx
(proof)

lemma lub-discr-approx [simpl: (|]i. discr-approz i) = ID
(proof)

lemma inj-on-undiscr [simp]: inj-on undiscr A

THEORY “Bifinite” 71

(proof)

lemma finite-deflation-discr-approz: finite-deflation (discr-approz 7)

(proof)

lemma discr-approx: approz-chain discr-approx
(proof)

19.4 Class instance proofs

instance bifinite C profinite
(proof)

instance u :: (profinite) bifinite
(proof)

Types ‘a — 'b and 'a; —! 'b are isomorphic.
definition encode-cfun = (A f. sfun-abs-(fup-f))

definition decode-cfun = (A g z. sfun-rep-g-(up-z))

lemma decode-encode-cfun [simpl: decode-cfun-(encode-cfun-x) = x
(proof)

lemma encode-decode-cfun [simpl: encode-cfun-(decode-cfun-y) = y

{(proof)

instance cfun :: (profinite, bifinite) bifinite
(proof)

Types (‘a x 'b); and ‘a; ® b, are isomorphic.
definition encode-prod-u = (A(up-(z, y)). CGup-z, up-y:))
definition decode-prod-u = (A(:up-z, up-y:). up-(z, y))

lemma decode-encode-prod-u [simpl: decode-prod-u-(encode-prod-u-x) = x
{proof)

lemma encode-decode-prod-u [simp): encode-prod-u-(decode-prod-u-y) = y
(proof)

instance prod :: (profinite, profinite) profinite
(proof)

instance prod :: (bifinite, bifinite) bifinite
(proof)

instance sfun :: (bifinite, bifinite) bifinite
(proof)

THEORY “Completion”

instance sprod :: (bifinite, bifinite) bifinite
(proof)

instance ssum :: (bifinite, bifinite) bifinite

(proof)

lemma approz-chain-unit: approz-chain (L :

(proof)

instance unit :: bifinite
(proof)

instance discr :: (countable) profinite

(proof)

instance lift :: (countable) bifinite
(proof)

end

nat = unit — unit)

72

20 Defining algebraic domains by ideal completion

theory Completion

imports Cfun

begin

20.1 Ideals over a preorder

locale preorder =

fixes r :: 'aitype = 'a = bool (infix «=<» 50)

assumes r-refl: © < x

assumes r-trans: [zr S y; y 2 2] =z 3 2

begin

definition
ideal :: 'a set = bool where

tdeal A = ((Fz. v € A) N (VzeA. VyecA. Fz€eA. 2 22Ny 2 2) A

Veyz3y—yed—zed)

lemma ideall:
assumes Jz. z € A

assumes Az y. [t € 4;ye A] = Fz€d. 2 X 2Ny =<z

assumes Az y. [x X y;y € Al =z € A
shows ideal A

(proof)

lemma idealD1:
ideal A = Jz. 2z € A

THEORY “Completion” 73

(proof)

lemma idealD2:
[ideal A; z € A; y € A] = Fz2€A. 2 22Ny 32

(proof)

lemma idealD3:
[ideal A; 2 < y; y € Al = z € A
(proof)

lemma ideal-principal: ideal {z. x < z}
{proof)

lemma ez-ideal: 3A. A € {A. ideal A}
(proof)

The set of ideals is a cpo

lemma ideal-UN:
fixes A :: nat = 'a set
assumes ideal-A: Ni. ideal (A 1)
assumes chain-A: N\ij. i <j= AiCAj
shows ideal (|Ji. A @)
(proof)

lemma typedef-ideal-po:
fixes Abs :: 'a set = 'b::below
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Axy. t Ty «— Repx C Rep y
shows OFCLASS('b, po-class)

{proof)

lemma
fixes Abs :: 'a set = 'b::po
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Az y. t C y «<— Rep x C Rep y
assumes S: chain S
shows typedef-ideal-lub: range S <<| Abs (|Ji. Rep (S 7))
and typedef-ideal-rep-lub: Rep (| |i. S i) = (4. Rep (S 1))
{proof)

lemma typedef-ideal-cpo:
fixes Abs :: 'a set = 'b::po
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Axy. t Ty «— Repx C Rep y
shows OFCLASS('b, cpo-class)

{proof)

end

THEORY “Completion”

interpretation below: preorder below :: 'a::po = 'a = bool
(proof)

20.2 Lemmas about least upper bounds

lemma is-ub-thelub-ez: [Fu. S <<| u;z € S] = 2 C lub S
(proof)

lemma is-lub-thelub-ex: [Fu. § <<| u; S <| 2] = lub SC z
(proof)

20.3 Locale for ideal completion

hide-const (open) Filter.principal

locale ideal-completion = preorder +
fixes principal :: 'a::type = b
fixes rep :: 'b = 'a::type set
assumes ideal-rep: \z. ideal (rep x)
assumes rep-lub: \Y. chain Y = rep (| |i. Y i) = (Ui rep (Y i)
assumes rep-principal: Na. rep (principal a) = {b. b < a}
assumes belowl: Nz y. repz Crepy —= z C y
assumes countable: 3 f::'a = nat. inj f
begin

lemma rep-mono: t T y = rep z C rep y

(proof)

lemma below-def: x
(proof)

M

y+—repz C repy

lemma principal-below-iff-mem-rep: principal a & x <— a € 1ep x

(proof)

lemma principal-below-iff [simp]: principal a T principal b <— a < b

(proof)

lemma principal-eq-iff: principal a = principal b <— a < b A b < a

(proof)

lemma eg-iff: =y +— repx =rep y
(proof)

lemma principal-mono: a < b = principal a C principal b

(proof)

lemma ch2ch-principal [simp):
Vi. Yi <Y (Suci) = chain (Ai. principal (Y 7))
{proof)

74

THEORY “Completion”

20.3.1 Principal ideals approximate all elements

lemma compact-principal [simpl: compact (principal a)

(proof)

Construct a chain whose lub is the same as a given ideal

lemma obtain-principal-chain:
obtains Y where Vi. Y i <X Y (Suc i) and z = (|]¢. principal (Y 7))
(proof)

lemma principal-induct:
assumes adm: adm P
assumes P: Aa. P (principal a)
shows P z

(proof)

lemma compact-imp-principal: compact + — Ja. © = principal a

(proof)

20.4 Defining functions in terms of basis elements

definition
extension :: (‘a:type = '¢) = 'b — 'c where
extension = (Af. (A z. b (f “ rep x)))

lemma extension-lemma:
fixes f :: 'a:type = ‘¢
assumes f-mono: Nab.a b= faC fb
shows Ju. f ‘rep r <<| u

(proof)

lemma extension-beta:
fixes [:: 'a:type = 'c
assumes f-mono: Nab.a < b= faC fb
shows extension f-x = lub (f ‘ rep x)

(proof)

lemma extension-principal:
fixes [:: 'a:type = 'c
assumes f-mono: Nab.a < b= faC fb
shows extension f-(principal a) = f a

(proof)

lemma extension-mono:
assumes f-mono: Nab.a < b= faC fb
assumes g-mono: Aab.a Xb=gaCgb
assumes below: Na. fa C g a
shows extension f T extension g

{proof)

75

THEORY “Universal”

lemma cont-extension:
assumes f-mono: Nabz.a b= fzal fzb
assumes f-cont: Aa. cont (Az. fz a)
shows cont (Az. extension (Aa. fx a))

(proof)

end

lemma (in preorder) typedef-ideal-completion:
fixes Abs :: 'a set = 'b
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Az y. t C y «<— Rep x C Rep y
assumes principal: N\a. principal a = Abs {b. b = a}
assumes countable: 3f::'a = nat. inj f
shows ideal-completion r principal Rep

(proof)

end

21 A universal bifinite domain

theory Universal
imports Bifinite Completion HOL— Library. Nat-Bijection
begin

unbundle no binomial-syntax

21.1 Basis for universal domain

21.1.1 Basis datatype

type-synonym ubasis = nat

definition
node :: nat = ubasis = ubasis set = ubasis
where

node i a S = Suc (prod-encode (i, prod-encode (a, set-encode S)))

lemma node-not-0 [simp]: node i a S # 0
(proof)

lemma node-gt-0 [simp]: 0 < node i a S

(proof)

lemma node-inject [simpl:
[finite S; finite T]
= nodeiaS=nodejbT+—i=jANa=bANS=T

(proof)

THEORY “Universal” 77

lemma node-gt0: i < node i a S
(proof)

lemma node-gt1: a < node i a S

(proof)

lemma nat-less-power2: n < 2™n
(proof)

lemma node-gt2: [finite S; b € S] = b < nodeia S

(proof)

lemma eg-prod-encode-pairl:
[fst (prod-decode z) = a; snd (prod-decode z) = b] = x = prod-encode (a, b)
{proof)

lemma node-cases:
assumes 1: 2 =0 — P
assumes 2: A\ia S. [finite S; x = node i a S] = P
shows P

(proof)

lemma node-induct:
assumes 1: P 0
assumes 2: Ai a S. [P q; finite S; VbeS. P b] = P (node i a S)
shows P z

(proof)
21.1.2 Basis ordering
inductive

ubasis-le :: nat = nat = bool
where

ubasis-le-refl: ubasis-le a a
| ubasis-le-trans:
[ubasis-le a b; ubasis-le b ¢] = ubasis-le a ¢
| ubasis-le-lower:
finite S = ubasis-le a (node i a S)
| ubasis-le-upper:
[finite S; b € S; ubasis-le a b] = ubasis-le (node i a S) b

lemma ubasis-le-minimal: ubasis-le 0 x

(proof)

interpretation udom: preorder ubasis-le
(proof)

21.1.3 Generic take function

function

THEORY “Universal” 78

ubasis-until :: (ubasis = bool) = ubasis = ubasis
where
ubasis-until P 0 = 0
| finite S = ubasis-until P (node i a S) =
(if P (node i a S) then node i a S else ubasis-until P a)

(proof)

termination ubasis-until
(proof)

lemma ubasis-until: P 0 = P (ubasis-until P x)

(proof)

lemma ubasis-until”: 0 < ubasis-until P © = P (ubasis-until P x)

(proof)

lemma ubasis-until-same: P © —> ubasis-until P x = x
(proof)

lemma ubasis-until-idem:
P 0 = ubasis-until P (ubasis-until P x) = ubasis-until P x

(proof)

lemma ubasis-until-0:
V. z# 0 — - Px = ubasis-until Pz = 0

(proof)

lemma ubasis-until-less: ubasis-le (ubasis-until P x) x
(proof)

lemma ubasis-until-chain:
assumes PQ: A\z. Pz = Q=
shows ubasis-le (ubasis-until P x) (ubasis-until Q) x)

(proof)

lemma ubasis-until-mono:
assumes A7 a S b. [finite S; P (node i a S); b € S; ubasis-le a b = P b
shows ubasis-le a b = ubasis-le (ubasis-until P a) (ubasis-until P b)
(proof)

lemma finite-range-ubasis-until:
finite {x. P x} = finite (range (ubasis-until P))

(proof)

21.2 Defining the universal domain by ideal completion

typedef udom = {S. udom.ideal S}
(proof)

THEORY “Universal”

instantiation udom :: below
begin

definition
z C y «— Rep-udom x C Rep-udom y

instance (proof)
end

instance udom :: po

(proof)

instance udom :: cpo

(proof)

definition
udom-principal :: nat = udom where
udom-principal t = Abs-udom {u. ubasis-le u t}

lemma ubasis-countable: 3 f::ubasis = nat. inj f

(proof)

interpretation udom:
ideal-completion ubasis-le udom-principal Rep-udom

(proof)

Universal domain is pointed
lemma udom-minimal: udom-principal 0 E x

(proof)

instance udom :: pcpo

(proof)

lemma inst-udom-pcpo: L. = udom-principal 0
(proof)

21.3 Compact bases of domains
typedef ‘a compact-basis = {x::'a::pepo. compact x}

(proof)

lemma Rep-compact-basis’ [simp]: compact (Rep-compact-basis a)

(proof)

lemma Abs-compact-basis-inverse’ [simp]:
compact & = Rep-compact-basis (Abs-compact-basis) = x

{(proof)

instantiation compact-basis :: (pcpo) below

79

THEORY “Universal” 80

begin

definition
compact-le-def:
(C) = (Az y. Rep-compact-basis x T Rep-compact-basis y)

instance (proof)
end

instance compact-basis :: (pcpo) po

(proof)

definition
approximants :: 'a::pcpo = 'a compact-basis set where
approzimants = (Az. {a. Rep-compact-basis a T z})

definition
compact-bot :: 'a::pcpo compact-basis where
compact-bot = Abs-compact-basis L

lemma Rep-compact-bot [simp]: Rep-compact-basis compact-bot = L

(proof)

lemma compact-bot-minimal [simp]: compact-bot T a
(proof)

21.4 Universality of udom

We use a locale to parameterize the construction over a chain of approx
functions on the type to be embedded.

locale bifinite-approz-chain =
approx-chain approz for approx :: nat = 'a:bifinite — 'a
begin

21.4.1 Choosing a maximal element from a finite set

lemma finite-has-mazximal:

fixes A :: 'a compact-basis set

shows [finite A; A # {}] = Jz€A. VycA. c Cy — =y
(proof)

definition
choose :: 'a compact-basis set = 'a compact-basis
where
choose A = (SOME z. ¢ € {z€A. VycA. t Cy — z = y})

lemma choose-lemma:
[finite A; A # {}] = choose A € {z€A.VycA. 2 Cy — z = y}
(proof)

THEORY “Universal” 81

lemma mazimal-choose:
[finite A; y € A; choose A C y]| = choose A =y

(proof)

lemma choose-in: [finite A; A # {}] = choose A € A
(proof)

function

choose-pos :: 'a compact-basis set = 'a compact-basis = nat
where

choose-pos A © =

(if finite ANz € ANz # choose A
then Suc (choose-pos (A — {choose A}) z) else 0)

(proof)

termination choose-pos
(proof)

declare choose-pos.simps [simp del]

lemma choose-pos-choose: finite A => choose-pos A (choose A) = 0
(proof)

lemma inj-on-choose-pos [OF refl]:
[eard A = n; finite A] = inj-on (choose-pos A) A
(proof)

lemma choose-pos-bounded [OF refl]:
[card A = n; finite A; x € A] = choose-pos A © < n

{(proof)

lemma choose-pos-lessD:
[choose-pos A x < choose-pos A y; finite A; z € A; ye Al =z L y

(proof)
21.4.2 Compact basis take function

primrec
cb-take :: nat = 'a compact-basis = 'a compact-basis where
cb-take 0 = (A\z. compact-bot)
| cb-take (Suc n) = (Aa. Abs-compact-basis (approx n-(Rep-compact-basis a)))

declare cb-take.simps [simp del]

lemma cb-take-zero [simp]: cb-take 0 a = compact-bot

(proof)

lemma Rep-cb-take:

THEORY “Universal” 82

Rep-compact-basis (cb-take (Suc n) a) = approz n-(Rep-compact-basis a)
(proof)

lemmas approz-Rep-compact-basis = Rep-cb-take [symmetric]

lemma cb-take-covers: An. cb-take n v = «
(proof)

lemma cb-take-less: cb-take n x C x

{(proof)

lemma cb-take-idem: cb-take n (cb-take n z) = cb-take n x
(proof)

lemma cb-take-mono: © C y = cb-take n © T cb-take n y

(proof)

lemma cb-take-chain-le: m < n = cb-take m z C cb-take n z
(proof)

lemma finite-range-cb-take: finite (range (cb-take n))

(proof)
21.4.3 Rank of basis elements
definition

rank :: 'a compact-basis = nat
where

rank ¥ = (LEAST n. cb-take n © = x)

lemma compact-approx-rank: cb-take (rank z) r = x

(proof)

lemma rank-leD: rank v < n — cb-take n x = =
(proof)

lemma rank-lel: cb-take n t = x = rank x < n

(proof)

lemma rank-le-iff: rank © < n +— cb-take n v = x

(proof)

lemma rank-compact-bot [simpl: rank compact-bot = 0
(proof)

lemma rank-eq-0-iff [simp]: rank © = 0 +— z = compact-bot

(proof)

definition

THEORY “Universal” 83

rank-le :: 'a compact-basis = 'a compact-basis set
where
rank-le z = {y. rank y < rank z}

definition

rank-It :: 'a compact-basis = 'a compact-basis set
where

rank-lt x = {y. rank y < rank z}

definition

rank-eq :: 'a compact-basis = 'a compact-basis set
where

rank-eq x = {y. rank y = rank z}

lemma rank-eq-cong: rank x = rank y = rank-eq x = rank-eq y

(proof)

lemma rank-lt-cong: rank x = rank y = rank-lt x = rank-lt y
(proof)

lemma rank-eq-subset: rank-eq x C rank-le x

(proof)

lemma rank-lt-subset: rank-lt © C rank-le x
(proof)

lemma finite-rank-le: finite (rank-le x)

(proof)

lemma finite-rank-eq: finite (rank-eq x)

{(proof)

lemma finite-rank-lt: finite (rank-lt x)
(proof)

lemma rank-it-Int-rank-eq: rank-lt x N rank-eq x = {}

(proof)

lemma rank-lt-Un-rank-eq: rank-lt x U rank-eq x = rank-le
(proof)

21.4.4 Sequencing basis elements

definition
place :: 'a compact-basis = nat
where

place x = card (rank-It ©) + choose-pos (rank-eq) x

lemma place-bounded: place x < card (rank-le x)

THEORY “Universal” 84

(proof)

lemma place-ge: card (rank-lt) < place

(proof)

lemma place-rank-mono:
fixes z y :: 'a compact-basis
shows rank ¢ < rank y = place x < place y

(proof)
lemma place-eqD: place © = place y = = =y
(proof)
lemma inj-place: inj place
{proof)
21.4.5 Embedding and projection on basis elements
definition
sub :: 'a compact-basis = 'a compact-basis
where

sub x = (case rank x of 0 = compact-bot | Suc k = cb-take k x)

lemma rank-sub-less: © # compact-bot = rank (sub z) < rank x

(proof)

lemma place-sub-less: © # compact-bot = place (sub x) < place x
(proof)

lemma sub-below: sub r T z

(proof)

lemma rank-less-imp-below-sub: [z C y; rank © < rank y] = z C sub y
(proof)

function basis-emb :: 'a compact-basis = ubasis
where basis-emb x = (if z = compact-bot then 0 else
node (place x) (basis-emb (sub z))
(basis-emb ‘ {y. place y < place z A z T y}))
(proof)

termination basis-emb
(proof)

declare basis-emb.simps [simp del]

lemma basis-emb-compact-bot [simpl:
basis-emb compact-bot = 0
{proof)

THEORY “Universal” 85

lemma basis-emb-rec:

basis-emb x = node (place z) (basis-emb (sub x)) (basis-emb ‘ {y. place y < place
z Az Cy})

if © # compact-bot

{proof)

lemma basis-emb-eq-0-iff [simp]:
basis-emb © = 0 <— = = compact-bot
(proof)

lemma finl: finite {y. place y < place x A z C y}
(proof)

lemma fin2: finite (basis-emb {y. place y < place x N x C y})
{proof)

lemma rank-place-mono:
[place z < place y; x C y] = rank x < rank y

(proof)

lemma basis-emb-mono:
z C y = ubasis-le (basis-emb x) (basis-emb y)
(proof)

lemma inj-basis-emb: inj basis-emb

(proof)

definition
basis-prj :: ubasis = 'a compact-basis
where
basis-prj x = inv basis-emb
(ubasis-until (Az. x € range (basis-emb :: 'a compact-basis = ubasis)) x)

lemma basis-prj-basis-emb: \z. basis-prj (basis-emb z) = x
(proof)

lemma basis-prj-node:
[finite S; node i a S ¢ range (basis-emb :: 'a compact-basis = nat)]
= basis-prj (node i a S) = (basis-prj a :: 'a compact-basis)
(proof)

lemma basis-prj-0: basis-prj 0 = compact-bot

(proof)

lemma node-eq-basis-emb-iff:
finite S = node i a S = basis-emb r +—
x # compact-bot A i = place x A a = basis-emb (sub x) A
S = basis-emb ‘ {y. place y < place z N z C y}

THEORY “Universal” 86

(proof)

lemma basis-prj-mono: ubasis-le a b = basis-prj a T basis-prj b

(proof)

lemma basis-emb-prj-less: ubasis-le (basis-emb (basis-prj ©))
(proof)

lemma ideal-completion:
ideal-completion below Rep-compact-basis (approrimants :: 'a = -)

(proof)

end

interpretation compact-basis:
ideal-completion below Rep-compact-basis
approximants :: 'a::bifinite = 'a compact-basis set
(proof)

21.4.6 EP-pair from any bifinite domain into udom

context bifinite-approz-chain begin

definition
udom-emb :: 'a — udom
where
udom-emb = compact-basis.extension (Ax. udom-principal (basis-emb x))

definition
udom-prj :: udom — 'a
where
udom-prj = udom.extension (Ax. Rep-compact-basis (basis-prj x))

lemma udom-emb-principal:
udom-emb-(Rep-compact-basis) = udom-principal (basis-emb x)

{(proof)

lemma udom-prj-principal:
udom-prj-(udom-principal ©) = Rep-compact-basis (basis-prj x)
(proof)

lemma ep-pair-udom: ep-pair udom-emb udom-prj
(proof)

end

abbreviation udom-emb = bifinite-approz-chain.udom-emb
abbreviation udom-prj = bifinite-approx-chain.udom-pr;j

THEORY “Algebraic” 87

lemmas ep-pair-udom =
bifinite-approx-chain.ep-pair-udom [unfolded bifinite-approx-chain-def)]

21.5 Chain of approx functions for type udom

definition
udom-approx :: nat = udom — udom
where
udom-approx i =
udom.extension (Az. udom-principal (ubasis-until (Ay. y < i) x))

lemma udom-approx-mono:
ubasis-le a b =
udom-principal (ubasis-until (Ay. y
udom-principal (ubasis-until (\y. y
(proof)

INIA

lemma adm-mem-finite: [cont f; finite S] = adm (Az. fz € S)
(proof)
lemma udom-approx-principal:

udom-approzx i-(udom-principal x) =

udom-principal (ubasis-until (Ay. y < i) x)

(proof)

lemma finite-deflation-udom-approx: finite-deflation (udom-approx i)
(proof)

interpretation udom-approz: finite-deflation udom-approx i

(proof)

lemma chain-udom-approx [simp|: chain (Ai. udom-approx i)
(proof)

lemma lub-udom-approz [simp]: (| |i. udom-approz i) = ID

(proof)

lemma udom-approzx [simp|: approz-chain udom-approx
(proof)

instance udom :: bifinite
(proof)

hide-const (open) node
unbundle binomial-syntaz

end

THEORY “Algebraic”

22 Algebraic deflations

theory Algebraic
imports Universal Map-Functions
begin

22.1 Type constructor for finite deflations

typedef ‘a:bifinite fin-defl = {d::'a — 'a. finite-deflation d}
(proof)

instantiation fin-defl :: (bifinite) below
begin

definition below-fin-defi-def:
below = Az y. Rep-fin-defl x C Rep-fin-defl y

instance (proof)
end

instance fin-defl :: (bifinite) po
(proof)

lemma finite-deflation-Rep-fin-defl: finite-deflation (Rep-fin-defl d)
{proof)

lemma deflation-Rep-fin-defl: deflation (Rep-fin-defl d)
(proof)

interpretation Rep-fin-defl: finite-deflation Rep-fin-defl d
(proof)

lemma fin-defl-belowl:
(Az. Rep-fin-defl a-x = x = Rep-fin-defl bx = z) = a C b
(proof)

lemma fin-defi-belowD:
[a T b; Rep-fin-defl a-x = z] = Rep-fin-defl b-x = z
(proof)

lemma fin-defl-eql:
a = b if (Az. Rep-fin-defl a-x = x «— Rep-fin-defl b-x = 1)
(proof)

lemma Rep-fin-defl-mono: a & b = Rep-fin-defl a C Rep-fin-defl b
(proof)

lemma Abs-fin-defl-mono:
[finite-deflation a; finite-deflation b; a T b]
= Abs-fin-defl a T Abs-fin-defl b

88

THEORY “Algebraic” 89

(proof)

lemma (in finite-deflation) compact-belowl:
dC fif Az. compact 1 = dz =2 = fax =1
(proof)

lemma compact-Rep-fin-defl [simp]: compact (Rep-fin-defl a)
(proof)

22.2 Defining algebraic deflations by ideal completion

typedef ‘a:bifinite defl = {S::'a fin-defl set. below.ideal S}
(proof)

instantiation defl :: (bifinite) below
begin

definition z C y «— Rep-defl x C Rep-defl y
instance (proof)
end

instance defl :: (bifinite) po
(proof)

instance defl :: (bifinite) cpo
(proof)

definition defl-principal :: 'a::bifinite fin-defl = 'a defl
where defl-principal t = Abs-defl {u. u C t}

lemma fin-defl-countable: 3 f::'a::bifinite fin-defl = nat. inj f
{proof)

interpretation defi: ideal-completion below defi-principal Rep-defl
(proof)

Algebraic deflations are pointed

lemma defl-minimal: defl-principal (Abs-fin-defl L) C z

(proof)

instance defl :: (bifinite) pcpo
(proof)

lemma inst-defl-pcpo: L = defl-principal (Abs-fin-defl 1)
{proof)

THEORY “Algebraic” 90

22.3 Applying algebraic deflations

definition cast :: 'a::bifinite defl — 'a — 'a
where cast = defl.extension Rep-fin-defl

lemma cast-defl-principal: cast-(defl-principal a) = Rep-fin-defl a
(proof)

lemma deflation-cast: deflation (cast-d)

(proof)

lemma finite-deflation-cast: compact d = finite-deflation (cast-d)
(proof)

interpretation cast: deflation cast-d

(proof)

declare cast.idem [simp]

lemma compact-cast [simp]: compact (cast-d) if compact d
{proof)

lemma cast-below-cast: cast-A C cast-B +— A C B
(proof)

lemma compact-cast-iff: compact (cast-d) +— compact d

(proof)

lemma cast-below-imp-below: cast-A C cast-B — A C B
(proof)

lemma cast-eq-imp-eq: cast-A = cast-B — A = B

(proof)

lemma cast-strict! [simpl: cast-L = 1
(proof)

lemma cast-strict2 [simp]: cast-A-1L = 1
(proof)

22.4 Deflation combinators

definition
defl-funl ep f =
defl.extension (\a.
defl-principal (Abs-fin-defl
(¢ 00 f-(Rep-fin-defl a) 00 p)))

definition
defl-fun2 ep f =

THEORY “Representable” 91

defl.extension (Aa.
defl.extension (\b.
defl-principal (Abs-fin-defl
(¢ 00 f-(Rep-fin-defl a)-(Rep-fin-defl b) 00 p))))

lemma cast-defl-funi:
assumes ep: ep-pair e p
assumes f: Aa. finite-deflation a = finite-deflation (f-a)
shows cast-(defl-funl e p f-A) = e oo f-(cast-A) oo p
(proof)

lemma cast-defl-fun2:
assumes ep: ep-pair e p
assumes f: A\a b. finite-deflation a = finite-deflation b —>
finite-deflation (f-a-b)
shows cast-(defl-fun2 e p f-A-B) = € oo f-(cast-A)-(cast-B) oo p
(proof)

end

23 Representable domains

theory Representable
imports Algebraic Map-Functions HOL— Library. Countable
begin

23.1 Class of representable domains

We define a “domain” as a pcpo that is isomorphic to some algebraic defla-
tion over the universal domain; this is equivalent to being omega-bifinite.

A predomain is a cpo that, when lifted, becomes a domain. Predomains are
represented by deflations over a lifted universal domain type.

class predomain-syn = cpo +
fixes liftemb :: 'a; — udom_
fixes liftprj :: udom, — 'a)
fixes liftdefl :: 'a itself = udom u defl

class predomain = predomain-syn +
assumes predomain-ep: ep-pair liftemb liftprj
assumes cast-liftdefl: cast-(liftdefl TYPE('a)) = liftemb oo liftprj

syntax -LIFTDEFL :: type = logic (<«(1LIFTDEFL/(1'(-"))»)
syntax-consts -LIFTDEFL = liftdefl
translations LIFTDEFL('t) = CONST liftdefl TYPE('t)

definition liftdefi-of :: udom defi — udom u defl
where liftdefl-of = defl-funl ID ID u-map

THEORY “Representable”

lemma cast-liftdefl-of: cast-(liftdefl-of -t) = u-map-(cast-t)
(proof)

class domain = predomain-syn + pcpo +
fixes emb :: 'a — udom
fixes prj :: udom — 'a
fixes defl :: 'a itself = udom defl
assumes ep-pair-emb-prj: ep-pair emb prj
assumes cast-DEFL: cast-(defl TYPE('a)) = emb oo prj
assumes liftemb-eq: liftemb = u-map-emb
assumes liftprj-eq: liftprj = u-map-prj
assumes liftdefl-eq: liftdefl TYPE('a) = liftdefl-of -(defl TYPE('a))

syntax -DEFL :: type = logic (<(1DEFL/(1'(-"))»)
syntax-consts -DEFL = defl
translations DEFL('t) = CONST defl TYPE('t)

instance domain C predomain
(proof)

Constants liftemb and liftprj imply class predomain.

(ML)

interpretation predomain: pcpo-ep-pair liftemb liftprj
(proof)

interpretation domain: pcpo-ep-pair emb prj

(proof)

lemmas emb-inverse = domain.e-inverse
lemmas emb-prj-below = domain.e-p-below
lemmas emb-eq-iff = domain.e-eq-iff
lemmas emb-strict = domain.e-strict
lemmas prj-strict = domain.p-strict

23.2 Domains are bifinite

lemma approx-chain-ep-cast:
assumes ep: ep-pair (e:'a::pepo — 'bi:bifinite) (p::'b — 'a)
assumes cast-t: cast-t = e oo p
shows 3 (a::nat = 'a:pepo — 'a). approz-chain a

(proof)

instance domain C bifinite
(proof)

instance predomain C profinite

(proof)

92

THEORY “Representable” 93

23.3 Universal domain ep-pairs

definition u-emb = udom-emb (\i. u-map-(udom-approz i))
definition u-prj = udom-prj (Ai. u-map-(udom-approzx i))

definition prod-emb = udom-emb (\i. prod-map-(udom-approzx i)-(udom-approz
i)

definition prod-prj = udom-prj (Ai. prod-map-(udom-approzx ©)-(udom-approz i))

definition sprod-emb = udom-emb (\i. sprod-map-(udom-approz ©)-(udom-approx
i)

definition sprod-prj = udom-prj (X\i. sprod-map-(udom-approz i)-(udom-approx 7))

definition ssum-emb = udom-emb (Ai. ssum-map-(udom-approx i)-(udom-approx
i)

definition ssum-prj = udom-prj (Ai. ssum-map-(udom-approz i)-(udom-approz 7))

definition sfun-emb = udom-emb (Ai. sfun-map-(udom-approz i)-(udom-approx 7))
definition sfun-prj = udom-prj (M\i. sfun-map-(udom-approz ©)-(udom-approzx))

lemma ep-pair-u: ep-pair u-emb u-prj
(proof)

lemma ep-pair-prod: ep-pair prod-emb prod-prj
(proof)

lemma ep-pair-sprod: ep-pair sprod-emb sprod-prj
(proof)

lemma ep-pair-ssum: ep-pair ssum-emb ssum-prj
(proof)

lemma ep-pair-sfun: ep-pair sfun-emb sfun-prj
(proof)

23.4 Type combinators

definition u-defl :: udom defl — udom defl
where u-defl = defi-funl u-emb u-prj u-map

definition prod-defl :: udom defl — udom defl — udom defl
where prod-defl = defi-fun2 prod-emb prod-prj prod-map

definition sprod-defl :: udom defl — udom defl — udom defl
where sprod-defl = defi-fun2 sprod-emb sprod-prj sprod-map

definition ssum-defi :: udom defl — udom defl — udom defl
where ssum-defl = defl-fun2 ssum-emb ssum-prj ssum-map

definition sfun-defl :: udom defil — udom defl — udom defl

THEORY “Representable” 94

where sfun-defl = defi-fun2 sfun-emb sfun-prj sfun-map

lemma cast-u-defl:
cast-(u-defl-A) = u-emb oo u-map-(cast-A) oo u-prj
(proof)

lemma cast-prod-defi:
cast-(prod-defl-A-B) =
prod-emb oo prod-map-(cast-A)-(cast-B) oo prod-prj
{(proof)

lemma cast-sprod-defi:
cast-(sprod-defl-A-B) =
sprod-emb oo sprod-map-(cast-A)-(cast-B) oo sprod-prj
{proof)

lemma cast-ssum-defi:
cast-(ssum-defl-A-B) =
ssum-emb oo ssum-map-(cast-A)-(cast-B) oo ssum-prj
(proof)

lemma cast-sfun-defi:
cast-(sfun-defl-A-B) =
sfun-emb oo sfun-map-(cast-A)-(cast-B) oo sfun-prj
(proof)

Special deflation combinator for unpointed types.

definition u-liftdefl :: udom u defl — udom defl
where u-liftdefl = defl-funl u-emb u-prj ID

lemma cast-u-liftdefi:
cast-(u-liftdefl-A) = u-emb oo cast-A oo u-prj
(proof)
lemma u-liftdefil-liftdefi-of:
u-liftdefl-(liftdefl-of -A) = u-defl-A
(proof)

23.5 Class instance proofs

23.5.1 TUniversal domain
instantiation udom :: domain

begin

definition [simp]:
emb = (ID :: udom — udom)

definition [simp]:
prj = (ID :: udom — udom)

THEORY “Representable”

definition
defl (t::udom itself) = (|| 7. defl-principal (Abs-fin-defl (udom-approz i)))

definition
(liftemb :: udom u — udom u) = u-map-emb

definition
(liftprj 2 udom u — udom u) = u-map-prj

definition
liftdefl (t::udom itself) = liftdefl-of - DEFL(udom)

instance (proof)

end

23.5.2 Lifted cpo

instantiation u :: (predomain) domain
begin

definition
emb = u-emb oo liftemb

definition
prj = liftprj oo u-prj

definition
defl (t::'a u itself) = u-liftdefl- LIFTDEFL('a)

definition
(liftemb :: 'a uw u — udom u) = u-map-emb

definition
(liftprj = udom u — 'a u u) = u-map-prj

definition
liftdefl (t::'a u itself) = liftdefl-of -DEFL('a u)

instance (proof)
end

lemma DEFL-u: DEFL('a::predomain u) = u-liftdefl: LIFTDEFL('a)
(proof)

23.5.3 Strict function space

instantiation sfun :: (domain, domain) domain

95

THEORY “Representable” 96

begin

definition
emb = sfun-emb oo sfun-map-prj-emb

definition
pri = sfun-map-emb-prj oo sfun-prj

definition
defl (t::("a —=! 'b) itself) = sfun-defl- DEFL(’a)-DEFL(’'D)

definition
(liftemb :: ("a —=! 'b) v — udom u) = u-map-emb

definition
(liftpry :: udom u — (‘a —=! 'b) u) = u-map-prj

definition
liftdefl (t::("a —=! 'd) itself) = liftdefl-of -DEFL(’a —! 'b)

instance (proof)
end
lemma DEFL-sfun:

DEFL('a::domain —! 'b::domain) = sfun-defl- DEFL(’a)- DEFL('D)
(proof)

23.5.4 Continuous function space

instantiation cfun :: (predomain, domain) domain
begin

definition
emb = emb oo encode-cfun

definition
prj = decode-cfun oo prj

definition
defl (t::("a — 'b) itself) = DEFL('a u —! 'b)

definition
(liftemb :: ('"a — 'b) u — udom u) = u-map-emb

definition
(liftprj = udom u — ('a — 'b) u) = u-map-prj

definition

THEORY “Representable” 97

liftdefl (t::("a — 'b) itself) = liftdefl-of-DEFL('a — 'b)
instance (proof)
end

lemma DEFL-cfun:
DEFL('a::predomain — 'b::domain) = DEFL('a u —! ')
(proof)

23.5.5 Strict product
instantiation sprod :: (domain, domain) domain

begin

definition
emb = sprod-emb oo sprod-map-emb-emb

definition
prj = sprod-map-prj-prj 0o sprod-prj

definition
defl (t::("a ® 'b) itself) = sprod-defl- DEFL('a)-DEFL(’b)

definition
(liftemb :: ('a @ 'b) uw — udom u) = u-map-emb

definition
(liftprj = udom u — ('a ® 'b) u) = u-map-prj

definition
liftdefl (t::('a @ 'b) itself) = liftdefl-of -DEFL('a ® 'b)

instance (proof)
end

lemma DFEFL-sprod:
DEFL('a::domain ® 'b::domain) = sprod-defl- DEFL('a)-DEFL('b)
(proof)

23.5.6 Cartesian product

definition prod-liftdefl :: udom u defl — udom u defl — udom u defl
where prod-liftdefl = defl-fun2 (u-map-prod-emb oo decode-prod-u)
(encode-prod-u oo u-map-prod-prj) sprod-map

lemma cast-prod-liftdefl:
cast-(prod-liftdefl-a-b) =
(u-map-prod-emb oo decode-prod-u) oo sprod-map-(cast-a)-(cast-b) oo

THEORY “Representable” 98

(encode-prod-u oo u-map-prod-pry)
(proof)

instantiation prod :: (predomain, predomain) predomain
begin

definition
liftemb = (u-map-prod-emb oo decode-prod-u) oo
(sprod-map-liftemb-liftemb oo encode-prod-u)
definition
liftpri = (decode-prod-u oo sprod-map-liftprj-liftprj) oo

(encode-prod-u oo u-map-prod-pry)

definition
liftdefl (t::("a x 'b) itself) = prod-liftdefl- LIFTDEFL(’a)- LIFTDEFL('b)

instance (proof)
end

instantiation prod :: (domain, domain) domain
begin

definition
emb = prod-emb oo prod-map-emb-emb

definition
prj = prod-map-prj-prj oo prod-prj

definition
defl (t::("a x 'b) itself) = prod-defl- DEFL('a)-DEFL('b)

instance (proof)
end

lemma DEFL-prod:
DEFL('a::domain x 'b::domain) = prod-defl- DEFL(’a)- DEFL(’D)
(proof)

lemma LIFTDEFL-prod:
LIFTDEFL('a::predomain x 'b:predomain) =
prod-liftdefl- LIFTDEFL('a)-LIFTDEFL('b)
(proof)

23.5.7 Unit type

instantiation unit :: domain

THEORY “Representable” 99

begin

definition
emb = (L :: unit — udom)

definition
prj = (L :: udom — unit)

definition
defl (t::unit itself) = L

definition
(liftemb :: unit u — udom u) = u-map-emb

definition
(liftpry = udom u — unit u) = u-map-prj

definition
liftdefl (t::unit itself) = liftdefl-of - DEFL(unit)

instance (proof)
end

23.5.8 Discrete cpo

instantiation discr :: (countable) predomain
begin

definition
(liftemb :: 'a discr u — udom u) = strictify-up oo udom-emb discr-approz

definition
(liftprj :: udom u — 'a discr u) = udom-prj discr-approz oo fup-ID

definition
liftdefl (t::'a discr itself) =
(L]i. defl-principal (Abs-fin-defl (liftemb oo discr-approx i oo (liftprj::udom u
— 'a discr u))))
instance (proof)
end
23.5.9 Strict sum

instantiation ssum :: (domain, domain) domain
begin

definition

THEORY “Representable”

emb = ssum-emb oo ssum-map-emb-emb

definition
Pri = SSUM-Mmap-prj-prj 00 sSumM-prj

definition
defl (t::("a @ 'b) itself) = ssum-defl: DEFL('a)-DEFL('))

definition
(liftemb :: ('a @ 'b) u — udom u) = u-map-emb

definition
(liftprj = udom u — ('a ® 'b) u) = u-map-prj

definition
liftdefl (t::(a @ 'b) itself) = liftdefl-of -DEFL('a & 'b)

instance (proof)
end
lemma DFEFL-ssum:

DEFL('a::domain & 'b::domain) = ssum-defl- DEFL('a)- DEFL('b)
(proof)

23.5.10 Lifted HOL type

instantiation lift :: (countable) domain
begin

definition
emb = emb oo (A z. Rep-lift)

definition
prj = (A y. Abs-lift y) oo prj

definition
defl (t::'a lift itself) = DEFL('a discr u)

definition
(liftembd :: 'a lift w — udom u) = u-map-emb

definition
(liftpry 2 udom u — 'a lift u) = u-map-prj

definition
liftdefl (t::'a lift itself) = liftdefl-of- DEFL('a lift)

instance (proof)

100

THEORY “One” 101

end

end

24 The unit domain

theory One
imports Lift
begin

type-synonym one = unit lift

translations
(type) one ~— (type) unit lift

definition ONEFE :: one
where ONE = Def ()

Exhaustion and Elimination for type one

lemma Ezh-one: t = 1L V t = ONE
(proof)

lemma oneFE [case-names bottom ONE]: [p= L = @Q; p= ONE = Q] = @
(proof)

lemma one-induct [case-names bottom ONE]: P L = P ONE = Pz
{proof)

lemma dist-below-one [simp]: ONE £ L
{proof)

lemma below-ONE [simp]: © = ONE
{proof)

lemma ONE-below-iff [simp]: ONE C z <— © = ONE
{proof)

lemma ONE-defined [simp]: ONE # L
(proof)

lemma one-neg-iffs [simp]:
x# ONE ¢+— =1
ONE #x +—z =1
x# 1 +— = ONE
1 #2+— 2= ONE
(proof)

lemma compact-ONE: compact ONE

THEORY “Fixrec” 102

{proof)

Case analysis function for type one

definition one-case :: 'a::pcpo — one — ’a
where one-case = (A a z. seq-z-a)

translations
case x of XCONST ONFE = t = CONST one-case-t-x
case T of XCONST ONE :: 'a = t — CONST one-case-t-x
A (XCONST ONE). t = CONST one-case-t

lemma one-casel [simp): (case L of ONE = t) = L

(proof)

lemma one-case2 [simp]: (case ONE of ONE = t) = {
{proof)

lemma one-case3 [simp]: (case x of ONE = ONE) = ¢
{proof)

end

theory Fixrec

imports Cprod Sprod Ssum Up One Tr Cfun
keywords fizrec :: thy-defn

begin

25 Fixed point operator and admissibility

25.1 Iteration

primrec iterate :: nat = (‘a — 'a) = (‘a — 'a)
where

iterate 0 = (A F z. x)

| iterate (Suc n) = (A F z. F-(iterate n-F-z))

Derive inductive properties of iterate from primitive recursion
lemma iterate-0 [simp)]: iterate 0-F-x = x

(proof)

lemma iterate-Suc [simp]: iterate (Suc n)-F-x
{proof)

F-(iterate n-F-x)

declare iterate.simps [simp del]

lemma iterate-Suc2: iterate (Suc n)-F-x = iterate n-F-(F-x)
{proof)

THEORY “Fixrec” 103

lemma iterate-iterate: iterate m-F-(iterate n-F-x) = iterate (m + n)-F-x
{proof)
The sequence of function iterations is a chain.

lemma chain-iterate [simpl: chain (Ai. iterate i-F-1)
{proof)

25.2 Least fixed point operator

definition fiz :: ('a::pcpo — 'a) = 'a
where fix = (A F. | |i. iterate {-F-1)

Binder syntax for fiz
abbreviation fiz-syn :: (‘a::pcpo = 'a) = 'a (binder «u » 10)
where fiz-syn (\z. fz) = fir-(A z. fx)

notation (ASCII)
fiz-syn (binder «(FIX » 10)

Properties of fiz

direct connection between fix and iteration

lemma fiz-def2: fiz-F = (| |i. iterate i-F-1)
{proof)

lemma iterate-below-fiz: iterate n-f-1 T fix-f

(proof)

Kleene’s fixed point theorems for continuous functions in pointed omega
cpo’s
lemma fiz-eq: fix-F = F-(fiz-F)

(proof)

lemma fiz-least-below: F-x C v = fiz-F C x
(proof)

lemma fiz-least: F-o = 2 = fis-F C
(proof)

lemma fiz-eql:
assumes fized: F-x = z
and least: Nz. F-z =2 =z C 2
shows fix-F' = ¢
(proof)

lemma fiz-eq2: f = fiv-F = f = F-f
{proof)

lemma fix-eq3: [= fix-F = fx = F-fx

THEORY “Fixrec” 104

{proof)

lemma fiz-eq): f = fix: F = f = F-f
(proof)

lemma fiz-eq5: f = fir-F = f-x = F-fx
{proof)

strictness of fix

lemma fiz-bottom-iff: fix- ¥ = L +— F-1 = 1
(proof)

lemma fiz-strict: F-1 = 1 = fix- F = L
(proof)

lemma fiz-defined: F-1 # | —> fix-F # L
(proof)

fix applied to identity and constant functions

lemma fiz-id: (p z. z) = L
(proof)

lemma fiz-const: (u z. ¢) = ¢
{proof)

25.3 Fixed point induction

lemma fiz-ind: adm P = P | = (Az. Pz = P (F-z)) = P (fiz-F)
(proof)

lemma cont-fiz-ind: cont F = adm P = P 1 = (A\z. Pz = P (F z)) =
P (fix-(Abs-cfun F))
{proof)

lemma def-fiz-ind: [f = fiz-F; adm P; P L; Ax. Px = P (F-z)] = P f
{proof)

lemma fiz-ind2:
assumes adm: adm P
assumes 0: P L and 1: P (F-1)
assumes step: Az. [P z; P (F-z)] = P (F-(F-1))
shows P (fiz-F)
{proof)

lemma parallel-fiz-ind:
assumes adm: adm (Az. P (fst) (snd z))
assumes base: P L L
assumes step: Az y. Pz y = P (F-z) (G-y)
shows P (fiz-F) (fiz-G)

THEORY “Fixrec” 105

(proof)

lemma cont-parallel-fiz-ind:
assumes cont F' and cont G
assumes adm (Az. P (fst z) (snd z))
assumes P 1 |
assumes A\zy. Pz y = P (Fz) (Gy)
shows P (fiz-(Abs-cfun F)) (fiz-(Abs-cfun G))
(proof)

25.4 Fixed-points on product types

Bekic’s Theorem: Simultaneous fixed points over pairs can be written in
terms of separate fixed points.

lemma fiz-cprod:
fixes I :: 'a::pcpo x 'bipepo — 'a x b
shows
fix-F =
(1 z. fst (F-(z, p y. snd (F-(z, y)))),
g snd (P . fot (F-(s, 1 . snd (F-(z, 9)))), 1))
(is fi-F = (72, %))
(procf)

26 Package for defining recursive functions in HOLCF

26.1 Pattern-match monad

pcpodef ‘a match = UNIV::(one ++ 'a u) set
(proof)

definition
fail :: 'a match where
fail = Abs-match (sinl-ONE)

definition
succeed 1 'a — 'a match where
succeed = (A z. Abs-match (sinr-(up-z)))

lemma matchE [case-names bottom fail succeed, cases type: match):
[p=L = Q;p= fail = Q; \z. p = succeed-t1 = Q] = Q
(proof)

lemma succeed-defined [simp]: succeed-z # L
(proof)

lemma fail-defined [simp]: fail # L
(proof)

THEORY “Fixrec” 106

lemma succeed-eq [simp]: (succeed-z = succeed-y) = (x = y)
(proof)

lemma succeed-neg-fail [simp]:
succeed-x # fail fail # succeed-x

(proof)

26.1.1 Run operator

definition
run :: 'a match — 'a::pcpo where
run = (A m. sscase-L-(fup-ID)-(Rep-match m))

rewrite rules for run
lemma run-strict [simpl: run-L = L

(proof)

lemma run-fail [simp]: run-fail = L

(proof)

lemma run-succeed [simpl: run-(succeed-z) = x

{(proof)

26.1.2 Monad plus operator

definition
mplus :: 'a match — 'a match — 'a match where
mplus = (A m1 m2. sscase-(A -. m2)-(A -. m1)-(Rep-match m1))

abbreviation
mplus-syn = ['a match, 'a match] = 'a match (infixr <+++> 65) where
ml +++ m2 == mplus-m1-m2

rewrite rules for mplus
lemma mplus-strict [simp]: L ++4+ m = L
(proof)

lemma mplus-fail [simp]: fail +++ m = m
(proof)

lemma mplus-succeed [simp): succeed-x +++ m = succeed-x

(proof)

lemma mplus-fail2 [simp]: m +++ fail = m
(proof)

lemma mplus-assoc: (z +++ y) +++ 2z = z +++ (y +++ 2)
(proof)

THEORY “Fixrec” 107

26.2 Match functions for built-in types

definition

match-bottom :: ’a::pcpo — 'c match — 'c match
where

match-bottom = (A x k. seq-x-fail)

definition

match-Pair :: 'a x 'b = (‘a = 'b = ‘¢ match) — 'c match
where

match-Pair = (A z k. csplit-k-x)

definition

match-spair :: 'az:pcpo @ 'biipepo — (‘a — 'b — ‘¢ match) — 'ci:pepo match
where

match-spair = (A z k. ssplit-k-x)

definition

match-sinl :: 'a::pcpo @ 'b::pepo — ('a — 'e:ipepo match) — ‘¢ match
where

match-sinl = (A z k. sscase-k-(A b. fail)-x)

definition

match-sinr :: 'az:pcpo & 'biipepo — (b — 'ci:pepo match) — ‘¢ match
where

match-sinr = (A z k. sscase-(A a. fail)-k-x)

definition

match-up :: 'a u — (‘a — 'ciipecpo match) — ¢ match
where

match-up = (A z k. fup-k-x)

definition

match-ONE :: one — 'c::pcpo match — 'c¢ match
where

match-ONE = (A ONE k. k)

definition

match-TT :: tr — 'c::pcpo match — "¢ match
where

match-TT = (A z k. If © then k else fail)

definition

match-FF :: tr — 'c::pcpo match — 'c match
where

match-FF = (A z k. If x then fail else k)

lemma match-bottom-simps [simp]:
match-bottom-z-k = (if x = L then L else fail)
(proof)

THEORY “Fixrec” 108

lemma match-Pair-simps [simpl:
match-Pair-(z, y)-k = k-z-y
(proof)

lemma match-spair-simps [simp):
[# L; y # 1] = match-spair-(:x, y:)-k = k-x-y
match-spair- 1 -k = L

(proof)

lemma match-sinl-simps [simp]:
z # L = match-sinl-(sinl-z)-k = k-z
y # L = match-sinl-(sinr-y)-k = fail
match-sinl-L-k = L

(proof)

lemma match-sinr-simps [simp]:
z # 1L = match-sinr-(sinl-x)-k = fail
y # L = match-sinr-(sinr-y)-k = k-y
match-sinr-L-k = L

(proof)

lemma match-up-simps [simp]:
match-up-(up-z)-k = k-x
match-up- L-k = 1

(proof)

lemma match-ONE-simps [simp]:
match-ONE-ONE-k = k
match-ONE-L-k = 1

(proof)

lemma match-TT-simps [simp]:
match-TT-TT-k = k
match-TT-FF-k = fail
match-TT-1L-k = L

(proof)

lemma match-FF-simps [simp]:
match-FF-FF-k = k
match-FF-TT-k = fail
match-FF-1-k = 1

(proof)

26.3 Mutual recursion

The following rules are used to prove unfolding theorems from fixed-point
definitions of mutually recursive functions.

lemma Pair-equall: [z = fst p; y = snd p] = (z, y) = p

THEORY “Domain” 109

(proof)

lemma Pair-eqD1: (z, y) = (z/, y') = z =2’

(proof)

/

lemma Pair-eqD2: (z, y) = (2, y') = y =y
(proof)

lemma def-cont-fiz-eq:
[f = fiz-(Abs-cfun F); cont F] = f = F f
(proof)

lemma def-cont-fiz-ind:
If = fiz-(Abs-cfun F); cont F; adm P; P L; N\o. Px = P (Fz)] = P f
(proof)

lemma for proving rewrite rules

lemma ssubst-lhs: [t =s; Ps= Q] = Pt=Q
(proof)

26.4 Initializing the fixrec package
(ML)

hide-const (open) succeed fail run

end

27 Domain package

theory Domain
imports Representable Map-Functions Fixrec
keywords
lazy unsafe and
domaindef domain :: thy-defn and
domain-isomorphism :: thy-decl
begin

27.1 Continuous isomorphisms

A locale for continuous isomorphisms

locale iso =
fixes abs :: 'a::pcpo — 'b::pcpo
fixes rep :: 'b — 'a
assumes abs-iso [simp]: rep-(abs-x) = z
assumes rep-iso [simp]: abs:(rep-y) =y
begin

THEORY “Domain” 110

lemma swap: iso rep abs
(proof)

lemma abs-below: (abs-z T abs-y) = (z C y)
(proof)

lemma rep-below: (rep-z C rep-y) = (x C y)
{proof)

lemma abs-eq: (abs-x = abs-y) = (z = y)
(proof)

lemma rep-eq: (rep-x = rep-y) = (z = y)
(proof)

lemma abs-strict: abs-1L = L

(proof)

lemma rep-strict: rep- 1L = 1
(proof)

lemma abs-defin’: absx = 1L = =1
(proof)

lemma rep-defin”: repz = L = 2z = 1
(proof)

lemma abs-defined: z # L = abs-z # L
{proof)

lemma rep-defined: z # 1 = rep-z # L
(proof)

lemma abs-bottom-iff: (abs-x = L) = (z = 1)
{proof)

lemma rep-bottom-iff: (rep-x = L) = (z = 1)
(proof)

lemma casedist-rule: repx = L VP =—z=1VP
(proof)

lemma compact-abs-rev: compact (abs-z) = compact x

(proof)

lemma compact-rep-rev: compact (rep-z) = compact x

(proof)

lemma compact-abs: compact t => compact (abs-x)

THEORY “Domain” 111

{proof)

lemma compact-rep: compact © = compact (rep-x)
{proof)

lemma iso-swap: (z = abs-y) = (rep-x = y)
(proof)

end

27.2 Proofs about take functions

This section contains lemmas that are used in a module that supports the
domain isomorphism package; the module contains proofs related to take
functions and the finiteness predicate.

lemma deflation-abs-rep:

fixes abs and rep and d

assumes abs-iso: \z. rep-(abs-z) =

assumes rep-iso: N\y. abs-(rep-y) =y

shows deflation d = deflation (abs oo d oo Tep)
(proof)

lemma deflation-chain-min:
assumes chain: chain d
assumes defl: A\n. deflation (d n)
shows d m-(d n-z) = d (min m n)-x

(proof)

lemma [ub-ID-take-lemma:
assumes chain t and (| |n. t n) = ID
assumes An. t n-z = t n-y shows z = y

{(proof)

lemma lub-ID-reach:
assumes chain t and (| |n. t n) = ID
shows (| |n. t nz) = 2

(proof)

lemma lub-ID-take-induct:
assumes chain t and (| |n. t n) = ID
assumes adm P and An. P (t n-z) shows P z

(proof)

27.3 Finiteness

Let a “decisive” function be a deflation that maps every input to either itself
or bottom. Then if a domain’s take functions are all decisive, then all values
in the domain are finite.

THEORY “Domain” 112

definition

decisive :: ('az:pcpo — 'a) = bool
where

decisive d +— (Vz. d-z =z V dz = 1)

lemma decisivel: (Nz. d-x =z V d-x = 1) = decisive d
{proof)

lemma decisive-cases:
assumes decisive d obtains d-z =z | dz = L

(proof)

lemma decisive-bottom: decisive L
(proof)

lemma decisive-1D: decisive 1D
(proof)

lemma decisive-ssum-map:
assumes f: decisive f
assumes g: decisive g
shows decisive (ssum-map-f-g)
(proof)

lemma decisive-sprod-map:
assumes f: decisive f
assumes ¢: decisive g
shows decisive (sprod-map-f-g)
(proof)

lemma decisive-abs-rep:
fixes abs rep
assumes iso: iso abs rep
assumes d: decisive d
shows decisive (abs 0o d oo rep)

{proof)

lemma [ub-ID-finite:
assumes chain: chain d
assumes lub: (| |n. d n) = ID
assumes decisive: A\n. decisive (d n)
shows dn. dnz ==z

(proof)

lemma [ub-ID-finite-take-induct:
assumes chain d and (| |n. d n) = ID and An. decisive (d n)
shows (An. P (d nz)) = Pz

(proof)

THEORY “Domain” 113

27.4 Proofs about constructor functions

Lemmas for proving nchotomy rule:

lemma ex-one-bottom-iff:
(3z. Pz Nz # 1)=P ONE

(proof)

lemma ex-up-bottom-iff:
FBz. Pz ANz #1)= 3z P (upx))
(proof)

lemma ex-sprod-bottom-iff:

(Fy. PyAy#1)=

Fzy. (P (z,y) N # L) Ay # 1)
(proof)

lemma ex-sprod-up-bottom-iff:
Qy-Pyny#1)=

Bz y. P (Gupzx, y:) Ny # L)
(proof)

lemma ex-ssum-bottom-iff:
Fz. Pz ANz #1)=

(Fz. P (sinlz) Nz # L)V
(Fz. P (sinr-z) Az # 1))

(proof)

lemma exh-start: p= LV 3z.p=xz Az # 1)
(proof)

lemmas ex-bottom-iffs =
ex-ssum-bottom-iff
ex-sprod-up-bottom-iff
ez-sprod-bottom-iff
ex-up-bottom-iff
ex-one-bottom-iff

Rules for turning nchotomy into exhaust:
lemma ezh-casedist0: [R; R = P] = P
(proof)

lemma exh-casedist!: (PV Q@ = R) = S) = ([P = R; Q = R] = 9)
{proof)

lemma ezh-casedist?2: (3z. Pz = Q) = (A\z. Pz = Q)
{proof)

lemma exh-casedist3: (P N Q@ = R) = (P = @ = R)
{proof)

THEORY “Domain”

114

lemmas ezh-casedists = exh-casedist]l exh-casedist? exh-casedist3

Rules for proving constructor properties

lemmas con-strict-rules =
sinl-strict sinr-strict spair-strictl spair-strict2

lemmas con-bottom-iff-rules =

sinl-bottom-iff sinr-bottom-iff spair-bottom-iff up-defined ONE-defined

lemmas con-below-iff-rules =

sinl-below sinr-below sinl-below-sinr sinr-below-sinl con-bottom-iff-rules

lemmas con-eq-iff-rules =
sinl-eq sinr-eq sinl-eq-sinr sinr-eq-sinl con-bottom-iff-rules

lemmas sel-strict-rules =
cfcomp?2 sscasel sfst-strict ssnd-strict fupl

lemma sel-app-extra-rules:
sscase-ID- 1 -(sinr-z) = L
sscase-ID- 1 -(sinl-z) = x
sscase- L-ID-(sinl-z) = L
sscase: L -ID- (smr x) =
fup-ID-(up-) =

(proof)

lemmas sel-app-rules =
sel-strict-rules sel-app-extra-rules
ssnd-spair sfst-spair up-defined spair-defined

lemmas sel-bottom-iff-rules =
cfcomp?2 sfst-bottom-iff ssnd-bottom-iff

lemmas take-con-rules =

ssum-map-sinl’ ssum-map-sinr’ sprod-map-spair’ u-map-up
deflation-strict deflation-ID ID1 cfcomp2

27.5 ML setup

named-theorems domain-deflation theorems like deflation a ==

and domain-map-ID theorems like foo-map$ID = ID

(ML)

27.6 Representations of types

lemma emb-prj: emb-((prj-x)::’a::domain) = cast-DEFL('a)-x

(proof)

> deflation (foo-map$a)

THEORY “Domain” 115

lemma emb-prj-emb:
fixes z :: ‘a::domain
assumes DEFL('a) C DEFL(’D)
shows emb-(prj-(emb-x) :: 'b::domain) = emb-x

(proof)

lemma prj-emb-prj:
assumes DEFL('a::domain) T DEFL(’b::domain)
shows prj-(emb-(prj-z :: 'b)) = (prj-z :: 'a)
(proof)

Isomorphism lemmas used internally by the domain package:

lemma domain-abs-iso:
fixes abs and rep
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: 'a — 'b) = prj oo emb
assumes rep-def: (rep :: 'b — 'a) = prj oo emb
shows rep-(abs-z) = z

(proof)

lemma domain-rep-iso:
fixes abs and rep
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: ‘a — 'b) = prj oo emb
assumes rep-def: (rep :: 'b — 'a) = prj oo emb
shows abs-(rep-z) = «

(proof)

27.7 Deflations as sets

definition defl-set :: 'a::bifinite defl = 'a set
where defl-set A = {z. cast-A-x = x}

lemma adm-defi-set: adm (A\z. © € defl-set A)
(proof)

lemma defl-set-bottom: L € defl-set A
(proof)

lemma defl-set-cast [simp]: cast-A-z € defl-set A

(proof)

lemma defl-set-subset-iff: defl-set A C defl-set B<+— AC B
(proof)

27.8 Proving a subtype is representable

Temporarily relax type constraints.

THEORY “Domain” 116

(ML)

lemma typedef-domain-class:
fixes Rep :: 'a::pcpo = udom
fixes Abs :: udom = 'a::pcpo
fixes ¢t :: udom defl
assumes type: type-definition Rep Abs (defl-set t)
assumes below: (C) = Az y. Rep x C Rep y
assumes emb: emb = (A z. Rep z)
assumes prj: prj = (A z. Abs (cast-t-z))
assumes defl: defl = (\ a::'a itself. t)
assumes liftemb: (liftemb :: 'a u — udom u) = u-map-emb
assumes liftprj: (liftprj :: udom v — 'a u) = u-map-prj
assumes liftdefl: (liftdefl :: 'a itself = -) = (At. liftdefl-of-DEFL('a))
shows OFCLASS('a, domain-class)

(proof)

lemma typedef-DEFL:
assumes defl = (Aa::'a::pepo itself. t)
shows DEFL('a::pcpo) = t

(proof)

Restore original typing constraints.
(ML)

27.9 Isomorphic deflations

definition isodefl :: (‘a::domain — 'a) = udom defl = bool
where isodefl d t +— cast-t = emb oo d oo prj

definition isodefl’ :: ('a::predomain — 'a) = udom u defl = bool
where isodefl’ d t +— cast-t = liftemb oo u-map-d oo liftprj

lemma isodefil: (A\z. cast-t-x = emb-(d-(prj-x))) = isodefl d t
(proof)

lemma cast-isodefl: isodefl d t = cast-t = (A z. emb-(d-(prj-x)))
(proof)

lemma isodefi-strict: isodefl d t = d-1 = |
(proof)

lemma isodefl-imp-deflation:
fixes d :: 'a::domain — 'a
assumes isodefl d t shows deflation d

(proof)

lemma isodefl-ID-DEFL: isodefl (ID :: 'a — 'a) DEFL('a::domain)
(proof)

THEORY “Domain” 117

lemma isodefl-LIFTDEFL:
isodefl’ (ID :: 'a — 'a) LIFTDEFL('a::predomain)
(proof)

lemma isodefl-DEFL-imp-ID: isodefl (d :: 'a — 'a) DEFL('a::domain) = d =
1D
(proof)

lemma isodefi-bottom: isodefl L L
(proof)

lemma adm-isodefi:
cont f = cont ¢ = adm (Az. isodefl (f z) (g z))

(proof)

lemma isodefi-lub:
assumes chain d and chain t
assumes Azi. isodefl (d i) (1)
shows isodefl (| |4. d i) (| |7 ¢t 9)
(proof)

lemma isodefi-fiz:
assumes Ad t. isodefl d t = isodefl (f-d) (g-t)
shows isodefl (fiz-f) (fiz-g)

(proof)

lemma isodefi-abs-rep:
fixes abs and rep and d
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: '‘a — 'b) = prj oo emb
assumes rep-def: (rep = 'b — 'a) = prj oo emb
shows isodefl d t = isodefl (abs oo d oo rep) t

(proo)

lemma isodefl’-liftdefl-of : isodefl d t = isodefl’ d (liftdefi-of -t)
{proof)

lemma isodefi-sfun:
isodefl d1 t1 = isodefl d2 t2 —
isodefl (sfun-map-d1-d2) (sfun-defl-t1-t2)
{proof)

lemma isodefi-ssum:
isodefl d1 t1 = isodefl d2 12 —
isodefl (ssum-map-d1-d2) (ssum-defl-t1-12)
(proof)

lemma isodefl-sprod:

THEORY “Domain” 118

isodefl d1 t1 = isodefl d2 12 —
isodefl (sprod-map-d1-d2) (sprod-defl-t1-t2)
(proof)

lemma isodefl-prod:
isodefl d1 t1 = isodefl d2 t2 —
isodefl (prod-map-d1-d2) (prod-defl-t1-12)
(proof)

lemma isodefi-u:
isodefl d t = isodefl (u-map-d) (u-defl-t)
(proof)

lemma isodefl-u-liftdefi:
isodefl’ d t = isodefl (u-map-d) (u-liftdefi-t)
(proof)

lemma encode-prod-u-map:
encode-prod-u-(u-map-(prod-map-f-g)-(decode-prod-u-x))
= sprod-map-(u-map-f)-(u-map-g)-x
(proof)

lemma isodefi-prod-u:

assumes isodefl’ d1 t1 and isodefl’ d2 t2

shows isodefl’ (prod-map-d1-d2) (prod-liftdefl-t1-t2)
(proof)

lemma encode-cfun-map:
encode-cfun-(cfun-map-f-g-(decode-cfun-z))
= sfun-map-(u-map-f)-g-x
{proof)

lemma isodefi-cfun:
assumes isodefl (u-map-d1) t1 and isodefl d2 t2
shows isodefl (cfun-map-d1-d2) (sfun-defl-11-t2)
(proof)

27.10 Setting up the domain package

named-theorems domain-defl-simps theorems like DEFL('a t) = t-defl$ DEFL('a)
and domain-isodefl theorems like isodefl d t ==> isodefl (foo-map$d) (foo-defi$t)

(ML)

lemmas [domain-defi-simps] =
DEFL-cfun DEFL-sfun DEFL-ssum DEFL-sprod DEFL-prod DEFL-u
liftdefi-eq LIFTDEFL-prod u-liftdefi-liftdefi-of

lemmas [domain-map-ID] =

THEORY “Compact-Basis” 119

cfun-map-ID sfun-map-ID ssum-map-ID sprod-map-ID prod-map-ID u-map-ID

lemmas [domain-isodefl] =
isodefl-u isodefl-sfun isodefl-ssum isodefl-sprod
isodefl-cfun isodefl-prod isodefl-prod-u isodefl’-liftdefl-of
isodefl-u-liftdefl

lemmas [domain-deflation] =
deflation-cfun-map deflation-sfun-map deflation-ssum-map
deflation-sprod-map deflation-prod-map deflation-u-map

(ML)

end

28 A compact basis for powerdomains

theory Compact-Basis
imports Universal
begin

28.1 A compact basis for powerdomains
definition pd-basis = {S::’a::bifinite compact-basis set. finite S N S # {}}

typedef ‘a::bifinite pd-basis = pd-basis :: 'a compact-basis set set
(proof)

lemma finite-Rep-pd-basis [simp]: finite (Rep-pd-basis u)
(proof)

lemma Rep-pd-basis-nonempty [simp]: Rep-pd-basis u # {}
(proof)

The powerdomain basis type is countable.

lemma pd-basis-countable: 3 f::'a::bifinite pd-basis = nat. inj f (is Ex ?P)

(proof)

28.2 Unit and plus constructors

definition
PDUnit :: 'a::bifinite compact-basis = 'a pd-basis where
PDUnit = (Az. Abs-pd-basis {z})

definition
PDPlus :: 'a::bifinite pd-basis = 'a pd-basis = 'a pd-basis where
PDPlus t u = Abs-pd-basis (Rep-pd-basis t U Rep-pd-basis u)

lemma Rep-PD Unit:

THEORY “UpperPD” 120

Rep-pd-basis (PDUnit z) = {z}
(proof)

lemma Rep-PDPlus:
Rep-pd-basis (PDPlus u v) = Rep-pd-basis u U Rep-pd-basis v
(proof)

lemma PDUnit-inject [simp]: (PDUnit a = PDUnit b) = (a = b)
(proof)

lemma PDPlus-assoc: PDPlus (PDPlus t u) v = PDPlus t (PDPlus u v)
(proof)

lemma PDPlus-commute: PDPlus t w = PDPlus u t
(proof)

lemma PDPlus-absorb: PDPlus tt =t
(proof)

lemma pd-basis-induct! [case-names PDUnit PDPlus]:
assumes PDUnit: Aa. P (PDUnit a)
assumes PDPlus: Na t. Pt = P (PDPlus (PDUnit a) t)
shows P z

(proof)

lemma pd-basis-induct [case-names PDUnit PDPlus]:
assumes PDUnit: Na. P (PDUnit a)
assumes PDPlus: At u. [P t; P u] = P (PDPlus t u)
shows P z

{proof)

28.3 Fold operator

definition
fold-pd ::
("a::bifinite compact-basis = 'b::type) = ('b = 'b = 'b) = 'a pd-basis = b
where fold-pd g f t = semilattice-set.F' f (g ‘ Rep-pd-basis t)

lemma fold-pd-PD Unit:

assumes semilattice f

shows fold-pd g f (PDUnit z) = g x
(proof)

lemma fold-pd-PDPlus:

assumes semilattice f

shows fold-pd g f (PDPlus t u) = f (fold-pd g f t) (fold-pd g f)
(proof)

end

THEORY “UpperPD” 121

29 Upper powerdomain

theory UpperPD
imports Compact-Basis
begin

29.1 Basis preorder

definition
upper-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix <<y 50) where
upper-le = (Au v. V y€ Rep-pd-basis v. 3 x€ Rep-pd-basis u. C y)

lemma upper-le-refl [simp]: t <f ¢

(proof)

lemma upper-le-trans: [t < u; u <f v] =t <f v
(proof)

interpretation upper-le: preorder upper-le

(proof)

lemma upper-le-minimal [simp]: PDUnit compact-bot <t t
(proof)

lemma PD Unit-upper-mono: ¢ C y = PDUnit x <f§ PDUnit y
(proof)

lemma PDPlus-upper-mono: [s <# t; u <§ v] = PDPlus s u <§ PDPlus t v
(proof)

lemma PDPlus-upper-le: PDPlus t u <f t
(proof)

lemma upper-le-PD Unit-PD Unit-iff [simp]:
(PDUnit a < PDUnit b) = (a C b)
{(proof)

lemma upper-le-PDPlus-PD Unit-iff:
(PDPlus t w <§ PDUnit a) = (t < PDUnit a V u <f PDUnit a)
(proof)

lemma upper-le-PDPlus-iff: (t < PDPlus v v) = (t <t u A t <§ v)
(proof)

lemma upper-le-induct [induct set: upper-le]:
assumes le: t <§ u
assumes I: Aa b. a CT b = P (PDUnit a) (PDUnit b)
assumes 2: At v a. Pt (PDUnit a) = P (PDPlus t u) (PDUnit a)
assumes 3: At uv. [Ptu; Ptv] = Pt (PDPlus u v)
shows Pt u

THEORY “UpperPD”

{proof)

29.2 Type definition

typedef ‘a:bifinite upper-pd (<(<notation=<postfix upper-pd»>'(-1))) =
{S::’a pd-basis set. upper-le.ideal S}
(proof)

instantiation upper-pd :: (bifinite) below
begin

definition
z C y «— Rep-upper-pd x C Rep-upper-pd y

instance (proof)
end

instance upper-pd :: (bifinite) po
(proof)

instance upper-pd :: (bifinite) cpo
(proof)

definition
upper-principal :: 'a::bifinite pd-basis = 'a upper-pd where
upper-principal t = Abs-upper-pd {u. v <f§ t}

interpretation upper-pd:
ideal-completion upper-le upper-principal Rep-upper-pd
(proof)

Upper powerdomain is pointed
lemma upper-pd-minimal: upper-principal (PDUnit compact-bot) T ys
(proof)

instance upper-pd :: (bifinite) pcpo
(proof)

lemma inst-upper-pd-pcpo: L = upper-principal (PDUnit compact-bot)
(proof)

29.3 Monadic unit and plus

definition
upper-unit :: 'a:bifinite — ’a upper-pd where
upper-unit = compact-basis.extension (Aa. upper-principal (PDUnit a))

definition
upper-plus :: 'a::bifinite upper-pd — 'a upper-pd — 'a upper-pd where

122

THEORY “UpperPD” 123

upper-plus = upper-pd.extension (At. upper-pd.extension (Au.
upper-principal (PDPlus t u)))

abbreviation
upper-add :: 'a::bifinite upper-pd = 'a upper-pd = 'a upper-pd
(infix] «Ut» 65) where
xs Ut ys == upper-plus-zs-ys

syntax
-upper-pd :: args = logic («(<indent=1 notation=<mizfix upper-pd enumera-

tion» {-})»)

translations

{z,osit == {z}f U {zs}t
{z}f == CONST upper-unit-z

lemma upper-unit-Rep-compact-basis [simp):
{Rep-compact-basis a}t = upper-principal (PDUnit a)
(proof)

lemma upper-plus-principal [simp):
upper-principal t U upper-principal u = upper-principal (PDPlus t u)
(proof)

interpretation upper-add: semilattice upper-add (proof)

lemmas upper-plus-assoc = upper-add.assoc

lemmas upper-plus-commute = upper-add.commute
lemmas upper-plus-absorb = upper-add.idem

lemmas upper-plus-left-commute = upper-add.left-commute
lemmas upper-plus-left-absorb = upper-add.left-idem

Useful for simp add: upper-plus-ac

lemmas upper-plus-ac =
upper-plus-assoc upper-plus-commute upper-plus-left-commute

Useful for simp only: upper-plus-aci

lemmas upper-plus-aci =
upper-plus-ac upper-plus-absorb upper-plus-left-absorb

lemma upper-plus-below!: xs Ut ys C zs
{proof)

lemma upper-plus-below2: zs Ut ys C ys
(proof)

lemma upper-plus-greatest: [xs T ys; xs C zs] = s T ys Uf zs

{(proof)

lemma upper-below-plus-iff [simp):

THEORY “UpperPD” 124

s Cys U zs «— 28 C ys A zs £ zs
(proof)

lemma upper-plus-below-unit-iff [simp]:
zs Ul ys C {2} +— xs C {z} V ys C {z}{
(proof)

lemma upper-unit-below-iff [simp]: {z} C {yHf +— 2 C y
(proof)

lemmas upper-pd-below-simps =
upper-unit-below-iff
upper-below-plus-iff
upper-plus-below-unit-iff

lemma upper-unit-eq-iff [simp]: {a}t = {yH +— 2=y
(proof)

lemma upper-unit-strict [simp]: {L}f = L
(proof)

lemma upper-plus-strict! [simp]: L Uf ys = L
(proof)

lemma upper-plus-strict2 [simpl: zs Uf L = L

(proof)

lemma upper-unit-bottom-iff [simp]: {z}f = L «— z = L
(proof)

lemma upper-plus-bottom-iff [simp]:
zsUfys= 1L +—azs=1Vy=_1
(proof)

lemma compact-upper-unit: compact © = compact {x}H
(proof)

lemma compact-upper-unit-iff [simp]: compact {z}f <— compact ©
(proof)

lemma compact-upper-plus [simp):
[compact xs; compact ys] = compact (xs Uf ys)

(proof)

29.4 Induction rules

lemma upper-pd-induct?:
assumes P: adm P
assumes unit: N\z. P {z}4

THEORY “UpperPD” 125

assumes insert: Az ys. [P {z}t; P ys] = P ({z}t Ut ys)
shows P (zs::'a::bifinite upper-pd)
(proof)

lemma upper-pd-induct [case-names adm upper-unit upper-plus, induct type: up-
per-pd]:

assumes P: adm P

assumes unit: N\z. P {z}4

assumes plus: Axs ys. [P xs; P ys] = P (xs Uf ys)

shows P (zs::'a::bifinite upper-pd)
(proof)

29.5 Monadic bind

definition
upper-bind-basis ::
'a::bifinite pd-basis = (‘a — 'b upper-pd) — 'b::bifinite upper-pd where
upper-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
Az y. Af.oaf U yf)

lemma ACI-upper-bind:
semilattice (A\z y. A f. z-f Ut y-f)
{proof)

lemma upper-bind-basis-simps [simp]:
upper-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
upper-bind-basis (PDPlus t u) =
(A f. upper-bind-basis t-f U upper-bind-basis u-f)
(proof)

lemma upper-bind-basis-mono:
t <# u = upper-bind-basis t = upper-bind-basis u

(proof)

definition

upper-bind :: 'a::bifinite upper-pd — (‘a — 'b upper-pd) — 'b::bifinite upper-pd
where

upper-bind = upper-pd.extension upper-bind-basis

syntax
-upper-bind :: [logic, logic, logic] = logic
(<(<indent=3 notation=<binder upper-bind»\Jt-€-./ -)» [0, 0, 10] 10)

translations
Ufzexs. e == CONST upper-bind-zs-(A z. e)

lemma upper-bind-principal [simp]:

THEORY “UpperPD” 126

upper-bind-(upper-principal t) = upper-bind-basis t
(proof)

lemma upper-bind-unit [simp]:
upper-bind-{z}f-f = f-x
(proof)

lemma upper-bind-plus [simp]:
upper-bind-(zs Uf ys)-f = upper-bind-zs-f U§ upper-bind-ys-f
{(proof)

lemma upper-bind-strict [simp]: upper-bind-L-f = f-L
(proof)

lemma upper-bind-bind:
upper-bind-(upper-bind-xs-f)-g = upper-bind-zs-(A z. upper-bind-(f-x)-g)
(proof)

29.6 Map

definition
upper-map :: ('a::bifinite — 'b::bifinite) — 'a upper-pd — 'b upper-pd where
upper-map = (A f zs. upper-bind-xs-(A z. {f-z}1))

lemma upper-map-unit [simp]:
upper-map-f-{z}t = {f-z}t
(proof)

lemma upper-map-plus [simp]:
upper-map-f-(xs Ut ys) = upper-map-f-xs Uf upper-map-f-ys
(proof)

lemma upper-map-bottom [simp|: upper-map-f-L = {f- L}
{proof)

lemma upper-map-ident: upper-map-(A z. x)-zs = xs
(proof)

lemma upper-map-1D: upper-map-1D = ID
(proof)

lemma upper-map-map:
upper-map-f-(upper-map-g-xs) = upper-map-(A z. f-(g-x))-zs
(proof)

lemma upper-bind-map:
upper-bind-(upper-map-f-xs)-g = upper-bind-xzs-(A z. g-(f-z))
(proof)

THEORY “UpperPD” 127

lemma upper-map-bind:
upper-map-f-(upper-bind-zs-g) = upper-bind-xzs-(A z. upper-map-f-(g-x))
(proof)

lemma ep-pair-upper-map: ep-pair e p => ep-pair (upper-map-e) (upper-map-p)

(proof)

lemma deflation-upper-map: deflation d = deflation (upper-map-d)
(proof)

lemma finite-deflation-upper-map:
assumes finite-deflation d shows finite-deflation (upper-map-d)
(proof)

29.7 Upper powerdomain is bifinite

lemma approz-chain-upper-map:
assumes approx-chain a
shows approx-chain (\i. upper-map-(a 7))
(proof)

instance upper-pd :: (bifinite) bifinite
(proof)

29.8 Join

definition
upper-join :: 'a::bifinite upper-pd upper-pd — 'a upper-pd where
upper-join = (A xzss. upper-bind-zss-(A xs. xs))

lemma upper-join-unit [simp):
upper-join-{xs}tt = xs
(proof)

lemma upper-join-plus [simp]:
upper-join-(xss U yss) = upper-join-zss U upper-join-yss
(proof)

lemma upper-join-bottom [simpl: upper-join- L = L

(proof)

lemma upper-join-map-unit:
upper-join-(upper-map-upper-unit-zs) = xs
(proof)

lemma upper-join-map-join:
upper-join-(upper-map-upper-join-xsss) = upper-join-(upper-join-sss)
(proof)

THEORY “LowerPD” 128

lemma upper-join-map-map:
upper-join-(upper-map-(upper-map-f)-xss) =
upper-map-f-(upper-join-ss)

(proof)

end

30 Lower powerdomain

theory LowerPD
imports Compact-Basis
begin

30.1 Basis preorder

definition
lower-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix «<b» 50) where
lower-le = (Au v. V z€ Rep-pd-basis u. 3 y€ Rep-pd-basis v. T y)

lemma lower-le-refl [simp]: t <b t
(proof)

lemma lower-le-trans: [t <b u; u <b v] =t <b v

(proof)

interpretation lower-le: preorder lower-le
(proof)

lemma lower-le-minimal [simp]: PDUnit compact-bot <b t

(proof)

lemma PD Unit-lower-mono: © C y = PDUnit x <b PDUnit y
(proof)

lemma PDPlus-lower-mono: [s <b t; u <b v] = PDPlus s u <b PDPlus t v
(proof)

lemma PDPlus-lower-le: t <b PDPlus t u
(proof)

lemma lower-le-PD Unit-PD Unit-iff [simp]:
(PDUnit a <b PDUnit b) = (a C b)
(proof)

lemma lower-le-PD Unit-PDPlus-iff:
(PDUnit a <b PDPlus t u) = (PDUnit a <b t V PDUnit a <b u)
(proof)

lemma lower-le-PDPlus-iff: (PDPlus t u <b v) = (t <b v A u <b v)

THEORY “LowerPD”

(proof)

lemma lower-le-induct [induct set: lower-le]:
assumes le: t <b u
assumes I: Aa b. a CT b = P (PDUnit a) (PDUnit b)
assumes 2: At v a. P (PDUnit a) t = P (PDUnit a) (PDPlus t u)
assumes 3: At wov. [Ptv; Puv] = P (PDPlus t u) v
shows Pt u

{proof)

30.2 Type definition

typedef ‘a::bifinite lower-pd (<(<notation=<postfix lower-pd» '(-\b)») =
{S::"a pd-basis set. lower-le.ideal S}

(proof)

instantiation lower-pd :: (bifinite) below
begin

definition
x T y <— Rep-lower-pd x C Rep-lower-pd y

instance (proof)
end

instance lower-pd :: (bifinite) po
(proof)

instance lower-pd :: (bifinite) cpo

(proof)

definition
lower-principal :: 'a::bifinite pd-basis = 'a lower-pd where
lower-principal t = Abs-lower-pd {u. u <b t}

interpretation lower-pd:
ideal-completion lower-le lower-principal Rep-lower-pd

(proof)

Lower powerdomain is pointed
lemma lower-pd-minimal: lower-principal (PDUnit compact-bot) C ys

(proof)

instance lower-pd :: (bifinite) pcpo
(proof)

lemma inst-lower-pd-pcpo: L = lower-principal (PDUnit compact-bot)

(proof)

129

THEORY “LowerPD” 130

30.3 Monadic unit and plus

definition
lower-unit :: 'a::bifinite — 'a lower-pd where
lower-unit = compact-basis.extension (Aa. lower-principal (PDUnit a))

definition
lower-plus :: 'a::bifinite lower-pd — 'a lower-pd — 'a lower-pd where
lower-plus = lower-pd.extension (At. lower-pd.extension (Au.
lower-principal (PDPlus t u)))

abbreviation
lower-add :: 'a::bifinite lower-pd = 'a lower-pd = 'a lower-pd
(infix] «Ub» 65) where
xs Ub ys == lower-plus-zs-ys

syntax

-lower-pd :: args = logic («(<indent=1 notation=<mizfix lower-pd enumera-
tion»{-}b)»)
translations

{z,zs}b == {z}b Ub {zs}b

{z}b == CONST lower-unit-x

lemma lower-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}tb = lower-principal (PDUnit a)
{(proof)

lemma lower-plus-principal [simp]:
lower-principal t Ub lower-principal u = lower-principal (PDPlus t u)
(proof)

interpretation lower-add: semilattice lower-add {(proof)

lemmas lower-plus-assoc = lower-add.assoc

lemmas lower-plus-commute = lower-add.commute
lemmas lower-plus-absorb = lower-add.idem

lemmas lower-plus-left-commute = lower-add.left-commute
lemmas lower-plus-left-absorb = lower-add.left-idem

Useful for simp add: lower-plus-ac
lemmas lower-plus-ac =

lower-plus-assoc lower-plus-commute lower-plus-left-commute
Useful for simp only: lower-plus-aci

lemmas lower-plus-aci =
lower-plus-ac lower-plus-absorb lower-plus-left-absorb

lemma lower-plus-belowl: s T zs Ub ys
(proof)

THEORY “LowerPD” 131

lemma lower-plus-below2: ys C zs Ub ys
(proof)

lemma lower-plus-least: [zs T zs; ys C zs] = s Ub ys C zs

(proof)

lemma lower-plus-below-iff [simp]:
2s Ub ys C 28 +— 2s C 28 A\ ys C zs
(proof)

lemma lower-unit-below-plus-iff [simp):
{z}b C ys Ub zs «— {z}p C ys V {a}b C zs
(proof)

lemma lower-unit-below-iff [simp]: {z}b C {y}p +— 2z C y

(proof)

lemmas lower-pd-below-simps =
lower-unit-below-iff
lower-plus-below-iff
lower-unit-below-plus-iff

lemma lower-unit-eq-iff [simp]: {z}b = {y}b +— 2 =y
(proof)

lemma lower-unit-strict [simp]: {L}b = L

(proof)

lemma lower-unit-bottom-iff [simp]: {z}b = L +— z =L
(proof)

lemma lower-plus-bottom-iff [simp]:
zsWys=1L<+—azs=1LAys=1
(proof)

lemma lower-plus-strict] [simp]: L Ub ys = ys

(proof)

lemma lower-plus-strict2 [simp]: xs Ub L = xs
(proof)

lemma compact-lower-unit: compact © = compact {x}b

(proof)

lemma compact-lower-unit-iff [simpl: compact {z}b «— compact
(proof)

lemma compact-lower-plus [simp]:
[compact xs; compact ys] = compact (xs Ub ys)

THEORY “LowerPD” 132

(proof)

30.4 Induction rules

lemma lower-pd-induct1:
assumes P: adm P
assumes unit: Nz. P {z}b
assumes insert: Az ys. [P {z}b; P ys] = P ({z}b Wb ys)
shows P (zs::'a::bifinite lower-pd)
(proof)

lemma lower-pd-induct [case-names adm lower-unit lower-plus, induct type: lower-pd):
assumes P: adm P
assumes unit: Nz. P {z}b
assumes plus: Azs ys. [P zs; P ys] = P (xs Up ys)
shows P (zs::'a:bifinite lower-pd)

(proof)

30.5 Monadic bind

definition
lower-bind-basis ::
'a::bifinite pd-basis = (‘a — 'b lower-pd) — 'b::bifinite lower-pd where
lower-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
Az y. Af.ozf U yf)

lemma ACI-lower-bind:
semilattice Az y. A f. z-f Ub y-f)
(proof)

lemma lower-bind-basis-simps [simp]:
lower-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
lower-bind-basis (PDPlus t u) =
(A f. lower-bind-basis t-f Ub lower-bind-basis u-f)
(proof)

lemma lower-bind-basis-mono:
t <b u = lower-bind-basis t T lower-bind-basis u

(proof)

definition

lower-bind :: 'a::bifinite lower-pd — (‘a — 'b lower-pd) — 'b::bifinite lower-pd
where

lower-bind = lower-pd.extension lower-bind-basis

syntax
-lower-bind :: [logic, logic, logic] = logic
(<(<indent=3 notation=<binder lower-bind»|Jb-€-./ -)» [0, 0, 10] 10)

THEORY “LowerPD”

translations
Ubzexs. e == CONST lower-bind-zs-(A z. e)

lemma lower-bind-principal [simpl:
lower-bind-(lower-principal t) = lower-bind-basis t
(proof)

lemma lower-bind-unit [simp:
lower-bind-{z}b-f = f-x
(proof)

lemma lower-bind-plus [simp]:
lower-bind-(xzs Ub ys)-f = lower-bind-zs-f Ub lower-bind-ys-f
(proof)

lemma lower-bind-strict [simp]: lower-bind-L-f = f-1
(proof)

lemma lower-bind-bind:
lower-bind-(lower-bind-zs-f)-g = lower-bind-xs-(A z. lower-bind-(f-x)-g)
(proof)

30.6 Map

definition
lower-map :: ('a::bifinite — 'b::bifinite) — 'a lower-pd — 'b lower-pd where
lower-map = (A f zs. lower-bind-zs-(A z. {f-z}b))

lemma lower-map-unit [simp]:
lower-map-f-{z}b = {f-z}b
(proof)

lemma lower-map-plus [simp]:
lower-map-f-(xs Wb ys) = lower-map-f-zs Ub lower-map-f-ys

(proof)

lemma lower-map-bottom [simpl: lower-map-f- 1L = {f-L}b
(proof)

lemma lower-map-ident: lower-map-(A z. x)-xs = xs

(proof)

lemma lower-map-ID: lower-map-ID = ID

(proof)

lemma lower-map-map:
lower-map-f-(lower-map-g-xs) = lower-map-(A z. f-(g-z))-xs
(proof)

133

THEORY “LowerPD” 134

lemma lower-bind-map:
lower-bind-(lower-map-f-zs)-g = lower-bind-zs-(A z. ¢g-(f-z))
(proof)

lemma lower-map-bind:
lower-map-f-(lower-bind-zs-g) = lower-bind-zs-(A z. lower-map-f-(g-x))
(proof)

lemma ep-pair-lower-map: ep-pair e p => ep-pair (lower-map-e) (lower-map-p)

(proof)

lemma deflation-lower-map: deflation d = deflation (lower-map-d)
(proof)

lemma finite-deflation-lower-map:
assumes finite-deflation d shows finite-deflation (lower-map-d)
(proof)

30.7 Lower powerdomain is bifinite

lemma approz-chain-lower-map:
assumes approz-chain a
shows approx-chain (Mi. lower-map-(a 7))

{proof)

instance lower-pd :: (bifinite) bifinite

(proof)

30.8 Join

definition
lower-join :: 'a::bifinite lower-pd lower-pd — 'a lower-pd where
lower-join = (A zss. lower-bind-zss-(A zs. xs))

lemma lower-join-unit [simp):
lower-join-{xs}b = s
(proof)

lemma lower-join-plus [simp]:
lower-join-(xss Ub yss) = lower-join-zss Ub lower-join-yss
(proof)

lemma lower-join-bottom [simp|: lower-join-L = L

(proof)

lemma lower-join-map-unit:
lower-join-(lower-map-lower-unit-zs) = xs
(proof)

THEORY “ConvexPD” 135

lemma lower-join-map-join:
lower-join-(lower-map-lower-join-zsss) = lower-join-(lower-join-zsss)

(proof)

lemma lower-join-map-map:
lower-join-(lower-map-(lower-map-f)-zss) =
lower-map-f-(lower-join-xss)

(proof)

end

31 Convex powerdomain

theory ConvexPD
imports UpperPD LowerPD
begin

31.1 Basis preorder

definition
convez-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix <<k 50) where
convez-le = (Au v. u <f v A u <b v)

lemma convez-le-refl [simp]: ¢t <f ¢
(proof)

lemma convez-le-trans: [t <t u; u <fv] = ¢t <f v

(proof)

interpretation convez-le: preorder convex-le
(proof)

lemma upper-le-minimal [simp]: PDUnit compact-bot <l t

(proof)

lemma PDUnit-convex-mono: v C y = PDUnit x <t PDUnit y
(proof)

lemma PDPlus-convex-mono: [s <b t; u <f v] = PDPlus s u <t PDPlus t v

(proof)

lemma convez-le-PDUnit-PD Unit-iff [simp):
(PDUnit a <t PDUnit b) = (a C b)
(proof)

lemma convex-le-PD Unit-lemmal:
(PDUnit a <f t) = (V b€ Rep-pd-basis t. a T b)
(proof)

THEORY “ConvexPD”

lemma convez-le-PDUnit-PDPlus-iff [simp):
(PDUnit a <t PDPlus t u) = (PDUnit a <§ t A PDUnit a <f u)
(proof)

lemma convex-le-PDUnit-lemma2:
(t <t PDUnit b) = (VY a€Rep-pd-basis t. a T b)
(proof)

lemma convez-le-PDPlus-PDUnit-iff [simp]:
(PDPlus t w <t PDUnit a) = (t < PDUnit a A u <g PDUnit a)
(proof)

lemma convex-le-PDPlus-lemma:
assumes z: PDPlus t u <lj z
shows Jv w. 2z = PDPlusvw At <gv A u<hw

(proof)

lemma convez-le-induct [induct set: convez-le]:
assumes le: t <f u
assumes 2: Atuv. [Ptu; Puv] = Ptwo
assumes 3: Aa b. a T b = P (PDUnit a) (PDUnit b)
assumes 4: A\t u v w. [Ptv; Puw] = P (PDPlustu) (PDPlus v w)
shows Pt u

{proof)

31.2 Type definition

typedef ‘a:bifinite conver-pd («(<notation=<postfix convez-pd»»'(-)t)») =
{S::"a pd-basis set. convex-le.ideal S}
(proof)

instantiation convez-pd :: (bifinite) below
begin

definition
x T y <— Rep-convezr-pd x C Rep-convez-pd y

instance (proof)
end

instance convez-pd :: (bifinite) po
(proof)

instance convex-pd :: (bifinite) cpo

(proof)

definition
convex-principal :: 'a::bifinite pd-basis = 'a convex-pd where

136

THEORY “ConvexPD” 137

convex-principal t = Abs-convez-pd {u. v <t t}

interpretation convez-pd:
ideal-completion convex-le convex-principal Rep-convex-pd

(proof)

Convex powerdomain is pointed

lemma convez-pd-minimal: convex-principal (PDUnit compact-bot) C ys

(proof)

instance convez-pd :: (bifinite) pcpo

{(proof)

lemma inst-convez-pd-pepo: L = convex-principal (PDUnit compact-bot)
(proof)

31.3 Monadic unit and plus

definition
convex-unit :: 'a::bifinite — 'a convex-pd where
conver-unit = compact-basis.extension (Aa. conver-principal (PDUnit a))

definition
convez-plus :: 'a::bifinite conver-pd — 'a conver-pd — 'a convezr-pd where
convez-plus = convez-pd.extension (At. convez-pd.extension (Au.
convex-principal (PDPlus t u)))

abbreviation
convex-add :: 'a::bifinite convex-pd = 'a convex-pd = 'a convez-pd
(infix] Uy 65) where
xs U ys == convez-plus-zs-ys

syntax

-convez-pd :: args = logic (<(<indent=1 notation=<mizfix convex-pd enumera-
tion»{-})»)
translations

{w,as}h == {a}4 Ug {as}s

{z}y == CONST convex-unit-z

lemma convez-unit-Rep-compact-basis [simp):
{ Rep-compact-basis a}h = convex-principal (PDUnit a)
(proof)

lemma convez-plus-principal [simp):
convez-principal t U convex-principal u = convez-principal (PDPlus t u)
(proof)

interpretation convex-add: semilattice convex-add {(proof)

THEORY “ConvexPD” 138

lemmas convez-plus-assoc = convex-add.assoc

lemmas convez-plus-commute = convex-add.commute
lemmas convez-plus-absorb = convex-add.idem

lemmas convex-plus-left-commute = convez-add.left-commute
lemmas convex-plus-left-absorb = convez-add.left-idem

Useful for simp add: convex-plus-ac

lemmas convez-plus-ac =
convez-plus-assoc convex-plus-commute convex-plus-left-commute

Useful for simp only: convex-plus-aci

lemmas convez-plus-aci =
convez-plus-ac convexr-plus-absorb convezr-plus-left-absorb

lemma convez-unit-below-plus-iff [simp]:
{z}h C ys Up 2s «— {z}h C ys A {z}f C 2s
(proof)

lemma convez-plus-below-unit-iff [simp]:
zs U ys C {z} «— as C {2} A ys C {z}
(proof)

lemma convez-unit-below-iff [simp]: {z}t C {y}t+— 2z C y
(proof)

lemma convez-unit-eq-iff [simpl: {z}t = {yh+— z =y

(proof)

lemma convez-unit-strict [simp]: {L} = L

(proof)

lemma convez-unit-bottom-iff [simp]: {z}h = L +— z = 1
(proof)

lemma compact-convex-unit: compact t = compact {z}f

{(proof)

lemma compact-convex-unit-iff [simp]: compact {z}t +— compact
(proof)

lemma compact-convex-plus [simp:
[compact xs; compact ys] = compact (xs Ul ys)

(proof)

31.4 Induction rules

lemma convez-pd-induct1:
assumes P: adm P
assumes unit: Az. P {z}f

THEORY “ConvexPD” 139

assumes insert: Az ys. [P {z}t; P ys] = P ({z}§ Uh ys)
shows P (zs::'a::bifinite convez-pd)
(proof)

lemma convez-pd-induct [case-names adm convex-unit convexr-plus, induct type:
convex-pd):

assumes P: adm P

assumes unit: Az. P {z}f

assumes plus: Axs ys. [P xs; P ys] = P (xs Ul ys)

shows P (zs::'a::bifinite convez-pd)

(proof)

31.5 Monadic bind

definition
convez-bind-basis ::
'a::bifinite pd-basis = (‘a — 'b convez-pd) — 'b::bifinite convexr-pd where
convez-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
Az y. Af.af Ugyf)

lemma ACI-convez-bind:
semilattice Az y. A f. z-f Ub y-f)
(proof)

lemma convez-bind-basis-simps [simpl:
convez-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
convez-bind-basis (PDPlus t u) =
(A f. convex-bind-basis t-f U convez-bind-basis u-f)
(proof)

lemma convex-bind-basis-mono:
t <f u = convex-bind-basis t T convex-bind-basis u

(proof)

definition

convez-bind :: 'a::bifinite conver-pd — (‘a — 'b convex-pd) — 'b::bifinite conver-pd
where

convez-bind = convex-pd.extension convex-bind-basis

syntax
-convez-bind :: [logic, logic, logic] = logic

(<(<indent=3 notation=<binder convezr-bind»»\Jb-€-./ -)» [0, 0, 10] 10)

translations
Ubtzers. e == CONST convex-bind-zs-(A z. e)

lemma convez-bind-principal [simp]:

THEORY “ConvexPD” 140

convex-bind-(convex-principal t) = convex-bind-basis t
(proof)

lemma convez-bind-unit [simp]:
conver-bind-{z}y-f = f-x
(proof)

lemma convez-bind-plus [simp]:
convez-bind-(xs Uy ys)-f = convex-bind-zs-f Uf convez-bind-ys-f

{(proof)

lemma convez-bind-strict [simpl: conver-bind-L-f = f-1
(proof)

lemma convez-bind-bind:
convex-bind-(convex-bind-zs-f)-g =
convex-bind-zs-(A x. conver-bind-(f-x)-g)
(proof)

31.6 Map

definition
conver-map :: (‘a::bifinite — 'b) — 'a conver-pd — 'b::bifinite conver-pd where
conver-map = (A f xs. convex-bind-xzs-(A z. {f-z}t))

lemma convez-map-unit [simp]:
convez-map-f-{z}h = {f-z}t
(proof)

lemma conver-map-plus [simp):
convex-map-f-(zs U ys) = convex-map-f-xs Uy conver-map-f-ys
(proof)

lemma convez-map-bottom [simp]: convex-map-f-L = {f- L}t

(proof)

lemma convez-map-ident: convex-map-(A x. x)-xs = xs
(proof)

lemma convex-map-ID: conver-map-ID = ID

(proof)

lemma convex-map-map:
convez-map-f-(convex-map-g-xs) = conver-map-(A z. f-(g-z))-xs
{proof)

lemma convez-bind-map:
convez-bind-(convexz-map-f-xs)-g = convex-bind-zs-(A x. g-(f-x))
(proof)

THEORY “ConvexPD” 141

lemma convez-map-bind:
convez-map-f-(convex-bind-zs-g) = convez-bind-zs-(A x. convez-map-f-(g-z))

(proof)

lemma ep-pair-convex-map: ep-pair e p = ep-pair (conver-map-e) (conver-map-p)
(proof)

lemma deflation-convez-map: deflation d = deflation (convez-map-d)

{(proof)

lemma finite-deflation-convex-map:
assumes finite-deflation d shows finite-deflation (convez-map-d)

(proof)

31.7 Convex powerdomain is bifinite

lemma approz-chain-conver-map:
assumes approz-chain a
shows approz-chain (\i. convex-map-(a 7))

{proof)

instance convez-pd :: (bifinite) bifinite
(proof)

31.8 Join

definition
convez-join :: 'a:bifinite convez-pd conver-pd — 'a convezr-pd where
convex-join = (A zss. convex-bind-zss-(A zs. xs))

lemma convez-join-unit [simpl:
convez-join-{zs}tl = xs

(proof)

lemma convez-join-plus [simp]:
convez-join-(zss Uy yss) = convez-join-xzss U convex-join-yss
(proof)

lemma convez-join-bottom [simpl: convez-join-L = L

(proof)

lemma convez-join-map-unit:
convez-join-(conver-map- convex-unit-xrs) = s

(proof)

lemma convez-join-map-join:
convez-join-(convex-map- conver-join-rsss) = convez-join-(conver-join-sss)
(proof)

THEORY “ConvexPD” 142

lemma convez-join-map-map:
convez-join-(convex-map-(convez-map-f)-xss) =
convez-map-f-(convex-join-ss)

(proof)

31.9 Conversions to other powerdomains

Convex to upper

lemma convez-le-imp-upper-le: t <t u = t <f u
(proof)

definition
convez-to-upper :: 'a::bifinite conver-pd — 'a upper-pd where
convez-to-upper = convex-pd.extension upper-principal

lemma convez-to-upper-principal [simp):
convez-to-upper-(convez-principal t) = upper-principal t

(proof)

lemma convez-to-upper-unit [simp):
convez-to-upper-{z}t = {z}
(proof)

lemma convez-to-upper-plus [simp]:
convez-to-upper-(zs U ys) = convex-to-upper-zs U convez-to-upper-ys
(proof)

lemma convez-to-upper-bind [simp):
convez-to-upper-(convex-bind-xs-f) =
upper-bind-(convez-to-upper-zs)-(convez-to-upper oo f)

(proof)

lemma convez-to-upper-map [simpl:
convez-to-upper-(convex-map-f-xs) = upper-map-f-(conver-to-upper-zs)

(proof)

lemma convez-to-upper-join [simp:
convez-to-upper-(convez-join-zss) =
upper-bind-(convez-to-upper-xss)- convex-to-upper

{(proof)
Convex to lower
lemma convez-le-imp-lower-le: t <j v = t <b u

(proof)

definition
convez-to-lower :: 'a::bifinite conver-pd — 'a lower-pd where
convex-to-lower = convex-pd.extension lower-principal

THEORY “ConvexPD” 143

lemma convez-to-lower-principal [simp]:
convez-to-lower-(convex-principal t) = lower-principal t

(proof)

lemma convezx-to-lower-unit [simp]:
convez-to-lower-{z}h = {z}b
(proof)

lemma convez-to-lower-plus [simp]:
convez-to-lower-(xzs U ys) = convez-to-lower-zs Ub convez-to-lower-ys

(proof)

lemma convez-to-lower-bind [simp]:
convex-to-lower-(convex-bind-zs-f) =
lower-bind-(convez-to-lower-xs)-(convex-to-lower oo f)

(proof)

lemma convez-to-lower-map [simpl:
convez-to-lower-(convex-map-f-zs) = lower-map-f-(convez-to-lower-zs)

(proof)

lemma convez-to-lower-join [simp]:
convez-to-lower-(convex-join-xss) =
lower-bind-(convez-to-lower-xss)- convez-to-lower

(proof)
Ordering property

lemma convex-pd-below-iff:
(25 C ys) =
(convex-to-upper-zs T convez-to-upper-ys N
convez-to-lower-zs T convez-to-lower-ys)

(proof)

lemmas convex-plus-below-plus-iff =
convez-pd-below-iff [where zs=zs U ys and ys=zs Uf ws]
for xs ys zs ws

lemmas convez-pd-below-simps =
convez-unit-below-plus-iff
convez-plus-below-unit-iff
convez-plus-below-plus-iff
convez-unit-below-iff
convez-to-upper-unit
convex-to-upper-plus
convez-to-lower-unit
convez-to-lower-plus
upper-pd-below-simps
lower-pd-below-simps

THEORY “Powerdomains” 144

end

32 Powerdomains

theory Powerdomains
imports ConvexPD Domain
begin

32.1 Universal domain embeddings
definition upper-emb = udom-emb (Ai. upper-map-(udom-approz 7))

definition upper-prj = udom-prj (Ai. upper-map-(udom-approz 7))

definition lower-emb = udom-emb (\i. lower-map-(udom-approz ©))
definition lower-prj = udom-prj (\i. lower-map-(udom-approx 7))

definition convez-emb = udom-emb (\i. convez-map-(udom-approz i))
definition convez-prj = udom-prj (Ai. convez-map-(udom-approx 7))

lemma ep-pair-upper: ep-pair upper-emb upper-prj
(proof)

lemma ep-pair-lower: ep-pair lower-emb lower-prj

(proof)

lemma ep-pair-convez: ep-pair convex-emb convex-prj
(proof)

32.2 Deflation combinators
definition upper-defl :: udom defl — udom defl

where upper-defl = defi-funl upper-emb upper-prj upper-map

definition lower-defl :: udom defl — udom defl
where lower-defl = defl-funl lower-emb lower-prj lower-map

definition convez-defl :: udom defl — udom defl
where convex-defl = defl-funl convex-emb convezr-prj convex-map

lemma cast-upper-defl:
cast-(upper-defl-A) = upper-emb oo upper-map-(cast-A) oo upper-prj
(proof)

lemma cast-lower-defi:
cast-(lower-defl- A) = lower-emb oo lower-map-(cast-A) oo lower-prj

(proof)

lemma cast-convex-defi:

THEORY “Powerdomains” 145

cast-(convez-defl-A) = convex-emb oo convex-map-(cast-A) oo conver-prj
(proof)

32.3 Domain class instances

instantiation upper-pd :: (domain) domain
begin

definition
emb = upper-emb oo upper-map-emb

definition
prj = upper-map-prj 0o upper-prj

definition
defl (t::'a upper-pd itself) = upper-defl- DEFL('a)

definition
(liftemb :: 'a upper-pd v — udom u) = u-map-emb

definition
(liftprj :: udom u — 'a upper-pd u) = u-map-prj

definition
liftdefl (t::'a upper-pd itself) = liftdefl-of - DEFL('a upper-pd)

instance (proof)
end

instantiation lower-pd :: (domain) domain
begin

definition
emb = lower-emb oo lower-map-emb

definition
prj = lower-map-prj oo lower-prj

definition
defl (t::'a lower-pd itself) = lower-defl- DEFL('a)

definition
(liftembd :: 'a lower-pd u — udom u) = u-map-emb

definition
(liftpry :: udom u — 'a lower-pd u) = u-map-prj

definition

THEORY “Powerdomains” 146

liftdefl (t::'a lower-pd itself) = liftdefl-of - DEFL('a lower-pd)
instance (proof)
end

instantiation convez-pd :: (domain) domain
begin

definition
emb = convexr-emb oo convex-map-emb

definition
prj = convex-map-prj 00 conver-prj

definition
defl (t::'a convez-pd itself) = convezx-defl- DEFL('a)

definition
(liftembd :: 'a convez-pd u — udom u) = u-map-emb

definition
(liftpry :: udom u — 'a convex-pd u) = u-map-prj

definition
liftdefl (t::'a convex-pd itself) = liftdefl-of -DEFL('a convez-pd)

instance (proof)
end

lemma DEFL-upper: DEFL('a::domain upper-pd) = upper-defl- DEFL(’a)
(proof)

lemma DEFL-lower: DEFL(’a::domain lower-pd) = lower-defl- DEFL('a)
(proof)

lemma DEFL-convex: DEFL(’a::domain conver-pd) = convez-defl- DEFL('a)
(proof)

32.4 Isomorphic deflations

lemma isodefl-upper:
isodefl d t = isodefl (upper-map-d) (upper-defi-t)
{proof)

lemma isodefi-lower:
isodefl d t = isodefl (lower-map-d) (lower-defi-t)
(proof)

THEORY “HOLCF” 147

lemma isodefl-convez:
isodefl d t = isodefl (convez-map-d) (convez-defi-t)

(proof)

32.5 Domain package setup for powerdomains

lemmas [domain-defl-simps] = DEFL-upper DEFL-lower DEFL-convex
lemmas [domain-map-ID] = upper-map-ID lower-map-ID conver-map-1D
lemmas [domain-isodefl] = isodefl-upper isodefl-lower isodefl-convex

lemmas [domain-deflation] =
deflation-upper-map deflation-lower-map deflation-conver-map

(ML)

end

theory HOLCF
imports

Main

Domain

Powerdomains
begin

default-sort domain

end

	Partial orders
	Type class for partial orders
	Upper bounds
	Least upper bounds
	Countable chains
	Finite chains

	Classes cpo and pcpo
	Complete partial orders
	Pointed cpos
	Chain-finite and flat cpos
	Discrete cpos

	Continuity and monotonicity
	Definitions
	Equivalence of alternate definition
	Collection of continuity rules
	Continuity of basic functions
	Finite chains and flat pcpos

	Admissibility and compactness
	Definitions
	Admissibility on chain-finite types
	Admissibility of special formulae and propagation
	Compactness

	Class instances for the full function space
	Full function space is a partial order
	Full function space is chain complete
	Full function space is pointed
	Propagation of monotonicity and continuity

	The cpo of cartesian products
	Unit type is a pcpo
	Product type is a partial order
	Monotonicity of Pair, fst, snd
	Product type is a cpo
	Product type is pointed
	Continuity of Pair, fst, snd
	Compactness and chain-finiteness

	Discrete cpo types
	Discrete cpo class instance
	undiscr

	Subtypes of pcpos
	Proving a subtype is a partial order
	Proving a subtype is finite
	Proving a subtype is chain-finite
	Proving a subtype is complete
	Continuity of Rep and Abs

	Proving subtype elements are compact
	Proving a subtype is pointed
	Strictness of Rep and Abs

	Proving a subtype is flat
	HOLCF type definition package

	The type of continuous functions
	Definition of continuous function type
	Syntax for continuous lambda abstraction
	Continuous function space is pointed
	Basic properties of continuous functions
	Beta-reduction simproc

	Continuity of application
	Continuity simplification procedure
	Miscellaneous
	Continuous injection-retraction pairs
	Identity and composition
	Strictified functions
	Continuity of let-bindings

	Continuous deflations and ep-pairs
	Continuous deflations
	Deflations with finite range
	Continuous embedding-projection pairs
	Uniqueness of ep-pairs
	Composing ep-pairs

	The type of strict products
	Definition of strict product type
	Definitions of constants
	Case analysis
	Properties of spair
	Properties of sfst and ssnd
	Compactness
	Properties of ssplit
	Strict product preserves flatness

	The type of lifted values
	Definition of new type for lifting
	Ordering on lifted cpo
	Lifted cpo is a partial order
	Lifted cpo is a cpo
	Lifted cpo is pointed
	Continuity of Iup and Ifup
	Continuous versions of constants

	Lifting types of class type to flat pcpo's
	Lift as a datatype
	Lift is flat
	Continuity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 case-lift
	Further operations

	The type of lifted booleans
	Type definition and constructors
	Case analysis
	Boolean connectives
	Rewriting of HOLCF operations to HOL functions
	Compactness

	The type of strict sums
	Definition of strict sum type
	Definitions of constructors
	Properties of sinl and sinr
	Case analysis
	Case analysis combinator
	Strict sum preserves flatness

	The Strict Function Type
	Map functions for various types
	Map operator for continuous function space
	Map operator for product type
	Map function for lifted cpo
	Map function for strict products
	Map function for strict sums
	Map operator for strict function space

	The cpo of cartesian products
	Continuous case function for unit type
	Continuous version of split function
	Convert all lemmas to the continuous versions

	Profinite and bifinite cpos
	Chains of finite deflations
	Omega-profinite and bifinite domains
	Building approx chains
	Class instance proofs

	Defining algebraic domains by ideal completion
	Ideals over a preorder
	Lemmas about least upper bounds
	Locale for ideal completion
	Principal ideals approximate all elements

	Defining functions in terms of basis elements

	A universal bifinite domain
	Basis for universal domain
	Basis datatype
	Basis ordering
	Generic take function

	Defining the universal domain by ideal completion
	Compact bases of domains
	Universality of udom
	Choosing a maximal element from a finite set
	Compact basis take function
	Rank of basis elements
	Sequencing basis elements
	Embedding and projection on basis elements
	EP-pair from any bifinite domain into udom

	Chain of approx functions for type udom

	Algebraic deflations
	Type constructor for finite deflations
	Defining algebraic deflations by ideal completion
	Applying algebraic deflations
	Deflation combinators

	Representable domains
	Class of representable domains
	Domains are bifinite
	Universal domain ep-pairs
	Type combinators
	Class instance proofs
	Universal domain
	Lifted cpo
	Strict function space
	Continuous function space
	Strict product
	Cartesian product
	Unit type
	Discrete cpo
	Strict sum
	Lifted HOL type

	The unit domain
	Fixed point operator and admissibility
	Iteration
	Least fixed point operator
	Fixed point induction
	Fixed-points on product types

	Package for defining recursive functions in HOLCF
	Pattern-match monad
	Run operator
	Monad plus operator

	Match functions for built-in types
	Mutual recursion
	Initializing the fixrec package

	Domain package
	Continuous isomorphisms
	Proofs about take functions
	Finiteness
	Proofs about constructor functions
	ML setup
	Representations of types
	Deflations as sets
	Proving a subtype is representable
	Isomorphic deflations
	Setting up the domain package

	A compact basis for powerdomains
	A compact basis for powerdomains
	Unit and plus constructors
	Fold operator

	Upper powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Upper powerdomain is bifinite
	Join

	Lower powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Lower powerdomain is bifinite
	Join

	Convex powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Convex powerdomain is bifinite
	Join
	Conversions to other powerdomains

	Powerdomains
	Universal domain embeddings
	Deflation combinators
	Domain class instances
	Isomorphic deflations
	Domain package setup for powerdomains

