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THEORY “Cpo”

theory Cpo
imports Main
begin

1 Partial orders

declare [[typedef-overloaded))

1.1 Type class for partial orders

class below =
fixes below :: 'a = 'a = bool
begin

notation (ASCII)
below (infix << 50)

notation
below (infix <C» 50)

abbreviation not-below :: 'a = 'a = bool (infix «Z» 50)
where not-below z y = — below = y

notation (ASCII)
not-below (infix (~<<> 50)

lemma below-eq-trans: a & b — b=c=— a C ¢
(proof)

lemma eg-below-trans: a = b=— bC ¢c = a C ¢
(proof)

end

class po = below +
assumes below-refl [iff]: z C x
assumes below-trans: x Ty —= yC 2 —= 2z C 2
assumes below-antisym: t Cy—= yCz =z =y
begin

lemma eg-imp-below: © =y =z C y
(proof )

lemma boz-below: a T b=—cCa=—=bC d=— cC d
(proof )

lemma po-eq-conv: zt =y+— 2z CyAyLCx
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{proof)

lemma rev-below-trans: yC 2 —= a2 C y = z C 2
(proof)

lemma not-below2not-eq: x L y = x + y
(proof)

end

lemmas HOLCF-trans-rules [trans] =
below-trans
below-antisym
below-eq-trans
eq-below-trans

context po
begin

1.2 Upper bounds

definition is-ub :: ‘a set = 'a = bool (infix «<|> 55)
where S <| z +— (VyeS. y C z)

lemma is-ubl: (A\z.z€ S=2C u) = S <|u
(proof)

lemma is-ubD: [S <] u; 2 € ] =z C u
{proof)

lemma ub-imagel: (A\z. z € S = fz Cu) = (A\z. fz) ‘S <] u
{proof)

lemma ub-imageD: [f ‘S <| u;z € 8] = fz C u
{proof)

lemma ub-rangel: (\i. S i C z) = range S <| z
{proof)

lemma ub-rangeD: range S <| 2 = SiC z
(proof)

lemma is-ub-empty [simp]: {} <] u
{proof)

lemma is-ub-insert [simp): (insert z A) <] y=(z Sy A A <] y)
(proof)

lemma is-ub-upward: [S <|z; 2 Cy] = S <| y

10
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{proof)

1.3 Least upper bounds
definition is-lub :: ‘a set = 'a = bool (infix «<<|> 55)
where S <<|z+— S <]z A Vu. S<|lu— 2zC u)

definition lub :: ‘a set = 'a
where lub S = (THE z. S <<| 1)

end

syntax (ASCII)
-BLub :: [pttrn, 'a set, 'b] = 'b («(<indent=3 notation=<binder LUB»LUB -:-./
) (0,0, 10] 10)

syntax
-BLub :: [pttrn, 'a set, 'b] = ‘b («(<indent=3 notation=<binder | |»|]-€-./ -)»
0,0, 10] 10)

syntax-consts
-BLub = lub

translations
LUB z:A. t &= CONST lub ((M\z. t) < A)

context po
begin

abbreviation Lub (binder «| |» 10)
where | |n. t n = lub (range t)

notation (ASCII)
Lub (binder <LUB » 10)

access to some definition as inference rule

lemma is-lubD1: S <<|z = S <| z
{proof)

lemma is-lubD2: [S <<|z; S <] u] = 2 C u
(proof)

lemma is-lubl: [S <| z; Au. S <|u=2zCu] = S <<| =z
(proof)

lemma is-lub-below-iff: S <<| z = 2 C u +— 5 <| u

(proof)

lubs are unique
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lemma is-lub-unique: S <<|z = S <<|y= 2=y
{proof )

technical lemmas about lub and (<<])
lemma is-lub-lub: M <<| 2 = M <<| lub M
(proof)

lemma lub-eql: M <<| | = lub M =1
(proof)

lemma is-lub-singleton [simpl: {z} <<| z
{proof)

lemma lub-singleton [simp]: lub {z} = =
{proof)

lemma is-lub-bin: © C y = {z, y} <<| y
(proof)

lemma lub-bin: 2 C y = lub {z, y} =y
(proof )

lemma is-lub-mazimal: S <| = 2 € S = S <<| =
(proof)

lemma lub-mazimal: S <|z =z € S = lub S ==z
{proof)

1.4 Countable chains

definition chain :: (nat = 'a) = bool
where — Here we use countable chains and I prefer to code them as functions!
chain Y = (Vi. Yi T Y (Suc 1))

lemma chainl: (N\i. YiC Y (Suc i)) = chain Y
{proof)

lemma chainE: chain Y = Y i C Y (Suc i)
(proof)

chains are monotone functions
lemma chain-mono-less: chain ¥ — i < j— YiLC Yj
(proof)

lemma chain-mono: chain ¥ — i< j=— YiC Yj
(proof )

lemma chain-shift: chain Y = chain (Mi. Y (i + j))
{proof)
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technical lemmas about (least) upper bounds of chains
lemma is-lub-rangeD1: range S <<|z = SiC
{proof )

lemma is-ub-range-shift: chain S = range (A\i. S (i + 7)) <| z = range S <| z
(proof)
lemma is-lub-range-shift: chain S = range (Mi. S (i + j)) <<| = = range S <<|
T
(proof)

the lub of a constant chain is the constant
lemma chain-const [simp]: chain (Ai. c)

{proof)

lemma is-lub-const: range (Az. ¢) <<| ¢

(proof)

lemma lub-const [simpl: (| ]i. ¢) = ¢
{proof)

1.5 Finite chains

definition maz-in-chain :: nat = (nat = ‘a) = bool
where — finite chains, needed for monotony of continuous functions
maz-in-chain i C +— (Vj. i <j— Ci= C})

definition finite-chain :: (nat = 'a) = bool
where finite-chain C = (chain C A (Fi. max-in-chain i C))

results about finite chains
lemma maz-in-chainl: (\j. i < j= Y i= Y j) = maz-in-chain i ¥

{proof)

lemma maz-in-chainD: maz-in-chain i ¥ — i < j=— Yi=Yj
(proof)

lemma finite-chainl: chain C = max-in-chain ¢ C = finite-chain C

(proof)

lemma finite-chainE: [finite-chain C; Ai. [chain C; maz-in-chain i C] = R]
=R
{proof )

lemma lub-finchl: chain C = max-in-chain i C = range C <<| C'i
(proof)

lemma lub-finch2: finite-chain C = range C <<| C (LEAST i. maz-in-chain i
0)
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{proof)

lemma finch-imp-finite-range: finite-chain ¥ = finite (range Y)
(proof )

lemma finite-range-has-mazx:
fixes [ :: nat = a
and 7 :: ‘a = 'a = bool
assumes mono: N\ij. i <j= r (fi) (fj)
assumes finite-range: finite (range f)
shows 3k. Vi. r (fi) (fk)
(proof)

lemma finite-range-imp-finch: chain ¥ = finite (range Y) = finite-chain Y

(proof)

lemma bin-chain: © C y = chain (Ai. if i=0 then x else y)
{proof)

lemma bin-chainmaz: * T y = max-in-chain (Suc 0) (Ni. if i=0 then z else y)
{proof)

lemma is-lub-bin-chain: * C y = range (Ai::nat. if i=0 then x else y) <<| y
(proof )

the maximal element in a chain is its lub

lemma lub-chain-mazelem: Vi =c=Vi. YiC ¢ = lub (range Y) = ¢
{proof)

end

2 Classes cpo and pcpo
2.1 Complete partial orders

The class cpo of chain complete partial orders
class cpo = po +
assumes cpo: chain S = Jz. range S <<| x

default-sort cpo

context cpo
begin
in cpo’s everthing equal to THE lub has lub properties for every chain

lemma cpo-lubl: chain S = range S <<| (| |i. S 7)
{proof)
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lemma thelubE: [chain S; (| ]i. S i) =[] = range S <<| 1
{proof)

Properties of the lub

lemma is-ub-thelub: chain S = Sz C (| |i. S 7)
{proof)

lemma is-lub-thelub: [chain S; range S <| z] = (|Ji. S9) C z
{proof)

lemma [ub-below-iff: chain S = (| |i. S4) C z +— (Vi. S C z)
(proof)

lemma lub-below: [chain S; \i. SiC 2] = (i Si) C =z
{proof)

lemma below-lub: [chain S; x T Si] = « C (| ] S i)
{proof)

lemma lub-range-mono: [range X C range Y; chain Y; chain X]| = (|]i. X @)
C (i Y9

(proof)

lemma lub-range-shift: chain Y = (| ]i. Y (i + 7)) = (| ]i. Y i)
{proof )

lemma mazinch-is-thelub: chain Y = maz-in-chain i Y = ((| |i. Y i) = Y i)
{proof)

the C relation between two chains is preserved by their lubs

lemma [ub-mono: [chain X; chain Y; Ai. X« C Yi] = (i X4) C (i Yi)
{proof)

the = relation between two chains is preserved by their lubs

lemma lub-eq: (N\i. X i=Yi)= (|]i. Xi) = (]¢ Y1)
(proof)

lemma ch2ch-lub:
assumes I1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (Nj. Y ij)
shows chain (\i. | |j. Y ij)
(proof)

lemma diag-lub:
assumes I1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (\j. Y ij)
shows (| |i. | |4 Yij) = (]i Yii)
(proof)
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lemma ez-lub:
assumes I1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (\j. Y ij)
shows (| |i. | |j. Yij) = (UJ. Ui Yij)

(proof)

end

2.2 Pointed cpos

The class pcpo of pointed cpos

class pcpo = cpo +
assumes least: 3z. Vy. z C y
begin

definition bottom :: 'a (<L)
where bottom = (THE z. Vy. z C y)

lemma minimal [iff]: L C x
{proof)

end

Old "UU" syntax:
abbreviation (input) UU = bottom

Simproc to rewrite L = z to x = L.

(ML)

useful lemmas about L

lemma below-bottom-iff [simp]: ¢ © L +— = L

{proof)

lemma eg-bottom-iff: t = 1L +— z C L
(proof )

lemma bottoml: x C 1 — z = L
(proof)

lemma lub-eg-bottom-iff: chain ¥ = (| ]i. Yi) = L +— (Vi. Yi= 1)
{proof)

2.3 Chain-finite and flat cpos

further useful classes for HOLCF domains

class chfin = po +
assumes chfin: chain Y = dn. maz-in-chain n Y
begin

16
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subclass cpo
(proof)

lemma chfin2finch: chain Y = finite-chain Y
(proof)

end

class flat = pcpo +
assumes az-flat: tCy =z =1 Vzr=y
begin

subclass chfin

(proof)

lemma flat-below-iff: tC y+— 2z =1L Vzr=y
{proof )

lemma flat-eq: a # L = a C b= (a = D)
(proof)

end

2.4 Discrete cpos

class discrete-cpo = below +
assumes discrete-cpo [simp]: x C y +— x =y
begin

subclass po
(proof)

In a discrete cpo, every chain is constant

lemma discrete-chain-const:
assumes S: chain S
shows Jz. S = (Ai. x)

(proof)

subclass chfin
(proof)

end

3 Continuity and monotonicity

3.1 Definitions

definition monofun :: (‘a::po = 'b::po) = bool — monotonicity
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where monofun f «+— Vzy. 2 Cy — fz C fy)

definition cont :: (‘a = 'b) = bool
where cont f = (VY. chain Y — range (Mi. f (Y i) <<| f (| ]i. Y 9))

lemma contl: (\Y. chain Y = range (A\i. f (Vi) <<| f (L]i. Y i)) = cont f
(proof)

lemma contE: cont f = chain Y = range (Mi. f (Y 7)) <<| f (U7. Y ?)
{proof)

lemma monofunl: (Azy. ¢ C y = fz C fy) = monofun f
(proof )

lemma monofunE: monofun f =z C y = fzC fy
(proof)

3.2 Equivalence of alternate definition

monotone functions map chains to chains

lemma ch2ch-monofun: monofun f = chain Y = chain (\i. f (Y 1))
{proof)

monotone functions map upper bound to upper bounds

lemma ub2ub-monofun: monofun f = range Y <| uw = range (Ni. f (Y 7)) <]
fu
{proof)

a lemma about binary chains

lemma binchain-cont: cont f = x C y = range (Mi::nat. f (if i = 0 then x else
y) <<|fy
(proof)

continuity implies monotonicity

lemma cont2mono: cont f = monofun f

(proof)

lemmas cont2monofunE = cont2mono [THEN monofunFE)

lemmas ch2ch-cont = cont2mono [THEN ch2ch-monofun)

continuity implies preservation of lubs

lemma cont2contiubE: cont f = chain Y = f (| |i. Y i) = (L. f (Y 7))
{proof)

lemma contl2:
fixes f : 'a = b
assumes mono: monofun f
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(;sizlmes below: \Y. [chain Y; chain (Mi. f (Y 9)] = f (Ui Yi)C (e f

shows cont f

(proof)

3.3 Collection of continuity rules

named-theorems cont2cont continuity intro rule

3.4 Continuity of basic functions

The identity function is continuous

lemma cont-id [simp, cont2cont]: cont (Az. x)
{proof)

constant functions are continuous

lemma cont-const [simp, cont2cont]: cont (Az. c)
{proof)

application of functions is continuous
lemma cont-apply:
fixesf::'a='b="cand t:: 'a="b
assumes I: cont (Az. t x)
assumes 2: Az. cont (Ay. fz y)
assumes 3: A\y. cont (Az. fz y)
shows cont (Az. (f z) (t z))

(proof)

lemma cont-compose: cont ¢ = cont (A\z. f x) = cont (A\z. ¢ (f z))
{proof)

Least upper bounds preserve continuity

lemma cont2cont-lub [simp]:
assumes chain: A\z. chain (\i. F i z)
and cont: A\i. cont (Az. Fix)
shows cont (Az. | |i. Fix)

(proof )
if-then-else is continuous

lemma cont-if [simp, cont2cont]: cont f => cont g => cont (Az. if b then f x else
9 )
(proof )

3.5 Finite chains and flat pcpos

Monotone functions map finite chains to finite chains.

lemma monofun-finch2finch: monofun f = finite-chain Y = finite-chain (An.

f (Y n)
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{proof)

The same holds for continuous functions.

lemma cont-finch2finch: cont f = finite-chain ¥ = finite-chain (An. f (Y

{proof)

All monotone functions with chain-finite domain are continuous.

lemma chfindom-monofun2cont: monofun f = cont f
for f :: ‘az:chfin = b
(proof)

All strict functions with flat domain are continuous.

lemma flatdom-strict2mono: f L = 1 = monofun f
for f :: 'a::flat = "b::pepo
(proof)
lemma flatdom-strict2cont: f L = 1 = cont f
for f :: 'a::flat = "b::pcpo
(proof)

All functions with discrete domain are continuous.

lemma cont-discrete-cpo [simp, cont2cont]: cont f
for f :: 'a::discrete-cpo = 'b

(proof)

4 Admissibility and compactness

4.1 Definitions

context cpo
begin

definition adm :: ("a = bool) = bool
where adm P <— (VY. chain ¥ — (Vi. P (Y i)) — P (] Y 1))

lemma admlI: (AY. [chain Y;Vi. P (Yi)] = P (| |i. Yi)) = adm P
(proof )

lemma admD: adm P = chain ¥ = (A\i. P (Y i) = P (|i. Y1)
{proof)

20

n))

lemma admD2: adm (Ax. = P z) = chain Y = P (| ]i. Y i) = 3i. P (Vi)

{proof)

lemma triv-adml: Vx. Pt — adm P
(proof)

end
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4.2 Admissibility on chain-finite types

For chain-finite (easy) types every formula is admissible.

lemma adm-chfin [simp]: adm P for P :: 'a::chfin = bool
(proof )

4.3 Admissibility of special formulae and propagation

context cpo
begin

lemma adm-const [simp]: adm (Az. t)
{proof)

lemma adm-conj [simp]: adm (Az. P z) = adm (Az. Q ) = adm (Az. P x A
Q z)
{proof)

lemma adm-all [simp]: (A\y. adm (Az. Pz y)) = adm (Az. Vy. Pz y)
(proof)

lemma adm-ball [simp]: (Ny. y € A = adm (Az. P z y)) = adm (Az. VycA.
Pz y)

{proof)

Admissibility for disjunction is hard to prove. It requires 2 lemmas.

lemma adm-disj-lemmal:
assumes adm: adm P
assumes chain: chain Y
assumes P: Vi. 3j>i. P (Y j)
shows P (| |i. Y i)

(proof)

lemma adm-disj-lemma2: Vn:nat. PnV Q@ n = (Vi. 3j>i. Pj) Vv (Vi. 3j>i.
QJ)
(proof)

lemma adm-disj [simp]: adm (Az. P ) = adm (Az. Q ) = adm (A\z. Pz V
Q z)
{proof)

lemma adm-imp [simp]: adm (Az. = P £) = adm (Az. Q ) = adm (A\z. P x
— Q x)
(proof)

lemma adm-iff [simp]: adm (Az. Pz — Q z) = adm (Az. Q v — P 1) =
adm (Az. Pz +— Q z)

{proof)
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end

admissibility and continuity
lemma adm-below [simp]: cont (Az. u ) = cont (A\z. v z) = adm (Az. uz C
v x)

{proof)

lemma adm-eq [simp]: cont (Az. u x) = cont (Az. vz) = adm (A\z. vz = v )
(proof)

lemma adm-subst: cont (A\z. t ) = adm P = adm (Az. P (t ))
{proof)

lemma adm-not-below [simp]: cont (Az. t ) = adm (Az. t z £ u)
{proof)

4.4 Compactness

context cpo
begin

definition compact :: 'a = bool
where compact k = adm (Az. k £ z)

lemma compactl: adm (A\z. k £ ) = compact k
(proof )

lemma compactD: compact k = adm (A\z. k £ x)
{proof)

lemma compacti2: (\Y. [chain Y; 2 C (| ]i. Yi)] = 3i. 2 C Y i) = compact
T

{proof)

lemma compactD2: compact & = chain ¥ = z C (| |i. Vi) = Fi. 2 C Y
{proof)

lemma compact-below-lub-iff: compact t = chain Y = z C (| |i. Yi) «+— (4.
zC Yi)
{proof )

end

lemma compact-chfin [simp]: compact © for z :: 'a::chfin
(proof )

lemma compact-imp-maz-in-chain: chain Y = compact (| |i. Y i) = 3i. maz-in-chain
1Y
{proof)
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admissibility and compactness

lemma adm-compact-not-below [simp]:
compact k => cont (A\z. t £) = adm (Az. k Z t )

(proof)

lemma adm-neq-compact [simp]: compact k = cont (A\z. t ) = adm (Az. t =
7 k)
{proof)

lemma adm-compact-neq [simp]: compact k = cont (Az. t ) = adm (A\z. k #
tz)
(proof)

lemma compact-bottom [simp, intro]: compact L

(proof)

Any upward-closed predicate is admissible.

lemma adm-upward:
assumes P: Az y. [Pz; 2 C y) = Py
shows adm P
(proof )

lemmas adm-lemmas =
adm-const adm-conj adm-all adm-ball adm-disj adm-imp adm-iff
adm-below adm-eq adm-not-below
adm-compact-not-below adm-compact-neq adm-neq-compact

5 Class instances for the full function space

5.1 Full function space is a partial order

instantiation fun :: (type, below) below
begin

definition below-fun-def: (C) = (AMfg.Vz. fz C g x)

instance (proof)
end

instance fun :: (type, po) po

(proof)

lemma fun-below-iff: f C g +— (Vz. fz C g x)
(proof )

lemma fun-belowl: (Az. fr Cgz) = fCg
(proof)
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lemma fun-belowD: fC g = fz C gz
{proof )

5.2 Full function space is chain complete

Properties of chains of functions.
lemma fun-chain-iff: chain S <— (Vz. chain (\i. S i z))
(proof)

lemma ch2ch-fun: chain S => chain (Ai. S i z)
(proof)

lemma ch2ch-lambda: (Nz. chain (Ni. S i x)) = chain S

{proof)
Type ‘a = b is chain complete
lemma is-lub-lambda: (Az. range (Ni. Yiz) <<| fz) = range ¥ <<| f
{proof )
lemma is-lub-fun: chain S = range S <<| (Az. [ |i. Six)
for S :: nat = 'a::type = b
{proof )
lemma lub-fun: chain S = (| |4. S4) = (Az. | i Six)
for S :: nat = 'a::type = 'b
{proof)

instance fun :: (type, cpo) cpo
(proof )

instance fun :: (type, discrete-cpo) discrete-cpo

(proof)

5.3 Full function space is pointed

lemma minimal-fun: (Az. L) C f
{proof)

instance fun :: (type, pcpo) pcpo
(proof )

lemma inst-fun-pcpo: L = (Az. 1)
(proof )

lemma app-strict [simp]: L x = L
(proof)

lemma lambda-strict: (Az. L) = L
{proof)

24
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5.4 Propagation of monotonicity and continuity

The lub of a chain of monotone functions is monotone.
lemma adm-monofun: adm monofun

(proof )
The lub of a chain of continuous functions is continuous.
lemma adm-cont: adm cont

(proof)
Function application preserves monotonicity and continuity.

lemma mono2mono-fun: monofun f = monofun (A\x. fz y)
(proof)

lemma cont2cont-fun: cont f = cont (Az. fz y)
(proof )

lemma cont-fun: cont (Af. f )
(proof )

(ML)

lemma cont (A\f. fz) and cont (\f. fz y) and cont (M\f. fzy 2)
(proof )

Lambda abstraction preserves monotonicity and continuity. (Note (Az. Ay.
fry)=F)
lemma mono2mono-lambda: (A\y. monofun (A\z. f x y)) = monofun f

{proof)

lemma cont2cont-lambda [simp]:
assumes f: Ay. cont (\z. fzy)
shows cont f

(proof )
What D.A.Schmidt calls continuity of abstraction; never used here

lemma contlub-lambda: (Az. chain (Mi. Siz)) = (Az. | |i. Siz) = (] (Az.
Sizx))

for S :: nat = ‘a::type = b

(proof)

6 The cpo of cartesian products

6.1 Unit type is a pcpo

instantiation unit :: discrete-cpo
begin
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definition below-unit-def [simpl: x C (y::unit) +— True

instance
(proof)

end

instance unit :: pcpo
(proof)
6.2 Product type is a partial order

instantiation prod :: (below, below) below
begin

definition below-prod-def: (C) = ApI p2. (fst pI C fst p2 A snd pl C snd p2)
instance (proof)
end

instance prod :: (po, po) po

(proof)

6.3 Monotonicity of Pair, fst, snd

lemma prod-belowl: fst p C fst ¢ = snd p C snd ¢ = p C ¢
(proof)

lemma Pair-below-iff [simp]: (a, b)) C (¢, d) «—aC cADLC d
(proof )

Pair (-,-) is monotone in both arguments
lemma monofun-pairl: monofun (Az. (z, y))

(proof)

lemma monofun-pair2: monofun (Ay. (z, y))
(proof )

lemma monofun-pair: ©1 C 22 — yl C y2 = (a1, yI) C (22, y2)
(proof )

lemma ch2ch-Pair [simp]: chain X = chain Y = chain (Mi. (X i, Y 1))
{proof)

fst and snd are monotone

lemma fst-monofun: x & y = fst x C fst y
(proof )
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lemma snd-monofun: © C y = snd x C snd y
(proof)

lemma monofun-fst: monofun fst
(proof )

lemma monofun-snd: monofun snd
(proof)

lemmas ch2ch-fst [simp] = ch2ch-monofun [OF monofun-fst]
lemmas ch2ch-snd [simp] = ch2ch-monofun [OF monofun-snd]
lemma prod-chain-cases:

assumes chain: chain Y

obtains A B
where chain A and chain B and Y = (Ai. (4 i, B 1))

(proof)

6.4 Product type is a cpo

27

lemma is-lub-Pair: range A <<| * = range B <<| y = range (Ai. (4 i, B 1))

<<| (=, y)
(proof)

lemma lub-Pair: chain A = chain B = (| Ji. (A4, Bi)) = (] A, ] Bi)

for A :: nat = ‘a and B :: nat = b
(proof)

lemma is-lub-prod:
fixes S :: nat = ('a x 'b)
assumes chain S
shows range S <<| (|]i. fst (S i), | ] snd (S 1))
(proof)

lemma [ub-prod: chain S = (| ]i. S4) = (¢ fst (S i), ] snd (S 7))

for S :: nat = ‘a x b
(proof )

instance prod :: (cpo, cpo) cpo
(proof)

instance prod :: (discrete-cpo, discrete-cpo) discrete-cpo

{(proof)

6.5 Product type is pointed

lemma minimal-prod: (L, L) C p
{proof )
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instance prod :: (pcpo, pcpo) pepo
(proof )

lemma inst-prod-pepo: L = (L, 1)
(proof )

lemma Pair-bottom-iff [simp]: (z,y) = L+— =L Ay=1
{proof)

lemma fst-strict [simp]: fst L = L
(proof)

lemma snd-strict [simp]: snd L = L
{proof)

lemma Pair-strict [simp]: (L, 1) = L
(proof)

lemma split-strict [simp]: case-prod f L. =f 1 L
(proof)

6.6 Continuity of Pair, fst, snd

lemma cont-pairl: cont (A\z. (z, y))
(proof)

lemma cont-pair2: cont (Ay. (z, y))
{proof)

lemma cont-fst: cont fst
(proof)

lemma cont-snd: cont snd

(proof)

lemma cont2cont-Pair [simp, cont2cont]:
assumes f: cont (A\z. f )
assumes g: cont (\z. g )
shows cont (Az. (f z, g z))

(proof)
lemmas cont2cont-fst [simp, cont2cont] = cont-compose [OF cont-fst]
lemmas cont2cont-snd [simp, cont2cont] = cont-compose [OF cont-snd)
lemma cont2cont-case-prod:

assumes fI: Aa b. cont (A\z. fx a b)

assumes f2: Az b. cont (Aa. fz a b)
assumes f3: Az a. cont (A\b. fz a b)
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assumes ¢: cont (A\z. g z)
shows cont (Az. case g x of (a, b)) = fz a b)

{proof)

lemma prod-contl:
assumes fI: A\y. cont (Az. f (z, y))
assumes f2: Az. cont (Ay. f (z, y))
shows cont f

(proof)

lemma prod-cont-iff: cont f «+— (Vy. cont (Az. f (z, y))) A (Vz. cont (Ay. [ (z,
y)))
(proof)

lemma cont2cont-case-prod’ [simp, cont2cont]:
assumes f: cont (Ap. f (fst p) (fst (snd p)) (snd (snd p)))
assumes ¢: cont (A\z. g z)
shows cont (Az. case-prod (f z) (g z))

{proof)

The simple version (due to Joachim Breitner) is needed if either element
type of the pair is not a cpo.

lemma cont2cont-split-simple [simp, cont2cont]:
assumes Aa b. cont (\z. fx a b)
shows cont (Az. case p of (a, b) = fz ab)

(proof)

Admissibility of predicates on product types.

lemma adm-case-prod [simp]:
assumes adm (Az. Pz (fst (fz)) (snd (f x)))
shows adm (Az. case fz of (a, b) = Pz ab)

{proof)

6.7 Compactness and chain-finiteness
lemma fst-below-iff: fst t C y +— 2 C (y, snd z) for z :: 'a x 'b
(proof)

lemma snd-below-iff: snd t C y «— z C (fst z, y) for z :: ‘a x 'b
(proof )

lemma compact-fst: compact ¥ = compact (fst x)
(proof)

lemma compact-snd: compact x = compact (snd x)
(proof)

lemma compact-Pair: compact © = compact y = compact (z, y)
(proof )
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lemma compact-Pair-iff [simp|: compact (z, y) +— compact x A compact y
(proof )

instance prod :: (chfin, chfin) chfin
(proof )

7 Discrete cpo types

datatype ‘a discr = Discr 'a:type

7.1 Discrete cpo class instance

instantiation discr :: (type) discrete-cpo
begin

definition ((C) :: ‘a discr = 'a discr = bool) = (=)

instance
(proof )

end

7.2 wundiser

definition undiscr :: 'a::type discr = 'a
where undiscr z = (case x of Discr y = y)

lemma undiscr-Discr [simp]: undiscr (Discr x) = x
{proof)

lemma Discr-undiscr [simp]: Discr (undiscr y) = y
(proof)

end

8 Subtypes of pcpos

theory Cpodef

imports Cpo

keywords pcpodef cpodef :: thy-goal-defn
begin

8.1 Proving a subtype is a partial order

A subtype of a partial order is itself a partial order, if the ordering is defined
in the standard way.

theorem (in below) typedef-class-po:
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fixes Abs :: 'bi:po = 'a

assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y

shows class.po below

(proof )

lemmas typedef-po-class = below.typedef-class-po [THEN po.intro-of-class)

8.2 Proving a subtype is finite

lemma typedef-finite-UNIV:
fixes Abs :: 'a::type = 'b::type
assumes type: type-definition Rep Abs A
shows finite A = finite (UNIV :: 'b set)

(proof)

8.3 Proving a subtype is chain-finite

lemma ch2ch-Rep:
assumes below: (C) = Az y. Rep z C Rep y
shows chain S = chain (\i. Rep (S 7))

(proof)

theorem typedef-chfin:
fixes Abs :: 'a::chfin = 'b:po
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
shows OFCLASS('b, chfin-class)
(proof)

8.4 Proving a subtype is complete

A subtype of a cpo is itself a cpo if the ordering is defined in the standard
way, and the defining subset is closed with respect to limits of chains. A set
is closed if and only if membership in the set is an admissible predicate.

lemma typedef-is-lubl:
assumes below: (C) = Az y. Rep x C Rep y
shows range (Xi. Rep (S 7)) <<| Rep x = range S <<|

(proof)

lemma Abs-inverse-lub-Rep:
fixes Abs :: ‘a::cpo = 'bipo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and adm: adm (Az. z € A)
shows chain S = Rep (Abs (| ]i. Rep (S 7)) = (|4 Rep (S 1))

{proof)

theorem typedef-is-lub:



THEORY “Cpodef” 32

fixes Abs :: 'a::cpo = 'bipo

assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (Az. z € A)

assumes S: chain S

shows range S <<| Abs (| |i. Rep (S 1))

(proof)
lemmas typedef-lub = typedef-is-lub [THEN lub-eql]

theorem typedef-cpo:
fixes Abs :: 'a::cpo = 'biipo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (\z. x € A)
shows OFCLASS('b, cpo-class)

(proof)

8.4.1 Continuity of Rep and Abs

For any sub-cpo, the Rep function is continuous.

theorem typedef-cont-Rep:
fixes Abs :: 'a::cpo = 'b::cpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (A\z. z € A)
shows cont (Az. fx) = cont (Az. Rep (f z))

(proof)

For a sub-cpo, we can make the Abs function continuous only if we restrict
its domain to the defining subset by composing it with another continuous
function.

theorem typedef-cont-Abs:

fixes Abs :: ‘a::cpo = 'bicpo

fixes [ :: 'ciiepo = 'az:epo

assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (A\z. x € A)
and f-in-A: N\z. fz € A

shows cont f = cont (Az. Abs (f z))

(proof )

8.5 Proving subtype elements are compact

theorem typedef-compact:
fixes Abs :: 'a::cpo = 'b::cpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
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and adm: adm (Az. x € A)
shows compact (Rep k) = compact k

(proof)

8.6 Proving a subtype is pointed

A subtype of a cpo has a least element if and only if the defining subset has
a least element.

theorem typedef-pcpo-generic:
fixes Abs :: 'a::cpo = 'biicpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and z-in-A: z € A
and z-least: N\o. 2 € A= 2C z
shows OFCLASS('b, pcpo-class)

{proof)

As a special case, a subtype of a pcpo has a least element if the defining
subset contains 1.

theorem typedef-pcpo:
fixes Abs :: 'a::pcpo = 'b::cpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1L € A
shows OFCLASS('b, pcpo-class)

{proof)

8.6.1 Strictness of Rep and Abs

For a sub-pcpo where L is a member of the defining subset, Rep and Abs
are both strict.

theorem typedef- Abs-strict:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and bottom-in-A: L € A
shows Abs L. = L

{proof)

theorem typedef-Rep-strict:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and bottom-in-A: 1 € A
shows Rep L = |

{proof)

theorem typedef-Abs-bottom-iff:
assumes type: type-definition Rep Abs A
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and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1 € A
shows 1 € A = (Absz = 1) =(z = 1)
(proof )

theorem typedef- Rep-bottom-iff:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1. € A
shows (Rep z = L) = (z = 1)
(proof )

8.7 Proving a subtype is flat

theorem typedef-flat:
fixes Abs :: 'a::flat = 'b::pcpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and bottom-in-A: L € A
shows OFCLASS('b, flat-class)
(proof)

8.8 HOLCF type definition package
(ML)

end

9 The type of continuous functions

theory Cfun
imports Cpodef
begin

9.1 Definition of continuous function type
definition cfun = {f::'a = 'b. cont [}
cpodef (a, 'b) cfun (<(<notation=<infix —»- —/ -)» [1, 0] 0) = cfun :: ('a =
'b) set
(proof )

type-notation (ASCII)
cfun (infixr «(—>» 0)

notation (ASCII)
Rep-cfun  (<(<notation=<infix $»>-$/-)> [999,1000] 999)

notation
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Rep-cfun  (<(<notation=<infix -»>--/-)» [999,1000] 999)

9.2 Syntax for continuous lambda abstraction

syntax -cabs :: [logic, logic] = logic
(ML)

Syntax for nested abstractions

syntax (ASCII)
-Lambda :: [cargs, logic] = logic (<(<indent=3 notation=<binder LAM>»LAM -./
) [1000, 10] 10)

syntax
-Lambda :: [cargs, logic] = logic (<(<indent=3 notation=<binder A»A -./ -)»
(1000, 10] 10)

syntax-consts
-Lambda = Abs-cfun

(ML)

Dummy patterns for continuous abstraction
translations

A -t = CONST Abs-cfun (A-. 1)
9.3 Continuous function space is pointed
lemma bottom-cfun: L € cfun

{proof)

instance cfun :: (cpo, discrete-cpo) discrete-cpo
(proof )

instance cfun :: (cpo, pcpo) pcpo
(proof )

lemmas Rep-cfun-strict =
typedef-Rep-strict [OF type-definition-cfun below-cfun-def bottom-cfun]

lemmas Abs-cfun-strict =

typedef-Abs-strict [OF type-definition-cfun below-cfun-def bottom-cfun)
function application is strict in its first argument
lemma Rep-cfun-strict! [simp]: L.z = L

(proof)

lemma LAM-strict [simp]: (A z. 1) = 1
{proof)
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for compatibility with old HOLCF-Version

lemma inst-cfun-pcpo: L = (A z. L)
(proof )

9.4 Basic properties of continuous functions

Beta-equality for continuous functions

lemma Abs-cfun-inverse2: cont f = Rep-cfun (Abs-cfun f) = f
(proof )

lemma beta-cfun: cont f = (A z. fz)u=fu
(proof )

9.4.1 Beta-reduction simproc

Given the term (A z. f z)-y, the procedure tries to construct the theorem (A
z. fz)-y = fy. If this theorem cannot be completely solved by the cont2cont
rules, then the procedure returns the ordinary conditional beta-cfun rule.

The simproc does not solve any more goals that would be solved by using
beta-cfun as a simp rule. The advantage of the simproc is that it can avoid
deeply-nested calls to the simplifier that would otherwise be caused by large
continuity side conditions.

Update: The simproc now uses rule Abs-cfun-inverse2 instead of beta-cfun,
to avoid problems with eta-contraction.

(ML)
FEta-equality for continuous functions
lemma eta-cfun: (A z. f-z) = f
(proof)
Extensionality for continuous functions
lemma cfun-eq-iff: f = g +— Vz. f-x = gx)
(proof)

lemma cfun-eql: (\z. ffo =gz) = f=g
(proof )
Extensionality wrt. ordering for continuous functions
lemma cfun-below-iff: f C g +— (Vz. f-x C g-x)
{proof )
lemma cfun-belowl: (Nz. f2 C gz) = fLC g
{proof)
Congruence for continuous function application

lemma cfun-cong: f = g —= =y = f-x = gy
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{proof)

lemma cfun-fun-cong: f = ¢ = f-o = gz
(proof )

lemma cfun-arg-cong: t = y = f-x = f-y
(proof)

9.5 Continuity of application

lemma cont-Rep-cfunl: cont (Af. f-x)
(proof)

lemma cont-Rep-cfun?2: cont (Az. f-x)
(proof )

lemmas monofun-Rep-cfun = cont-Rep-cfun [THEN cont2mono]

lemmas monofun-Rep-cfunl = cont-Rep-cfunl [THEN cont2mono)
lemmas monofun-Rep-cfun2 = cont-Rep-cfun2 [THEN cont2mono)

contlub, cont properties of Rep-cfun in each argument
lemma contlub-cfun-arg: chain ¥ = f-(I]i. Y i) = (4. f-(YV 7))
(proof)

lemma contlub-cfun-fun: chain F = (| |i. F i)z = (| ]i. F i-x)
{proof )

monotonicity of application

lemma monofun-cfun-fun: f C ¢ = f-x C gx
(proof)

lemma monofun-cfun-arg: t C y = f-x C f-y
{proof )

lemma monofun-cfun: fC g —= 2 C y = f-o C gy
(proof)

ch2ch - rules for the type ‘a — 'b
lemma chain-monofun: chain ¥ = chain (Xi. f-(Y 7))

{proof)

lemma ch2ch-Rep-cfunR: chain Y = chain (A\i. f-(Y ©))
{proof)

lemma ch2ch-Rep-cfunL: chain F = chain (X\i. (F i)-x)
(proof)

37

lemma ch2ch-Rep-cfun [simp]: chain F = chain Y = chain (Ai. (F i)-(Y 7))
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{proof)

lemma ch2ch-LAM [simp]:
(Az. chain (Mi. S iz)) = (Ai. cont (A\x. Six)) = chain (\i. A z. S i)
(proof)

contlub, cont properties of Rep-cfun in both arguments
lemma lub-APP: chain F = chain ¥ = (| ]i. Fi-(Y4) = (Ji Fi)-( i YV
i

(proof)
lemma lub-LAM:

assumes Az. chain (\i. F ix)

and Ai. cont (Az. Fix)
shows (| |i. Az. Fiz)=(Axz |]|i Fiz)
(proof)

lemmas lub-distribs = lub-APP lub-LAM

strictness

lemma strictl: fo =1 = f-1L =1
(proof)

type ‘a — 'b is chain complete

lemma [ub-cfun: chain FF = (| ]i. F i) = (A z. | ]i. F i)
{proof)

9.6 Continuity simplification procedure

cont2cont lemma for Rep-cfun

lemma cont2cont-APP [simp, cont2cont]:
assumes f: cont (\z. f z)
assumes t: cont (Az. t x)
shows cont (Az. (f x)-(t z))

(proof)

Two specific lemmas for the combination of LCF and HOL terms. These
lemmas are needed in theories that use types like 'a — 'b = ’c.

lemma cont-APP-app [simp]: cont f => cont g => cont (Az. ((f z)-(g x)) s)
(proof)

lemma cont-APP-app-app [simp]: cont f = cont ¢ = cont (A\z. ((f z)-(g z)) s
t)

(proof)

cont2mono Lemma for Az. A y. ¢l z y

lemma cont2mono-LAM:
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[Az. cont (Ay. fzy); Ay. monofun (Az. fz y)]
= monofun (Az. A y. fz y)

(proof)
cont2cont Lemma for Axz. A y. fzy

Not suitable as a cont2cont rule, because on nested lambdas it causes expo-
nential blow-up in the number of subgoals.

lemma cont2cont-LAM:
assumes fI1: \z. cont (\y. fzy)
assumes f2: A\y. cont (Az. fz y)
shows cont (Az. A y. fzy)

(proof)
This version does work as a cont2cont rule, since it has only a single subgoal.

lemma cont2cont-LAM' [simp, cont2cont]:
fixes [ :: 'a::cpo = 'biicpo = ciicpo
assumes f: cont (Ap. f (fst p) (snd p))
shows cont (Az. A y. fzy)

{proof)

lemma cont2cont-LAM-discrete [simp, cont2cont):
(Ay:'adiscrete-cpo. cont (Az. fzy)) = cont (Az. A y. fzy)
{proof)

9.7 Miscellaneous

Monotonicity of Abs-cfun

lemma monofun-LAM: cont f = cont g = (A\z. fr C gz) = (A z. fz) C
(A z. g x)

(proof )
some lemmata for functions with flat/chfin domain/range types

lemma chfin-Rep-cfunR: chain Y = Vs. IAn. (LUBi. Yi)s= Y ns
for Y :: nat = 'a::cpo — 'b::chfin
(proof)

lemma adm-chfindom: adm (A(u::’'a::cpo — 'bi:chfin). P(u-s))
(proof)

9.8 Continuous injection-retraction pairs

Continuous retractions are strict.

lemma retraction-strict: Vz. f-(¢gz) =2z = f-L = L

{proof)

lemma injection-eq: Vz. f-(g-z) = 2 = (gox = gy) = (x = y)
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{proof)

lemma injection-below: Vz. f-(g-x) = ¢ = (g-z C g-y) = (z C y)
(proof )

lemma injection-defined-rev: V. f-(gzx) =2 = gz=1 = 2= 1
(proof )

lemma injection-defined: Vz. f-(gx) =2 = 2 # L = gz # L
(proof )

a result about functions with flat codomain

lemma flat-eql: 2 Cy —=zx# 1L =z =y
for z y :: 'a:flat
{proof )

lemma flat-codom: f-x = c = f-L =1V Vz fz=¢)
for c :: 'b::flat
(proof )

9.9 Identity and composition

definition ID :: ‘a — 'a
where ID = (A z. z)

definition cfcomp :: ('b = '¢c) =» (‘la = 'b) = ‘a = 'c
where oo-def: cfcomp = (A fg x. f-(g-1))

abbreviation cfcomp-syn :: ['b — ¢, 'a — 'b] = 'a — 'c (infixr <00) 100)
where f oo g == cfcomp-f-g

lemma ID1 [simp]: ID-z = x
{proof)

lemma cfcompl: (f oo g) = (A z. f-(g-x))
{proof)

lemma cfcomp?2 [simp]: (f oo g)-z = f-(g-x)
(proof )

lemma cfeomp-LAM: cont ¢ = foo (A z. gz) = (A z. f-(g z))
(proof )

lemma cfecomp-strict [simp]: L oo f = L
(proof )

Show that interpretation of (pcpo, -—-) is a category.

e The class of objects is interpretation of syntactical class pcpo.
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o The class of arrows between objects ‘a and 'b is interpret. of ‘a — 'b.

e The identity arrow is interpretation of ID.

e The composition of f and g is interpretation of oo.

lemma ID2 [simp]: f oo ID = f
(proof)

lemma IDS [simp]: ID oo f = f
{proof)

lemma assoc-00: f oo (g oo h) = (f oo g) oo h
(proof)

9.10 Strictified functions

definition seq :: 'a::pcpo — 'b::pcpo — b
where seq = (A z. if z = L then L else ID)

lemma cont2cont-if-bottom [cont2cont, simpl:
assumes f: cont (A\z. f )
and g: cont (Az. g x)
shows cont (Az. if fz = L then L else g x)
(proof)

lemma seg-conv-if: seq-x = (if x = L then L else ID)
(proof )

lemma seg-simps [simp]:
seq- L = L
seqx-L = 1
x # 1L = seqx = ID
(proof )

definition strictify :: (‘a:pcpo — 'biipepo) — 'a — b
where strictify = (A fz. seq-x-(f-x))

lemma strictify-conv-if: strictify-f-x = (if x = L then L else f-x)
(proof )

lemma strictifyl [simp]: strictify-f-L = L
(proof )

lemma strictify2 [simp]: x # L = strictify-f-o = f-x
(proof )

9.11 Continuity of let-bindings

lemma cont2cont-Let:
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assumes f: cont (A\z. f z)

assumes g1: A\y. cont (Az. g x y)
assumes ¢2: Az. cont (Ay. g z y)
shows cont (Az. let y = fzin g xy)
(proof )

lemma cont2cont-Let’ [simp, cont2cont]:
assumes f: cont (A\z. f )
assumes g: cont (Ap. g (fst p) (snd p))
shows cont (Az. let y = fxin g x y)

(proof)

The simple version (suggested by Joachim Breitner) is needed if the type of
the defined term is not a cpo.

lemma cont2cont-Let-simple [simp, cont2cont]:
assumes Ay. cont (A\x. gz y)
shows cont (Az. let y = tin g x y)

{proof)

end

10 Continuous deflations and ep-pairs

theory Deflation
imports Cfun
begin

10.1 Continuous deflations

locale deflation =
fixes d :: 'a — 'a
assumes idem: A\z. d-(d-z) = d-z
assumes below: A\z. d-z C ¢
begin

lemma below-ID: d T ID
(proof)

The set of fixed points is the same as the range.
lemma fizes-eq-range: {z. d-z = =} = range (Az. d-x)

{proof)

lemma range-eg-fizes: range (Az. d-x) = {z. d-x = x}
(proof)

The pointwise ordering on deflation functions coincides with the subset or-
dering of their sets of fixed-points.

lemma belowl:
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assumes f: \z. dz =2 = fax ==z
shows d C f
(proof)

lemma belowD: [f C d; fx = 2] = dz ==z

(proof)

end

lemma deflation-strict: deflation d = d-1L = L
(proof)

lemma adm-deflation: adm (Ad. deflation d)
{proof)

lemma deflation-1D: deflation 1D
{proof )

lemma deflation-bottom: deflation L
(proof )

lemma deflation-below-iff: deflation p = deflation ¢ = p C q +— (Vz. px =
r— qr=2x)
(proof)

The composition of two deflations is equal to the lesser of the two (if they
are comparable).

lemma deflation-below-compl:
assumes deflation f
assumes deflation g
shows f C g = f-(¢gz) = fx
(proof )

lemma deflation-below-comp2: deflation f —> deflation ¢ = [ C g = g-(f-z)
= f'x
(proof )

10.2 Deflations with finite range

lemma finite-range-imp-finite-fixes:
assumes finite (range f)
shows finite {z. fz = z}

(proof)

locale finite-deflation = deflation +
assumes finite-fizes: finite {z. d-x = x}

begin

lemma finite-range: finite (range (Az. d-x))
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{proof)

lemma finite-image: finite ((Az. d-z) ¢ A)
{proof)

lemma compact: compact (d-x)
(proof)

end

lemma finite-deflation-intro: deflation d = finite {x. d-x = £} = finite-deflation
d
(proof )

lemma finite-deflation-imp-deflation: finite-deflation d = deflation d
(proof )

lemma finite-deflation-bottom: finite-deflation L
(proof)

10.3 Continuous embedding-projection pairs

locale ep-pair =
fixese: 'a— band p:: 'b — 'a
assumes e-inverse [simp]: N\z. p-(e-x) =z
and e-p-below: Ny. e(py) C y

begin

lemma e-below-iff [simp]: ex C ey +— z C y

(proof)

lemma e-eg-iff [simp]: ex = ey +— x =1y
(proof )

lemma p-eq-iff: e-(px) =2 = e(py) =y = pr=py+—>x=1y

{proof)

lemma p-inverse: (3z. y = e-x) «— e(py) =y

{proof)

lemma e-below-iff-below-p: eex C y <— x C p-y

(proof)

lemma compact-e-rev: compact (e-x) = compact x

(proof)

lemma compact-e:
assumes compact ©
shows compact (e-x)



THEORY “Deflation”

(proof)

lemma compact-e-iff: compact (e-x) <— compact x
{proof)

Deflations from ep-pairs

lemma deflation-e-p: deflation (e oo p)
{proof)

lemma deflation-e-d-p:
assumes deflation d
shows deflation (e oo d oo p)

(proof)

lemma finite-deflation-e-d-p:
assumes finite-deflation d
shows finite-deflation (e oo d oo p)

(proof)

lemma deflation-p-d-e:
assumes deflation d
assumes d: \z. d-z C e(p-x)
shows deflation (p oo d oo €)

(proof)

lemma finite-deflation-p-d-e:
assumes finite-deflation d
assumes d: A\z. d-z C e (p-x)
shows finite-deflation (p oo d oo e)
(proof)

end

10.4 Uniqueness of ep-pairs

lemma ep-pair-unique-e-lemma:
assumes 1: ep-pair el p
and 2: ep-pair e2 p
shows el C e2
(proof)

lemma ep-pair-unique-e: ep-pair el p =—> ep-pair e2 p — el = e2
(proof )

lemma ep-pair-unique-p-lemma:
assumes 1: ep-pair e pl
and 2: ep-pair e p2
shows p1 C p2
(proof)

45
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lemma ep-pair-unique-p: ep-pair e p1 = ep-pair e p2 —> pl = p2
{proof )

10.5 Composing ep-pairs

lemma ep-pair-ID-ID: ep-pair ID ID
(proof)

lemma ep-pair-comp:
assumes ep-pair el pl and ep-pair e2 p2
shows ep-pair (e2 oo el) (pl oo p2)

(proof)

locale pcpo-ep-pair = ep-pair e p
for e :: 'a::pcpo — 'b::pepo
and p :: 'b::pcpo — 'a::pepo
begin

lemma e-strict [simp]: el = L
(proof)

lemma e-bottom-iff [simp]: ex = L +— z = L
{proof)

lemma e-defined: © # L =— ex # L
{proof )

lemma p-strict [simp]: p-L = L
(proof)

lemmas stricts = e-strict p-strict
end

end

11 The type of strict products

theory Sprod
imports Cfun
begin
11.1 Definition of strict product type
definition sprod = {p::’a::pcpo x "b:ipcpo. p = LV (fst p # L A sndp # 1)}

pcpodef (‘a::pepo, 'b:ipepo) sprod  («(snotation=<infix strict producty>- @/ -)»
[21,20] 20) =
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sprod :: ('a x 'b) set
{proof)

instance sprod :: ({chfin,pcpo}, {chfin,pcpo}) chfin
(proof )

type-notation (ASCII)
sprod (infixr x> 20)

11.2 Definitions of constants

definition sfst :: (‘a::pepo *x 'b:ipepo) — 'a
where sfst = (A p. fst (Rep-sprod p))

definition ssnd :: ('a::pcpo **x 'bipepo) — b
where ssnd = (A p. snd (Rep-sprod p))

definition spair :: ‘a::pcpo — 'biipepo — (‘a *x 'b)
where spair = (A a b. Abs-sprod (seq-b-a, seq-a-b))

definition ssplit :: ("a::pcpo — 'bipepo — ‘ciipepo) — (Ya xx 'b) — ‘¢
where ssplit = (A f p. seq-p-(f-(sfst-p)-(ssnd-p)))

syntax
-stuple :: [logic, args] = logic («(<indent=1 notation=<mixfix strict tuple»»'(:-,/
1))
syntax-consts
-stuple = spair
translations

—\

(:z, y, 22) = (z, (g, 2:)2)
(:z, y:) = CONST spair-z-y

translations
A(CONST spair-z-y). t = CONST ssplit-(A z y. t)

11.3 Case analysis

lemma spair-sprod: (seq-b-a, seq-a-b) € sprod
(proof)

lemma Rep-sprod-spair: Rep-sprod (:a, b:) = (seq-b-a, seq-a-b)
(proof)

lemmas Rep-sprod-simps =
Rep-sprod-inject [symmetric] below-sprod-def
prod-eq-iff below-prod-def
Rep-sprod-strict Rep-sprod-spair

lemma sprodE [case-names bottom spair, cases type: sprod):
obtains p = 1 | z y where p = (:z, y:) and 2 # L and y # L
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{proof)

lemma sprod-induct [case-names bottom spair, induct type: sprod):
[PLiANvy [ # Liy# 1] = P (z, y:)] = Pux
(proof)

11.4 Properties of spair

lemma spair-strict [simp]: (L, y:) = L

{proof)

1

lemma spair-strict2 [simp]: (:z, L:)
{proof)

lemma spair-bottom-iff [simp]: (:z, y:) = L+—z=1LVy=_1
(proof )

lemma spair-below-iff: (ca, b:) C (¢, d:) +—a=1LVb=1LV(aCcAbLCd)
{proof)

lemma spair-eq-iff: (ca, b)) = (t¢, d:) «—a=cAb=dV (a=LVb=1)A
(c=Lvd=1)
{proof)

lemma spair-strict: t = LV y=1 = (z, y:) = L
(proof)

lemma spair-strict-rev: iz, y:) # L =z # L Ay # L
(proof )

lemma spair-defined: [x # L; y # L] = (z, y:) # L
(proof )

lemma spair-defined-rev: (:z, y:) = L =z =1 Vy=_1
(proof )

lemma spair-below: z # L — y # L — (z, y:) C (g, b)) +—2zCa Ay b
(proof )

lemma spair-eq: x # 1L —= y # L = (a, ) = (g, b)) «—x=aANy=1b
(proof)

lemma spair-inject: © # L — y # L = (z, y:) = (a, b)) = z=aAy=1»>
(proof )

lemma inst-sprod-pcpo2: 1L = (: 1, L:)
(proof)

lemma sprodE2: (Azy. p = (iz, y:1) = Q) = @
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{proof)

11.5 Properties of sfst and ssnd
lemma sfst-strict [simp]: sfst-L = L

(proof)

lemma ssnd-strict [simp]: ssnd-L = L
{proof)

lemma sfst-spair [simpl: y # L = sfst-(:z, y:) = x
(proof )

lemma ssnd-spair [simp]: © # L = ssnd-(:z, y:) = y
(proof )

lemma sfst-bottom-iff [simp]: sfstp = L +— p= 1
(proof )

lemma ssnd-bottom-iff [simp]: ssnd-p = L +— p= 1
(proof )

lemma sfst-defined: p # 1 = sfst-p # L
(proof)

lemma ssnd-defined: p # 1L = ssnd-p # L
(proof )

lemma spair-sfst-ssnd: (:sfst-p, ssnd-p:) = p
(proof)

lemma below-sprod: x T y +— sfst-x T sfst-y A\ ssnd-x E ssnd-y

(proof)

lemma eg-sprod: © = y «— sfst-x = sfst-y A\ ssnd-x = ssnd-y
{proof )

lemma sfst-below-iff: sfst-x C y +— z C (:y, ssnd-x:)
(proof )

lemma ssnd-below-iff: ssnd-x C y +— x C (:sfst-z, y:)

{proof)

11.6 Compactness

lemma compact-sfst: compact ¥ = compact (sfst-z)
(proof)

lemma compact-ssnd: compact © = compact (ssnd-x)
(proof )
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lemma compact-spair: compact t = compact y = compact (:z, y:)
{proof )

lemma compact-spair-iff: compact (:x, y:) +— = L V y = L V (compact x A
compact y)
(proof )

11.7 Properties of ssplit
lemma ssplit! [simp): ssplit-f-1L = L
(proof )

lemma ssplit2 [simp]: © # L = y # L = ssplit-f-(:z, y:) = f-zy
(proof )

lemma ssplit3 [simp): ssplit-spair-z = z
(proof )

11.8 Strict product preserves flatness
instance sprod :: (flat, flat) flat
(proof)

end

12 The type of lifted values

theory Up
imports Cfun
begin

12.1 Definition of new type for lifting
datatype ‘a u (<(<notation=<postfiz lifting>>-, )> [1000] 999) = Ibottom | Tup 'a
primrec Ifup :: ('a — 'bipepo) = ‘a u = b

where

Ifup f Ibottom = L
| Ifup f (lup z) = f-x

12.2 Ordering on lifted cpo
instantiation v :: (c¢po) below

begin

definition below-up-def:
©) =
Az y.
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(case z of
Ibottom = True
| Tup a = (case y of Ibottom = False | Iup b = a C b)))

instance (proof)
end

lemma minimal-up [iff]: Tbottom C z
{proof)

lemma not-Tup-below [iff]: Tup = £ Ibottom
(proof )

lemma Tup-below [iff]: (Tup x C Tup y) = (z C y)
{proof)
12.3 Lifted cpo is a partial order
instance u :: (¢po) po
(proof)
12.4 Lifted cpo is a cpo
lemma is-lub-Tup: range S <<| x = range (Ai. Tup (S 7)) <<| lup x

{proof)

lemma up-chain-lemma:
assumes Y: chain Y
obtains Vi. Y i = Ibottom
| Ak where Vi. Iup (A %) =Y (i + k) and chain A and range Y <<| Iup

(L] A 9)
(proof )

instance u :: (cpo) cpo
(proof)

12.5 Lifted cpo is pointed

instance u :: (¢po) pepo
(proof)

for compatibility with old HOLCF-Version

lemma inst-up-pcpo: L = Ibottom
(proof )

12.6 Continuity of Tup and Ifup

continuity for Tup
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lemma cont-ITup: cont Iup
(proof)

continuity for Ifup
lemma cont-Ifupl: cont (Af. Ifup f x)
(proof )

lemma monofun-Ifup2: monofun (\z. Ifup f x)
(proof )

lemma cont-Ifup2: cont (Az. Ifup f z)
{proof )

12.7 Continuous versions of constants

definition up :: 'a = ‘a u
where up = (A z. Tup x)

definition fup :: (‘a — ’b:ipcpo) = ‘a u — b
where fup = (A f p. Ifup f p)

translations
case | of XCONST up-z = t = CONST fup-(A z. t)-1
case | of (XCONST up :: 'a)-x = t — CONST fup-(A z. t)-1
A(XCONST up-z). t = CONST fup-(A z. t)

continuous versions of lemmas for ‘a |
lemma Ezh-Up: z = 1L V (3z. 2 = up-x)
(proof )

lemma up-eq [simpl: (up-z = up-y) = (z = y)
(proof )

lemma up-inject: up-x = up-y = x =y
(proof )

lemma up-defined [simp]: up-x # L
(proof)

lemma not-up-less-UU: up-x £ L
(proof)

lemma up-below [simp]: up-z C up-y +— 2 C y

(proof)

lemma upFE [case-names bottom up, cases type: u]: [p = L = Q; \z. p = up-z
— Q] = @
(proof )
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lemma up-induct [case-names bottom up, induct type: u]: P L = (Az. P (up-x))
= Pz

{proof)

lifting preserves chain-finiteness

lemma up-chain-cases:

assumes Y: chain Y

obtains Vi. Yi= 1

| A k where Vi. up-(A i) =Y (i + k) and chain A and (| |i. Y i) = up-(|] 1.
A i)

(proof )

lemma compact-up: compact x = compact (up-x)
(proof )

lemma compact-upD: compact (up-z) = compact x
{proof)

lemma compact-up-iff [simpl: compact (up-z) = compact
(proof)

instance u :: (chfin) chfin
(proof )

properties of fup

lemma fup! [simp]: fup-f-L = L
{proof )

lemma fup2 [simp]: fup-f-(up-x) = f-x
(proof)

lemma fup3 [simp]: fup-up-z = x
(proof)

end

13 Lifting types of class type to flat pcpo’s
theory Lift

imports Up

begin

pepodef ‘a::type lift = UNIV :: 'a discr u set
(proof)

lemmas inst-lift-pcpo = Abs-lift-strict [symmetric]

definition
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Def :: 'a::type = 'a lift where
Def x = Abs-lift (up-(Discr x))
13.1 Lift as a datatype
lemma lift-induct: [P L; Az. P (Defz)] = Py
(proof )
old-rep-datatype _L::'a::type lift Def
(proof)

1 and Def

lemma not-Undef-is-Def: (x # L) = (3y. x = Def y)
(proof)

lemma lift-definedE: [x # 1; Na. © = Defa — R] = R
(proof )
For z # 1 in assumptions defined replaces z by Def a in conclusion.

(ML)

lemma DefE: Defxr = 1 =— R
(proof )

lemma DefE2: [x = Def s; x = 1] = R
(proof)

lemma Def-below-Def: Def x C Defy +— z =y
{proof )

lemma Def-below-iff [simp]: Def z © y <— Defz =y

(proof)

13.2 Lift is flat

instance lift :: (type) flat

(proof)

13.3 Continuity of case-lift

lemma case-lift-eq: case-lift L fx = fup-(A y. f (undiscr y))-(Rep-lift x)
(proof)

lemma cont2cont-case-lift [simpl:
[Ay. cont (Az. fzy); cont g] = cont (Az. case-lift L (fz) (g z))
(proof)

13.4 Further operations

definition



THEORY “Ir”

95

flift1 :: (Ya:type = 'bipepo) = (‘a lift — 'b) (binder «FLIFT » 10) where

fliftl = (Af. (A z. case-lift L fx))

translations
A(XCONST Def z). t => CONST flift1 (Ax. t)
A(CONST Def z). FLIFT y. t <= FLIFT z y. t
A(CONST Def z). t <= FLIFT x. t

definition
flift2 = (Ya::type = 'butype) = (‘a lift — 'b lift) where
flift2 f = (FLIFT z. Def (f x))

lemma flift1-Def [simp]: fliftl f-(Def z) = (f z)
(proof)

lemma flift2-Def [simp]: flift2 f-(Def ) = Def (f )
(proof)

lemma flift1-strict [simp]: flift] f-1 = L
(proof)

lemma flift2-strict [simp]: flift2 f-1 = L
(proof)

lemma flift2-defined [simp]: © # L = (flift2 f)-z # L
(proof)

lemma flift2-bottom-iff [simpl: (flift2 f-x = L) = (z = 1)
(proof)

lemma FLIFT-mono:
(Nz. fz C gz) = (FLIFT z. fx) C (FLIFT z. g )
(proof)

lemma cont2cont-flift1 [simp, cont2cont]:
[Ay. cont (Az. fz y)] = cont (A\x. FLIFT y. f x y)
(proof)

end

14 The type of lifted booleans

theory Tr
imports Lift
begin
14.1 Type definition and constructors

type-synonym tr = bool lift
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translations
(type) tr — (type) bool lift

definition TT :: tr
where TT = Def True

definition FF : tr
where FF = Def False

Exhaustion and Elimination for type tr

lemma Exh-tr: t =1L Vv it=TTV t=FF
(proof)

lemma irE [case-names bottom TT FF| cases type: tr]:
[p=L=Q@;p=TT = Q;p=FF = Q] = @
(proof )

lemma tr-induct [case-names bottom TT FF, induct type: tr]:
Pl —= PITT —= PFF = Pz

{proof)

distinctness for type tr

lemma dist-below-tr [simpl:
TTZ | FFZ | TT ¢ FFFF ¢ TT

(proof)

lemma dist-eq-tr [simp]: TT # L FF #+# 1 TT # FF 1 # TT L # FFFF # TT
{proof )

lemma TT-below-iff [simp]: TT C z «— o =TT
{proof)

lemma FF-below-iff [simp]: FF C z +— z = FF
{proof)

lemma not-below-TT-iff [simp]: ¢ X TT <— z = FF
{proof)

lemma not-below-FF-iff [simp|: L FF «— x = TT
(proof )

14.2 Case analysis

definition tr-case :: ‘a::pcpo — 'a — tr — 'a

where tr-case = (A t e (Def b). if b then t else e)
abbreviation cifte-syn :: [tr, ‘c:ipcpo, 'c] = ‘¢ («(¢notation=«mizfix If expres-
sionnIf (-)/ then (-)/ else (-))» [0, 0, 60] 60)
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where If b then el else e2 = tr-case-el-e2-b

translations
A (XCONST TT). t &= CONST tr-case-t- L
A (XCONST FF). t = CONST tr-case-L-t

lemma ifte-thms [simp):
If 1 then el else e2 = L
If FF then el else e2 = e2
If TT then el else e2 = el

(proof)

14.3 Boolean connectives

definition trand :: tr — tr — tr
where andalso-def: trand = (A z y. If z then y else FF)

abbreviation andalso-syn :: tr = tr = tr (- andalso - [36,35] 35)
where = andalso y = trand-z-y

definition tror :: tr — tr — tr
where orelse-def: tror = (A z y. If z then TT else y)

abbreviation orelse-syn :: tr = tr = tr (- orelse - [31,30] 30)
where z orelse y = tror-z-y

definition neg :: tr — tr
where neg = flift2 Not

definition If2 :: tr = ’c:pcpo = 'c = 'c
where If2 Q z y = (If Q then z else y)

tactic for tr-thms with case split

lemmas tr-defs = andalso-def orelse-def neg-def tr-case-def TT-def FF-def

lemmas about andalso, orelse, neg and if

lemma andalso-thms [simp]:
(TT andalso y) = y
(FF andalso y) = FF
(L andalso y) = L
(y andalso TT) =y
(y andalso y) = y

(proof)

lemma orelse-thms [simp]:
(TT orelse y) = TT
(FF orelse y) = y
(L orelse y) = L
(y orelse FF) =y

o7
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(y orelse y) = y
(proof)

lemma neg-thms [simp):
neg-TT = FF
neg-FF = TT
neg- L = L
(proof)
split-tac for If via If2 because the constant has to be a constant

lemma split-If2: P (If2 Qzy) +— (@=L — P L) A(Q=TT — P2x) A
(@ =FF — Py))
{proof)

(ML)

14.4 Rewriting of HOLCF operations to HOL functions

lemma andalso-or: t # 1 = (t andalso s) = FF +— t = FF V s = FF
{proof)

lemma andalso-and: t # 1L = ((t andalso s) # FF) «— t # FF A\ s # FF
{proof)

lemma Def-booll [simp|: Def x # FF +— «
(proof )

lemma Def-bool2 [simp|: Def x = FF «— — x
(proof )

lemma Def-bool3 [simp]: Def x = TT +— =
{proof)

lemma Def-bool [simp]: Def x # TT +— — x
(proof)

lemma If-and-if: (If Def P then A else B) = (if P then A else B)
(proof )

14.5 Compactness

lemma compact-TT: compact TT
(proof)

lemma compact-FF: compact FF
(proof)

end
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15 The type of strict sums

theory Ssum
imports Tr
begin

15.1 Definition of strict sum type

definition ssum =
{p :: tr x (Ya::pepo x 'b:pcpo). p = LV
(fstp =TT A fst (snd p) # L A snd (sndp) = L)V
(fstp = FF A fst (snd p) = L A snd (snd p) # 1)}

pcpodef (‘a::pepo, 'biipepo) ssum  (<(«notation=<infix strict sumy- &/ -)» [21,
20] 20) =

ssum :: (tr x 'a x 'b) set

(proof )

instance ssum :: ({chfin,pcpo}, {chfin,pcpo}) chfin
(proof )

type-notation (ASCII)
ssum (infixr <++> 10)

15.2 Definitions of constructors

definition sinl :: ‘a::pcpo — (‘a ++ 'b::pepo)
where sinl = (A a. Abs-ssum (seq-a-TT, a, 1))

definition sinr :: 'b::pecpo — (‘a:pepo ++ 'b)
where sinr = (A b. Abs-ssum (seq-b-FF, L, b))

lemma sinl-ssum: (seq-a-TT, a, L) € ssum
(proof)

lemma sinr-ssum: (seq-b-FF, 1, b) € ssum
{proof)

lemma Rep-ssum-sinl: Rep-ssum (sinl-a) = (seq-a-TT, a, L)
(proof)

lemma Rep-ssum-sinr: Rep-ssum (sinr-b) = (seq-b-FF, L, b)
{proof)

lemmas Rep-ssum-simps =
Rep-ssum-inject [symmetric] below-ssum-def
prod-eq-iff below-prod-def
Rep-ssum-strict Rep-ssum-sinl Rep-ssum-sinr
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15.3 Properties of sinl and sinr

Ordering
lemma sinl-below [simp|: sinl-z T sinl-y +— xz C y

{proof)

lemma sinr-below [simp): sinr-x C sinr-y «— z C y
{proof)

lemma sinl-below-sinr [simpl: sinl-z C sinr-y +— z = 1
{proof)

lemma sinr-below-sinl [simp]: sinr-z C sinl-y +— z = L
(proof )

Equality

lemma sinl-eq [simp]: sinl-x = sinl-y «— z =y

{proof)

lemma sinr-eq [simp]: sinr-x = sinry +— =y
(proof)

lemma sinl-eg-sinr [simp]: sinl-x = sinry «— =L Ay= 1
(proof )

lemma sinr-eg-sinl [simp]: sinr-x = sinly «— =L Ay= 1
(proof)

lemma sinl-inject: sinl-x = sinly = z =y
(proof )

lemma sinr-inject: sinr-x = sinry = r =y
(proof)

Strictness
lemma sinl-strict [simp]: sinl- L = L

{proof)

lemma sinr-strict [simp]: sinr-L = L
(proof)

lemma sinl-bottom-iff [simp]: sinlx = L +— z = L
{proof)

lemma sinr-bottom-iff [simp]: sinr-x = L +— z = L
{proof)

lemma sinl-defined: © # L = sinl-z # L
(proof)
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lemma sinr-defined: v # L = sinr-x # L
{proof )

Compactness

lemma compact-sinl: compact = compact (sinl-x)
(proof )

lemma compact-sinr: compact z => compact (sinr-r)
(proof )

lemma compact-sinlD: compact (sinl-z) = compact

(proof)

lemma compact-sinrD: compact (sinr-x) = compact
{proof )

lemma compact-sinl-iff [simp]: compact (sinl-x) = compact x
(proof )

lemma compact-sinr-iff [simp|: compact (sinr-z) = compact ©
(proof )

15.4 Case analysis

lemma ssumFE [case-names bottom sinl sinr, cases type: ssuml:
obtains p = L
| z where p = sinl-x and z # L
| y where p = sinr-y and y # L
(proof)

lemma ssum-induct [case-names bottom sinl sinr, induct type: ssum)]:

[r L

Nz. ¢ # L = P (sinl-z);

Ny. y# L = P (sinry)] = Pz
(proof )

lemma ssumE2 [case-names sinl sinr]:
[Az. p = sinl-x = Q; N\y. p = sinry = Q] = Q
{proof)

lemma below-sinlD: p C sinl-x = Jy. p = sinly ANy C z
{proof )

lemma below-sinrD: p C sinr-c = Jy. p=sinry Ay C z
(proof )

15.5 Case analysis combinator

61

definition sscase :: (‘a::pepo — 'c::pepo) — (‘bipepo — '¢) — (‘a ++ 'b) = e



THEORY “Sfun” 62

where sscase = (A fgs. (\(t, z, y). If t then f-x else g-y) (Rep-ssum s))

translations

case s of XCONST sinl-x = t1 | XCONST sinr-y = t2 = CONST sscase-(A x.
t1)-(A y. t2)-s

case s of (XCONST sinl :: 'a)-x = t1 | XCONST sinr-y = t2 — CONST
sscase-(A x. t1)-(A y. 12)-s

translations
A(XCONST sinl-z). t = CONST sscase-(A z. t)-L
A(XCONST sinr-y). t = CONST sscase-L-(A y. t)

lemma beta-sscase: sscase-f-g-s = (A(t, z, y). If t then f-x else g-y) (Rep-ssum s)
(proof )

lemma sscasel [simp]: sscase-f-g-L = L
(proof)

lemma sscase2 [simp]: x # | = sscase-f-g-(sinl-z) = f-z
(proof)

lemma sscased [simp]: y # L = sscase-f-g-(sinr-y) = gy
(proof)

lemma sscasej [simp): sscase-sinl-sinr-z = z
(proof)

15.6 Strict sum preserves flatness
instance ssum :: (flat, flat) flat

{proof)

end

16 The Strict Function Type

theory Sfun
imports Cfun
begin

pcpodef (‘a::pepo, 'biipepo) sfun (infixr <—h 0) ={f e —» 'b. f-L =1}
(proof)

type-notation (ASCII)
sfun (infixr (—>b 0)
TODO: Define nice syntax for abstraction, application.

definition sfun-abs :: ("a::pcpo — 'b::pepo) — (‘a —! 'b)
where sfun-abs = (A f. Abs-sfun (strictify-f))
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definition sfun-rep :: (‘a::pcpo —! 'bi:pepo) — 'a — b
where sfun-rep = (A f. Rep-sfun f)

lemma sfun-rep-beta: sfun-rep-f = Rep-sfun f
(proof)

lemma sfun-rep-strictl [simp|: sfun-rep- 1L = L
(proof)

lemma sfun-rep-strict2 [simp|: sfun-rep-f-L = L
(proof )

lemma strictify-cancel: f-1 = 1 = strictify-f = f
(proof)

lemma sfun-abs-sfun-rep [simpl: sfun-abs-(sfun-rep-f) = f
(proof )

lemma sfun-rep-sfun-abs [simpl: sfun-rep-(sfun-abs-f) = strictify-f
(proof )

lemma sfun-eq-iff: f = g <— sfun-rep-f = sfun-rep-g
(proof)

lemma sfun-below-iff: f C g +— sfun-rep-f C sfun-rep-g
(proof)

end

17 Map functions for various types

theory Map-Functions
imports Deflation Sprod Ssum Sfun Up
begin

17.1 Map operator for continuous function space
definition cfun-map :: ('b = 'a) = (‘¢ = 'd) = ('la = '¢) = ('b = 'd)
where cfun-map = (A a b fz. b-(f-(a-x)))

lemma cfun-map-beta [simpl: cfun-map-a-b-f-x = b-(f-(a-x))
(proof )

lemma cfun-map-ID: cfun-map-ID-ID = ID
(proof )

lemma cfun-map-map: cfun-map-f1-g1-(cfun-map-f2-g2-p) = cfun-map-(A z. f2-(f1-x))-(A
. g1-(g2-x))-p
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{proof)

lemma ep-pair-cfun-map:

assumes ep-pair el pl and ep-pair e2 p2

shows ep-pair (cfun-map-p1-e2) (cfun-map-el-p2)
(proof)

lemma deflation-cfun-map:
assumes deflation d1 and deflation d2
shows deflation (cfun-map-d1-d2)
(proof)

lemma finite-range-cfun-map:

assumes a: finite (range (Az. a-x))

assumes b: finite (range (\y. b-y))

shows finite (range (A\f. cfun-map-a-b-f)) (is finite (range ?h))
(proof)

lemma finite-deflation-cfun-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (cfun-map-d1-d2)

(proof)

Finite deflations are compact elements of the function space

lemma finite-deflation-imp-compact: finite-deflation d = compact d
(proof)

17.2 Map operator for product type

definition prod-map :: ('a = b)) = (‘¢ = 'd) = 'a x 'c = b x 'd
where prod-map = (A f g p. (f-(fst p), g-(snd p)))

lemma prod-map-Pair [simp]: prod-map-f-g-(z, y) = (f-z, g-y)
(proof )

lemma prod-map-ID: prod-map-ID-ID = ID
(proof)

lemma prod-map-map: prod-map-f1-g1-(prod-map-f2-92-p) = prod-map-(A z. f1-(f2-z))-(A
. g1-(92-7))-p
(proof )

lemma ep-pair-prod-map:

assumes ep-pair el pl and ep-pair e2 p2

shows ep-pair (prod-map-el-e2) (prod-map-p1-p2)
(proof)

lemma deflation-prod-map:
assumes deflation d1 and deflation d2
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shows deflation (prod-map-d1-d2)
(proof )

lemma finite-deflation-prod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (prod-map-d1-d2)

(proof)

17.3 Map function for lifted cpo

definition u-map :: (‘a —» b)) = ‘a v — bu
where u-map = (A f. fup-(up oo f))

lemma u-map-strict [simp|: u-map-f-L = L
(proof )

lemma u-map-up [simp]: u-map-f-(up-z) = up-(f-z)
(proof)

lemma u-map-ID: u-map-ID = ID
(proof)

lemma u-map-map: u-map-f-(u-map-g-p) = u-map-(A z. f-(g-x))-p
(proof)

lemma u-map-oo: u-map-(f oo g) = u-map-f oo u-map-g
(proof)

lemma ep-pair-u-map: ep-pair e p => ep-pair (u-map-e) (u-map-p)
(proof)

lemma deflation-u-map: deflation d = deflation (u-map-d)

(proof)

lemma finite-deflation-u-map:
assumes finite-deflation d
shows finite-deflation (u-map-d)
(proof)

17.4 Map function for strict products
definition sprod-map :: (‘a::pcpo — 'b::pepo) — (‘cipepo — 'dipepo) = a ® ¢

- 'b®d
where sprod-map = (A f g. ssplit-(A z y. (:f-z, g-y)))

lemma sprod-map-strict [simpl: sprod-map-a-b-1L = L
(proof)

lemma sprod-map-spair [simp]: © # L — y # L = sprod-map-f-g-(:z, y:) =

(:f-z, g-y:)
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{proof)

lemma sprod-map-spair”: f-1 = | = ¢g-L = | = sprod-map-f-g-(:z, y:) = (:f-z,
9y:)
(proof )

lemma sprod-map-ID: sprod-map-1D-ID = ID
(proof)

lemma sprod-map-map:
[ft-L=1;¢91-L = 1] =
sprod-map-f1-g1-(sprod-map-f2-g2-p) =
sprod-map-(A z. f1-(f2-2))-(A z. g1-(g2-x))p
(proof)

lemma ep-pair-sprod-map:

assumes ep-pair el pl and ep-pair e2 p2

shows ep-pair (sprod-map-el-e2) (sprod-map-pl-p2)
(proof)

lemma deflation-sprod-map:
assumes deflation d1 and deflation d2
shows deflation (sprod-map-d1-d2)
(proof)
lemma finite-deflation-sprod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (sprod-map-d1-d2)
(proof)

17.5 Map function for strict sums
definition ssum-map :: (‘a::pcpo — 'b:iipepo) — (‘ciipepo — 'diipepo) = 'a & e
—'b@'d

where ssum-map = (A f g. sscase-(sinl oo f)-(sinr 0o g))

lemma ssum-map-strict [simpl: ssum-map-f-g-L = L
(proof )

lemma ssum-map-sinl [simp]: © # L = ssum-map-f-g-(sinl-z) = sinl-(f-z)
(proof )

lemma ssum-map-sinr [simp]: © # L = ssum-map-f-g-(sinr-z) = sinr-(g-x)
{proof)

lemma ssum-map-sinl”: f-L = | = ssum-map-f-g-(sinl-z) = sinl-(f-z)
(proof)

lemma ssum-map-sinr’: gL = 1 = ssum-map-f-g-(sinr-z) = sinr-(g-z)



THEORY “Map-Functions” 67

{proof)

lemma ssum-map-ID: ssum-map-ID-ID = ID
(proof )

lemma ssum-map-map:
[f1-L=L1;g11=1]=
ssum-map-f1-g1-(ssum-map-f2-92-p) =
ssum-map-(A z. f1-(f2-z))-(A x. g1-(g92-2))p
(proof )

lemma ep-pair-ssum-map:
assumes ep-pair el pl and ep-pair e2 p2
shows ep-pair (ssum-map-el-e2) (ssum-map-p1-p2)

(proof)

lemma deflation-ssum-map:
assumes deflation d1 and deflation d2
shows deflation (ssum-map-d1-d2)

(proof)

lemma finite-deflation-ssum-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (ssum-map-d1-d2)

(proof)

17.6 Map operator for strict function space

definition sfun-map :: ('b::pcpo — 'a::pepo) — (‘cipepo — 'dipepo) — (‘a —! e)
= ('b =!7d)
where sfun-map = (A a b. sfun-abs oo cfun-map-a-b oo sfun-rep)

lemma sfun-map-ID: sfun-map-ID-ID = ID
(proof )

lemma sfun-map-map:
assumes f2-1 = 1 and ¢2-1 = |
shows sfun-map-f1-g1-(sfun-map-f2-92-p) =
sfun-map-(A z. f2-(f1-x))-(A z. g1-(92-x))-p
(proof )

lemma ep-pair-sfun-map:

assumes 1: ep-pair el pl

assumes 2: ep-pair e2 p2

shows ep-pair (sfun-map-p1-e2) (sfun-map-el-p2)
(proof)

lemma deflation-sfun-map:
assumes 1: deflation dl1
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assumes 2: deflation d2
shows deflation (sfun-map-d1-d2)
(proof )

lemma finite-deflation-sfun-map:
assumes finite-deflation d1
and finite-deflation d2
shows finite-deflation (sfun-map-d1-d2)
(proof)

end

18 The cpo of cartesian products

theory Cprod
imports Cfun
begin
18.1 Continuous case function for unit type

definition unit-when :: ‘a — unit — 'a
where unit-when = (A a -. a)

translations
A(). t = CONST unit-when-t

lemma unit-when [simp|: unit-when-a-u = a

(proof)
18.2 Continuous version of split function
definition csplit :: (‘'a — b = '¢c) = ('a x b)) = 'c

where csplit = (A fp. f-(fst p)-(snd p))

translations
A(CONST Pair z y). t = CONST csplit-(A z y. t)

abbreviation cfst :: ‘a x 'b = 'a
where cfst = Abs-cfun fst

abbreviation csnd :: ‘a x b — b
where csnd = Abs-cfun snd

18.3 Convert all lemmas to the continuous versions

lemma csplit! [simp]: csplit-f-1L = f-1.L
(proof)

lemma csplit-Pair [simpl: csplit-f-(z, y) = f-z-y

68
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{proof)

end

19 Profinite and bifinite cpos

theory Bifinite
imports Map-Functions Cprod Sprod Sfun Up HOL— Library.Countable
begin

19.1 Chains of finite deflations

locale approz-chain =

fixes approz :: nat = 'a — 'a

assumes chain-approx [simp|: chain (\i. approx i)

assumes lub-approx [simp]: (| |i. approz i) = ID

assumes finite-deflation-approx [simp]: \i. finite-deflation (approz i)
begin

lemma deflation-approx: deflation (approx i)
(proof)

lemma approz-idem: approz i-(approx i-x) = approz i-x

(proof)

lemma approz-below: approx i-x C x
(proof)

lemma finite-range-approx: finite (range (Ax. approx i-x))

(proof)

lemma compact-approx [simp]: compact (approx n-x)
(proof)

lemma compact-eq-approx: compact © = F1i. approx i-x = x

(proof)
end

19.2 Omega-profinite and bifinite domains

class bifinite = pcpo +
assumes bifinite: 3 (a::nat = 'a — 'a). approz-chain a

class profinite = cpo +
assumes profinite: 3 (a::nat = ‘a; — 'a,). approz-chain a
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19.3 Building approx chains

lemma approz-chain-iso:
assumes a: approz-chain a
assumes [simp]: Az. f-(gz) =«
assumes [simp]: Ay. g-(f-y) =y
shows approx-chain (M\i. f oo a i 0o g)
(proof)

lemma approz-chain-u-map:
assumes approz-chain a
shows approx-chain (\i. u-map-(a 7))
(proof)

lemma approz-chain-sfun-map:
assumes approz-chain a and approx-chain b
shows approz-chain (M\i. sfun-map-(a 7)-(b 7))
(proof)

lemma approz-chain-sprod-map:
assumes approz-chain a and approz-chain b
shows approx-chain (\i. sprod-map-(a ©)-(b ©))
(proof)

lemma approx-chain-ssum-map:
assumes approz-chain a and approz-chain b
shows approx-chain (\i. ssum-map-(a 7)-(b 7))
(proof)

lemma approz-chain-cfun-map:
assumes approz-chain a and approx-chain b
shows approx-chain (N\i. cfun-map-(a 7)-(b 7))
(proof)

lemma approz-chain-prod-map:
assumes approx-chain a and approx-chain b
shows approz-chain (A\i. prod-map-(a ©)-(b 7))
(proof)

Approx chains for countable discrete types.

definition discr-approx :: nat = ’a::countable discr v — 'a discr u
where discr-approx = (Ni. A(up-z). if to-nat (undiscr ) < i then up-z else L)

lemma chain-discr-approx [simpl: chain discr-approx
(proof)

lemma lub-discr-approx [simpl: (|]i. discr-approz i) = ID
(proof)

lemma inj-on-undiscr [simp]: inj-on undiscr A
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(proof)

lemma finite-deflation-discr-approz: finite-deflation (discr-approz 7)

(proof)

lemma discr-approx: approz-chain discr-approx
(proof)

19.4 Class instance proofs

instance bifinite C profinite
(proof)

instance u :: (profinite) bifinite
(proof )

Types ‘a — 'b and 'a; —! 'b are isomorphic.
definition encode-cfun = (A f. sfun-abs-(fup-f))

definition decode-cfun = (A g z. sfun-rep-g-(up-z))

lemma decode-encode-cfun [simpl: decode-cfun-(encode-cfun-x) = x
(proof)

lemma encode-decode-cfun [simpl: encode-cfun-(decode-cfun-y) = y

{(proof)

instance cfun :: (profinite, bifinite) bifinite
(proof)

Types (‘a x 'b); and ‘a; ® b, are isomorphic.
definition encode-prod-u = (A(up-(z, y)). CGup-z, up-y:))
definition decode-prod-u = (A(:up-z, up-y:). up-(z, y))

lemma decode-encode-prod-u [simpl: decode-prod-u-(encode-prod-u-x) = x
{proof)

lemma encode-decode-prod-u [simp): encode-prod-u-(decode-prod-u-y) = y
(proof)

instance prod :: (profinite, profinite) profinite
(proof)

instance prod :: (bifinite, bifinite) bifinite
(proof)

instance sfun :: (bifinite, bifinite) bifinite
(proof)
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instance sprod :: (bifinite, bifinite) bifinite
(proof)

instance ssum :: (bifinite, bifinite) bifinite

(proof)

lemma approz-chain-unit: approz-chain (L :

(proof)

instance unit :: bifinite
(proof)

instance discr :: (countable) profinite

(proof)

instance lift :: (countable) bifinite
(proof)

end

nat = unit — unit)
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20 Defining algebraic domains by ideal completion

theory Completion

imports Cfun

begin

20.1 Ideals over a preorder

locale preorder =

fixes r :: 'aitype = 'a = bool (infix «=<» 50)

assumes r-refl: © < x

assumes r-trans: [zr S y; y 2 2] =z 3 2

begin

definition
ideal :: 'a set = bool where

tdeal A = ((Fz. v € A) N (VzeA. VyecA. Fz€eA. 2 22Ny 2 2) A

Veyz3y—yed—zed)

lemma ideall:
assumes Jz. z € A

assumes Az y. [t € 4;ye A] = Fz€d. 2 X 2Ny =<z

assumes Az y. [x X y;y € Al =z € A
shows ideal A

(proof)

lemma idealD1:
ideal A = Jz. 2z € A
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(proof)

lemma idealD2:
[ideal A; z € A; y € A] = Fz2€A. 2 22Ny 32

(proof)

lemma idealD3:
[ideal A; 2 < y; y € Al = z € A
(proof)

lemma ideal-principal: ideal {z. x < z}
{proof)

lemma ez-ideal: 3A. A € {A. ideal A}
(proof)

The set of ideals is a cpo

lemma ideal-UN:
fixes A :: nat = 'a set
assumes ideal-A: Ni. ideal (A 1)
assumes chain-A: N\ij. i <j= AiCAj
shows ideal (|Ji. A @)
(proof )

lemma typedef-ideal-po:
fixes Abs :: 'a set = 'b::below
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Axy. t Ty «— Repx C Rep y
shows OFCLASS('b, po-class)

{proof)

lemma
fixes Abs :: 'a set = 'b::po
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Az y. t C y «<— Rep x C Rep y
assumes S: chain S
shows typedef-ideal-lub: range S <<| Abs (|Ji. Rep (S 7))
and typedef-ideal-rep-lub: Rep (| |i. S i) = (4. Rep (S 1))
{proof )

lemma typedef-ideal-cpo:
fixes Abs :: 'a set = 'b::po
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Axy. t Ty «— Repx C Rep y
shows OFCLASS('b, cpo-class)

{proof)

end
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interpretation below: preorder below :: 'a::po = 'a = bool
(proof)

20.2 Lemmas about least upper bounds

lemma is-ub-thelub-ez: [Fu. S <<| u;z € S] = 2 C lub S
(proof)

lemma is-lub-thelub-ex: [Fu. § <<| u; S <| 2] = lub SC z
(proof)

20.3 Locale for ideal completion

hide-const (open) Filter.principal

locale ideal-completion = preorder +
fixes principal :: 'a::type = b
fixes rep :: 'b = 'a::type set
assumes ideal-rep: \z. ideal (rep x)
assumes rep-lub: \Y. chain Y = rep (| |i. Y i) = (Ui rep (Y i)
assumes rep-principal: Na. rep (principal a) = {b. b < a}
assumes belowl: Nz y. repz Crepy —= z C y
assumes countable: 3 f::'a = nat. inj f
begin

lemma rep-mono: t T y = rep z C rep y

(proof)

lemma below-def: x
(proof)

M

y+—repz C repy

lemma principal-below-iff-mem-rep: principal a & x <— a € 1ep x

(proof)

lemma principal-below-iff [simp]: principal a T principal b <— a < b

(proof)

lemma principal-eq-iff: principal a = principal b <— a < b A b < a

(proof)

lemma eg-iff: =y +— repx =rep y
(proof)

lemma principal-mono: a < b = principal a C principal b

(proof)

lemma ch2ch-principal [simp):
Vi. Yi <Y (Suci) = chain (Ai. principal (Y 7))
{proof)
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20.3.1 Principal ideals approximate all elements

lemma compact-principal [simpl: compact (principal a)

(proof)

Construct a chain whose lub is the same as a given ideal

lemma obtain-principal-chain:
obtains Y where Vi. Y i <X Y (Suc i) and z = (|]¢. principal (Y 7))
(proof)

lemma principal-induct:
assumes adm: adm P
assumes P: Aa. P (principal a)
shows P z

(proof)

lemma compact-imp-principal: compact + — Ja. © = principal a

(proof)

20.4 Defining functions in terms of basis elements

definition
extension :: (‘a:type = '¢) = 'b — 'c where
extension = (Af. (A z. b (f “ rep x)))

lemma extension-lemma:
fixes f :: 'a:type = ‘¢
assumes f-mono: Nab.a b= faC fb
shows Ju. f ‘rep r <<| u

(proof)

lemma extension-beta:
fixes [ :: 'a:type = 'c
assumes f-mono: Nab.a < b= faC fb
shows extension f-x = lub (f ‘ rep x)

(proof)

lemma extension-principal:
fixes [ :: 'a:type = 'c
assumes f-mono: Nab.a < b= faC fb
shows extension f-(principal a) = f a

(proof)

lemma extension-mono:
assumes f-mono: Nab.a < b= faC fb
assumes g-mono: Aab.a Xb=gaCgb
assumes below: Na. fa C g a
shows extension f T extension g

{proof)
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lemma cont-extension:
assumes f-mono: Nabz.a b= fzal fzb
assumes f-cont: Aa. cont (Az. fz a)
shows cont (Az. extension (Aa. fx a))

(proof)

end

lemma (in preorder) typedef-ideal-completion:
fixes Abs :: 'a set = 'b
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Az y. t C y «<— Rep x C Rep y
assumes principal: N\a. principal a = Abs {b. b = a}
assumes countable: 3f::'a = nat. inj f
shows ideal-completion r principal Rep

(proof)

end

21 A universal bifinite domain

theory Universal
imports Bifinite Completion HOL— Library. Nat-Bijection
begin

unbundle no binomial-syntax

21.1 Basis for universal domain

21.1.1 Basis datatype

type-synonym ubasis = nat

definition
node :: nat = ubasis = ubasis set = ubasis
where

node i a S = Suc (prod-encode (i, prod-encode (a, set-encode S)))

lemma node-not-0 [simp]: node i a S # 0
(proof)

lemma node-gt-0 [simp]: 0 < node i a S

(proof)

lemma node-inject [simpl:
[finite S; finite T]
= nodeiaS=nodejbT+—i=jANa=bANS=T

(proof)
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lemma node-gt0: i < node i a S
(proof )

lemma node-gt1: a < node i a S

(proof)

lemma nat-less-power2: n < 2™n
(proof)

lemma node-gt2: [finite S; b € S] = b < nodeia S

(proof)

lemma eg-prod-encode-pairl:
[fst (prod-decode z) = a; snd (prod-decode z) = b] = x = prod-encode (a, b)
{proof)

lemma node-cases:
assumes 1: 2 =0 — P
assumes 2: A\ia S. [finite S; x = node i a S] = P
shows P

(proof )

lemma node-induct:
assumes 1: P 0
assumes 2: Ai a S. [P q; finite S; VbeS. P b] = P (node i a S)
shows P z

(proof )
21.1.2 Basis ordering
inductive

ubasis-le :: nat = nat = bool
where

ubasis-le-refl: ubasis-le a a
| ubasis-le-trans:
[ubasis-le a b; ubasis-le b ¢] = ubasis-le a ¢
| ubasis-le-lower:
finite S = ubasis-le a (node i a S)
| ubasis-le-upper:
[finite S; b € S; ubasis-le a b] = ubasis-le (node i a S) b

lemma ubasis-le-minimal: ubasis-le 0 x

(proof)

interpretation udom: preorder ubasis-le
(proof)

21.1.3 Generic take function

function
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ubasis-until :: (ubasis = bool) = ubasis = ubasis
where
ubasis-until P 0 = 0
| finite S = ubasis-until P (node i a S) =
(if P (node i a S) then node i a S else ubasis-until P a)

(proof)

termination ubasis-until
(proof)

lemma ubasis-until: P 0 = P (ubasis-until P x)

(proof)

lemma ubasis-until”: 0 < ubasis-until P © = P (ubasis-until P x)

(proof)

lemma ubasis-until-same: P © —> ubasis-until P x = x
(proof)

lemma ubasis-until-idem:
P 0 = ubasis-until P (ubasis-until P x) = ubasis-until P x

(proof)

lemma ubasis-until-0:
V. z# 0 — - Px = ubasis-until Pz = 0

(proof)

lemma ubasis-until-less: ubasis-le (ubasis-until P x) x
(proof)

lemma ubasis-until-chain:
assumes PQ: A\z. Pz = Q=
shows ubasis-le (ubasis-until P x) (ubasis-until Q) x)

(proof)

lemma ubasis-until-mono:
assumes A7 a S b. [finite S; P (node i a S); b € S; ubasis-le a b = P b
shows ubasis-le a b = ubasis-le (ubasis-until P a) (ubasis-until P b)
(proof)

lemma finite-range-ubasis-until:
finite {x. P x} = finite (range (ubasis-until P))

(proof)

21.2 Defining the universal domain by ideal completion

typedef udom = {S. udom.ideal S}
(proof)
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instantiation udom :: below
begin

definition
z C y «— Rep-udom x C Rep-udom y

instance (proof)
end

instance udom :: po

(proof)

instance udom :: cpo

(proof)

definition
udom-principal :: nat = udom where
udom-principal t = Abs-udom {u. ubasis-le u t}

lemma ubasis-countable: 3 f::ubasis = nat. inj f

(proof)

interpretation udom:
ideal-completion ubasis-le udom-principal Rep-udom

(proof)

Universal domain is pointed
lemma udom-minimal: udom-principal 0 E x

(proof)

instance udom :: pcpo

(proof)

lemma inst-udom-pcpo: L. = udom-principal 0
(proof)

21.3 Compact bases of domains
typedef ‘a compact-basis = {x::'a::pepo. compact x}

(proof)

lemma Rep-compact-basis’ [simp]: compact (Rep-compact-basis a)

(proof)

lemma Abs-compact-basis-inverse’ [simp]:
compact & = Rep-compact-basis (Abs-compact-basis ) = x

{(proof)

instantiation compact-basis :: (pcpo) below

79



THEORY “Universal” 80

begin

definition
compact-le-def:
(C) = (Az y. Rep-compact-basis x T Rep-compact-basis y)

instance (proof)
end

instance compact-basis :: (pcpo) po

(proof)

definition
approximants :: 'a::pcpo = 'a compact-basis set where
approzimants = (Az. {a. Rep-compact-basis a T z})

definition
compact-bot :: 'a::pcpo compact-basis where
compact-bot = Abs-compact-basis L

lemma Rep-compact-bot [simp]: Rep-compact-basis compact-bot = L

(proof)

lemma compact-bot-minimal [simp]: compact-bot T a
(proof)

21.4 Universality of udom

We use a locale to parameterize the construction over a chain of approx
functions on the type to be embedded.

locale bifinite-approz-chain =
approx-chain approz for approx :: nat = 'a:bifinite — 'a
begin

21.4.1 Choosing a maximal element from a finite set

lemma finite-has-mazximal:

fixes A :: 'a compact-basis set

shows [finite A; A # {}] = Jz€A. VycA. c Cy — =y
(proof)

definition
choose :: 'a compact-basis set = 'a compact-basis
where
choose A = (SOME z. ¢ € {z€A. VycA. t Cy — z = y})

lemma choose-lemma:
[finite A; A # {}] = choose A € {z€A.VycA. 2 Cy — z = y}
(proof )
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lemma mazimal-choose:
[finite A; y € A; choose A C y]| = choose A =y

(proof)

lemma choose-in: [finite A; A # {}] = choose A € A
(proof)

function

choose-pos :: 'a compact-basis set = 'a compact-basis = nat
where

choose-pos A © =

(if finite ANz € ANz # choose A
then Suc (choose-pos (A — {choose A}) z) else 0)

(proof)

termination choose-pos
(proof)

declare choose-pos.simps [simp del]

lemma choose-pos-choose: finite A => choose-pos A (choose A) = 0
(proof )

lemma inj-on-choose-pos [OF refl]:
[eard A = n; finite A] = inj-on (choose-pos A) A
(proof )

lemma choose-pos-bounded [OF refl]:
[card A = n; finite A; x € A] = choose-pos A © < n

{(proof)

lemma choose-pos-lessD:
[choose-pos A x < choose-pos A y; finite A; z € A; ye Al =z L y

(proof)
21.4.2 Compact basis take function

primrec
cb-take :: nat = 'a compact-basis = 'a compact-basis where
cb-take 0 = (A\z. compact-bot)
| cb-take (Suc n) = (Aa. Abs-compact-basis (approx n-(Rep-compact-basis a)))

declare cb-take.simps [simp del]

lemma cb-take-zero [simp]: cb-take 0 a = compact-bot

(proof)

lemma Rep-cb-take:



THEORY “Universal” 82

Rep-compact-basis (cb-take (Suc n) a) = approz n-(Rep-compact-basis a)
(proof)

lemmas approz-Rep-compact-basis = Rep-cb-take [symmetric]

lemma cb-take-covers: An. cb-take n v = «
(proof)

lemma cb-take-less: cb-take n x C x

{(proof)

lemma cb-take-idem: cb-take n (cb-take n z) = cb-take n x
(proof)

lemma cb-take-mono: © C y = cb-take n © T cb-take n y

(proof)

lemma cb-take-chain-le: m < n = cb-take m z C cb-take n z
(proof)

lemma finite-range-cb-take: finite (range (cb-take n))

(proof)
21.4.3 Rank of basis elements
definition

rank :: 'a compact-basis = nat
where

rank ¥ = (LEAST n. cb-take n © = x)

lemma compact-approx-rank: cb-take (rank z) r = x

(proof)

lemma rank-leD: rank v < n — cb-take n x = =
(proof)

lemma rank-lel: cb-take n t = x = rank x < n

(proof)

lemma rank-le-iff: rank © < n +— cb-take n v = x

(proof)

lemma rank-compact-bot [simpl: rank compact-bot = 0
(proof)

lemma rank-eq-0-iff [simp]: rank © = 0 +— z = compact-bot

(proof)

definition
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rank-le :: 'a compact-basis = 'a compact-basis set
where
rank-le z = {y. rank y < rank z}

definition

rank-It :: 'a compact-basis = 'a compact-basis set
where

rank-lt x = {y. rank y < rank z}

definition

rank-eq :: 'a compact-basis = 'a compact-basis set
where

rank-eq x = {y. rank y = rank z}

lemma rank-eq-cong: rank x = rank y = rank-eq x = rank-eq y

(proof)

lemma rank-lt-cong: rank x = rank y = rank-lt x = rank-lt y
(proof)

lemma rank-eq-subset: rank-eq x C rank-le x

(proof)

lemma rank-lt-subset: rank-lt © C rank-le x
(proof)

lemma finite-rank-le: finite (rank-le x)

(proof)

lemma finite-rank-eq: finite (rank-eq x)

{(proof)

lemma finite-rank-lt: finite (rank-lt x)
(proof)

lemma rank-it-Int-rank-eq: rank-lt x N rank-eq x = {}

(proof)

lemma rank-lt-Un-rank-eq: rank-lt x U rank-eq x = rank-le
(proof)

21.4.4 Sequencing basis elements

definition
place :: 'a compact-basis = nat
where

place x = card (rank-It ©) + choose-pos (rank-eq ) x

lemma place-bounded: place x < card (rank-le x)
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(proof)

lemma place-ge: card (rank-lt ) < place

(proof)

lemma place-rank-mono:
fixes z y :: 'a compact-basis
shows rank ¢ < rank y = place x < place y

(proof)
lemma place-eqD: place © = place y = = =y
(proof )
lemma inj-place: inj place
{proof )
21.4.5 Embedding and projection on basis elements
definition
sub :: 'a compact-basis = 'a compact-basis
where

sub x = (case rank x of 0 = compact-bot | Suc k = cb-take k x)

lemma rank-sub-less: © # compact-bot = rank (sub z) < rank x

(proof)

lemma place-sub-less: © # compact-bot = place (sub x) < place x
(proof)

lemma sub-below: sub r T z

(proof)

lemma rank-less-imp-below-sub: [z C y; rank © < rank y] = z C sub y
(proof)

function basis-emb :: 'a compact-basis = ubasis
where basis-emb x = (if z = compact-bot then 0 else
node (place x) (basis-emb (sub z))
(basis-emb ‘ {y. place y < place z A z T y}))
(proof)

termination basis-emb
(proof )

declare basis-emb.simps [simp del]

lemma basis-emb-compact-bot [simpl:
basis-emb compact-bot = 0
{proof)
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lemma basis-emb-rec:

basis-emb x = node (place z) (basis-emb (sub x)) (basis-emb ‘ {y. place y < place
z Az Cy})

if © # compact-bot

{proof)

lemma basis-emb-eq-0-iff [simp]:
basis-emb © = 0 <— = = compact-bot
(proof )

lemma finl: finite {y. place y < place x A z C y}
(proof)

lemma fin2: finite (basis-emb  {y. place y < place x N x C y})
{proof)

lemma rank-place-mono:
[place z < place y; x C y] = rank x < rank y

(proof)

lemma basis-emb-mono:
z C y = ubasis-le (basis-emb x) (basis-emb y)
(proof)

lemma inj-basis-emb: inj basis-emb

(proof)

definition
basis-prj :: ubasis = 'a compact-basis
where
basis-prj x = inv basis-emb
(ubasis-until (Az. x € range (basis-emb :: 'a compact-basis = ubasis)) x)

lemma basis-prj-basis-emb: \z. basis-prj (basis-emb z) = x
(proof)

lemma basis-prj-node:
[finite S; node i a S ¢ range (basis-emb :: 'a compact-basis = nat)]
= basis-prj (node i a S) = (basis-prj a :: 'a compact-basis)
(proof)

lemma basis-prj-0: basis-prj 0 = compact-bot

(proof)

lemma node-eq-basis-emb-iff:
finite S = node i a S = basis-emb r +—
x # compact-bot A i = place x A a = basis-emb (sub x) A
S = basis-emb ‘ {y. place y < place z N z C y}
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(proof)

lemma basis-prj-mono: ubasis-le a b = basis-prj a T basis-prj b

(proof)

lemma basis-emb-prj-less: ubasis-le (basis-emb (basis-prj ©))
(proof)

lemma ideal-completion:
ideal-completion below Rep-compact-basis (approrimants :: 'a = -)

(proof)

end

interpretation compact-basis:
ideal-completion below Rep-compact-basis
approximants :: 'a::bifinite = 'a compact-basis set
(proof)

21.4.6 EP-pair from any bifinite domain into udom

context bifinite-approz-chain begin

definition
udom-emb :: 'a — udom
where
udom-emb = compact-basis.extension (Ax. udom-principal (basis-emb x))

definition
udom-prj :: udom — 'a
where
udom-prj = udom.extension (Ax. Rep-compact-basis (basis-prj x))

lemma udom-emb-principal:
udom-emb-( Rep-compact-basis ) = udom-principal (basis-emb x)

{(proof)

lemma udom-prj-principal:
udom-prj-(udom-principal ©) = Rep-compact-basis (basis-prj x)
(proof)

lemma ep-pair-udom: ep-pair udom-emb udom-prj
(proof)

end

abbreviation udom-emb = bifinite-approz-chain.udom-emb
abbreviation udom-prj = bifinite-approx-chain.udom-pr;j
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lemmas ep-pair-udom =
bifinite-approx-chain.ep-pair-udom [unfolded bifinite-approx-chain-def)]

21.5 Chain of approx functions for type udom

definition
udom-approx :: nat = udom — udom
where
udom-approx i =
udom.extension (Az. udom-principal (ubasis-until (Ay. y < i) x))

lemma udom-approx-mono:
ubasis-le a b =
udom-principal (ubasis-until (Ay. y
udom-principal (ubasis-until (\y. y
(proof)

INIA

lemma adm-mem-finite: [cont f; finite S] = adm (Az. fz € S)
(proof)
lemma udom-approx-principal:

udom-approzx i-(udom-principal x) =

udom-principal (ubasis-until (Ay. y < i) x)

(proof)

lemma finite-deflation-udom-approx: finite-deflation (udom-approx i)
(proof)

interpretation udom-approz: finite-deflation udom-approx i

(proof)

lemma chain-udom-approx [simp|: chain (Ai. udom-approx i)
(proof)

lemma lub-udom-approz [simp]: (| |i. udom-approz i) = ID

(proof)

lemma udom-approzx [simp|: approz-chain udom-approx
(proof)

instance udom :: bifinite
(proof)

hide-const (open) node
unbundle binomial-syntaz

end
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22 Algebraic deflations

theory Algebraic
imports Universal Map-Functions
begin

22.1 Type constructor for finite deflations

typedef ‘a:bifinite fin-defl = {d::'a — 'a. finite-deflation d}
(proof)

instantiation fin-defl :: (bifinite) below
begin

definition below-fin-defi-def:
below = Az y. Rep-fin-defl x C Rep-fin-defl y

instance (proof)
end

instance fin-defl :: (bifinite) po
(proof)

lemma finite-deflation-Rep-fin-defl: finite-deflation (Rep-fin-defl d)
{proof )

lemma deflation-Rep-fin-defl: deflation (Rep-fin-defl d)
(proof )

interpretation Rep-fin-defl: finite-deflation Rep-fin-defl d
(proof)

lemma fin-defl-belowl:
(Az. Rep-fin-defl a-x = x = Rep-fin-defl bx = z) = a C b
(proof)

lemma fin-defi-belowD:
[a T b; Rep-fin-defl a-x = z] = Rep-fin-defl b-x = z
(proof)

lemma fin-defl-eql:
a = b if (Az. Rep-fin-defl a-x = x «— Rep-fin-defl b-x = 1)
(proof)

lemma Rep-fin-defl-mono: a & b = Rep-fin-defl a C Rep-fin-defl b
(proof)

lemma Abs-fin-defl-mono:
[finite-deflation a; finite-deflation b; a T b]
= Abs-fin-defl a T Abs-fin-defl b

88
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(proof)

lemma (in finite-deflation) compact-belowl:
dC fif Az. compact 1 = dz =2 = fax =1
(proof )

lemma compact-Rep-fin-defl [simp]: compact (Rep-fin-defl a)
(proof)

22.2 Defining algebraic deflations by ideal completion

typedef ‘a:bifinite defl = {S::'a fin-defl set. below.ideal S}
(proof)

instantiation defl :: (bifinite) below
begin

definition z C y «— Rep-defl x C Rep-defl y
instance (proof)
end

instance defl :: (bifinite) po
(proof)

instance defl :: (bifinite) cpo
(proof)

definition defl-principal :: 'a::bifinite fin-defl = 'a defl
where defl-principal t = Abs-defl {u. u C t}

lemma fin-defl-countable: 3 f::'a::bifinite fin-defl = nat. inj f
{proof )

interpretation defi: ideal-completion below defi-principal Rep-defl
(proof)

Algebraic deflations are pointed

lemma defl-minimal: defl-principal (Abs-fin-defl L) C z

(proof)

instance defl :: (bifinite) pcpo
(proof)

lemma inst-defl-pcpo: L = defl-principal (Abs-fin-defl 1)
{proof )
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22.3 Applying algebraic deflations

definition cast :: 'a::bifinite defl — 'a — 'a
where cast = defl.extension Rep-fin-defl

lemma cast-defl-principal: cast-(defl-principal a) = Rep-fin-defl a
(proof)

lemma deflation-cast: deflation (cast-d)

(proof)

lemma finite-deflation-cast: compact d = finite-deflation (cast-d)
(proof )

interpretation cast: deflation cast-d

(proof)

declare cast.idem [simp]

lemma compact-cast [simp]: compact (cast-d) if compact d
{proof)

lemma cast-below-cast: cast-A C cast-B +— A C B
(proof)

lemma compact-cast-iff: compact (cast-d) +— compact d

(proof)

lemma cast-below-imp-below: cast-A C cast-B — A C B
(proof)

lemma cast-eq-imp-eq: cast-A = cast-B — A = B

(proof)

lemma cast-strict! [simpl: cast-L = 1
(proof)

lemma cast-strict2 [simp]: cast-A-1L = 1
(proof)

22.4 Deflation combinators

definition
defl-funl ep f =
defl.extension (\a.
defl-principal (Abs-fin-defl
(¢ 00 f-(Rep-fin-defl a) 00 p)))

definition
defl-fun2 ep f =
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defl.extension (Aa.
defl.extension (\b.
defl-principal (Abs-fin-defl
(¢ 00 f-(Rep-fin-defl a)-(Rep-fin-defl b) 00 p))))

lemma cast-defl-funi:
assumes ep: ep-pair e p
assumes f: Aa. finite-deflation a = finite-deflation (f-a)
shows cast-(defl-funl e p f-A) = e oo f-(cast-A) oo p
(proof )

lemma cast-defl-fun2:
assumes ep: ep-pair e p
assumes f: A\a b. finite-deflation a = finite-deflation b —>
finite-deflation (f-a-b)
shows cast-(defl-fun2 e p f-A-B) = € oo f-(cast-A)-(cast-B) oo p
(proof)

end

23 Representable domains

theory Representable
imports Algebraic Map-Functions HOL— Library. Countable
begin

23.1 Class of representable domains

We define a “domain” as a pcpo that is isomorphic to some algebraic defla-
tion over the universal domain; this is equivalent to being omega-bifinite.

A predomain is a cpo that, when lifted, becomes a domain. Predomains are
represented by deflations over a lifted universal domain type.

class predomain-syn = cpo +
fixes liftemb :: 'a; — udom_
fixes liftprj :: udom, — 'a)
fixes liftdefl :: 'a itself = udom u defl

class predomain = predomain-syn +
assumes predomain-ep: ep-pair liftemb liftprj
assumes cast-liftdefl: cast-(liftdefl TYPE('a)) = liftemb oo liftprj

syntax -LIFTDEFL :: type = logic (<«(1LIFTDEFL/(1'(-"))»)
syntax-consts -LIFTDEFL = liftdefl
translations LIFTDEFL('t) = CONST liftdefl TYPE('t)

definition liftdefi-of :: udom defi — udom u defl
where liftdefl-of = defl-funl ID ID u-map
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lemma cast-liftdefl-of: cast-(liftdefl-of -t) = u-map-(cast-t)
(proof)

class domain = predomain-syn + pcpo +
fixes emb :: 'a — udom
fixes prj :: udom — 'a
fixes defl :: 'a itself = udom defl
assumes ep-pair-emb-prj: ep-pair emb prj
assumes cast-DEFL: cast-(defl TYPE('a)) = emb oo prj
assumes liftemb-eq: liftemb = u-map-emb
assumes liftprj-eq: liftprj = u-map-prj
assumes liftdefl-eq: liftdefl TYPE('a) = liftdefl-of -(defl TYPE('a))

syntax -DEFL :: type = logic (<(1DEFL/(1'(-"))»)
syntax-consts -DEFL = defl
translations DEFL('t) = CONST defl TYPE('t)

instance domain C predomain
(proof)

Constants liftemb and liftprj imply class predomain.

(ML)

interpretation predomain: pcpo-ep-pair liftemb liftprj
(proof)

interpretation domain: pcpo-ep-pair emb prj

(proof)

lemmas emb-inverse = domain.e-inverse
lemmas emb-prj-below = domain.e-p-below
lemmas emb-eq-iff = domain.e-eq-iff
lemmas emb-strict = domain.e-strict
lemmas prj-strict = domain.p-strict

23.2 Domains are bifinite

lemma approx-chain-ep-cast:
assumes ep: ep-pair (e:'a::pepo — 'bi:bifinite) (p::'b — 'a)
assumes cast-t: cast-t = e oo p
shows 3 (a::nat = 'a:pepo — 'a). approz-chain a

(proof)

instance domain C bifinite
(proof)

instance predomain C profinite

(proof)
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23.3 Universal domain ep-pairs

definition u-emb = udom-emb (\i. u-map-(udom-approz i))
definition u-prj = udom-prj (Ai. u-map-(udom-approzx i))

definition prod-emb = udom-emb (\i. prod-map-(udom-approzx i)-(udom-approz
i)

definition prod-prj = udom-prj (Ai. prod-map-(udom-approzx ©)-(udom-approz i))

definition sprod-emb = udom-emb (\i. sprod-map-(udom-approz ©)-(udom-approx
i)

definition sprod-prj = udom-prj (X\i. sprod-map-(udom-approz i)-(udom-approx 7))

definition ssum-emb = udom-emb (Ai. ssum-map-(udom-approx i)-(udom-approx
i)

definition ssum-prj = udom-prj (Ai. ssum-map-(udom-approz i)-(udom-approz 7))

definition sfun-emb = udom-emb (Ai. sfun-map-(udom-approz i)-(udom-approx 7))
definition sfun-prj = udom-prj (M\i. sfun-map-(udom-approz ©)-(udom-approzx ))

lemma ep-pair-u: ep-pair u-emb u-prj
(proof )

lemma ep-pair-prod: ep-pair prod-emb prod-prj
(proof )

lemma ep-pair-sprod: ep-pair sprod-emb sprod-prj
(proof)

lemma ep-pair-ssum: ep-pair ssum-emb ssum-prj
(proof )

lemma ep-pair-sfun: ep-pair sfun-emb sfun-prj
(proof)

23.4 Type combinators

definition u-defl :: udom defl — udom defl
where u-defl = defi-funl u-emb u-prj u-map

definition prod-defl :: udom defl — udom defl — udom defl
where prod-defl = defi-fun2 prod-emb prod-prj prod-map

definition sprod-defl :: udom defl — udom defl — udom defl
where sprod-defl = defi-fun2 sprod-emb sprod-prj sprod-map

definition ssum-defi :: udom defl — udom defl — udom defl
where ssum-defl = defl-fun2 ssum-emb ssum-prj ssum-map

definition sfun-defl :: udom defil — udom defl — udom defl
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where sfun-defl = defi-fun2 sfun-emb sfun-prj sfun-map

lemma cast-u-defl:
cast-(u-defl-A) = u-emb oo u-map-(cast-A) oo u-prj
(proof)

lemma cast-prod-defi:
cast-(prod-defl-A-B) =
prod-emb oo prod-map-(cast-A)-(cast-B) oo prod-prj
{(proof)

lemma cast-sprod-defi:
cast-(sprod-defl-A-B) =
sprod-emb oo sprod-map-(cast-A)-(cast-B) oo sprod-prj
{proof )

lemma cast-ssum-defi:
cast-(ssum-defl-A-B) =
ssum-emb oo ssum-map-(cast-A)-(cast-B) oo ssum-prj
(proof)

lemma cast-sfun-defi:
cast-(sfun-defl-A-B) =
sfun-emb oo sfun-map-(cast-A)-(cast-B) oo sfun-prj
(proof)

Special deflation combinator for unpointed types.

definition u-liftdefl :: udom u defl — udom defl
where u-liftdefl = defl-funl u-emb u-prj ID

lemma cast-u-liftdefi:
cast-(u-liftdefl-A) = u-emb oo cast-A oo u-prj
(proof)
lemma u-liftdefil-liftdefi-of:
u-liftdefl-(liftdefl-of -A) = u-defl-A
(proof)

23.5 Class instance proofs

23.5.1 TUniversal domain
instantiation udom :: domain

begin

definition [simp]:
emb = (ID :: udom — udom)

definition [simp]:
prj = (ID :: udom — udom)
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definition
defl (t::udom itself) = (|| 7. defl-principal (Abs-fin-defl (udom-approz i)))

definition
(liftemb :: udom u — udom u) = u-map-emb

definition
(liftprj 2 udom u — udom u) = u-map-prj

definition
liftdefl (t::udom itself) = liftdefl-of - DEFL(udom)

instance (proof)

end

23.5.2 Lifted cpo

instantiation u :: (predomain) domain
begin

definition
emb = u-emb oo liftemb

definition
prj = liftprj oo u-prj

definition
defl (t::'a u itself) = u-liftdefl- LIFTDEFL('a)

definition
(liftemb :: 'a uw u — udom u) = u-map-emb

definition
(liftprj = udom u — 'a u u) = u-map-prj

definition
liftdefl (t::'a u itself) = liftdefl-of -DEFL('a u)

instance (proof)
end

lemma DEFL-u: DEFL('a::predomain u) = u-liftdefl: LIFTDEFL('a)
(proof)

23.5.3 Strict function space

instantiation sfun :: (domain, domain) domain

95
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begin

definition
emb = sfun-emb oo sfun-map-prj-emb

definition
pri = sfun-map-emb-prj oo sfun-prj

definition
defl (t::("a —=! 'b) itself) = sfun-defl- DEFL(’a)-DEFL(’'D)

definition
(liftemb :: ("a —=! 'b) v — udom u) = u-map-emb

definition
(liftpry :: udom u — (‘a —=! 'b) u) = u-map-prj

definition
liftdefl (t::("a —=! 'd) itself) = liftdefl-of -DEFL(’a —! 'b)

instance (proof)
end
lemma DEFL-sfun:

DEFL('a::domain —! 'b::domain) = sfun-defl- DEFL(’a)- DEFL('D)
(proof)

23.5.4 Continuous function space

instantiation cfun :: (predomain, domain) domain
begin

definition
emb = emb oo encode-cfun

definition
prj = decode-cfun oo prj

definition
defl (t::("a — 'b) itself) = DEFL('a u —! 'b)

definition
(liftemb :: ('"a — 'b) u — udom u) = u-map-emb

definition
(liftprj = udom u — ('a — 'b) u) = u-map-prj

definition
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liftdefl (t::("a — 'b) itself) = liftdefl-of-DEFL('a — 'b)
instance (proof)
end

lemma DEFL-cfun:
DEFL('a::predomain — 'b::domain) = DEFL('a u —! ')
(proof )

23.5.5 Strict product
instantiation sprod :: (domain, domain) domain

begin

definition
emb = sprod-emb oo sprod-map-emb-emb

definition
prj = sprod-map-prj-prj 0o sprod-prj

definition
defl (t::("a ® 'b) itself) = sprod-defl- DEFL('a)-DEFL(’b)

definition
(liftemb :: ('a @ 'b) uw — udom u) = u-map-emb

definition
(liftprj = udom u — ('a ® 'b) u) = u-map-prj

definition
liftdefl (t::('a @ 'b) itself) = liftdefl-of -DEFL('a ® 'b)

instance (proof)
end

lemma DFEFL-sprod:
DEFL('a::domain ® 'b::domain) = sprod-defl- DEFL('a)-DEFL('b)
(proof )

23.5.6 Cartesian product

definition prod-liftdefl :: udom u defl — udom u defl — udom u defl
where prod-liftdefl = defl-fun2 (u-map-prod-emb oo decode-prod-u)
(encode-prod-u oo u-map-prod-prj) sprod-map

lemma cast-prod-liftdefl:
cast-(prod-liftdefl-a-b) =
(u-map-prod-emb oo decode-prod-u) oo sprod-map-(cast-a)-(cast-b) oo
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(encode-prod-u oo u-map-prod-pry)
(proof)

instantiation prod :: (predomain, predomain) predomain
begin

definition
liftemb = (u-map-prod-emb oo decode-prod-u) oo
(sprod-map-liftemb-liftemb oo encode-prod-u)
definition
liftpri = (decode-prod-u oo sprod-map-liftprj-liftprj) oo

(encode-prod-u oo u-map-prod-pry)

definition
liftdefl (t::("a x 'b) itself) = prod-liftdefl- LIFTDEFL(’a)- LIFTDEFL('b)

instance (proof)
end

instantiation prod :: (domain, domain) domain
begin

definition
emb = prod-emb oo prod-map-emb-emb

definition
prj = prod-map-prj-prj oo prod-prj

definition
defl (t::("a x 'b) itself) = prod-defl- DEFL('a)-DEFL('b)

instance (proof)
end

lemma DEFL-prod:
DEFL('a::domain x 'b::domain) = prod-defl- DEFL(’a)- DEFL(’D)
(proof)

lemma LIFTDEFL-prod:
LIFTDEFL('a::predomain x 'b:predomain) =
prod-liftdefl- LIFTDEFL('a)-LIFTDEFL('b)
(proof)

23.5.7 Unit type

instantiation unit :: domain
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begin

definition
emb = (L :: unit — udom)

definition
prj = (L :: udom — unit)

definition
defl (t::unit itself) = L

definition
(liftemb :: unit u — udom u) = u-map-emb

definition
(liftpry = udom u — unit u) = u-map-prj

definition
liftdefl (t::unit itself) = liftdefl-of - DEFL(unit)

instance (proof)
end

23.5.8 Discrete cpo

instantiation discr :: (countable) predomain
begin

definition
(liftemb :: 'a discr u — udom u) = strictify-up oo udom-emb discr-approz

definition
(liftprj :: udom u — 'a discr u) = udom-prj discr-approz oo fup-ID

definition
liftdefl (t::'a discr itself) =
(L]i. defl-principal (Abs-fin-defl (liftemb oo discr-approx i oo (liftprj::udom u
— 'a discr u))))
instance (proof)
end
23.5.9 Strict sum

instantiation ssum :: (domain, domain) domain
begin

definition
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emb = ssum-emb oo ssum-map-emb-emb

definition
Pri = SSUM-Mmap-prj-prj 00 sSumM-prj

definition
defl (t::("a @ 'b) itself) = ssum-defl: DEFL('a)-DEFL('))

definition
(liftemb :: ('a @ 'b) u — udom u) = u-map-emb

definition
(liftprj = udom u — ('a ® 'b) u) = u-map-prj

definition
liftdefl (t::(a @ 'b) itself) = liftdefl-of -DEFL('a & 'b)

instance (proof)
end
lemma DFEFL-ssum:

DEFL('a::domain & 'b::domain) = ssum-defl- DEFL('a)- DEFL('b)
(proof)

23.5.10 Lifted HOL type

instantiation lift :: (countable) domain
begin

definition
emb = emb oo (A z. Rep-lift )

definition
prj = (A y. Abs-lift y) oo prj

definition
defl (t::'a lift itself) = DEFL('a discr u)

definition
(liftembd :: 'a lift w — udom u) = u-map-emb

definition
(liftpry 2 udom u — 'a lift u) = u-map-prj

definition
liftdefl (t::'a lift itself) = liftdefl-of- DEFL('a lift)

instance (proof)
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end

end

24 The unit domain

theory One
imports Lift
begin

type-synonym one = unit lift

translations
(type) one ~— (type) unit lift

definition ONEFE :: one
where ONE = Def ()

Exhaustion and Elimination for type one

lemma Ezh-one: t = 1L V t = ONE
(proof )

lemma oneFE [case-names bottom ONE]: [p= L = @Q; p= ONE = Q] = @
(proof )

lemma one-induct [case-names bottom ONE]: P L = P ONE = Pz
{proof)

lemma dist-below-one [simp]: ONE £ L
{proof)

lemma below-ONE [simp]: © = ONE
{proof)

lemma ONE-below-iff [simp]: ONE C z <— © = ONE
{proof)

lemma ONE-defined [simp]: ONE # L
(proof)

lemma one-neg-iffs [simp]:
x# ONE ¢+— =1
ONE #x +—z =1
x# 1 +— = ONE
1 #2+— 2= ONE
(proof)

lemma compact-ONE: compact ONE
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{proof)

Case analysis function for type one

definition one-case :: 'a::pcpo — one — ’a
where one-case = (A a z. seq-z-a)

translations
case x of XCONST ONFE = t = CONST one-case-t-x
case T of XCONST ONE :: 'a = t — CONST one-case-t-x
A (XCONST ONE). t = CONST one-case-t

lemma one-casel [simp): (case L of ONE = t) = L

(proof)

lemma one-case2 [simp]: (case ONE of ONE = t) = {
{proof)

lemma one-case3 [simp]: (case x of ONE = ONE) = ¢
{proof)

end

theory Fixrec

imports Cprod Sprod Ssum Up One Tr Cfun
keywords fizrec :: thy-defn

begin

25 Fixed point operator and admissibility

25.1 Iteration

primrec iterate :: nat = (‘a — 'a) = (‘a — 'a)
where

iterate 0 = (A F z. x)

| iterate (Suc n) = (A F z. F-(iterate n-F-z))

Derive inductive properties of iterate from primitive recursion
lemma iterate-0 [simp)]: iterate 0-F-x = x

(proof)

lemma iterate-Suc [simp]: iterate (Suc n)-F-x
{proof)

F-(iterate n-F-x)

declare iterate.simps [simp del]

lemma iterate-Suc2: iterate (Suc n)-F-x = iterate n-F-(F-x)
{proof)
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lemma iterate-iterate: iterate m-F-(iterate n-F-x) = iterate (m + n)-F-x
{proof)
The sequence of function iterations is a chain.

lemma chain-iterate [simpl: chain (Ai. iterate i-F-1)
{proof)

25.2 Least fixed point operator

definition fiz :: ('a::pcpo — 'a) = 'a
where fix = (A F. | |i. iterate {-F-1)

Binder syntax for fiz
abbreviation fiz-syn :: (‘a::pcpo = 'a) = 'a (binder «u » 10)
where fiz-syn (\z. fz) = fir-(A z. fx)

notation (ASCII)
fiz-syn (binder «(FIX » 10)

Properties of fiz

direct connection between fix and iteration

lemma fiz-def2: fiz-F = (| |i. iterate i-F-1)
{proof)

lemma iterate-below-fiz: iterate n-f-1 T fix-f

(proof)

Kleene’s fixed point theorems for continuous functions in pointed omega
cpo’s
lemma fiz-eq: fix-F = F-(fiz-F)

(proof)

lemma fiz-least-below: F-x C v = fiz-F C x
(proof)

lemma fiz-least: F-o = 2 = fis-F C
(proof)

lemma fiz-eql:
assumes fized: F-x = z
and least: Nz. F-z =2 =z C 2
shows fix-F' = ¢
(proof)

lemma fiz-eq2: f = fiv-F = f = F-f
{proof )

lemma fix-eq3: [ = fix-F = fx = F-fx
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{proof)

lemma fiz-eq): f = fix: F = f = F-f
(proof )

lemma fiz-eq5: f = fir-F = f-x = F-fx
{proof )

strictness of fix

lemma fiz-bottom-iff: fix- ¥ = L +— F-1 = 1
(proof )

lemma fiz-strict: F-1 = 1 = fix- F = L
(proof )

lemma fiz-defined: F-1 # | —> fix-F # L
(proof )

fix applied to identity and constant functions

lemma fiz-id: (p z. z) = L
(proof)

lemma fiz-const: (u z. ¢) = ¢
{proof)

25.3 Fixed point induction

lemma fiz-ind: adm P = P | = (Az. Pz = P (F-z)) = P (fiz-F)
(proof)

lemma cont-fiz-ind: cont F = adm P = P 1 = (A\z. Pz = P (F z)) =
P (fix-(Abs-cfun F))
{proof)

lemma def-fiz-ind: [f = fiz-F; adm P; P L; Ax. Px = P (F-z)] = P f
{proof )

lemma fiz-ind2:
assumes adm: adm P
assumes 0: P L and 1: P (F-1)
assumes step: Az. [P z; P (F-z)] = P (F-(F-1))
shows P (fiz-F)
{proof)

lemma parallel-fiz-ind:
assumes adm: adm (Az. P (fst ) (snd z))
assumes base: P L L
assumes step: Az y. Pz y = P (F-z) (G-y)
shows P (fiz-F) (fiz-G)
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(proof)

lemma cont-parallel-fiz-ind:
assumes cont F' and cont G
assumes adm (Az. P (fst z) (snd z))
assumes P 1 |
assumes A\zy. Pz y = P (Fz) (Gy)
shows P (fiz-(Abs-cfun F)) (fiz-(Abs-cfun G))
(proof)

25.4 Fixed-points on product types

Bekic’s Theorem: Simultaneous fixed points over pairs can be written in
terms of separate fixed points.

lemma fiz-cprod:
fixes I :: 'a::pcpo x 'bipepo — 'a x b
shows
fix-F =
(1 z. fst (F-(z, p y. snd (F-(z, y)))),
g snd (P . fot (F-(s, 1 . snd (F-(z, 9)))), 1))
(is fi-F = (72, %))
(procf)

26 Package for defining recursive functions in HOLCF

26.1 Pattern-match monad

pcpodef ‘a match = UNIV::(one ++ 'a u) set
(proof)

definition
fail :: 'a match where
fail = Abs-match (sinl-ONE)

definition
succeed 1 'a — 'a match where
succeed = (A z. Abs-match (sinr-(up-z)))

lemma matchE [case-names bottom fail succeed, cases type: match):
[p=L = Q;p= fail = Q; \z. p = succeed-t1 = Q] = Q
(proof)

lemma succeed-defined [simp]: succeed-z # L
(proof)

lemma fail-defined [simp]: fail # L
(proof)
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lemma succeed-eq [simp]: (succeed-z = succeed-y) = (x = y)
(proof)

lemma succeed-neg-fail [simp]:
succeed-x # fail fail # succeed-x

(proof)

26.1.1 Run operator

definition
run :: 'a match — 'a::pcpo where
run = (A m. sscase-L-(fup-ID)-(Rep-match m))

rewrite rules for run
lemma run-strict [simpl: run-L = L

(proof)

lemma run-fail [simp]: run-fail = L

(proof)

lemma run-succeed [simpl: run-(succeed-z) = x

{(proof)

26.1.2 Monad plus operator

definition
mplus :: 'a match — 'a match — 'a match where
mplus = (A m1 m2. sscase-(A -. m2)-(A -. m1)-(Rep-match m1))

abbreviation
mplus-syn = ['a match, 'a match] = 'a match (infixr <+++> 65) where
ml +++ m2 == mplus-m1-m2

rewrite rules for mplus
lemma mplus-strict [simp]: L ++4+ m = L
(proof)

lemma mplus-fail [simp]: fail +++ m = m
(proof)

lemma mplus-succeed [simp): succeed-x +++ m = succeed-x

(proof)

lemma mplus-fail2 [simp]: m +++ fail = m
(proof)

lemma mplus-assoc: (z +++ y) +++ 2z = z +++ (y +++ 2)
(proof)
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26.2 Match functions for built-in types

definition

match-bottom :: ’a::pcpo — 'c match — 'c match
where

match-bottom = (A x k. seq-x-fail)

definition

match-Pair :: 'a x 'b = (‘a = 'b = ‘¢ match) — 'c match
where

match-Pair = (A z k. csplit-k-x)

definition

match-spair :: 'az:pcpo @ 'biipepo — (‘a — 'b — ‘¢ match) — 'ci:pepo match
where

match-spair = (A z k. ssplit-k-x)

definition

match-sinl :: 'a::pcpo @ 'b::pepo — ('a — 'e:ipepo match) — ‘¢ match
where

match-sinl = (A z k. sscase-k-(A b. fail)-x)

definition

match-sinr :: 'az:pcpo & 'biipepo — (b — 'ci:pepo match) — ‘¢ match
where

match-sinr = (A z k. sscase-(A a. fail)-k-x)

definition

match-up :: 'a u — (‘a — 'ciipecpo match) — ¢ match
where

match-up = (A z k. fup-k-x)

definition

match-ONE :: one — 'c::pcpo match — 'c¢ match
where

match-ONE = (A ONE k. k)

definition

match-TT :: tr — 'c::pcpo match — "¢ match
where

match-TT = (A z k. If © then k else fail)

definition

match-FF :: tr — 'c::pcpo match — 'c match
where

match-FF = (A z k. If x then fail else k)

lemma match-bottom-simps [simp]:
match-bottom-z-k = (if x = L then L else fail)
(proof)
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lemma match-Pair-simps [simpl:
match-Pair-(z, y)-k = k-z-y
(proof)

lemma match-spair-simps [simp):
[ # L; y # 1] = match-spair-(:x, y:)-k = k-x-y
match-spair- 1 -k = L

(proof)

lemma match-sinl-simps [simp]:
z # L = match-sinl-(sinl-z)-k = k-z
y # L = match-sinl-(sinr-y)-k = fail
match-sinl-L-k = L

(proof)

lemma match-sinr-simps [simp]:
z # 1L = match-sinr-(sinl-x)-k = fail
y # L = match-sinr-(sinr-y)-k = k-y
match-sinr-L-k = L

(proof)

lemma match-up-simps [simp]:
match-up-(up-z)-k = k-x
match-up- L-k = 1

(proof)

lemma match-ONE-simps [simp]:
match-ONE-ONE-k = k
match-ONE-L-k = 1

(proof)

lemma match-TT-simps [simp]:
match-TT-TT-k = k
match-TT-FF-k = fail
match-TT-1L-k = L

(proof)

lemma match-FF-simps [simp]:
match-FF-FF-k = k
match-FF-TT-k = fail
match-FF-1-k = 1

(proof)

26.3 Mutual recursion

The following rules are used to prove unfolding theorems from fixed-point
definitions of mutually recursive functions.

lemma Pair-equall: [z = fst p; y = snd p] = (z, y) = p
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(proof)

lemma Pair-eqD1: (z, y) = (z/, y') = z =2’

(proof)

/

lemma Pair-eqD2: (z, y) = (2, y') = y =y
(proof)

lemma def-cont-fiz-eq:
[f = fiz-(Abs-cfun F); cont F] = f = F f
(proof)

lemma def-cont-fiz-ind:
If = fiz-(Abs-cfun F); cont F; adm P; P L; N\o. Px = P (Fz)] = P f
(proof)

lemma for proving rewrite rules

lemma ssubst-lhs: [t =s; Ps= Q] = Pt=Q
(proof)

26.4 Initializing the fixrec package
(ML)

hide-const (open) succeed fail run

end

27 Domain package

theory Domain
imports Representable Map-Functions Fixrec
keywords
lazy unsafe and
domaindef domain :: thy-defn and
domain-isomorphism :: thy-decl
begin

27.1 Continuous isomorphisms

A locale for continuous isomorphisms

locale iso =
fixes abs :: 'a::pcpo — 'b::pcpo
fixes rep :: 'b — 'a
assumes abs-iso [simp]: rep-(abs-x) = z
assumes rep-iso [simp]: abs:(rep-y) =y
begin
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lemma swap: iso rep abs
(proof)

lemma abs-below: (abs-z T abs-y) = (z C y)
(proof)

lemma rep-below: (rep-z C rep-y) = (x C y)
{proof )

lemma abs-eq: (abs-x = abs-y) = (z = y)
(proof)

lemma rep-eq: (rep-x = rep-y) = (z = y)
(proof )

lemma abs-strict: abs-1L = L

(proof)

lemma rep-strict: rep- 1L = 1
(proof)

lemma abs-defin’: absx = 1L = =1
(proof )

lemma rep-defin”: repz = L = 2z = 1
(proof )

lemma abs-defined: z # L = abs-z # L
{proof )

lemma rep-defined: z # 1 = rep-z # L
(proof )

lemma abs-bottom-iff: (abs-x = L) = (z = 1)
{proof)

lemma rep-bottom-iff: (rep-x = L) = (z = 1)
(proof)

lemma casedist-rule: repx = L VP =—z=1VP
(proof )

lemma compact-abs-rev: compact (abs-z) = compact x

(proof)

lemma compact-rep-rev: compact (rep-z) = compact x

(proof)

lemma compact-abs: compact t => compact (abs-x)
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{proof)

lemma compact-rep: compact © = compact (rep-x)
{proof)

lemma iso-swap: (z = abs-y) = (rep-x = y)
(proof)

end

27.2 Proofs about take functions

This section contains lemmas that are used in a module that supports the
domain isomorphism package; the module contains proofs related to take
functions and the finiteness predicate.

lemma deflation-abs-rep:

fixes abs and rep and d

assumes abs-iso: \z. rep-(abs-z) =

assumes rep-iso: N\y. abs-(rep-y) =y

shows deflation d = deflation (abs oo d oo Tep)
(proof)

lemma deflation-chain-min:
assumes chain: chain d
assumes defl: A\n. deflation (d n)
shows d m-(d n-z) = d (min m n)-x

(proof)

lemma [ub-ID-take-lemma:
assumes chain t and (| |n. t n) = ID
assumes An. t n-z = t n-y shows z = y

{(proof)

lemma lub-ID-reach:
assumes chain t and (| |n. t n) = ID
shows (| |n. t nz) = 2

(proof)

lemma lub-ID-take-induct:
assumes chain t and (| |n. t n) = ID
assumes adm P and An. P (t n-z) shows P z

(proof)

27.3 Finiteness

Let a “decisive” function be a deflation that maps every input to either itself
or bottom. Then if a domain’s take functions are all decisive, then all values
in the domain are finite.
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definition

decisive :: ('az:pcpo — 'a) = bool
where

decisive d +— (Vz. d-z =z V dz = 1)

lemma decisivel: (Nz. d-x =z V d-x = 1) = decisive d
{proof)

lemma decisive-cases:
assumes decisive d obtains d-z =z | dz = L

(proof)

lemma decisive-bottom: decisive L
(proof)

lemma decisive-1D: decisive 1D
(proof )

lemma decisive-ssum-map:
assumes f: decisive f
assumes g: decisive g
shows decisive (ssum-map-f-g)
(proof)

lemma decisive-sprod-map:
assumes f: decisive f
assumes ¢: decisive g
shows decisive (sprod-map-f-g)
(proof)

lemma decisive-abs-rep:
fixes abs rep
assumes iso: iso abs rep
assumes d: decisive d
shows decisive (abs 0o d oo rep)

{proof)

lemma [ub-ID-finite:
assumes chain: chain d
assumes lub: (| |n. d n) = ID
assumes decisive: A\n. decisive (d n)
shows dn. dnz ==z

(proof)

lemma [ub-ID-finite-take-induct:
assumes chain d and (| |n. d n) = ID and An. decisive (d n)
shows (An. P (d nz)) = Pz

(proof)
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27.4 Proofs about constructor functions

Lemmas for proving nchotomy rule:

lemma ex-one-bottom-iff:
(3z. Pz Nz # 1)=P ONE

(proof)

lemma ex-up-bottom-iff:
FBz. Pz ANz #1)= 3z P (upx))
(proof)

lemma ex-sprod-bottom-iff:

(Fy. PyAy#1)=

Fzy. (P (z,y) N # L) Ay # 1)
(proof)

lemma ex-sprod-up-bottom-iff:
Qy-Pyny#1)=

Bz y. P (Gupzx, y:) Ny # L)
(proof)

lemma ex-ssum-bottom-iff:
Fz. Pz ANz #1)=

(Fz. P (sinlz) Nz # L)V
(Fz. P (sinr-z) Az # 1))

(proof)

lemma exh-start: p= LV 3z.p=xz Az # 1)
(proof)

lemmas ex-bottom-iffs =
ex-ssum-bottom-iff
ex-sprod-up-bottom-iff
ez-sprod-bottom-iff
ex-up-bottom-iff
ex-one-bottom-iff

Rules for turning nchotomy into exhaust:
lemma ezh-casedist0: [R; R = P] = P
(proof)

lemma exh-casedist!: (PV Q@ = R) = S) = ([P = R; Q = R] = 9)
{proof)

lemma ezh-casedist?2: (3z. Pz = Q) = (A\z. Pz = Q)
{proof)

lemma exh-casedist3: (P N Q@ = R) = (P = @ = R)
{proof)
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lemmas ezh-casedists = exh-casedist]l exh-casedist? exh-casedist3

Rules for proving constructor properties

lemmas con-strict-rules =
sinl-strict sinr-strict spair-strictl spair-strict2

lemmas con-bottom-iff-rules =

sinl-bottom-iff sinr-bottom-iff spair-bottom-iff up-defined ONE-defined

lemmas con-below-iff-rules =

sinl-below sinr-below sinl-below-sinr sinr-below-sinl con-bottom-iff-rules

lemmas con-eq-iff-rules =
sinl-eq sinr-eq sinl-eq-sinr sinr-eq-sinl con-bottom-iff-rules

lemmas sel-strict-rules =
cfcomp?2 sscasel sfst-strict ssnd-strict fupl

lemma sel-app-extra-rules:
sscase-ID- 1 -(sinr-z) = L
sscase-ID- 1 -(sinl-z) = x
sscase- L-ID-(sinl-z) = L
sscase: L -ID- (smr x) =
fup-ID-(up-) =

(proof)

lemmas sel-app-rules =
sel-strict-rules sel-app-extra-rules
ssnd-spair sfst-spair up-defined spair-defined

lemmas sel-bottom-iff-rules =
cfcomp?2 sfst-bottom-iff ssnd-bottom-iff

lemmas take-con-rules =

ssum-map-sinl’ ssum-map-sinr’ sprod-map-spair’ u-map-up
deflation-strict deflation-ID ID1 cfcomp2

27.5 ML setup

named-theorems domain-deflation theorems like deflation a ==

and domain-map-ID theorems like foo-map$ID = ID

(ML)

27.6 Representations of types

lemma emb-prj: emb-((prj-x)::’a::domain) = cast-DEFL('a)-x

(proof)

> deflation (foo-map$a)
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lemma emb-prj-emb:
fixes z :: ‘a::domain
assumes DEFL('a) C DEFL(’D)
shows emb-(prj-(emb-x) :: 'b::domain) = emb-x

(proof)

lemma prj-emb-prj:
assumes DEFL('a::domain) T DEFL(’b::domain)
shows prj-(emb-(prj-z :: 'b)) = (prj-z :: 'a)
(proof )

Isomorphism lemmas used internally by the domain package:

lemma domain-abs-iso:
fixes abs and rep
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: 'a — 'b) = prj oo emb
assumes rep-def: (rep :: 'b — 'a) = prj oo emb
shows rep-(abs-z) = z

(proof)

lemma domain-rep-iso:
fixes abs and rep
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: ‘a — 'b) = prj oo emb
assumes rep-def: (rep :: 'b — 'a) = prj oo emb
shows abs-(rep-z) = «

(proof)

27.7 Deflations as sets

definition defl-set :: 'a::bifinite defl = 'a set
where defl-set A = {z. cast-A-x = x}

lemma adm-defi-set: adm (A\z. © € defl-set A)
(proof)

lemma defl-set-bottom: L € defl-set A
(proof )

lemma defl-set-cast [simp]: cast-A-z € defl-set A

(proof)

lemma defl-set-subset-iff: defl-set A C defl-set B<+— AC B
(proof)

27.8 Proving a subtype is representable

Temporarily relax type constraints.
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(ML)

lemma typedef-domain-class:
fixes Rep :: 'a::pcpo = udom
fixes Abs :: udom = 'a::pcpo
fixes ¢t :: udom defl
assumes type: type-definition Rep Abs (defl-set t)
assumes below: (C) = Az y. Rep x C Rep y
assumes emb: emb = (A z. Rep z)
assumes prj: prj = (A z. Abs (cast-t-z))
assumes defl: defl = (\ a::'a itself. t)
assumes liftemb: (liftemb :: 'a u — udom u) = u-map-emb
assumes liftprj: (liftprj :: udom v — 'a u) = u-map-prj
assumes liftdefl: (liftdefl :: 'a itself = -) = (At. liftdefl-of-DEFL('a))
shows OFCLASS('a, domain-class)

(proof )

lemma typedef-DEFL:
assumes defl = (Aa::'a::pepo itself. t)
shows DEFL('a::pcpo) = t

(proof )

Restore original typing constraints.
(ML)

27.9 Isomorphic deflations

definition isodefl :: (‘a::domain — 'a) = udom defl = bool
where isodefl d t +— cast-t = emb oo d oo prj

definition isodefl’ :: ('a::predomain — 'a) = udom u defl = bool
where isodefl’ d t +— cast-t = liftemb oo u-map-d oo liftprj

lemma isodefil: (A\z. cast-t-x = emb-(d-(prj-x))) = isodefl d t
(proof)

lemma cast-isodefl: isodefl d t = cast-t = (A z. emb-(d-(prj-x)))
(proof)

lemma isodefi-strict: isodefl d t = d-1 = |
(proof)

lemma isodefl-imp-deflation:
fixes d :: 'a::domain — 'a
assumes isodefl d t shows deflation d

(proof)

lemma isodefl-ID-DEFL: isodefl (ID :: 'a — 'a) DEFL('a::domain)
(proof)
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lemma isodefl-LIFTDEFL:
isodefl’ (ID :: 'a — 'a) LIFTDEFL('a::predomain)
(proof)

lemma isodefl-DEFL-imp-ID: isodefl (d :: 'a — 'a) DEFL('a::domain) = d =
1D
(proof)

lemma isodefi-bottom: isodefl L L
(proof )

lemma adm-isodefi:
cont f = cont ¢ = adm (Az. isodefl (f z) (g z))

(proof)

lemma isodefi-lub:
assumes chain d and chain t
assumes Azi. isodefl (d i) (1)
shows isodefl (| |4. d i) (| |7 ¢t 9)
(proof )

lemma isodefi-fiz:
assumes Ad t. isodefl d t = isodefl (f-d) (g-t)
shows isodefl (fiz-f) (fiz-g)

(proof)

lemma isodefi-abs-rep:
fixes abs and rep and d
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: '‘a — 'b) = prj oo emb
assumes rep-def: (rep = 'b — 'a) = prj oo emb
shows isodefl d t = isodefl (abs oo d oo rep) t

(proo)

lemma isodefl’-liftdefl-of : isodefl d t = isodefl’ d (liftdefi-of -t)
{proof)

lemma isodefi-sfun:
isodefl d1 t1 = isodefl d2 t2 —
isodefl (sfun-map-d1-d2) (sfun-defl-t1-t2)
{proof )

lemma isodefi-ssum:
isodefl d1 t1 = isodefl d2 12 —
isodefl (ssum-map-d1-d2) (ssum-defl-t1-12)
(proof)

lemma isodefl-sprod:
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isodefl d1 t1 = isodefl d2 12 —
isodefl (sprod-map-d1-d2) (sprod-defl-t1-t2)
(proof)

lemma isodefl-prod:
isodefl d1 t1 = isodefl d2 t2 —
isodefl (prod-map-d1-d2) (prod-defl-t1-12)
(proof)

lemma isodefi-u:
isodefl d t = isodefl (u-map-d) (u-defl-t)
(proof)

lemma isodefl-u-liftdefi:
isodefl’ d t = isodefl (u-map-d) (u-liftdefi-t)
(proof)

lemma encode-prod-u-map:
encode-prod-u-(u-map-(prod-map-f-g)-(decode-prod-u-x))
= sprod-map-(u-map-f)-(u-map-g)-x
(proof )

lemma isodefi-prod-u:

assumes isodefl’ d1 t1 and isodefl’ d2 t2

shows isodefl’ (prod-map-d1-d2) (prod-liftdefl-t1-t2)
(proof)

lemma encode-cfun-map:
encode-cfun-(cfun-map-f-g-(decode-cfun-z))
= sfun-map-(u-map-f)-g-x
{proof )

lemma isodefi-cfun:
assumes isodefl (u-map-d1) t1 and isodefl d2 t2
shows isodefl (cfun-map-d1-d2) (sfun-defl-11-t2)
(proof)

27.10 Setting up the domain package

named-theorems domain-defl-simps theorems like DEFL('a t) = t-defl$ DEFL('a)
and domain-isodefl theorems like isodefl d t ==> isodefl (foo-map$d) (foo-defi$t)

(ML)

lemmas [domain-defi-simps] =
DEFL-cfun DEFL-sfun DEFL-ssum DEFL-sprod DEFL-prod DEFL-u
liftdefi-eq LIFTDEFL-prod u-liftdefi-liftdefi-of

lemmas [domain-map-ID] =
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cfun-map-ID sfun-map-ID ssum-map-ID sprod-map-ID prod-map-ID u-map-ID

lemmas [domain-isodefl] =
isodefl-u isodefl-sfun isodefl-ssum isodefl-sprod
isodefl-cfun isodefl-prod isodefl-prod-u isodefl’-liftdefl-of
isodefl-u-liftdefl

lemmas [domain-deflation] =
deflation-cfun-map deflation-sfun-map deflation-ssum-map
deflation-sprod-map deflation-prod-map deflation-u-map

(ML)

end

28 A compact basis for powerdomains

theory Compact-Basis
imports Universal
begin

28.1 A compact basis for powerdomains
definition pd-basis = {S::’a::bifinite compact-basis set. finite S N S # {}}

typedef ‘a::bifinite pd-basis = pd-basis :: 'a compact-basis set set
(proof)

lemma finite-Rep-pd-basis [simp]: finite (Rep-pd-basis u)
(proof)

lemma Rep-pd-basis-nonempty [simp]: Rep-pd-basis u # {}
(proof)

The powerdomain basis type is countable.

lemma pd-basis-countable: 3 f::'a::bifinite pd-basis = nat. inj f (is Ex ?P)

(proof)

28.2 Unit and plus constructors

definition
PDUnit :: 'a::bifinite compact-basis = 'a pd-basis where
PDUnit = (Az. Abs-pd-basis {z})

definition
PDPlus :: 'a::bifinite pd-basis = 'a pd-basis = 'a pd-basis where
PDPlus t u = Abs-pd-basis (Rep-pd-basis t U Rep-pd-basis u)

lemma Rep-PD Unit:
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Rep-pd-basis (PDUnit z) = {z}
(proof)

lemma Rep-PDPlus:
Rep-pd-basis (PDPlus u v) = Rep-pd-basis u U Rep-pd-basis v
(proof)

lemma PDUnit-inject [simp]: (PDUnit a = PDUnit b) = (a = b)
(proof)

lemma PDPlus-assoc: PDPlus (PDPlus t u) v = PDPlus t (PDPlus u v)
(proof)

lemma PDPlus-commute: PDPlus t w = PDPlus u t
(proof)

lemma PDPlus-absorb: PDPlus tt =t
(proof)

lemma pd-basis-induct! [case-names PDUnit PDPlus]:
assumes PDUnit: Aa. P (PDUnit a)
assumes PDPlus: Na t. Pt = P (PDPlus (PDUnit a) t)
shows P z

(proof)

lemma pd-basis-induct [case-names PDUnit PDPlus]:
assumes PDUnit: Na. P (PDUnit a)
assumes PDPlus: At u. [P t; P u] = P (PDPlus t u)
shows P z

{proof)

28.3 Fold operator

definition
fold-pd ::
("a::bifinite compact-basis = 'b::type) = ('b = 'b = 'b) = 'a pd-basis = b
where fold-pd g f t = semilattice-set.F' f (g ‘ Rep-pd-basis t)

lemma fold-pd-PD Unit:

assumes semilattice f

shows fold-pd g f (PDUnit z) = g x
(proof)

lemma fold-pd-PDPlus:

assumes semilattice f

shows fold-pd g f (PDPlus t u) = f (fold-pd g f t) (fold-pd g f )
(proof)

end
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29 Upper powerdomain

theory UpperPD
imports Compact-Basis
begin

29.1 Basis preorder

definition
upper-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix <<y 50) where
upper-le = (Au v. V y€ Rep-pd-basis v. 3 x€ Rep-pd-basis u.  C y)

lemma upper-le-refl [simp]: t <f ¢

(proof)

lemma upper-le-trans: [t < u; u <f v] =t <f v
(proof )

interpretation upper-le: preorder upper-le

(proof)

lemma upper-le-minimal [simp]: PDUnit compact-bot <t t
(proof)

lemma PD Unit-upper-mono: ¢ C y = PDUnit x <f§ PDUnit y
(proof )

lemma PDPlus-upper-mono: [s <# t; u <§ v] = PDPlus s u <§ PDPlus t v
(proof)

lemma PDPlus-upper-le: PDPlus t u <f t
(proof )

lemma upper-le-PD Unit-PD Unit-iff [simp]:
(PDUnit a < PDUnit b) = (a C b)
{(proof)

lemma upper-le-PDPlus-PD Unit-iff:
(PDPlus t w <§ PDUnit a) = (t < PDUnit a V u <f PDUnit a)
(proof )

lemma upper-le-PDPlus-iff: (t < PDPlus v v) = (t <t u A t <§ v)
(proof)

lemma upper-le-induct [induct set: upper-le]:
assumes le: t <§ u
assumes I: Aa b. a CT b = P (PDUnit a) (PDUnit b)
assumes 2: At v a. Pt (PDUnit a) = P (PDPlus t u) (PDUnit a)
assumes 3: At uv. [Ptu; Ptv] = Pt (PDPlus u v)
shows Pt u
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{proof)

29.2 Type definition

typedef ‘a:bifinite upper-pd (<(<notation=<postfix upper-pd»>'(-1))) =
{S::’a pd-basis set. upper-le.ideal S}
(proof)

instantiation upper-pd :: (bifinite) below
begin

definition
z C y «— Rep-upper-pd x C Rep-upper-pd y

instance (proof)
end

instance upper-pd :: (bifinite) po
(proof)

instance upper-pd :: (bifinite) cpo
(proof)

definition
upper-principal :: 'a::bifinite pd-basis = 'a upper-pd where
upper-principal t = Abs-upper-pd {u. v <f§ t}

interpretation upper-pd:
ideal-completion upper-le upper-principal Rep-upper-pd
(proof)

Upper powerdomain is pointed
lemma upper-pd-minimal: upper-principal (PDUnit compact-bot) T ys
(proof)

instance upper-pd :: (bifinite) pcpo
(proof)

lemma inst-upper-pd-pcpo: L = upper-principal (PDUnit compact-bot)
(proof)

29.3 Monadic unit and plus

definition
upper-unit :: 'a:bifinite — ’a upper-pd where
upper-unit = compact-basis.extension (Aa. upper-principal (PDUnit a))

definition
upper-plus :: 'a::bifinite upper-pd — 'a upper-pd — 'a upper-pd where
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upper-plus = upper-pd.extension (At. upper-pd.extension (Au.
upper-principal (PDPlus t u)))

abbreviation
upper-add :: 'a::bifinite upper-pd = 'a upper-pd = 'a upper-pd
(infix] «Ut» 65) where
xs Ut ys == upper-plus-zs-ys

syntax
-upper-pd :: args = logic («(<indent=1 notation=<mizfix upper-pd enumera-

tion» {-})»)

translations

{z,osit == {z}f U {zs}t
{z}f == CONST upper-unit-z

lemma upper-unit-Rep-compact-basis [simp):
{Rep-compact-basis a}t = upper-principal (PDUnit a)
(proof)

lemma upper-plus-principal [simp):
upper-principal t U upper-principal u = upper-principal (PDPlus t u)
(proof)

interpretation upper-add: semilattice upper-add (proof)

lemmas upper-plus-assoc = upper-add.assoc

lemmas upper-plus-commute = upper-add.commute
lemmas upper-plus-absorb = upper-add.idem

lemmas upper-plus-left-commute = upper-add.left-commute
lemmas upper-plus-left-absorb = upper-add.left-idem

Useful for simp add: upper-plus-ac

lemmas upper-plus-ac =
upper-plus-assoc upper-plus-commute upper-plus-left-commute

Useful for simp only: upper-plus-aci

lemmas upper-plus-aci =
upper-plus-ac upper-plus-absorb upper-plus-left-absorb

lemma upper-plus-below!: xs Ut ys C zs
{proof )

lemma upper-plus-below2: zs Ut ys C ys
(proof )

lemma upper-plus-greatest: [xs T ys; xs C zs] = s T ys Uf zs

{(proof)

lemma upper-below-plus-iff [simp):
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s Cys U zs «— 28 C ys A zs £ zs
(proof)

lemma upper-plus-below-unit-iff [simp]:
zs Ul ys C {2} +— xs C {z} V ys C {z}{
(proof)

lemma upper-unit-below-iff [simp]: {z} C {yHf +— 2 C y
(proof)

lemmas upper-pd-below-simps =
upper-unit-below-iff
upper-below-plus-iff
upper-plus-below-unit-iff

lemma upper-unit-eq-iff [simp]: {a}t = {yH +— 2=y
(proof)

lemma upper-unit-strict [simp]: {L}f = L
(proof)

lemma upper-plus-strict! [simp]: L Uf ys = L
(proof)

lemma upper-plus-strict2 [simpl: zs Uf L = L

(proof)

lemma upper-unit-bottom-iff [simp]: {z}f = L «— z = L
(proof)

lemma upper-plus-bottom-iff [simp]:
zsUfys= 1L +—azs=1Vy=_1
(proof)

lemma compact-upper-unit: compact © = compact {x}H
(proof )

lemma compact-upper-unit-iff [simp]: compact {z}f <— compact ©
(proof)

lemma compact-upper-plus [simp):
[compact xs; compact ys] = compact (xs Uf ys)

(proof)

29.4 Induction rules

lemma upper-pd-induct?:
assumes P: adm P
assumes unit: N\z. P {z}4
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assumes insert: Az ys. [P {z}t; P ys] = P ({z}t Ut ys)
shows P (zs::'a::bifinite upper-pd)
(proof)

lemma upper-pd-induct [case-names adm upper-unit upper-plus, induct type: up-
per-pd]:

assumes P: adm P

assumes unit: N\z. P {z}4

assumes plus: Axs ys. [P xs; P ys] = P (xs Uf ys)

shows P (zs::'a::bifinite upper-pd)
(proof)

29.5 Monadic bind

definition
upper-bind-basis ::
'a::bifinite pd-basis = (‘a — 'b upper-pd) — 'b::bifinite upper-pd where
upper-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
Az y. Af.oaf U yf)

lemma ACI-upper-bind:
semilattice (A\z y. A f. z-f Ut y-f)
{proof)

lemma upper-bind-basis-simps [simp]:
upper-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
upper-bind-basis (PDPlus t u) =
(A f. upper-bind-basis t-f U upper-bind-basis u-f)
(proof)

lemma upper-bind-basis-mono:
t <# u = upper-bind-basis t = upper-bind-basis u

(proof)

definition

upper-bind :: 'a::bifinite upper-pd — (‘a — 'b upper-pd) — 'b::bifinite upper-pd
where

upper-bind = upper-pd.extension upper-bind-basis

syntax
-upper-bind :: [logic, logic, logic] = logic
(<(<indent=3 notation=<binder upper-bind»\Jt-€-./ -)» [0, 0, 10] 10)

translations
Ufzexs. e == CONST upper-bind-zs-(A z. e)

lemma upper-bind-principal [simp]:
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upper-bind-(upper-principal t) = upper-bind-basis t
(proof)

lemma upper-bind-unit [simp]:
upper-bind-{z}f-f = f-x
(proof)

lemma upper-bind-plus [simp]:
upper-bind-(zs Uf ys)-f = upper-bind-zs-f U§ upper-bind-ys-f
{(proof)

lemma upper-bind-strict [simp]: upper-bind-L-f = f-L
(proof)

lemma upper-bind-bind:
upper-bind-(upper-bind-xs-f)-g = upper-bind-zs-(A z. upper-bind-(f-x)-g)
(proof)

29.6 Map

definition
upper-map :: ('a::bifinite — 'b::bifinite) — 'a upper-pd — 'b upper-pd where
upper-map = (A f zs. upper-bind-xs-(A z. {f-z}1))

lemma upper-map-unit [simp]:
upper-map-f-{z}t = {f-z}t
(proof )

lemma upper-map-plus [simp]:
upper-map-f-(xs Ut ys) = upper-map-f-xs Uf upper-map-f-ys
(proof)

lemma upper-map-bottom [simp|: upper-map-f-L = {f- L}
{proof )

lemma upper-map-ident: upper-map-(A z. x)-zs = xs
(proof)

lemma upper-map-1D: upper-map-1D = ID
(proof )

lemma upper-map-map:
upper-map-f-(upper-map-g-xs) = upper-map-(A z. f-(g-x))-zs
(proof)

lemma upper-bind-map:
upper-bind-(upper-map-f-xs)-g = upper-bind-xzs-(A z. g-(f-z))
(proof)
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lemma upper-map-bind:
upper-map-f-(upper-bind-zs-g) = upper-bind-xzs-(A z. upper-map-f-(g-x))
(proof)

lemma ep-pair-upper-map: ep-pair e p => ep-pair (upper-map-e) (upper-map-p)

(proof)

lemma deflation-upper-map: deflation d = deflation (upper-map-d)
(proof)

lemma finite-deflation-upper-map:
assumes finite-deflation d shows finite-deflation (upper-map-d)
(proof)

29.7 Upper powerdomain is bifinite

lemma approz-chain-upper-map:
assumes approx-chain a
shows approx-chain (\i. upper-map-(a 7))
(proof)

instance upper-pd :: (bifinite) bifinite
(proof)

29.8 Join

definition
upper-join :: 'a::bifinite upper-pd upper-pd — 'a upper-pd where
upper-join = (A xzss. upper-bind-zss-(A xs. xs))

lemma upper-join-unit [simp):
upper-join-{xs}tt = xs
(proof)

lemma upper-join-plus [simp]:
upper-join-(xss U yss) = upper-join-zss U upper-join-yss
(proof )

lemma upper-join-bottom [simpl: upper-join- L = L

(proof)

lemma upper-join-map-unit:
upper-join-(upper-map-upper-unit-zs) = xs
(proof )

lemma upper-join-map-join:
upper-join-(upper-map-upper-join-xsss) = upper-join-(upper-join-sss)
(proof)
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lemma upper-join-map-map:
upper-join-(upper-map-(upper-map-f)-xss) =
upper-map-f-(upper-join-ss)

(proof)

end

30 Lower powerdomain

theory LowerPD
imports Compact-Basis
begin

30.1 Basis preorder

definition
lower-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix «<b» 50) where
lower-le = (Au v. V z€ Rep-pd-basis u. 3 y€ Rep-pd-basis v. T y)

lemma lower-le-refl [simp]: t <b t
(proof)

lemma lower-le-trans: [t <b u; u <b v] =t <b v

(proof)

interpretation lower-le: preorder lower-le
(proof)

lemma lower-le-minimal [simp]: PDUnit compact-bot <b t

(proof)

lemma PD Unit-lower-mono: © C y = PDUnit x <b PDUnit y
(proof)

lemma PDPlus-lower-mono: [s <b t; u <b v] = PDPlus s u <b PDPlus t v
(proof )

lemma PDPlus-lower-le: t <b PDPlus t u
(proof)

lemma lower-le-PD Unit-PD Unit-iff [simp]:
(PDUnit a <b PDUnit b) = (a C b)
(proof)

lemma lower-le-PD Unit-PDPlus-iff:
(PDUnit a <b PDPlus t u) = (PDUnit a <b t V PDUnit a <b u)
(proof )

lemma lower-le-PDPlus-iff: (PDPlus t u <b v) = (t <b v A u <b v)
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(proof)

lemma lower-le-induct [induct set: lower-le]:
assumes le: t <b u
assumes I: Aa b. a CT b = P (PDUnit a) (PDUnit b)
assumes 2: At v a. P (PDUnit a) t = P (PDUnit a) (PDPlus t u)
assumes 3: At wov. [Ptv; Puv] = P (PDPlus t u) v
shows Pt u

{proof)

30.2 Type definition

typedef ‘a::bifinite lower-pd (<(<notation=<postfix lower-pd» '(-\b)») =
{S::"a pd-basis set. lower-le.ideal S}

(proof)

instantiation lower-pd :: (bifinite) below
begin

definition
x T y <— Rep-lower-pd x C Rep-lower-pd y

instance (proof)
end

instance lower-pd :: (bifinite) po
(proof)

instance lower-pd :: (bifinite) cpo

(proof)

definition
lower-principal :: 'a::bifinite pd-basis = 'a lower-pd where
lower-principal t = Abs-lower-pd {u. u <b t}

interpretation lower-pd:
ideal-completion lower-le lower-principal Rep-lower-pd

(proof)

Lower powerdomain is pointed
lemma lower-pd-minimal: lower-principal (PDUnit compact-bot) C ys

(proof)

instance lower-pd :: (bifinite) pcpo
(proof)

lemma inst-lower-pd-pcpo: L = lower-principal (PDUnit compact-bot)

(proof)
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30.3 Monadic unit and plus

definition
lower-unit :: 'a::bifinite — 'a lower-pd where
lower-unit = compact-basis.extension (Aa. lower-principal (PDUnit a))

definition
lower-plus :: 'a::bifinite lower-pd — 'a lower-pd — 'a lower-pd where
lower-plus = lower-pd.extension (At. lower-pd.extension (Au.
lower-principal (PDPlus t u)))

abbreviation
lower-add :: 'a::bifinite lower-pd = 'a lower-pd = 'a lower-pd
(infix] «Ub» 65) where
xs Ub ys == lower-plus-zs-ys

syntax

-lower-pd :: args = logic («(<indent=1 notation=<mizfix lower-pd enumera-
tion»{-}b)»)
translations

{z,zs}b == {z}b Ub {zs}b

{z}b == CONST lower-unit-x

lemma lower-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}tb = lower-principal (PDUnit a)
{(proof)

lemma lower-plus-principal [simp]:
lower-principal t Ub lower-principal u = lower-principal (PDPlus t u)
(proof)

interpretation lower-add: semilattice lower-add {(proof)

lemmas lower-plus-assoc = lower-add.assoc

lemmas lower-plus-commute = lower-add.commute
lemmas lower-plus-absorb = lower-add.idem

lemmas lower-plus-left-commute = lower-add.left-commute
lemmas lower-plus-left-absorb = lower-add.left-idem

Useful for simp add: lower-plus-ac
lemmas lower-plus-ac =

lower-plus-assoc lower-plus-commute lower-plus-left-commute
Useful for simp only: lower-plus-aci

lemmas lower-plus-aci =
lower-plus-ac lower-plus-absorb lower-plus-left-absorb

lemma lower-plus-belowl: s T zs Ub ys
(proof)
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lemma lower-plus-below2: ys C zs Ub ys
(proof )

lemma lower-plus-least: [zs T zs; ys C zs] = s Ub ys C zs

(proof)

lemma lower-plus-below-iff [simp]:
2s Ub ys C 28 +— 2s C 28 A\ ys C zs
(proof)

lemma lower-unit-below-plus-iff [simp):
{z}b C ys Ub zs «— {z}p C ys V {a}b C zs
(proof)

lemma lower-unit-below-iff [simp]: {z}b C {y}p +— 2z C y

(proof)

lemmas lower-pd-below-simps =
lower-unit-below-iff
lower-plus-below-iff
lower-unit-below-plus-iff

lemma lower-unit-eq-iff [simp]: {z}b = {y}b +— 2 =y
(proof)

lemma lower-unit-strict [simp]: {L}b = L

(proof)

lemma lower-unit-bottom-iff [simp]: {z}b = L +— z =L
(proof)

lemma lower-plus-bottom-iff [simp]:
zsWys=1L<+—azs=1LAys=1
(proof )

lemma lower-plus-strict] [simp]: L Ub ys = ys

(proof)

lemma lower-plus-strict2 [simp]: xs Ub L = xs
(proof)

lemma compact-lower-unit: compact © = compact {x}b

(proof)

lemma compact-lower-unit-iff [simpl: compact {z}b «— compact
(proof)

lemma compact-lower-plus [simp]:
[compact xs; compact ys] = compact (xs Ub ys)
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(proof)

30.4 Induction rules

lemma lower-pd-induct1:
assumes P: adm P
assumes unit: Nz. P {z}b
assumes insert: Az ys. [P {z}b; P ys] = P ({z}b Wb ys)
shows P (zs::'a::bifinite lower-pd)
(proof)

lemma lower-pd-induct [case-names adm lower-unit lower-plus, induct type: lower-pd):
assumes P: adm P
assumes unit: Nz. P {z}b
assumes plus: Azs ys. [P zs; P ys] = P (xs Up ys)
shows P (zs::'a:bifinite lower-pd)

(proof)

30.5 Monadic bind

definition
lower-bind-basis ::
'a::bifinite pd-basis = (‘a — 'b lower-pd) — 'b::bifinite lower-pd where
lower-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
Az y. Af.ozf U yf)

lemma ACI-lower-bind:
semilattice Az y. A f. z-f Ub y-f)
(proof)

lemma lower-bind-basis-simps [simp]:
lower-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
lower-bind-basis (PDPlus t u) =
(A f. lower-bind-basis t-f Ub lower-bind-basis u-f)
(proof)

lemma lower-bind-basis-mono:
t <b u = lower-bind-basis t T lower-bind-basis u

(proof)

definition

lower-bind :: 'a::bifinite lower-pd — (‘a — 'b lower-pd) — 'b::bifinite lower-pd
where

lower-bind = lower-pd.extension lower-bind-basis

syntax
-lower-bind :: [logic, logic, logic] = logic
(<(<indent=3 notation=<binder lower-bind»|Jb-€-./ -)» [0, 0, 10] 10)
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translations
Ubzexs. e == CONST lower-bind-zs-(A z. e)

lemma lower-bind-principal [simpl:
lower-bind-(lower-principal t) = lower-bind-basis t
(proof)

lemma lower-bind-unit [simp:
lower-bind-{z}b-f = f-x
(proof)

lemma lower-bind-plus [simp]:
lower-bind-(xzs Ub ys)-f = lower-bind-zs-f Ub lower-bind-ys-f
(proof)

lemma lower-bind-strict [simp]: lower-bind-L-f = f-1
(proof)

lemma lower-bind-bind:
lower-bind-(lower-bind-zs-f)-g = lower-bind-xs-(A z. lower-bind-(f-x)-g)
(proof)

30.6 Map

definition
lower-map :: ('a::bifinite — 'b::bifinite) — 'a lower-pd — 'b lower-pd where
lower-map = (A f zs. lower-bind-zs-(A z. {f-z}b))

lemma lower-map-unit [simp]:
lower-map-f-{z}b = {f-z}b
(proof)

lemma lower-map-plus [simp]:
lower-map-f-(xs Wb ys) = lower-map-f-zs Ub lower-map-f-ys

(proof)

lemma lower-map-bottom [simpl: lower-map-f- 1L = {f-L}b
(proof)

lemma lower-map-ident: lower-map-(A z. x)-xs = xs

(proof)

lemma lower-map-ID: lower-map-ID = ID

(proof)

lemma lower-map-map:
lower-map-f-(lower-map-g-xs) = lower-map-(A z. f-(g-z))-xs
(proof)
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lemma lower-bind-map:
lower-bind-(lower-map-f-zs)-g = lower-bind-zs-(A z. ¢g-(f-z))
(proof)

lemma lower-map-bind:
lower-map-f-(lower-bind-zs-g) = lower-bind-zs-(A z. lower-map-f-(g-x))
(proof)

lemma ep-pair-lower-map: ep-pair e p => ep-pair (lower-map-e) (lower-map-p)

(proof)

lemma deflation-lower-map: deflation d = deflation (lower-map-d)
(proof)

lemma finite-deflation-lower-map:
assumes finite-deflation d shows finite-deflation (lower-map-d)
(proof)

30.7 Lower powerdomain is bifinite

lemma approz-chain-lower-map:
assumes approz-chain a
shows approx-chain (Mi. lower-map-(a 7))

{proof)

instance lower-pd :: (bifinite) bifinite

(proof)

30.8 Join

definition
lower-join :: 'a::bifinite lower-pd lower-pd — 'a lower-pd where
lower-join = (A zss. lower-bind-zss-(A zs. xs))

lemma lower-join-unit [simp):
lower-join-{xs}b = s
(proof)

lemma lower-join-plus [simp]:
lower-join-(xss Ub yss) = lower-join-zss Ub lower-join-yss
(proof )

lemma lower-join-bottom [simp|: lower-join-L = L

(proof)

lemma lower-join-map-unit:
lower-join-(lower-map-lower-unit-zs) = xs
(proof)
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lemma lower-join-map-join:
lower-join-(lower-map-lower-join-zsss) = lower-join-(lower-join-zsss)

(proof)

lemma lower-join-map-map:
lower-join-(lower-map-(lower-map-f)-zss) =
lower-map-f-(lower-join-xss)

(proof)

end

31 Convex powerdomain

theory ConvexPD
imports UpperPD LowerPD
begin

31.1 Basis preorder

definition
convez-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix <<k 50) where
convez-le = (Au v. u <f v A u <b v)

lemma convez-le-refl [simp]: ¢t <f ¢
(proof)

lemma convez-le-trans: [t <t u; u <fv] = ¢t <f v

(proof)

interpretation convez-le: preorder convex-le
(proof)

lemma upper-le-minimal [simp]: PDUnit compact-bot <l t

(proof)

lemma PDUnit-convex-mono: v C y = PDUnit x <t PDUnit y
(proof)

lemma PDPlus-convex-mono: [s <b t; u <f v] = PDPlus s u <t PDPlus t v

(proof)

lemma convez-le-PDUnit-PD Unit-iff [simp):
(PDUnit a <t PDUnit b) = (a C b)
(proof)

lemma convex-le-PD Unit-lemmal:
(PDUnit a <f t) = (V b€ Rep-pd-basis t. a T b)
(proof)
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lemma convez-le-PDUnit-PDPlus-iff [simp):
(PDUnit a <t PDPlus t u) = (PDUnit a <§ t A PDUnit a <f u)
(proof)

lemma convex-le-PDUnit-lemma2:
(t <t PDUnit b) = (VY a€Rep-pd-basis t. a T b)
(proof)

lemma convez-le-PDPlus-PDUnit-iff [simp]:
(PDPlus t w <t PDUnit a) = (t < PDUnit a A u <g PDUnit a)
(proof)

lemma convex-le-PDPlus-lemma:
assumes z: PDPlus t u <lj z
shows Jv w. 2z = PDPlusvw At <gv A u<hw

(proof)

lemma convez-le-induct [induct set: convez-le]:
assumes le: t <f u
assumes 2: Atuv. [Ptu; Puv] = Ptwo
assumes 3: Aa b. a T b = P (PDUnit a) (PDUnit b)
assumes 4: A\t u v w. [Ptv; Puw] = P (PDPlustu) (PDPlus v w)
shows Pt u

{proof)

31.2 Type definition

typedef ‘a:bifinite conver-pd («(<notation=<postfix convez-pd»»'(-)t)») =
{S::"a pd-basis set. convex-le.ideal S}
(proof)

instantiation convez-pd :: (bifinite) below
begin

definition
x T y <— Rep-convezr-pd x C Rep-convez-pd y

instance (proof)
end

instance convez-pd :: (bifinite) po
(proof)

instance convex-pd :: (bifinite) cpo

(proof)

definition
convex-principal :: 'a::bifinite pd-basis = 'a convex-pd where
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convex-principal t = Abs-convez-pd {u. v <t t}

interpretation convez-pd:
ideal-completion convex-le convex-principal Rep-convex-pd

(proof)

Convex powerdomain is pointed

lemma convez-pd-minimal: convex-principal (PDUnit compact-bot) C ys

(proof)

instance convez-pd :: (bifinite) pcpo

{(proof)

lemma inst-convez-pd-pepo: L = convex-principal (PDUnit compact-bot)
(proof)

31.3 Monadic unit and plus

definition
convex-unit :: 'a::bifinite — 'a convex-pd where
conver-unit = compact-basis.extension (Aa. conver-principal (PDUnit a))

definition
convez-plus :: 'a::bifinite conver-pd — 'a conver-pd — 'a convezr-pd where
convez-plus = convez-pd.extension (At. convez-pd.extension (Au.
convex-principal (PDPlus t u)))

abbreviation
convex-add :: 'a::bifinite convex-pd = 'a convex-pd = 'a convez-pd
(infix] Uy 65) where
xs U ys == convez-plus-zs-ys

syntax

-convez-pd :: args = logic (<(<indent=1 notation=<mizfix convex-pd enumera-
tion»{-})»)
translations

{w,as}h == {a}4 Ug {as}s

{z}y == CONST convex-unit-z

lemma convez-unit-Rep-compact-basis [simp):
{ Rep-compact-basis a}h = convex-principal (PDUnit a)
(proof)

lemma convez-plus-principal [simp):
convez-principal t U convex-principal u = convez-principal (PDPlus t u)
(proof)

interpretation convex-add: semilattice convex-add {(proof)
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lemmas convez-plus-assoc = convex-add.assoc

lemmas convez-plus-commute = convex-add.commute
lemmas convez-plus-absorb = convex-add.idem

lemmas convex-plus-left-commute = convez-add.left-commute
lemmas convex-plus-left-absorb = convez-add.left-idem

Useful for simp add: convex-plus-ac

lemmas convez-plus-ac =
convez-plus-assoc convex-plus-commute convex-plus-left-commute

Useful for simp only: convex-plus-aci

lemmas convez-plus-aci =
convez-plus-ac convexr-plus-absorb convezr-plus-left-absorb

lemma convez-unit-below-plus-iff [simp]:
{z}h C ys Up 2s «— {z}h C ys A {z}f C 2s
(proof )

lemma convez-plus-below-unit-iff [simp]:
zs U ys C {z} «— as C {2} A ys C {z}
(proof)

lemma convez-unit-below-iff [simp]: {z}t C {y}t+— 2z C y
(proof)

lemma convez-unit-eq-iff [simpl: {z}t = {yh+— z =y

(proof)

lemma convez-unit-strict [simp]: {L} = L

(proof)

lemma convez-unit-bottom-iff [simp]: {z}h = L +— z = 1
(proof)

lemma compact-convex-unit: compact t = compact {z}f

{(proof)

lemma compact-convex-unit-iff [simp]: compact {z}t +— compact
(proof)

lemma compact-convex-plus [simp:
[compact xs; compact ys] = compact (xs Ul ys)

(proof)

31.4 Induction rules

lemma convez-pd-induct1:
assumes P: adm P
assumes unit: Az. P {z}f
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assumes insert: Az ys. [P {z}t; P ys] = P ({z}§ Uh ys)
shows P (zs::'a::bifinite convez-pd)
(proof)

lemma convez-pd-induct [case-names adm convex-unit convexr-plus, induct type:
convex-pd):

assumes P: adm P

assumes unit: Az. P {z}f

assumes plus: Axs ys. [P xs; P ys] = P (xs Ul ys)

shows P (zs::'a::bifinite convez-pd)

(proof)

31.5 Monadic bind

definition
convez-bind-basis ::
'a::bifinite pd-basis = (‘a — 'b convez-pd) — 'b::bifinite convexr-pd where
convez-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
Az y. Af.af Ugyf)

lemma ACI-convez-bind:
semilattice Az y. A f. z-f Ub y-f)
(proof)

lemma convez-bind-basis-simps [simpl:
convez-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
convez-bind-basis (PDPlus t u) =
(A f. convex-bind-basis t-f U convez-bind-basis u-f)
(proof )

lemma convex-bind-basis-mono:
t <f u = convex-bind-basis t T convex-bind-basis u

(proof)

definition

convez-bind :: 'a::bifinite conver-pd — (‘a — 'b convex-pd) — 'b::bifinite conver-pd
where

convez-bind = convex-pd.extension convex-bind-basis

syntax
-convez-bind :: [logic, logic, logic] = logic

(<(<indent=3 notation=<binder convezr-bind»»\Jb-€-./ -)» [0, 0, 10] 10)

translations
Ubtzers. e == CONST convex-bind-zs-(A z. e)

lemma convez-bind-principal [simp]:
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convex-bind-(convex-principal t) = convex-bind-basis t
(proof)

lemma convez-bind-unit [simp]:
conver-bind-{z}y-f = f-x
(proof)

lemma convez-bind-plus [simp]:
convez-bind-(xs Uy ys)-f = convex-bind-zs-f Uf convez-bind-ys-f

{(proof)

lemma convez-bind-strict [simpl: conver-bind-L-f = f-1
(proof)

lemma convez-bind-bind:
convex-bind-(convex-bind-zs-f)-g =
convex-bind-zs-(A x. conver-bind-(f-x)-g)
(proof )

31.6 Map

definition
conver-map :: (‘a::bifinite — 'b) — 'a conver-pd — 'b::bifinite conver-pd where
conver-map = (A f xs. convex-bind-xzs-(A z. {f-z}t))

lemma convez-map-unit [simp]:
convez-map-f-{z}h = {f-z}t
(proof)

lemma conver-map-plus [simp):
convex-map-f-(zs U ys) = convex-map-f-xs Uy conver-map-f-ys
(proof)

lemma convez-map-bottom [simp]: convex-map-f-L = {f- L}t

(proof)

lemma convez-map-ident: convex-map-(A x. x)-xs = xs
(proof)

lemma convex-map-ID: conver-map-ID = ID

(proof)

lemma convex-map-map:
convez-map-f-(convex-map-g-xs) = conver-map-(A z. f-(g-z))-xs
{proof )

lemma convez-bind-map:
convez-bind-(convexz-map-f-xs)-g = convex-bind-zs-(A x. g-(f-x))
(proof)
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lemma convez-map-bind:
convez-map-f-(convex-bind-zs-g) = convez-bind-zs-(A x. convez-map-f-(g-z))

(proof)

lemma ep-pair-convex-map: ep-pair e p = ep-pair (conver-map-e) (conver-map-p)
(proof)

lemma deflation-convez-map: deflation d = deflation (convez-map-d)

{(proof)

lemma finite-deflation-convex-map:
assumes finite-deflation d shows finite-deflation (convez-map-d)

(proof)

31.7 Convex powerdomain is bifinite

lemma approz-chain-conver-map:
assumes approz-chain a
shows approz-chain (\i. convex-map-(a 7))

{proof)

instance convez-pd :: (bifinite) bifinite
(proof)

31.8 Join

definition
convez-join :: 'a:bifinite convez-pd conver-pd — 'a convezr-pd where
convex-join = (A zss. convex-bind-zss-(A zs. xs))

lemma convez-join-unit [simpl:
convez-join-{zs}tl = xs

(proof)

lemma convez-join-plus [simp]:
convez-join-(zss Uy yss) = convez-join-xzss U convex-join-yss
(proof )

lemma convez-join-bottom [simpl: convez-join-L = L

(proof)

lemma convez-join-map-unit:
convez-join-(conver-map- convex-unit-xrs) = s

(proof)

lemma convez-join-map-join:
convez-join-( convex-map- conver-join-rsss) = convez-join-( conver-join-sss)
(proof)
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lemma convez-join-map-map:
convez-join-(convex-map-( convez-map-f)-xss) =
convez-map-f-( convex-join-ss)

(proof)

31.9 Conversions to other powerdomains

Convex to upper

lemma convez-le-imp-upper-le: t <t u = t <f u
(proof)

definition
convez-to-upper :: 'a::bifinite conver-pd — 'a upper-pd where
convez-to-upper = convex-pd.extension upper-principal

lemma convez-to-upper-principal [simp):
convez-to-upper-(convez-principal t) = upper-principal t

(proof)

lemma convez-to-upper-unit [simp):
convez-to-upper-{z}t = {z}
(proof)

lemma convez-to-upper-plus [simp]:
convez-to-upper-(zs U ys) = convex-to-upper-zs U convez-to-upper-ys
(proof)

lemma convez-to-upper-bind [simp):
convez-to-upper-(convex-bind-xs-f) =
upper-bind-(convez-to-upper-zs)-(convez-to-upper oo f)

(proof)

lemma convez-to-upper-map [simpl:
convez-to-upper-(convex-map-f-xs) = upper-map-f-(conver-to-upper-zs)

(proof)

lemma convez-to-upper-join [simp:
convez-to-upper-( convez-join-zss) =
upper-bind-(convez-to-upper-xss)- convex-to-upper

{(proof)
Convex to lower
lemma convez-le-imp-lower-le: t <j v = t <b u

(proof)

definition
convez-to-lower :: 'a::bifinite conver-pd — 'a lower-pd where
convex-to-lower = convex-pd.extension lower-principal
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lemma convez-to-lower-principal [simp]:
convez-to-lower-(convex-principal t) = lower-principal t

(proof)

lemma convezx-to-lower-unit [simp]:
convez-to-lower-{z}h = {z}b
(proof )

lemma convez-to-lower-plus [simp]:
convez-to-lower-(xzs U ys) = convez-to-lower-zs Ub convez-to-lower-ys

(proof)

lemma convez-to-lower-bind [simp]:
convex-to-lower-(convex-bind-zs-f) =
lower-bind-(convez-to-lower-xs)-( convex-to-lower oo f)

(proof)

lemma convez-to-lower-map [simpl:
convez-to-lower-(convex-map-f-zs) = lower-map-f-(convez-to-lower-zs)

(proof)

lemma convez-to-lower-join [simp]:
convez-to-lower-(convex-join-xss) =
lower-bind-(convez-to-lower-xss)- convez-to-lower

(proof)
Ordering property

lemma convex-pd-below-iff:
(25 C ys) =
(convex-to-upper-zs T convez-to-upper-ys N
convez-to-lower-zs T convez-to-lower-ys)

(proof)

lemmas convex-plus-below-plus-iff =
convez-pd-below-iff [where zs=zs U ys and ys=zs Uf ws]
for xs ys zs ws

lemmas convez-pd-below-simps =
convez-unit-below-plus-iff
convez-plus-below-unit-iff
convez-plus-below-plus-iff
convez-unit-below-iff
convez-to-upper-unit
convex-to-upper-plus
convez-to-lower-unit
convez-to-lower-plus
upper-pd-below-simps
lower-pd-below-simps
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end

32 Powerdomains

theory Powerdomains
imports ConvexPD Domain
begin

32.1 Universal domain embeddings
definition upper-emb = udom-emb (Ai. upper-map-(udom-approz 7))

definition upper-prj = udom-prj (Ai. upper-map-(udom-approz 7))

definition lower-emb = udom-emb (\i. lower-map-(udom-approz ©))
definition lower-prj = udom-prj (\i. lower-map-(udom-approx 7))

definition convez-emb = udom-emb (\i. convez-map-(udom-approz i))
definition convez-prj = udom-prj (Ai. convez-map-(udom-approx 7))

lemma ep-pair-upper: ep-pair upper-emb upper-prj
(proof)

lemma ep-pair-lower: ep-pair lower-emb lower-prj

(proof)

lemma ep-pair-convez: ep-pair convex-emb convex-prj
(proof)

32.2 Deflation combinators
definition upper-defl :: udom defl — udom defl

where upper-defl = defi-funl upper-emb upper-prj upper-map

definition lower-defl :: udom defl — udom defl
where lower-defl = defl-funl lower-emb lower-prj lower-map

definition convez-defl :: udom defl — udom defl
where convex-defl = defl-funl convex-emb convezr-prj convex-map

lemma cast-upper-defl:
cast-(upper-defl-A) = upper-emb oo upper-map-(cast-A) oo upper-prj
(proof)

lemma cast-lower-defi:
cast-(lower-defl- A) = lower-emb oo lower-map-(cast-A) oo lower-prj

(proof)

lemma cast-convex-defi:
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cast-(convez-defl-A) = convex-emb oo convex-map-(cast-A) oo conver-prj
(proof)

32.3 Domain class instances

instantiation upper-pd :: (domain) domain
begin

definition
emb = upper-emb oo upper-map-emb

definition
prj = upper-map-prj 0o upper-prj

definition
defl (t::'a upper-pd itself) = upper-defl- DEFL('a)

definition
(liftemb :: 'a upper-pd v — udom u) = u-map-emb

definition
(liftprj :: udom u — 'a upper-pd u) = u-map-prj

definition
liftdefl (t::'a upper-pd itself) = liftdefl-of - DEFL('a upper-pd)

instance (proof)
end

instantiation lower-pd :: (domain) domain
begin

definition
emb = lower-emb oo lower-map-emb

definition
prj = lower-map-prj oo lower-prj

definition
defl (t::'a lower-pd itself) = lower-defl- DEFL('a)

definition
(liftembd :: 'a lower-pd u — udom u) = u-map-emb

definition
(liftpry :: udom u — 'a lower-pd u) = u-map-prj

definition
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liftdefl (t::'a lower-pd itself) = liftdefl-of - DEFL('a lower-pd)
instance (proof)
end

instantiation convez-pd :: (domain) domain
begin

definition
emb = convexr-emb oo convex-map-emb

definition
prj = convex-map-prj 00 conver-prj

definition
defl (t::'a convez-pd itself) = convezx-defl- DEFL('a)

definition
(liftembd :: 'a convez-pd u — udom u) = u-map-emb

definition
(liftpry :: udom u — 'a convex-pd u) = u-map-prj

definition
liftdefl (t::'a convex-pd itself) = liftdefl-of -DEFL('a convez-pd)

instance (proof)
end

lemma DEFL-upper: DEFL('a::domain upper-pd) = upper-defl- DEFL(’a)
(proof)

lemma DEFL-lower: DEFL(’a::domain lower-pd) = lower-defl- DEFL('a)
(proof)

lemma DEFL-convex: DEFL(’a::domain conver-pd) = convez-defl- DEFL('a)
(proof)

32.4 Isomorphic deflations

lemma isodefl-upper:
isodefl d t = isodefl (upper-map-d) (upper-defi-t)
{proof )

lemma isodefi-lower:
isodefl d t = isodefl (lower-map-d) (lower-defi-t)
(proof)
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lemma isodefl-convez:
isodefl d t = isodefl (convez-map-d) (convez-defi-t)

(proof)

32.5 Domain package setup for powerdomains

lemmas [domain-defl-simps] = DEFL-upper DEFL-lower DEFL-convex
lemmas [domain-map-ID] = upper-map-ID lower-map-ID conver-map-1D
lemmas [domain-isodefl] = isodefl-upper isodefl-lower isodefl-convex

lemmas [domain-deflation] =
deflation-upper-map deflation-lower-map deflation-conver-map

(ML)

end

theory HOLCF
imports

Main

Domain

Powerdomains
begin

default-sort domain

end
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