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theory Cpo
imports Main

begin

1 Partial orders
declare [[typedef-overloaded]]

1.1 Type class for partial orders
class below =

fixes below :: ′a ⇒ ′a ⇒ bool
begin

notation (ASCII )
below (infix ‹<<› 50 )

notation
below (infix ‹v› 50 )

abbreviation not-below :: ′a ⇒ ′a ⇒ bool (infix ‹ 6v› 50 )
where not-below x y ≡ ¬ below x y

notation (ASCII )
not-below (infix ‹∼<<› 50 )

lemma below-eq-trans: a v b =⇒ b = c =⇒ a v c
〈proof 〉

lemma eq-below-trans: a = b =⇒ b v c =⇒ a v c
〈proof 〉

end

class po = below +
assumes below-refl [iff ]: x v x
assumes below-trans: x v y =⇒ y v z =⇒ x v z
assumes below-antisym: x v y =⇒ y v x =⇒ x = y

begin

lemma eq-imp-below: x = y =⇒ x v y
〈proof 〉

lemma box-below: a v b =⇒ c v a =⇒ b v d =⇒ c v d
〈proof 〉

lemma po-eq-conv: x = y ←→ x v y ∧ y v x
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〈proof 〉

lemma rev-below-trans: y v z =⇒ x v y =⇒ x v z
〈proof 〉

lemma not-below2not-eq: x 6v y =⇒ x 6= y
〈proof 〉

end

lemmas HOLCF-trans-rules [trans] =
below-trans
below-antisym
below-eq-trans
eq-below-trans

context po
begin

1.2 Upper bounds
definition is-ub :: ′a set ⇒ ′a ⇒ bool (infix ‹<|› 55 )

where S <| x ←→ (∀ y∈S . y v x)

lemma is-ubI : (
∧

x. x ∈ S =⇒ x v u) =⇒ S <| u
〈proof 〉

lemma is-ubD: [[S <| u; x ∈ S ]] =⇒ x v u
〈proof 〉

lemma ub-imageI : (
∧

x. x ∈ S =⇒ f x v u) =⇒ (λx. f x) ‘ S <| u
〈proof 〉

lemma ub-imageD: [[f ‘ S <| u; x ∈ S ]] =⇒ f x v u
〈proof 〉

lemma ub-rangeI : (
∧

i. S i v x) =⇒ range S <| x
〈proof 〉

lemma ub-rangeD: range S <| x =⇒ S i v x
〈proof 〉

lemma is-ub-empty [simp]: {} <| u
〈proof 〉

lemma is-ub-insert [simp]: (insert x A) <| y = (x v y ∧ A <| y)
〈proof 〉

lemma is-ub-upward: [[S <| x; x v y]] =⇒ S <| y
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〈proof 〉

1.3 Least upper bounds
definition is-lub :: ′a set ⇒ ′a ⇒ bool (infix ‹<<|› 55 )

where S <<| x ←→ S <| x ∧ (∀ u. S <| u −→ x v u)

definition lub :: ′a set ⇒ ′a
where lub S = (THE x . S <<| x)

end

syntax (ASCII )
-BLub :: [pttrn, ′a set, ′b] ⇒ ′b (‹(‹indent=3 notation=‹binder LUB››LUB -:-./

-)› [0 ,0 , 10 ] 10 )

syntax
-BLub :: [pttrn, ′a set, ′b] ⇒ ′b (‹(‹indent=3 notation=‹binder

⊔
››
⊔

-∈-./ -)›
[0 ,0 , 10 ] 10 )

syntax-consts
-BLub ⇀↽ lub

translations
LUB x:A. t ⇀↽ CONST lub ((λx. t) ‘ A)

context po
begin

abbreviation Lub (binder ‹
⊔

› 10 )
where

⊔
n. t n ≡ lub (range t)

notation (ASCII )
Lub (binder ‹LUB › 10 )

access to some definition as inference rule
lemma is-lubD1 : S <<| x =⇒ S <| x
〈proof 〉

lemma is-lubD2 : [[S <<| x; S <| u]] =⇒ x v u
〈proof 〉

lemma is-lubI : [[S <| x;
∧

u. S <| u =⇒ x v u]] =⇒ S <<| x
〈proof 〉

lemma is-lub-below-iff : S <<| x =⇒ x v u ←→ S <| u
〈proof 〉

lubs are unique
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lemma is-lub-unique: S <<| x =⇒ S <<| y =⇒ x = y
〈proof 〉

technical lemmas about lub and (<<|)
lemma is-lub-lub: M <<| x =⇒ M <<| lub M
〈proof 〉

lemma lub-eqI : M <<| l =⇒ lub M = l
〈proof 〉

lemma is-lub-singleton [simp]: {x} <<| x
〈proof 〉

lemma lub-singleton [simp]: lub {x} = x
〈proof 〉

lemma is-lub-bin: x v y =⇒ {x, y} <<| y
〈proof 〉

lemma lub-bin: x v y =⇒ lub {x, y} = y
〈proof 〉

lemma is-lub-maximal: S <| x =⇒ x ∈ S =⇒ S <<| x
〈proof 〉

lemma lub-maximal: S <| x =⇒ x ∈ S =⇒ lub S = x
〈proof 〉

1.4 Countable chains
definition chain :: (nat ⇒ ′a) ⇒ bool

where — Here we use countable chains and I prefer to code them as functions!
chain Y = (∀ i. Y i v Y (Suc i))

lemma chainI : (
∧

i. Y i v Y (Suc i)) =⇒ chain Y
〈proof 〉

lemma chainE : chain Y =⇒ Y i v Y (Suc i)
〈proof 〉

chains are monotone functions
lemma chain-mono-less: chain Y =⇒ i < j =⇒ Y i v Y j
〈proof 〉

lemma chain-mono: chain Y =⇒ i ≤ j =⇒ Y i v Y j
〈proof 〉

lemma chain-shift: chain Y =⇒ chain (λi. Y (i + j))
〈proof 〉
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technical lemmas about (least) upper bounds of chains
lemma is-lub-rangeD1 : range S <<| x =⇒ S i v x
〈proof 〉

lemma is-ub-range-shift: chain S =⇒ range (λi. S (i + j)) <| x = range S <| x
〈proof 〉

lemma is-lub-range-shift: chain S =⇒ range (λi. S (i + j)) <<| x = range S <<|
x
〈proof 〉

the lub of a constant chain is the constant
lemma chain-const [simp]: chain (λi. c)
〈proof 〉

lemma is-lub-const: range (λx. c) <<| c
〈proof 〉

lemma lub-const [simp]: (
⊔

i. c) = c
〈proof 〉

1.5 Finite chains
definition max-in-chain :: nat ⇒ (nat ⇒ ′a) ⇒ bool

where — finite chains, needed for monotony of continuous functions
max-in-chain i C ←→ (∀ j. i ≤ j −→ C i = C j)

definition finite-chain :: (nat ⇒ ′a) ⇒ bool
where finite-chain C = (chain C ∧ (∃ i. max-in-chain i C ))

results about finite chains
lemma max-in-chainI : (

∧
j. i ≤ j =⇒ Y i = Y j) =⇒ max-in-chain i Y

〈proof 〉

lemma max-in-chainD: max-in-chain i Y =⇒ i ≤ j =⇒ Y i = Y j
〈proof 〉

lemma finite-chainI : chain C =⇒ max-in-chain i C =⇒ finite-chain C
〈proof 〉

lemma finite-chainE : [[finite-chain C ;
∧

i. [[chain C ; max-in-chain i C ]] =⇒ R]]
=⇒ R
〈proof 〉

lemma lub-finch1 : chain C =⇒ max-in-chain i C =⇒ range C <<| C i
〈proof 〉

lemma lub-finch2 : finite-chain C =⇒ range C <<| C (LEAST i. max-in-chain i
C )
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〈proof 〉

lemma finch-imp-finite-range: finite-chain Y =⇒ finite (range Y )
〈proof 〉

lemma finite-range-has-max:
fixes f :: nat ⇒ ′a

and r :: ′a ⇒ ′a ⇒ bool
assumes mono:

∧
i j. i ≤ j =⇒ r (f i) (f j)

assumes finite-range: finite (range f )
shows ∃ k. ∀ i. r (f i) (f k)
〈proof 〉

lemma finite-range-imp-finch: chain Y =⇒ finite (range Y ) =⇒ finite-chain Y
〈proof 〉

lemma bin-chain: x v y =⇒ chain (λi. if i=0 then x else y)
〈proof 〉

lemma bin-chainmax: x v y =⇒ max-in-chain (Suc 0 ) (λi. if i=0 then x else y)
〈proof 〉

lemma is-lub-bin-chain: x v y =⇒ range (λi::nat. if i=0 then x else y) <<| y
〈proof 〉

the maximal element in a chain is its lub
lemma lub-chain-maxelem: Y i = c =⇒ ∀ i. Y i v c =⇒ lub (range Y ) = c
〈proof 〉

end

2 Classes cpo and pcpo
2.1 Complete partial orders

The class cpo of chain complete partial orders
class cpo = po +

assumes cpo: chain S =⇒ ∃ x. range S <<| x

default-sort cpo

context cpo
begin

in cpo’s everthing equal to THE lub has lub properties for every chain
lemma cpo-lubI : chain S =⇒ range S <<| (

⊔
i. S i)

〈proof 〉
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lemma thelubE : [[chain S ; (
⊔

i. S i) = l]] =⇒ range S <<| l
〈proof 〉

Properties of the lub
lemma is-ub-thelub: chain S =⇒ S x v (

⊔
i. S i)

〈proof 〉

lemma is-lub-thelub: [[chain S ; range S <| x]] =⇒ (
⊔

i. S i) v x
〈proof 〉

lemma lub-below-iff : chain S =⇒ (
⊔

i. S i) v x ←→ (∀ i. S i v x)
〈proof 〉

lemma lub-below: [[chain S ;
∧

i. S i v x]] =⇒ (
⊔

i. S i) v x
〈proof 〉

lemma below-lub: [[chain S ; x v S i]] =⇒ x v (
⊔

i. S i)
〈proof 〉

lemma lub-range-mono: [[range X ⊆ range Y ; chain Y ; chain X ]] =⇒ (
⊔

i. X i)
v (

⊔
i. Y i)

〈proof 〉

lemma lub-range-shift: chain Y =⇒ (
⊔

i. Y (i + j)) = (
⊔

i. Y i)
〈proof 〉

lemma maxinch-is-thelub: chain Y =⇒ max-in-chain i Y = ((
⊔

i. Y i) = Y i)
〈proof 〉

the v relation between two chains is preserved by their lubs
lemma lub-mono: [[chain X ; chain Y ;

∧
i. X i v Y i]] =⇒ (

⊔
i. X i) v (

⊔
i. Y i)

〈proof 〉

the = relation between two chains is preserved by their lubs
lemma lub-eq: (

∧
i. X i = Y i) =⇒ (

⊔
i. X i) = (

⊔
i. Y i)

〈proof 〉

lemma ch2ch-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows chain (λi.

⊔
j. Y i j)

〈proof 〉

lemma diag-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows (

⊔
i.

⊔
j. Y i j) = (

⊔
i. Y i i)

〈proof 〉
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lemma ex-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows (

⊔
i.

⊔
j. Y i j) = (

⊔
j.

⊔
i. Y i j)

〈proof 〉

end

2.2 Pointed cpos

The class pcpo of pointed cpos
class pcpo = cpo +

assumes least: ∃ x. ∀ y. x v y
begin

definition bottom :: ′a (‹⊥›)
where bottom = (THE x . ∀ y. x v y)

lemma minimal [iff ]: ⊥ v x
〈proof 〉

end

Old "UU" syntax:
abbreviation (input) UU ≡ bottom

Simproc to rewrite ⊥ = x to x = ⊥.
〈ML〉
useful lemmas about ⊥
lemma below-bottom-iff [simp]: x v ⊥ ←→ x = ⊥
〈proof 〉

lemma eq-bottom-iff : x = ⊥ ←→ x v ⊥
〈proof 〉

lemma bottomI : x v ⊥ =⇒ x = ⊥
〈proof 〉

lemma lub-eq-bottom-iff : chain Y =⇒ (
⊔

i. Y i) = ⊥ ←→ (∀ i. Y i = ⊥)
〈proof 〉

2.3 Chain-finite and flat cpos

further useful classes for HOLCF domains
class chfin = po +

assumes chfin: chain Y =⇒ ∃n. max-in-chain n Y
begin
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subclass cpo
〈proof 〉

lemma chfin2finch: chain Y =⇒ finite-chain Y
〈proof 〉

end

class flat = pcpo +
assumes ax-flat: x v y =⇒ x = ⊥ ∨ x = y

begin

subclass chfin
〈proof 〉

lemma flat-below-iff : x v y ←→ x = ⊥ ∨ x = y
〈proof 〉

lemma flat-eq: a 6= ⊥ =⇒ a v b = (a = b)
〈proof 〉

end

2.4 Discrete cpos
class discrete-cpo = below +

assumes discrete-cpo [simp]: x v y ←→ x = y
begin

subclass po
〈proof 〉

In a discrete cpo, every chain is constant
lemma discrete-chain-const:

assumes S : chain S
shows ∃ x. S = (λi. x)
〈proof 〉

subclass chfin
〈proof 〉

end

3 Continuity and monotonicity
3.1 Definitions
definition monofun :: ( ′a::po ⇒ ′b::po) ⇒ bool — monotonicity
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where monofun f ←→ (∀ x y. x v y −→ f x v f y)

definition cont :: ( ′a ⇒ ′b) ⇒ bool
where cont f = (∀Y . chain Y −→ range (λi. f (Y i)) <<| f (

⊔
i. Y i))

lemma contI : (
∧

Y . chain Y =⇒ range (λi. f (Y i)) <<| f (
⊔

i. Y i)) =⇒ cont f
〈proof 〉

lemma contE : cont f =⇒ chain Y =⇒ range (λi. f (Y i)) <<| f (
⊔

i. Y i)
〈proof 〉

lemma monofunI : (
∧

x y. x v y =⇒ f x v f y) =⇒ monofun f
〈proof 〉

lemma monofunE : monofun f =⇒ x v y =⇒ f x v f y
〈proof 〉

3.2 Equivalence of alternate definition

monotone functions map chains to chains
lemma ch2ch-monofun: monofun f =⇒ chain Y =⇒ chain (λi. f (Y i))
〈proof 〉

monotone functions map upper bound to upper bounds
lemma ub2ub-monofun: monofun f =⇒ range Y <| u =⇒ range (λi. f (Y i)) <|
f u
〈proof 〉

a lemma about binary chains
lemma binchain-cont: cont f =⇒ x v y =⇒ range (λi::nat. f (if i = 0 then x else
y)) <<| f y
〈proof 〉

continuity implies monotonicity
lemma cont2mono: cont f =⇒ monofun f
〈proof 〉

lemmas cont2monofunE = cont2mono [THEN monofunE ]

lemmas ch2ch-cont = cont2mono [THEN ch2ch-monofun]

continuity implies preservation of lubs
lemma cont2contlubE : cont f =⇒ chain Y =⇒ f (

⊔
i. Y i) = (

⊔
i. f (Y i))

〈proof 〉

lemma contI2 :
fixes f :: ′a ⇒ ′b
assumes mono: monofun f
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assumes below:
∧

Y . [[chain Y ; chain (λi. f (Y i))]] =⇒ f (
⊔

i. Y i) v (
⊔

i. f
(Y i))

shows cont f
〈proof 〉

3.3 Collection of continuity rules
named-theorems cont2cont continuity intro rule

3.4 Continuity of basic functions

The identity function is continuous
lemma cont-id [simp, cont2cont]: cont (λx. x)
〈proof 〉

constant functions are continuous
lemma cont-const [simp, cont2cont]: cont (λx. c)
〈proof 〉

application of functions is continuous
lemma cont-apply:

fixes f :: ′a ⇒ ′b ⇒ ′c and t :: ′a ⇒ ′b
assumes 1 : cont (λx. t x)
assumes 2 :

∧
x. cont (λy. f x y)

assumes 3 :
∧

y. cont (λx. f x y)
shows cont (λx. (f x) (t x))
〈proof 〉

lemma cont-compose: cont c =⇒ cont (λx. f x) =⇒ cont (λx. c (f x))
〈proof 〉

Least upper bounds preserve continuity
lemma cont2cont-lub [simp]:

assumes chain:
∧

x. chain (λi. F i x)
and cont:

∧
i. cont (λx. F i x)

shows cont (λx.
⊔

i. F i x)
〈proof 〉

if-then-else is continuous
lemma cont-if [simp, cont2cont]: cont f =⇒ cont g =⇒ cont (λx. if b then f x else
g x)
〈proof 〉

3.5 Finite chains and flat pcpos

Monotone functions map finite chains to finite chains.
lemma monofun-finch2finch: monofun f =⇒ finite-chain Y =⇒ finite-chain (λn.
f (Y n))
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〈proof 〉

The same holds for continuous functions.
lemma cont-finch2finch: cont f =⇒ finite-chain Y =⇒ finite-chain (λn. f (Y n))
〈proof 〉

All monotone functions with chain-finite domain are continuous.
lemma chfindom-monofun2cont: monofun f =⇒ cont f

for f :: ′a::chfin ⇒ ′b
〈proof 〉

All strict functions with flat domain are continuous.
lemma flatdom-strict2mono: f ⊥ = ⊥ =⇒ monofun f

for f :: ′a::flat ⇒ ′b::pcpo
〈proof 〉

lemma flatdom-strict2cont: f ⊥ = ⊥ =⇒ cont f
for f :: ′a::flat ⇒ ′b::pcpo
〈proof 〉

All functions with discrete domain are continuous.
lemma cont-discrete-cpo [simp, cont2cont]: cont f

for f :: ′a::discrete-cpo ⇒ ′b
〈proof 〉

4 Admissibility and compactness
4.1 Definitions
context cpo
begin

definition adm :: ( ′a ⇒ bool) ⇒ bool
where adm P ←→ (∀Y . chain Y −→ (∀ i. P (Y i)) −→ P (

⊔
i. Y i))

lemma admI : (
∧

Y . [[chain Y ; ∀ i. P (Y i)]] =⇒ P (
⊔

i. Y i)) =⇒ adm P
〈proof 〉

lemma admD: adm P =⇒ chain Y =⇒ (
∧

i. P (Y i)) =⇒ P (
⊔

i. Y i)
〈proof 〉

lemma admD2 : adm (λx. ¬ P x) =⇒ chain Y =⇒ P (
⊔

i. Y i) =⇒ ∃ i. P (Y i)
〈proof 〉

lemma triv-admI : ∀ x. P x =⇒ adm P
〈proof 〉

end
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4.2 Admissibility on chain-finite types

For chain-finite (easy) types every formula is admissible.
lemma adm-chfin [simp]: adm P for P :: ′a::chfin ⇒ bool
〈proof 〉

4.3 Admissibility of special formulae and propagation
context cpo
begin

lemma adm-const [simp]: adm (λx. t)
〈proof 〉

lemma adm-conj [simp]: adm (λx. P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x ∧
Q x)
〈proof 〉

lemma adm-all [simp]: (
∧

y. adm (λx. P x y)) =⇒ adm (λx. ∀ y. P x y)
〈proof 〉

lemma adm-ball [simp]: (
∧

y. y ∈ A =⇒ adm (λx. P x y)) =⇒ adm (λx. ∀ y∈A.
P x y)
〈proof 〉

Admissibility for disjunction is hard to prove. It requires 2 lemmas.
lemma adm-disj-lemma1 :

assumes adm: adm P
assumes chain: chain Y
assumes P: ∀ i. ∃ j≥i. P (Y j)
shows P (

⊔
i. Y i)

〈proof 〉

lemma adm-disj-lemma2 : ∀n::nat. P n ∨ Q n =⇒ (∀ i. ∃ j≥i. P j) ∨ (∀ i. ∃ j≥i.
Q j)
〈proof 〉

lemma adm-disj [simp]: adm (λx. P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x ∨
Q x)
〈proof 〉

lemma adm-imp [simp]: adm (λx. ¬ P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x
−→ Q x)
〈proof 〉

lemma adm-iff [simp]: adm (λx. P x −→ Q x) =⇒ adm (λx. Q x −→ P x) =⇒
adm (λx. P x ←→ Q x)
〈proof 〉
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end

admissibility and continuity
lemma adm-below [simp]: cont (λx. u x) =⇒ cont (λx. v x) =⇒ adm (λx. u x v
v x)
〈proof 〉

lemma adm-eq [simp]: cont (λx. u x) =⇒ cont (λx. v x) =⇒ adm (λx. u x = v x)
〈proof 〉

lemma adm-subst: cont (λx. t x) =⇒ adm P =⇒ adm (λx. P (t x))
〈proof 〉

lemma adm-not-below [simp]: cont (λx. t x) =⇒ adm (λx. t x 6v u)
〈proof 〉

4.4 Compactness
context cpo
begin

definition compact :: ′a ⇒ bool
where compact k = adm (λx. k 6v x)

lemma compactI : adm (λx. k 6v x) =⇒ compact k
〈proof 〉

lemma compactD: compact k =⇒ adm (λx. k 6v x)
〈proof 〉

lemma compactI2 : (
∧

Y . [[chain Y ; x v (
⊔

i. Y i)]] =⇒ ∃ i. x v Y i) =⇒ compact
x
〈proof 〉

lemma compactD2 : compact x =⇒ chain Y =⇒ x v (
⊔

i. Y i) =⇒ ∃ i. x v Y i
〈proof 〉

lemma compact-below-lub-iff : compact x =⇒ chain Y =⇒ x v (
⊔

i. Y i)←→ (∃ i.
x v Y i)
〈proof 〉

end

lemma compact-chfin [simp]: compact x for x :: ′a::chfin
〈proof 〉

lemma compact-imp-max-in-chain: chain Y =⇒ compact (
⊔

i. Y i) =⇒ ∃ i. max-in-chain
i Y
〈proof 〉
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admissibility and compactness
lemma adm-compact-not-below [simp]:

compact k =⇒ cont (λx. t x) =⇒ adm (λx. k 6v t x)
〈proof 〉

lemma adm-neq-compact [simp]: compact k =⇒ cont (λx. t x) =⇒ adm (λx. t x
6= k)
〈proof 〉

lemma adm-compact-neq [simp]: compact k =⇒ cont (λx. t x) =⇒ adm (λx. k 6=
t x)
〈proof 〉

lemma compact-bottom [simp, intro]: compact ⊥
〈proof 〉

Any upward-closed predicate is admissible.
lemma adm-upward:

assumes P:
∧

x y. [[P x; x v y]] =⇒ P y
shows adm P
〈proof 〉

lemmas adm-lemmas =
adm-const adm-conj adm-all adm-ball adm-disj adm-imp adm-iff
adm-below adm-eq adm-not-below
adm-compact-not-below adm-compact-neq adm-neq-compact

5 Class instances for the full function space
5.1 Full function space is a partial order
instantiation fun :: (type, below) below
begin

definition below-fun-def : (v) ≡ (λf g. ∀ x. f x v g x)

instance 〈proof 〉
end

instance fun :: (type, po) po
〈proof 〉

lemma fun-below-iff : f v g ←→ (∀ x. f x v g x)
〈proof 〉

lemma fun-belowI : (
∧

x. f x v g x) =⇒ f v g
〈proof 〉
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lemma fun-belowD: f v g =⇒ f x v g x
〈proof 〉

5.2 Full function space is chain complete

Properties of chains of functions.
lemma fun-chain-iff : chain S ←→ (∀ x. chain (λi. S i x))
〈proof 〉

lemma ch2ch-fun: chain S =⇒ chain (λi. S i x)
〈proof 〉

lemma ch2ch-lambda: (
∧

x. chain (λi. S i x)) =⇒ chain S
〈proof 〉

Type ′a ⇒ ′b is chain complete
lemma is-lub-lambda: (

∧
x. range (λi. Y i x) <<| f x) =⇒ range Y <<| f

〈proof 〉

lemma is-lub-fun: chain S =⇒ range S <<| (λx.
⊔

i. S i x)
for S :: nat ⇒ ′a::type ⇒ ′b
〈proof 〉

lemma lub-fun: chain S =⇒ (
⊔

i. S i) = (λx.
⊔

i. S i x)
for S :: nat ⇒ ′a::type ⇒ ′b
〈proof 〉

instance fun :: (type, cpo) cpo
〈proof 〉

instance fun :: (type, discrete-cpo) discrete-cpo
〈proof 〉

5.3 Full function space is pointed
lemma minimal-fun: (λx. ⊥) v f
〈proof 〉

instance fun :: (type, pcpo) pcpo
〈proof 〉

lemma inst-fun-pcpo: ⊥ = (λx. ⊥)
〈proof 〉

lemma app-strict [simp]: ⊥ x = ⊥
〈proof 〉

lemma lambda-strict: (λx. ⊥) = ⊥
〈proof 〉
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5.4 Propagation of monotonicity and continuity

The lub of a chain of monotone functions is monotone.
lemma adm-monofun: adm monofun
〈proof 〉

The lub of a chain of continuous functions is continuous.
lemma adm-cont: adm cont
〈proof 〉

Function application preserves monotonicity and continuity.
lemma mono2mono-fun: monofun f =⇒ monofun (λx. f x y)
〈proof 〉

lemma cont2cont-fun: cont f =⇒ cont (λx. f x y)
〈proof 〉

lemma cont-fun: cont (λf . f x)
〈proof 〉

〈ML〉

lemma cont (λf . f x) and cont (λf . f x y) and cont (λf . f x y z)
〈proof 〉

Lambda abstraction preserves monotonicity and continuity. (Note (λx. λy.
f x y) = f.)
lemma mono2mono-lambda: (

∧
y. monofun (λx. f x y)) =⇒ monofun f

〈proof 〉

lemma cont2cont-lambda [simp]:
assumes f :

∧
y. cont (λx. f x y)

shows cont f
〈proof 〉

What D.A.Schmidt calls continuity of abstraction; never used here
lemma contlub-lambda: (

∧
x. chain (λi. S i x)) =⇒ (λx.

⊔
i. S i x) = (

⊔
i. (λx.

S i x))
for S :: nat ⇒ ′a::type ⇒ ′b
〈proof 〉

6 The cpo of cartesian products
6.1 Unit type is a pcpo
instantiation unit :: discrete-cpo
begin
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definition below-unit-def [simp]: x v (y::unit) ←→ True

instance
〈proof 〉

end

instance unit :: pcpo
〈proof 〉

6.2 Product type is a partial order
instantiation prod :: (below, below) below
begin

definition below-prod-def : (v) ≡ λp1 p2 . (fst p1 v fst p2 ∧ snd p1 v snd p2 )

instance 〈proof 〉

end

instance prod :: (po, po) po
〈proof 〉

6.3 Monotonicity of Pair, fst, snd
lemma prod-belowI : fst p v fst q =⇒ snd p v snd q =⇒ p v q
〈proof 〉

lemma Pair-below-iff [simp]: (a, b) v (c, d) ←→ a v c ∧ b v d
〈proof 〉

Pair (-,-) is monotone in both arguments
lemma monofun-pair1 : monofun (λx. (x, y))
〈proof 〉

lemma monofun-pair2 : monofun (λy. (x, y))
〈proof 〉

lemma monofun-pair : x1 v x2 =⇒ y1 v y2 =⇒ (x1 , y1 ) v (x2 , y2 )
〈proof 〉

lemma ch2ch-Pair [simp]: chain X =⇒ chain Y =⇒ chain (λi. (X i, Y i))
〈proof 〉

fst and snd are monotone
lemma fst-monofun: x v y =⇒ fst x v fst y
〈proof 〉
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lemma snd-monofun: x v y =⇒ snd x v snd y
〈proof 〉

lemma monofun-fst: monofun fst
〈proof 〉

lemma monofun-snd: monofun snd
〈proof 〉

lemmas ch2ch-fst [simp] = ch2ch-monofun [OF monofun-fst]

lemmas ch2ch-snd [simp] = ch2ch-monofun [OF monofun-snd]

lemma prod-chain-cases:
assumes chain: chain Y
obtains A B
where chain A and chain B and Y = (λi. (A i, B i))
〈proof 〉

6.4 Product type is a cpo
lemma is-lub-Pair : range A <<| x =⇒ range B <<| y =⇒ range (λi. (A i, B i))
<<| (x, y)
〈proof 〉

lemma lub-Pair : chain A =⇒ chain B =⇒ (
⊔

i. (A i, B i)) = (
⊔

i. A i,
⊔

i. B i)
for A :: nat ⇒ ′a and B :: nat ⇒ ′b
〈proof 〉

lemma is-lub-prod:
fixes S :: nat ⇒ ( ′a × ′b)
assumes chain S
shows range S <<| (

⊔
i. fst (S i),

⊔
i. snd (S i))

〈proof 〉

lemma lub-prod: chain S =⇒ (
⊔

i. S i) = (
⊔

i. fst (S i),
⊔

i. snd (S i))
for S :: nat ⇒ ′a × ′b
〈proof 〉

instance prod :: (cpo, cpo) cpo
〈proof 〉

instance prod :: (discrete-cpo, discrete-cpo) discrete-cpo
〈proof 〉

6.5 Product type is pointed
lemma minimal-prod: (⊥, ⊥) v p
〈proof 〉
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instance prod :: (pcpo, pcpo) pcpo
〈proof 〉

lemma inst-prod-pcpo: ⊥ = (⊥, ⊥)
〈proof 〉

lemma Pair-bottom-iff [simp]: (x, y) = ⊥ ←→ x = ⊥ ∧ y = ⊥
〈proof 〉

lemma fst-strict [simp]: fst ⊥ = ⊥
〈proof 〉

lemma snd-strict [simp]: snd ⊥ = ⊥
〈proof 〉

lemma Pair-strict [simp]: (⊥, ⊥) = ⊥
〈proof 〉

lemma split-strict [simp]: case-prod f ⊥ = f ⊥ ⊥
〈proof 〉

6.6 Continuity of Pair, fst, snd
lemma cont-pair1 : cont (λx. (x, y))
〈proof 〉

lemma cont-pair2 : cont (λy. (x, y))
〈proof 〉

lemma cont-fst: cont fst
〈proof 〉

lemma cont-snd: cont snd
〈proof 〉

lemma cont2cont-Pair [simp, cont2cont]:
assumes f : cont (λx. f x)
assumes g: cont (λx. g x)
shows cont (λx. (f x, g x))
〈proof 〉

lemmas cont2cont-fst [simp, cont2cont] = cont-compose [OF cont-fst]

lemmas cont2cont-snd [simp, cont2cont] = cont-compose [OF cont-snd]

lemma cont2cont-case-prod:
assumes f1 :

∧
a b. cont (λx. f x a b)

assumes f2 :
∧

x b. cont (λa. f x a b)
assumes f3 :

∧
x a. cont (λb. f x a b)



THEORY “Cpo” 29

assumes g: cont (λx. g x)
shows cont (λx. case g x of (a, b) ⇒ f x a b)
〈proof 〉

lemma prod-contI :
assumes f1 :

∧
y. cont (λx. f (x, y))

assumes f2 :
∧

x. cont (λy. f (x, y))
shows cont f
〈proof 〉

lemma prod-cont-iff : cont f ←→ (∀ y. cont (λx. f (x, y))) ∧ (∀ x. cont (λy. f (x,
y)))
〈proof 〉

lemma cont2cont-case-prod ′ [simp, cont2cont]:
assumes f : cont (λp. f (fst p) (fst (snd p)) (snd (snd p)))
assumes g: cont (λx. g x)
shows cont (λx. case-prod (f x) (g x))
〈proof 〉

The simple version (due to Joachim Breitner) is needed if either element
type of the pair is not a cpo.
lemma cont2cont-split-simple [simp, cont2cont]:

assumes
∧

a b. cont (λx. f x a b)
shows cont (λx. case p of (a, b) ⇒ f x a b)
〈proof 〉

Admissibility of predicates on product types.
lemma adm-case-prod [simp]:

assumes adm (λx. P x (fst (f x)) (snd (f x)))
shows adm (λx. case f x of (a, b) ⇒ P x a b)
〈proof 〉

6.7 Compactness and chain-finiteness
lemma fst-below-iff : fst x v y ←→ x v (y, snd x) for x :: ′a × ′b
〈proof 〉

lemma snd-below-iff : snd x v y ←→ x v (fst x, y) for x :: ′a × ′b
〈proof 〉

lemma compact-fst: compact x =⇒ compact (fst x)
〈proof 〉

lemma compact-snd: compact x =⇒ compact (snd x)
〈proof 〉

lemma compact-Pair : compact x =⇒ compact y =⇒ compact (x, y)
〈proof 〉
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lemma compact-Pair-iff [simp]: compact (x, y) ←→ compact x ∧ compact y
〈proof 〉

instance prod :: (chfin, chfin) chfin
〈proof 〉

7 Discrete cpo types
datatype ′a discr = Discr ′a::type

7.1 Discrete cpo class instance
instantiation discr :: (type) discrete-cpo
begin

definition ((v) :: ′a discr ⇒ ′a discr ⇒ bool) = (=)

instance
〈proof 〉

end

7.2 undiscr
definition undiscr :: ′a::type discr ⇒ ′a

where undiscr x = (case x of Discr y ⇒ y)

lemma undiscr-Discr [simp]: undiscr (Discr x) = x
〈proof 〉

lemma Discr-undiscr [simp]: Discr (undiscr y) = y
〈proof 〉

end

8 Subtypes of pcpos
theory Cpodef

imports Cpo
keywords pcpodef cpodef :: thy-goal-defn

begin

8.1 Proving a subtype is a partial order

A subtype of a partial order is itself a partial order, if the ordering is defined
in the standard way.
theorem (in below) typedef-class-po:
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fixes Abs :: ′b::po ⇒ ′a
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
shows class.po below
〈proof 〉

lemmas typedef-po-class = below.typedef-class-po [THEN po.intro-of-class]

8.2 Proving a subtype is finite
lemma typedef-finite-UNIV :

fixes Abs :: ′a::type ⇒ ′b::type
assumes type: type-definition Rep Abs A
shows finite A =⇒ finite (UNIV :: ′b set)
〈proof 〉

8.3 Proving a subtype is chain-finite
lemma ch2ch-Rep:

assumes below: (v) ≡ λx y. Rep x v Rep y
shows chain S =⇒ chain (λi. Rep (S i))
〈proof 〉

theorem typedef-chfin:
fixes Abs :: ′a::chfin ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
shows OFCLASS( ′b, chfin-class)
〈proof 〉

8.4 Proving a subtype is complete

A subtype of a cpo is itself a cpo if the ordering is defined in the standard
way, and the defining subset is closed with respect to limits of chains. A set
is closed if and only if membership in the set is an admissible predicate.
lemma typedef-is-lubI :

assumes below: (v) ≡ λx y. Rep x v Rep y
shows range (λi. Rep (S i)) <<| Rep x =⇒ range S <<| x
〈proof 〉

lemma Abs-inverse-lub-Rep:
fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows chain S =⇒ Rep (Abs (
⊔

i. Rep (S i))) = (
⊔

i. Rep (S i))
〈proof 〉

theorem typedef-is-lub:
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fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

assumes S : chain S
shows range S <<| Abs (

⊔
i. Rep (S i))

〈proof 〉

lemmas typedef-lub = typedef-is-lub [THEN lub-eqI ]

theorem typedef-cpo:
fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows OFCLASS( ′b, cpo-class)
〈proof 〉

8.4.1 Continuity of Rep and Abs

For any sub-cpo, the Rep function is continuous.
theorem typedef-cont-Rep:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows cont (λx. f x) =⇒ cont (λx. Rep (f x))
〈proof 〉

For a sub-cpo, we can make the Abs function continuous only if we restrict
its domain to the defining subset by composing it with another continuous
function.
theorem typedef-cont-Abs:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
fixes f :: ′c::cpo ⇒ ′a::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)
and f-in-A:

∧
x. f x ∈ A

shows cont f =⇒ cont (λx. Abs (f x))
〈proof 〉

8.5 Proving subtype elements are compact
theorem typedef-compact:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
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and adm: adm (λx. x ∈ A)
shows compact (Rep k) =⇒ compact k
〈proof 〉

8.6 Proving a subtype is pointed

A subtype of a cpo has a least element if and only if the defining subset has
a least element.
theorem typedef-pcpo-generic:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and z-in-A: z ∈ A
and z-least:

∧
x. x ∈ A =⇒ z v x

shows OFCLASS( ′b, pcpo-class)
〈proof 〉

As a special case, a subtype of a pcpo has a least element if the defining
subset contains ⊥.
theorem typedef-pcpo:

fixes Abs :: ′a::pcpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows OFCLASS( ′b, pcpo-class)
〈proof 〉

8.6.1 Strictness of Rep and Abs

For a sub-pcpo where ⊥ is a member of the defining subset, Rep and Abs
are both strict.
theorem typedef-Abs-strict:

assumes type: type-definition Rep Abs A
and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows Abs ⊥ = ⊥
〈proof 〉

theorem typedef-Rep-strict:
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows Rep ⊥ = ⊥
〈proof 〉

theorem typedef-Abs-bottom-iff :
assumes type: type-definition Rep Abs A



THEORY “Cfun” 34

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows x ∈ A =⇒ (Abs x = ⊥) = (x = ⊥)
〈proof 〉

theorem typedef-Rep-bottom-iff :
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows (Rep x = ⊥) = (x = ⊥)
〈proof 〉

8.7 Proving a subtype is flat
theorem typedef-flat:

fixes Abs :: ′a::flat ⇒ ′b::pcpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows OFCLASS( ′b, flat-class)
〈proof 〉

8.8 HOLCF type definition package
〈ML〉

end

9 The type of continuous functions
theory Cfun

imports Cpodef
begin

9.1 Definition of continuous function type
definition cfun = {f :: ′a ⇒ ′b. cont f }

cpodef ( ′a, ′b) cfun (‹(‹notation=‹infix →››- →/ -)› [1 , 0 ] 0 ) = cfun :: ( ′a ⇒
′b) set
〈proof 〉

type-notation (ASCII )
cfun (infixr ‹−>› 0 )

notation (ASCII )
Rep-cfun (‹(‹notation=‹infix $››-$/-)› [999 ,1000 ] 999 )

notation



THEORY “Cfun” 35

Rep-cfun (‹(‹notation=‹infix ·››-·/-)› [999 ,1000 ] 999 )

9.2 Syntax for continuous lambda abstraction
syntax -cabs :: [logic, logic] ⇒ logic

〈ML〉

Syntax for nested abstractions
syntax (ASCII )

-Lambda :: [cargs, logic] ⇒ logic (‹(‹indent=3 notation=‹binder LAM ››LAM -./
-)› [1000 , 10 ] 10 )

syntax
-Lambda :: [cargs, logic] ⇒ logic (‹(‹indent=3 notation=‹binder Λ››Λ -./ -)›

[1000 , 10 ] 10 )

syntax-consts
-Lambda ⇀↽ Abs-cfun

〈ML〉

Dummy patterns for continuous abstraction
translations
Λ -. t ⇀ CONST Abs-cfun (λ-. t)

9.3 Continuous function space is pointed
lemma bottom-cfun: ⊥ ∈ cfun
〈proof 〉

instance cfun :: (cpo, discrete-cpo) discrete-cpo
〈proof 〉

instance cfun :: (cpo, pcpo) pcpo
〈proof 〉

lemmas Rep-cfun-strict =
typedef-Rep-strict [OF type-definition-cfun below-cfun-def bottom-cfun]

lemmas Abs-cfun-strict =
typedef-Abs-strict [OF type-definition-cfun below-cfun-def bottom-cfun]

function application is strict in its first argument
lemma Rep-cfun-strict1 [simp]: ⊥·x = ⊥
〈proof 〉

lemma LAM-strict [simp]: (Λ x. ⊥) = ⊥
〈proof 〉
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for compatibility with old HOLCF-Version
lemma inst-cfun-pcpo: ⊥ = (Λ x. ⊥)
〈proof 〉

9.4 Basic properties of continuous functions

Beta-equality for continuous functions
lemma Abs-cfun-inverse2 : cont f =⇒ Rep-cfun (Abs-cfun f ) = f
〈proof 〉

lemma beta-cfun: cont f =⇒ (Λ x. f x)·u = f u
〈proof 〉

9.4.1 Beta-reduction simproc

Given the term (Λ x. f x)·y, the procedure tries to construct the theorem (Λ
x. f x)·y ≡ f y. If this theorem cannot be completely solved by the cont2cont
rules, then the procedure returns the ordinary conditional beta-cfun rule.
The simproc does not solve any more goals that would be solved by using
beta-cfun as a simp rule. The advantage of the simproc is that it can avoid
deeply-nested calls to the simplifier that would otherwise be caused by large
continuity side conditions.
Update: The simproc now uses rule Abs-cfun-inverse2 instead of beta-cfun,
to avoid problems with eta-contraction.
〈ML〉
Eta-equality for continuous functions
lemma eta-cfun: (Λ x. f ·x) = f
〈proof 〉

Extensionality for continuous functions
lemma cfun-eq-iff : f = g ←→ (∀ x. f ·x = g·x)
〈proof 〉

lemma cfun-eqI : (
∧

x. f ·x = g·x) =⇒ f = g
〈proof 〉

Extensionality wrt. ordering for continuous functions
lemma cfun-below-iff : f v g ←→ (∀ x. f ·x v g·x)
〈proof 〉

lemma cfun-belowI : (
∧

x. f ·x v g·x) =⇒ f v g
〈proof 〉

Congruence for continuous function application
lemma cfun-cong: f = g =⇒ x = y =⇒ f ·x = g·y
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〈proof 〉

lemma cfun-fun-cong: f = g =⇒ f ·x = g·x
〈proof 〉

lemma cfun-arg-cong: x = y =⇒ f ·x = f ·y
〈proof 〉

9.5 Continuity of application
lemma cont-Rep-cfun1 : cont (λf . f ·x)
〈proof 〉

lemma cont-Rep-cfun2 : cont (λx. f ·x)
〈proof 〉

lemmas monofun-Rep-cfun = cont-Rep-cfun [THEN cont2mono]

lemmas monofun-Rep-cfun1 = cont-Rep-cfun1 [THEN cont2mono]
lemmas monofun-Rep-cfun2 = cont-Rep-cfun2 [THEN cont2mono]

contlub, cont properties of Rep-cfun in each argument
lemma contlub-cfun-arg: chain Y =⇒ f ·(

⊔
i. Y i) = (

⊔
i. f ·(Y i))

〈proof 〉

lemma contlub-cfun-fun: chain F =⇒ (
⊔

i. F i)·x = (
⊔

i. F i·x)
〈proof 〉

monotonicity of application
lemma monofun-cfun-fun: f v g =⇒ f ·x v g·x
〈proof 〉

lemma monofun-cfun-arg: x v y =⇒ f ·x v f ·y
〈proof 〉

lemma monofun-cfun: f v g =⇒ x v y =⇒ f ·x v g·y
〈proof 〉

ch2ch - rules for the type ′a → ′b
lemma chain-monofun: chain Y =⇒ chain (λi. f ·(Y i))
〈proof 〉

lemma ch2ch-Rep-cfunR: chain Y =⇒ chain (λi. f ·(Y i))
〈proof 〉

lemma ch2ch-Rep-cfunL: chain F =⇒ chain (λi. (F i)·x)
〈proof 〉

lemma ch2ch-Rep-cfun [simp]: chain F =⇒ chain Y =⇒ chain (λi. (F i)·(Y i))
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〈proof 〉

lemma ch2ch-LAM [simp]:
(
∧

x. chain (λi. S i x)) =⇒ (
∧

i. cont (λx. S i x)) =⇒ chain (λi. Λ x. S i x)
〈proof 〉

contlub, cont properties of Rep-cfun in both arguments
lemma lub-APP: chain F =⇒ chain Y =⇒ (

⊔
i. F i·(Y i)) = (

⊔
i. F i)·(

⊔
i. Y

i)
〈proof 〉

lemma lub-LAM :
assumes

∧
x. chain (λi. F i x)

and
∧

i. cont (λx. F i x)
shows (

⊔
i. Λ x. F i x) = (Λ x.

⊔
i. F i x)

〈proof 〉

lemmas lub-distribs = lub-APP lub-LAM

strictness
lemma strictI : f ·x = ⊥ =⇒ f ·⊥ = ⊥
〈proof 〉

type ′a → ′b is chain complete
lemma lub-cfun: chain F =⇒ (

⊔
i. F i) = (Λ x.

⊔
i. F i·x)

〈proof 〉

9.6 Continuity simplification procedure

cont2cont lemma for Rep-cfun
lemma cont2cont-APP [simp, cont2cont]:

assumes f : cont (λx. f x)
assumes t: cont (λx. t x)
shows cont (λx. (f x)·(t x))
〈proof 〉

Two specific lemmas for the combination of LCF and HOL terms. These
lemmas are needed in theories that use types like ′a → ′b ⇒ ′c.
lemma cont-APP-app [simp]: cont f =⇒ cont g =⇒ cont (λx. ((f x)·(g x)) s)
〈proof 〉

lemma cont-APP-app-app [simp]: cont f =⇒ cont g =⇒ cont (λx. ((f x)·(g x)) s
t)
〈proof 〉

cont2mono Lemma for λx. Λ y. c1 x y
lemma cont2mono-LAM :
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[[
∧

x. cont (λy. f x y);
∧

y. monofun (λx. f x y)]]
=⇒ monofun (λx. Λ y. f x y)
〈proof 〉

cont2cont Lemma for λx. Λ y. f x y

Not suitable as a cont2cont rule, because on nested lambdas it causes expo-
nential blow-up in the number of subgoals.
lemma cont2cont-LAM :

assumes f1 :
∧

x. cont (λy. f x y)
assumes f2 :

∧
y. cont (λx. f x y)

shows cont (λx. Λ y. f x y)
〈proof 〉

This version does work as a cont2cont rule, since it has only a single subgoal.
lemma cont2cont-LAM ′ [simp, cont2cont]:

fixes f :: ′a::cpo ⇒ ′b::cpo ⇒ ′c::cpo
assumes f : cont (λp. f (fst p) (snd p))
shows cont (λx. Λ y. f x y)
〈proof 〉

lemma cont2cont-LAM-discrete [simp, cont2cont]:
(
∧

y:: ′a::discrete-cpo. cont (λx. f x y)) =⇒ cont (λx. Λ y. f x y)
〈proof 〉

9.7 Miscellaneous

Monotonicity of Abs-cfun
lemma monofun-LAM : cont f =⇒ cont g =⇒ (

∧
x. f x v g x) =⇒ (Λ x. f x) v

(Λ x. g x)
〈proof 〉

some lemmata for functions with flat/chfin domain/range types
lemma chfin-Rep-cfunR: chain Y =⇒ ∀ s. ∃n. (LUB i. Y i)·s = Y n·s

for Y :: nat ⇒ ′a::cpo → ′b::chfin
〈proof 〉

lemma adm-chfindom: adm (λ(u:: ′a::cpo → ′b::chfin). P(u·s))
〈proof 〉

9.8 Continuous injection-retraction pairs

Continuous retractions are strict.
lemma retraction-strict: ∀ x. f ·(g·x) = x =⇒ f ·⊥ = ⊥
〈proof 〉

lemma injection-eq: ∀ x. f ·(g·x) = x =⇒ (g·x = g·y) = (x = y)
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〈proof 〉

lemma injection-below: ∀ x. f ·(g·x) = x =⇒ (g·x v g·y) = (x v y)
〈proof 〉

lemma injection-defined-rev: ∀ x. f ·(g·x) = x =⇒ g·z = ⊥ =⇒ z = ⊥
〈proof 〉

lemma injection-defined: ∀ x. f ·(g·x) = x =⇒ z 6= ⊥ =⇒ g·z 6= ⊥
〈proof 〉

a result about functions with flat codomain
lemma flat-eqI : x v y =⇒ x 6= ⊥ =⇒ x = y

for x y :: ′a::flat
〈proof 〉

lemma flat-codom: f ·x = c =⇒ f ·⊥ = ⊥ ∨ (∀ z. f ·z = c)
for c :: ′b::flat
〈proof 〉

9.9 Identity and composition
definition ID :: ′a → ′a

where ID = (Λ x. x)

definition cfcomp :: ( ′b → ′c) → ( ′a → ′b) → ′a → ′c
where oo-def : cfcomp = (Λ f g x. f ·(g·x))

abbreviation cfcomp-syn :: [ ′b → ′c, ′a → ′b] ⇒ ′a → ′c (infixr ‹oo› 100 )
where f oo g == cfcomp·f ·g

lemma ID1 [simp]: ID·x = x
〈proof 〉

lemma cfcomp1 : (f oo g) = (Λ x. f ·(g·x))
〈proof 〉

lemma cfcomp2 [simp]: (f oo g)·x = f ·(g·x)
〈proof 〉

lemma cfcomp-LAM : cont g =⇒ f oo (Λ x. g x) = (Λ x. f ·(g x))
〈proof 〉

lemma cfcomp-strict [simp]: ⊥ oo f = ⊥
〈proof 〉

Show that interpretation of (pcpo, -→-) is a category.

• The class of objects is interpretation of syntactical class pcpo.
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• The class of arrows between objects ′a and ′b is interpret. of ′a → ′b.

• The identity arrow is interpretation of ID.

• The composition of f and g is interpretation of oo.

lemma ID2 [simp]: f oo ID = f
〈proof 〉

lemma ID3 [simp]: ID oo f = f
〈proof 〉

lemma assoc-oo: f oo (g oo h) = (f oo g) oo h
〈proof 〉

9.10 Strictified functions
definition seq :: ′a::pcpo → ′b::pcpo → ′b

where seq = (Λ x. if x = ⊥ then ⊥ else ID)

lemma cont2cont-if-bottom [cont2cont, simp]:
assumes f : cont (λx. f x)

and g: cont (λx. g x)
shows cont (λx. if f x = ⊥ then ⊥ else g x)
〈proof 〉

lemma seq-conv-if : seq·x = (if x = ⊥ then ⊥ else ID)
〈proof 〉

lemma seq-simps [simp]:
seq·⊥ = ⊥
seq·x·⊥ = ⊥
x 6= ⊥ =⇒ seq·x = ID
〈proof 〉

definition strictify :: ( ′a::pcpo → ′b::pcpo) → ′a → ′b
where strictify = (Λ f x. seq·x·(f ·x))

lemma strictify-conv-if : strictify·f ·x = (if x = ⊥ then ⊥ else f ·x)
〈proof 〉

lemma strictify1 [simp]: strictify·f ·⊥ = ⊥
〈proof 〉

lemma strictify2 [simp]: x 6= ⊥ =⇒ strictify·f ·x = f ·x
〈proof 〉

9.11 Continuity of let-bindings
lemma cont2cont-Let:
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assumes f : cont (λx. f x)
assumes g1 :

∧
y. cont (λx. g x y)

assumes g2 :
∧

x. cont (λy. g x y)
shows cont (λx. let y = f x in g x y)
〈proof 〉

lemma cont2cont-Let ′ [simp, cont2cont]:
assumes f : cont (λx. f x)
assumes g: cont (λp. g (fst p) (snd p))
shows cont (λx. let y = f x in g x y)
〈proof 〉

The simple version (suggested by Joachim Breitner) is needed if the type of
the defined term is not a cpo.
lemma cont2cont-Let-simple [simp, cont2cont]:

assumes
∧

y. cont (λx. g x y)
shows cont (λx. let y = t in g x y)
〈proof 〉

end

10 Continuous deflations and ep-pairs
theory Deflation

imports Cfun
begin

10.1 Continuous deflations
locale deflation =

fixes d :: ′a → ′a
assumes idem:

∧
x. d·(d·x) = d·x

assumes below:
∧

x. d·x v x
begin

lemma below-ID: d v ID
〈proof 〉

The set of fixed points is the same as the range.
lemma fixes-eq-range: {x. d·x = x} = range (λx. d·x)
〈proof 〉

lemma range-eq-fixes: range (λx. d·x) = {x. d·x = x}
〈proof 〉

The pointwise ordering on deflation functions coincides with the subset or-
dering of their sets of fixed-points.
lemma belowI :
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assumes f :
∧

x. d·x = x =⇒ f ·x = x
shows d v f
〈proof 〉

lemma belowD: [[f v d; f ·x = x]] =⇒ d·x = x
〈proof 〉

end

lemma deflation-strict: deflation d =⇒ d·⊥ = ⊥
〈proof 〉

lemma adm-deflation: adm (λd. deflation d)
〈proof 〉

lemma deflation-ID: deflation ID
〈proof 〉

lemma deflation-bottom: deflation ⊥
〈proof 〉

lemma deflation-below-iff : deflation p =⇒ deflation q =⇒ p v q ←→ (∀ x. p·x =
x −→ q·x = x)
〈proof 〉

The composition of two deflations is equal to the lesser of the two (if they
are comparable).
lemma deflation-below-comp1 :

assumes deflation f
assumes deflation g
shows f v g =⇒ f ·(g·x) = f ·x
〈proof 〉

lemma deflation-below-comp2 : deflation f =⇒ deflation g =⇒ f v g =⇒ g·(f ·x)
= f ·x
〈proof 〉

10.2 Deflations with finite range
lemma finite-range-imp-finite-fixes:

assumes finite (range f )
shows finite {x. f x = x}
〈proof 〉

locale finite-deflation = deflation +
assumes finite-fixes: finite {x. d·x = x}

begin

lemma finite-range: finite (range (λx. d·x))
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〈proof 〉

lemma finite-image: finite ((λx. d·x) ‘ A)
〈proof 〉

lemma compact: compact (d·x)
〈proof 〉

end

lemma finite-deflation-intro: deflation d =⇒ finite {x. d·x = x} =⇒ finite-deflation
d
〈proof 〉

lemma finite-deflation-imp-deflation: finite-deflation d =⇒ deflation d
〈proof 〉

lemma finite-deflation-bottom: finite-deflation ⊥
〈proof 〉

10.3 Continuous embedding-projection pairs
locale ep-pair =

fixes e :: ′a → ′b and p :: ′b → ′a
assumes e-inverse [simp]:

∧
x. p·(e·x) = x

and e-p-below:
∧

y. e·(p·y) v y
begin

lemma e-below-iff [simp]: e·x v e·y ←→ x v y
〈proof 〉

lemma e-eq-iff [simp]: e·x = e·y ←→ x = y
〈proof 〉

lemma p-eq-iff : e·(p·x) = x =⇒ e·(p·y) = y =⇒ p·x = p·y ←→ x = y
〈proof 〉

lemma p-inverse: (∃ x. y = e·x) ←→ e·(p·y) = y
〈proof 〉

lemma e-below-iff-below-p: e·x v y ←→ x v p·y
〈proof 〉

lemma compact-e-rev: compact (e·x) =⇒ compact x
〈proof 〉

lemma compact-e:
assumes compact x
shows compact (e·x)
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〈proof 〉

lemma compact-e-iff : compact (e·x) ←→ compact x
〈proof 〉

Deflations from ep-pairs
lemma deflation-e-p: deflation (e oo p)
〈proof 〉

lemma deflation-e-d-p:
assumes deflation d
shows deflation (e oo d oo p)
〈proof 〉

lemma finite-deflation-e-d-p:
assumes finite-deflation d
shows finite-deflation (e oo d oo p)
〈proof 〉

lemma deflation-p-d-e:
assumes deflation d
assumes d:

∧
x. d·x v e·(p·x)

shows deflation (p oo d oo e)
〈proof 〉

lemma finite-deflation-p-d-e:
assumes finite-deflation d
assumes d:

∧
x. d·x v e·(p·x)

shows finite-deflation (p oo d oo e)
〈proof 〉

end

10.4 Uniqueness of ep-pairs
lemma ep-pair-unique-e-lemma:

assumes 1 : ep-pair e1 p
and 2 : ep-pair e2 p

shows e1 v e2
〈proof 〉

lemma ep-pair-unique-e: ep-pair e1 p =⇒ ep-pair e2 p =⇒ e1 = e2
〈proof 〉

lemma ep-pair-unique-p-lemma:
assumes 1 : ep-pair e p1

and 2 : ep-pair e p2
shows p1 v p2
〈proof 〉



THEORY “Sprod” 46

lemma ep-pair-unique-p: ep-pair e p1 =⇒ ep-pair e p2 =⇒ p1 = p2
〈proof 〉

10.5 Composing ep-pairs
lemma ep-pair-ID-ID: ep-pair ID ID
〈proof 〉

lemma ep-pair-comp:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (e2 oo e1 ) (p1 oo p2 )
〈proof 〉

locale pcpo-ep-pair = ep-pair e p
for e :: ′a::pcpo → ′b::pcpo
and p :: ′b::pcpo → ′a::pcpo

begin

lemma e-strict [simp]: e·⊥ = ⊥
〈proof 〉

lemma e-bottom-iff [simp]: e·x = ⊥ ←→ x = ⊥
〈proof 〉

lemma e-defined: x 6= ⊥ =⇒ e·x 6= ⊥
〈proof 〉

lemma p-strict [simp]: p·⊥ = ⊥
〈proof 〉

lemmas stricts = e-strict p-strict

end

end

11 The type of strict products
theory Sprod

imports Cfun
begin

11.1 Definition of strict product type
definition sprod = {p:: ′a::pcpo × ′b::pcpo. p = ⊥ ∨ (fst p 6= ⊥ ∧ snd p 6= ⊥)}

pcpodef ( ′a::pcpo, ′b::pcpo) sprod (‹(‹notation=‹infix strict product››- ⊗/ -)›
[21 ,20 ] 20 ) =
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sprod :: ( ′a × ′b) set
〈proof 〉

instance sprod :: ({chfin,pcpo}, {chfin,pcpo}) chfin
〈proof 〉

type-notation (ASCII )
sprod (infixr ‹∗∗› 20 )

11.2 Definitions of constants
definition sfst :: ( ′a::pcpo ∗∗ ′b::pcpo) → ′a

where sfst = (Λ p. fst (Rep-sprod p))

definition ssnd :: ( ′a::pcpo ∗∗ ′b::pcpo) → ′b
where ssnd = (Λ p. snd (Rep-sprod p))

definition spair :: ′a::pcpo → ′b::pcpo → ( ′a ∗∗ ′b)
where spair = (Λ a b. Abs-sprod (seq·b·a, seq·a·b))

definition ssplit :: ( ′a::pcpo → ′b::pcpo → ′c::pcpo) → ( ′a ∗∗ ′b) → ′c
where ssplit = (Λ f p. seq·p·(f ·(sfst·p)·(ssnd·p)))

syntax
-stuple :: [logic, args] ⇒ logic (‹(‹indent=1 notation=‹mixfix strict tuple›› ′(:-,/

-: ′))›)
syntax-consts

-stuple ⇀↽ spair
translations
(:x, y, z:) ⇀↽ (:x, (:y, z:):)
(:x, y:) ⇀↽ CONST spair ·x·y

translations
Λ(CONST spair ·x·y). t ⇀↽ CONST ssplit·(Λ x y. t)

11.3 Case analysis
lemma spair-sprod: (seq·b·a, seq·a·b) ∈ sprod
〈proof 〉

lemma Rep-sprod-spair : Rep-sprod (:a, b:) = (seq·b·a, seq·a·b)
〈proof 〉

lemmas Rep-sprod-simps =
Rep-sprod-inject [symmetric] below-sprod-def
prod-eq-iff below-prod-def
Rep-sprod-strict Rep-sprod-spair

lemma sprodE [case-names bottom spair , cases type: sprod]:
obtains p = ⊥ | x y where p = (:x, y:) and x 6= ⊥ and y 6= ⊥
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〈proof 〉

lemma sprod-induct [case-names bottom spair , induct type: sprod]:
[[P ⊥;

∧
x y. [[x 6= ⊥; y 6= ⊥]] =⇒ P (:x, y:)]] =⇒ P x

〈proof 〉

11.4 Properties of spair
lemma spair-strict1 [simp]: (:⊥, y:) = ⊥
〈proof 〉

lemma spair-strict2 [simp]: (:x, ⊥:) = ⊥
〈proof 〉

lemma spair-bottom-iff [simp]: (:x, y:) = ⊥ ←→ x = ⊥ ∨ y = ⊥
〈proof 〉

lemma spair-below-iff : (:a, b:) v (:c, d:) ←→ a = ⊥ ∨ b = ⊥ ∨ (a v c ∧ b v d)
〈proof 〉

lemma spair-eq-iff : (:a, b:) = (:c, d:) ←→ a = c ∧ b = d ∨ (a = ⊥ ∨ b = ⊥) ∧
(c = ⊥ ∨ d = ⊥)
〈proof 〉

lemma spair-strict: x = ⊥ ∨ y = ⊥ =⇒ (:x, y:) = ⊥
〈proof 〉

lemma spair-strict-rev: (:x, y:) 6= ⊥ =⇒ x 6= ⊥ ∧ y 6= ⊥
〈proof 〉

lemma spair-defined: [[x 6= ⊥; y 6= ⊥]] =⇒ (:x, y:) 6= ⊥
〈proof 〉

lemma spair-defined-rev: (:x, y:) = ⊥ =⇒ x = ⊥ ∨ y = ⊥
〈proof 〉

lemma spair-below: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) v (:a, b:) ←→ x v a ∧ y v b
〈proof 〉

lemma spair-eq: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) = (:a, b:) ←→ x = a ∧ y = b
〈proof 〉

lemma spair-inject: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) = (:a, b:) =⇒ x = a ∧ y = b
〈proof 〉

lemma inst-sprod-pcpo2 : ⊥ = (:⊥, ⊥:)
〈proof 〉

lemma sprodE2 : (
∧

x y. p = (:x, y:) =⇒ Q) =⇒ Q
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〈proof 〉

11.5 Properties of sfst and ssnd
lemma sfst-strict [simp]: sfst·⊥ = ⊥
〈proof 〉

lemma ssnd-strict [simp]: ssnd·⊥ = ⊥
〈proof 〉

lemma sfst-spair [simp]: y 6= ⊥ =⇒ sfst·(:x, y:) = x
〈proof 〉

lemma ssnd-spair [simp]: x 6= ⊥ =⇒ ssnd·(:x, y:) = y
〈proof 〉

lemma sfst-bottom-iff [simp]: sfst·p = ⊥ ←→ p = ⊥
〈proof 〉

lemma ssnd-bottom-iff [simp]: ssnd·p = ⊥ ←→ p = ⊥
〈proof 〉

lemma sfst-defined: p 6= ⊥ =⇒ sfst·p 6= ⊥
〈proof 〉

lemma ssnd-defined: p 6= ⊥ =⇒ ssnd·p 6= ⊥
〈proof 〉

lemma spair-sfst-ssnd: (:sfst·p, ssnd·p:) = p
〈proof 〉

lemma below-sprod: x v y ←→ sfst·x v sfst·y ∧ ssnd·x v ssnd·y
〈proof 〉

lemma eq-sprod: x = y ←→ sfst·x = sfst·y ∧ ssnd·x = ssnd·y
〈proof 〉

lemma sfst-below-iff : sfst·x v y ←→ x v (:y, ssnd·x:)
〈proof 〉

lemma ssnd-below-iff : ssnd·x v y ←→ x v (:sfst·x, y:)
〈proof 〉

11.6 Compactness
lemma compact-sfst: compact x =⇒ compact (sfst·x)
〈proof 〉

lemma compact-ssnd: compact x =⇒ compact (ssnd·x)
〈proof 〉
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lemma compact-spair : compact x =⇒ compact y =⇒ compact (:x, y:)
〈proof 〉

lemma compact-spair-iff : compact (:x, y:) ←→ x = ⊥ ∨ y = ⊥ ∨ (compact x ∧
compact y)
〈proof 〉

11.7 Properties of ssplit
lemma ssplit1 [simp]: ssplit·f ·⊥ = ⊥
〈proof 〉

lemma ssplit2 [simp]: x 6= ⊥ =⇒ y 6= ⊥ =⇒ ssplit·f ·(:x, y:) = f ·x·y
〈proof 〉

lemma ssplit3 [simp]: ssplit·spair ·z = z
〈proof 〉

11.8 Strict product preserves flatness
instance sprod :: (flat, flat) flat
〈proof 〉

end

12 The type of lifted values
theory Up

imports Cfun
begin

12.1 Definition of new type for lifting
datatype ′a u (‹(‹notation=‹postfix lifting››-⊥)› [1000 ] 999 ) = Ibottom | Iup ′a

primrec Ifup :: ( ′a → ′b::pcpo) ⇒ ′a u ⇒ ′b
where

Ifup f Ibottom = ⊥
| Ifup f (Iup x) = f ·x

12.2 Ordering on lifted cpo
instantiation u :: (cpo) below
begin

definition below-up-def :
(v) ≡
(λx y.
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(case x of
Ibottom ⇒ True
| Iup a ⇒ (case y of Ibottom ⇒ False | Iup b ⇒ a v b)))

instance 〈proof 〉

end

lemma minimal-up [iff ]: Ibottom v z
〈proof 〉

lemma not-Iup-below [iff ]: Iup x 6v Ibottom
〈proof 〉

lemma Iup-below [iff ]: (Iup x v Iup y) = (x v y)
〈proof 〉

12.3 Lifted cpo is a partial order
instance u :: (cpo) po
〈proof 〉

12.4 Lifted cpo is a cpo
lemma is-lub-Iup: range S <<| x =⇒ range (λi. Iup (S i)) <<| Iup x
〈proof 〉

lemma up-chain-lemma:
assumes Y : chain Y
obtains ∀ i. Y i = Ibottom
| A k where ∀ i. Iup (A i) = Y (i + k) and chain A and range Y <<| Iup

(
⊔

i. A i)
〈proof 〉

instance u :: (cpo) cpo
〈proof 〉

12.5 Lifted cpo is pointed
instance u :: (cpo) pcpo
〈proof 〉

for compatibility with old HOLCF-Version
lemma inst-up-pcpo: ⊥ = Ibottom
〈proof 〉

12.6 Continuity of Iup and Ifup

continuity for Iup
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lemma cont-Iup: cont Iup
〈proof 〉

continuity for Ifup
lemma cont-Ifup1 : cont (λf . Ifup f x)
〈proof 〉

lemma monofun-Ifup2 : monofun (λx. Ifup f x)
〈proof 〉

lemma cont-Ifup2 : cont (λx. Ifup f x)
〈proof 〉

12.7 Continuous versions of constants
definition up :: ′a → ′a u

where up = (Λ x. Iup x)

definition fup :: ( ′a → ′b::pcpo) → ′a u → ′b
where fup = (Λ f p. Ifup f p)

translations
case l of XCONST up·x ⇒ t ⇀↽ CONST fup·(Λ x. t)·l
case l of (XCONST up :: ′a)·x ⇒ t ⇀ CONST fup·(Λ x. t)·l
Λ(XCONST up·x). t ⇀↽ CONST fup·(Λ x. t)

continuous versions of lemmas for ′a⊥

lemma Exh-Up: z = ⊥ ∨ (∃ x. z = up·x)
〈proof 〉

lemma up-eq [simp]: (up·x = up·y) = (x = y)
〈proof 〉

lemma up-inject: up·x = up·y =⇒ x = y
〈proof 〉

lemma up-defined [simp]: up·x 6= ⊥
〈proof 〉

lemma not-up-less-UU : up·x 6v ⊥
〈proof 〉

lemma up-below [simp]: up·x v up·y ←→ x v y
〈proof 〉

lemma upE [case-names bottom up, cases type: u]: [[p = ⊥ =⇒ Q;
∧

x. p = up·x
=⇒ Q]] =⇒ Q
〈proof 〉
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lemma up-induct [case-names bottom up, induct type: u]: P ⊥ =⇒ (
∧

x. P (up·x))
=⇒ P x
〈proof 〉

lifting preserves chain-finiteness
lemma up-chain-cases:

assumes Y : chain Y
obtains ∀ i. Y i = ⊥
| A k where ∀ i. up·(A i) = Y (i + k) and chain A and (

⊔
i. Y i) = up·(

⊔
i.

A i)
〈proof 〉

lemma compact-up: compact x =⇒ compact (up·x)
〈proof 〉

lemma compact-upD: compact (up·x) =⇒ compact x
〈proof 〉

lemma compact-up-iff [simp]: compact (up·x) = compact x
〈proof 〉

instance u :: (chfin) chfin
〈proof 〉

properties of fup
lemma fup1 [simp]: fup·f ·⊥ = ⊥
〈proof 〉

lemma fup2 [simp]: fup·f ·(up·x) = f ·x
〈proof 〉

lemma fup3 [simp]: fup·up·x = x
〈proof 〉

end

13 Lifting types of class type to flat pcpo’s
theory Lift
imports Up
begin

pcpodef ′a::type lift = UNIV :: ′a discr u set
〈proof 〉

lemmas inst-lift-pcpo = Abs-lift-strict [symmetric]

definition
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Def :: ′a::type ⇒ ′a lift where
Def x = Abs-lift (up·(Discr x))

13.1 Lift as a datatype
lemma lift-induct: [[P ⊥;

∧
x. P (Def x)]] =⇒ P y

〈proof 〉

old-rep-datatype ⊥:: ′a::type lift Def
〈proof 〉

⊥ and Def
lemma not-Undef-is-Def : (x 6= ⊥) = (∃ y. x = Def y)
〈proof 〉

lemma lift-definedE : [[x 6= ⊥;
∧

a. x = Def a =⇒ R]] =⇒ R
〈proof 〉

For x 6= ⊥ in assumptions defined replaces x by Def a in conclusion.
〈ML〉

lemma DefE : Def x = ⊥ =⇒ R
〈proof 〉

lemma DefE2 : [[x = Def s; x = ⊥]] =⇒ R
〈proof 〉

lemma Def-below-Def : Def x v Def y ←→ x = y
〈proof 〉

lemma Def-below-iff [simp]: Def x v y ←→ Def x = y
〈proof 〉

13.2 Lift is flat
instance lift :: (type) flat
〈proof 〉

13.3 Continuity of case-lift
lemma case-lift-eq: case-lift ⊥ f x = fup·(Λ y. f (undiscr y))·(Rep-lift x)
〈proof 〉

lemma cont2cont-case-lift [simp]:
[[
∧

y. cont (λx. f x y); cont g]] =⇒ cont (λx. case-lift ⊥ (f x) (g x))
〈proof 〉

13.4 Further operations
definition
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flift1 :: ( ′a::type ⇒ ′b::pcpo) ⇒ ( ′a lift → ′b) (binder ‹FLIFT › 10 ) where
flift1 = (λf . (Λ x. case-lift ⊥ f x))

translations
Λ(XCONST Def x). t => CONST flift1 (λx. t)
Λ(CONST Def x). FLIFT y. t <= FLIFT x y. t
Λ(CONST Def x). t <= FLIFT x . t

definition
flift2 :: ( ′a::type ⇒ ′b::type) ⇒ ( ′a lift → ′b lift) where
flift2 f = (FLIFT x. Def (f x))

lemma flift1-Def [simp]: flift1 f ·(Def x) = (f x)
〈proof 〉

lemma flift2-Def [simp]: flift2 f ·(Def x) = Def (f x)
〈proof 〉

lemma flift1-strict [simp]: flift1 f ·⊥ = ⊥
〈proof 〉

lemma flift2-strict [simp]: flift2 f ·⊥ = ⊥
〈proof 〉

lemma flift2-defined [simp]: x 6= ⊥ =⇒ (flift2 f )·x 6= ⊥
〈proof 〉

lemma flift2-bottom-iff [simp]: (flift2 f ·x = ⊥) = (x = ⊥)
〈proof 〉

lemma FLIFT-mono:
(
∧

x. f x v g x) =⇒ (FLIFT x . f x) v (FLIFT x. g x)
〈proof 〉

lemma cont2cont-flift1 [simp, cont2cont]:
[[
∧

y. cont (λx. f x y)]] =⇒ cont (λx. FLIFT y. f x y)
〈proof 〉

end

14 The type of lifted booleans
theory Tr

imports Lift
begin

14.1 Type definition and constructors
type-synonym tr = bool lift
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translations
(type) tr ↽ (type) bool lift

definition TT :: tr
where TT = Def True

definition FF :: tr
where FF = Def False

Exhaustion and Elimination for type tr
lemma Exh-tr : t = ⊥ ∨ t = TT ∨ t = FF
〈proof 〉

lemma trE [case-names bottom TT FF , cases type: tr ]:
[[p = ⊥ =⇒ Q; p = TT =⇒ Q; p = FF =⇒ Q]] =⇒ Q
〈proof 〉

lemma tr-induct [case-names bottom TT FF , induct type: tr ]:
P ⊥ =⇒ P TT =⇒ P FF =⇒ P x
〈proof 〉

distinctness for type tr
lemma dist-below-tr [simp]:

TT 6v ⊥ FF 6v ⊥ TT 6v FF FF 6v TT
〈proof 〉

lemma dist-eq-tr [simp]: TT 6= ⊥ FF 6= ⊥ TT 6= FF ⊥ 6= TT ⊥ 6= FF FF 6= TT
〈proof 〉

lemma TT-below-iff [simp]: TT v x ←→ x = TT
〈proof 〉

lemma FF-below-iff [simp]: FF v x ←→ x = FF
〈proof 〉

lemma not-below-TT-iff [simp]: x 6v TT ←→ x = FF
〈proof 〉

lemma not-below-FF-iff [simp]: x 6v FF ←→ x = TT
〈proof 〉

14.2 Case analysis
definition tr-case :: ′a::pcpo → ′a → tr → ′a

where tr-case = (Λ t e (Def b). if b then t else e)

abbreviation cifte-syn :: [tr , ′c::pcpo, ′c] ⇒ ′c (‹(‹notation=‹mixfix If expres-
sion››If (-)/ then (-)/ else (-))› [0 , 0 , 60 ] 60 )
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where If b then e1 else e2 ≡ tr-case·e1 ·e2 ·b

translations
Λ (XCONST TT ). t ⇀↽ CONST tr-case·t·⊥
Λ (XCONST FF). t ⇀↽ CONST tr-case·⊥·t

lemma ifte-thms [simp]:
If ⊥ then e1 else e2 = ⊥
If FF then e1 else e2 = e2
If TT then e1 else e2 = e1
〈proof 〉

14.3 Boolean connectives
definition trand :: tr → tr → tr

where andalso-def : trand = (Λ x y. If x then y else FF)

abbreviation andalso-syn :: tr ⇒ tr ⇒ tr (‹- andalso -› [36 ,35 ] 35 )
where x andalso y ≡ trand·x·y

definition tror :: tr → tr → tr
where orelse-def : tror = (Λ x y. If x then TT else y)

abbreviation orelse-syn :: tr ⇒ tr ⇒ tr (‹- orelse -› [31 ,30 ] 30 )
where x orelse y ≡ tror ·x·y

definition neg :: tr → tr
where neg = flift2 Not

definition If2 :: tr ⇒ ′c::pcpo ⇒ ′c ⇒ ′c
where If2 Q x y = (If Q then x else y)

tactic for tr-thms with case split
lemmas tr-defs = andalso-def orelse-def neg-def tr-case-def TT-def FF-def

lemmas about andalso, orelse, neg and if
lemma andalso-thms [simp]:
(TT andalso y) = y
(FF andalso y) = FF
(⊥ andalso y) = ⊥
(y andalso TT ) = y
(y andalso y) = y
〈proof 〉

lemma orelse-thms [simp]:
(TT orelse y) = TT
(FF orelse y) = y
(⊥ orelse y) = ⊥
(y orelse FF) = y
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(y orelse y) = y
〈proof 〉

lemma neg-thms [simp]:
neg·TT = FF
neg·FF = TT
neg·⊥ = ⊥
〈proof 〉

split-tac for If via If2 because the constant has to be a constant
lemma split-If2 : P (If2 Q x y) ←→ ((Q = ⊥ −→ P ⊥) ∧ (Q = TT −→ P x) ∧
(Q = FF −→ P y))
〈proof 〉

〈ML〉

14.4 Rewriting of HOLCF operations to HOL functions
lemma andalso-or : t 6= ⊥ =⇒ (t andalso s) = FF ←→ t = FF ∨ s = FF
〈proof 〉

lemma andalso-and: t 6= ⊥ =⇒ ((t andalso s) 6= FF) ←→ t 6= FF ∧ s 6= FF
〈proof 〉

lemma Def-bool1 [simp]: Def x 6= FF ←→ x
〈proof 〉

lemma Def-bool2 [simp]: Def x = FF ←→ ¬ x
〈proof 〉

lemma Def-bool3 [simp]: Def x = TT ←→ x
〈proof 〉

lemma Def-bool4 [simp]: Def x 6= TT ←→ ¬ x
〈proof 〉

lemma If-and-if : (If Def P then A else B) = (if P then A else B)
〈proof 〉

14.5 Compactness
lemma compact-TT : compact TT
〈proof 〉

lemma compact-FF : compact FF
〈proof 〉

end
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15 The type of strict sums
theory Ssum

imports Tr
begin

15.1 Definition of strict sum type
definition ssum =
{p :: tr × ( ′a::pcpo × ′b::pcpo). p = ⊥ ∨
(fst p = TT ∧ fst (snd p) 6= ⊥ ∧ snd (snd p) = ⊥) ∨
(fst p = FF ∧ fst (snd p) = ⊥ ∧ snd (snd p) 6= ⊥)}

pcpodef ( ′a::pcpo, ′b::pcpo) ssum (‹(‹notation=‹infix strict sum››- ⊕/ -)› [21 ,
20 ] 20 ) =

ssum :: (tr × ′a × ′b) set
〈proof 〉

instance ssum :: ({chfin,pcpo}, {chfin,pcpo}) chfin
〈proof 〉

type-notation (ASCII )
ssum (infixr ‹++› 10 )

15.2 Definitions of constructors
definition sinl :: ′a::pcpo → ( ′a ++ ′b::pcpo)

where sinl = (Λ a. Abs-ssum (seq·a·TT , a, ⊥))

definition sinr :: ′b::pcpo → ( ′a::pcpo ++ ′b)
where sinr = (Λ b. Abs-ssum (seq·b·FF , ⊥, b))

lemma sinl-ssum: (seq·a·TT , a, ⊥) ∈ ssum
〈proof 〉

lemma sinr-ssum: (seq·b·FF , ⊥, b) ∈ ssum
〈proof 〉

lemma Rep-ssum-sinl: Rep-ssum (sinl·a) = (seq·a·TT , a, ⊥)
〈proof 〉

lemma Rep-ssum-sinr : Rep-ssum (sinr ·b) = (seq·b·FF , ⊥, b)
〈proof 〉

lemmas Rep-ssum-simps =
Rep-ssum-inject [symmetric] below-ssum-def
prod-eq-iff below-prod-def
Rep-ssum-strict Rep-ssum-sinl Rep-ssum-sinr
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15.3 Properties of sinl and sinr

Ordering
lemma sinl-below [simp]: sinl·x v sinl·y ←→ x v y
〈proof 〉

lemma sinr-below [simp]: sinr ·x v sinr ·y ←→ x v y
〈proof 〉

lemma sinl-below-sinr [simp]: sinl·x v sinr ·y ←→ x = ⊥
〈proof 〉

lemma sinr-below-sinl [simp]: sinr ·x v sinl·y ←→ x = ⊥
〈proof 〉

Equality
lemma sinl-eq [simp]: sinl·x = sinl·y ←→ x = y
〈proof 〉

lemma sinr-eq [simp]: sinr ·x = sinr ·y ←→ x = y
〈proof 〉

lemma sinl-eq-sinr [simp]: sinl·x = sinr ·y ←→ x = ⊥ ∧ y = ⊥
〈proof 〉

lemma sinr-eq-sinl [simp]: sinr ·x = sinl·y ←→ x = ⊥ ∧ y = ⊥
〈proof 〉

lemma sinl-inject: sinl·x = sinl·y =⇒ x = y
〈proof 〉

lemma sinr-inject: sinr ·x = sinr ·y =⇒ x = y
〈proof 〉

Strictness
lemma sinl-strict [simp]: sinl·⊥ = ⊥
〈proof 〉

lemma sinr-strict [simp]: sinr ·⊥ = ⊥
〈proof 〉

lemma sinl-bottom-iff [simp]: sinl·x = ⊥ ←→ x = ⊥
〈proof 〉

lemma sinr-bottom-iff [simp]: sinr ·x = ⊥ ←→ x = ⊥
〈proof 〉

lemma sinl-defined: x 6= ⊥ =⇒ sinl·x 6= ⊥
〈proof 〉
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lemma sinr-defined: x 6= ⊥ =⇒ sinr ·x 6= ⊥
〈proof 〉

Compactness
lemma compact-sinl: compact x =⇒ compact (sinl·x)
〈proof 〉

lemma compact-sinr : compact x =⇒ compact (sinr ·x)
〈proof 〉

lemma compact-sinlD: compact (sinl·x) =⇒ compact x
〈proof 〉

lemma compact-sinrD: compact (sinr ·x) =⇒ compact x
〈proof 〉

lemma compact-sinl-iff [simp]: compact (sinl·x) = compact x
〈proof 〉

lemma compact-sinr-iff [simp]: compact (sinr ·x) = compact x
〈proof 〉

15.4 Case analysis
lemma ssumE [case-names bottom sinl sinr , cases type: ssum]:

obtains p = ⊥
| x where p = sinl·x and x 6= ⊥
| y where p = sinr ·y and y 6= ⊥
〈proof 〉

lemma ssum-induct [case-names bottom sinl sinr , induct type: ssum]:
[[P ⊥;∧

x. x 6= ⊥ =⇒ P (sinl·x);∧
y. y 6= ⊥ =⇒ P (sinr ·y)]] =⇒ P x

〈proof 〉

lemma ssumE2 [case-names sinl sinr ]:
[[
∧

x. p = sinl·x =⇒ Q;
∧

y. p = sinr ·y =⇒ Q]] =⇒ Q
〈proof 〉

lemma below-sinlD: p v sinl·x =⇒ ∃ y. p = sinl·y ∧ y v x
〈proof 〉

lemma below-sinrD: p v sinr ·x =⇒ ∃ y. p = sinr ·y ∧ y v x
〈proof 〉

15.5 Case analysis combinator
definition sscase :: ( ′a::pcpo → ′c::pcpo) → ( ′b::pcpo → ′c) → ( ′a ++ ′b) → ′c
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where sscase = (Λ f g s. (λ(t, x, y). If t then f ·x else g·y) (Rep-ssum s))

translations
case s of XCONST sinl·x ⇒ t1 | XCONST sinr ·y ⇒ t2 ⇀↽ CONST sscase·(Λ x.

t1 )·(Λ y. t2 )·s
case s of (XCONST sinl :: ′a)·x ⇒ t1 | XCONST sinr ·y ⇒ t2 ⇀ CONST

sscase·(Λ x. t1 )·(Λ y. t2 )·s

translations
Λ(XCONST sinl·x). t ⇀↽ CONST sscase·(Λ x. t)·⊥
Λ(XCONST sinr ·y). t ⇀↽ CONST sscase·⊥·(Λ y. t)

lemma beta-sscase: sscase·f ·g·s = (λ(t, x, y). If t then f ·x else g·y) (Rep-ssum s)
〈proof 〉

lemma sscase1 [simp]: sscase·f ·g·⊥ = ⊥
〈proof 〉

lemma sscase2 [simp]: x 6= ⊥ =⇒ sscase·f ·g·(sinl·x) = f ·x
〈proof 〉

lemma sscase3 [simp]: y 6= ⊥ =⇒ sscase·f ·g·(sinr ·y) = g·y
〈proof 〉

lemma sscase4 [simp]: sscase·sinl·sinr ·z = z
〈proof 〉

15.6 Strict sum preserves flatness
instance ssum :: (flat, flat) flat
〈proof 〉

end

16 The Strict Function Type
theory Sfun

imports Cfun
begin

pcpodef ( ′a::pcpo, ′b::pcpo) sfun (infixr ‹→!› 0 ) = {f :: ′a → ′b. f ·⊥ = ⊥}
〈proof 〉

type-notation (ASCII )
sfun (infixr ‹−>!› 0 )

TODO: Define nice syntax for abstraction, application.
definition sfun-abs :: ( ′a::pcpo → ′b::pcpo) → ( ′a →! ′b)

where sfun-abs = (Λ f . Abs-sfun (strictify·f ))
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definition sfun-rep :: ( ′a::pcpo →! ′b::pcpo) → ′a → ′b
where sfun-rep = (Λ f . Rep-sfun f )

lemma sfun-rep-beta: sfun-rep·f = Rep-sfun f
〈proof 〉

lemma sfun-rep-strict1 [simp]: sfun-rep·⊥ = ⊥
〈proof 〉

lemma sfun-rep-strict2 [simp]: sfun-rep·f ·⊥ = ⊥
〈proof 〉

lemma strictify-cancel: f ·⊥ = ⊥ =⇒ strictify·f = f
〈proof 〉

lemma sfun-abs-sfun-rep [simp]: sfun-abs·(sfun-rep·f ) = f
〈proof 〉

lemma sfun-rep-sfun-abs [simp]: sfun-rep·(sfun-abs·f ) = strictify·f
〈proof 〉

lemma sfun-eq-iff : f = g ←→ sfun-rep·f = sfun-rep·g
〈proof 〉

lemma sfun-below-iff : f v g ←→ sfun-rep·f v sfun-rep·g
〈proof 〉

end

17 Map functions for various types
theory Map-Functions

imports Deflation Sprod Ssum Sfun Up
begin

17.1 Map operator for continuous function space
definition cfun-map :: ( ′b → ′a) → ( ′c → ′d) → ( ′a → ′c) → ( ′b → ′d)

where cfun-map = (Λ a b f x. b·(f ·(a·x)))

lemma cfun-map-beta [simp]: cfun-map·a·b·f ·x = b·(f ·(a·x))
〈proof 〉

lemma cfun-map-ID: cfun-map·ID·ID = ID
〈proof 〉

lemma cfun-map-map: cfun-map·f1 ·g1 ·(cfun-map·f2 ·g2 ·p) = cfun-map·(Λ x. f2 ·(f1 ·x))·(Λ
x. g1 ·(g2 ·x))·p
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〈proof 〉

lemma ep-pair-cfun-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (cfun-map·p1 ·e2 ) (cfun-map·e1 ·p2 )
〈proof 〉

lemma deflation-cfun-map:
assumes deflation d1 and deflation d2
shows deflation (cfun-map·d1 ·d2 )
〈proof 〉

lemma finite-range-cfun-map:
assumes a: finite (range (λx. a·x))
assumes b: finite (range (λy. b·y))
shows finite (range (λf . cfun-map·a·b·f )) (is finite (range ?h))
〈proof 〉

lemma finite-deflation-cfun-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (cfun-map·d1 ·d2 )
〈proof 〉

Finite deflations are compact elements of the function space
lemma finite-deflation-imp-compact: finite-deflation d =⇒ compact d
〈proof 〉

17.2 Map operator for product type
definition prod-map :: ( ′a → ′b) → ( ′c → ′d) → ′a × ′c → ′b × ′d

where prod-map = (Λ f g p. (f ·(fst p), g·(snd p)))

lemma prod-map-Pair [simp]: prod-map·f ·g·(x, y) = (f ·x, g·y)
〈proof 〉

lemma prod-map-ID: prod-map·ID·ID = ID
〈proof 〉

lemma prod-map-map: prod-map·f1 ·g1 ·(prod-map·f2 ·g2 ·p) = prod-map·(Λ x. f1 ·(f2 ·x))·(Λ
x. g1 ·(g2 ·x))·p
〈proof 〉

lemma ep-pair-prod-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (prod-map·e1 ·e2 ) (prod-map·p1 ·p2 )
〈proof 〉

lemma deflation-prod-map:
assumes deflation d1 and deflation d2
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shows deflation (prod-map·d1 ·d2 )
〈proof 〉

lemma finite-deflation-prod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (prod-map·d1 ·d2 )
〈proof 〉

17.3 Map function for lifted cpo
definition u-map :: ( ′a → ′b) → ′a u → ′b u

where u-map = (Λ f . fup·(up oo f ))

lemma u-map-strict [simp]: u-map·f ·⊥ = ⊥
〈proof 〉

lemma u-map-up [simp]: u-map·f ·(up·x) = up·(f ·x)
〈proof 〉

lemma u-map-ID: u-map·ID = ID
〈proof 〉

lemma u-map-map: u-map·f ·(u-map·g·p) = u-map·(Λ x. f ·(g·x))·p
〈proof 〉

lemma u-map-oo: u-map·(f oo g) = u-map·f oo u-map·g
〈proof 〉

lemma ep-pair-u-map: ep-pair e p =⇒ ep-pair (u-map·e) (u-map·p)
〈proof 〉

lemma deflation-u-map: deflation d =⇒ deflation (u-map·d)
〈proof 〉

lemma finite-deflation-u-map:
assumes finite-deflation d
shows finite-deflation (u-map·d)
〈proof 〉

17.4 Map function for strict products
definition sprod-map :: ( ′a::pcpo → ′b::pcpo) → ( ′c::pcpo → ′d::pcpo) → ′a ⊗ ′c
→ ′b ⊗ ′d

where sprod-map = (Λ f g. ssplit·(Λ x y. (:f ·x, g·y:)))

lemma sprod-map-strict [simp]: sprod-map·a·b·⊥ = ⊥
〈proof 〉

lemma sprod-map-spair [simp]: x 6= ⊥ =⇒ y 6= ⊥ =⇒ sprod-map·f ·g·(:x, y:) =
(:f ·x, g·y:)
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〈proof 〉

lemma sprod-map-spair ′: f ·⊥ = ⊥ =⇒ g·⊥ = ⊥ =⇒ sprod-map·f ·g·(:x, y:) = (:f ·x,
g·y:)
〈proof 〉

lemma sprod-map-ID: sprod-map·ID·ID = ID
〈proof 〉

lemma sprod-map-map:
[[f1 ·⊥ = ⊥; g1 ·⊥ = ⊥]] =⇒

sprod-map·f1 ·g1 ·(sprod-map·f2 ·g2 ·p) =
sprod-map·(Λ x. f1 ·(f2 ·x))·(Λ x. g1 ·(g2 ·x))·p

〈proof 〉

lemma ep-pair-sprod-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (sprod-map·e1 ·e2 ) (sprod-map·p1 ·p2 )
〈proof 〉

lemma deflation-sprod-map:
assumes deflation d1 and deflation d2
shows deflation (sprod-map·d1 ·d2 )
〈proof 〉

lemma finite-deflation-sprod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (sprod-map·d1 ·d2 )
〈proof 〉

17.5 Map function for strict sums
definition ssum-map :: ( ′a::pcpo → ′b::pcpo) → ( ′c::pcpo → ′d::pcpo) → ′a ⊕ ′c
→ ′b ⊕ ′d

where ssum-map = (Λ f g. sscase·(sinl oo f )·(sinr oo g))

lemma ssum-map-strict [simp]: ssum-map·f ·g·⊥ = ⊥
〈proof 〉

lemma ssum-map-sinl [simp]: x 6= ⊥ =⇒ ssum-map·f ·g·(sinl·x) = sinl·(f ·x)
〈proof 〉

lemma ssum-map-sinr [simp]: x 6= ⊥ =⇒ ssum-map·f ·g·(sinr ·x) = sinr ·(g·x)
〈proof 〉

lemma ssum-map-sinl ′: f ·⊥ = ⊥ =⇒ ssum-map·f ·g·(sinl·x) = sinl·(f ·x)
〈proof 〉

lemma ssum-map-sinr ′: g·⊥ = ⊥ =⇒ ssum-map·f ·g·(sinr ·x) = sinr ·(g·x)
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〈proof 〉

lemma ssum-map-ID: ssum-map·ID·ID = ID
〈proof 〉

lemma ssum-map-map:
[[f1 ·⊥ = ⊥; g1 ·⊥ = ⊥]] =⇒

ssum-map·f1 ·g1 ·(ssum-map·f2 ·g2 ·p) =
ssum-map·(Λ x. f1 ·(f2 ·x))·(Λ x. g1 ·(g2 ·x))·p

〈proof 〉

lemma ep-pair-ssum-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (ssum-map·e1 ·e2 ) (ssum-map·p1 ·p2 )
〈proof 〉

lemma deflation-ssum-map:
assumes deflation d1 and deflation d2
shows deflation (ssum-map·d1 ·d2 )
〈proof 〉

lemma finite-deflation-ssum-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (ssum-map·d1 ·d2 )
〈proof 〉

17.6 Map operator for strict function space
definition sfun-map :: ( ′b::pcpo → ′a::pcpo) → ( ′c::pcpo → ′d::pcpo) → ( ′a →! ′c)
→ ( ′b →! ′d)

where sfun-map = (Λ a b. sfun-abs oo cfun-map·a·b oo sfun-rep)

lemma sfun-map-ID: sfun-map·ID·ID = ID
〈proof 〉

lemma sfun-map-map:
assumes f2 ·⊥ = ⊥ and g2 ·⊥ = ⊥
shows sfun-map·f1 ·g1 ·(sfun-map·f2 ·g2 ·p) =

sfun-map·(Λ x. f2 ·(f1 ·x))·(Λ x. g1 ·(g2 ·x))·p
〈proof 〉

lemma ep-pair-sfun-map:
assumes 1 : ep-pair e1 p1
assumes 2 : ep-pair e2 p2
shows ep-pair (sfun-map·p1 ·e2 ) (sfun-map·e1 ·p2 )
〈proof 〉

lemma deflation-sfun-map:
assumes 1 : deflation d1
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assumes 2 : deflation d2
shows deflation (sfun-map·d1 ·d2 )
〈proof 〉

lemma finite-deflation-sfun-map:
assumes finite-deflation d1

and finite-deflation d2
shows finite-deflation (sfun-map·d1 ·d2 )
〈proof 〉

end

18 The cpo of cartesian products
theory Cprod

imports Cfun
begin

18.1 Continuous case function for unit type
definition unit-when :: ′a → unit → ′a

where unit-when = (Λ a -. a)

translations
Λ(). t ⇀↽ CONST unit-when·t

lemma unit-when [simp]: unit-when·a·u = a
〈proof 〉

18.2 Continuous version of split function
definition csplit :: ( ′a → ′b → ′c) → ( ′a × ′b) → ′c

where csplit = (Λ f p. f ·(fst p)·(snd p))

translations
Λ(CONST Pair x y). t ⇀↽ CONST csplit·(Λ x y. t)

abbreviation cfst :: ′a × ′b → ′a
where cfst ≡ Abs-cfun fst

abbreviation csnd :: ′a × ′b → ′b
where csnd ≡ Abs-cfun snd

18.3 Convert all lemmas to the continuous versions
lemma csplit1 [simp]: csplit·f ·⊥ = f ·⊥·⊥
〈proof 〉

lemma csplit-Pair [simp]: csplit·f ·(x, y) = f ·x·y
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〈proof 〉

end

19 Profinite and bifinite cpos
theory Bifinite

imports Map-Functions Cprod Sprod Sfun Up HOL−Library.Countable
begin

19.1 Chains of finite deflations
locale approx-chain =

fixes approx :: nat ⇒ ′a → ′a
assumes chain-approx [simp]: chain (λi. approx i)
assumes lub-approx [simp]: (

⊔
i. approx i) = ID

assumes finite-deflation-approx [simp]:
∧

i. finite-deflation (approx i)
begin

lemma deflation-approx: deflation (approx i)
〈proof 〉

lemma approx-idem: approx i·(approx i·x) = approx i·x
〈proof 〉

lemma approx-below: approx i·x v x
〈proof 〉

lemma finite-range-approx: finite (range (λx. approx i·x))
〈proof 〉

lemma compact-approx [simp]: compact (approx n·x)
〈proof 〉

lemma compact-eq-approx: compact x =⇒ ∃ i. approx i·x = x
〈proof 〉

end

19.2 Omega-profinite and bifinite domains
class bifinite = pcpo +

assumes bifinite: ∃ (a::nat ⇒ ′a → ′a). approx-chain a

class profinite = cpo +
assumes profinite: ∃ (a::nat ⇒ ′a⊥ → ′a⊥). approx-chain a
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19.3 Building approx chains
lemma approx-chain-iso:

assumes a: approx-chain a
assumes [simp]:

∧
x. f ·(g·x) = x

assumes [simp]:
∧

y. g·(f ·y) = y
shows approx-chain (λi. f oo a i oo g)
〈proof 〉

lemma approx-chain-u-map:
assumes approx-chain a
shows approx-chain (λi. u-map·(a i))
〈proof 〉

lemma approx-chain-sfun-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. sfun-map·(a i)·(b i))
〈proof 〉

lemma approx-chain-sprod-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. sprod-map·(a i)·(b i))
〈proof 〉

lemma approx-chain-ssum-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. ssum-map·(a i)·(b i))
〈proof 〉

lemma approx-chain-cfun-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. cfun-map·(a i)·(b i))
〈proof 〉

lemma approx-chain-prod-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. prod-map·(a i)·(b i))
〈proof 〉

Approx chains for countable discrete types.
definition discr-approx :: nat ⇒ ′a::countable discr u → ′a discr u

where discr-approx = (λi. Λ(up·x). if to-nat (undiscr x) < i then up·x else ⊥)

lemma chain-discr-approx [simp]: chain discr-approx
〈proof 〉

lemma lub-discr-approx [simp]: (
⊔

i. discr-approx i) = ID
〈proof 〉

lemma inj-on-undiscr [simp]: inj-on undiscr A
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〈proof 〉

lemma finite-deflation-discr-approx: finite-deflation (discr-approx i)
〈proof 〉

lemma discr-approx: approx-chain discr-approx
〈proof 〉

19.4 Class instance proofs
instance bifinite ⊆ profinite
〈proof 〉

instance u :: (profinite) bifinite
〈proof 〉

Types ′a → ′b and ′a⊥ →! ′b are isomorphic.
definition encode-cfun = (Λ f . sfun-abs·(fup·f ))

definition decode-cfun = (Λ g x. sfun-rep·g·(up·x))

lemma decode-encode-cfun [simp]: decode-cfun·(encode-cfun·x) = x
〈proof 〉

lemma encode-decode-cfun [simp]: encode-cfun·(decode-cfun·y) = y
〈proof 〉

instance cfun :: (profinite, bifinite) bifinite
〈proof 〉

Types ( ′a × ′b)⊥ and ′a⊥ ⊗ ′b⊥ are isomorphic.
definition encode-prod-u = (Λ(up·(x, y)). (:up·x, up·y:))

definition decode-prod-u = (Λ(:up·x, up·y:). up·(x, y))

lemma decode-encode-prod-u [simp]: decode-prod-u·(encode-prod-u·x) = x
〈proof 〉

lemma encode-decode-prod-u [simp]: encode-prod-u·(decode-prod-u·y) = y
〈proof 〉

instance prod :: (profinite, profinite) profinite
〈proof 〉

instance prod :: (bifinite, bifinite) bifinite
〈proof 〉

instance sfun :: (bifinite, bifinite) bifinite
〈proof 〉



THEORY “Completion” 72

instance sprod :: (bifinite, bifinite) bifinite
〈proof 〉

instance ssum :: (bifinite, bifinite) bifinite
〈proof 〉

lemma approx-chain-unit: approx-chain (⊥ :: nat ⇒ unit → unit)
〈proof 〉

instance unit :: bifinite
〈proof 〉

instance discr :: (countable) profinite
〈proof 〉

instance lift :: (countable) bifinite
〈proof 〉

end

20 Defining algebraic domains by ideal completion
theory Completion
imports Cfun
begin

20.1 Ideals over a preorder
locale preorder =

fixes r :: ′a::type ⇒ ′a ⇒ bool (infix ‹�› 50 )
assumes r-refl: x � x
assumes r-trans: [[x � y; y � z]] =⇒ x � z

begin

definition
ideal :: ′a set ⇒ bool where
ideal A = ((∃ x. x ∈ A) ∧ (∀ x∈A. ∀ y∈A. ∃ z∈A. x � z ∧ y � z) ∧
(∀ x y. x � y −→ y ∈ A −→ x ∈ A))

lemma idealI :
assumes ∃ x. x ∈ A
assumes

∧
x y. [[x ∈ A; y ∈ A]] =⇒ ∃ z∈A. x � z ∧ y � z

assumes
∧

x y. [[x � y; y ∈ A]] =⇒ x ∈ A
shows ideal A
〈proof 〉

lemma idealD1 :
ideal A =⇒ ∃ x. x ∈ A
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〈proof 〉

lemma idealD2 :
[[ideal A; x ∈ A; y ∈ A]] =⇒ ∃ z∈A. x � z ∧ y � z
〈proof 〉

lemma idealD3 :
[[ideal A; x � y; y ∈ A]] =⇒ x ∈ A
〈proof 〉

lemma ideal-principal: ideal {x. x � z}
〈proof 〉

lemma ex-ideal: ∃A. A ∈ {A. ideal A}
〈proof 〉

The set of ideals is a cpo
lemma ideal-UN :

fixes A :: nat ⇒ ′a set
assumes ideal-A:

∧
i. ideal (A i)

assumes chain-A:
∧

i j. i ≤ j =⇒ A i ⊆ A j
shows ideal (

⋃
i. A i)

〈proof 〉

lemma typedef-ideal-po:
fixes Abs :: ′a set ⇒ ′b::below
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

shows OFCLASS( ′b, po-class)
〈proof 〉

lemma
fixes Abs :: ′a set ⇒ ′b::po
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

assumes S : chain S
shows typedef-ideal-lub: range S <<| Abs (

⋃
i. Rep (S i))

and typedef-ideal-rep-lub: Rep (
⊔

i. S i) = (
⋃

i. Rep (S i))
〈proof 〉

lemma typedef-ideal-cpo:
fixes Abs :: ′a set ⇒ ′b::po
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

shows OFCLASS( ′b, cpo-class)
〈proof 〉

end
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interpretation below: preorder below :: ′a::po ⇒ ′a ⇒ bool
〈proof 〉

20.2 Lemmas about least upper bounds
lemma is-ub-thelub-ex: [[∃ u. S <<| u; x ∈ S ]] =⇒ x v lub S
〈proof 〉

lemma is-lub-thelub-ex: [[∃ u. S <<| u; S <| x]] =⇒ lub S v x
〈proof 〉

20.3 Locale for ideal completion
hide-const (open) Filter .principal

locale ideal-completion = preorder +
fixes principal :: ′a::type ⇒ ′b
fixes rep :: ′b ⇒ ′a::type set
assumes ideal-rep:

∧
x. ideal (rep x)

assumes rep-lub:
∧

Y . chain Y =⇒ rep (
⊔

i. Y i) = (
⋃

i. rep (Y i))
assumes rep-principal:

∧
a. rep (principal a) = {b. b � a}

assumes belowI :
∧

x y. rep x ⊆ rep y =⇒ x v y
assumes countable: ∃ f :: ′a ⇒ nat. inj f

begin

lemma rep-mono: x v y =⇒ rep x ⊆ rep y
〈proof 〉

lemma below-def : x v y ←→ rep x ⊆ rep y
〈proof 〉

lemma principal-below-iff-mem-rep: principal a v x ←→ a ∈ rep x
〈proof 〉

lemma principal-below-iff [simp]: principal a v principal b ←→ a � b
〈proof 〉

lemma principal-eq-iff : principal a = principal b ←→ a � b ∧ b � a
〈proof 〉

lemma eq-iff : x = y ←→ rep x = rep y
〈proof 〉

lemma principal-mono: a � b =⇒ principal a v principal b
〈proof 〉

lemma ch2ch-principal [simp]:
∀ i. Y i � Y (Suc i) =⇒ chain (λi. principal (Y i))
〈proof 〉
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20.3.1 Principal ideals approximate all elements
lemma compact-principal [simp]: compact (principal a)
〈proof 〉

Construct a chain whose lub is the same as a given ideal
lemma obtain-principal-chain:

obtains Y where ∀ i. Y i � Y (Suc i) and x = (
⊔

i. principal (Y i))
〈proof 〉

lemma principal-induct:
assumes adm: adm P
assumes P:

∧
a. P (principal a)

shows P x
〈proof 〉

lemma compact-imp-principal: compact x =⇒ ∃ a. x = principal a
〈proof 〉

20.4 Defining functions in terms of basis elements
definition

extension :: ( ′a::type ⇒ ′c) ⇒ ′b → ′c where
extension = (λf . (Λ x. lub (f ‘ rep x)))

lemma extension-lemma:
fixes f :: ′a::type ⇒ ′c
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

shows ∃ u. f ‘ rep x <<| u
〈proof 〉

lemma extension-beta:
fixes f :: ′a::type ⇒ ′c
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

shows extension f ·x = lub (f ‘ rep x)
〈proof 〉

lemma extension-principal:
fixes f :: ′a::type ⇒ ′c
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

shows extension f ·(principal a) = f a
〈proof 〉

lemma extension-mono:
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

assumes g-mono:
∧

a b. a � b =⇒ g a v g b
assumes below:

∧
a. f a v g a

shows extension f v extension g
〈proof 〉
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lemma cont-extension:
assumes f-mono:

∧
a b x. a � b =⇒ f x a v f x b

assumes f-cont:
∧

a. cont (λx. f x a)
shows cont (λx. extension (λa. f x a))
〈proof 〉

end

lemma (in preorder) typedef-ideal-completion:
fixes Abs :: ′a set ⇒ ′b
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

assumes principal:
∧

a. principal a = Abs {b. b � a}
assumes countable: ∃ f :: ′a ⇒ nat. inj f
shows ideal-completion r principal Rep
〈proof 〉

end

21 A universal bifinite domain
theory Universal
imports Bifinite Completion HOL−Library.Nat-Bijection
begin

unbundle no binomial-syntax

21.1 Basis for universal domain
21.1.1 Basis datatype
type-synonym ubasis = nat

definition
node :: nat ⇒ ubasis ⇒ ubasis set ⇒ ubasis

where
node i a S = Suc (prod-encode (i, prod-encode (a, set-encode S)))

lemma node-not-0 [simp]: node i a S 6= 0
〈proof 〉

lemma node-gt-0 [simp]: 0 < node i a S
〈proof 〉

lemma node-inject [simp]:
[[finite S ; finite T ]]
=⇒ node i a S = node j b T ←→ i = j ∧ a = b ∧ S = T

〈proof 〉
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lemma node-gt0 : i < node i a S
〈proof 〉

lemma node-gt1 : a < node i a S
〈proof 〉

lemma nat-less-power2 : n < 2^n
〈proof 〉

lemma node-gt2 : [[finite S ; b ∈ S ]] =⇒ b < node i a S
〈proof 〉

lemma eq-prod-encode-pairI :
[[fst (prod-decode x) = a; snd (prod-decode x) = b]] =⇒ x = prod-encode (a, b)
〈proof 〉

lemma node-cases:
assumes 1 : x = 0 =⇒ P
assumes 2 :

∧
i a S . [[finite S ; x = node i a S ]] =⇒ P

shows P
〈proof 〉

lemma node-induct:
assumes 1 : P 0
assumes 2 :

∧
i a S . [[P a; finite S ; ∀ b∈S . P b]] =⇒ P (node i a S)

shows P x
〈proof 〉

21.1.2 Basis ordering
inductive

ubasis-le :: nat ⇒ nat ⇒ bool
where

ubasis-le-refl: ubasis-le a a
| ubasis-le-trans:

[[ubasis-le a b; ubasis-le b c]] =⇒ ubasis-le a c
| ubasis-le-lower :

finite S =⇒ ubasis-le a (node i a S)
| ubasis-le-upper :

[[finite S ; b ∈ S ; ubasis-le a b]] =⇒ ubasis-le (node i a S) b

lemma ubasis-le-minimal: ubasis-le 0 x
〈proof 〉

interpretation udom: preorder ubasis-le
〈proof 〉

21.1.3 Generic take function
function
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ubasis-until :: (ubasis ⇒ bool) ⇒ ubasis ⇒ ubasis
where

ubasis-until P 0 = 0
| finite S =⇒ ubasis-until P (node i a S) =

(if P (node i a S) then node i a S else ubasis-until P a)
〈proof 〉

termination ubasis-until
〈proof 〉

lemma ubasis-until: P 0 =⇒ P (ubasis-until P x)
〈proof 〉

lemma ubasis-until ′: 0 < ubasis-until P x =⇒ P (ubasis-until P x)
〈proof 〉

lemma ubasis-until-same: P x =⇒ ubasis-until P x = x
〈proof 〉

lemma ubasis-until-idem:
P 0 =⇒ ubasis-until P (ubasis-until P x) = ubasis-until P x
〈proof 〉

lemma ubasis-until-0 :
∀ x. x 6= 0 −→ ¬ P x =⇒ ubasis-until P x = 0
〈proof 〉

lemma ubasis-until-less: ubasis-le (ubasis-until P x) x
〈proof 〉

lemma ubasis-until-chain:
assumes PQ:

∧
x. P x =⇒ Q x

shows ubasis-le (ubasis-until P x) (ubasis-until Q x)
〈proof 〉

lemma ubasis-until-mono:
assumes

∧
i a S b. [[finite S ; P (node i a S); b ∈ S ; ubasis-le a b]] =⇒ P b

shows ubasis-le a b =⇒ ubasis-le (ubasis-until P a) (ubasis-until P b)
〈proof 〉

lemma finite-range-ubasis-until:
finite {x. P x} =⇒ finite (range (ubasis-until P))
〈proof 〉

21.2 Defining the universal domain by ideal completion
typedef udom = {S . udom.ideal S}
〈proof 〉
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instantiation udom :: below
begin

definition
x v y ←→ Rep-udom x ⊆ Rep-udom y

instance 〈proof 〉
end

instance udom :: po
〈proof 〉

instance udom :: cpo
〈proof 〉

definition
udom-principal :: nat ⇒ udom where
udom-principal t = Abs-udom {u. ubasis-le u t}

lemma ubasis-countable: ∃ f ::ubasis ⇒ nat. inj f
〈proof 〉

interpretation udom:
ideal-completion ubasis-le udom-principal Rep-udom
〈proof 〉

Universal domain is pointed
lemma udom-minimal: udom-principal 0 v x
〈proof 〉

instance udom :: pcpo
〈proof 〉

lemma inst-udom-pcpo: ⊥ = udom-principal 0
〈proof 〉

21.3 Compact bases of domains
typedef ′a compact-basis = {x:: ′a::pcpo. compact x}
〈proof 〉

lemma Rep-compact-basis ′ [simp]: compact (Rep-compact-basis a)
〈proof 〉

lemma Abs-compact-basis-inverse ′ [simp]:
compact x =⇒ Rep-compact-basis (Abs-compact-basis x) = x

〈proof 〉

instantiation compact-basis :: (pcpo) below
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begin

definition
compact-le-def :
(v) ≡ (λx y. Rep-compact-basis x v Rep-compact-basis y)

instance 〈proof 〉
end

instance compact-basis :: (pcpo) po
〈proof 〉

definition
approximants :: ′a::pcpo ⇒ ′a compact-basis set where
approximants = (λx. {a. Rep-compact-basis a v x})

definition
compact-bot :: ′a::pcpo compact-basis where
compact-bot = Abs-compact-basis ⊥

lemma Rep-compact-bot [simp]: Rep-compact-basis compact-bot = ⊥
〈proof 〉

lemma compact-bot-minimal [simp]: compact-bot v a
〈proof 〉

21.4 Universality of udom

We use a locale to parameterize the construction over a chain of approx
functions on the type to be embedded.
locale bifinite-approx-chain =

approx-chain approx for approx :: nat ⇒ ′a::bifinite → ′a
begin

21.4.1 Choosing a maximal element from a finite set
lemma finite-has-maximal:

fixes A :: ′a compact-basis set
shows [[finite A; A 6= {}]] =⇒ ∃ x∈A. ∀ y∈A. x v y −→ x = y
〈proof 〉

definition
choose :: ′a compact-basis set ⇒ ′a compact-basis

where
choose A = (SOME x. x ∈ {x∈A. ∀ y∈A. x v y −→ x = y})

lemma choose-lemma:
[[finite A; A 6= {}]] =⇒ choose A ∈ {x∈A. ∀ y∈A. x v y −→ x = y}
〈proof 〉
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lemma maximal-choose:
[[finite A; y ∈ A; choose A v y]] =⇒ choose A = y
〈proof 〉

lemma choose-in: [[finite A; A 6= {}]] =⇒ choose A ∈ A
〈proof 〉

function
choose-pos :: ′a compact-basis set ⇒ ′a compact-basis ⇒ nat

where
choose-pos A x =
(if finite A ∧ x ∈ A ∧ x 6= choose A

then Suc (choose-pos (A − {choose A}) x) else 0 )
〈proof 〉

termination choose-pos
〈proof 〉

declare choose-pos.simps [simp del]

lemma choose-pos-choose: finite A =⇒ choose-pos A (choose A) = 0
〈proof 〉

lemma inj-on-choose-pos [OF refl]:
[[card A = n; finite A]] =⇒ inj-on (choose-pos A) A
〈proof 〉

lemma choose-pos-bounded [OF refl]:
[[card A = n; finite A; x ∈ A]] =⇒ choose-pos A x < n
〈proof 〉

lemma choose-pos-lessD:
[[choose-pos A x < choose-pos A y; finite A; x ∈ A; y ∈ A]] =⇒ x 6v y
〈proof 〉

21.4.2 Compact basis take function
primrec

cb-take :: nat ⇒ ′a compact-basis ⇒ ′a compact-basis where
cb-take 0 = (λx. compact-bot)
| cb-take (Suc n) = (λa. Abs-compact-basis (approx n·(Rep-compact-basis a)))

declare cb-take.simps [simp del]

lemma cb-take-zero [simp]: cb-take 0 a = compact-bot
〈proof 〉

lemma Rep-cb-take:
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Rep-compact-basis (cb-take (Suc n) a) = approx n·(Rep-compact-basis a)
〈proof 〉

lemmas approx-Rep-compact-basis = Rep-cb-take [symmetric]

lemma cb-take-covers: ∃n. cb-take n x = x
〈proof 〉

lemma cb-take-less: cb-take n x v x
〈proof 〉

lemma cb-take-idem: cb-take n (cb-take n x) = cb-take n x
〈proof 〉

lemma cb-take-mono: x v y =⇒ cb-take n x v cb-take n y
〈proof 〉

lemma cb-take-chain-le: m ≤ n =⇒ cb-take m x v cb-take n x
〈proof 〉

lemma finite-range-cb-take: finite (range (cb-take n))
〈proof 〉

21.4.3 Rank of basis elements
definition

rank :: ′a compact-basis ⇒ nat
where

rank x = (LEAST n. cb-take n x = x)

lemma compact-approx-rank: cb-take (rank x) x = x
〈proof 〉

lemma rank-leD: rank x ≤ n =⇒ cb-take n x = x
〈proof 〉

lemma rank-leI : cb-take n x = x =⇒ rank x ≤ n
〈proof 〉

lemma rank-le-iff : rank x ≤ n ←→ cb-take n x = x
〈proof 〉

lemma rank-compact-bot [simp]: rank compact-bot = 0
〈proof 〉

lemma rank-eq-0-iff [simp]: rank x = 0 ←→ x = compact-bot
〈proof 〉

definition
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rank-le :: ′a compact-basis ⇒ ′a compact-basis set
where

rank-le x = {y. rank y ≤ rank x}

definition
rank-lt :: ′a compact-basis ⇒ ′a compact-basis set

where
rank-lt x = {y. rank y < rank x}

definition
rank-eq :: ′a compact-basis ⇒ ′a compact-basis set

where
rank-eq x = {y. rank y = rank x}

lemma rank-eq-cong: rank x = rank y =⇒ rank-eq x = rank-eq y
〈proof 〉

lemma rank-lt-cong: rank x = rank y =⇒ rank-lt x = rank-lt y
〈proof 〉

lemma rank-eq-subset: rank-eq x ⊆ rank-le x
〈proof 〉

lemma rank-lt-subset: rank-lt x ⊆ rank-le x
〈proof 〉

lemma finite-rank-le: finite (rank-le x)
〈proof 〉

lemma finite-rank-eq: finite (rank-eq x)
〈proof 〉

lemma finite-rank-lt: finite (rank-lt x)
〈proof 〉

lemma rank-lt-Int-rank-eq: rank-lt x ∩ rank-eq x = {}
〈proof 〉

lemma rank-lt-Un-rank-eq: rank-lt x ∪ rank-eq x = rank-le x
〈proof 〉

21.4.4 Sequencing basis elements
definition

place :: ′a compact-basis ⇒ nat
where

place x = card (rank-lt x) + choose-pos (rank-eq x) x

lemma place-bounded: place x < card (rank-le x)
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〈proof 〉

lemma place-ge: card (rank-lt x) ≤ place x
〈proof 〉

lemma place-rank-mono:
fixes x y :: ′a compact-basis
shows rank x < rank y =⇒ place x < place y
〈proof 〉

lemma place-eqD: place x = place y =⇒ x = y
〈proof 〉

lemma inj-place: inj place
〈proof 〉

21.4.5 Embedding and projection on basis elements
definition

sub :: ′a compact-basis ⇒ ′a compact-basis
where

sub x = (case rank x of 0 ⇒ compact-bot | Suc k ⇒ cb-take k x)

lemma rank-sub-less: x 6= compact-bot =⇒ rank (sub x) < rank x
〈proof 〉

lemma place-sub-less: x 6= compact-bot =⇒ place (sub x) < place x
〈proof 〉

lemma sub-below: sub x v x
〈proof 〉

lemma rank-less-imp-below-sub: [[x v y; rank x < rank y]] =⇒ x v sub y
〈proof 〉

function basis-emb :: ′a compact-basis ⇒ ubasis
where basis-emb x = (if x = compact-bot then 0 else

node (place x) (basis-emb (sub x))
(basis-emb ‘ {y. place y < place x ∧ x v y}))

〈proof 〉

termination basis-emb
〈proof 〉

declare basis-emb.simps [simp del]

lemma basis-emb-compact-bot [simp]:
basis-emb compact-bot = 0
〈proof 〉
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lemma basis-emb-rec:
basis-emb x = node (place x) (basis-emb (sub x)) (basis-emb ‘ {y. place y < place

x ∧ x v y})
if x 6= compact-bot
〈proof 〉

lemma basis-emb-eq-0-iff [simp]:
basis-emb x = 0 ←→ x = compact-bot
〈proof 〉

lemma fin1 : finite {y. place y < place x ∧ x v y}
〈proof 〉

lemma fin2 : finite (basis-emb ‘ {y. place y < place x ∧ x v y})
〈proof 〉

lemma rank-place-mono:
[[place x < place y; x v y]] =⇒ rank x < rank y
〈proof 〉

lemma basis-emb-mono:
x v y =⇒ ubasis-le (basis-emb x) (basis-emb y)
〈proof 〉

lemma inj-basis-emb: inj basis-emb
〈proof 〉

definition
basis-prj :: ubasis ⇒ ′a compact-basis

where
basis-prj x = inv basis-emb
(ubasis-until (λx. x ∈ range (basis-emb :: ′a compact-basis ⇒ ubasis)) x)

lemma basis-prj-basis-emb:
∧

x. basis-prj (basis-emb x) = x
〈proof 〉

lemma basis-prj-node:
[[finite S ; node i a S /∈ range (basis-emb :: ′a compact-basis ⇒ nat)]]
=⇒ basis-prj (node i a S) = (basis-prj a :: ′a compact-basis)

〈proof 〉

lemma basis-prj-0 : basis-prj 0 = compact-bot
〈proof 〉

lemma node-eq-basis-emb-iff :
finite S =⇒ node i a S = basis-emb x ←→

x 6= compact-bot ∧ i = place x ∧ a = basis-emb (sub x) ∧
S = basis-emb ‘ {y. place y < place x ∧ x v y}
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〈proof 〉

lemma basis-prj-mono: ubasis-le a b =⇒ basis-prj a v basis-prj b
〈proof 〉

lemma basis-emb-prj-less: ubasis-le (basis-emb (basis-prj x)) x
〈proof 〉

lemma ideal-completion:
ideal-completion below Rep-compact-basis (approximants :: ′a ⇒ -)
〈proof 〉

end

interpretation compact-basis:
ideal-completion below Rep-compact-basis

approximants :: ′a::bifinite ⇒ ′a compact-basis set
〈proof 〉

21.4.6 EP-pair from any bifinite domain into udom
context bifinite-approx-chain begin

definition
udom-emb :: ′a → udom

where
udom-emb = compact-basis.extension (λx. udom-principal (basis-emb x))

definition
udom-prj :: udom → ′a

where
udom-prj = udom.extension (λx. Rep-compact-basis (basis-prj x))

lemma udom-emb-principal:
udom-emb·(Rep-compact-basis x) = udom-principal (basis-emb x)
〈proof 〉

lemma udom-prj-principal:
udom-prj·(udom-principal x) = Rep-compact-basis (basis-prj x)
〈proof 〉

lemma ep-pair-udom: ep-pair udom-emb udom-prj
〈proof 〉

end

abbreviation udom-emb ≡ bifinite-approx-chain.udom-emb
abbreviation udom-prj ≡ bifinite-approx-chain.udom-prj
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lemmas ep-pair-udom =
bifinite-approx-chain.ep-pair-udom [unfolded bifinite-approx-chain-def ]

21.5 Chain of approx functions for type udom
definition

udom-approx :: nat ⇒ udom → udom
where

udom-approx i =
udom.extension (λx. udom-principal (ubasis-until (λy. y ≤ i) x))

lemma udom-approx-mono:
ubasis-le a b =⇒

udom-principal (ubasis-until (λy. y ≤ i) a) v
udom-principal (ubasis-until (λy. y ≤ i) b)

〈proof 〉

lemma adm-mem-finite: [[cont f ; finite S ]] =⇒ adm (λx. f x ∈ S)
〈proof 〉

lemma udom-approx-principal:
udom-approx i·(udom-principal x) =

udom-principal (ubasis-until (λy. y ≤ i) x)
〈proof 〉

lemma finite-deflation-udom-approx: finite-deflation (udom-approx i)
〈proof 〉

interpretation udom-approx: finite-deflation udom-approx i
〈proof 〉

lemma chain-udom-approx [simp]: chain (λi. udom-approx i)
〈proof 〉

lemma lub-udom-approx [simp]: (
⊔

i. udom-approx i) = ID
〈proof 〉

lemma udom-approx [simp]: approx-chain udom-approx
〈proof 〉

instance udom :: bifinite
〈proof 〉

hide-const (open) node

unbundle binomial-syntax

end
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22 Algebraic deflations
theory Algebraic
imports Universal Map-Functions
begin

22.1 Type constructor for finite deflations
typedef ′a::bifinite fin-defl = {d:: ′a → ′a. finite-deflation d}
〈proof 〉

instantiation fin-defl :: (bifinite) below
begin

definition below-fin-defl-def :
below ≡ λx y. Rep-fin-defl x v Rep-fin-defl y

instance 〈proof 〉
end

instance fin-defl :: (bifinite) po
〈proof 〉

lemma finite-deflation-Rep-fin-defl: finite-deflation (Rep-fin-defl d)
〈proof 〉

lemma deflation-Rep-fin-defl: deflation (Rep-fin-defl d)
〈proof 〉

interpretation Rep-fin-defl: finite-deflation Rep-fin-defl d
〈proof 〉

lemma fin-defl-belowI :
(
∧

x. Rep-fin-defl a·x = x =⇒ Rep-fin-defl b·x = x) =⇒ a v b
〈proof 〉

lemma fin-defl-belowD:
[[a v b; Rep-fin-defl a·x = x]] =⇒ Rep-fin-defl b·x = x
〈proof 〉

lemma fin-defl-eqI :
a = b if (

∧
x. Rep-fin-defl a·x = x ←→ Rep-fin-defl b·x = x)

〈proof 〉

lemma Rep-fin-defl-mono: a v b =⇒ Rep-fin-defl a v Rep-fin-defl b
〈proof 〉

lemma Abs-fin-defl-mono:
[[finite-deflation a; finite-deflation b; a v b]]
=⇒ Abs-fin-defl a v Abs-fin-defl b
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〈proof 〉

lemma (in finite-deflation) compact-belowI :
d v f if

∧
x. compact x =⇒ d·x = x =⇒ f ·x = x

〈proof 〉

lemma compact-Rep-fin-defl [simp]: compact (Rep-fin-defl a)
〈proof 〉

22.2 Defining algebraic deflations by ideal completion
typedef ′a::bifinite defl = {S :: ′a fin-defl set. below.ideal S}
〈proof 〉

instantiation defl :: (bifinite) below
begin

definition x v y ←→ Rep-defl x ⊆ Rep-defl y

instance 〈proof 〉

end

instance defl :: (bifinite) po
〈proof 〉

instance defl :: (bifinite) cpo
〈proof 〉

definition defl-principal :: ′a::bifinite fin-defl ⇒ ′a defl
where defl-principal t = Abs-defl {u. u v t}

lemma fin-defl-countable: ∃ f :: ′a::bifinite fin-defl ⇒ nat. inj f
〈proof 〉

interpretation defl: ideal-completion below defl-principal Rep-defl
〈proof 〉

Algebraic deflations are pointed
lemma defl-minimal: defl-principal (Abs-fin-defl ⊥) v x
〈proof 〉

instance defl :: (bifinite) pcpo
〈proof 〉

lemma inst-defl-pcpo: ⊥ = defl-principal (Abs-fin-defl ⊥)
〈proof 〉
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22.3 Applying algebraic deflations
definition cast :: ′a::bifinite defl → ′a → ′a

where cast = defl.extension Rep-fin-defl

lemma cast-defl-principal: cast·(defl-principal a) = Rep-fin-defl a
〈proof 〉

lemma deflation-cast: deflation (cast·d)
〈proof 〉

lemma finite-deflation-cast: compact d =⇒ finite-deflation (cast·d)
〈proof 〉

interpretation cast: deflation cast·d
〈proof 〉

declare cast.idem [simp]

lemma compact-cast [simp]: compact (cast·d) if compact d
〈proof 〉

lemma cast-below-cast: cast·A v cast·B ←→ A v B
〈proof 〉

lemma compact-cast-iff : compact (cast·d) ←→ compact d
〈proof 〉

lemma cast-below-imp-below: cast·A v cast·B =⇒ A v B
〈proof 〉

lemma cast-eq-imp-eq: cast·A = cast·B =⇒ A = B
〈proof 〉

lemma cast-strict1 [simp]: cast·⊥ = ⊥
〈proof 〉

lemma cast-strict2 [simp]: cast·A·⊥ = ⊥
〈proof 〉

22.4 Deflation combinators
definition

defl-fun1 e p f =
defl.extension (λa.

defl-principal (Abs-fin-defl
(e oo f ·(Rep-fin-defl a) oo p)))

definition
defl-fun2 e p f =
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defl.extension (λa.
defl.extension (λb.

defl-principal (Abs-fin-defl
(e oo f ·(Rep-fin-defl a)·(Rep-fin-defl b) oo p))))

lemma cast-defl-fun1 :
assumes ep: ep-pair e p
assumes f :

∧
a. finite-deflation a =⇒ finite-deflation (f ·a)

shows cast·(defl-fun1 e p f ·A) = e oo f ·(cast·A) oo p
〈proof 〉

lemma cast-defl-fun2 :
assumes ep: ep-pair e p
assumes f :

∧
a b. finite-deflation a =⇒ finite-deflation b =⇒

finite-deflation (f ·a·b)
shows cast·(defl-fun2 e p f ·A·B) = e oo f ·(cast·A)·(cast·B) oo p
〈proof 〉

end

23 Representable domains
theory Representable
imports Algebraic Map-Functions HOL−Library.Countable
begin

23.1 Class of representable domains

We define a “domain” as a pcpo that is isomorphic to some algebraic defla-
tion over the universal domain; this is equivalent to being omega-bifinite.
A predomain is a cpo that, when lifted, becomes a domain. Predomains are
represented by deflations over a lifted universal domain type.
class predomain-syn = cpo +

fixes liftemb :: ′a⊥ → udom⊥
fixes liftprj :: udom⊥ → ′a⊥
fixes liftdefl :: ′a itself ⇒ udom u defl

class predomain = predomain-syn +
assumes predomain-ep: ep-pair liftemb liftprj
assumes cast-liftdefl: cast·(liftdefl TYPE( ′a)) = liftemb oo liftprj

syntax -LIFTDEFL :: type ⇒ logic (‹(1LIFTDEFL/(1 ′(- ′)))›)
syntax-consts -LIFTDEFL ⇀↽ liftdefl
translations LIFTDEFL( ′t) ⇀↽ CONST liftdefl TYPE( ′t)

definition liftdefl-of :: udom defl → udom u defl
where liftdefl-of = defl-fun1 ID ID u-map
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lemma cast-liftdefl-of : cast·(liftdefl-of ·t) = u-map·(cast·t)
〈proof 〉

class domain = predomain-syn + pcpo +
fixes emb :: ′a → udom
fixes prj :: udom → ′a
fixes defl :: ′a itself ⇒ udom defl
assumes ep-pair-emb-prj: ep-pair emb prj
assumes cast-DEFL: cast·(defl TYPE( ′a)) = emb oo prj
assumes liftemb-eq: liftemb = u-map·emb
assumes liftprj-eq: liftprj = u-map·prj
assumes liftdefl-eq: liftdefl TYPE( ′a) = liftdefl-of ·(defl TYPE( ′a))

syntax -DEFL :: type ⇒ logic (‹(1DEFL/(1 ′(- ′)))›)
syntax-consts -DEFL ⇀↽ defl
translations DEFL( ′t) ⇀↽ CONST defl TYPE( ′t)

instance domain ⊆ predomain
〈proof 〉

Constants liftemb and liftprj imply class predomain.
〈ML〉

interpretation predomain: pcpo-ep-pair liftemb liftprj
〈proof 〉

interpretation domain: pcpo-ep-pair emb prj
〈proof 〉

lemmas emb-inverse = domain.e-inverse
lemmas emb-prj-below = domain.e-p-below
lemmas emb-eq-iff = domain.e-eq-iff
lemmas emb-strict = domain.e-strict
lemmas prj-strict = domain.p-strict

23.2 Domains are bifinite
lemma approx-chain-ep-cast:

assumes ep: ep-pair (e:: ′a::pcpo → ′b::bifinite) (p:: ′b → ′a)
assumes cast-t: cast·t = e oo p
shows ∃ (a::nat ⇒ ′a::pcpo → ′a). approx-chain a
〈proof 〉

instance domain ⊆ bifinite
〈proof 〉

instance predomain ⊆ profinite
〈proof 〉
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23.3 Universal domain ep-pairs
definition u-emb = udom-emb (λi. u-map·(udom-approx i))
definition u-prj = udom-prj (λi. u-map·(udom-approx i))

definition prod-emb = udom-emb (λi. prod-map·(udom-approx i)·(udom-approx
i))
definition prod-prj = udom-prj (λi. prod-map·(udom-approx i)·(udom-approx i))

definition sprod-emb = udom-emb (λi. sprod-map·(udom-approx i)·(udom-approx
i))
definition sprod-prj = udom-prj (λi. sprod-map·(udom-approx i)·(udom-approx i))

definition ssum-emb = udom-emb (λi. ssum-map·(udom-approx i)·(udom-approx
i))
definition ssum-prj = udom-prj (λi. ssum-map·(udom-approx i)·(udom-approx i))

definition sfun-emb = udom-emb (λi. sfun-map·(udom-approx i)·(udom-approx i))
definition sfun-prj = udom-prj (λi. sfun-map·(udom-approx i)·(udom-approx i))

lemma ep-pair-u: ep-pair u-emb u-prj
〈proof 〉

lemma ep-pair-prod: ep-pair prod-emb prod-prj
〈proof 〉

lemma ep-pair-sprod: ep-pair sprod-emb sprod-prj
〈proof 〉

lemma ep-pair-ssum: ep-pair ssum-emb ssum-prj
〈proof 〉

lemma ep-pair-sfun: ep-pair sfun-emb sfun-prj
〈proof 〉

23.4 Type combinators
definition u-defl :: udom defl → udom defl

where u-defl = defl-fun1 u-emb u-prj u-map

definition prod-defl :: udom defl → udom defl → udom defl
where prod-defl = defl-fun2 prod-emb prod-prj prod-map

definition sprod-defl :: udom defl → udom defl → udom defl
where sprod-defl = defl-fun2 sprod-emb sprod-prj sprod-map

definition ssum-defl :: udom defl → udom defl → udom defl
where ssum-defl = defl-fun2 ssum-emb ssum-prj ssum-map

definition sfun-defl :: udom defl → udom defl → udom defl
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where sfun-defl = defl-fun2 sfun-emb sfun-prj sfun-map

lemma cast-u-defl:
cast·(u-defl·A) = u-emb oo u-map·(cast·A) oo u-prj
〈proof 〉

lemma cast-prod-defl:
cast·(prod-defl·A·B) =

prod-emb oo prod-map·(cast·A)·(cast·B) oo prod-prj
〈proof 〉

lemma cast-sprod-defl:
cast·(sprod-defl·A·B) =

sprod-emb oo sprod-map·(cast·A)·(cast·B) oo sprod-prj
〈proof 〉

lemma cast-ssum-defl:
cast·(ssum-defl·A·B) =

ssum-emb oo ssum-map·(cast·A)·(cast·B) oo ssum-prj
〈proof 〉

lemma cast-sfun-defl:
cast·(sfun-defl·A·B) =

sfun-emb oo sfun-map·(cast·A)·(cast·B) oo sfun-prj
〈proof 〉

Special deflation combinator for unpointed types.
definition u-liftdefl :: udom u defl → udom defl

where u-liftdefl = defl-fun1 u-emb u-prj ID

lemma cast-u-liftdefl:
cast·(u-liftdefl·A) = u-emb oo cast·A oo u-prj
〈proof 〉

lemma u-liftdefl-liftdefl-of :
u-liftdefl·(liftdefl-of ·A) = u-defl·A
〈proof 〉

23.5 Class instance proofs
23.5.1 Universal domain
instantiation udom :: domain
begin

definition [simp]:
emb = (ID :: udom → udom)

definition [simp]:
prj = (ID :: udom → udom)
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definition
defl (t::udom itself ) = (

⊔
i. defl-principal (Abs-fin-defl (udom-approx i)))

definition
(liftemb :: udom u → udom u) = u-map·emb

definition
(liftprj :: udom u → udom u) = u-map·prj

definition
liftdefl (t::udom itself ) = liftdefl-of ·DEFL(udom)

instance 〈proof 〉

end

23.5.2 Lifted cpo
instantiation u :: (predomain) domain
begin

definition
emb = u-emb oo liftemb

definition
prj = liftprj oo u-prj

definition
defl (t:: ′a u itself ) = u-liftdefl·LIFTDEFL( ′a)

definition
(liftemb :: ′a u u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a u u) = u-map·prj

definition
liftdefl (t:: ′a u itself ) = liftdefl-of ·DEFL( ′a u)

instance 〈proof 〉

end

lemma DEFL-u: DEFL( ′a::predomain u) = u-liftdefl·LIFTDEFL( ′a)
〈proof 〉

23.5.3 Strict function space
instantiation sfun :: (domain, domain) domain
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begin

definition
emb = sfun-emb oo sfun-map·prj·emb

definition
prj = sfun-map·emb·prj oo sfun-prj

definition
defl (t::( ′a →! ′b) itself ) = sfun-defl·DEFL( ′a)·DEFL( ′b)

definition
(liftemb :: ( ′a →! ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → ( ′a →! ′b) u) = u-map·prj

definition
liftdefl (t::( ′a →! ′b) itself ) = liftdefl-of ·DEFL( ′a →! ′b)

instance 〈proof 〉

end

lemma DEFL-sfun:
DEFL( ′a::domain →! ′b::domain) = sfun-defl·DEFL( ′a)·DEFL( ′b)
〈proof 〉

23.5.4 Continuous function space
instantiation cfun :: (predomain, domain) domain
begin

definition
emb = emb oo encode-cfun

definition
prj = decode-cfun oo prj

definition
defl (t::( ′a → ′b) itself ) = DEFL( ′a u →! ′b)

definition
(liftemb :: ( ′a → ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → ( ′a → ′b) u) = u-map·prj

definition
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liftdefl (t::( ′a → ′b) itself ) = liftdefl-of ·DEFL( ′a → ′b)

instance 〈proof 〉

end

lemma DEFL-cfun:
DEFL( ′a::predomain → ′b::domain) = DEFL( ′a u →! ′b)
〈proof 〉

23.5.5 Strict product
instantiation sprod :: (domain, domain) domain
begin

definition
emb = sprod-emb oo sprod-map·emb·emb

definition
prj = sprod-map·prj·prj oo sprod-prj

definition
defl (t::( ′a ⊗ ′b) itself ) = sprod-defl·DEFL( ′a)·DEFL( ′b)

definition
(liftemb :: ( ′a ⊗ ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → ( ′a ⊗ ′b) u) = u-map·prj

definition
liftdefl (t::( ′a ⊗ ′b) itself ) = liftdefl-of ·DEFL( ′a ⊗ ′b)

instance 〈proof 〉

end

lemma DEFL-sprod:
DEFL( ′a::domain ⊗ ′b::domain) = sprod-defl·DEFL( ′a)·DEFL( ′b)
〈proof 〉

23.5.6 Cartesian product
definition prod-liftdefl :: udom u defl → udom u defl → udom u defl

where prod-liftdefl = defl-fun2 (u-map·prod-emb oo decode-prod-u)
(encode-prod-u oo u-map·prod-prj) sprod-map

lemma cast-prod-liftdefl:
cast·(prod-liftdefl·a·b) =
(u-map·prod-emb oo decode-prod-u) oo sprod-map·(cast·a)·(cast·b) oo
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(encode-prod-u oo u-map·prod-prj)
〈proof 〉

instantiation prod :: (predomain, predomain) predomain
begin

definition
liftemb = (u-map·prod-emb oo decode-prod-u) oo
(sprod-map·liftemb·liftemb oo encode-prod-u)

definition
liftprj = (decode-prod-u oo sprod-map·liftprj·liftprj) oo
(encode-prod-u oo u-map·prod-prj)

definition
liftdefl (t::( ′a × ′b) itself ) = prod-liftdefl·LIFTDEFL( ′a)·LIFTDEFL( ′b)

instance 〈proof 〉

end

instantiation prod :: (domain, domain) domain
begin

definition
emb = prod-emb oo prod-map·emb·emb

definition
prj = prod-map·prj·prj oo prod-prj

definition
defl (t::( ′a × ′b) itself ) = prod-defl·DEFL( ′a)·DEFL( ′b)

instance 〈proof 〉

end

lemma DEFL-prod:
DEFL( ′a::domain × ′b::domain) = prod-defl·DEFL( ′a)·DEFL( ′b)
〈proof 〉

lemma LIFTDEFL-prod:
LIFTDEFL( ′a::predomain × ′b::predomain) =

prod-liftdefl·LIFTDEFL( ′a)·LIFTDEFL( ′b)
〈proof 〉

23.5.7 Unit type
instantiation unit :: domain
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begin

definition
emb = (⊥ :: unit → udom)

definition
prj = (⊥ :: udom → unit)

definition
defl (t::unit itself ) = ⊥

definition
(liftemb :: unit u → udom u) = u-map·emb

definition
(liftprj :: udom u → unit u) = u-map·prj

definition
liftdefl (t::unit itself ) = liftdefl-of ·DEFL(unit)

instance 〈proof 〉

end

23.5.8 Discrete cpo
instantiation discr :: (countable) predomain
begin

definition
(liftemb :: ′a discr u → udom u) = strictify·up oo udom-emb discr-approx

definition
(liftprj :: udom u → ′a discr u) = udom-prj discr-approx oo fup·ID

definition
liftdefl (t:: ′a discr itself ) =
(
⊔

i. defl-principal (Abs-fin-defl (liftemb oo discr-approx i oo (liftprj::udom u
→ ′a discr u))))

instance 〈proof 〉

end

23.5.9 Strict sum
instantiation ssum :: (domain, domain) domain
begin

definition
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emb = ssum-emb oo ssum-map·emb·emb

definition
prj = ssum-map·prj·prj oo ssum-prj

definition
defl (t::( ′a ⊕ ′b) itself ) = ssum-defl·DEFL( ′a)·DEFL( ′b)

definition
(liftemb :: ( ′a ⊕ ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → ( ′a ⊕ ′b) u) = u-map·prj

definition
liftdefl (t::( ′a ⊕ ′b) itself ) = liftdefl-of ·DEFL( ′a ⊕ ′b)

instance 〈proof 〉

end

lemma DEFL-ssum:
DEFL( ′a::domain ⊕ ′b::domain) = ssum-defl·DEFL( ′a)·DEFL( ′b)
〈proof 〉

23.5.10 Lifted HOL type
instantiation lift :: (countable) domain
begin

definition
emb = emb oo (Λ x. Rep-lift x)

definition
prj = (Λ y. Abs-lift y) oo prj

definition
defl (t:: ′a lift itself ) = DEFL( ′a discr u)

definition
(liftemb :: ′a lift u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a lift u) = u-map·prj

definition
liftdefl (t:: ′a lift itself ) = liftdefl-of ·DEFL( ′a lift)

instance 〈proof 〉



THEORY “One” 101

end

end

24 The unit domain
theory One

imports Lift
begin

type-synonym one = unit lift

translations
(type) one ↽ (type) unit lift

definition ONE :: one
where ONE ≡ Def ()

Exhaustion and Elimination for type one
lemma Exh-one: t = ⊥ ∨ t = ONE
〈proof 〉

lemma oneE [case-names bottom ONE ]: [[p = ⊥ =⇒ Q; p = ONE =⇒ Q]] =⇒ Q
〈proof 〉

lemma one-induct [case-names bottom ONE ]: P ⊥ =⇒ P ONE =⇒ P x
〈proof 〉

lemma dist-below-one [simp]: ONE 6v ⊥
〈proof 〉

lemma below-ONE [simp]: x v ONE
〈proof 〉

lemma ONE-below-iff [simp]: ONE v x ←→ x = ONE
〈proof 〉

lemma ONE-defined [simp]: ONE 6= ⊥
〈proof 〉

lemma one-neq-iffs [simp]:
x 6= ONE ←→ x = ⊥
ONE 6= x ←→ x = ⊥
x 6= ⊥ ←→ x = ONE
⊥ 6= x ←→ x = ONE
〈proof 〉

lemma compact-ONE : compact ONE
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〈proof 〉

Case analysis function for type one
definition one-case :: ′a::pcpo → one → ′a

where one-case = (Λ a x. seq·x·a)

translations
case x of XCONST ONE ⇒ t ⇀↽ CONST one-case·t·x
case x of XCONST ONE :: ′a ⇒ t ⇀ CONST one-case·t·x
Λ (XCONST ONE). t ⇀↽ CONST one-case·t

lemma one-case1 [simp]: (case ⊥ of ONE ⇒ t) = ⊥
〈proof 〉

lemma one-case2 [simp]: (case ONE of ONE ⇒ t) = t
〈proof 〉

lemma one-case3 [simp]: (case x of ONE ⇒ ONE) = x
〈proof 〉

end

theory Fixrec
imports Cprod Sprod Ssum Up One Tr Cfun
keywords fixrec :: thy-defn
begin

25 Fixed point operator and admissibility
25.1 Iteration
primrec iterate :: nat ⇒ ( ′a → ′a) → ( ′a → ′a)

where
iterate 0 = (Λ F x. x)
| iterate (Suc n) = (Λ F x. F ·(iterate n·F ·x))

Derive inductive properties of iterate from primitive recursion
lemma iterate-0 [simp]: iterate 0 ·F ·x = x
〈proof 〉

lemma iterate-Suc [simp]: iterate (Suc n)·F ·x = F ·(iterate n·F ·x)
〈proof 〉

declare iterate.simps [simp del]

lemma iterate-Suc2 : iterate (Suc n)·F ·x = iterate n·F ·(F ·x)
〈proof 〉
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lemma iterate-iterate: iterate m·F ·(iterate n·F ·x) = iterate (m + n)·F ·x
〈proof 〉

The sequence of function iterations is a chain.
lemma chain-iterate [simp]: chain (λi. iterate i·F ·⊥)
〈proof 〉

25.2 Least fixed point operator
definition fix :: ( ′a::pcpo → ′a) → ′a

where fix = (Λ F .
⊔

i. iterate i·F ·⊥)

Binder syntax for fix
abbreviation fix-syn :: ( ′a::pcpo ⇒ ′a) ⇒ ′a (binder ‹µ › 10 )

where fix-syn (λx. f x) ≡ fix·(Λ x. f x)

notation (ASCII )
fix-syn (binder ‹FIX › 10 )

Properties of fix

direct connection between fix and iteration
lemma fix-def2 : fix·F = (

⊔
i. iterate i·F ·⊥)

〈proof 〉

lemma iterate-below-fix: iterate n·f ·⊥ v fix·f
〈proof 〉

Kleene’s fixed point theorems for continuous functions in pointed omega
cpo’s
lemma fix-eq: fix·F = F ·(fix·F)
〈proof 〉

lemma fix-least-below: F ·x v x =⇒ fix·F v x
〈proof 〉

lemma fix-least: F ·x = x =⇒ fix·F v x
〈proof 〉

lemma fix-eqI :
assumes fixed: F ·x = x

and least:
∧

z. F ·z = z =⇒ x v z
shows fix·F = x
〈proof 〉

lemma fix-eq2 : f ≡ fix·F =⇒ f = F ·f
〈proof 〉

lemma fix-eq3 : f ≡ fix·F =⇒ f ·x = F ·f ·x
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〈proof 〉

lemma fix-eq4 : f = fix·F =⇒ f = F ·f
〈proof 〉

lemma fix-eq5 : f = fix·F =⇒ f ·x = F ·f ·x
〈proof 〉

strictness of fix
lemma fix-bottom-iff : fix·F = ⊥ ←→ F ·⊥ = ⊥
〈proof 〉

lemma fix-strict: F ·⊥ = ⊥ =⇒ fix·F = ⊥
〈proof 〉

lemma fix-defined: F ·⊥ 6= ⊥ =⇒ fix·F 6= ⊥
〈proof 〉

fix applied to identity and constant functions
lemma fix-id: (µ x. x) = ⊥
〈proof 〉

lemma fix-const: (µ x. c) = c
〈proof 〉

25.3 Fixed point induction
lemma fix-ind: adm P =⇒ P ⊥ =⇒ (

∧
x. P x =⇒ P (F ·x)) =⇒ P (fix·F)

〈proof 〉

lemma cont-fix-ind: cont F =⇒ adm P =⇒ P ⊥ =⇒ (
∧

x. P x =⇒ P (F x)) =⇒
P (fix·(Abs-cfun F))
〈proof 〉

lemma def-fix-ind: [[f ≡ fix·F ; adm P; P ⊥;
∧

x. P x =⇒ P (F ·x)]] =⇒ P f
〈proof 〉

lemma fix-ind2 :
assumes adm: adm P
assumes 0 : P ⊥ and 1 : P (F ·⊥)
assumes step:

∧
x. [[P x; P (F ·x)]] =⇒ P (F ·(F ·x))

shows P (fix·F)
〈proof 〉

lemma parallel-fix-ind:
assumes adm: adm (λx. P (fst x) (snd x))
assumes base: P ⊥ ⊥
assumes step:

∧
x y. P x y =⇒ P (F ·x) (G·y)

shows P (fix·F) (fix·G)
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〈proof 〉

lemma cont-parallel-fix-ind:
assumes cont F and cont G
assumes adm (λx. P (fst x) (snd x))
assumes P ⊥ ⊥
assumes

∧
x y. P x y =⇒ P (F x) (G y)

shows P (fix·(Abs-cfun F)) (fix·(Abs-cfun G))
〈proof 〉

25.4 Fixed-points on product types

Bekic’s Theorem: Simultaneous fixed points over pairs can be written in
terms of separate fixed points.
lemma fix-cprod:

fixes F :: ′a::pcpo × ′b::pcpo → ′a × ′b
shows

fix·F =
(µ x. fst (F ·(x, µ y. snd (F ·(x, y)))),
µ y. snd (F ·(µ x. fst (F ·(x, µ y. snd (F ·(x, y)))), y)))

(is fix·F = (?x, ?y))
〈proof 〉

26 Package for defining recursive functions in HOLCF
26.1 Pattern-match monad
pcpodef ′a match = UNIV ::(one ++ ′a u) set
〈proof 〉

definition
fail :: ′a match where
fail = Abs-match (sinl·ONE)

definition
succeed :: ′a → ′a match where
succeed = (Λ x. Abs-match (sinr ·(up·x)))

lemma matchE [case-names bottom fail succeed, cases type: match]:
[[p = ⊥ =⇒ Q; p = fail =⇒ Q;

∧
x. p = succeed·x =⇒ Q]] =⇒ Q

〈proof 〉

lemma succeed-defined [simp]: succeed·x 6= ⊥
〈proof 〉

lemma fail-defined [simp]: fail 6= ⊥
〈proof 〉
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lemma succeed-eq [simp]: (succeed·x = succeed·y) = (x = y)
〈proof 〉

lemma succeed-neq-fail [simp]:
succeed·x 6= fail fail 6= succeed·x
〈proof 〉

26.1.1 Run operator
definition

run :: ′a match → ′a::pcpo where
run = (Λ m. sscase·⊥·(fup·ID)·(Rep-match m))

rewrite rules for run
lemma run-strict [simp]: run·⊥ = ⊥
〈proof 〉

lemma run-fail [simp]: run·fail = ⊥
〈proof 〉

lemma run-succeed [simp]: run·(succeed·x) = x
〈proof 〉

26.1.2 Monad plus operator
definition

mplus :: ′a match → ′a match → ′a match where
mplus = (Λ m1 m2 . sscase·(Λ -. m2 )·(Λ -. m1 )·(Rep-match m1 ))

abbreviation
mplus-syn :: [ ′a match, ′a match] ⇒ ′a match (infixr ‹+++› 65 ) where
m1 +++ m2 == mplus·m1 ·m2

rewrite rules for mplus
lemma mplus-strict [simp]: ⊥ +++ m = ⊥
〈proof 〉

lemma mplus-fail [simp]: fail +++ m = m
〈proof 〉

lemma mplus-succeed [simp]: succeed·x +++ m = succeed·x
〈proof 〉

lemma mplus-fail2 [simp]: m +++ fail = m
〈proof 〉

lemma mplus-assoc: (x +++ y) +++ z = x +++ (y +++ z)
〈proof 〉
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26.2 Match functions for built-in types
definition

match-bottom :: ′a::pcpo → ′c match → ′c match
where

match-bottom = (Λ x k. seq·x·fail)

definition
match-Pair :: ′a × ′b → ( ′a → ′b → ′c match) → ′c match

where
match-Pair = (Λ x k. csplit·k·x)

definition
match-spair :: ′a::pcpo ⊗ ′b::pcpo → ( ′a → ′b → ′c match) → ′c::pcpo match

where
match-spair = (Λ x k. ssplit·k·x)

definition
match-sinl :: ′a::pcpo ⊕ ′b::pcpo → ( ′a → ′c::pcpo match) → ′c match

where
match-sinl = (Λ x k. sscase·k·(Λ b. fail)·x)

definition
match-sinr :: ′a::pcpo ⊕ ′b::pcpo → ( ′b → ′c::pcpo match) → ′c match

where
match-sinr = (Λ x k. sscase·(Λ a. fail)·k·x)

definition
match-up :: ′a u → ( ′a → ′c::pcpo match) → ′c match

where
match-up = (Λ x k. fup·k·x)

definition
match-ONE :: one → ′c::pcpo match → ′c match

where
match-ONE = (Λ ONE k. k)

definition
match-TT :: tr → ′c::pcpo match → ′c match

where
match-TT = (Λ x k. If x then k else fail)

definition
match-FF :: tr → ′c::pcpo match → ′c match

where
match-FF = (Λ x k. If x then fail else k)

lemma match-bottom-simps [simp]:
match-bottom·x·k = (if x = ⊥ then ⊥ else fail)
〈proof 〉
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lemma match-Pair-simps [simp]:
match-Pair ·(x, y)·k = k·x·y
〈proof 〉

lemma match-spair-simps [simp]:
[[x 6= ⊥; y 6= ⊥]] =⇒ match-spair ·(:x, y:)·k = k·x·y
match-spair ·⊥·k = ⊥
〈proof 〉

lemma match-sinl-simps [simp]:
x 6= ⊥ =⇒ match-sinl·(sinl·x)·k = k·x
y 6= ⊥ =⇒ match-sinl·(sinr ·y)·k = fail
match-sinl·⊥·k = ⊥
〈proof 〉

lemma match-sinr-simps [simp]:
x 6= ⊥ =⇒ match-sinr ·(sinl·x)·k = fail
y 6= ⊥ =⇒ match-sinr ·(sinr ·y)·k = k·y
match-sinr ·⊥·k = ⊥
〈proof 〉

lemma match-up-simps [simp]:
match-up·(up·x)·k = k·x
match-up·⊥·k = ⊥
〈proof 〉

lemma match-ONE-simps [simp]:
match-ONE ·ONE ·k = k
match-ONE ·⊥·k = ⊥
〈proof 〉

lemma match-TT-simps [simp]:
match-TT ·TT ·k = k
match-TT ·FF ·k = fail
match-TT ·⊥·k = ⊥
〈proof 〉

lemma match-FF-simps [simp]:
match-FF ·FF ·k = k
match-FF ·TT ·k = fail
match-FF ·⊥·k = ⊥
〈proof 〉

26.3 Mutual recursion

The following rules are used to prove unfolding theorems from fixed-point
definitions of mutually recursive functions.
lemma Pair-equalI : [[x ≡ fst p; y ≡ snd p]] =⇒ (x, y) ≡ p
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〈proof 〉

lemma Pair-eqD1 : (x, y) = (x ′, y ′) =⇒ x = x ′

〈proof 〉

lemma Pair-eqD2 : (x, y) = (x ′, y ′) =⇒ y = y ′

〈proof 〉

lemma def-cont-fix-eq:
[[f ≡ fix·(Abs-cfun F); cont F ]] =⇒ f = F f
〈proof 〉

lemma def-cont-fix-ind:
[[f ≡ fix·(Abs-cfun F); cont F ; adm P; P ⊥;

∧
x. P x =⇒ P (F x)]] =⇒ P f

〈proof 〉

lemma for proving rewrite rules
lemma ssubst-lhs: [[t = s; P s = Q]] =⇒ P t = Q
〈proof 〉

26.4 Initializing the fixrec package
〈ML〉

hide-const (open) succeed fail run

end

27 Domain package
theory Domain
imports Representable Map-Functions Fixrec
keywords

lazy unsafe and
domaindef domain :: thy-defn and
domain-isomorphism :: thy-decl

begin

27.1 Continuous isomorphisms

A locale for continuous isomorphisms
locale iso =

fixes abs :: ′a::pcpo → ′b::pcpo
fixes rep :: ′b → ′a
assumes abs-iso [simp]: rep·(abs·x) = x
assumes rep-iso [simp]: abs·(rep·y) = y

begin
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lemma swap: iso rep abs
〈proof 〉

lemma abs-below: (abs·x v abs·y) = (x v y)
〈proof 〉

lemma rep-below: (rep·x v rep·y) = (x v y)
〈proof 〉

lemma abs-eq: (abs·x = abs·y) = (x = y)
〈proof 〉

lemma rep-eq: (rep·x = rep·y) = (x = y)
〈proof 〉

lemma abs-strict: abs·⊥ = ⊥
〈proof 〉

lemma rep-strict: rep·⊥ = ⊥
〈proof 〉

lemma abs-defin ′: abs·x = ⊥ =⇒ x = ⊥
〈proof 〉

lemma rep-defin ′: rep·z = ⊥ =⇒ z = ⊥
〈proof 〉

lemma abs-defined: z 6= ⊥ =⇒ abs·z 6= ⊥
〈proof 〉

lemma rep-defined: z 6= ⊥ =⇒ rep·z 6= ⊥
〈proof 〉

lemma abs-bottom-iff : (abs·x = ⊥) = (x = ⊥)
〈proof 〉

lemma rep-bottom-iff : (rep·x = ⊥) = (x = ⊥)
〈proof 〉

lemma casedist-rule: rep·x = ⊥ ∨ P =⇒ x = ⊥ ∨ P
〈proof 〉

lemma compact-abs-rev: compact (abs·x) =⇒ compact x
〈proof 〉

lemma compact-rep-rev: compact (rep·x) =⇒ compact x
〈proof 〉

lemma compact-abs: compact x =⇒ compact (abs·x)
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〈proof 〉

lemma compact-rep: compact x =⇒ compact (rep·x)
〈proof 〉

lemma iso-swap: (x = abs·y) = (rep·x = y)
〈proof 〉

end

27.2 Proofs about take functions

This section contains lemmas that are used in a module that supports the
domain isomorphism package; the module contains proofs related to take
functions and the finiteness predicate.
lemma deflation-abs-rep:

fixes abs and rep and d
assumes abs-iso:

∧
x. rep·(abs·x) = x

assumes rep-iso:
∧

y. abs·(rep·y) = y
shows deflation d =⇒ deflation (abs oo d oo rep)
〈proof 〉

lemma deflation-chain-min:
assumes chain: chain d
assumes defl:

∧
n. deflation (d n)

shows d m·(d n·x) = d (min m n)·x
〈proof 〉

lemma lub-ID-take-lemma:
assumes chain t and (

⊔
n. t n) = ID

assumes
∧

n. t n·x = t n·y shows x = y
〈proof 〉

lemma lub-ID-reach:
assumes chain t and (

⊔
n. t n) = ID

shows (
⊔

n. t n·x) = x
〈proof 〉

lemma lub-ID-take-induct:
assumes chain t and (

⊔
n. t n) = ID

assumes adm P and
∧

n. P (t n·x) shows P x
〈proof 〉

27.3 Finiteness

Let a “decisive” function be a deflation that maps every input to either itself
or bottom. Then if a domain’s take functions are all decisive, then all values
in the domain are finite.
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definition
decisive :: ( ′a::pcpo → ′a) ⇒ bool

where
decisive d ←→ (∀ x. d·x = x ∨ d·x = ⊥)

lemma decisiveI : (
∧

x. d·x = x ∨ d·x = ⊥) =⇒ decisive d
〈proof 〉

lemma decisive-cases:
assumes decisive d obtains d·x = x | d·x = ⊥
〈proof 〉

lemma decisive-bottom: decisive ⊥
〈proof 〉

lemma decisive-ID: decisive ID
〈proof 〉

lemma decisive-ssum-map:
assumes f : decisive f
assumes g: decisive g
shows decisive (ssum-map·f ·g)
〈proof 〉

lemma decisive-sprod-map:
assumes f : decisive f
assumes g: decisive g
shows decisive (sprod-map·f ·g)
〈proof 〉

lemma decisive-abs-rep:
fixes abs rep
assumes iso: iso abs rep
assumes d: decisive d
shows decisive (abs oo d oo rep)
〈proof 〉

lemma lub-ID-finite:
assumes chain: chain d
assumes lub: (

⊔
n. d n) = ID

assumes decisive:
∧

n. decisive (d n)
shows ∃n. d n·x = x
〈proof 〉

lemma lub-ID-finite-take-induct:
assumes chain d and (

⊔
n. d n) = ID and

∧
n. decisive (d n)

shows (
∧

n. P (d n·x)) =⇒ P x
〈proof 〉
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27.4 Proofs about constructor functions

Lemmas for proving nchotomy rule:
lemma ex-one-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) = P ONE
〈proof 〉

lemma ex-up-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) = (∃ x. P (up·x))
〈proof 〉

lemma ex-sprod-bottom-iff :
(∃ y. P y ∧ y 6= ⊥) =
(∃ x y. (P (:x, y:) ∧ x 6= ⊥) ∧ y 6= ⊥)
〈proof 〉

lemma ex-sprod-up-bottom-iff :
(∃ y. P y ∧ y 6= ⊥) =
(∃ x y. P (:up·x, y:) ∧ y 6= ⊥)
〈proof 〉

lemma ex-ssum-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) =
((∃ x. P (sinl·x) ∧ x 6= ⊥) ∨
(∃ x. P (sinr ·x) ∧ x 6= ⊥))
〈proof 〉

lemma exh-start: p = ⊥ ∨ (∃ x. p = x ∧ x 6= ⊥)
〈proof 〉

lemmas ex-bottom-iffs =
ex-ssum-bottom-iff
ex-sprod-up-bottom-iff
ex-sprod-bottom-iff
ex-up-bottom-iff
ex-one-bottom-iff

Rules for turning nchotomy into exhaust:
lemma exh-casedist0 : [[R; R =⇒ P]] =⇒ P
〈proof 〉

lemma exh-casedist1 : ((P ∨ Q =⇒ R) =⇒ S) ≡ ([[P =⇒ R; Q =⇒ R]] =⇒ S)
〈proof 〉

lemma exh-casedist2 : (∃ x. P x =⇒ Q) ≡ (
∧

x. P x =⇒ Q)
〈proof 〉

lemma exh-casedist3 : (P ∧ Q =⇒ R) ≡ (P =⇒ Q =⇒ R)
〈proof 〉
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lemmas exh-casedists = exh-casedist1 exh-casedist2 exh-casedist3

Rules for proving constructor properties
lemmas con-strict-rules =

sinl-strict sinr-strict spair-strict1 spair-strict2

lemmas con-bottom-iff-rules =
sinl-bottom-iff sinr-bottom-iff spair-bottom-iff up-defined ONE-defined

lemmas con-below-iff-rules =
sinl-below sinr-below sinl-below-sinr sinr-below-sinl con-bottom-iff-rules

lemmas con-eq-iff-rules =
sinl-eq sinr-eq sinl-eq-sinr sinr-eq-sinl con-bottom-iff-rules

lemmas sel-strict-rules =
cfcomp2 sscase1 sfst-strict ssnd-strict fup1

lemma sel-app-extra-rules:
sscase·ID·⊥·(sinr ·x) = ⊥
sscase·ID·⊥·(sinl·x) = x
sscase·⊥·ID·(sinl·x) = ⊥
sscase·⊥·ID·(sinr ·x) = x
fup·ID·(up·x) = x
〈proof 〉

lemmas sel-app-rules =
sel-strict-rules sel-app-extra-rules
ssnd-spair sfst-spair up-defined spair-defined

lemmas sel-bottom-iff-rules =
cfcomp2 sfst-bottom-iff ssnd-bottom-iff

lemmas take-con-rules =
ssum-map-sinl ′ ssum-map-sinr ′ sprod-map-spair ′ u-map-up
deflation-strict deflation-ID ID1 cfcomp2

27.5 ML setup
named-theorems domain-deflation theorems like deflation a ==> deflation (foo-map$a)

and domain-map-ID theorems like foo-map$ID = ID

〈ML〉

27.6 Representations of types
lemma emb-prj: emb·((prj·x):: ′a::domain) = cast·DEFL( ′a)·x
〈proof 〉
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lemma emb-prj-emb:
fixes x :: ′a::domain
assumes DEFL( ′a) v DEFL( ′b)
shows emb·(prj·(emb·x) :: ′b::domain) = emb·x
〈proof 〉

lemma prj-emb-prj:
assumes DEFL( ′a::domain) v DEFL( ′b::domain)
shows prj·(emb·(prj·x :: ′b)) = (prj·x :: ′a)
〈proof 〉

Isomorphism lemmas used internally by the domain package:
lemma domain-abs-iso:

fixes abs and rep
assumes DEFL: DEFL( ′b::domain) = DEFL( ′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows rep·(abs·x) = x
〈proof 〉

lemma domain-rep-iso:
fixes abs and rep
assumes DEFL: DEFL( ′b::domain) = DEFL( ′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows abs·(rep·x) = x
〈proof 〉

27.7 Deflations as sets
definition defl-set :: ′a::bifinite defl ⇒ ′a set
where defl-set A = {x. cast·A·x = x}

lemma adm-defl-set: adm (λx. x ∈ defl-set A)
〈proof 〉

lemma defl-set-bottom: ⊥ ∈ defl-set A
〈proof 〉

lemma defl-set-cast [simp]: cast·A·x ∈ defl-set A
〈proof 〉

lemma defl-set-subset-iff : defl-set A ⊆ defl-set B ←→ A v B
〈proof 〉

27.8 Proving a subtype is representable

Temporarily relax type constraints.
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〈ML〉

lemma typedef-domain-class:
fixes Rep :: ′a::pcpo ⇒ udom
fixes Abs :: udom ⇒ ′a::pcpo
fixes t :: udom defl
assumes type: type-definition Rep Abs (defl-set t)
assumes below: (v) ≡ λx y. Rep x v Rep y
assumes emb: emb ≡ (Λ x. Rep x)
assumes prj: prj ≡ (Λ x. Abs (cast·t·x))
assumes defl: defl ≡ (λ a:: ′a itself . t)
assumes liftemb: (liftemb :: ′a u → udom u) ≡ u-map·emb
assumes liftprj: (liftprj :: udom u → ′a u) ≡ u-map·prj
assumes liftdefl: (liftdefl :: ′a itself ⇒ -) ≡ (λt. liftdefl-of ·DEFL( ′a))
shows OFCLASS( ′a, domain-class)
〈proof 〉

lemma typedef-DEFL:
assumes defl ≡ (λa:: ′a::pcpo itself . t)
shows DEFL( ′a::pcpo) = t
〈proof 〉

Restore original typing constraints.
〈ML〉

27.9 Isomorphic deflations
definition isodefl :: ( ′a::domain → ′a) ⇒ udom defl ⇒ bool

where isodefl d t ←→ cast·t = emb oo d oo prj

definition isodefl ′ :: ( ′a::predomain → ′a) ⇒ udom u defl ⇒ bool
where isodefl ′ d t ←→ cast·t = liftemb oo u-map·d oo liftprj

lemma isodeflI : (
∧

x. cast·t·x = emb·(d·(prj·x))) =⇒ isodefl d t
〈proof 〉

lemma cast-isodefl: isodefl d t =⇒ cast·t = (Λ x. emb·(d·(prj·x)))
〈proof 〉

lemma isodefl-strict: isodefl d t =⇒ d·⊥ = ⊥
〈proof 〉

lemma isodefl-imp-deflation:
fixes d :: ′a::domain → ′a
assumes isodefl d t shows deflation d
〈proof 〉

lemma isodefl-ID-DEFL: isodefl (ID :: ′a → ′a) DEFL( ′a::domain)
〈proof 〉
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lemma isodefl-LIFTDEFL:
isodefl ′ (ID :: ′a → ′a) LIFTDEFL( ′a::predomain)
〈proof 〉

lemma isodefl-DEFL-imp-ID: isodefl (d :: ′a → ′a) DEFL( ′a::domain) =⇒ d =
ID
〈proof 〉

lemma isodefl-bottom: isodefl ⊥ ⊥
〈proof 〉

lemma adm-isodefl:
cont f =⇒ cont g =⇒ adm (λx. isodefl (f x) (g x))
〈proof 〉

lemma isodefl-lub:
assumes chain d and chain t
assumes

∧
i. isodefl (d i) (t i)

shows isodefl (
⊔

i. d i) (
⊔

i. t i)
〈proof 〉

lemma isodefl-fix:
assumes

∧
d t. isodefl d t =⇒ isodefl (f ·d) (g·t)

shows isodefl (fix·f ) (fix·g)
〈proof 〉

lemma isodefl-abs-rep:
fixes abs and rep and d
assumes DEFL: DEFL( ′b::domain) = DEFL( ′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows isodefl d t =⇒ isodefl (abs oo d oo rep) t
〈proof 〉

lemma isodefl ′-liftdefl-of : isodefl d t =⇒ isodefl ′ d (liftdefl-of ·t)
〈proof 〉

lemma isodefl-sfun:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (sfun-map·d1 ·d2 ) (sfun-defl·t1 ·t2 )
〈proof 〉

lemma isodefl-ssum:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (ssum-map·d1 ·d2 ) (ssum-defl·t1 ·t2 )
〈proof 〉

lemma isodefl-sprod:
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isodefl d1 t1 =⇒ isodefl d2 t2 =⇒
isodefl (sprod-map·d1 ·d2 ) (sprod-defl·t1 ·t2 )

〈proof 〉

lemma isodefl-prod:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (prod-map·d1 ·d2 ) (prod-defl·t1 ·t2 )
〈proof 〉

lemma isodefl-u:
isodefl d t =⇒ isodefl (u-map·d) (u-defl·t)
〈proof 〉

lemma isodefl-u-liftdefl:
isodefl ′ d t =⇒ isodefl (u-map·d) (u-liftdefl·t)
〈proof 〉

lemma encode-prod-u-map:
encode-prod-u·(u-map·(prod-map·f ·g)·(decode-prod-u·x))
= sprod-map·(u-map·f )·(u-map·g)·x

〈proof 〉

lemma isodefl-prod-u:
assumes isodefl ′ d1 t1 and isodefl ′ d2 t2
shows isodefl ′ (prod-map·d1 ·d2 ) (prod-liftdefl·t1 ·t2 )
〈proof 〉

lemma encode-cfun-map:
encode-cfun·(cfun-map·f ·g·(decode-cfun·x))
= sfun-map·(u-map·f )·g·x

〈proof 〉

lemma isodefl-cfun:
assumes isodefl (u-map·d1 ) t1 and isodefl d2 t2
shows isodefl (cfun-map·d1 ·d2 ) (sfun-defl·t1 ·t2 )
〈proof 〉

27.10 Setting up the domain package
named-theorems domain-defl-simps theorems like DEFL( ′a t) = t-defl$DEFL( ′a)

and domain-isodefl theorems like isodefl d t ==> isodefl (foo-map$d) (foo-defl$t)

〈ML〉

lemmas [domain-defl-simps] =
DEFL-cfun DEFL-sfun DEFL-ssum DEFL-sprod DEFL-prod DEFL-u
liftdefl-eq LIFTDEFL-prod u-liftdefl-liftdefl-of

lemmas [domain-map-ID] =
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cfun-map-ID sfun-map-ID ssum-map-ID sprod-map-ID prod-map-ID u-map-ID

lemmas [domain-isodefl] =
isodefl-u isodefl-sfun isodefl-ssum isodefl-sprod
isodefl-cfun isodefl-prod isodefl-prod-u isodefl ′-liftdefl-of
isodefl-u-liftdefl

lemmas [domain-deflation] =
deflation-cfun-map deflation-sfun-map deflation-ssum-map
deflation-sprod-map deflation-prod-map deflation-u-map

〈ML〉

end

28 A compact basis for powerdomains
theory Compact-Basis
imports Universal
begin

28.1 A compact basis for powerdomains
definition pd-basis = {S :: ′a::bifinite compact-basis set. finite S ∧ S 6= {}}

typedef ′a::bifinite pd-basis = pd-basis :: ′a compact-basis set set
〈proof 〉

lemma finite-Rep-pd-basis [simp]: finite (Rep-pd-basis u)
〈proof 〉

lemma Rep-pd-basis-nonempty [simp]: Rep-pd-basis u 6= {}
〈proof 〉

The powerdomain basis type is countable.
lemma pd-basis-countable: ∃ f :: ′a::bifinite pd-basis ⇒ nat. inj f (is Ex ?P)
〈proof 〉

28.2 Unit and plus constructors
definition

PDUnit :: ′a::bifinite compact-basis ⇒ ′a pd-basis where
PDUnit = (λx. Abs-pd-basis {x})

definition
PDPlus :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ ′a pd-basis where
PDPlus t u = Abs-pd-basis (Rep-pd-basis t ∪ Rep-pd-basis u)

lemma Rep-PDUnit:
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Rep-pd-basis (PDUnit x) = {x}
〈proof 〉

lemma Rep-PDPlus:
Rep-pd-basis (PDPlus u v) = Rep-pd-basis u ∪ Rep-pd-basis v
〈proof 〉

lemma PDUnit-inject [simp]: (PDUnit a = PDUnit b) = (a = b)
〈proof 〉

lemma PDPlus-assoc: PDPlus (PDPlus t u) v = PDPlus t (PDPlus u v)
〈proof 〉

lemma PDPlus-commute: PDPlus t u = PDPlus u t
〈proof 〉

lemma PDPlus-absorb: PDPlus t t = t
〈proof 〉

lemma pd-basis-induct1 [case-names PDUnit PDPlus]:
assumes PDUnit:

∧
a. P (PDUnit a)

assumes PDPlus:
∧

a t. P t =⇒ P (PDPlus (PDUnit a) t)
shows P x
〈proof 〉

lemma pd-basis-induct [case-names PDUnit PDPlus]:
assumes PDUnit:

∧
a. P (PDUnit a)

assumes PDPlus:
∧

t u. [[P t; P u]] =⇒ P (PDPlus t u)
shows P x
〈proof 〉

28.3 Fold operator
definition

fold-pd ::
( ′a::bifinite compact-basis ⇒ ′b::type) ⇒ ( ′b ⇒ ′b ⇒ ′b) ⇒ ′a pd-basis ⇒ ′b

where fold-pd g f t = semilattice-set.F f (g ‘ Rep-pd-basis t)

lemma fold-pd-PDUnit:
assumes semilattice f
shows fold-pd g f (PDUnit x) = g x
〈proof 〉

lemma fold-pd-PDPlus:
assumes semilattice f
shows fold-pd g f (PDPlus t u) = f (fold-pd g f t) (fold-pd g f u)
〈proof 〉

end
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29 Upper powerdomain
theory UpperPD
imports Compact-Basis
begin

29.1 Basis preorder
definition

upper-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤]› 50 ) where
upper-le = (λu v. ∀ y∈Rep-pd-basis v. ∃ x∈Rep-pd-basis u. x v y)

lemma upper-le-refl [simp]: t ≤] t
〈proof 〉

lemma upper-le-trans: [[t ≤] u; u ≤] v]] =⇒ t ≤] v
〈proof 〉

interpretation upper-le: preorder upper-le
〈proof 〉

lemma upper-le-minimal [simp]: PDUnit compact-bot ≤] t
〈proof 〉

lemma PDUnit-upper-mono: x v y =⇒ PDUnit x ≤] PDUnit y
〈proof 〉

lemma PDPlus-upper-mono: [[s ≤] t; u ≤] v]] =⇒ PDPlus s u ≤] PDPlus t v
〈proof 〉

lemma PDPlus-upper-le: PDPlus t u ≤] t
〈proof 〉

lemma upper-le-PDUnit-PDUnit-iff [simp]:
(PDUnit a ≤] PDUnit b) = (a v b)
〈proof 〉

lemma upper-le-PDPlus-PDUnit-iff :
(PDPlus t u ≤] PDUnit a) = (t ≤] PDUnit a ∨ u ≤] PDUnit a)
〈proof 〉

lemma upper-le-PDPlus-iff : (t ≤] PDPlus u v) = (t ≤] u ∧ t ≤] v)
〈proof 〉

lemma upper-le-induct [induct set: upper-le]:
assumes le: t ≤] u
assumes 1 :

∧
a b. a v b =⇒ P (PDUnit a) (PDUnit b)

assumes 2 :
∧

t u a. P t (PDUnit a) =⇒ P (PDPlus t u) (PDUnit a)
assumes 3 :

∧
t u v. [[P t u; P t v]] =⇒ P t (PDPlus u v)

shows P t u
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〈proof 〉

29.2 Type definition
typedef ′a::bifinite upper-pd (‹(‹notation=‹postfix upper-pd›› ′(- ′)])›) =
{S :: ′a pd-basis set. upper-le.ideal S}
〈proof 〉

instantiation upper-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-upper-pd x ⊆ Rep-upper-pd y

instance 〈proof 〉
end

instance upper-pd :: (bifinite) po
〈proof 〉

instance upper-pd :: (bifinite) cpo
〈proof 〉

definition
upper-principal :: ′a::bifinite pd-basis ⇒ ′a upper-pd where
upper-principal t = Abs-upper-pd {u. u ≤] t}

interpretation upper-pd:
ideal-completion upper-le upper-principal Rep-upper-pd
〈proof 〉

Upper powerdomain is pointed
lemma upper-pd-minimal: upper-principal (PDUnit compact-bot) v ys
〈proof 〉

instance upper-pd :: (bifinite) pcpo
〈proof 〉

lemma inst-upper-pd-pcpo: ⊥ = upper-principal (PDUnit compact-bot)
〈proof 〉

29.3 Monadic unit and plus
definition

upper-unit :: ′a::bifinite → ′a upper-pd where
upper-unit = compact-basis.extension (λa. upper-principal (PDUnit a))

definition
upper-plus :: ′a::bifinite upper-pd → ′a upper-pd → ′a upper-pd where
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upper-plus = upper-pd.extension (λt. upper-pd.extension (λu.
upper-principal (PDPlus t u)))

abbreviation
upper-add :: ′a::bifinite upper-pd ⇒ ′a upper-pd ⇒ ′a upper-pd
(infixl ‹∪]› 65 ) where

xs ∪] ys == upper-plus·xs·ys

syntax
-upper-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix upper-pd enumera-

tion››{-}])›)
translations
{x,xs}] == {x}] ∪] {xs}]
{x}] == CONST upper-unit·x

lemma upper-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}] = upper-principal (PDUnit a)
〈proof 〉

lemma upper-plus-principal [simp]:
upper-principal t ∪] upper-principal u = upper-principal (PDPlus t u)
〈proof 〉

interpretation upper-add: semilattice upper-add 〈proof 〉

lemmas upper-plus-assoc = upper-add.assoc
lemmas upper-plus-commute = upper-add.commute
lemmas upper-plus-absorb = upper-add.idem
lemmas upper-plus-left-commute = upper-add.left-commute
lemmas upper-plus-left-absorb = upper-add.left-idem

Useful for simp add: upper-plus-ac
lemmas upper-plus-ac =

upper-plus-assoc upper-plus-commute upper-plus-left-commute

Useful for simp only: upper-plus-aci
lemmas upper-plus-aci =

upper-plus-ac upper-plus-absorb upper-plus-left-absorb

lemma upper-plus-below1 : xs ∪] ys v xs
〈proof 〉

lemma upper-plus-below2 : xs ∪] ys v ys
〈proof 〉

lemma upper-plus-greatest: [[xs v ys; xs v zs]] =⇒ xs v ys ∪] zs
〈proof 〉

lemma upper-below-plus-iff [simp]:
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xs v ys ∪] zs ←→ xs v ys ∧ xs v zs
〈proof 〉

lemma upper-plus-below-unit-iff [simp]:
xs ∪] ys v {z}] ←→ xs v {z}] ∨ ys v {z}]
〈proof 〉

lemma upper-unit-below-iff [simp]: {x}] v {y}] ←→ x v y
〈proof 〉

lemmas upper-pd-below-simps =
upper-unit-below-iff
upper-below-plus-iff
upper-plus-below-unit-iff

lemma upper-unit-eq-iff [simp]: {x}] = {y}] ←→ x = y
〈proof 〉

lemma upper-unit-strict [simp]: {⊥}] = ⊥
〈proof 〉

lemma upper-plus-strict1 [simp]: ⊥ ∪] ys = ⊥
〈proof 〉

lemma upper-plus-strict2 [simp]: xs ∪] ⊥ = ⊥
〈proof 〉

lemma upper-unit-bottom-iff [simp]: {x}] = ⊥ ←→ x = ⊥
〈proof 〉

lemma upper-plus-bottom-iff [simp]:
xs ∪] ys = ⊥ ←→ xs = ⊥ ∨ ys = ⊥
〈proof 〉

lemma compact-upper-unit: compact x =⇒ compact {x}]
〈proof 〉

lemma compact-upper-unit-iff [simp]: compact {x}] ←→ compact x
〈proof 〉

lemma compact-upper-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪] ys)
〈proof 〉

29.4 Induction rules
lemma upper-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}]
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assumes insert:
∧

x ys. [[P {x}]; P ys]] =⇒ P ({x}] ∪] ys)
shows P (xs:: ′a::bifinite upper-pd)
〈proof 〉

lemma upper-pd-induct [case-names adm upper-unit upper-plus, induct type: up-
per-pd]:

assumes P: adm P
assumes unit:

∧
x. P {x}]

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪] ys)
shows P (xs:: ′a::bifinite upper-pd)
〈proof 〉

29.5 Monadic bind
definition

upper-bind-basis ::
′a::bifinite pd-basis ⇒ ( ′a → ′b upper-pd) → ′b::bifinite upper-pd where
upper-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪] y·f )

lemma ACI-upper-bind:
semilattice (λx y. Λ f . x·f ∪] y·f )
〈proof 〉

lemma upper-bind-basis-simps [simp]:
upper-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

upper-bind-basis (PDPlus t u) =
(Λ f . upper-bind-basis t·f ∪] upper-bind-basis u·f )

〈proof 〉

lemma upper-bind-basis-mono:
t ≤] u =⇒ upper-bind-basis t v upper-bind-basis u
〈proof 〉

definition
upper-bind :: ′a::bifinite upper-pd → ( ′a → ′b upper-pd) → ′b::bifinite upper-pd

where
upper-bind = upper-pd.extension upper-bind-basis

syntax
-upper-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder upper-bind››

⋃
]-∈-./ -)› [0 , 0 , 10 ] 10 )

translations⋃
]x∈xs. e == CONST upper-bind·xs·(Λ x. e)

lemma upper-bind-principal [simp]:
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upper-bind·(upper-principal t) = upper-bind-basis t
〈proof 〉

lemma upper-bind-unit [simp]:
upper-bind·{x}]·f = f ·x
〈proof 〉

lemma upper-bind-plus [simp]:
upper-bind·(xs ∪] ys)·f = upper-bind·xs·f ∪] upper-bind·ys·f
〈proof 〉

lemma upper-bind-strict [simp]: upper-bind·⊥·f = f ·⊥
〈proof 〉

lemma upper-bind-bind:
upper-bind·(upper-bind·xs·f )·g = upper-bind·xs·(Λ x. upper-bind·(f ·x)·g)
〈proof 〉

29.6 Map
definition

upper-map :: ( ′a::bifinite → ′b::bifinite) → ′a upper-pd → ′b upper-pd where
upper-map = (Λ f xs. upper-bind·xs·(Λ x. {f ·x}]))

lemma upper-map-unit [simp]:
upper-map·f ·{x}] = {f ·x}]
〈proof 〉

lemma upper-map-plus [simp]:
upper-map·f ·(xs ∪] ys) = upper-map·f ·xs ∪] upper-map·f ·ys
〈proof 〉

lemma upper-map-bottom [simp]: upper-map·f ·⊥ = {f ·⊥}]
〈proof 〉

lemma upper-map-ident: upper-map·(Λ x. x)·xs = xs
〈proof 〉

lemma upper-map-ID: upper-map·ID = ID
〈proof 〉

lemma upper-map-map:
upper-map·f ·(upper-map·g·xs) = upper-map·(Λ x. f ·(g·x))·xs
〈proof 〉

lemma upper-bind-map:
upper-bind·(upper-map·f ·xs)·g = upper-bind·xs·(Λ x. g·(f ·x))
〈proof 〉
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lemma upper-map-bind:
upper-map·f ·(upper-bind·xs·g) = upper-bind·xs·(Λ x. upper-map·f ·(g·x))
〈proof 〉

lemma ep-pair-upper-map: ep-pair e p =⇒ ep-pair (upper-map·e) (upper-map·p)
〈proof 〉

lemma deflation-upper-map: deflation d =⇒ deflation (upper-map·d)
〈proof 〉

lemma finite-deflation-upper-map:
assumes finite-deflation d shows finite-deflation (upper-map·d)
〈proof 〉

29.7 Upper powerdomain is bifinite
lemma approx-chain-upper-map:

assumes approx-chain a
shows approx-chain (λi. upper-map·(a i))
〈proof 〉

instance upper-pd :: (bifinite) bifinite
〈proof 〉

29.8 Join
definition

upper-join :: ′a::bifinite upper-pd upper-pd → ′a upper-pd where
upper-join = (Λ xss. upper-bind·xss·(Λ xs. xs))

lemma upper-join-unit [simp]:
upper-join·{xs}] = xs
〈proof 〉

lemma upper-join-plus [simp]:
upper-join·(xss ∪] yss) = upper-join·xss ∪] upper-join·yss
〈proof 〉

lemma upper-join-bottom [simp]: upper-join·⊥ = ⊥
〈proof 〉

lemma upper-join-map-unit:
upper-join·(upper-map·upper-unit·xs) = xs
〈proof 〉

lemma upper-join-map-join:
upper-join·(upper-map·upper-join·xsss) = upper-join·(upper-join·xsss)
〈proof 〉
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lemma upper-join-map-map:
upper-join·(upper-map·(upper-map·f )·xss) =
upper-map·f ·(upper-join·xss)

〈proof 〉

end

30 Lower powerdomain
theory LowerPD
imports Compact-Basis
begin

30.1 Basis preorder
definition

lower-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤[› 50 ) where
lower-le = (λu v. ∀ x∈Rep-pd-basis u. ∃ y∈Rep-pd-basis v. x v y)

lemma lower-le-refl [simp]: t ≤[ t
〈proof 〉

lemma lower-le-trans: [[t ≤[ u; u ≤[ v]] =⇒ t ≤[ v
〈proof 〉

interpretation lower-le: preorder lower-le
〈proof 〉

lemma lower-le-minimal [simp]: PDUnit compact-bot ≤[ t
〈proof 〉

lemma PDUnit-lower-mono: x v y =⇒ PDUnit x ≤[ PDUnit y
〈proof 〉

lemma PDPlus-lower-mono: [[s ≤[ t; u ≤[ v]] =⇒ PDPlus s u ≤[ PDPlus t v
〈proof 〉

lemma PDPlus-lower-le: t ≤[ PDPlus t u
〈proof 〉

lemma lower-le-PDUnit-PDUnit-iff [simp]:
(PDUnit a ≤[ PDUnit b) = (a v b)
〈proof 〉

lemma lower-le-PDUnit-PDPlus-iff :
(PDUnit a ≤[ PDPlus t u) = (PDUnit a ≤[ t ∨ PDUnit a ≤[ u)
〈proof 〉

lemma lower-le-PDPlus-iff : (PDPlus t u ≤[ v) = (t ≤[ v ∧ u ≤[ v)
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〈proof 〉

lemma lower-le-induct [induct set: lower-le]:
assumes le: t ≤[ u
assumes 1 :

∧
a b. a v b =⇒ P (PDUnit a) (PDUnit b)

assumes 2 :
∧

t u a. P (PDUnit a) t =⇒ P (PDUnit a) (PDPlus t u)
assumes 3 :

∧
t u v. [[P t v; P u v]] =⇒ P (PDPlus t u) v

shows P t u
〈proof 〉

30.2 Type definition
typedef ′a::bifinite lower-pd (‹(‹notation=‹postfix lower-pd›› ′(- ′)[)›) =
{S :: ′a pd-basis set. lower-le.ideal S}
〈proof 〉

instantiation lower-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-lower-pd x ⊆ Rep-lower-pd y

instance 〈proof 〉
end

instance lower-pd :: (bifinite) po
〈proof 〉

instance lower-pd :: (bifinite) cpo
〈proof 〉

definition
lower-principal :: ′a::bifinite pd-basis ⇒ ′a lower-pd where
lower-principal t = Abs-lower-pd {u. u ≤[ t}

interpretation lower-pd:
ideal-completion lower-le lower-principal Rep-lower-pd
〈proof 〉

Lower powerdomain is pointed
lemma lower-pd-minimal: lower-principal (PDUnit compact-bot) v ys
〈proof 〉

instance lower-pd :: (bifinite) pcpo
〈proof 〉

lemma inst-lower-pd-pcpo: ⊥ = lower-principal (PDUnit compact-bot)
〈proof 〉
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30.3 Monadic unit and plus
definition

lower-unit :: ′a::bifinite → ′a lower-pd where
lower-unit = compact-basis.extension (λa. lower-principal (PDUnit a))

definition
lower-plus :: ′a::bifinite lower-pd → ′a lower-pd → ′a lower-pd where
lower-plus = lower-pd.extension (λt. lower-pd.extension (λu.

lower-principal (PDPlus t u)))

abbreviation
lower-add :: ′a::bifinite lower-pd ⇒ ′a lower-pd ⇒ ′a lower-pd
(infixl ‹∪[› 65 ) where

xs ∪[ ys == lower-plus·xs·ys

syntax
-lower-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix lower-pd enumera-

tion››{-}[)›)
translations
{x,xs}[ == {x}[ ∪[ {xs}[
{x}[ == CONST lower-unit·x

lemma lower-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}[ = lower-principal (PDUnit a)
〈proof 〉

lemma lower-plus-principal [simp]:
lower-principal t ∪[ lower-principal u = lower-principal (PDPlus t u)
〈proof 〉

interpretation lower-add: semilattice lower-add 〈proof 〉

lemmas lower-plus-assoc = lower-add.assoc
lemmas lower-plus-commute = lower-add.commute
lemmas lower-plus-absorb = lower-add.idem
lemmas lower-plus-left-commute = lower-add.left-commute
lemmas lower-plus-left-absorb = lower-add.left-idem

Useful for simp add: lower-plus-ac
lemmas lower-plus-ac =

lower-plus-assoc lower-plus-commute lower-plus-left-commute

Useful for simp only: lower-plus-aci
lemmas lower-plus-aci =

lower-plus-ac lower-plus-absorb lower-plus-left-absorb

lemma lower-plus-below1 : xs v xs ∪[ ys
〈proof 〉
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lemma lower-plus-below2 : ys v xs ∪[ ys
〈proof 〉

lemma lower-plus-least: [[xs v zs; ys v zs]] =⇒ xs ∪[ ys v zs
〈proof 〉

lemma lower-plus-below-iff [simp]:
xs ∪[ ys v zs ←→ xs v zs ∧ ys v zs
〈proof 〉

lemma lower-unit-below-plus-iff [simp]:
{x}[ v ys ∪[ zs ←→ {x}[ v ys ∨ {x}[ v zs
〈proof 〉

lemma lower-unit-below-iff [simp]: {x}[ v {y}[ ←→ x v y
〈proof 〉

lemmas lower-pd-below-simps =
lower-unit-below-iff
lower-plus-below-iff
lower-unit-below-plus-iff

lemma lower-unit-eq-iff [simp]: {x}[ = {y}[ ←→ x = y
〈proof 〉

lemma lower-unit-strict [simp]: {⊥}[ = ⊥
〈proof 〉

lemma lower-unit-bottom-iff [simp]: {x}[ = ⊥ ←→ x = ⊥
〈proof 〉

lemma lower-plus-bottom-iff [simp]:
xs ∪[ ys = ⊥ ←→ xs = ⊥ ∧ ys = ⊥
〈proof 〉

lemma lower-plus-strict1 [simp]: ⊥ ∪[ ys = ys
〈proof 〉

lemma lower-plus-strict2 [simp]: xs ∪[ ⊥ = xs
〈proof 〉

lemma compact-lower-unit: compact x =⇒ compact {x}[
〈proof 〉

lemma compact-lower-unit-iff [simp]: compact {x}[ ←→ compact x
〈proof 〉

lemma compact-lower-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪[ ys)
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〈proof 〉

30.4 Induction rules
lemma lower-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}[

assumes insert:
∧

x ys. [[P {x}[; P ys]] =⇒ P ({x}[ ∪[ ys)
shows P (xs:: ′a::bifinite lower-pd)
〈proof 〉

lemma lower-pd-induct [case-names adm lower-unit lower-plus, induct type: lower-pd]:
assumes P: adm P
assumes unit:

∧
x. P {x}[

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪[ ys)
shows P (xs:: ′a::bifinite lower-pd)
〈proof 〉

30.5 Monadic bind
definition

lower-bind-basis ::
′a::bifinite pd-basis ⇒ ( ′a → ′b lower-pd) → ′b::bifinite lower-pd where
lower-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪[ y·f )

lemma ACI-lower-bind:
semilattice (λx y. Λ f . x·f ∪[ y·f )
〈proof 〉

lemma lower-bind-basis-simps [simp]:
lower-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

lower-bind-basis (PDPlus t u) =
(Λ f . lower-bind-basis t·f ∪[ lower-bind-basis u·f )

〈proof 〉

lemma lower-bind-basis-mono:
t ≤[ u =⇒ lower-bind-basis t v lower-bind-basis u
〈proof 〉

definition
lower-bind :: ′a::bifinite lower-pd → ( ′a → ′b lower-pd) → ′b::bifinite lower-pd

where
lower-bind = lower-pd.extension lower-bind-basis

syntax
-lower-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder lower-bind››

⋃
[-∈-./ -)› [0 , 0 , 10 ] 10 )
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translations⋃
[x∈xs. e == CONST lower-bind·xs·(Λ x. e)

lemma lower-bind-principal [simp]:
lower-bind·(lower-principal t) = lower-bind-basis t
〈proof 〉

lemma lower-bind-unit [simp]:
lower-bind·{x}[·f = f ·x
〈proof 〉

lemma lower-bind-plus [simp]:
lower-bind·(xs ∪[ ys)·f = lower-bind·xs·f ∪[ lower-bind·ys·f
〈proof 〉

lemma lower-bind-strict [simp]: lower-bind·⊥·f = f ·⊥
〈proof 〉

lemma lower-bind-bind:
lower-bind·(lower-bind·xs·f )·g = lower-bind·xs·(Λ x. lower-bind·(f ·x)·g)
〈proof 〉

30.6 Map
definition

lower-map :: ( ′a::bifinite → ′b::bifinite) → ′a lower-pd → ′b lower-pd where
lower-map = (Λ f xs. lower-bind·xs·(Λ x. {f ·x}[))

lemma lower-map-unit [simp]:
lower-map·f ·{x}[ = {f ·x}[
〈proof 〉

lemma lower-map-plus [simp]:
lower-map·f ·(xs ∪[ ys) = lower-map·f ·xs ∪[ lower-map·f ·ys
〈proof 〉

lemma lower-map-bottom [simp]: lower-map·f ·⊥ = {f ·⊥}[
〈proof 〉

lemma lower-map-ident: lower-map·(Λ x. x)·xs = xs
〈proof 〉

lemma lower-map-ID: lower-map·ID = ID
〈proof 〉

lemma lower-map-map:
lower-map·f ·(lower-map·g·xs) = lower-map·(Λ x. f ·(g·x))·xs
〈proof 〉
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lemma lower-bind-map:
lower-bind·(lower-map·f ·xs)·g = lower-bind·xs·(Λ x. g·(f ·x))
〈proof 〉

lemma lower-map-bind:
lower-map·f ·(lower-bind·xs·g) = lower-bind·xs·(Λ x. lower-map·f ·(g·x))
〈proof 〉

lemma ep-pair-lower-map: ep-pair e p =⇒ ep-pair (lower-map·e) (lower-map·p)
〈proof 〉

lemma deflation-lower-map: deflation d =⇒ deflation (lower-map·d)
〈proof 〉

lemma finite-deflation-lower-map:
assumes finite-deflation d shows finite-deflation (lower-map·d)
〈proof 〉

30.7 Lower powerdomain is bifinite
lemma approx-chain-lower-map:

assumes approx-chain a
shows approx-chain (λi. lower-map·(a i))
〈proof 〉

instance lower-pd :: (bifinite) bifinite
〈proof 〉

30.8 Join
definition

lower-join :: ′a::bifinite lower-pd lower-pd → ′a lower-pd where
lower-join = (Λ xss. lower-bind·xss·(Λ xs. xs))

lemma lower-join-unit [simp]:
lower-join·{xs}[ = xs
〈proof 〉

lemma lower-join-plus [simp]:
lower-join·(xss ∪[ yss) = lower-join·xss ∪[ lower-join·yss
〈proof 〉

lemma lower-join-bottom [simp]: lower-join·⊥ = ⊥
〈proof 〉

lemma lower-join-map-unit:
lower-join·(lower-map·lower-unit·xs) = xs
〈proof 〉
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lemma lower-join-map-join:
lower-join·(lower-map·lower-join·xsss) = lower-join·(lower-join·xsss)
〈proof 〉

lemma lower-join-map-map:
lower-join·(lower-map·(lower-map·f )·xss) =
lower-map·f ·(lower-join·xss)

〈proof 〉

end

31 Convex powerdomain
theory ConvexPD
imports UpperPD LowerPD
begin

31.1 Basis preorder
definition

convex-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤\› 50 ) where
convex-le = (λu v. u ≤] v ∧ u ≤[ v)

lemma convex-le-refl [simp]: t ≤\ t
〈proof 〉

lemma convex-le-trans: [[t ≤\ u; u ≤\ v]] =⇒ t ≤\ v
〈proof 〉

interpretation convex-le: preorder convex-le
〈proof 〉

lemma upper-le-minimal [simp]: PDUnit compact-bot ≤\ t
〈proof 〉

lemma PDUnit-convex-mono: x v y =⇒ PDUnit x ≤\ PDUnit y
〈proof 〉

lemma PDPlus-convex-mono: [[s ≤\ t; u ≤\ v]] =⇒ PDPlus s u ≤\ PDPlus t v
〈proof 〉

lemma convex-le-PDUnit-PDUnit-iff [simp]:
(PDUnit a ≤\ PDUnit b) = (a v b)
〈proof 〉

lemma convex-le-PDUnit-lemma1 :
(PDUnit a ≤\ t) = (∀ b∈Rep-pd-basis t. a v b)
〈proof 〉
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lemma convex-le-PDUnit-PDPlus-iff [simp]:
(PDUnit a ≤\ PDPlus t u) = (PDUnit a ≤\ t ∧ PDUnit a ≤\ u)
〈proof 〉

lemma convex-le-PDUnit-lemma2 :
(t ≤\ PDUnit b) = (∀ a∈Rep-pd-basis t. a v b)
〈proof 〉

lemma convex-le-PDPlus-PDUnit-iff [simp]:
(PDPlus t u ≤\ PDUnit a) = (t ≤\ PDUnit a ∧ u ≤\ PDUnit a)
〈proof 〉

lemma convex-le-PDPlus-lemma:
assumes z: PDPlus t u ≤\ z
shows ∃ v w. z = PDPlus v w ∧ t ≤\ v ∧ u ≤\ w
〈proof 〉

lemma convex-le-induct [induct set: convex-le]:
assumes le: t ≤\ u
assumes 2 :

∧
t u v. [[P t u; P u v]] =⇒ P t v

assumes 3 :
∧

a b. a v b =⇒ P (PDUnit a) (PDUnit b)
assumes 4 :

∧
t u v w. [[P t v; P u w]] =⇒ P (PDPlus t u) (PDPlus v w)

shows P t u
〈proof 〉

31.2 Type definition
typedef ′a::bifinite convex-pd (‹(‹notation=‹postfix convex-pd›› ′(- ′)\)›) =
{S :: ′a pd-basis set. convex-le.ideal S}
〈proof 〉

instantiation convex-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-convex-pd x ⊆ Rep-convex-pd y

instance 〈proof 〉
end

instance convex-pd :: (bifinite) po
〈proof 〉

instance convex-pd :: (bifinite) cpo
〈proof 〉

definition
convex-principal :: ′a::bifinite pd-basis ⇒ ′a convex-pd where
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convex-principal t = Abs-convex-pd {u. u ≤\ t}

interpretation convex-pd:
ideal-completion convex-le convex-principal Rep-convex-pd
〈proof 〉

Convex powerdomain is pointed
lemma convex-pd-minimal: convex-principal (PDUnit compact-bot) v ys
〈proof 〉

instance convex-pd :: (bifinite) pcpo
〈proof 〉

lemma inst-convex-pd-pcpo: ⊥ = convex-principal (PDUnit compact-bot)
〈proof 〉

31.3 Monadic unit and plus
definition

convex-unit :: ′a::bifinite → ′a convex-pd where
convex-unit = compact-basis.extension (λa. convex-principal (PDUnit a))

definition
convex-plus :: ′a::bifinite convex-pd → ′a convex-pd → ′a convex-pd where
convex-plus = convex-pd.extension (λt. convex-pd.extension (λu.

convex-principal (PDPlus t u)))

abbreviation
convex-add :: ′a::bifinite convex-pd ⇒ ′a convex-pd ⇒ ′a convex-pd
(infixl ‹∪\› 65 ) where

xs ∪\ ys == convex-plus·xs·ys

syntax
-convex-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix convex-pd enumera-

tion››{-}\)›)
translations
{x,xs}\ == {x}\ ∪\ {xs}\
{x}\ == CONST convex-unit·x

lemma convex-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}\ = convex-principal (PDUnit a)
〈proof 〉

lemma convex-plus-principal [simp]:
convex-principal t ∪\ convex-principal u = convex-principal (PDPlus t u)
〈proof 〉

interpretation convex-add: semilattice convex-add 〈proof 〉
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lemmas convex-plus-assoc = convex-add.assoc
lemmas convex-plus-commute = convex-add.commute
lemmas convex-plus-absorb = convex-add.idem
lemmas convex-plus-left-commute = convex-add.left-commute
lemmas convex-plus-left-absorb = convex-add.left-idem

Useful for simp add: convex-plus-ac
lemmas convex-plus-ac =

convex-plus-assoc convex-plus-commute convex-plus-left-commute

Useful for simp only: convex-plus-aci
lemmas convex-plus-aci =

convex-plus-ac convex-plus-absorb convex-plus-left-absorb

lemma convex-unit-below-plus-iff [simp]:
{x}\ v ys ∪\ zs ←→ {x}\ v ys ∧ {x}\ v zs
〈proof 〉

lemma convex-plus-below-unit-iff [simp]:
xs ∪\ ys v {z}\ ←→ xs v {z}\ ∧ ys v {z}\
〈proof 〉

lemma convex-unit-below-iff [simp]: {x}\ v {y}\ ←→ x v y
〈proof 〉

lemma convex-unit-eq-iff [simp]: {x}\ = {y}\ ←→ x = y
〈proof 〉

lemma convex-unit-strict [simp]: {⊥}\ = ⊥
〈proof 〉

lemma convex-unit-bottom-iff [simp]: {x}\ = ⊥ ←→ x = ⊥
〈proof 〉

lemma compact-convex-unit: compact x =⇒ compact {x}\
〈proof 〉

lemma compact-convex-unit-iff [simp]: compact {x}\ ←→ compact x
〈proof 〉

lemma compact-convex-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪\ ys)
〈proof 〉

31.4 Induction rules
lemma convex-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}\
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assumes insert:
∧

x ys. [[P {x}\; P ys]] =⇒ P ({x}\ ∪\ ys)
shows P (xs:: ′a::bifinite convex-pd)
〈proof 〉

lemma convex-pd-induct [case-names adm convex-unit convex-plus, induct type:
convex-pd]:

assumes P: adm P
assumes unit:

∧
x. P {x}\

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪\ ys)
shows P (xs:: ′a::bifinite convex-pd)
〈proof 〉

31.5 Monadic bind
definition

convex-bind-basis ::
′a::bifinite pd-basis ⇒ ( ′a → ′b convex-pd) → ′b::bifinite convex-pd where
convex-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪\ y·f )

lemma ACI-convex-bind:
semilattice (λx y. Λ f . x·f ∪\ y·f )
〈proof 〉

lemma convex-bind-basis-simps [simp]:
convex-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

convex-bind-basis (PDPlus t u) =
(Λ f . convex-bind-basis t·f ∪\ convex-bind-basis u·f )

〈proof 〉

lemma convex-bind-basis-mono:
t ≤\ u =⇒ convex-bind-basis t v convex-bind-basis u
〈proof 〉

definition
convex-bind :: ′a::bifinite convex-pd → ( ′a → ′b convex-pd)→ ′b::bifinite convex-pd

where
convex-bind = convex-pd.extension convex-bind-basis

syntax
-convex-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder convex-bind››

⋃
\-∈-./ -)› [0 , 0 , 10 ] 10 )

translations⋃
\x∈xs. e == CONST convex-bind·xs·(Λ x. e)

lemma convex-bind-principal [simp]:
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convex-bind·(convex-principal t) = convex-bind-basis t
〈proof 〉

lemma convex-bind-unit [simp]:
convex-bind·{x}\·f = f ·x
〈proof 〉

lemma convex-bind-plus [simp]:
convex-bind·(xs ∪\ ys)·f = convex-bind·xs·f ∪\ convex-bind·ys·f
〈proof 〉

lemma convex-bind-strict [simp]: convex-bind·⊥·f = f ·⊥
〈proof 〉

lemma convex-bind-bind:
convex-bind·(convex-bind·xs·f )·g =

convex-bind·xs·(Λ x. convex-bind·(f ·x)·g)
〈proof 〉

31.6 Map
definition

convex-map :: ( ′a::bifinite → ′b) → ′a convex-pd → ′b::bifinite convex-pd where
convex-map = (Λ f xs. convex-bind·xs·(Λ x. {f ·x}\))

lemma convex-map-unit [simp]:
convex-map·f ·{x}\ = {f ·x}\
〈proof 〉

lemma convex-map-plus [simp]:
convex-map·f ·(xs ∪\ ys) = convex-map·f ·xs ∪\ convex-map·f ·ys
〈proof 〉

lemma convex-map-bottom [simp]: convex-map·f ·⊥ = {f ·⊥}\
〈proof 〉

lemma convex-map-ident: convex-map·(Λ x. x)·xs = xs
〈proof 〉

lemma convex-map-ID: convex-map·ID = ID
〈proof 〉

lemma convex-map-map:
convex-map·f ·(convex-map·g·xs) = convex-map·(Λ x. f ·(g·x))·xs
〈proof 〉

lemma convex-bind-map:
convex-bind·(convex-map·f ·xs)·g = convex-bind·xs·(Λ x. g·(f ·x))
〈proof 〉
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lemma convex-map-bind:
convex-map·f ·(convex-bind·xs·g) = convex-bind·xs·(Λ x. convex-map·f ·(g·x))
〈proof 〉

lemma ep-pair-convex-map: ep-pair e p =⇒ ep-pair (convex-map·e) (convex-map·p)
〈proof 〉

lemma deflation-convex-map: deflation d =⇒ deflation (convex-map·d)
〈proof 〉

lemma finite-deflation-convex-map:
assumes finite-deflation d shows finite-deflation (convex-map·d)
〈proof 〉

31.7 Convex powerdomain is bifinite
lemma approx-chain-convex-map:

assumes approx-chain a
shows approx-chain (λi. convex-map·(a i))
〈proof 〉

instance convex-pd :: (bifinite) bifinite
〈proof 〉

31.8 Join
definition

convex-join :: ′a::bifinite convex-pd convex-pd → ′a convex-pd where
convex-join = (Λ xss. convex-bind·xss·(Λ xs. xs))

lemma convex-join-unit [simp]:
convex-join·{xs}\ = xs
〈proof 〉

lemma convex-join-plus [simp]:
convex-join·(xss ∪\ yss) = convex-join·xss ∪\ convex-join·yss
〈proof 〉

lemma convex-join-bottom [simp]: convex-join·⊥ = ⊥
〈proof 〉

lemma convex-join-map-unit:
convex-join·(convex-map·convex-unit·xs) = xs
〈proof 〉

lemma convex-join-map-join:
convex-join·(convex-map·convex-join·xsss) = convex-join·(convex-join·xsss)
〈proof 〉
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lemma convex-join-map-map:
convex-join·(convex-map·(convex-map·f )·xss) =
convex-map·f ·(convex-join·xss)

〈proof 〉

31.9 Conversions to other powerdomains

Convex to upper
lemma convex-le-imp-upper-le: t ≤\ u =⇒ t ≤] u
〈proof 〉

definition
convex-to-upper :: ′a::bifinite convex-pd → ′a upper-pd where
convex-to-upper = convex-pd.extension upper-principal

lemma convex-to-upper-principal [simp]:
convex-to-upper ·(convex-principal t) = upper-principal t
〈proof 〉

lemma convex-to-upper-unit [simp]:
convex-to-upper ·{x}\ = {x}]
〈proof 〉

lemma convex-to-upper-plus [simp]:
convex-to-upper ·(xs ∪\ ys) = convex-to-upper ·xs ∪] convex-to-upper ·ys
〈proof 〉

lemma convex-to-upper-bind [simp]:
convex-to-upper ·(convex-bind·xs·f ) =

upper-bind·(convex-to-upper ·xs)·(convex-to-upper oo f )
〈proof 〉

lemma convex-to-upper-map [simp]:
convex-to-upper ·(convex-map·f ·xs) = upper-map·f ·(convex-to-upper ·xs)
〈proof 〉

lemma convex-to-upper-join [simp]:
convex-to-upper ·(convex-join·xss) =

upper-bind·(convex-to-upper ·xss)·convex-to-upper
〈proof 〉

Convex to lower
lemma convex-le-imp-lower-le: t ≤\ u =⇒ t ≤[ u
〈proof 〉

definition
convex-to-lower :: ′a::bifinite convex-pd → ′a lower-pd where
convex-to-lower = convex-pd.extension lower-principal
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lemma convex-to-lower-principal [simp]:
convex-to-lower ·(convex-principal t) = lower-principal t
〈proof 〉

lemma convex-to-lower-unit [simp]:
convex-to-lower ·{x}\ = {x}[
〈proof 〉

lemma convex-to-lower-plus [simp]:
convex-to-lower ·(xs ∪\ ys) = convex-to-lower ·xs ∪[ convex-to-lower ·ys
〈proof 〉

lemma convex-to-lower-bind [simp]:
convex-to-lower ·(convex-bind·xs·f ) =

lower-bind·(convex-to-lower ·xs)·(convex-to-lower oo f )
〈proof 〉

lemma convex-to-lower-map [simp]:
convex-to-lower ·(convex-map·f ·xs) = lower-map·f ·(convex-to-lower ·xs)
〈proof 〉

lemma convex-to-lower-join [simp]:
convex-to-lower ·(convex-join·xss) =

lower-bind·(convex-to-lower ·xss)·convex-to-lower
〈proof 〉

Ordering property
lemma convex-pd-below-iff :
(xs v ys) =
(convex-to-upper ·xs v convex-to-upper ·ys ∧
convex-to-lower ·xs v convex-to-lower ·ys)

〈proof 〉

lemmas convex-plus-below-plus-iff =
convex-pd-below-iff [where xs=xs ∪\ ys and ys=zs ∪\ ws]
for xs ys zs ws

lemmas convex-pd-below-simps =
convex-unit-below-plus-iff
convex-plus-below-unit-iff
convex-plus-below-plus-iff
convex-unit-below-iff
convex-to-upper-unit
convex-to-upper-plus
convex-to-lower-unit
convex-to-lower-plus
upper-pd-below-simps
lower-pd-below-simps
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end

32 Powerdomains
theory Powerdomains
imports ConvexPD Domain
begin

32.1 Universal domain embeddings
definition upper-emb = udom-emb (λi. upper-map·(udom-approx i))
definition upper-prj = udom-prj (λi. upper-map·(udom-approx i))

definition lower-emb = udom-emb (λi. lower-map·(udom-approx i))
definition lower-prj = udom-prj (λi. lower-map·(udom-approx i))

definition convex-emb = udom-emb (λi. convex-map·(udom-approx i))
definition convex-prj = udom-prj (λi. convex-map·(udom-approx i))

lemma ep-pair-upper : ep-pair upper-emb upper-prj
〈proof 〉

lemma ep-pair-lower : ep-pair lower-emb lower-prj
〈proof 〉

lemma ep-pair-convex: ep-pair convex-emb convex-prj
〈proof 〉

32.2 Deflation combinators
definition upper-defl :: udom defl → udom defl

where upper-defl = defl-fun1 upper-emb upper-prj upper-map

definition lower-defl :: udom defl → udom defl
where lower-defl = defl-fun1 lower-emb lower-prj lower-map

definition convex-defl :: udom defl → udom defl
where convex-defl = defl-fun1 convex-emb convex-prj convex-map

lemma cast-upper-defl:
cast·(upper-defl·A) = upper-emb oo upper-map·(cast·A) oo upper-prj
〈proof 〉

lemma cast-lower-defl:
cast·(lower-defl·A) = lower-emb oo lower-map·(cast·A) oo lower-prj
〈proof 〉

lemma cast-convex-defl:
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cast·(convex-defl·A) = convex-emb oo convex-map·(cast·A) oo convex-prj
〈proof 〉

32.3 Domain class instances
instantiation upper-pd :: (domain) domain
begin

definition
emb = upper-emb oo upper-map·emb

definition
prj = upper-map·prj oo upper-prj

definition
defl (t:: ′a upper-pd itself ) = upper-defl·DEFL( ′a)

definition
(liftemb :: ′a upper-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a upper-pd u) = u-map·prj

definition
liftdefl (t:: ′a upper-pd itself ) = liftdefl-of ·DEFL( ′a upper-pd)

instance 〈proof 〉

end

instantiation lower-pd :: (domain) domain
begin

definition
emb = lower-emb oo lower-map·emb

definition
prj = lower-map·prj oo lower-prj

definition
defl (t:: ′a lower-pd itself ) = lower-defl·DEFL( ′a)

definition
(liftemb :: ′a lower-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a lower-pd u) = u-map·prj

definition
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liftdefl (t:: ′a lower-pd itself ) = liftdefl-of ·DEFL( ′a lower-pd)

instance 〈proof 〉

end

instantiation convex-pd :: (domain) domain
begin

definition
emb = convex-emb oo convex-map·emb

definition
prj = convex-map·prj oo convex-prj

definition
defl (t:: ′a convex-pd itself ) = convex-defl·DEFL( ′a)

definition
(liftemb :: ′a convex-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a convex-pd u) = u-map·prj

definition
liftdefl (t:: ′a convex-pd itself ) = liftdefl-of ·DEFL( ′a convex-pd)

instance 〈proof 〉

end

lemma DEFL-upper : DEFL( ′a::domain upper-pd) = upper-defl·DEFL( ′a)
〈proof 〉

lemma DEFL-lower : DEFL( ′a::domain lower-pd) = lower-defl·DEFL( ′a)
〈proof 〉

lemma DEFL-convex: DEFL( ′a::domain convex-pd) = convex-defl·DEFL( ′a)
〈proof 〉

32.4 Isomorphic deflations
lemma isodefl-upper :

isodefl d t =⇒ isodefl (upper-map·d) (upper-defl·t)
〈proof 〉

lemma isodefl-lower :
isodefl d t =⇒ isodefl (lower-map·d) (lower-defl·t)
〈proof 〉
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lemma isodefl-convex:
isodefl d t =⇒ isodefl (convex-map·d) (convex-defl·t)
〈proof 〉

32.5 Domain package setup for powerdomains
lemmas [domain-defl-simps] = DEFL-upper DEFL-lower DEFL-convex
lemmas [domain-map-ID] = upper-map-ID lower-map-ID convex-map-ID
lemmas [domain-isodefl] = isodefl-upper isodefl-lower isodefl-convex

lemmas [domain-deflation] =
deflation-upper-map deflation-lower-map deflation-convex-map

〈ML〉

end

theory HOLCF
imports

Main
Domain
Powerdomains

begin

default-sort domain

end
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