
Isabelle/HOLCF — Higher-Order Logic of
Computable Functions

January 18, 2026

Contents
1 Partial orders 3

1.1 Type class for partial orders 3
1.2 Upper bounds . 4
1.3 Least upper bounds . 5
1.4 Countable chains . 6
1.5 Finite chains . 7

2 Classes cpo and pcpo 8
2.1 Complete partial orders . 8
2.2 Pointed cpos . 10
2.3 Chain-finite and flat cpos . 10
2.4 Discrete cpos . 11

3 Continuity and monotonicity 11
3.1 Definitions . 11
3.2 Equivalence of alternate definition 12
3.3 Collection of continuity rules 13
3.4 Continuity of basic functions 13
3.5 Finite chains and flat pcpos 13

4 Admissibility and compactness 14
4.1 Definitions . 14
4.2 Admissibility on chain-finite types 15
4.3 Admissibility of special formulae and propagation 15
4.4 Compactness . 16

5 Class instances for the full function space 17
5.1 Full function space is a partial order 17
5.2 Full function space is chain complete 18
5.3 Full function space is pointed 18
5.4 Propagation of monotonicity and continuity 19

1

2

6 The cpo of cartesian products 19
6.1 Unit type is a pcpo . 19
6.2 Product type is a partial order 20
6.3 Monotonicity of Pair, fst, snd 20
6.4 Product type is a cpo . 21
6.5 Product type is pointed . 21
6.6 Continuity of Pair, fst, snd 22
6.7 Compactness and chain-finiteness 23

7 Discrete cpo types 24
7.1 Discrete cpo class instance . 24
7.2 undiscr . 24

8 Subtypes of pcpos 24
8.1 Proving a subtype is a partial order 24
8.2 Proving a subtype is finite . 25
8.3 Proving a subtype is chain-finite 25
8.4 Proving a subtype is complete 25

8.4.1 Continuity of Rep and Abs 26
8.5 Proving subtype elements are compact 26
8.6 Proving a subtype is pointed 27

8.6.1 Strictness of Rep and Abs 27
8.7 Proving a subtype is flat . 28
8.8 HOLCF type definition package 28

9 The type of continuous functions 28
9.1 Definition of continuous function type 28
9.2 Syntax for continuous lambda abstraction 29
9.3 Continuous function space is pointed 29
9.4 Basic properties of continuous functions 30

9.4.1 Beta-reduction simproc 30
9.5 Continuity of application . 31
9.6 Continuity simplification procedure 32
9.7 Miscellaneous . 33
9.8 Continuous injection-retraction pairs 33
9.9 Identity and composition . 34
9.10 Strictified functions . 35
9.11 Continuity of let-bindings . 35

10 Continuous deflations and ep-pairs 36
10.1 Continuous deflations . 36
10.2 Deflations with finite range 37
10.3 Continuous embedding-projection pairs 38
10.4 Uniqueness of ep-pairs . 39

3

10.5 Composing ep-pairs . 40

11 The type of strict products 40
11.1 Definition of strict product type 40
11.2 Definitions of constants . 41
11.3 Case analysis . 41
11.4 Properties of spair . 42
11.5 Properties of sfst and ssnd . 43
11.6 Compactness . 43
11.7 Properties of ssplit . 44
11.8 Strict product preserves flatness 44

12 The type of lifted values 44
12.1 Definition of new type for lifting 44
12.2 Ordering on lifted cpo . 44
12.3 Lifted cpo is a partial order 45
12.4 Lifted cpo is a cpo . 45
12.5 Lifted cpo is pointed . 45
12.6 Continuity of Iup and Ifup . 45
12.7 Continuous versions of constants 46

13 Lifting types of class type to flat pcpo’s 47
13.1 Lift as a datatype . 48
13.2 Lift is flat . 48
13.3 Continuity of case-lift . 48
13.4 Further operations . 48

14 The type of lifted booleans 49
14.1 Type definition and constructors 49
14.2 Case analysis . 50
14.3 Boolean connectives . 51
14.4 Rewriting of HOLCF operations to HOL functions 52
14.5 Compactness . 52

15 The type of strict sums 53
15.1 Definition of strict sum type 53
15.2 Definitions of constructors . 53
15.3 Properties of sinl and sinr . 54
15.4 Case analysis . 55
15.5 Case analysis combinator . 55
15.6 Strict sum preserves flatness 56

16 The Strict Function Type 56

4

17 Map functions for various types 57
17.1 Map operator for continuous function space 57
17.2 Map operator for product type 58
17.3 Map function for lifted cpo 59
17.4 Map function for strict products 59
17.5 Map function for strict sums 60
17.6 Map operator for strict function space 61

18 The cpo of cartesian products 62
18.1 Continuous case function for unit type 62
18.2 Continuous version of split function 62
18.3 Convert all lemmas to the continuous versions 62

19 Profinite and bifinite cpos 63
19.1 Chains of finite deflations . 63
19.2 Omega-profinite and bifinite domains 63
19.3 Building approx chains . 64
19.4 Class instance proofs . 65

20 Defining algebraic domains by ideal completion 66
20.1 Ideals over a preorder . 66
20.2 Lemmas about least upper bounds 68
20.3 Locale for ideal completion 68

20.3.1 Principal ideals approximate all elements 69
20.4 Defining functions in terms of basis elements 69

21 A universal bifinite domain 70
21.1 Basis for universal domain . 70

21.1.1 Basis datatype . 70
21.1.2 Basis ordering . 71
21.1.3 Generic take function 71

21.2 Defining the universal domain by ideal completion 72
21.3 Compact bases of domains . 73
21.4 Universality of udom . 74

21.4.1 Choosing a maximal element from a finite set 74
21.4.2 Compact basis take function 75
21.4.3 Rank of basis elements 76
21.4.4 Sequencing basis elements 77
21.4.5 Embedding and projection on basis elements 78
21.4.6 EP-pair from any bifinite domain into udom 80

21.5 Chain of approx functions for type udom 81

5

22 Algebraic deflations 82
22.1 Type constructor for finite deflations 82
22.2 Defining algebraic deflations by ideal completion 83
22.3 Applying algebraic deflations 84
22.4 Deflation combinators . 84

23 Representable domains 85
23.1 Class of representable domains 85
23.2 Domains are bifinite . 86
23.3 Universal domain ep-pairs . 87
23.4 Type combinators . 87
23.5 Class instance proofs . 88

23.5.1 Universal domain . 88
23.5.2 Lifted cpo . 89
23.5.3 Strict function space 89
23.5.4 Continuous function space 90
23.5.5 Strict product . 91
23.5.6 Cartesian product . 91
23.5.7 Unit type . 92
23.5.8 Discrete cpo . 93
23.5.9 Strict sum . 93
23.5.10 Lifted HOL type . 94

24 The unit domain 95

25 Fixed point operator and admissibility 96
25.1 Iteration . 96
25.2 Least fixed point operator . 97
25.3 Fixed point induction . 98
25.4 Fixed-points on product types 99

26 Package for defining recursive functions in HOLCF 99
26.1 Pattern-match monad . 99

26.1.1 Run operator . 100
26.1.2 Monad plus operator 100

26.2 Match functions for built-in types 101
26.3 Mutual recursion . 102
26.4 Initializing the fixrec package 103

27 Domain package 103
27.1 Continuous isomorphisms . 103
27.2 Proofs about take functions 105
27.3 Finiteness . 105
27.4 Proofs about constructor functions 107

6

27.5 ML setup . 108
27.6 Representations of types . 108
27.7 Deflations as sets . 109
27.8 Proving a subtype is representable 109
27.9 Isomorphic deflations . 110
27.10Setting up the domain package 112

28 A compact basis for powerdomains 113
28.1 A compact basis for powerdomains 113
28.2 Unit and plus constructors . 113
28.3 Fold operator . 114

29 Upper powerdomain 115
29.1 Basis preorder . 115
29.2 Type definition . 116
29.3 Monadic unit and plus . 116
29.4 Induction rules . 118
29.5 Monadic bind . 119
29.6 Map . 120
29.7 Upper powerdomain is bifinite 121
29.8 Join . 121

30 Lower powerdomain 122
30.1 Basis preorder . 122
30.2 Type definition . 123
30.3 Monadic unit and plus . 124
30.4 Induction rules . 126
30.5 Monadic bind . 126
30.6 Map . 127
30.7 Lower powerdomain is bifinite 128
30.8 Join . 128

31 Convex powerdomain 129
31.1 Basis preorder . 129
31.2 Type definition . 130
31.3 Monadic unit and plus . 131
31.4 Induction rules . 132
31.5 Monadic bind . 133
31.6 Map . 134
31.7 Convex powerdomain is bifinite 135
31.8 Join . 135
31.9 Conversions to other powerdomains 136

7

32 Powerdomains 138
32.1 Universal domain embeddings 138
32.2 Deflation combinators . 138
32.3 Domain class instances . 139
32.4 Isomorphic deflations . 140
32.5 Domain package setup for powerdomains 141

8

Algebraic

Bifinite

Cfun

Compact_Basis

Completion

ConvexPD

Cpo

Cpodef

Cprod Deflation

Domain

Fixrec

HOLCF

Lift

LowerPD

Map_Functions

One

Powerdomains

README

Representable

Sfun Sprod

Ssum

Tr

Universal

Up

UpperPD

[HOL-Library]

[HOL]

[Pure]

[Tools]

THEORY “Cpo” 9

theory Cpo
imports Main

begin

1 Partial orders
declare [[typedef-overloaded]]

1.1 Type class for partial orders
class below =

fixes below :: ′a ⇒ ′a ⇒ bool
begin

notation (ASCII)
below (infix ‹<<› 50)

notation
below (infix ‹v› 50)

abbreviation not-below :: ′a ⇒ ′a ⇒ bool (infix ‹ 6v› 50)
where not-below x y ≡ ¬ below x y

notation (ASCII)
not-below (infix ‹∼<<› 50)

lemma below-eq-trans: a v b =⇒ b = c =⇒ a v c
〈proof 〉

lemma eq-below-trans: a = b =⇒ b v c =⇒ a v c
〈proof 〉

end

class po = below +
assumes below-refl [iff]: x v x
assumes below-trans: x v y =⇒ y v z =⇒ x v z
assumes below-antisym: x v y =⇒ y v x =⇒ x = y

begin

lemma eq-imp-below: x = y =⇒ x v y
〈proof 〉

lemma box-below: a v b =⇒ c v a =⇒ b v d =⇒ c v d
〈proof 〉

lemma po-eq-conv: x = y ←→ x v y ∧ y v x

THEORY “Cpo” 10

〈proof 〉

lemma rev-below-trans: y v z =⇒ x v y =⇒ x v z
〈proof 〉

lemma not-below2not-eq: x 6v y =⇒ x 6= y
〈proof 〉

end

lemmas HOLCF-trans-rules [trans] =
below-trans
below-antisym
below-eq-trans
eq-below-trans

context po
begin

1.2 Upper bounds
definition is-ub :: ′a set ⇒ ′a ⇒ bool (infix ‹<|› 55)

where S <| x ←→ (∀ y∈S . y v x)

lemma is-ubI : (
∧

x. x ∈ S =⇒ x v u) =⇒ S <| u
〈proof 〉

lemma is-ubD: [[S <| u; x ∈ S]] =⇒ x v u
〈proof 〉

lemma ub-imageI : (
∧

x. x ∈ S =⇒ f x v u) =⇒ (λx. f x) ‘ S <| u
〈proof 〉

lemma ub-imageD: [[f ‘ S <| u; x ∈ S]] =⇒ f x v u
〈proof 〉

lemma ub-rangeI : (
∧

i. S i v x) =⇒ range S <| x
〈proof 〉

lemma ub-rangeD: range S <| x =⇒ S i v x
〈proof 〉

lemma is-ub-empty [simp]: {} <| u
〈proof 〉

lemma is-ub-insert [simp]: (insert x A) <| y = (x v y ∧ A <| y)
〈proof 〉

lemma is-ub-upward: [[S <| x; x v y]] =⇒ S <| y

THEORY “Cpo” 11

〈proof 〉

1.3 Least upper bounds
definition is-lub :: ′a set ⇒ ′a ⇒ bool (infix ‹<<|› 55)

where S <<| x ←→ S <| x ∧ (∀ u. S <| u −→ x v u)

definition lub :: ′a set ⇒ ′a
where lub S = (THE x . S <<| x)

end

syntax (ASCII)
-BLub :: [pttrn, ′a set, ′b] ⇒ ′b (‹(‹indent=3 notation=‹binder LUB››LUB -:-./

-)› [0 ,0 , 10] 10)

syntax
-BLub :: [pttrn, ′a set, ′b] ⇒ ′b (‹(‹indent=3 notation=‹binder

⊔
››
⊔

-∈-./ -)›
[0 ,0 , 10] 10)

syntax-consts
-BLub ⇀↽ lub

translations
LUB x:A. t ⇀↽ CONST lub ((λx. t) ‘ A)

context po
begin

abbreviation Lub (binder ‹
⊔

› 10)
where

⊔
n. t n ≡ lub (range t)

notation (ASCII)
Lub (binder ‹LUB › 10)

access to some definition as inference rule
lemma is-lubD1 : S <<| x =⇒ S <| x
〈proof 〉

lemma is-lubD2 : [[S <<| x; S <| u]] =⇒ x v u
〈proof 〉

lemma is-lubI : [[S <| x;
∧

u. S <| u =⇒ x v u]] =⇒ S <<| x
〈proof 〉

lemma is-lub-below-iff : S <<| x =⇒ x v u ←→ S <| u
〈proof 〉

lubs are unique

THEORY “Cpo” 12

lemma is-lub-unique: S <<| x =⇒ S <<| y =⇒ x = y
〈proof 〉

technical lemmas about lub and (<<|)
lemma is-lub-lub: M <<| x =⇒ M <<| lub M
〈proof 〉

lemma lub-eqI : M <<| l =⇒ lub M = l
〈proof 〉

lemma is-lub-singleton [simp]: {x} <<| x
〈proof 〉

lemma lub-singleton [simp]: lub {x} = x
〈proof 〉

lemma is-lub-bin: x v y =⇒ {x, y} <<| y
〈proof 〉

lemma lub-bin: x v y =⇒ lub {x, y} = y
〈proof 〉

lemma is-lub-maximal: S <| x =⇒ x ∈ S =⇒ S <<| x
〈proof 〉

lemma lub-maximal: S <| x =⇒ x ∈ S =⇒ lub S = x
〈proof 〉

1.4 Countable chains
definition chain :: (nat ⇒ ′a) ⇒ bool

where — Here we use countable chains and I prefer to code them as functions!
chain Y = (∀ i. Y i v Y (Suc i))

lemma chainI : (
∧

i. Y i v Y (Suc i)) =⇒ chain Y
〈proof 〉

lemma chainE : chain Y =⇒ Y i v Y (Suc i)
〈proof 〉

chains are monotone functions
lemma chain-mono-less: chain Y =⇒ i < j =⇒ Y i v Y j
〈proof 〉

lemma chain-mono: chain Y =⇒ i ≤ j =⇒ Y i v Y j
〈proof 〉

lemma chain-shift: chain Y =⇒ chain (λi. Y (i + j))
〈proof 〉

THEORY “Cpo” 13

technical lemmas about (least) upper bounds of chains
lemma is-lub-rangeD1 : range S <<| x =⇒ S i v x
〈proof 〉

lemma is-ub-range-shift: chain S =⇒ range (λi. S (i + j)) <| x = range S <| x
〈proof 〉

lemma is-lub-range-shift: chain S =⇒ range (λi. S (i + j)) <<| x = range S <<|
x
〈proof 〉

the lub of a constant chain is the constant
lemma chain-const [simp]: chain (λi. c)
〈proof 〉

lemma is-lub-const: range (λx. c) <<| c
〈proof 〉

lemma lub-const [simp]: (
⊔

i. c) = c
〈proof 〉

1.5 Finite chains
definition max-in-chain :: nat ⇒ (nat ⇒ ′a) ⇒ bool

where — finite chains, needed for monotony of continuous functions
max-in-chain i C ←→ (∀ j. i ≤ j −→ C i = C j)

definition finite-chain :: (nat ⇒ ′a) ⇒ bool
where finite-chain C = (chain C ∧ (∃ i. max-in-chain i C))

results about finite chains
lemma max-in-chainI : (

∧
j. i ≤ j =⇒ Y i = Y j) =⇒ max-in-chain i Y

〈proof 〉

lemma max-in-chainD: max-in-chain i Y =⇒ i ≤ j =⇒ Y i = Y j
〈proof 〉

lemma finite-chainI : chain C =⇒ max-in-chain i C =⇒ finite-chain C
〈proof 〉

lemma finite-chainE : [[finite-chain C ;
∧

i. [[chain C ; max-in-chain i C]] =⇒ R]]
=⇒ R
〈proof 〉

lemma lub-finch1 : chain C =⇒ max-in-chain i C =⇒ range C <<| C i
〈proof 〉

lemma lub-finch2 : finite-chain C =⇒ range C <<| C (LEAST i. max-in-chain i
C)

THEORY “Cpo” 14

〈proof 〉

lemma finch-imp-finite-range: finite-chain Y =⇒ finite (range Y)
〈proof 〉

lemma finite-range-has-max:
fixes f :: nat ⇒ ′a

and r :: ′a ⇒ ′a ⇒ bool
assumes mono:

∧
i j. i ≤ j =⇒ r (f i) (f j)

assumes finite-range: finite (range f)
shows ∃ k. ∀ i. r (f i) (f k)
〈proof 〉

lemma finite-range-imp-finch: chain Y =⇒ finite (range Y) =⇒ finite-chain Y
〈proof 〉

lemma bin-chain: x v y =⇒ chain (λi. if i=0 then x else y)
〈proof 〉

lemma bin-chainmax: x v y =⇒ max-in-chain (Suc 0) (λi. if i=0 then x else y)
〈proof 〉

lemma is-lub-bin-chain: x v y =⇒ range (λi::nat. if i=0 then x else y) <<| y
〈proof 〉

the maximal element in a chain is its lub
lemma lub-chain-maxelem: Y i = c =⇒ ∀ i. Y i v c =⇒ lub (range Y) = c
〈proof 〉

end

2 Classes cpo and pcpo
2.1 Complete partial orders

The class cpo of chain complete partial orders
class cpo = po +

assumes cpo: chain S =⇒ ∃ x. range S <<| x

default-sort cpo

context cpo
begin

in cpo’s everthing equal to THE lub has lub properties for every chain
lemma cpo-lubI : chain S =⇒ range S <<| (

⊔
i. S i)

〈proof 〉

THEORY “Cpo” 15

lemma thelubE : [[chain S ; (
⊔

i. S i) = l]] =⇒ range S <<| l
〈proof 〉

Properties of the lub
lemma is-ub-thelub: chain S =⇒ S x v (

⊔
i. S i)

〈proof 〉

lemma is-lub-thelub: [[chain S ; range S <| x]] =⇒ (
⊔

i. S i) v x
〈proof 〉

lemma lub-below-iff : chain S =⇒ (
⊔

i. S i) v x ←→ (∀ i. S i v x)
〈proof 〉

lemma lub-below: [[chain S ;
∧

i. S i v x]] =⇒ (
⊔

i. S i) v x
〈proof 〉

lemma below-lub: [[chain S ; x v S i]] =⇒ x v (
⊔

i. S i)
〈proof 〉

lemma lub-range-mono: [[range X ⊆ range Y ; chain Y ; chain X]] =⇒ (
⊔

i. X i)
v (

⊔
i. Y i)

〈proof 〉

lemma lub-range-shift: chain Y =⇒ (
⊔

i. Y (i + j)) = (
⊔

i. Y i)
〈proof 〉

lemma maxinch-is-thelub: chain Y =⇒ max-in-chain i Y = ((
⊔

i. Y i) = Y i)
〈proof 〉

the v relation between two chains is preserved by their lubs
lemma lub-mono: [[chain X ; chain Y ;

∧
i. X i v Y i]] =⇒ (

⊔
i. X i) v (

⊔
i. Y i)

〈proof 〉

the = relation between two chains is preserved by their lubs
lemma lub-eq: (

∧
i. X i = Y i) =⇒ (

⊔
i. X i) = (

⊔
i. Y i)

〈proof 〉

lemma ch2ch-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows chain (λi.

⊔
j. Y i j)

〈proof 〉

lemma diag-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows (

⊔
i.

⊔
j. Y i j) = (

⊔
i. Y i i)

〈proof 〉

THEORY “Cpo” 16

lemma ex-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows (

⊔
i.

⊔
j. Y i j) = (

⊔
j.

⊔
i. Y i j)

〈proof 〉

end

2.2 Pointed cpos

The class pcpo of pointed cpos
class pcpo = cpo +

assumes least: ∃ x. ∀ y. x v y
begin

definition bottom :: ′a (‹⊥›)
where bottom = (THE x . ∀ y. x v y)

lemma minimal [iff]: ⊥ v x
〈proof 〉

end

Old "UU" syntax:
abbreviation (input) UU ≡ bottom

Simproc to rewrite ⊥ = x to x = ⊥.
〈ML〉
useful lemmas about ⊥
lemma below-bottom-iff [simp]: x v ⊥ ←→ x = ⊥
〈proof 〉

lemma eq-bottom-iff : x = ⊥ ←→ x v ⊥
〈proof 〉

lemma bottomI : x v ⊥ =⇒ x = ⊥
〈proof 〉

lemma lub-eq-bottom-iff : chain Y =⇒ (
⊔

i. Y i) = ⊥ ←→ (∀ i. Y i = ⊥)
〈proof 〉

2.3 Chain-finite and flat cpos

further useful classes for HOLCF domains
class chfin = po +

assumes chfin: chain Y =⇒ ∃n. max-in-chain n Y
begin

THEORY “Cpo” 17

subclass cpo
〈proof 〉

lemma chfin2finch: chain Y =⇒ finite-chain Y
〈proof 〉

end

class flat = pcpo +
assumes ax-flat: x v y =⇒ x = ⊥ ∨ x = y

begin

subclass chfin
〈proof 〉

lemma flat-below-iff : x v y ←→ x = ⊥ ∨ x = y
〈proof 〉

lemma flat-eq: a 6= ⊥ =⇒ a v b = (a = b)
〈proof 〉

end

2.4 Discrete cpos
class discrete-cpo = below +

assumes discrete-cpo [simp]: x v y ←→ x = y
begin

subclass po
〈proof 〉

In a discrete cpo, every chain is constant
lemma discrete-chain-const:

assumes S : chain S
shows ∃ x. S = (λi. x)
〈proof 〉

subclass chfin
〈proof 〉

end

3 Continuity and monotonicity
3.1 Definitions
definition monofun :: (′a::po ⇒ ′b::po) ⇒ bool — monotonicity

THEORY “Cpo” 18

where monofun f ←→ (∀ x y. x v y −→ f x v f y)

definition cont :: (′a ⇒ ′b) ⇒ bool
where cont f = (∀Y . chain Y −→ range (λi. f (Y i)) <<| f (

⊔
i. Y i))

lemma contI : (
∧

Y . chain Y =⇒ range (λi. f (Y i)) <<| f (
⊔

i. Y i)) =⇒ cont f
〈proof 〉

lemma contE : cont f =⇒ chain Y =⇒ range (λi. f (Y i)) <<| f (
⊔

i. Y i)
〈proof 〉

lemma monofunI : (
∧

x y. x v y =⇒ f x v f y) =⇒ monofun f
〈proof 〉

lemma monofunE : monofun f =⇒ x v y =⇒ f x v f y
〈proof 〉

3.2 Equivalence of alternate definition

monotone functions map chains to chains
lemma ch2ch-monofun: monofun f =⇒ chain Y =⇒ chain (λi. f (Y i))
〈proof 〉

monotone functions map upper bound to upper bounds
lemma ub2ub-monofun: monofun f =⇒ range Y <| u =⇒ range (λi. f (Y i)) <|
f u
〈proof 〉

a lemma about binary chains
lemma binchain-cont: cont f =⇒ x v y =⇒ range (λi::nat. f (if i = 0 then x else
y)) <<| f y
〈proof 〉

continuity implies monotonicity
lemma cont2mono: cont f =⇒ monofun f
〈proof 〉

lemmas cont2monofunE = cont2mono [THEN monofunE]

lemmas ch2ch-cont = cont2mono [THEN ch2ch-monofun]

continuity implies preservation of lubs
lemma cont2contlubE : cont f =⇒ chain Y =⇒ f (

⊔
i. Y i) = (

⊔
i. f (Y i))

〈proof 〉

lemma contI2 :
fixes f :: ′a ⇒ ′b
assumes mono: monofun f

THEORY “Cpo” 19

assumes below:
∧

Y . [[chain Y ; chain (λi. f (Y i))]] =⇒ f (
⊔

i. Y i) v (
⊔

i. f
(Y i))

shows cont f
〈proof 〉

3.3 Collection of continuity rules
named-theorems cont2cont continuity intro rule

3.4 Continuity of basic functions

The identity function is continuous
lemma cont-id [simp, cont2cont]: cont (λx. x)
〈proof 〉

constant functions are continuous
lemma cont-const [simp, cont2cont]: cont (λx. c)
〈proof 〉

application of functions is continuous
lemma cont-apply:

fixes f :: ′a ⇒ ′b ⇒ ′c and t :: ′a ⇒ ′b
assumes 1 : cont (λx. t x)
assumes 2 :

∧
x. cont (λy. f x y)

assumes 3 :
∧

y. cont (λx. f x y)
shows cont (λx. (f x) (t x))
〈proof 〉

lemma cont-compose: cont c =⇒ cont (λx. f x) =⇒ cont (λx. c (f x))
〈proof 〉

Least upper bounds preserve continuity
lemma cont2cont-lub [simp]:

assumes chain:
∧

x. chain (λi. F i x)
and cont:

∧
i. cont (λx. F i x)

shows cont (λx.
⊔

i. F i x)
〈proof 〉

if-then-else is continuous
lemma cont-if [simp, cont2cont]: cont f =⇒ cont g =⇒ cont (λx. if b then f x else
g x)
〈proof 〉

3.5 Finite chains and flat pcpos

Monotone functions map finite chains to finite chains.
lemma monofun-finch2finch: monofun f =⇒ finite-chain Y =⇒ finite-chain (λn.
f (Y n))

THEORY “Cpo” 20

〈proof 〉

The same holds for continuous functions.
lemma cont-finch2finch: cont f =⇒ finite-chain Y =⇒ finite-chain (λn. f (Y n))
〈proof 〉

All monotone functions with chain-finite domain are continuous.
lemma chfindom-monofun2cont: monofun f =⇒ cont f

for f :: ′a::chfin ⇒ ′b
〈proof 〉

All strict functions with flat domain are continuous.
lemma flatdom-strict2mono: f ⊥ = ⊥ =⇒ monofun f

for f :: ′a::flat ⇒ ′b::pcpo
〈proof 〉

lemma flatdom-strict2cont: f ⊥ = ⊥ =⇒ cont f
for f :: ′a::flat ⇒ ′b::pcpo
〈proof 〉

All functions with discrete domain are continuous.
lemma cont-discrete-cpo [simp, cont2cont]: cont f

for f :: ′a::discrete-cpo ⇒ ′b
〈proof 〉

4 Admissibility and compactness
4.1 Definitions
context cpo
begin

definition adm :: (′a ⇒ bool) ⇒ bool
where adm P ←→ (∀Y . chain Y −→ (∀ i. P (Y i)) −→ P (

⊔
i. Y i))

lemma admI : (
∧

Y . [[chain Y ; ∀ i. P (Y i)]] =⇒ P (
⊔

i. Y i)) =⇒ adm P
〈proof 〉

lemma admD: adm P =⇒ chain Y =⇒ (
∧

i. P (Y i)) =⇒ P (
⊔

i. Y i)
〈proof 〉

lemma admD2 : adm (λx. ¬ P x) =⇒ chain Y =⇒ P (
⊔

i. Y i) =⇒ ∃ i. P (Y i)
〈proof 〉

lemma triv-admI : ∀ x. P x =⇒ adm P
〈proof 〉

end

THEORY “Cpo” 21

4.2 Admissibility on chain-finite types

For chain-finite (easy) types every formula is admissible.
lemma adm-chfin [simp]: adm P for P :: ′a::chfin ⇒ bool
〈proof 〉

4.3 Admissibility of special formulae and propagation
context cpo
begin

lemma adm-const [simp]: adm (λx. t)
〈proof 〉

lemma adm-conj [simp]: adm (λx. P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x ∧
Q x)
〈proof 〉

lemma adm-all [simp]: (
∧

y. adm (λx. P x y)) =⇒ adm (λx. ∀ y. P x y)
〈proof 〉

lemma adm-ball [simp]: (
∧

y. y ∈ A =⇒ adm (λx. P x y)) =⇒ adm (λx. ∀ y∈A.
P x y)
〈proof 〉

Admissibility for disjunction is hard to prove. It requires 2 lemmas.
lemma adm-disj-lemma1 :

assumes adm: adm P
assumes chain: chain Y
assumes P: ∀ i. ∃ j≥i. P (Y j)
shows P (

⊔
i. Y i)

〈proof 〉

lemma adm-disj-lemma2 : ∀n::nat. P n ∨ Q n =⇒ (∀ i. ∃ j≥i. P j) ∨ (∀ i. ∃ j≥i.
Q j)
〈proof 〉

lemma adm-disj [simp]: adm (λx. P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x ∨
Q x)
〈proof 〉

lemma adm-imp [simp]: adm (λx. ¬ P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x
−→ Q x)
〈proof 〉

lemma adm-iff [simp]: adm (λx. P x −→ Q x) =⇒ adm (λx. Q x −→ P x) =⇒
adm (λx. P x ←→ Q x)
〈proof 〉

THEORY “Cpo” 22

end

admissibility and continuity
lemma adm-below [simp]: cont (λx. u x) =⇒ cont (λx. v x) =⇒ adm (λx. u x v
v x)
〈proof 〉

lemma adm-eq [simp]: cont (λx. u x) =⇒ cont (λx. v x) =⇒ adm (λx. u x = v x)
〈proof 〉

lemma adm-subst: cont (λx. t x) =⇒ adm P =⇒ adm (λx. P (t x))
〈proof 〉

lemma adm-not-below [simp]: cont (λx. t x) =⇒ adm (λx. t x 6v u)
〈proof 〉

4.4 Compactness
context cpo
begin

definition compact :: ′a ⇒ bool
where compact k = adm (λx. k 6v x)

lemma compactI : adm (λx. k 6v x) =⇒ compact k
〈proof 〉

lemma compactD: compact k =⇒ adm (λx. k 6v x)
〈proof 〉

lemma compactI2 : (
∧

Y . [[chain Y ; x v (
⊔

i. Y i)]] =⇒ ∃ i. x v Y i) =⇒ compact
x
〈proof 〉

lemma compactD2 : compact x =⇒ chain Y =⇒ x v (
⊔

i. Y i) =⇒ ∃ i. x v Y i
〈proof 〉

lemma compact-below-lub-iff : compact x =⇒ chain Y =⇒ x v (
⊔

i. Y i)←→ (∃ i.
x v Y i)
〈proof 〉

end

lemma compact-chfin [simp]: compact x for x :: ′a::chfin
〈proof 〉

lemma compact-imp-max-in-chain: chain Y =⇒ compact (
⊔

i. Y i) =⇒ ∃ i. max-in-chain
i Y
〈proof 〉

THEORY “Cpo” 23

admissibility and compactness
lemma adm-compact-not-below [simp]:

compact k =⇒ cont (λx. t x) =⇒ adm (λx. k 6v t x)
〈proof 〉

lemma adm-neq-compact [simp]: compact k =⇒ cont (λx. t x) =⇒ adm (λx. t x
6= k)
〈proof 〉

lemma adm-compact-neq [simp]: compact k =⇒ cont (λx. t x) =⇒ adm (λx. k 6=
t x)
〈proof 〉

lemma compact-bottom [simp, intro]: compact ⊥
〈proof 〉

Any upward-closed predicate is admissible.
lemma adm-upward:

assumes P:
∧

x y. [[P x; x v y]] =⇒ P y
shows adm P
〈proof 〉

lemmas adm-lemmas =
adm-const adm-conj adm-all adm-ball adm-disj adm-imp adm-iff
adm-below adm-eq adm-not-below
adm-compact-not-below adm-compact-neq adm-neq-compact

5 Class instances for the full function space
5.1 Full function space is a partial order
instantiation fun :: (type, below) below
begin

definition below-fun-def : (v) ≡ (λf g. ∀ x. f x v g x)

instance 〈proof 〉
end

instance fun :: (type, po) po
〈proof 〉

lemma fun-below-iff : f v g ←→ (∀ x. f x v g x)
〈proof 〉

lemma fun-belowI : (
∧

x. f x v g x) =⇒ f v g
〈proof 〉

THEORY “Cpo” 24

lemma fun-belowD: f v g =⇒ f x v g x
〈proof 〉

5.2 Full function space is chain complete

Properties of chains of functions.
lemma fun-chain-iff : chain S ←→ (∀ x. chain (λi. S i x))
〈proof 〉

lemma ch2ch-fun: chain S =⇒ chain (λi. S i x)
〈proof 〉

lemma ch2ch-lambda: (
∧

x. chain (λi. S i x)) =⇒ chain S
〈proof 〉

Type ′a ⇒ ′b is chain complete
lemma is-lub-lambda: (

∧
x. range (λi. Y i x) <<| f x) =⇒ range Y <<| f

〈proof 〉

lemma is-lub-fun: chain S =⇒ range S <<| (λx.
⊔

i. S i x)
for S :: nat ⇒ ′a::type ⇒ ′b
〈proof 〉

lemma lub-fun: chain S =⇒ (
⊔

i. S i) = (λx.
⊔

i. S i x)
for S :: nat ⇒ ′a::type ⇒ ′b
〈proof 〉

instance fun :: (type, cpo) cpo
〈proof 〉

instance fun :: (type, discrete-cpo) discrete-cpo
〈proof 〉

5.3 Full function space is pointed
lemma minimal-fun: (λx. ⊥) v f
〈proof 〉

instance fun :: (type, pcpo) pcpo
〈proof 〉

lemma inst-fun-pcpo: ⊥ = (λx. ⊥)
〈proof 〉

lemma app-strict [simp]: ⊥ x = ⊥
〈proof 〉

lemma lambda-strict: (λx. ⊥) = ⊥
〈proof 〉

THEORY “Cpo” 25

5.4 Propagation of monotonicity and continuity

The lub of a chain of monotone functions is monotone.
lemma adm-monofun: adm monofun
〈proof 〉

The lub of a chain of continuous functions is continuous.
lemma adm-cont: adm cont
〈proof 〉

Function application preserves monotonicity and continuity.
lemma mono2mono-fun: monofun f =⇒ monofun (λx. f x y)
〈proof 〉

lemma cont2cont-fun: cont f =⇒ cont (λx. f x y)
〈proof 〉

lemma cont-fun: cont (λf . f x)
〈proof 〉

〈ML〉

lemma cont (λf . f x) and cont (λf . f x y) and cont (λf . f x y z)
〈proof 〉

Lambda abstraction preserves monotonicity and continuity. (Note (λx. λy.
f x y) = f.)
lemma mono2mono-lambda: (

∧
y. monofun (λx. f x y)) =⇒ monofun f

〈proof 〉

lemma cont2cont-lambda [simp]:
assumes f :

∧
y. cont (λx. f x y)

shows cont f
〈proof 〉

What D.A.Schmidt calls continuity of abstraction; never used here
lemma contlub-lambda: (

∧
x. chain (λi. S i x)) =⇒ (λx.

⊔
i. S i x) = (

⊔
i. (λx.

S i x))
for S :: nat ⇒ ′a::type ⇒ ′b
〈proof 〉

6 The cpo of cartesian products
6.1 Unit type is a pcpo
instantiation unit :: discrete-cpo
begin

THEORY “Cpo” 26

definition below-unit-def [simp]: x v (y::unit) ←→ True

instance
〈proof 〉

end

instance unit :: pcpo
〈proof 〉

6.2 Product type is a partial order
instantiation prod :: (below, below) below
begin

definition below-prod-def : (v) ≡ λp1 p2 . (fst p1 v fst p2 ∧ snd p1 v snd p2)

instance 〈proof 〉

end

instance prod :: (po, po) po
〈proof 〉

6.3 Monotonicity of Pair, fst, snd
lemma prod-belowI : fst p v fst q =⇒ snd p v snd q =⇒ p v q
〈proof 〉

lemma Pair-below-iff [simp]: (a, b) v (c, d) ←→ a v c ∧ b v d
〈proof 〉

Pair (-,-) is monotone in both arguments
lemma monofun-pair1 : monofun (λx. (x, y))
〈proof 〉

lemma monofun-pair2 : monofun (λy. (x, y))
〈proof 〉

lemma monofun-pair : x1 v x2 =⇒ y1 v y2 =⇒ (x1 , y1) v (x2 , y2)
〈proof 〉

lemma ch2ch-Pair [simp]: chain X =⇒ chain Y =⇒ chain (λi. (X i, Y i))
〈proof 〉

fst and snd are monotone
lemma fst-monofun: x v y =⇒ fst x v fst y
〈proof 〉

THEORY “Cpo” 27

lemma snd-monofun: x v y =⇒ snd x v snd y
〈proof 〉

lemma monofun-fst: monofun fst
〈proof 〉

lemma monofun-snd: monofun snd
〈proof 〉

lemmas ch2ch-fst [simp] = ch2ch-monofun [OF monofun-fst]

lemmas ch2ch-snd [simp] = ch2ch-monofun [OF monofun-snd]

lemma prod-chain-cases:
assumes chain: chain Y
obtains A B
where chain A and chain B and Y = (λi. (A i, B i))
〈proof 〉

6.4 Product type is a cpo
lemma is-lub-Pair : range A <<| x =⇒ range B <<| y =⇒ range (λi. (A i, B i))
<<| (x, y)
〈proof 〉

lemma lub-Pair : chain A =⇒ chain B =⇒ (
⊔

i. (A i, B i)) = (
⊔

i. A i,
⊔

i. B i)
for A :: nat ⇒ ′a and B :: nat ⇒ ′b
〈proof 〉

lemma is-lub-prod:
fixes S :: nat ⇒ (′a × ′b)
assumes chain S
shows range S <<| (

⊔
i. fst (S i),

⊔
i. snd (S i))

〈proof 〉

lemma lub-prod: chain S =⇒ (
⊔

i. S i) = (
⊔

i. fst (S i),
⊔

i. snd (S i))
for S :: nat ⇒ ′a × ′b
〈proof 〉

instance prod :: (cpo, cpo) cpo
〈proof 〉

instance prod :: (discrete-cpo, discrete-cpo) discrete-cpo
〈proof 〉

6.5 Product type is pointed
lemma minimal-prod: (⊥, ⊥) v p
〈proof 〉

THEORY “Cpo” 28

instance prod :: (pcpo, pcpo) pcpo
〈proof 〉

lemma inst-prod-pcpo: ⊥ = (⊥, ⊥)
〈proof 〉

lemma Pair-bottom-iff [simp]: (x, y) = ⊥ ←→ x = ⊥ ∧ y = ⊥
〈proof 〉

lemma fst-strict [simp]: fst ⊥ = ⊥
〈proof 〉

lemma snd-strict [simp]: snd ⊥ = ⊥
〈proof 〉

lemma Pair-strict [simp]: (⊥, ⊥) = ⊥
〈proof 〉

lemma split-strict [simp]: case-prod f ⊥ = f ⊥ ⊥
〈proof 〉

6.6 Continuity of Pair, fst, snd
lemma cont-pair1 : cont (λx. (x, y))
〈proof 〉

lemma cont-pair2 : cont (λy. (x, y))
〈proof 〉

lemma cont-fst: cont fst
〈proof 〉

lemma cont-snd: cont snd
〈proof 〉

lemma cont2cont-Pair [simp, cont2cont]:
assumes f : cont (λx. f x)
assumes g: cont (λx. g x)
shows cont (λx. (f x, g x))
〈proof 〉

lemmas cont2cont-fst [simp, cont2cont] = cont-compose [OF cont-fst]

lemmas cont2cont-snd [simp, cont2cont] = cont-compose [OF cont-snd]

lemma cont2cont-case-prod:
assumes f1 :

∧
a b. cont (λx. f x a b)

assumes f2 :
∧

x b. cont (λa. f x a b)
assumes f3 :

∧
x a. cont (λb. f x a b)

THEORY “Cpo” 29

assumes g: cont (λx. g x)
shows cont (λx. case g x of (a, b) ⇒ f x a b)
〈proof 〉

lemma prod-contI :
assumes f1 :

∧
y. cont (λx. f (x, y))

assumes f2 :
∧

x. cont (λy. f (x, y))
shows cont f
〈proof 〉

lemma prod-cont-iff : cont f ←→ (∀ y. cont (λx. f (x, y))) ∧ (∀ x. cont (λy. f (x,
y)))
〈proof 〉

lemma cont2cont-case-prod ′ [simp, cont2cont]:
assumes f : cont (λp. f (fst p) (fst (snd p)) (snd (snd p)))
assumes g: cont (λx. g x)
shows cont (λx. case-prod (f x) (g x))
〈proof 〉

The simple version (due to Joachim Breitner) is needed if either element
type of the pair is not a cpo.
lemma cont2cont-split-simple [simp, cont2cont]:

assumes
∧

a b. cont (λx. f x a b)
shows cont (λx. case p of (a, b) ⇒ f x a b)
〈proof 〉

Admissibility of predicates on product types.
lemma adm-case-prod [simp]:

assumes adm (λx. P x (fst (f x)) (snd (f x)))
shows adm (λx. case f x of (a, b) ⇒ P x a b)
〈proof 〉

6.7 Compactness and chain-finiteness
lemma fst-below-iff : fst x v y ←→ x v (y, snd x) for x :: ′a × ′b
〈proof 〉

lemma snd-below-iff : snd x v y ←→ x v (fst x, y) for x :: ′a × ′b
〈proof 〉

lemma compact-fst: compact x =⇒ compact (fst x)
〈proof 〉

lemma compact-snd: compact x =⇒ compact (snd x)
〈proof 〉

lemma compact-Pair : compact x =⇒ compact y =⇒ compact (x, y)
〈proof 〉

THEORY “Cpodef” 30

lemma compact-Pair-iff [simp]: compact (x, y) ←→ compact x ∧ compact y
〈proof 〉

instance prod :: (chfin, chfin) chfin
〈proof 〉

7 Discrete cpo types
datatype ′a discr = Discr ′a::type

7.1 Discrete cpo class instance
instantiation discr :: (type) discrete-cpo
begin

definition ((v) :: ′a discr ⇒ ′a discr ⇒ bool) = (=)

instance
〈proof 〉

end

7.2 undiscr
definition undiscr :: ′a::type discr ⇒ ′a

where undiscr x = (case x of Discr y ⇒ y)

lemma undiscr-Discr [simp]: undiscr (Discr x) = x
〈proof 〉

lemma Discr-undiscr [simp]: Discr (undiscr y) = y
〈proof 〉

end

8 Subtypes of pcpos
theory Cpodef

imports Cpo
keywords pcpodef cpodef :: thy-goal-defn

begin

8.1 Proving a subtype is a partial order

A subtype of a partial order is itself a partial order, if the ordering is defined
in the standard way.
theorem (in below) typedef-class-po:

THEORY “Cpodef” 31

fixes Abs :: ′b::po ⇒ ′a
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
shows class.po below
〈proof 〉

lemmas typedef-po-class = below.typedef-class-po [THEN po.intro-of-class]

8.2 Proving a subtype is finite
lemma typedef-finite-UNIV :

fixes Abs :: ′a::type ⇒ ′b::type
assumes type: type-definition Rep Abs A
shows finite A =⇒ finite (UNIV :: ′b set)
〈proof 〉

8.3 Proving a subtype is chain-finite
lemma ch2ch-Rep:

assumes below: (v) ≡ λx y. Rep x v Rep y
shows chain S =⇒ chain (λi. Rep (S i))
〈proof 〉

theorem typedef-chfin:
fixes Abs :: ′a::chfin ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
shows OFCLASS(′b, chfin-class)
〈proof 〉

8.4 Proving a subtype is complete

A subtype of a cpo is itself a cpo if the ordering is defined in the standard
way, and the defining subset is closed with respect to limits of chains. A set
is closed if and only if membership in the set is an admissible predicate.
lemma typedef-is-lubI :

assumes below: (v) ≡ λx y. Rep x v Rep y
shows range (λi. Rep (S i)) <<| Rep x =⇒ range S <<| x
〈proof 〉

lemma Abs-inverse-lub-Rep:
fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows chain S =⇒ Rep (Abs (
⊔

i. Rep (S i))) = (
⊔

i. Rep (S i))
〈proof 〉

theorem typedef-is-lub:

THEORY “Cpodef” 32

fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

assumes S : chain S
shows range S <<| Abs (

⊔
i. Rep (S i))

〈proof 〉

lemmas typedef-lub = typedef-is-lub [THEN lub-eqI]

theorem typedef-cpo:
fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows OFCLASS(′b, cpo-class)
〈proof 〉

8.4.1 Continuity of Rep and Abs

For any sub-cpo, the Rep function is continuous.
theorem typedef-cont-Rep:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows cont (λx. f x) =⇒ cont (λx. Rep (f x))
〈proof 〉

For a sub-cpo, we can make the Abs function continuous only if we restrict
its domain to the defining subset by composing it with another continuous
function.
theorem typedef-cont-Abs:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
fixes f :: ′c::cpo ⇒ ′a::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)
and f-in-A:

∧
x. f x ∈ A

shows cont f =⇒ cont (λx. Abs (f x))
〈proof 〉

8.5 Proving subtype elements are compact
theorem typedef-compact:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y

THEORY “Cpodef” 33

and adm: adm (λx. x ∈ A)
shows compact (Rep k) =⇒ compact k
〈proof 〉

8.6 Proving a subtype is pointed

A subtype of a cpo has a least element if and only if the defining subset has
a least element.
theorem typedef-pcpo-generic:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and z-in-A: z ∈ A
and z-least:

∧
x. x ∈ A =⇒ z v x

shows OFCLASS(′b, pcpo-class)
〈proof 〉

As a special case, a subtype of a pcpo has a least element if the defining
subset contains ⊥.
theorem typedef-pcpo:

fixes Abs :: ′a::pcpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows OFCLASS(′b, pcpo-class)
〈proof 〉

8.6.1 Strictness of Rep and Abs

For a sub-pcpo where ⊥ is a member of the defining subset, Rep and Abs
are both strict.
theorem typedef-Abs-strict:

assumes type: type-definition Rep Abs A
and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows Abs ⊥ = ⊥
〈proof 〉

theorem typedef-Rep-strict:
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows Rep ⊥ = ⊥
〈proof 〉

theorem typedef-Abs-bottom-iff :
assumes type: type-definition Rep Abs A

THEORY “Cfun” 34

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows x ∈ A =⇒ (Abs x = ⊥) = (x = ⊥)
〈proof 〉

theorem typedef-Rep-bottom-iff :
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows (Rep x = ⊥) = (x = ⊥)
〈proof 〉

8.7 Proving a subtype is flat
theorem typedef-flat:

fixes Abs :: ′a::flat ⇒ ′b::pcpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows OFCLASS(′b, flat-class)
〈proof 〉

8.8 HOLCF type definition package
〈ML〉

end

9 The type of continuous functions
theory Cfun

imports Cpodef
begin

9.1 Definition of continuous function type
definition cfun = {f :: ′a ⇒ ′b. cont f }

cpodef (′a, ′b) cfun (‹(‹notation=‹infix →››- →/ -)› [1 , 0] 0) = cfun :: (′a ⇒
′b) set
〈proof 〉

type-notation (ASCII)
cfun (infixr ‹−>› 0)

notation (ASCII)
Rep-cfun (‹(‹notation=‹infix $››-$/-)› [999 ,1000] 999)

notation

THEORY “Cfun” 35

Rep-cfun (‹(‹notation=‹infix ·››-·/-)› [999 ,1000] 999)

9.2 Syntax for continuous lambda abstraction
syntax -cabs :: [logic, logic] ⇒ logic

〈ML〉

Syntax for nested abstractions
syntax (ASCII)

-Lambda :: [cargs, logic] ⇒ logic (‹(‹indent=3 notation=‹binder LAM ››LAM -./
-)› [1000 , 10] 10)

syntax
-Lambda :: [cargs, logic] ⇒ logic (‹(‹indent=3 notation=‹binder Λ››Λ -./ -)›

[1000 , 10] 10)

syntax-consts
-Lambda ⇀↽ Abs-cfun

〈ML〉

Dummy patterns for continuous abstraction
translations
Λ -. t ⇀ CONST Abs-cfun (λ-. t)

9.3 Continuous function space is pointed
lemma bottom-cfun: ⊥ ∈ cfun
〈proof 〉

instance cfun :: (cpo, discrete-cpo) discrete-cpo
〈proof 〉

instance cfun :: (cpo, pcpo) pcpo
〈proof 〉

lemmas Rep-cfun-strict =
typedef-Rep-strict [OF type-definition-cfun below-cfun-def bottom-cfun]

lemmas Abs-cfun-strict =
typedef-Abs-strict [OF type-definition-cfun below-cfun-def bottom-cfun]

function application is strict in its first argument
lemma Rep-cfun-strict1 [simp]: ⊥·x = ⊥
〈proof 〉

lemma LAM-strict [simp]: (Λ x. ⊥) = ⊥
〈proof 〉

THEORY “Cfun” 36

for compatibility with old HOLCF-Version
lemma inst-cfun-pcpo: ⊥ = (Λ x. ⊥)
〈proof 〉

9.4 Basic properties of continuous functions

Beta-equality for continuous functions
lemma Abs-cfun-inverse2 : cont f =⇒ Rep-cfun (Abs-cfun f) = f
〈proof 〉

lemma beta-cfun: cont f =⇒ (Λ x. f x)·u = f u
〈proof 〉

9.4.1 Beta-reduction simproc

Given the term (Λ x. f x)·y, the procedure tries to construct the theorem (Λ
x. f x)·y ≡ f y. If this theorem cannot be completely solved by the cont2cont
rules, then the procedure returns the ordinary conditional beta-cfun rule.
The simproc does not solve any more goals that would be solved by using
beta-cfun as a simp rule. The advantage of the simproc is that it can avoid
deeply-nested calls to the simplifier that would otherwise be caused by large
continuity side conditions.
Update: The simproc now uses rule Abs-cfun-inverse2 instead of beta-cfun,
to avoid problems with eta-contraction.
〈ML〉
Eta-equality for continuous functions
lemma eta-cfun: (Λ x. f ·x) = f
〈proof 〉

Extensionality for continuous functions
lemma cfun-eq-iff : f = g ←→ (∀ x. f ·x = g·x)
〈proof 〉

lemma cfun-eqI : (
∧

x. f ·x = g·x) =⇒ f = g
〈proof 〉

Extensionality wrt. ordering for continuous functions
lemma cfun-below-iff : f v g ←→ (∀ x. f ·x v g·x)
〈proof 〉

lemma cfun-belowI : (
∧

x. f ·x v g·x) =⇒ f v g
〈proof 〉

Congruence for continuous function application
lemma cfun-cong: f = g =⇒ x = y =⇒ f ·x = g·y

THEORY “Cfun” 37

〈proof 〉

lemma cfun-fun-cong: f = g =⇒ f ·x = g·x
〈proof 〉

lemma cfun-arg-cong: x = y =⇒ f ·x = f ·y
〈proof 〉

9.5 Continuity of application
lemma cont-Rep-cfun1 : cont (λf . f ·x)
〈proof 〉

lemma cont-Rep-cfun2 : cont (λx. f ·x)
〈proof 〉

lemmas monofun-Rep-cfun = cont-Rep-cfun [THEN cont2mono]

lemmas monofun-Rep-cfun1 = cont-Rep-cfun1 [THEN cont2mono]
lemmas monofun-Rep-cfun2 = cont-Rep-cfun2 [THEN cont2mono]

contlub, cont properties of Rep-cfun in each argument
lemma contlub-cfun-arg: chain Y =⇒ f ·(

⊔
i. Y i) = (

⊔
i. f ·(Y i))

〈proof 〉

lemma contlub-cfun-fun: chain F =⇒ (
⊔

i. F i)·x = (
⊔

i. F i·x)
〈proof 〉

monotonicity of application
lemma monofun-cfun-fun: f v g =⇒ f ·x v g·x
〈proof 〉

lemma monofun-cfun-arg: x v y =⇒ f ·x v f ·y
〈proof 〉

lemma monofun-cfun: f v g =⇒ x v y =⇒ f ·x v g·y
〈proof 〉

ch2ch - rules for the type ′a → ′b
lemma chain-monofun: chain Y =⇒ chain (λi. f ·(Y i))
〈proof 〉

lemma ch2ch-Rep-cfunR: chain Y =⇒ chain (λi. f ·(Y i))
〈proof 〉

lemma ch2ch-Rep-cfunL: chain F =⇒ chain (λi. (F i)·x)
〈proof 〉

lemma ch2ch-Rep-cfun [simp]: chain F =⇒ chain Y =⇒ chain (λi. (F i)·(Y i))

THEORY “Cfun” 38

〈proof 〉

lemma ch2ch-LAM [simp]:
(
∧

x. chain (λi. S i x)) =⇒ (
∧

i. cont (λx. S i x)) =⇒ chain (λi. Λ x. S i x)
〈proof 〉

contlub, cont properties of Rep-cfun in both arguments
lemma lub-APP: chain F =⇒ chain Y =⇒ (

⊔
i. F i·(Y i)) = (

⊔
i. F i)·(

⊔
i. Y

i)
〈proof 〉

lemma lub-LAM :
assumes

∧
x. chain (λi. F i x)

and
∧

i. cont (λx. F i x)
shows (

⊔
i. Λ x. F i x) = (Λ x.

⊔
i. F i x)

〈proof 〉

lemmas lub-distribs = lub-APP lub-LAM

strictness
lemma strictI : f ·x = ⊥ =⇒ f ·⊥ = ⊥
〈proof 〉

type ′a → ′b is chain complete
lemma lub-cfun: chain F =⇒ (

⊔
i. F i) = (Λ x.

⊔
i. F i·x)

〈proof 〉

9.6 Continuity simplification procedure

cont2cont lemma for Rep-cfun
lemma cont2cont-APP [simp, cont2cont]:

assumes f : cont (λx. f x)
assumes t: cont (λx. t x)
shows cont (λx. (f x)·(t x))
〈proof 〉

Two specific lemmas for the combination of LCF and HOL terms. These
lemmas are needed in theories that use types like ′a → ′b ⇒ ′c.
lemma cont-APP-app [simp]: cont f =⇒ cont g =⇒ cont (λx. ((f x)·(g x)) s)
〈proof 〉

lemma cont-APP-app-app [simp]: cont f =⇒ cont g =⇒ cont (λx. ((f x)·(g x)) s
t)
〈proof 〉

cont2mono Lemma for λx. Λ y. c1 x y
lemma cont2mono-LAM :

THEORY “Cfun” 39

[[
∧

x. cont (λy. f x y);
∧

y. monofun (λx. f x y)]]
=⇒ monofun (λx. Λ y. f x y)
〈proof 〉

cont2cont Lemma for λx. Λ y. f x y

Not suitable as a cont2cont rule, because on nested lambdas it causes expo-
nential blow-up in the number of subgoals.
lemma cont2cont-LAM :

assumes f1 :
∧

x. cont (λy. f x y)
assumes f2 :

∧
y. cont (λx. f x y)

shows cont (λx. Λ y. f x y)
〈proof 〉

This version does work as a cont2cont rule, since it has only a single subgoal.
lemma cont2cont-LAM ′ [simp, cont2cont]:

fixes f :: ′a::cpo ⇒ ′b::cpo ⇒ ′c::cpo
assumes f : cont (λp. f (fst p) (snd p))
shows cont (λx. Λ y. f x y)
〈proof 〉

lemma cont2cont-LAM-discrete [simp, cont2cont]:
(
∧

y:: ′a::discrete-cpo. cont (λx. f x y)) =⇒ cont (λx. Λ y. f x y)
〈proof 〉

9.7 Miscellaneous

Monotonicity of Abs-cfun
lemma monofun-LAM : cont f =⇒ cont g =⇒ (

∧
x. f x v g x) =⇒ (Λ x. f x) v

(Λ x. g x)
〈proof 〉

some lemmata for functions with flat/chfin domain/range types
lemma chfin-Rep-cfunR: chain Y =⇒ ∀ s. ∃n. (LUB i. Y i)·s = Y n·s

for Y :: nat ⇒ ′a::cpo → ′b::chfin
〈proof 〉

lemma adm-chfindom: adm (λ(u:: ′a::cpo → ′b::chfin). P(u·s))
〈proof 〉

9.8 Continuous injection-retraction pairs

Continuous retractions are strict.
lemma retraction-strict: ∀ x. f ·(g·x) = x =⇒ f ·⊥ = ⊥
〈proof 〉

lemma injection-eq: ∀ x. f ·(g·x) = x =⇒ (g·x = g·y) = (x = y)

THEORY “Cfun” 40

〈proof 〉

lemma injection-below: ∀ x. f ·(g·x) = x =⇒ (g·x v g·y) = (x v y)
〈proof 〉

lemma injection-defined-rev: ∀ x. f ·(g·x) = x =⇒ g·z = ⊥ =⇒ z = ⊥
〈proof 〉

lemma injection-defined: ∀ x. f ·(g·x) = x =⇒ z 6= ⊥ =⇒ g·z 6= ⊥
〈proof 〉

a result about functions with flat codomain
lemma flat-eqI : x v y =⇒ x 6= ⊥ =⇒ x = y

for x y :: ′a::flat
〈proof 〉

lemma flat-codom: f ·x = c =⇒ f ·⊥ = ⊥ ∨ (∀ z. f ·z = c)
for c :: ′b::flat
〈proof 〉

9.9 Identity and composition
definition ID :: ′a → ′a

where ID = (Λ x. x)

definition cfcomp :: (′b → ′c) → (′a → ′b) → ′a → ′c
where oo-def : cfcomp = (Λ f g x. f ·(g·x))

abbreviation cfcomp-syn :: [′b → ′c, ′a → ′b] ⇒ ′a → ′c (infixr ‹oo› 100)
where f oo g == cfcomp·f ·g

lemma ID1 [simp]: ID·x = x
〈proof 〉

lemma cfcomp1 : (f oo g) = (Λ x. f ·(g·x))
〈proof 〉

lemma cfcomp2 [simp]: (f oo g)·x = f ·(g·x)
〈proof 〉

lemma cfcomp-LAM : cont g =⇒ f oo (Λ x. g x) = (Λ x. f ·(g x))
〈proof 〉

lemma cfcomp-strict [simp]: ⊥ oo f = ⊥
〈proof 〉

Show that interpretation of (pcpo, -→-) is a category.

• The class of objects is interpretation of syntactical class pcpo.

THEORY “Cfun” 41

• The class of arrows between objects ′a and ′b is interpret. of ′a → ′b.

• The identity arrow is interpretation of ID.

• The composition of f and g is interpretation of oo.

lemma ID2 [simp]: f oo ID = f
〈proof 〉

lemma ID3 [simp]: ID oo f = f
〈proof 〉

lemma assoc-oo: f oo (g oo h) = (f oo g) oo h
〈proof 〉

9.10 Strictified functions
definition seq :: ′a::pcpo → ′b::pcpo → ′b

where seq = (Λ x. if x = ⊥ then ⊥ else ID)

lemma cont2cont-if-bottom [cont2cont, simp]:
assumes f : cont (λx. f x)

and g: cont (λx. g x)
shows cont (λx. if f x = ⊥ then ⊥ else g x)
〈proof 〉

lemma seq-conv-if : seq·x = (if x = ⊥ then ⊥ else ID)
〈proof 〉

lemma seq-simps [simp]:
seq·⊥ = ⊥
seq·x·⊥ = ⊥
x 6= ⊥ =⇒ seq·x = ID
〈proof 〉

definition strictify :: (′a::pcpo → ′b::pcpo) → ′a → ′b
where strictify = (Λ f x. seq·x·(f ·x))

lemma strictify-conv-if : strictify·f ·x = (if x = ⊥ then ⊥ else f ·x)
〈proof 〉

lemma strictify1 [simp]: strictify·f ·⊥ = ⊥
〈proof 〉

lemma strictify2 [simp]: x 6= ⊥ =⇒ strictify·f ·x = f ·x
〈proof 〉

9.11 Continuity of let-bindings
lemma cont2cont-Let:

THEORY “Deflation” 42

assumes f : cont (λx. f x)
assumes g1 :

∧
y. cont (λx. g x y)

assumes g2 :
∧

x. cont (λy. g x y)
shows cont (λx. let y = f x in g x y)
〈proof 〉

lemma cont2cont-Let ′ [simp, cont2cont]:
assumes f : cont (λx. f x)
assumes g: cont (λp. g (fst p) (snd p))
shows cont (λx. let y = f x in g x y)
〈proof 〉

The simple version (suggested by Joachim Breitner) is needed if the type of
the defined term is not a cpo.
lemma cont2cont-Let-simple [simp, cont2cont]:

assumes
∧

y. cont (λx. g x y)
shows cont (λx. let y = t in g x y)
〈proof 〉

end

10 Continuous deflations and ep-pairs
theory Deflation

imports Cfun
begin

10.1 Continuous deflations
locale deflation =

fixes d :: ′a → ′a
assumes idem:

∧
x. d·(d·x) = d·x

assumes below:
∧

x. d·x v x
begin

lemma below-ID: d v ID
〈proof 〉

The set of fixed points is the same as the range.
lemma fixes-eq-range: {x. d·x = x} = range (λx. d·x)
〈proof 〉

lemma range-eq-fixes: range (λx. d·x) = {x. d·x = x}
〈proof 〉

The pointwise ordering on deflation functions coincides with the subset or-
dering of their sets of fixed-points.
lemma belowI :

THEORY “Deflation” 43

assumes f :
∧

x. d·x = x =⇒ f ·x = x
shows d v f
〈proof 〉

lemma belowD: [[f v d; f ·x = x]] =⇒ d·x = x
〈proof 〉

end

lemma deflation-strict: deflation d =⇒ d·⊥ = ⊥
〈proof 〉

lemma adm-deflation: adm (λd. deflation d)
〈proof 〉

lemma deflation-ID: deflation ID
〈proof 〉

lemma deflation-bottom: deflation ⊥
〈proof 〉

lemma deflation-below-iff : deflation p =⇒ deflation q =⇒ p v q ←→ (∀ x. p·x =
x −→ q·x = x)
〈proof 〉

The composition of two deflations is equal to the lesser of the two (if they
are comparable).
lemma deflation-below-comp1 :

assumes deflation f
assumes deflation g
shows f v g =⇒ f ·(g·x) = f ·x
〈proof 〉

lemma deflation-below-comp2 : deflation f =⇒ deflation g =⇒ f v g =⇒ g·(f ·x)
= f ·x
〈proof 〉

10.2 Deflations with finite range
lemma finite-range-imp-finite-fixes:

assumes finite (range f)
shows finite {x. f x = x}
〈proof 〉

locale finite-deflation = deflation +
assumes finite-fixes: finite {x. d·x = x}

begin

lemma finite-range: finite (range (λx. d·x))

THEORY “Deflation” 44

〈proof 〉

lemma finite-image: finite ((λx. d·x) ‘ A)
〈proof 〉

lemma compact: compact (d·x)
〈proof 〉

end

lemma finite-deflation-intro: deflation d =⇒ finite {x. d·x = x} =⇒ finite-deflation
d
〈proof 〉

lemma finite-deflation-imp-deflation: finite-deflation d =⇒ deflation d
〈proof 〉

lemma finite-deflation-bottom: finite-deflation ⊥
〈proof 〉

10.3 Continuous embedding-projection pairs
locale ep-pair =

fixes e :: ′a → ′b and p :: ′b → ′a
assumes e-inverse [simp]:

∧
x. p·(e·x) = x

and e-p-below:
∧

y. e·(p·y) v y
begin

lemma e-below-iff [simp]: e·x v e·y ←→ x v y
〈proof 〉

lemma e-eq-iff [simp]: e·x = e·y ←→ x = y
〈proof 〉

lemma p-eq-iff : e·(p·x) = x =⇒ e·(p·y) = y =⇒ p·x = p·y ←→ x = y
〈proof 〉

lemma p-inverse: (∃ x. y = e·x) ←→ e·(p·y) = y
〈proof 〉

lemma e-below-iff-below-p: e·x v y ←→ x v p·y
〈proof 〉

lemma compact-e-rev: compact (e·x) =⇒ compact x
〈proof 〉

lemma compact-e:
assumes compact x
shows compact (e·x)

THEORY “Deflation” 45

〈proof 〉

lemma compact-e-iff : compact (e·x) ←→ compact x
〈proof 〉

Deflations from ep-pairs
lemma deflation-e-p: deflation (e oo p)
〈proof 〉

lemma deflation-e-d-p:
assumes deflation d
shows deflation (e oo d oo p)
〈proof 〉

lemma finite-deflation-e-d-p:
assumes finite-deflation d
shows finite-deflation (e oo d oo p)
〈proof 〉

lemma deflation-p-d-e:
assumes deflation d
assumes d:

∧
x. d·x v e·(p·x)

shows deflation (p oo d oo e)
〈proof 〉

lemma finite-deflation-p-d-e:
assumes finite-deflation d
assumes d:

∧
x. d·x v e·(p·x)

shows finite-deflation (p oo d oo e)
〈proof 〉

end

10.4 Uniqueness of ep-pairs
lemma ep-pair-unique-e-lemma:

assumes 1 : ep-pair e1 p
and 2 : ep-pair e2 p

shows e1 v e2
〈proof 〉

lemma ep-pair-unique-e: ep-pair e1 p =⇒ ep-pair e2 p =⇒ e1 = e2
〈proof 〉

lemma ep-pair-unique-p-lemma:
assumes 1 : ep-pair e p1

and 2 : ep-pair e p2
shows p1 v p2
〈proof 〉

THEORY “Sprod” 46

lemma ep-pair-unique-p: ep-pair e p1 =⇒ ep-pair e p2 =⇒ p1 = p2
〈proof 〉

10.5 Composing ep-pairs
lemma ep-pair-ID-ID: ep-pair ID ID
〈proof 〉

lemma ep-pair-comp:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (e2 oo e1) (p1 oo p2)
〈proof 〉

locale pcpo-ep-pair = ep-pair e p
for e :: ′a::pcpo → ′b::pcpo
and p :: ′b::pcpo → ′a::pcpo

begin

lemma e-strict [simp]: e·⊥ = ⊥
〈proof 〉

lemma e-bottom-iff [simp]: e·x = ⊥ ←→ x = ⊥
〈proof 〉

lemma e-defined: x 6= ⊥ =⇒ e·x 6= ⊥
〈proof 〉

lemma p-strict [simp]: p·⊥ = ⊥
〈proof 〉

lemmas stricts = e-strict p-strict

end

end

11 The type of strict products
theory Sprod

imports Cfun
begin

11.1 Definition of strict product type
definition sprod = {p:: ′a::pcpo × ′b::pcpo. p = ⊥ ∨ (fst p 6= ⊥ ∧ snd p 6= ⊥)}

pcpodef (′a::pcpo, ′b::pcpo) sprod (‹(‹notation=‹infix strict product››- ⊗/ -)›
[21 ,20] 20) =

THEORY “Sprod” 47

sprod :: (′a × ′b) set
〈proof 〉

instance sprod :: ({chfin,pcpo}, {chfin,pcpo}) chfin
〈proof 〉

type-notation (ASCII)
sprod (infixr ‹∗∗› 20)

11.2 Definitions of constants
definition sfst :: (′a::pcpo ∗∗ ′b::pcpo) → ′a

where sfst = (Λ p. fst (Rep-sprod p))

definition ssnd :: (′a::pcpo ∗∗ ′b::pcpo) → ′b
where ssnd = (Λ p. snd (Rep-sprod p))

definition spair :: ′a::pcpo → ′b::pcpo → (′a ∗∗ ′b)
where spair = (Λ a b. Abs-sprod (seq·b·a, seq·a·b))

definition ssplit :: (′a::pcpo → ′b::pcpo → ′c::pcpo) → (′a ∗∗ ′b) → ′c
where ssplit = (Λ f p. seq·p·(f ·(sfst·p)·(ssnd·p)))

syntax
-stuple :: [logic, args] ⇒ logic (‹(‹indent=1 notation=‹mixfix strict tuple›› ′(:-,/

-: ′))›)
syntax-consts

-stuple ⇀↽ spair
translations
(:x, y, z:) ⇀↽ (:x, (:y, z:):)
(:x, y:) ⇀↽ CONST spair ·x·y

translations
Λ(CONST spair ·x·y). t ⇀↽ CONST ssplit·(Λ x y. t)

11.3 Case analysis
lemma spair-sprod: (seq·b·a, seq·a·b) ∈ sprod
〈proof 〉

lemma Rep-sprod-spair : Rep-sprod (:a, b:) = (seq·b·a, seq·a·b)
〈proof 〉

lemmas Rep-sprod-simps =
Rep-sprod-inject [symmetric] below-sprod-def
prod-eq-iff below-prod-def
Rep-sprod-strict Rep-sprod-spair

lemma sprodE [case-names bottom spair , cases type: sprod]:
obtains p = ⊥ | x y where p = (:x, y:) and x 6= ⊥ and y 6= ⊥

THEORY “Sprod” 48

〈proof 〉

lemma sprod-induct [case-names bottom spair , induct type: sprod]:
[[P ⊥;

∧
x y. [[x 6= ⊥; y 6= ⊥]] =⇒ P (:x, y:)]] =⇒ P x

〈proof 〉

11.4 Properties of spair
lemma spair-strict1 [simp]: (:⊥, y:) = ⊥
〈proof 〉

lemma spair-strict2 [simp]: (:x, ⊥:) = ⊥
〈proof 〉

lemma spair-bottom-iff [simp]: (:x, y:) = ⊥ ←→ x = ⊥ ∨ y = ⊥
〈proof 〉

lemma spair-below-iff : (:a, b:) v (:c, d:) ←→ a = ⊥ ∨ b = ⊥ ∨ (a v c ∧ b v d)
〈proof 〉

lemma spair-eq-iff : (:a, b:) = (:c, d:) ←→ a = c ∧ b = d ∨ (a = ⊥ ∨ b = ⊥) ∧
(c = ⊥ ∨ d = ⊥)
〈proof 〉

lemma spair-strict: x = ⊥ ∨ y = ⊥ =⇒ (:x, y:) = ⊥
〈proof 〉

lemma spair-strict-rev: (:x, y:) 6= ⊥ =⇒ x 6= ⊥ ∧ y 6= ⊥
〈proof 〉

lemma spair-defined: [[x 6= ⊥; y 6= ⊥]] =⇒ (:x, y:) 6= ⊥
〈proof 〉

lemma spair-defined-rev: (:x, y:) = ⊥ =⇒ x = ⊥ ∨ y = ⊥
〈proof 〉

lemma spair-below: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) v (:a, b:) ←→ x v a ∧ y v b
〈proof 〉

lemma spair-eq: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) = (:a, b:) ←→ x = a ∧ y = b
〈proof 〉

lemma spair-inject: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) = (:a, b:) =⇒ x = a ∧ y = b
〈proof 〉

lemma inst-sprod-pcpo2 : ⊥ = (:⊥, ⊥:)
〈proof 〉

lemma sprodE2 : (
∧

x y. p = (:x, y:) =⇒ Q) =⇒ Q

THEORY “Sprod” 49

〈proof 〉

11.5 Properties of sfst and ssnd
lemma sfst-strict [simp]: sfst·⊥ = ⊥
〈proof 〉

lemma ssnd-strict [simp]: ssnd·⊥ = ⊥
〈proof 〉

lemma sfst-spair [simp]: y 6= ⊥ =⇒ sfst·(:x, y:) = x
〈proof 〉

lemma ssnd-spair [simp]: x 6= ⊥ =⇒ ssnd·(:x, y:) = y
〈proof 〉

lemma sfst-bottom-iff [simp]: sfst·p = ⊥ ←→ p = ⊥
〈proof 〉

lemma ssnd-bottom-iff [simp]: ssnd·p = ⊥ ←→ p = ⊥
〈proof 〉

lemma sfst-defined: p 6= ⊥ =⇒ sfst·p 6= ⊥
〈proof 〉

lemma ssnd-defined: p 6= ⊥ =⇒ ssnd·p 6= ⊥
〈proof 〉

lemma spair-sfst-ssnd: (:sfst·p, ssnd·p:) = p
〈proof 〉

lemma below-sprod: x v y ←→ sfst·x v sfst·y ∧ ssnd·x v ssnd·y
〈proof 〉

lemma eq-sprod: x = y ←→ sfst·x = sfst·y ∧ ssnd·x = ssnd·y
〈proof 〉

lemma sfst-below-iff : sfst·x v y ←→ x v (:y, ssnd·x:)
〈proof 〉

lemma ssnd-below-iff : ssnd·x v y ←→ x v (:sfst·x, y:)
〈proof 〉

11.6 Compactness
lemma compact-sfst: compact x =⇒ compact (sfst·x)
〈proof 〉

lemma compact-ssnd: compact x =⇒ compact (ssnd·x)
〈proof 〉

THEORY “Up” 50

lemma compact-spair : compact x =⇒ compact y =⇒ compact (:x, y:)
〈proof 〉

lemma compact-spair-iff : compact (:x, y:) ←→ x = ⊥ ∨ y = ⊥ ∨ (compact x ∧
compact y)
〈proof 〉

11.7 Properties of ssplit
lemma ssplit1 [simp]: ssplit·f ·⊥ = ⊥
〈proof 〉

lemma ssplit2 [simp]: x 6= ⊥ =⇒ y 6= ⊥ =⇒ ssplit·f ·(:x, y:) = f ·x·y
〈proof 〉

lemma ssplit3 [simp]: ssplit·spair ·z = z
〈proof 〉

11.8 Strict product preserves flatness
instance sprod :: (flat, flat) flat
〈proof 〉

end

12 The type of lifted values
theory Up

imports Cfun
begin

12.1 Definition of new type for lifting
datatype ′a u (‹(‹notation=‹postfix lifting››-⊥)› [1000] 999) = Ibottom | Iup ′a

primrec Ifup :: (′a → ′b::pcpo) ⇒ ′a u ⇒ ′b
where

Ifup f Ibottom = ⊥
| Ifup f (Iup x) = f ·x

12.2 Ordering on lifted cpo
instantiation u :: (cpo) below
begin

definition below-up-def :
(v) ≡
(λx y.

THEORY “Up” 51

(case x of
Ibottom ⇒ True
| Iup a ⇒ (case y of Ibottom ⇒ False | Iup b ⇒ a v b)))

instance 〈proof 〉

end

lemma minimal-up [iff]: Ibottom v z
〈proof 〉

lemma not-Iup-below [iff]: Iup x 6v Ibottom
〈proof 〉

lemma Iup-below [iff]: (Iup x v Iup y) = (x v y)
〈proof 〉

12.3 Lifted cpo is a partial order
instance u :: (cpo) po
〈proof 〉

12.4 Lifted cpo is a cpo
lemma is-lub-Iup: range S <<| x =⇒ range (λi. Iup (S i)) <<| Iup x
〈proof 〉

lemma up-chain-lemma:
assumes Y : chain Y
obtains ∀ i. Y i = Ibottom
| A k where ∀ i. Iup (A i) = Y (i + k) and chain A and range Y <<| Iup

(
⊔

i. A i)
〈proof 〉

instance u :: (cpo) cpo
〈proof 〉

12.5 Lifted cpo is pointed
instance u :: (cpo) pcpo
〈proof 〉

for compatibility with old HOLCF-Version
lemma inst-up-pcpo: ⊥ = Ibottom
〈proof 〉

12.6 Continuity of Iup and Ifup

continuity for Iup

THEORY “Up” 52

lemma cont-Iup: cont Iup
〈proof 〉

continuity for Ifup
lemma cont-Ifup1 : cont (λf . Ifup f x)
〈proof 〉

lemma monofun-Ifup2 : monofun (λx. Ifup f x)
〈proof 〉

lemma cont-Ifup2 : cont (λx. Ifup f x)
〈proof 〉

12.7 Continuous versions of constants
definition up :: ′a → ′a u

where up = (Λ x. Iup x)

definition fup :: (′a → ′b::pcpo) → ′a u → ′b
where fup = (Λ f p. Ifup f p)

translations
case l of XCONST up·x ⇒ t ⇀↽ CONST fup·(Λ x. t)·l
case l of (XCONST up :: ′a)·x ⇒ t ⇀ CONST fup·(Λ x. t)·l
Λ(XCONST up·x). t ⇀↽ CONST fup·(Λ x. t)

continuous versions of lemmas for ′a⊥

lemma Exh-Up: z = ⊥ ∨ (∃ x. z = up·x)
〈proof 〉

lemma up-eq [simp]: (up·x = up·y) = (x = y)
〈proof 〉

lemma up-inject: up·x = up·y =⇒ x = y
〈proof 〉

lemma up-defined [simp]: up·x 6= ⊥
〈proof 〉

lemma not-up-less-UU : up·x 6v ⊥
〈proof 〉

lemma up-below [simp]: up·x v up·y ←→ x v y
〈proof 〉

lemma upE [case-names bottom up, cases type: u]: [[p = ⊥ =⇒ Q;
∧

x. p = up·x
=⇒ Q]] =⇒ Q
〈proof 〉

THEORY “Lift” 53

lemma up-induct [case-names bottom up, induct type: u]: P ⊥ =⇒ (
∧

x. P (up·x))
=⇒ P x
〈proof 〉

lifting preserves chain-finiteness
lemma up-chain-cases:

assumes Y : chain Y
obtains ∀ i. Y i = ⊥
| A k where ∀ i. up·(A i) = Y (i + k) and chain A and (

⊔
i. Y i) = up·(

⊔
i.

A i)
〈proof 〉

lemma compact-up: compact x =⇒ compact (up·x)
〈proof 〉

lemma compact-upD: compact (up·x) =⇒ compact x
〈proof 〉

lemma compact-up-iff [simp]: compact (up·x) = compact x
〈proof 〉

instance u :: (chfin) chfin
〈proof 〉

properties of fup
lemma fup1 [simp]: fup·f ·⊥ = ⊥
〈proof 〉

lemma fup2 [simp]: fup·f ·(up·x) = f ·x
〈proof 〉

lemma fup3 [simp]: fup·up·x = x
〈proof 〉

end

13 Lifting types of class type to flat pcpo’s
theory Lift
imports Up
begin

pcpodef ′a::type lift = UNIV :: ′a discr u set
〈proof 〉

lemmas inst-lift-pcpo = Abs-lift-strict [symmetric]

definition

THEORY “Lift” 54

Def :: ′a::type ⇒ ′a lift where
Def x = Abs-lift (up·(Discr x))

13.1 Lift as a datatype
lemma lift-induct: [[P ⊥;

∧
x. P (Def x)]] =⇒ P y

〈proof 〉

old-rep-datatype ⊥:: ′a::type lift Def
〈proof 〉

⊥ and Def
lemma not-Undef-is-Def : (x 6= ⊥) = (∃ y. x = Def y)
〈proof 〉

lemma lift-definedE : [[x 6= ⊥;
∧

a. x = Def a =⇒ R]] =⇒ R
〈proof 〉

For x 6= ⊥ in assumptions defined replaces x by Def a in conclusion.
〈ML〉

lemma DefE : Def x = ⊥ =⇒ R
〈proof 〉

lemma DefE2 : [[x = Def s; x = ⊥]] =⇒ R
〈proof 〉

lemma Def-below-Def : Def x v Def y ←→ x = y
〈proof 〉

lemma Def-below-iff [simp]: Def x v y ←→ Def x = y
〈proof 〉

13.2 Lift is flat
instance lift :: (type) flat
〈proof 〉

13.3 Continuity of case-lift
lemma case-lift-eq: case-lift ⊥ f x = fup·(Λ y. f (undiscr y))·(Rep-lift x)
〈proof 〉

lemma cont2cont-case-lift [simp]:
[[
∧

y. cont (λx. f x y); cont g]] =⇒ cont (λx. case-lift ⊥ (f x) (g x))
〈proof 〉

13.4 Further operations
definition

THEORY “Tr” 55

flift1 :: (′a::type ⇒ ′b::pcpo) ⇒ (′a lift → ′b) (binder ‹FLIFT › 10) where
flift1 = (λf . (Λ x. case-lift ⊥ f x))

translations
Λ(XCONST Def x). t => CONST flift1 (λx. t)
Λ(CONST Def x). FLIFT y. t <= FLIFT x y. t
Λ(CONST Def x). t <= FLIFT x . t

definition
flift2 :: (′a::type ⇒ ′b::type) ⇒ (′a lift → ′b lift) where
flift2 f = (FLIFT x. Def (f x))

lemma flift1-Def [simp]: flift1 f ·(Def x) = (f x)
〈proof 〉

lemma flift2-Def [simp]: flift2 f ·(Def x) = Def (f x)
〈proof 〉

lemma flift1-strict [simp]: flift1 f ·⊥ = ⊥
〈proof 〉

lemma flift2-strict [simp]: flift2 f ·⊥ = ⊥
〈proof 〉

lemma flift2-defined [simp]: x 6= ⊥ =⇒ (flift2 f)·x 6= ⊥
〈proof 〉

lemma flift2-bottom-iff [simp]: (flift2 f ·x = ⊥) = (x = ⊥)
〈proof 〉

lemma FLIFT-mono:
(
∧

x. f x v g x) =⇒ (FLIFT x . f x) v (FLIFT x. g x)
〈proof 〉

lemma cont2cont-flift1 [simp, cont2cont]:
[[
∧

y. cont (λx. f x y)]] =⇒ cont (λx. FLIFT y. f x y)
〈proof 〉

end

14 The type of lifted booleans
theory Tr

imports Lift
begin

14.1 Type definition and constructors
type-synonym tr = bool lift

THEORY “Tr” 56

translations
(type) tr ↽ (type) bool lift

definition TT :: tr
where TT = Def True

definition FF :: tr
where FF = Def False

Exhaustion and Elimination for type tr
lemma Exh-tr : t = ⊥ ∨ t = TT ∨ t = FF
〈proof 〉

lemma trE [case-names bottom TT FF , cases type: tr]:
[[p = ⊥ =⇒ Q; p = TT =⇒ Q; p = FF =⇒ Q]] =⇒ Q
〈proof 〉

lemma tr-induct [case-names bottom TT FF , induct type: tr]:
P ⊥ =⇒ P TT =⇒ P FF =⇒ P x
〈proof 〉

distinctness for type tr
lemma dist-below-tr [simp]:

TT 6v ⊥ FF 6v ⊥ TT 6v FF FF 6v TT
〈proof 〉

lemma dist-eq-tr [simp]: TT 6= ⊥ FF 6= ⊥ TT 6= FF ⊥ 6= TT ⊥ 6= FF FF 6= TT
〈proof 〉

lemma TT-below-iff [simp]: TT v x ←→ x = TT
〈proof 〉

lemma FF-below-iff [simp]: FF v x ←→ x = FF
〈proof 〉

lemma not-below-TT-iff [simp]: x 6v TT ←→ x = FF
〈proof 〉

lemma not-below-FF-iff [simp]: x 6v FF ←→ x = TT
〈proof 〉

14.2 Case analysis
definition tr-case :: ′a::pcpo → ′a → tr → ′a

where tr-case = (Λ t e (Def b). if b then t else e)

abbreviation cifte-syn :: [tr , ′c::pcpo, ′c] ⇒ ′c (‹(‹notation=‹mixfix If expres-
sion››If (-)/ then (-)/ else (-))› [0 , 0 , 60] 60)

THEORY “Tr” 57

where If b then e1 else e2 ≡ tr-case·e1 ·e2 ·b

translations
Λ (XCONST TT). t ⇀↽ CONST tr-case·t·⊥
Λ (XCONST FF). t ⇀↽ CONST tr-case·⊥·t

lemma ifte-thms [simp]:
If ⊥ then e1 else e2 = ⊥
If FF then e1 else e2 = e2
If TT then e1 else e2 = e1
〈proof 〉

14.3 Boolean connectives
definition trand :: tr → tr → tr

where andalso-def : trand = (Λ x y. If x then y else FF)

abbreviation andalso-syn :: tr ⇒ tr ⇒ tr (‹- andalso -› [36 ,35] 35)
where x andalso y ≡ trand·x·y

definition tror :: tr → tr → tr
where orelse-def : tror = (Λ x y. If x then TT else y)

abbreviation orelse-syn :: tr ⇒ tr ⇒ tr (‹- orelse -› [31 ,30] 30)
where x orelse y ≡ tror ·x·y

definition neg :: tr → tr
where neg = flift2 Not

definition If2 :: tr ⇒ ′c::pcpo ⇒ ′c ⇒ ′c
where If2 Q x y = (If Q then x else y)

tactic for tr-thms with case split
lemmas tr-defs = andalso-def orelse-def neg-def tr-case-def TT-def FF-def

lemmas about andalso, orelse, neg and if
lemma andalso-thms [simp]:
(TT andalso y) = y
(FF andalso y) = FF
(⊥ andalso y) = ⊥
(y andalso TT) = y
(y andalso y) = y
〈proof 〉

lemma orelse-thms [simp]:
(TT orelse y) = TT
(FF orelse y) = y
(⊥ orelse y) = ⊥
(y orelse FF) = y

THEORY “Ssum” 58

(y orelse y) = y
〈proof 〉

lemma neg-thms [simp]:
neg·TT = FF
neg·FF = TT
neg·⊥ = ⊥
〈proof 〉

split-tac for If via If2 because the constant has to be a constant
lemma split-If2 : P (If2 Q x y) ←→ ((Q = ⊥ −→ P ⊥) ∧ (Q = TT −→ P x) ∧
(Q = FF −→ P y))
〈proof 〉

〈ML〉

14.4 Rewriting of HOLCF operations to HOL functions
lemma andalso-or : t 6= ⊥ =⇒ (t andalso s) = FF ←→ t = FF ∨ s = FF
〈proof 〉

lemma andalso-and: t 6= ⊥ =⇒ ((t andalso s) 6= FF) ←→ t 6= FF ∧ s 6= FF
〈proof 〉

lemma Def-bool1 [simp]: Def x 6= FF ←→ x
〈proof 〉

lemma Def-bool2 [simp]: Def x = FF ←→ ¬ x
〈proof 〉

lemma Def-bool3 [simp]: Def x = TT ←→ x
〈proof 〉

lemma Def-bool4 [simp]: Def x 6= TT ←→ ¬ x
〈proof 〉

lemma If-and-if : (If Def P then A else B) = (if P then A else B)
〈proof 〉

14.5 Compactness
lemma compact-TT : compact TT
〈proof 〉

lemma compact-FF : compact FF
〈proof 〉

end

THEORY “Ssum” 59

15 The type of strict sums
theory Ssum

imports Tr
begin

15.1 Definition of strict sum type
definition ssum =
{p :: tr × (′a::pcpo × ′b::pcpo). p = ⊥ ∨
(fst p = TT ∧ fst (snd p) 6= ⊥ ∧ snd (snd p) = ⊥) ∨
(fst p = FF ∧ fst (snd p) = ⊥ ∧ snd (snd p) 6= ⊥)}

pcpodef (′a::pcpo, ′b::pcpo) ssum (‹(‹notation=‹infix strict sum››- ⊕/ -)› [21 ,
20] 20) =

ssum :: (tr × ′a × ′b) set
〈proof 〉

instance ssum :: ({chfin,pcpo}, {chfin,pcpo}) chfin
〈proof 〉

type-notation (ASCII)
ssum (infixr ‹++› 10)

15.2 Definitions of constructors
definition sinl :: ′a::pcpo → (′a ++ ′b::pcpo)

where sinl = (Λ a. Abs-ssum (seq·a·TT , a, ⊥))

definition sinr :: ′b::pcpo → (′a::pcpo ++ ′b)
where sinr = (Λ b. Abs-ssum (seq·b·FF , ⊥, b))

lemma sinl-ssum: (seq·a·TT , a, ⊥) ∈ ssum
〈proof 〉

lemma sinr-ssum: (seq·b·FF , ⊥, b) ∈ ssum
〈proof 〉

lemma Rep-ssum-sinl: Rep-ssum (sinl·a) = (seq·a·TT , a, ⊥)
〈proof 〉

lemma Rep-ssum-sinr : Rep-ssum (sinr ·b) = (seq·b·FF , ⊥, b)
〈proof 〉

lemmas Rep-ssum-simps =
Rep-ssum-inject [symmetric] below-ssum-def
prod-eq-iff below-prod-def
Rep-ssum-strict Rep-ssum-sinl Rep-ssum-sinr

THEORY “Ssum” 60

15.3 Properties of sinl and sinr

Ordering
lemma sinl-below [simp]: sinl·x v sinl·y ←→ x v y
〈proof 〉

lemma sinr-below [simp]: sinr ·x v sinr ·y ←→ x v y
〈proof 〉

lemma sinl-below-sinr [simp]: sinl·x v sinr ·y ←→ x = ⊥
〈proof 〉

lemma sinr-below-sinl [simp]: sinr ·x v sinl·y ←→ x = ⊥
〈proof 〉

Equality
lemma sinl-eq [simp]: sinl·x = sinl·y ←→ x = y
〈proof 〉

lemma sinr-eq [simp]: sinr ·x = sinr ·y ←→ x = y
〈proof 〉

lemma sinl-eq-sinr [simp]: sinl·x = sinr ·y ←→ x = ⊥ ∧ y = ⊥
〈proof 〉

lemma sinr-eq-sinl [simp]: sinr ·x = sinl·y ←→ x = ⊥ ∧ y = ⊥
〈proof 〉

lemma sinl-inject: sinl·x = sinl·y =⇒ x = y
〈proof 〉

lemma sinr-inject: sinr ·x = sinr ·y =⇒ x = y
〈proof 〉

Strictness
lemma sinl-strict [simp]: sinl·⊥ = ⊥
〈proof 〉

lemma sinr-strict [simp]: sinr ·⊥ = ⊥
〈proof 〉

lemma sinl-bottom-iff [simp]: sinl·x = ⊥ ←→ x = ⊥
〈proof 〉

lemma sinr-bottom-iff [simp]: sinr ·x = ⊥ ←→ x = ⊥
〈proof 〉

lemma sinl-defined: x 6= ⊥ =⇒ sinl·x 6= ⊥
〈proof 〉

THEORY “Ssum” 61

lemma sinr-defined: x 6= ⊥ =⇒ sinr ·x 6= ⊥
〈proof 〉

Compactness
lemma compact-sinl: compact x =⇒ compact (sinl·x)
〈proof 〉

lemma compact-sinr : compact x =⇒ compact (sinr ·x)
〈proof 〉

lemma compact-sinlD: compact (sinl·x) =⇒ compact x
〈proof 〉

lemma compact-sinrD: compact (sinr ·x) =⇒ compact x
〈proof 〉

lemma compact-sinl-iff [simp]: compact (sinl·x) = compact x
〈proof 〉

lemma compact-sinr-iff [simp]: compact (sinr ·x) = compact x
〈proof 〉

15.4 Case analysis
lemma ssumE [case-names bottom sinl sinr , cases type: ssum]:

obtains p = ⊥
| x where p = sinl·x and x 6= ⊥
| y where p = sinr ·y and y 6= ⊥
〈proof 〉

lemma ssum-induct [case-names bottom sinl sinr , induct type: ssum]:
[[P ⊥;∧

x. x 6= ⊥ =⇒ P (sinl·x);∧
y. y 6= ⊥ =⇒ P (sinr ·y)]] =⇒ P x

〈proof 〉

lemma ssumE2 [case-names sinl sinr]:
[[
∧

x. p = sinl·x =⇒ Q;
∧

y. p = sinr ·y =⇒ Q]] =⇒ Q
〈proof 〉

lemma below-sinlD: p v sinl·x =⇒ ∃ y. p = sinl·y ∧ y v x
〈proof 〉

lemma below-sinrD: p v sinr ·x =⇒ ∃ y. p = sinr ·y ∧ y v x
〈proof 〉

15.5 Case analysis combinator
definition sscase :: (′a::pcpo → ′c::pcpo) → (′b::pcpo → ′c) → (′a ++ ′b) → ′c

THEORY “Sfun” 62

where sscase = (Λ f g s. (λ(t, x, y). If t then f ·x else g·y) (Rep-ssum s))

translations
case s of XCONST sinl·x ⇒ t1 | XCONST sinr ·y ⇒ t2 ⇀↽ CONST sscase·(Λ x.

t1)·(Λ y. t2)·s
case s of (XCONST sinl :: ′a)·x ⇒ t1 | XCONST sinr ·y ⇒ t2 ⇀ CONST

sscase·(Λ x. t1)·(Λ y. t2)·s

translations
Λ(XCONST sinl·x). t ⇀↽ CONST sscase·(Λ x. t)·⊥
Λ(XCONST sinr ·y). t ⇀↽ CONST sscase·⊥·(Λ y. t)

lemma beta-sscase: sscase·f ·g·s = (λ(t, x, y). If t then f ·x else g·y) (Rep-ssum s)
〈proof 〉

lemma sscase1 [simp]: sscase·f ·g·⊥ = ⊥
〈proof 〉

lemma sscase2 [simp]: x 6= ⊥ =⇒ sscase·f ·g·(sinl·x) = f ·x
〈proof 〉

lemma sscase3 [simp]: y 6= ⊥ =⇒ sscase·f ·g·(sinr ·y) = g·y
〈proof 〉

lemma sscase4 [simp]: sscase·sinl·sinr ·z = z
〈proof 〉

15.6 Strict sum preserves flatness
instance ssum :: (flat, flat) flat
〈proof 〉

end

16 The Strict Function Type
theory Sfun

imports Cfun
begin

pcpodef (′a::pcpo, ′b::pcpo) sfun (infixr ‹→!› 0) = {f :: ′a → ′b. f ·⊥ = ⊥}
〈proof 〉

type-notation (ASCII)
sfun (infixr ‹−>!› 0)

TODO: Define nice syntax for abstraction, application.
definition sfun-abs :: (′a::pcpo → ′b::pcpo) → (′a →! ′b)

where sfun-abs = (Λ f . Abs-sfun (strictify·f))

THEORY “Map-Functions” 63

definition sfun-rep :: (′a::pcpo →! ′b::pcpo) → ′a → ′b
where sfun-rep = (Λ f . Rep-sfun f)

lemma sfun-rep-beta: sfun-rep·f = Rep-sfun f
〈proof 〉

lemma sfun-rep-strict1 [simp]: sfun-rep·⊥ = ⊥
〈proof 〉

lemma sfun-rep-strict2 [simp]: sfun-rep·f ·⊥ = ⊥
〈proof 〉

lemma strictify-cancel: f ·⊥ = ⊥ =⇒ strictify·f = f
〈proof 〉

lemma sfun-abs-sfun-rep [simp]: sfun-abs·(sfun-rep·f) = f
〈proof 〉

lemma sfun-rep-sfun-abs [simp]: sfun-rep·(sfun-abs·f) = strictify·f
〈proof 〉

lemma sfun-eq-iff : f = g ←→ sfun-rep·f = sfun-rep·g
〈proof 〉

lemma sfun-below-iff : f v g ←→ sfun-rep·f v sfun-rep·g
〈proof 〉

end

17 Map functions for various types
theory Map-Functions

imports Deflation Sprod Ssum Sfun Up
begin

17.1 Map operator for continuous function space
definition cfun-map :: (′b → ′a) → (′c → ′d) → (′a → ′c) → (′b → ′d)

where cfun-map = (Λ a b f x. b·(f ·(a·x)))

lemma cfun-map-beta [simp]: cfun-map·a·b·f ·x = b·(f ·(a·x))
〈proof 〉

lemma cfun-map-ID: cfun-map·ID·ID = ID
〈proof 〉

lemma cfun-map-map: cfun-map·f1 ·g1 ·(cfun-map·f2 ·g2 ·p) = cfun-map·(Λ x. f2 ·(f1 ·x))·(Λ
x. g1 ·(g2 ·x))·p

THEORY “Map-Functions” 64

〈proof 〉

lemma ep-pair-cfun-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (cfun-map·p1 ·e2) (cfun-map·e1 ·p2)
〈proof 〉

lemma deflation-cfun-map:
assumes deflation d1 and deflation d2
shows deflation (cfun-map·d1 ·d2)
〈proof 〉

lemma finite-range-cfun-map:
assumes a: finite (range (λx. a·x))
assumes b: finite (range (λy. b·y))
shows finite (range (λf . cfun-map·a·b·f)) (is finite (range ?h))
〈proof 〉

lemma finite-deflation-cfun-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (cfun-map·d1 ·d2)
〈proof 〉

Finite deflations are compact elements of the function space
lemma finite-deflation-imp-compact: finite-deflation d =⇒ compact d
〈proof 〉

17.2 Map operator for product type
definition prod-map :: (′a → ′b) → (′c → ′d) → ′a × ′c → ′b × ′d

where prod-map = (Λ f g p. (f ·(fst p), g·(snd p)))

lemma prod-map-Pair [simp]: prod-map·f ·g·(x, y) = (f ·x, g·y)
〈proof 〉

lemma prod-map-ID: prod-map·ID·ID = ID
〈proof 〉

lemma prod-map-map: prod-map·f1 ·g1 ·(prod-map·f2 ·g2 ·p) = prod-map·(Λ x. f1 ·(f2 ·x))·(Λ
x. g1 ·(g2 ·x))·p
〈proof 〉

lemma ep-pair-prod-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (prod-map·e1 ·e2) (prod-map·p1 ·p2)
〈proof 〉

lemma deflation-prod-map:
assumes deflation d1 and deflation d2

THEORY “Map-Functions” 65

shows deflation (prod-map·d1 ·d2)
〈proof 〉

lemma finite-deflation-prod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (prod-map·d1 ·d2)
〈proof 〉

17.3 Map function for lifted cpo
definition u-map :: (′a → ′b) → ′a u → ′b u

where u-map = (Λ f . fup·(up oo f))

lemma u-map-strict [simp]: u-map·f ·⊥ = ⊥
〈proof 〉

lemma u-map-up [simp]: u-map·f ·(up·x) = up·(f ·x)
〈proof 〉

lemma u-map-ID: u-map·ID = ID
〈proof 〉

lemma u-map-map: u-map·f ·(u-map·g·p) = u-map·(Λ x. f ·(g·x))·p
〈proof 〉

lemma u-map-oo: u-map·(f oo g) = u-map·f oo u-map·g
〈proof 〉

lemma ep-pair-u-map: ep-pair e p =⇒ ep-pair (u-map·e) (u-map·p)
〈proof 〉

lemma deflation-u-map: deflation d =⇒ deflation (u-map·d)
〈proof 〉

lemma finite-deflation-u-map:
assumes finite-deflation d
shows finite-deflation (u-map·d)
〈proof 〉

17.4 Map function for strict products
definition sprod-map :: (′a::pcpo → ′b::pcpo) → (′c::pcpo → ′d::pcpo) → ′a ⊗ ′c
→ ′b ⊗ ′d

where sprod-map = (Λ f g. ssplit·(Λ x y. (:f ·x, g·y:)))

lemma sprod-map-strict [simp]: sprod-map·a·b·⊥ = ⊥
〈proof 〉

lemma sprod-map-spair [simp]: x 6= ⊥ =⇒ y 6= ⊥ =⇒ sprod-map·f ·g·(:x, y:) =
(:f ·x, g·y:)

THEORY “Map-Functions” 66

〈proof 〉

lemma sprod-map-spair ′: f ·⊥ = ⊥ =⇒ g·⊥ = ⊥ =⇒ sprod-map·f ·g·(:x, y:) = (:f ·x,
g·y:)
〈proof 〉

lemma sprod-map-ID: sprod-map·ID·ID = ID
〈proof 〉

lemma sprod-map-map:
[[f1 ·⊥ = ⊥; g1 ·⊥ = ⊥]] =⇒

sprod-map·f1 ·g1 ·(sprod-map·f2 ·g2 ·p) =
sprod-map·(Λ x. f1 ·(f2 ·x))·(Λ x. g1 ·(g2 ·x))·p

〈proof 〉

lemma ep-pair-sprod-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (sprod-map·e1 ·e2) (sprod-map·p1 ·p2)
〈proof 〉

lemma deflation-sprod-map:
assumes deflation d1 and deflation d2
shows deflation (sprod-map·d1 ·d2)
〈proof 〉

lemma finite-deflation-sprod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (sprod-map·d1 ·d2)
〈proof 〉

17.5 Map function for strict sums
definition ssum-map :: (′a::pcpo → ′b::pcpo) → (′c::pcpo → ′d::pcpo) → ′a ⊕ ′c
→ ′b ⊕ ′d

where ssum-map = (Λ f g. sscase·(sinl oo f)·(sinr oo g))

lemma ssum-map-strict [simp]: ssum-map·f ·g·⊥ = ⊥
〈proof 〉

lemma ssum-map-sinl [simp]: x 6= ⊥ =⇒ ssum-map·f ·g·(sinl·x) = sinl·(f ·x)
〈proof 〉

lemma ssum-map-sinr [simp]: x 6= ⊥ =⇒ ssum-map·f ·g·(sinr ·x) = sinr ·(g·x)
〈proof 〉

lemma ssum-map-sinl ′: f ·⊥ = ⊥ =⇒ ssum-map·f ·g·(sinl·x) = sinl·(f ·x)
〈proof 〉

lemma ssum-map-sinr ′: g·⊥ = ⊥ =⇒ ssum-map·f ·g·(sinr ·x) = sinr ·(g·x)

THEORY “Map-Functions” 67

〈proof 〉

lemma ssum-map-ID: ssum-map·ID·ID = ID
〈proof 〉

lemma ssum-map-map:
[[f1 ·⊥ = ⊥; g1 ·⊥ = ⊥]] =⇒

ssum-map·f1 ·g1 ·(ssum-map·f2 ·g2 ·p) =
ssum-map·(Λ x. f1 ·(f2 ·x))·(Λ x. g1 ·(g2 ·x))·p

〈proof 〉

lemma ep-pair-ssum-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (ssum-map·e1 ·e2) (ssum-map·p1 ·p2)
〈proof 〉

lemma deflation-ssum-map:
assumes deflation d1 and deflation d2
shows deflation (ssum-map·d1 ·d2)
〈proof 〉

lemma finite-deflation-ssum-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (ssum-map·d1 ·d2)
〈proof 〉

17.6 Map operator for strict function space
definition sfun-map :: (′b::pcpo → ′a::pcpo) → (′c::pcpo → ′d::pcpo) → (′a →! ′c)
→ (′b →! ′d)

where sfun-map = (Λ a b. sfun-abs oo cfun-map·a·b oo sfun-rep)

lemma sfun-map-ID: sfun-map·ID·ID = ID
〈proof 〉

lemma sfun-map-map:
assumes f2 ·⊥ = ⊥ and g2 ·⊥ = ⊥
shows sfun-map·f1 ·g1 ·(sfun-map·f2 ·g2 ·p) =

sfun-map·(Λ x. f2 ·(f1 ·x))·(Λ x. g1 ·(g2 ·x))·p
〈proof 〉

lemma ep-pair-sfun-map:
assumes 1 : ep-pair e1 p1
assumes 2 : ep-pair e2 p2
shows ep-pair (sfun-map·p1 ·e2) (sfun-map·e1 ·p2)
〈proof 〉

lemma deflation-sfun-map:
assumes 1 : deflation d1

THEORY “Cprod” 68

assumes 2 : deflation d2
shows deflation (sfun-map·d1 ·d2)
〈proof 〉

lemma finite-deflation-sfun-map:
assumes finite-deflation d1

and finite-deflation d2
shows finite-deflation (sfun-map·d1 ·d2)
〈proof 〉

end

18 The cpo of cartesian products
theory Cprod

imports Cfun
begin

18.1 Continuous case function for unit type
definition unit-when :: ′a → unit → ′a

where unit-when = (Λ a -. a)

translations
Λ(). t ⇀↽ CONST unit-when·t

lemma unit-when [simp]: unit-when·a·u = a
〈proof 〉

18.2 Continuous version of split function
definition csplit :: (′a → ′b → ′c) → (′a × ′b) → ′c

where csplit = (Λ f p. f ·(fst p)·(snd p))

translations
Λ(CONST Pair x y). t ⇀↽ CONST csplit·(Λ x y. t)

abbreviation cfst :: ′a × ′b → ′a
where cfst ≡ Abs-cfun fst

abbreviation csnd :: ′a × ′b → ′b
where csnd ≡ Abs-cfun snd

18.3 Convert all lemmas to the continuous versions
lemma csplit1 [simp]: csplit·f ·⊥ = f ·⊥·⊥
〈proof 〉

lemma csplit-Pair [simp]: csplit·f ·(x, y) = f ·x·y

THEORY “Bifinite” 69

〈proof 〉

end

19 Profinite and bifinite cpos
theory Bifinite

imports Map-Functions Cprod Sprod Sfun Up HOL−Library.Countable
begin

19.1 Chains of finite deflations
locale approx-chain =

fixes approx :: nat ⇒ ′a → ′a
assumes chain-approx [simp]: chain (λi. approx i)
assumes lub-approx [simp]: (

⊔
i. approx i) = ID

assumes finite-deflation-approx [simp]:
∧

i. finite-deflation (approx i)
begin

lemma deflation-approx: deflation (approx i)
〈proof 〉

lemma approx-idem: approx i·(approx i·x) = approx i·x
〈proof 〉

lemma approx-below: approx i·x v x
〈proof 〉

lemma finite-range-approx: finite (range (λx. approx i·x))
〈proof 〉

lemma compact-approx [simp]: compact (approx n·x)
〈proof 〉

lemma compact-eq-approx: compact x =⇒ ∃ i. approx i·x = x
〈proof 〉

end

19.2 Omega-profinite and bifinite domains
class bifinite = pcpo +

assumes bifinite: ∃ (a::nat ⇒ ′a → ′a). approx-chain a

class profinite = cpo +
assumes profinite: ∃ (a::nat ⇒ ′a⊥ → ′a⊥). approx-chain a

THEORY “Bifinite” 70

19.3 Building approx chains
lemma approx-chain-iso:

assumes a: approx-chain a
assumes [simp]:

∧
x. f ·(g·x) = x

assumes [simp]:
∧

y. g·(f ·y) = y
shows approx-chain (λi. f oo a i oo g)
〈proof 〉

lemma approx-chain-u-map:
assumes approx-chain a
shows approx-chain (λi. u-map·(a i))
〈proof 〉

lemma approx-chain-sfun-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. sfun-map·(a i)·(b i))
〈proof 〉

lemma approx-chain-sprod-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. sprod-map·(a i)·(b i))
〈proof 〉

lemma approx-chain-ssum-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. ssum-map·(a i)·(b i))
〈proof 〉

lemma approx-chain-cfun-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. cfun-map·(a i)·(b i))
〈proof 〉

lemma approx-chain-prod-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. prod-map·(a i)·(b i))
〈proof 〉

Approx chains for countable discrete types.
definition discr-approx :: nat ⇒ ′a::countable discr u → ′a discr u

where discr-approx = (λi. Λ(up·x). if to-nat (undiscr x) < i then up·x else ⊥)

lemma chain-discr-approx [simp]: chain discr-approx
〈proof 〉

lemma lub-discr-approx [simp]: (
⊔

i. discr-approx i) = ID
〈proof 〉

lemma inj-on-undiscr [simp]: inj-on undiscr A

THEORY “Bifinite” 71

〈proof 〉

lemma finite-deflation-discr-approx: finite-deflation (discr-approx i)
〈proof 〉

lemma discr-approx: approx-chain discr-approx
〈proof 〉

19.4 Class instance proofs
instance bifinite ⊆ profinite
〈proof 〉

instance u :: (profinite) bifinite
〈proof 〉

Types ′a → ′b and ′a⊥ →! ′b are isomorphic.
definition encode-cfun = (Λ f . sfun-abs·(fup·f))

definition decode-cfun = (Λ g x. sfun-rep·g·(up·x))

lemma decode-encode-cfun [simp]: decode-cfun·(encode-cfun·x) = x
〈proof 〉

lemma encode-decode-cfun [simp]: encode-cfun·(decode-cfun·y) = y
〈proof 〉

instance cfun :: (profinite, bifinite) bifinite
〈proof 〉

Types (′a × ′b)⊥ and ′a⊥ ⊗ ′b⊥ are isomorphic.
definition encode-prod-u = (Λ(up·(x, y)). (:up·x, up·y:))

definition decode-prod-u = (Λ(:up·x, up·y:). up·(x, y))

lemma decode-encode-prod-u [simp]: decode-prod-u·(encode-prod-u·x) = x
〈proof 〉

lemma encode-decode-prod-u [simp]: encode-prod-u·(decode-prod-u·y) = y
〈proof 〉

instance prod :: (profinite, profinite) profinite
〈proof 〉

instance prod :: (bifinite, bifinite) bifinite
〈proof 〉

instance sfun :: (bifinite, bifinite) bifinite
〈proof 〉

THEORY “Completion” 72

instance sprod :: (bifinite, bifinite) bifinite
〈proof 〉

instance ssum :: (bifinite, bifinite) bifinite
〈proof 〉

lemma approx-chain-unit: approx-chain (⊥ :: nat ⇒ unit → unit)
〈proof 〉

instance unit :: bifinite
〈proof 〉

instance discr :: (countable) profinite
〈proof 〉

instance lift :: (countable) bifinite
〈proof 〉

end

20 Defining algebraic domains by ideal completion
theory Completion
imports Cfun
begin

20.1 Ideals over a preorder
locale preorder =

fixes r :: ′a::type ⇒ ′a ⇒ bool (infix ‹�› 50)
assumes r-refl: x � x
assumes r-trans: [[x � y; y � z]] =⇒ x � z

begin

definition
ideal :: ′a set ⇒ bool where
ideal A = ((∃ x. x ∈ A) ∧ (∀ x∈A. ∀ y∈A. ∃ z∈A. x � z ∧ y � z) ∧
(∀ x y. x � y −→ y ∈ A −→ x ∈ A))

lemma idealI :
assumes ∃ x. x ∈ A
assumes

∧
x y. [[x ∈ A; y ∈ A]] =⇒ ∃ z∈A. x � z ∧ y � z

assumes
∧

x y. [[x � y; y ∈ A]] =⇒ x ∈ A
shows ideal A
〈proof 〉

lemma idealD1 :
ideal A =⇒ ∃ x. x ∈ A

THEORY “Completion” 73

〈proof 〉

lemma idealD2 :
[[ideal A; x ∈ A; y ∈ A]] =⇒ ∃ z∈A. x � z ∧ y � z
〈proof 〉

lemma idealD3 :
[[ideal A; x � y; y ∈ A]] =⇒ x ∈ A
〈proof 〉

lemma ideal-principal: ideal {x. x � z}
〈proof 〉

lemma ex-ideal: ∃A. A ∈ {A. ideal A}
〈proof 〉

The set of ideals is a cpo
lemma ideal-UN :

fixes A :: nat ⇒ ′a set
assumes ideal-A:

∧
i. ideal (A i)

assumes chain-A:
∧

i j. i ≤ j =⇒ A i ⊆ A j
shows ideal (

⋃
i. A i)

〈proof 〉

lemma typedef-ideal-po:
fixes Abs :: ′a set ⇒ ′b::below
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

shows OFCLASS(′b, po-class)
〈proof 〉

lemma
fixes Abs :: ′a set ⇒ ′b::po
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

assumes S : chain S
shows typedef-ideal-lub: range S <<| Abs (

⋃
i. Rep (S i))

and typedef-ideal-rep-lub: Rep (
⊔

i. S i) = (
⋃

i. Rep (S i))
〈proof 〉

lemma typedef-ideal-cpo:
fixes Abs :: ′a set ⇒ ′b::po
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

shows OFCLASS(′b, cpo-class)
〈proof 〉

end

THEORY “Completion” 74

interpretation below: preorder below :: ′a::po ⇒ ′a ⇒ bool
〈proof 〉

20.2 Lemmas about least upper bounds
lemma is-ub-thelub-ex: [[∃ u. S <<| u; x ∈ S]] =⇒ x v lub S
〈proof 〉

lemma is-lub-thelub-ex: [[∃ u. S <<| u; S <| x]] =⇒ lub S v x
〈proof 〉

20.3 Locale for ideal completion
hide-const (open) Filter .principal

locale ideal-completion = preorder +
fixes principal :: ′a::type ⇒ ′b
fixes rep :: ′b ⇒ ′a::type set
assumes ideal-rep:

∧
x. ideal (rep x)

assumes rep-lub:
∧

Y . chain Y =⇒ rep (
⊔

i. Y i) = (
⋃

i. rep (Y i))
assumes rep-principal:

∧
a. rep (principal a) = {b. b � a}

assumes belowI :
∧

x y. rep x ⊆ rep y =⇒ x v y
assumes countable: ∃ f :: ′a ⇒ nat. inj f

begin

lemma rep-mono: x v y =⇒ rep x ⊆ rep y
〈proof 〉

lemma below-def : x v y ←→ rep x ⊆ rep y
〈proof 〉

lemma principal-below-iff-mem-rep: principal a v x ←→ a ∈ rep x
〈proof 〉

lemma principal-below-iff [simp]: principal a v principal b ←→ a � b
〈proof 〉

lemma principal-eq-iff : principal a = principal b ←→ a � b ∧ b � a
〈proof 〉

lemma eq-iff : x = y ←→ rep x = rep y
〈proof 〉

lemma principal-mono: a � b =⇒ principal a v principal b
〈proof 〉

lemma ch2ch-principal [simp]:
∀ i. Y i � Y (Suc i) =⇒ chain (λi. principal (Y i))
〈proof 〉

THEORY “Completion” 75

20.3.1 Principal ideals approximate all elements
lemma compact-principal [simp]: compact (principal a)
〈proof 〉

Construct a chain whose lub is the same as a given ideal
lemma obtain-principal-chain:

obtains Y where ∀ i. Y i � Y (Suc i) and x = (
⊔

i. principal (Y i))
〈proof 〉

lemma principal-induct:
assumes adm: adm P
assumes P:

∧
a. P (principal a)

shows P x
〈proof 〉

lemma compact-imp-principal: compact x =⇒ ∃ a. x = principal a
〈proof 〉

20.4 Defining functions in terms of basis elements
definition

extension :: (′a::type ⇒ ′c) ⇒ ′b → ′c where
extension = (λf . (Λ x. lub (f ‘ rep x)))

lemma extension-lemma:
fixes f :: ′a::type ⇒ ′c
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

shows ∃ u. f ‘ rep x <<| u
〈proof 〉

lemma extension-beta:
fixes f :: ′a::type ⇒ ′c
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

shows extension f ·x = lub (f ‘ rep x)
〈proof 〉

lemma extension-principal:
fixes f :: ′a::type ⇒ ′c
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

shows extension f ·(principal a) = f a
〈proof 〉

lemma extension-mono:
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

assumes g-mono:
∧

a b. a � b =⇒ g a v g b
assumes below:

∧
a. f a v g a

shows extension f v extension g
〈proof 〉

THEORY “Universal” 76

lemma cont-extension:
assumes f-mono:

∧
a b x. a � b =⇒ f x a v f x b

assumes f-cont:
∧

a. cont (λx. f x a)
shows cont (λx. extension (λa. f x a))
〈proof 〉

end

lemma (in preorder) typedef-ideal-completion:
fixes Abs :: ′a set ⇒ ′b
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

assumes principal:
∧

a. principal a = Abs {b. b � a}
assumes countable: ∃ f :: ′a ⇒ nat. inj f
shows ideal-completion r principal Rep
〈proof 〉

end

21 A universal bifinite domain
theory Universal
imports Bifinite Completion HOL−Library.Nat-Bijection
begin

unbundle no binomial-syntax

21.1 Basis for universal domain
21.1.1 Basis datatype
type-synonym ubasis = nat

definition
node :: nat ⇒ ubasis ⇒ ubasis set ⇒ ubasis

where
node i a S = Suc (prod-encode (i, prod-encode (a, set-encode S)))

lemma node-not-0 [simp]: node i a S 6= 0
〈proof 〉

lemma node-gt-0 [simp]: 0 < node i a S
〈proof 〉

lemma node-inject [simp]:
[[finite S ; finite T]]
=⇒ node i a S = node j b T ←→ i = j ∧ a = b ∧ S = T

〈proof 〉

THEORY “Universal” 77

lemma node-gt0 : i < node i a S
〈proof 〉

lemma node-gt1 : a < node i a S
〈proof 〉

lemma nat-less-power2 : n < 2^n
〈proof 〉

lemma node-gt2 : [[finite S ; b ∈ S]] =⇒ b < node i a S
〈proof 〉

lemma eq-prod-encode-pairI :
[[fst (prod-decode x) = a; snd (prod-decode x) = b]] =⇒ x = prod-encode (a, b)
〈proof 〉

lemma node-cases:
assumes 1 : x = 0 =⇒ P
assumes 2 :

∧
i a S . [[finite S ; x = node i a S]] =⇒ P

shows P
〈proof 〉

lemma node-induct:
assumes 1 : P 0
assumes 2 :

∧
i a S . [[P a; finite S ; ∀ b∈S . P b]] =⇒ P (node i a S)

shows P x
〈proof 〉

21.1.2 Basis ordering
inductive

ubasis-le :: nat ⇒ nat ⇒ bool
where

ubasis-le-refl: ubasis-le a a
| ubasis-le-trans:

[[ubasis-le a b; ubasis-le b c]] =⇒ ubasis-le a c
| ubasis-le-lower :

finite S =⇒ ubasis-le a (node i a S)
| ubasis-le-upper :

[[finite S ; b ∈ S ; ubasis-le a b]] =⇒ ubasis-le (node i a S) b

lemma ubasis-le-minimal: ubasis-le 0 x
〈proof 〉

interpretation udom: preorder ubasis-le
〈proof 〉

21.1.3 Generic take function
function

THEORY “Universal” 78

ubasis-until :: (ubasis ⇒ bool) ⇒ ubasis ⇒ ubasis
where

ubasis-until P 0 = 0
| finite S =⇒ ubasis-until P (node i a S) =

(if P (node i a S) then node i a S else ubasis-until P a)
〈proof 〉

termination ubasis-until
〈proof 〉

lemma ubasis-until: P 0 =⇒ P (ubasis-until P x)
〈proof 〉

lemma ubasis-until ′: 0 < ubasis-until P x =⇒ P (ubasis-until P x)
〈proof 〉

lemma ubasis-until-same: P x =⇒ ubasis-until P x = x
〈proof 〉

lemma ubasis-until-idem:
P 0 =⇒ ubasis-until P (ubasis-until P x) = ubasis-until P x
〈proof 〉

lemma ubasis-until-0 :
∀ x. x 6= 0 −→ ¬ P x =⇒ ubasis-until P x = 0
〈proof 〉

lemma ubasis-until-less: ubasis-le (ubasis-until P x) x
〈proof 〉

lemma ubasis-until-chain:
assumes PQ:

∧
x. P x =⇒ Q x

shows ubasis-le (ubasis-until P x) (ubasis-until Q x)
〈proof 〉

lemma ubasis-until-mono:
assumes

∧
i a S b. [[finite S ; P (node i a S); b ∈ S ; ubasis-le a b]] =⇒ P b

shows ubasis-le a b =⇒ ubasis-le (ubasis-until P a) (ubasis-until P b)
〈proof 〉

lemma finite-range-ubasis-until:
finite {x. P x} =⇒ finite (range (ubasis-until P))
〈proof 〉

21.2 Defining the universal domain by ideal completion
typedef udom = {S . udom.ideal S}
〈proof 〉

THEORY “Universal” 79

instantiation udom :: below
begin

definition
x v y ←→ Rep-udom x ⊆ Rep-udom y

instance 〈proof 〉
end

instance udom :: po
〈proof 〉

instance udom :: cpo
〈proof 〉

definition
udom-principal :: nat ⇒ udom where
udom-principal t = Abs-udom {u. ubasis-le u t}

lemma ubasis-countable: ∃ f ::ubasis ⇒ nat. inj f
〈proof 〉

interpretation udom:
ideal-completion ubasis-le udom-principal Rep-udom
〈proof 〉

Universal domain is pointed
lemma udom-minimal: udom-principal 0 v x
〈proof 〉

instance udom :: pcpo
〈proof 〉

lemma inst-udom-pcpo: ⊥ = udom-principal 0
〈proof 〉

21.3 Compact bases of domains
typedef ′a compact-basis = {x:: ′a::pcpo. compact x}
〈proof 〉

lemma Rep-compact-basis ′ [simp]: compact (Rep-compact-basis a)
〈proof 〉

lemma Abs-compact-basis-inverse ′ [simp]:
compact x =⇒ Rep-compact-basis (Abs-compact-basis x) = x

〈proof 〉

instantiation compact-basis :: (pcpo) below

THEORY “Universal” 80

begin

definition
compact-le-def :
(v) ≡ (λx y. Rep-compact-basis x v Rep-compact-basis y)

instance 〈proof 〉
end

instance compact-basis :: (pcpo) po
〈proof 〉

definition
approximants :: ′a::pcpo ⇒ ′a compact-basis set where
approximants = (λx. {a. Rep-compact-basis a v x})

definition
compact-bot :: ′a::pcpo compact-basis where
compact-bot = Abs-compact-basis ⊥

lemma Rep-compact-bot [simp]: Rep-compact-basis compact-bot = ⊥
〈proof 〉

lemma compact-bot-minimal [simp]: compact-bot v a
〈proof 〉

21.4 Universality of udom

We use a locale to parameterize the construction over a chain of approx
functions on the type to be embedded.
locale bifinite-approx-chain =

approx-chain approx for approx :: nat ⇒ ′a::bifinite → ′a
begin

21.4.1 Choosing a maximal element from a finite set
lemma finite-has-maximal:

fixes A :: ′a compact-basis set
shows [[finite A; A 6= {}]] =⇒ ∃ x∈A. ∀ y∈A. x v y −→ x = y
〈proof 〉

definition
choose :: ′a compact-basis set ⇒ ′a compact-basis

where
choose A = (SOME x. x ∈ {x∈A. ∀ y∈A. x v y −→ x = y})

lemma choose-lemma:
[[finite A; A 6= {}]] =⇒ choose A ∈ {x∈A. ∀ y∈A. x v y −→ x = y}
〈proof 〉

THEORY “Universal” 81

lemma maximal-choose:
[[finite A; y ∈ A; choose A v y]] =⇒ choose A = y
〈proof 〉

lemma choose-in: [[finite A; A 6= {}]] =⇒ choose A ∈ A
〈proof 〉

function
choose-pos :: ′a compact-basis set ⇒ ′a compact-basis ⇒ nat

where
choose-pos A x =
(if finite A ∧ x ∈ A ∧ x 6= choose A

then Suc (choose-pos (A − {choose A}) x) else 0)
〈proof 〉

termination choose-pos
〈proof 〉

declare choose-pos.simps [simp del]

lemma choose-pos-choose: finite A =⇒ choose-pos A (choose A) = 0
〈proof 〉

lemma inj-on-choose-pos [OF refl]:
[[card A = n; finite A]] =⇒ inj-on (choose-pos A) A
〈proof 〉

lemma choose-pos-bounded [OF refl]:
[[card A = n; finite A; x ∈ A]] =⇒ choose-pos A x < n
〈proof 〉

lemma choose-pos-lessD:
[[choose-pos A x < choose-pos A y; finite A; x ∈ A; y ∈ A]] =⇒ x 6v y
〈proof 〉

21.4.2 Compact basis take function
primrec

cb-take :: nat ⇒ ′a compact-basis ⇒ ′a compact-basis where
cb-take 0 = (λx. compact-bot)
| cb-take (Suc n) = (λa. Abs-compact-basis (approx n·(Rep-compact-basis a)))

declare cb-take.simps [simp del]

lemma cb-take-zero [simp]: cb-take 0 a = compact-bot
〈proof 〉

lemma Rep-cb-take:

THEORY “Universal” 82

Rep-compact-basis (cb-take (Suc n) a) = approx n·(Rep-compact-basis a)
〈proof 〉

lemmas approx-Rep-compact-basis = Rep-cb-take [symmetric]

lemma cb-take-covers: ∃n. cb-take n x = x
〈proof 〉

lemma cb-take-less: cb-take n x v x
〈proof 〉

lemma cb-take-idem: cb-take n (cb-take n x) = cb-take n x
〈proof 〉

lemma cb-take-mono: x v y =⇒ cb-take n x v cb-take n y
〈proof 〉

lemma cb-take-chain-le: m ≤ n =⇒ cb-take m x v cb-take n x
〈proof 〉

lemma finite-range-cb-take: finite (range (cb-take n))
〈proof 〉

21.4.3 Rank of basis elements
definition

rank :: ′a compact-basis ⇒ nat
where

rank x = (LEAST n. cb-take n x = x)

lemma compact-approx-rank: cb-take (rank x) x = x
〈proof 〉

lemma rank-leD: rank x ≤ n =⇒ cb-take n x = x
〈proof 〉

lemma rank-leI : cb-take n x = x =⇒ rank x ≤ n
〈proof 〉

lemma rank-le-iff : rank x ≤ n ←→ cb-take n x = x
〈proof 〉

lemma rank-compact-bot [simp]: rank compact-bot = 0
〈proof 〉

lemma rank-eq-0-iff [simp]: rank x = 0 ←→ x = compact-bot
〈proof 〉

definition

THEORY “Universal” 83

rank-le :: ′a compact-basis ⇒ ′a compact-basis set
where

rank-le x = {y. rank y ≤ rank x}

definition
rank-lt :: ′a compact-basis ⇒ ′a compact-basis set

where
rank-lt x = {y. rank y < rank x}

definition
rank-eq :: ′a compact-basis ⇒ ′a compact-basis set

where
rank-eq x = {y. rank y = rank x}

lemma rank-eq-cong: rank x = rank y =⇒ rank-eq x = rank-eq y
〈proof 〉

lemma rank-lt-cong: rank x = rank y =⇒ rank-lt x = rank-lt y
〈proof 〉

lemma rank-eq-subset: rank-eq x ⊆ rank-le x
〈proof 〉

lemma rank-lt-subset: rank-lt x ⊆ rank-le x
〈proof 〉

lemma finite-rank-le: finite (rank-le x)
〈proof 〉

lemma finite-rank-eq: finite (rank-eq x)
〈proof 〉

lemma finite-rank-lt: finite (rank-lt x)
〈proof 〉

lemma rank-lt-Int-rank-eq: rank-lt x ∩ rank-eq x = {}
〈proof 〉

lemma rank-lt-Un-rank-eq: rank-lt x ∪ rank-eq x = rank-le x
〈proof 〉

21.4.4 Sequencing basis elements
definition

place :: ′a compact-basis ⇒ nat
where

place x = card (rank-lt x) + choose-pos (rank-eq x) x

lemma place-bounded: place x < card (rank-le x)

THEORY “Universal” 84

〈proof 〉

lemma place-ge: card (rank-lt x) ≤ place x
〈proof 〉

lemma place-rank-mono:
fixes x y :: ′a compact-basis
shows rank x < rank y =⇒ place x < place y
〈proof 〉

lemma place-eqD: place x = place y =⇒ x = y
〈proof 〉

lemma inj-place: inj place
〈proof 〉

21.4.5 Embedding and projection on basis elements
definition

sub :: ′a compact-basis ⇒ ′a compact-basis
where

sub x = (case rank x of 0 ⇒ compact-bot | Suc k ⇒ cb-take k x)

lemma rank-sub-less: x 6= compact-bot =⇒ rank (sub x) < rank x
〈proof 〉

lemma place-sub-less: x 6= compact-bot =⇒ place (sub x) < place x
〈proof 〉

lemma sub-below: sub x v x
〈proof 〉

lemma rank-less-imp-below-sub: [[x v y; rank x < rank y]] =⇒ x v sub y
〈proof 〉

function basis-emb :: ′a compact-basis ⇒ ubasis
where basis-emb x = (if x = compact-bot then 0 else

node (place x) (basis-emb (sub x))
(basis-emb ‘ {y. place y < place x ∧ x v y}))

〈proof 〉

termination basis-emb
〈proof 〉

declare basis-emb.simps [simp del]

lemma basis-emb-compact-bot [simp]:
basis-emb compact-bot = 0
〈proof 〉

THEORY “Universal” 85

lemma basis-emb-rec:
basis-emb x = node (place x) (basis-emb (sub x)) (basis-emb ‘ {y. place y < place

x ∧ x v y})
if x 6= compact-bot
〈proof 〉

lemma basis-emb-eq-0-iff [simp]:
basis-emb x = 0 ←→ x = compact-bot
〈proof 〉

lemma fin1 : finite {y. place y < place x ∧ x v y}
〈proof 〉

lemma fin2 : finite (basis-emb ‘ {y. place y < place x ∧ x v y})
〈proof 〉

lemma rank-place-mono:
[[place x < place y; x v y]] =⇒ rank x < rank y
〈proof 〉

lemma basis-emb-mono:
x v y =⇒ ubasis-le (basis-emb x) (basis-emb y)
〈proof 〉

lemma inj-basis-emb: inj basis-emb
〈proof 〉

definition
basis-prj :: ubasis ⇒ ′a compact-basis

where
basis-prj x = inv basis-emb
(ubasis-until (λx. x ∈ range (basis-emb :: ′a compact-basis ⇒ ubasis)) x)

lemma basis-prj-basis-emb:
∧

x. basis-prj (basis-emb x) = x
〈proof 〉

lemma basis-prj-node:
[[finite S ; node i a S /∈ range (basis-emb :: ′a compact-basis ⇒ nat)]]
=⇒ basis-prj (node i a S) = (basis-prj a :: ′a compact-basis)

〈proof 〉

lemma basis-prj-0 : basis-prj 0 = compact-bot
〈proof 〉

lemma node-eq-basis-emb-iff :
finite S =⇒ node i a S = basis-emb x ←→

x 6= compact-bot ∧ i = place x ∧ a = basis-emb (sub x) ∧
S = basis-emb ‘ {y. place y < place x ∧ x v y}

THEORY “Universal” 86

〈proof 〉

lemma basis-prj-mono: ubasis-le a b =⇒ basis-prj a v basis-prj b
〈proof 〉

lemma basis-emb-prj-less: ubasis-le (basis-emb (basis-prj x)) x
〈proof 〉

lemma ideal-completion:
ideal-completion below Rep-compact-basis (approximants :: ′a ⇒ -)
〈proof 〉

end

interpretation compact-basis:
ideal-completion below Rep-compact-basis

approximants :: ′a::bifinite ⇒ ′a compact-basis set
〈proof 〉

21.4.6 EP-pair from any bifinite domain into udom
context bifinite-approx-chain begin

definition
udom-emb :: ′a → udom

where
udom-emb = compact-basis.extension (λx. udom-principal (basis-emb x))

definition
udom-prj :: udom → ′a

where
udom-prj = udom.extension (λx. Rep-compact-basis (basis-prj x))

lemma udom-emb-principal:
udom-emb·(Rep-compact-basis x) = udom-principal (basis-emb x)
〈proof 〉

lemma udom-prj-principal:
udom-prj·(udom-principal x) = Rep-compact-basis (basis-prj x)
〈proof 〉

lemma ep-pair-udom: ep-pair udom-emb udom-prj
〈proof 〉

end

abbreviation udom-emb ≡ bifinite-approx-chain.udom-emb
abbreviation udom-prj ≡ bifinite-approx-chain.udom-prj

THEORY “Algebraic” 87

lemmas ep-pair-udom =
bifinite-approx-chain.ep-pair-udom [unfolded bifinite-approx-chain-def]

21.5 Chain of approx functions for type udom
definition

udom-approx :: nat ⇒ udom → udom
where

udom-approx i =
udom.extension (λx. udom-principal (ubasis-until (λy. y ≤ i) x))

lemma udom-approx-mono:
ubasis-le a b =⇒

udom-principal (ubasis-until (λy. y ≤ i) a) v
udom-principal (ubasis-until (λy. y ≤ i) b)

〈proof 〉

lemma adm-mem-finite: [[cont f ; finite S]] =⇒ adm (λx. f x ∈ S)
〈proof 〉

lemma udom-approx-principal:
udom-approx i·(udom-principal x) =

udom-principal (ubasis-until (λy. y ≤ i) x)
〈proof 〉

lemma finite-deflation-udom-approx: finite-deflation (udom-approx i)
〈proof 〉

interpretation udom-approx: finite-deflation udom-approx i
〈proof 〉

lemma chain-udom-approx [simp]: chain (λi. udom-approx i)
〈proof 〉

lemma lub-udom-approx [simp]: (
⊔

i. udom-approx i) = ID
〈proof 〉

lemma udom-approx [simp]: approx-chain udom-approx
〈proof 〉

instance udom :: bifinite
〈proof 〉

hide-const (open) node

unbundle binomial-syntax

end

THEORY “Algebraic” 88

22 Algebraic deflations
theory Algebraic
imports Universal Map-Functions
begin

22.1 Type constructor for finite deflations
typedef ′a::bifinite fin-defl = {d:: ′a → ′a. finite-deflation d}
〈proof 〉

instantiation fin-defl :: (bifinite) below
begin

definition below-fin-defl-def :
below ≡ λx y. Rep-fin-defl x v Rep-fin-defl y

instance 〈proof 〉
end

instance fin-defl :: (bifinite) po
〈proof 〉

lemma finite-deflation-Rep-fin-defl: finite-deflation (Rep-fin-defl d)
〈proof 〉

lemma deflation-Rep-fin-defl: deflation (Rep-fin-defl d)
〈proof 〉

interpretation Rep-fin-defl: finite-deflation Rep-fin-defl d
〈proof 〉

lemma fin-defl-belowI :
(
∧

x. Rep-fin-defl a·x = x =⇒ Rep-fin-defl b·x = x) =⇒ a v b
〈proof 〉

lemma fin-defl-belowD:
[[a v b; Rep-fin-defl a·x = x]] =⇒ Rep-fin-defl b·x = x
〈proof 〉

lemma fin-defl-eqI :
a = b if (

∧
x. Rep-fin-defl a·x = x ←→ Rep-fin-defl b·x = x)

〈proof 〉

lemma Rep-fin-defl-mono: a v b =⇒ Rep-fin-defl a v Rep-fin-defl b
〈proof 〉

lemma Abs-fin-defl-mono:
[[finite-deflation a; finite-deflation b; a v b]]
=⇒ Abs-fin-defl a v Abs-fin-defl b

THEORY “Algebraic” 89

〈proof 〉

lemma (in finite-deflation) compact-belowI :
d v f if

∧
x. compact x =⇒ d·x = x =⇒ f ·x = x

〈proof 〉

lemma compact-Rep-fin-defl [simp]: compact (Rep-fin-defl a)
〈proof 〉

22.2 Defining algebraic deflations by ideal completion
typedef ′a::bifinite defl = {S :: ′a fin-defl set. below.ideal S}
〈proof 〉

instantiation defl :: (bifinite) below
begin

definition x v y ←→ Rep-defl x ⊆ Rep-defl y

instance 〈proof 〉

end

instance defl :: (bifinite) po
〈proof 〉

instance defl :: (bifinite) cpo
〈proof 〉

definition defl-principal :: ′a::bifinite fin-defl ⇒ ′a defl
where defl-principal t = Abs-defl {u. u v t}

lemma fin-defl-countable: ∃ f :: ′a::bifinite fin-defl ⇒ nat. inj f
〈proof 〉

interpretation defl: ideal-completion below defl-principal Rep-defl
〈proof 〉

Algebraic deflations are pointed
lemma defl-minimal: defl-principal (Abs-fin-defl ⊥) v x
〈proof 〉

instance defl :: (bifinite) pcpo
〈proof 〉

lemma inst-defl-pcpo: ⊥ = defl-principal (Abs-fin-defl ⊥)
〈proof 〉

THEORY “Algebraic” 90

22.3 Applying algebraic deflations
definition cast :: ′a::bifinite defl → ′a → ′a

where cast = defl.extension Rep-fin-defl

lemma cast-defl-principal: cast·(defl-principal a) = Rep-fin-defl a
〈proof 〉

lemma deflation-cast: deflation (cast·d)
〈proof 〉

lemma finite-deflation-cast: compact d =⇒ finite-deflation (cast·d)
〈proof 〉

interpretation cast: deflation cast·d
〈proof 〉

declare cast.idem [simp]

lemma compact-cast [simp]: compact (cast·d) if compact d
〈proof 〉

lemma cast-below-cast: cast·A v cast·B ←→ A v B
〈proof 〉

lemma compact-cast-iff : compact (cast·d) ←→ compact d
〈proof 〉

lemma cast-below-imp-below: cast·A v cast·B =⇒ A v B
〈proof 〉

lemma cast-eq-imp-eq: cast·A = cast·B =⇒ A = B
〈proof 〉

lemma cast-strict1 [simp]: cast·⊥ = ⊥
〈proof 〉

lemma cast-strict2 [simp]: cast·A·⊥ = ⊥
〈proof 〉

22.4 Deflation combinators
definition

defl-fun1 e p f =
defl.extension (λa.

defl-principal (Abs-fin-defl
(e oo f ·(Rep-fin-defl a) oo p)))

definition
defl-fun2 e p f =

THEORY “Representable” 91

defl.extension (λa.
defl.extension (λb.

defl-principal (Abs-fin-defl
(e oo f ·(Rep-fin-defl a)·(Rep-fin-defl b) oo p))))

lemma cast-defl-fun1 :
assumes ep: ep-pair e p
assumes f :

∧
a. finite-deflation a =⇒ finite-deflation (f ·a)

shows cast·(defl-fun1 e p f ·A) = e oo f ·(cast·A) oo p
〈proof 〉

lemma cast-defl-fun2 :
assumes ep: ep-pair e p
assumes f :

∧
a b. finite-deflation a =⇒ finite-deflation b =⇒

finite-deflation (f ·a·b)
shows cast·(defl-fun2 e p f ·A·B) = e oo f ·(cast·A)·(cast·B) oo p
〈proof 〉

end

23 Representable domains
theory Representable
imports Algebraic Map-Functions HOL−Library.Countable
begin

23.1 Class of representable domains

We define a “domain” as a pcpo that is isomorphic to some algebraic defla-
tion over the universal domain; this is equivalent to being omega-bifinite.
A predomain is a cpo that, when lifted, becomes a domain. Predomains are
represented by deflations over a lifted universal domain type.
class predomain-syn = cpo +

fixes liftemb :: ′a⊥ → udom⊥
fixes liftprj :: udom⊥ → ′a⊥
fixes liftdefl :: ′a itself ⇒ udom u defl

class predomain = predomain-syn +
assumes predomain-ep: ep-pair liftemb liftprj
assumes cast-liftdefl: cast·(liftdefl TYPE(′a)) = liftemb oo liftprj

syntax -LIFTDEFL :: type ⇒ logic (‹(1LIFTDEFL/(1 ′(- ′)))›)
syntax-consts -LIFTDEFL ⇀↽ liftdefl
translations LIFTDEFL(′t) ⇀↽ CONST liftdefl TYPE(′t)

definition liftdefl-of :: udom defl → udom u defl
where liftdefl-of = defl-fun1 ID ID u-map

THEORY “Representable” 92

lemma cast-liftdefl-of : cast·(liftdefl-of ·t) = u-map·(cast·t)
〈proof 〉

class domain = predomain-syn + pcpo +
fixes emb :: ′a → udom
fixes prj :: udom → ′a
fixes defl :: ′a itself ⇒ udom defl
assumes ep-pair-emb-prj: ep-pair emb prj
assumes cast-DEFL: cast·(defl TYPE(′a)) = emb oo prj
assumes liftemb-eq: liftemb = u-map·emb
assumes liftprj-eq: liftprj = u-map·prj
assumes liftdefl-eq: liftdefl TYPE(′a) = liftdefl-of ·(defl TYPE(′a))

syntax -DEFL :: type ⇒ logic (‹(1DEFL/(1 ′(- ′)))›)
syntax-consts -DEFL ⇀↽ defl
translations DEFL(′t) ⇀↽ CONST defl TYPE(′t)

instance domain ⊆ predomain
〈proof 〉

Constants liftemb and liftprj imply class predomain.
〈ML〉

interpretation predomain: pcpo-ep-pair liftemb liftprj
〈proof 〉

interpretation domain: pcpo-ep-pair emb prj
〈proof 〉

lemmas emb-inverse = domain.e-inverse
lemmas emb-prj-below = domain.e-p-below
lemmas emb-eq-iff = domain.e-eq-iff
lemmas emb-strict = domain.e-strict
lemmas prj-strict = domain.p-strict

23.2 Domains are bifinite
lemma approx-chain-ep-cast:

assumes ep: ep-pair (e:: ′a::pcpo → ′b::bifinite) (p:: ′b → ′a)
assumes cast-t: cast·t = e oo p
shows ∃ (a::nat ⇒ ′a::pcpo → ′a). approx-chain a
〈proof 〉

instance domain ⊆ bifinite
〈proof 〉

instance predomain ⊆ profinite
〈proof 〉

THEORY “Representable” 93

23.3 Universal domain ep-pairs
definition u-emb = udom-emb (λi. u-map·(udom-approx i))
definition u-prj = udom-prj (λi. u-map·(udom-approx i))

definition prod-emb = udom-emb (λi. prod-map·(udom-approx i)·(udom-approx
i))
definition prod-prj = udom-prj (λi. prod-map·(udom-approx i)·(udom-approx i))

definition sprod-emb = udom-emb (λi. sprod-map·(udom-approx i)·(udom-approx
i))
definition sprod-prj = udom-prj (λi. sprod-map·(udom-approx i)·(udom-approx i))

definition ssum-emb = udom-emb (λi. ssum-map·(udom-approx i)·(udom-approx
i))
definition ssum-prj = udom-prj (λi. ssum-map·(udom-approx i)·(udom-approx i))

definition sfun-emb = udom-emb (λi. sfun-map·(udom-approx i)·(udom-approx i))
definition sfun-prj = udom-prj (λi. sfun-map·(udom-approx i)·(udom-approx i))

lemma ep-pair-u: ep-pair u-emb u-prj
〈proof 〉

lemma ep-pair-prod: ep-pair prod-emb prod-prj
〈proof 〉

lemma ep-pair-sprod: ep-pair sprod-emb sprod-prj
〈proof 〉

lemma ep-pair-ssum: ep-pair ssum-emb ssum-prj
〈proof 〉

lemma ep-pair-sfun: ep-pair sfun-emb sfun-prj
〈proof 〉

23.4 Type combinators
definition u-defl :: udom defl → udom defl

where u-defl = defl-fun1 u-emb u-prj u-map

definition prod-defl :: udom defl → udom defl → udom defl
where prod-defl = defl-fun2 prod-emb prod-prj prod-map

definition sprod-defl :: udom defl → udom defl → udom defl
where sprod-defl = defl-fun2 sprod-emb sprod-prj sprod-map

definition ssum-defl :: udom defl → udom defl → udom defl
where ssum-defl = defl-fun2 ssum-emb ssum-prj ssum-map

definition sfun-defl :: udom defl → udom defl → udom defl

THEORY “Representable” 94

where sfun-defl = defl-fun2 sfun-emb sfun-prj sfun-map

lemma cast-u-defl:
cast·(u-defl·A) = u-emb oo u-map·(cast·A) oo u-prj
〈proof 〉

lemma cast-prod-defl:
cast·(prod-defl·A·B) =

prod-emb oo prod-map·(cast·A)·(cast·B) oo prod-prj
〈proof 〉

lemma cast-sprod-defl:
cast·(sprod-defl·A·B) =

sprod-emb oo sprod-map·(cast·A)·(cast·B) oo sprod-prj
〈proof 〉

lemma cast-ssum-defl:
cast·(ssum-defl·A·B) =

ssum-emb oo ssum-map·(cast·A)·(cast·B) oo ssum-prj
〈proof 〉

lemma cast-sfun-defl:
cast·(sfun-defl·A·B) =

sfun-emb oo sfun-map·(cast·A)·(cast·B) oo sfun-prj
〈proof 〉

Special deflation combinator for unpointed types.
definition u-liftdefl :: udom u defl → udom defl

where u-liftdefl = defl-fun1 u-emb u-prj ID

lemma cast-u-liftdefl:
cast·(u-liftdefl·A) = u-emb oo cast·A oo u-prj
〈proof 〉

lemma u-liftdefl-liftdefl-of :
u-liftdefl·(liftdefl-of ·A) = u-defl·A
〈proof 〉

23.5 Class instance proofs
23.5.1 Universal domain
instantiation udom :: domain
begin

definition [simp]:
emb = (ID :: udom → udom)

definition [simp]:
prj = (ID :: udom → udom)

THEORY “Representable” 95

definition
defl (t::udom itself) = (

⊔
i. defl-principal (Abs-fin-defl (udom-approx i)))

definition
(liftemb :: udom u → udom u) = u-map·emb

definition
(liftprj :: udom u → udom u) = u-map·prj

definition
liftdefl (t::udom itself) = liftdefl-of ·DEFL(udom)

instance 〈proof 〉

end

23.5.2 Lifted cpo
instantiation u :: (predomain) domain
begin

definition
emb = u-emb oo liftemb

definition
prj = liftprj oo u-prj

definition
defl (t:: ′a u itself) = u-liftdefl·LIFTDEFL(′a)

definition
(liftemb :: ′a u u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a u u) = u-map·prj

definition
liftdefl (t:: ′a u itself) = liftdefl-of ·DEFL(′a u)

instance 〈proof 〉

end

lemma DEFL-u: DEFL(′a::predomain u) = u-liftdefl·LIFTDEFL(′a)
〈proof 〉

23.5.3 Strict function space
instantiation sfun :: (domain, domain) domain

THEORY “Representable” 96

begin

definition
emb = sfun-emb oo sfun-map·prj·emb

definition
prj = sfun-map·emb·prj oo sfun-prj

definition
defl (t::(′a →! ′b) itself) = sfun-defl·DEFL(′a)·DEFL(′b)

definition
(liftemb :: (′a →! ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → (′a →! ′b) u) = u-map·prj

definition
liftdefl (t::(′a →! ′b) itself) = liftdefl-of ·DEFL(′a →! ′b)

instance 〈proof 〉

end

lemma DEFL-sfun:
DEFL(′a::domain →! ′b::domain) = sfun-defl·DEFL(′a)·DEFL(′b)
〈proof 〉

23.5.4 Continuous function space
instantiation cfun :: (predomain, domain) domain
begin

definition
emb = emb oo encode-cfun

definition
prj = decode-cfun oo prj

definition
defl (t::(′a → ′b) itself) = DEFL(′a u →! ′b)

definition
(liftemb :: (′a → ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → (′a → ′b) u) = u-map·prj

definition

THEORY “Representable” 97

liftdefl (t::(′a → ′b) itself) = liftdefl-of ·DEFL(′a → ′b)

instance 〈proof 〉

end

lemma DEFL-cfun:
DEFL(′a::predomain → ′b::domain) = DEFL(′a u →! ′b)
〈proof 〉

23.5.5 Strict product
instantiation sprod :: (domain, domain) domain
begin

definition
emb = sprod-emb oo sprod-map·emb·emb

definition
prj = sprod-map·prj·prj oo sprod-prj

definition
defl (t::(′a ⊗ ′b) itself) = sprod-defl·DEFL(′a)·DEFL(′b)

definition
(liftemb :: (′a ⊗ ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → (′a ⊗ ′b) u) = u-map·prj

definition
liftdefl (t::(′a ⊗ ′b) itself) = liftdefl-of ·DEFL(′a ⊗ ′b)

instance 〈proof 〉

end

lemma DEFL-sprod:
DEFL(′a::domain ⊗ ′b::domain) = sprod-defl·DEFL(′a)·DEFL(′b)
〈proof 〉

23.5.6 Cartesian product
definition prod-liftdefl :: udom u defl → udom u defl → udom u defl

where prod-liftdefl = defl-fun2 (u-map·prod-emb oo decode-prod-u)
(encode-prod-u oo u-map·prod-prj) sprod-map

lemma cast-prod-liftdefl:
cast·(prod-liftdefl·a·b) =
(u-map·prod-emb oo decode-prod-u) oo sprod-map·(cast·a)·(cast·b) oo

THEORY “Representable” 98

(encode-prod-u oo u-map·prod-prj)
〈proof 〉

instantiation prod :: (predomain, predomain) predomain
begin

definition
liftemb = (u-map·prod-emb oo decode-prod-u) oo
(sprod-map·liftemb·liftemb oo encode-prod-u)

definition
liftprj = (decode-prod-u oo sprod-map·liftprj·liftprj) oo
(encode-prod-u oo u-map·prod-prj)

definition
liftdefl (t::(′a × ′b) itself) = prod-liftdefl·LIFTDEFL(′a)·LIFTDEFL(′b)

instance 〈proof 〉

end

instantiation prod :: (domain, domain) domain
begin

definition
emb = prod-emb oo prod-map·emb·emb

definition
prj = prod-map·prj·prj oo prod-prj

definition
defl (t::(′a × ′b) itself) = prod-defl·DEFL(′a)·DEFL(′b)

instance 〈proof 〉

end

lemma DEFL-prod:
DEFL(′a::domain × ′b::domain) = prod-defl·DEFL(′a)·DEFL(′b)
〈proof 〉

lemma LIFTDEFL-prod:
LIFTDEFL(′a::predomain × ′b::predomain) =

prod-liftdefl·LIFTDEFL(′a)·LIFTDEFL(′b)
〈proof 〉

23.5.7 Unit type
instantiation unit :: domain

THEORY “Representable” 99

begin

definition
emb = (⊥ :: unit → udom)

definition
prj = (⊥ :: udom → unit)

definition
defl (t::unit itself) = ⊥

definition
(liftemb :: unit u → udom u) = u-map·emb

definition
(liftprj :: udom u → unit u) = u-map·prj

definition
liftdefl (t::unit itself) = liftdefl-of ·DEFL(unit)

instance 〈proof 〉

end

23.5.8 Discrete cpo
instantiation discr :: (countable) predomain
begin

definition
(liftemb :: ′a discr u → udom u) = strictify·up oo udom-emb discr-approx

definition
(liftprj :: udom u → ′a discr u) = udom-prj discr-approx oo fup·ID

definition
liftdefl (t:: ′a discr itself) =
(
⊔

i. defl-principal (Abs-fin-defl (liftemb oo discr-approx i oo (liftprj::udom u
→ ′a discr u))))

instance 〈proof 〉

end

23.5.9 Strict sum
instantiation ssum :: (domain, domain) domain
begin

definition

THEORY “Representable” 100

emb = ssum-emb oo ssum-map·emb·emb

definition
prj = ssum-map·prj·prj oo ssum-prj

definition
defl (t::(′a ⊕ ′b) itself) = ssum-defl·DEFL(′a)·DEFL(′b)

definition
(liftemb :: (′a ⊕ ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → (′a ⊕ ′b) u) = u-map·prj

definition
liftdefl (t::(′a ⊕ ′b) itself) = liftdefl-of ·DEFL(′a ⊕ ′b)

instance 〈proof 〉

end

lemma DEFL-ssum:
DEFL(′a::domain ⊕ ′b::domain) = ssum-defl·DEFL(′a)·DEFL(′b)
〈proof 〉

23.5.10 Lifted HOL type
instantiation lift :: (countable) domain
begin

definition
emb = emb oo (Λ x. Rep-lift x)

definition
prj = (Λ y. Abs-lift y) oo prj

definition
defl (t:: ′a lift itself) = DEFL(′a discr u)

definition
(liftemb :: ′a lift u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a lift u) = u-map·prj

definition
liftdefl (t:: ′a lift itself) = liftdefl-of ·DEFL(′a lift)

instance 〈proof 〉

THEORY “One” 101

end

end

24 The unit domain
theory One

imports Lift
begin

type-synonym one = unit lift

translations
(type) one ↽ (type) unit lift

definition ONE :: one
where ONE ≡ Def ()

Exhaustion and Elimination for type one
lemma Exh-one: t = ⊥ ∨ t = ONE
〈proof 〉

lemma oneE [case-names bottom ONE]: [[p = ⊥ =⇒ Q; p = ONE =⇒ Q]] =⇒ Q
〈proof 〉

lemma one-induct [case-names bottom ONE]: P ⊥ =⇒ P ONE =⇒ P x
〈proof 〉

lemma dist-below-one [simp]: ONE 6v ⊥
〈proof 〉

lemma below-ONE [simp]: x v ONE
〈proof 〉

lemma ONE-below-iff [simp]: ONE v x ←→ x = ONE
〈proof 〉

lemma ONE-defined [simp]: ONE 6= ⊥
〈proof 〉

lemma one-neq-iffs [simp]:
x 6= ONE ←→ x = ⊥
ONE 6= x ←→ x = ⊥
x 6= ⊥ ←→ x = ONE
⊥ 6= x ←→ x = ONE
〈proof 〉

lemma compact-ONE : compact ONE

THEORY “Fixrec” 102

〈proof 〉

Case analysis function for type one
definition one-case :: ′a::pcpo → one → ′a

where one-case = (Λ a x. seq·x·a)

translations
case x of XCONST ONE ⇒ t ⇀↽ CONST one-case·t·x
case x of XCONST ONE :: ′a ⇒ t ⇀ CONST one-case·t·x
Λ (XCONST ONE). t ⇀↽ CONST one-case·t

lemma one-case1 [simp]: (case ⊥ of ONE ⇒ t) = ⊥
〈proof 〉

lemma one-case2 [simp]: (case ONE of ONE ⇒ t) = t
〈proof 〉

lemma one-case3 [simp]: (case x of ONE ⇒ ONE) = x
〈proof 〉

end

theory Fixrec
imports Cprod Sprod Ssum Up One Tr Cfun
keywords fixrec :: thy-defn
begin

25 Fixed point operator and admissibility
25.1 Iteration
primrec iterate :: nat ⇒ (′a → ′a) → (′a → ′a)

where
iterate 0 = (Λ F x. x)
| iterate (Suc n) = (Λ F x. F ·(iterate n·F ·x))

Derive inductive properties of iterate from primitive recursion
lemma iterate-0 [simp]: iterate 0 ·F ·x = x
〈proof 〉

lemma iterate-Suc [simp]: iterate (Suc n)·F ·x = F ·(iterate n·F ·x)
〈proof 〉

declare iterate.simps [simp del]

lemma iterate-Suc2 : iterate (Suc n)·F ·x = iterate n·F ·(F ·x)
〈proof 〉

THEORY “Fixrec” 103

lemma iterate-iterate: iterate m·F ·(iterate n·F ·x) = iterate (m + n)·F ·x
〈proof 〉

The sequence of function iterations is a chain.
lemma chain-iterate [simp]: chain (λi. iterate i·F ·⊥)
〈proof 〉

25.2 Least fixed point operator
definition fix :: (′a::pcpo → ′a) → ′a

where fix = (Λ F .
⊔

i. iterate i·F ·⊥)

Binder syntax for fix
abbreviation fix-syn :: (′a::pcpo ⇒ ′a) ⇒ ′a (binder ‹µ › 10)

where fix-syn (λx. f x) ≡ fix·(Λ x. f x)

notation (ASCII)
fix-syn (binder ‹FIX › 10)

Properties of fix

direct connection between fix and iteration
lemma fix-def2 : fix·F = (

⊔
i. iterate i·F ·⊥)

〈proof 〉

lemma iterate-below-fix: iterate n·f ·⊥ v fix·f
〈proof 〉

Kleene’s fixed point theorems for continuous functions in pointed omega
cpo’s
lemma fix-eq: fix·F = F ·(fix·F)
〈proof 〉

lemma fix-least-below: F ·x v x =⇒ fix·F v x
〈proof 〉

lemma fix-least: F ·x = x =⇒ fix·F v x
〈proof 〉

lemma fix-eqI :
assumes fixed: F ·x = x

and least:
∧

z. F ·z = z =⇒ x v z
shows fix·F = x
〈proof 〉

lemma fix-eq2 : f ≡ fix·F =⇒ f = F ·f
〈proof 〉

lemma fix-eq3 : f ≡ fix·F =⇒ f ·x = F ·f ·x

THEORY “Fixrec” 104

〈proof 〉

lemma fix-eq4 : f = fix·F =⇒ f = F ·f
〈proof 〉

lemma fix-eq5 : f = fix·F =⇒ f ·x = F ·f ·x
〈proof 〉

strictness of fix
lemma fix-bottom-iff : fix·F = ⊥ ←→ F ·⊥ = ⊥
〈proof 〉

lemma fix-strict: F ·⊥ = ⊥ =⇒ fix·F = ⊥
〈proof 〉

lemma fix-defined: F ·⊥ 6= ⊥ =⇒ fix·F 6= ⊥
〈proof 〉

fix applied to identity and constant functions
lemma fix-id: (µ x. x) = ⊥
〈proof 〉

lemma fix-const: (µ x. c) = c
〈proof 〉

25.3 Fixed point induction
lemma fix-ind: adm P =⇒ P ⊥ =⇒ (

∧
x. P x =⇒ P (F ·x)) =⇒ P (fix·F)

〈proof 〉

lemma cont-fix-ind: cont F =⇒ adm P =⇒ P ⊥ =⇒ (
∧

x. P x =⇒ P (F x)) =⇒
P (fix·(Abs-cfun F))
〈proof 〉

lemma def-fix-ind: [[f ≡ fix·F ; adm P; P ⊥;
∧

x. P x =⇒ P (F ·x)]] =⇒ P f
〈proof 〉

lemma fix-ind2 :
assumes adm: adm P
assumes 0 : P ⊥ and 1 : P (F ·⊥)
assumes step:

∧
x. [[P x; P (F ·x)]] =⇒ P (F ·(F ·x))

shows P (fix·F)
〈proof 〉

lemma parallel-fix-ind:
assumes adm: adm (λx. P (fst x) (snd x))
assumes base: P ⊥ ⊥
assumes step:

∧
x y. P x y =⇒ P (F ·x) (G·y)

shows P (fix·F) (fix·G)

THEORY “Fixrec” 105

〈proof 〉

lemma cont-parallel-fix-ind:
assumes cont F and cont G
assumes adm (λx. P (fst x) (snd x))
assumes P ⊥ ⊥
assumes

∧
x y. P x y =⇒ P (F x) (G y)

shows P (fix·(Abs-cfun F)) (fix·(Abs-cfun G))
〈proof 〉

25.4 Fixed-points on product types

Bekic’s Theorem: Simultaneous fixed points over pairs can be written in
terms of separate fixed points.
lemma fix-cprod:

fixes F :: ′a::pcpo × ′b::pcpo → ′a × ′b
shows

fix·F =
(µ x. fst (F ·(x, µ y. snd (F ·(x, y)))),
µ y. snd (F ·(µ x. fst (F ·(x, µ y. snd (F ·(x, y)))), y)))

(is fix·F = (?x, ?y))
〈proof 〉

26 Package for defining recursive functions in HOLCF
26.1 Pattern-match monad
pcpodef ′a match = UNIV ::(one ++ ′a u) set
〈proof 〉

definition
fail :: ′a match where
fail = Abs-match (sinl·ONE)

definition
succeed :: ′a → ′a match where
succeed = (Λ x. Abs-match (sinr ·(up·x)))

lemma matchE [case-names bottom fail succeed, cases type: match]:
[[p = ⊥ =⇒ Q; p = fail =⇒ Q;

∧
x. p = succeed·x =⇒ Q]] =⇒ Q

〈proof 〉

lemma succeed-defined [simp]: succeed·x 6= ⊥
〈proof 〉

lemma fail-defined [simp]: fail 6= ⊥
〈proof 〉

THEORY “Fixrec” 106

lemma succeed-eq [simp]: (succeed·x = succeed·y) = (x = y)
〈proof 〉

lemma succeed-neq-fail [simp]:
succeed·x 6= fail fail 6= succeed·x
〈proof 〉

26.1.1 Run operator
definition

run :: ′a match → ′a::pcpo where
run = (Λ m. sscase·⊥·(fup·ID)·(Rep-match m))

rewrite rules for run
lemma run-strict [simp]: run·⊥ = ⊥
〈proof 〉

lemma run-fail [simp]: run·fail = ⊥
〈proof 〉

lemma run-succeed [simp]: run·(succeed·x) = x
〈proof 〉

26.1.2 Monad plus operator
definition

mplus :: ′a match → ′a match → ′a match where
mplus = (Λ m1 m2 . sscase·(Λ -. m2)·(Λ -. m1)·(Rep-match m1))

abbreviation
mplus-syn :: [′a match, ′a match] ⇒ ′a match (infixr ‹+++› 65) where
m1 +++ m2 == mplus·m1 ·m2

rewrite rules for mplus
lemma mplus-strict [simp]: ⊥ +++ m = ⊥
〈proof 〉

lemma mplus-fail [simp]: fail +++ m = m
〈proof 〉

lemma mplus-succeed [simp]: succeed·x +++ m = succeed·x
〈proof 〉

lemma mplus-fail2 [simp]: m +++ fail = m
〈proof 〉

lemma mplus-assoc: (x +++ y) +++ z = x +++ (y +++ z)
〈proof 〉

THEORY “Fixrec” 107

26.2 Match functions for built-in types
definition

match-bottom :: ′a::pcpo → ′c match → ′c match
where

match-bottom = (Λ x k. seq·x·fail)

definition
match-Pair :: ′a × ′b → (′a → ′b → ′c match) → ′c match

where
match-Pair = (Λ x k. csplit·k·x)

definition
match-spair :: ′a::pcpo ⊗ ′b::pcpo → (′a → ′b → ′c match) → ′c::pcpo match

where
match-spair = (Λ x k. ssplit·k·x)

definition
match-sinl :: ′a::pcpo ⊕ ′b::pcpo → (′a → ′c::pcpo match) → ′c match

where
match-sinl = (Λ x k. sscase·k·(Λ b. fail)·x)

definition
match-sinr :: ′a::pcpo ⊕ ′b::pcpo → (′b → ′c::pcpo match) → ′c match

where
match-sinr = (Λ x k. sscase·(Λ a. fail)·k·x)

definition
match-up :: ′a u → (′a → ′c::pcpo match) → ′c match

where
match-up = (Λ x k. fup·k·x)

definition
match-ONE :: one → ′c::pcpo match → ′c match

where
match-ONE = (Λ ONE k. k)

definition
match-TT :: tr → ′c::pcpo match → ′c match

where
match-TT = (Λ x k. If x then k else fail)

definition
match-FF :: tr → ′c::pcpo match → ′c match

where
match-FF = (Λ x k. If x then fail else k)

lemma match-bottom-simps [simp]:
match-bottom·x·k = (if x = ⊥ then ⊥ else fail)
〈proof 〉

THEORY “Fixrec” 108

lemma match-Pair-simps [simp]:
match-Pair ·(x, y)·k = k·x·y
〈proof 〉

lemma match-spair-simps [simp]:
[[x 6= ⊥; y 6= ⊥]] =⇒ match-spair ·(:x, y:)·k = k·x·y
match-spair ·⊥·k = ⊥
〈proof 〉

lemma match-sinl-simps [simp]:
x 6= ⊥ =⇒ match-sinl·(sinl·x)·k = k·x
y 6= ⊥ =⇒ match-sinl·(sinr ·y)·k = fail
match-sinl·⊥·k = ⊥
〈proof 〉

lemma match-sinr-simps [simp]:
x 6= ⊥ =⇒ match-sinr ·(sinl·x)·k = fail
y 6= ⊥ =⇒ match-sinr ·(sinr ·y)·k = k·y
match-sinr ·⊥·k = ⊥
〈proof 〉

lemma match-up-simps [simp]:
match-up·(up·x)·k = k·x
match-up·⊥·k = ⊥
〈proof 〉

lemma match-ONE-simps [simp]:
match-ONE ·ONE ·k = k
match-ONE ·⊥·k = ⊥
〈proof 〉

lemma match-TT-simps [simp]:
match-TT ·TT ·k = k
match-TT ·FF ·k = fail
match-TT ·⊥·k = ⊥
〈proof 〉

lemma match-FF-simps [simp]:
match-FF ·FF ·k = k
match-FF ·TT ·k = fail
match-FF ·⊥·k = ⊥
〈proof 〉

26.3 Mutual recursion

The following rules are used to prove unfolding theorems from fixed-point
definitions of mutually recursive functions.
lemma Pair-equalI : [[x ≡ fst p; y ≡ snd p]] =⇒ (x, y) ≡ p

THEORY “Domain” 109

〈proof 〉

lemma Pair-eqD1 : (x, y) = (x ′, y ′) =⇒ x = x ′

〈proof 〉

lemma Pair-eqD2 : (x, y) = (x ′, y ′) =⇒ y = y ′

〈proof 〉

lemma def-cont-fix-eq:
[[f ≡ fix·(Abs-cfun F); cont F]] =⇒ f = F f
〈proof 〉

lemma def-cont-fix-ind:
[[f ≡ fix·(Abs-cfun F); cont F ; adm P; P ⊥;

∧
x. P x =⇒ P (F x)]] =⇒ P f

〈proof 〉

lemma for proving rewrite rules
lemma ssubst-lhs: [[t = s; P s = Q]] =⇒ P t = Q
〈proof 〉

26.4 Initializing the fixrec package
〈ML〉

hide-const (open) succeed fail run

end

27 Domain package
theory Domain
imports Representable Map-Functions Fixrec
keywords

lazy unsafe and
domaindef domain :: thy-defn and
domain-isomorphism :: thy-decl

begin

27.1 Continuous isomorphisms

A locale for continuous isomorphisms
locale iso =

fixes abs :: ′a::pcpo → ′b::pcpo
fixes rep :: ′b → ′a
assumes abs-iso [simp]: rep·(abs·x) = x
assumes rep-iso [simp]: abs·(rep·y) = y

begin

THEORY “Domain” 110

lemma swap: iso rep abs
〈proof 〉

lemma abs-below: (abs·x v abs·y) = (x v y)
〈proof 〉

lemma rep-below: (rep·x v rep·y) = (x v y)
〈proof 〉

lemma abs-eq: (abs·x = abs·y) = (x = y)
〈proof 〉

lemma rep-eq: (rep·x = rep·y) = (x = y)
〈proof 〉

lemma abs-strict: abs·⊥ = ⊥
〈proof 〉

lemma rep-strict: rep·⊥ = ⊥
〈proof 〉

lemma abs-defin ′: abs·x = ⊥ =⇒ x = ⊥
〈proof 〉

lemma rep-defin ′: rep·z = ⊥ =⇒ z = ⊥
〈proof 〉

lemma abs-defined: z 6= ⊥ =⇒ abs·z 6= ⊥
〈proof 〉

lemma rep-defined: z 6= ⊥ =⇒ rep·z 6= ⊥
〈proof 〉

lemma abs-bottom-iff : (abs·x = ⊥) = (x = ⊥)
〈proof 〉

lemma rep-bottom-iff : (rep·x = ⊥) = (x = ⊥)
〈proof 〉

lemma casedist-rule: rep·x = ⊥ ∨ P =⇒ x = ⊥ ∨ P
〈proof 〉

lemma compact-abs-rev: compact (abs·x) =⇒ compact x
〈proof 〉

lemma compact-rep-rev: compact (rep·x) =⇒ compact x
〈proof 〉

lemma compact-abs: compact x =⇒ compact (abs·x)

THEORY “Domain” 111

〈proof 〉

lemma compact-rep: compact x =⇒ compact (rep·x)
〈proof 〉

lemma iso-swap: (x = abs·y) = (rep·x = y)
〈proof 〉

end

27.2 Proofs about take functions

This section contains lemmas that are used in a module that supports the
domain isomorphism package; the module contains proofs related to take
functions and the finiteness predicate.
lemma deflation-abs-rep:

fixes abs and rep and d
assumes abs-iso:

∧
x. rep·(abs·x) = x

assumes rep-iso:
∧

y. abs·(rep·y) = y
shows deflation d =⇒ deflation (abs oo d oo rep)
〈proof 〉

lemma deflation-chain-min:
assumes chain: chain d
assumes defl:

∧
n. deflation (d n)

shows d m·(d n·x) = d (min m n)·x
〈proof 〉

lemma lub-ID-take-lemma:
assumes chain t and (

⊔
n. t n) = ID

assumes
∧

n. t n·x = t n·y shows x = y
〈proof 〉

lemma lub-ID-reach:
assumes chain t and (

⊔
n. t n) = ID

shows (
⊔

n. t n·x) = x
〈proof 〉

lemma lub-ID-take-induct:
assumes chain t and (

⊔
n. t n) = ID

assumes adm P and
∧

n. P (t n·x) shows P x
〈proof 〉

27.3 Finiteness

Let a “decisive” function be a deflation that maps every input to either itself
or bottom. Then if a domain’s take functions are all decisive, then all values
in the domain are finite.

THEORY “Domain” 112

definition
decisive :: (′a::pcpo → ′a) ⇒ bool

where
decisive d ←→ (∀ x. d·x = x ∨ d·x = ⊥)

lemma decisiveI : (
∧

x. d·x = x ∨ d·x = ⊥) =⇒ decisive d
〈proof 〉

lemma decisive-cases:
assumes decisive d obtains d·x = x | d·x = ⊥
〈proof 〉

lemma decisive-bottom: decisive ⊥
〈proof 〉

lemma decisive-ID: decisive ID
〈proof 〉

lemma decisive-ssum-map:
assumes f : decisive f
assumes g: decisive g
shows decisive (ssum-map·f ·g)
〈proof 〉

lemma decisive-sprod-map:
assumes f : decisive f
assumes g: decisive g
shows decisive (sprod-map·f ·g)
〈proof 〉

lemma decisive-abs-rep:
fixes abs rep
assumes iso: iso abs rep
assumes d: decisive d
shows decisive (abs oo d oo rep)
〈proof 〉

lemma lub-ID-finite:
assumes chain: chain d
assumes lub: (

⊔
n. d n) = ID

assumes decisive:
∧

n. decisive (d n)
shows ∃n. d n·x = x
〈proof 〉

lemma lub-ID-finite-take-induct:
assumes chain d and (

⊔
n. d n) = ID and

∧
n. decisive (d n)

shows (
∧

n. P (d n·x)) =⇒ P x
〈proof 〉

THEORY “Domain” 113

27.4 Proofs about constructor functions

Lemmas for proving nchotomy rule:
lemma ex-one-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) = P ONE
〈proof 〉

lemma ex-up-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) = (∃ x. P (up·x))
〈proof 〉

lemma ex-sprod-bottom-iff :
(∃ y. P y ∧ y 6= ⊥) =
(∃ x y. (P (:x, y:) ∧ x 6= ⊥) ∧ y 6= ⊥)
〈proof 〉

lemma ex-sprod-up-bottom-iff :
(∃ y. P y ∧ y 6= ⊥) =
(∃ x y. P (:up·x, y:) ∧ y 6= ⊥)
〈proof 〉

lemma ex-ssum-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) =
((∃ x. P (sinl·x) ∧ x 6= ⊥) ∨
(∃ x. P (sinr ·x) ∧ x 6= ⊥))
〈proof 〉

lemma exh-start: p = ⊥ ∨ (∃ x. p = x ∧ x 6= ⊥)
〈proof 〉

lemmas ex-bottom-iffs =
ex-ssum-bottom-iff
ex-sprod-up-bottom-iff
ex-sprod-bottom-iff
ex-up-bottom-iff
ex-one-bottom-iff

Rules for turning nchotomy into exhaust:
lemma exh-casedist0 : [[R; R =⇒ P]] =⇒ P
〈proof 〉

lemma exh-casedist1 : ((P ∨ Q =⇒ R) =⇒ S) ≡ ([[P =⇒ R; Q =⇒ R]] =⇒ S)
〈proof 〉

lemma exh-casedist2 : (∃ x. P x =⇒ Q) ≡ (
∧

x. P x =⇒ Q)
〈proof 〉

lemma exh-casedist3 : (P ∧ Q =⇒ R) ≡ (P =⇒ Q =⇒ R)
〈proof 〉

THEORY “Domain” 114

lemmas exh-casedists = exh-casedist1 exh-casedist2 exh-casedist3

Rules for proving constructor properties
lemmas con-strict-rules =

sinl-strict sinr-strict spair-strict1 spair-strict2

lemmas con-bottom-iff-rules =
sinl-bottom-iff sinr-bottom-iff spair-bottom-iff up-defined ONE-defined

lemmas con-below-iff-rules =
sinl-below sinr-below sinl-below-sinr sinr-below-sinl con-bottom-iff-rules

lemmas con-eq-iff-rules =
sinl-eq sinr-eq sinl-eq-sinr sinr-eq-sinl con-bottom-iff-rules

lemmas sel-strict-rules =
cfcomp2 sscase1 sfst-strict ssnd-strict fup1

lemma sel-app-extra-rules:
sscase·ID·⊥·(sinr ·x) = ⊥
sscase·ID·⊥·(sinl·x) = x
sscase·⊥·ID·(sinl·x) = ⊥
sscase·⊥·ID·(sinr ·x) = x
fup·ID·(up·x) = x
〈proof 〉

lemmas sel-app-rules =
sel-strict-rules sel-app-extra-rules
ssnd-spair sfst-spair up-defined spair-defined

lemmas sel-bottom-iff-rules =
cfcomp2 sfst-bottom-iff ssnd-bottom-iff

lemmas take-con-rules =
ssum-map-sinl ′ ssum-map-sinr ′ sprod-map-spair ′ u-map-up
deflation-strict deflation-ID ID1 cfcomp2

27.5 ML setup
named-theorems domain-deflation theorems like deflation a ==> deflation (foo-map$a)

and domain-map-ID theorems like foo-map$ID = ID

〈ML〉

27.6 Representations of types
lemma emb-prj: emb·((prj·x):: ′a::domain) = cast·DEFL(′a)·x
〈proof 〉

THEORY “Domain” 115

lemma emb-prj-emb:
fixes x :: ′a::domain
assumes DEFL(′a) v DEFL(′b)
shows emb·(prj·(emb·x) :: ′b::domain) = emb·x
〈proof 〉

lemma prj-emb-prj:
assumes DEFL(′a::domain) v DEFL(′b::domain)
shows prj·(emb·(prj·x :: ′b)) = (prj·x :: ′a)
〈proof 〉

Isomorphism lemmas used internally by the domain package:
lemma domain-abs-iso:

fixes abs and rep
assumes DEFL: DEFL(′b::domain) = DEFL(′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows rep·(abs·x) = x
〈proof 〉

lemma domain-rep-iso:
fixes abs and rep
assumes DEFL: DEFL(′b::domain) = DEFL(′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows abs·(rep·x) = x
〈proof 〉

27.7 Deflations as sets
definition defl-set :: ′a::bifinite defl ⇒ ′a set
where defl-set A = {x. cast·A·x = x}

lemma adm-defl-set: adm (λx. x ∈ defl-set A)
〈proof 〉

lemma defl-set-bottom: ⊥ ∈ defl-set A
〈proof 〉

lemma defl-set-cast [simp]: cast·A·x ∈ defl-set A
〈proof 〉

lemma defl-set-subset-iff : defl-set A ⊆ defl-set B ←→ A v B
〈proof 〉

27.8 Proving a subtype is representable

Temporarily relax type constraints.

THEORY “Domain” 116

〈ML〉

lemma typedef-domain-class:
fixes Rep :: ′a::pcpo ⇒ udom
fixes Abs :: udom ⇒ ′a::pcpo
fixes t :: udom defl
assumes type: type-definition Rep Abs (defl-set t)
assumes below: (v) ≡ λx y. Rep x v Rep y
assumes emb: emb ≡ (Λ x. Rep x)
assumes prj: prj ≡ (Λ x. Abs (cast·t·x))
assumes defl: defl ≡ (λ a:: ′a itself . t)
assumes liftemb: (liftemb :: ′a u → udom u) ≡ u-map·emb
assumes liftprj: (liftprj :: udom u → ′a u) ≡ u-map·prj
assumes liftdefl: (liftdefl :: ′a itself ⇒ -) ≡ (λt. liftdefl-of ·DEFL(′a))
shows OFCLASS(′a, domain-class)
〈proof 〉

lemma typedef-DEFL:
assumes defl ≡ (λa:: ′a::pcpo itself . t)
shows DEFL(′a::pcpo) = t
〈proof 〉

Restore original typing constraints.
〈ML〉

27.9 Isomorphic deflations
definition isodefl :: (′a::domain → ′a) ⇒ udom defl ⇒ bool

where isodefl d t ←→ cast·t = emb oo d oo prj

definition isodefl ′ :: (′a::predomain → ′a) ⇒ udom u defl ⇒ bool
where isodefl ′ d t ←→ cast·t = liftemb oo u-map·d oo liftprj

lemma isodeflI : (
∧

x. cast·t·x = emb·(d·(prj·x))) =⇒ isodefl d t
〈proof 〉

lemma cast-isodefl: isodefl d t =⇒ cast·t = (Λ x. emb·(d·(prj·x)))
〈proof 〉

lemma isodefl-strict: isodefl d t =⇒ d·⊥ = ⊥
〈proof 〉

lemma isodefl-imp-deflation:
fixes d :: ′a::domain → ′a
assumes isodefl d t shows deflation d
〈proof 〉

lemma isodefl-ID-DEFL: isodefl (ID :: ′a → ′a) DEFL(′a::domain)
〈proof 〉

THEORY “Domain” 117

lemma isodefl-LIFTDEFL:
isodefl ′ (ID :: ′a → ′a) LIFTDEFL(′a::predomain)
〈proof 〉

lemma isodefl-DEFL-imp-ID: isodefl (d :: ′a → ′a) DEFL(′a::domain) =⇒ d =
ID
〈proof 〉

lemma isodefl-bottom: isodefl ⊥ ⊥
〈proof 〉

lemma adm-isodefl:
cont f =⇒ cont g =⇒ adm (λx. isodefl (f x) (g x))
〈proof 〉

lemma isodefl-lub:
assumes chain d and chain t
assumes

∧
i. isodefl (d i) (t i)

shows isodefl (
⊔

i. d i) (
⊔

i. t i)
〈proof 〉

lemma isodefl-fix:
assumes

∧
d t. isodefl d t =⇒ isodefl (f ·d) (g·t)

shows isodefl (fix·f) (fix·g)
〈proof 〉

lemma isodefl-abs-rep:
fixes abs and rep and d
assumes DEFL: DEFL(′b::domain) = DEFL(′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows isodefl d t =⇒ isodefl (abs oo d oo rep) t
〈proof 〉

lemma isodefl ′-liftdefl-of : isodefl d t =⇒ isodefl ′ d (liftdefl-of ·t)
〈proof 〉

lemma isodefl-sfun:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (sfun-map·d1 ·d2) (sfun-defl·t1 ·t2)
〈proof 〉

lemma isodefl-ssum:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (ssum-map·d1 ·d2) (ssum-defl·t1 ·t2)
〈proof 〉

lemma isodefl-sprod:

THEORY “Domain” 118

isodefl d1 t1 =⇒ isodefl d2 t2 =⇒
isodefl (sprod-map·d1 ·d2) (sprod-defl·t1 ·t2)

〈proof 〉

lemma isodefl-prod:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (prod-map·d1 ·d2) (prod-defl·t1 ·t2)
〈proof 〉

lemma isodefl-u:
isodefl d t =⇒ isodefl (u-map·d) (u-defl·t)
〈proof 〉

lemma isodefl-u-liftdefl:
isodefl ′ d t =⇒ isodefl (u-map·d) (u-liftdefl·t)
〈proof 〉

lemma encode-prod-u-map:
encode-prod-u·(u-map·(prod-map·f ·g)·(decode-prod-u·x))
= sprod-map·(u-map·f)·(u-map·g)·x

〈proof 〉

lemma isodefl-prod-u:
assumes isodefl ′ d1 t1 and isodefl ′ d2 t2
shows isodefl ′ (prod-map·d1 ·d2) (prod-liftdefl·t1 ·t2)
〈proof 〉

lemma encode-cfun-map:
encode-cfun·(cfun-map·f ·g·(decode-cfun·x))
= sfun-map·(u-map·f)·g·x

〈proof 〉

lemma isodefl-cfun:
assumes isodefl (u-map·d1) t1 and isodefl d2 t2
shows isodefl (cfun-map·d1 ·d2) (sfun-defl·t1 ·t2)
〈proof 〉

27.10 Setting up the domain package
named-theorems domain-defl-simps theorems like DEFL(′a t) = t-defl$DEFL(′a)

and domain-isodefl theorems like isodefl d t ==> isodefl (foo-map$d) (foo-defl$t)

〈ML〉

lemmas [domain-defl-simps] =
DEFL-cfun DEFL-sfun DEFL-ssum DEFL-sprod DEFL-prod DEFL-u
liftdefl-eq LIFTDEFL-prod u-liftdefl-liftdefl-of

lemmas [domain-map-ID] =

THEORY “Compact-Basis” 119

cfun-map-ID sfun-map-ID ssum-map-ID sprod-map-ID prod-map-ID u-map-ID

lemmas [domain-isodefl] =
isodefl-u isodefl-sfun isodefl-ssum isodefl-sprod
isodefl-cfun isodefl-prod isodefl-prod-u isodefl ′-liftdefl-of
isodefl-u-liftdefl

lemmas [domain-deflation] =
deflation-cfun-map deflation-sfun-map deflation-ssum-map
deflation-sprod-map deflation-prod-map deflation-u-map

〈ML〉

end

28 A compact basis for powerdomains
theory Compact-Basis
imports Universal
begin

28.1 A compact basis for powerdomains
definition pd-basis = {S :: ′a::bifinite compact-basis set. finite S ∧ S 6= {}}

typedef ′a::bifinite pd-basis = pd-basis :: ′a compact-basis set set
〈proof 〉

lemma finite-Rep-pd-basis [simp]: finite (Rep-pd-basis u)
〈proof 〉

lemma Rep-pd-basis-nonempty [simp]: Rep-pd-basis u 6= {}
〈proof 〉

The powerdomain basis type is countable.
lemma pd-basis-countable: ∃ f :: ′a::bifinite pd-basis ⇒ nat. inj f (is Ex ?P)
〈proof 〉

28.2 Unit and plus constructors
definition

PDUnit :: ′a::bifinite compact-basis ⇒ ′a pd-basis where
PDUnit = (λx. Abs-pd-basis {x})

definition
PDPlus :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ ′a pd-basis where
PDPlus t u = Abs-pd-basis (Rep-pd-basis t ∪ Rep-pd-basis u)

lemma Rep-PDUnit:

THEORY “UpperPD” 120

Rep-pd-basis (PDUnit x) = {x}
〈proof 〉

lemma Rep-PDPlus:
Rep-pd-basis (PDPlus u v) = Rep-pd-basis u ∪ Rep-pd-basis v
〈proof 〉

lemma PDUnit-inject [simp]: (PDUnit a = PDUnit b) = (a = b)
〈proof 〉

lemma PDPlus-assoc: PDPlus (PDPlus t u) v = PDPlus t (PDPlus u v)
〈proof 〉

lemma PDPlus-commute: PDPlus t u = PDPlus u t
〈proof 〉

lemma PDPlus-absorb: PDPlus t t = t
〈proof 〉

lemma pd-basis-induct1 [case-names PDUnit PDPlus]:
assumes PDUnit:

∧
a. P (PDUnit a)

assumes PDPlus:
∧

a t. P t =⇒ P (PDPlus (PDUnit a) t)
shows P x
〈proof 〉

lemma pd-basis-induct [case-names PDUnit PDPlus]:
assumes PDUnit:

∧
a. P (PDUnit a)

assumes PDPlus:
∧

t u. [[P t; P u]] =⇒ P (PDPlus t u)
shows P x
〈proof 〉

28.3 Fold operator
definition

fold-pd ::
(′a::bifinite compact-basis ⇒ ′b::type) ⇒ (′b ⇒ ′b ⇒ ′b) ⇒ ′a pd-basis ⇒ ′b

where fold-pd g f t = semilattice-set.F f (g ‘ Rep-pd-basis t)

lemma fold-pd-PDUnit:
assumes semilattice f
shows fold-pd g f (PDUnit x) = g x
〈proof 〉

lemma fold-pd-PDPlus:
assumes semilattice f
shows fold-pd g f (PDPlus t u) = f (fold-pd g f t) (fold-pd g f u)
〈proof 〉

end

THEORY “UpperPD” 121

29 Upper powerdomain
theory UpperPD
imports Compact-Basis
begin

29.1 Basis preorder
definition

upper-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤]› 50) where
upper-le = (λu v. ∀ y∈Rep-pd-basis v. ∃ x∈Rep-pd-basis u. x v y)

lemma upper-le-refl [simp]: t ≤] t
〈proof 〉

lemma upper-le-trans: [[t ≤] u; u ≤] v]] =⇒ t ≤] v
〈proof 〉

interpretation upper-le: preorder upper-le
〈proof 〉

lemma upper-le-minimal [simp]: PDUnit compact-bot ≤] t
〈proof 〉

lemma PDUnit-upper-mono: x v y =⇒ PDUnit x ≤] PDUnit y
〈proof 〉

lemma PDPlus-upper-mono: [[s ≤] t; u ≤] v]] =⇒ PDPlus s u ≤] PDPlus t v
〈proof 〉

lemma PDPlus-upper-le: PDPlus t u ≤] t
〈proof 〉

lemma upper-le-PDUnit-PDUnit-iff [simp]:
(PDUnit a ≤] PDUnit b) = (a v b)
〈proof 〉

lemma upper-le-PDPlus-PDUnit-iff :
(PDPlus t u ≤] PDUnit a) = (t ≤] PDUnit a ∨ u ≤] PDUnit a)
〈proof 〉

lemma upper-le-PDPlus-iff : (t ≤] PDPlus u v) = (t ≤] u ∧ t ≤] v)
〈proof 〉

lemma upper-le-induct [induct set: upper-le]:
assumes le: t ≤] u
assumes 1 :

∧
a b. a v b =⇒ P (PDUnit a) (PDUnit b)

assumes 2 :
∧

t u a. P t (PDUnit a) =⇒ P (PDPlus t u) (PDUnit a)
assumes 3 :

∧
t u v. [[P t u; P t v]] =⇒ P t (PDPlus u v)

shows P t u

THEORY “UpperPD” 122

〈proof 〉

29.2 Type definition
typedef ′a::bifinite upper-pd (‹(‹notation=‹postfix upper-pd›› ′(- ′)])›) =
{S :: ′a pd-basis set. upper-le.ideal S}
〈proof 〉

instantiation upper-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-upper-pd x ⊆ Rep-upper-pd y

instance 〈proof 〉
end

instance upper-pd :: (bifinite) po
〈proof 〉

instance upper-pd :: (bifinite) cpo
〈proof 〉

definition
upper-principal :: ′a::bifinite pd-basis ⇒ ′a upper-pd where
upper-principal t = Abs-upper-pd {u. u ≤] t}

interpretation upper-pd:
ideal-completion upper-le upper-principal Rep-upper-pd
〈proof 〉

Upper powerdomain is pointed
lemma upper-pd-minimal: upper-principal (PDUnit compact-bot) v ys
〈proof 〉

instance upper-pd :: (bifinite) pcpo
〈proof 〉

lemma inst-upper-pd-pcpo: ⊥ = upper-principal (PDUnit compact-bot)
〈proof 〉

29.3 Monadic unit and plus
definition

upper-unit :: ′a::bifinite → ′a upper-pd where
upper-unit = compact-basis.extension (λa. upper-principal (PDUnit a))

definition
upper-plus :: ′a::bifinite upper-pd → ′a upper-pd → ′a upper-pd where

THEORY “UpperPD” 123

upper-plus = upper-pd.extension (λt. upper-pd.extension (λu.
upper-principal (PDPlus t u)))

abbreviation
upper-add :: ′a::bifinite upper-pd ⇒ ′a upper-pd ⇒ ′a upper-pd
(infixl ‹∪]› 65) where

xs ∪] ys == upper-plus·xs·ys

syntax
-upper-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix upper-pd enumera-

tion››{-}])›)
translations
{x,xs}] == {x}] ∪] {xs}]
{x}] == CONST upper-unit·x

lemma upper-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}] = upper-principal (PDUnit a)
〈proof 〉

lemma upper-plus-principal [simp]:
upper-principal t ∪] upper-principal u = upper-principal (PDPlus t u)
〈proof 〉

interpretation upper-add: semilattice upper-add 〈proof 〉

lemmas upper-plus-assoc = upper-add.assoc
lemmas upper-plus-commute = upper-add.commute
lemmas upper-plus-absorb = upper-add.idem
lemmas upper-plus-left-commute = upper-add.left-commute
lemmas upper-plus-left-absorb = upper-add.left-idem

Useful for simp add: upper-plus-ac
lemmas upper-plus-ac =

upper-plus-assoc upper-plus-commute upper-plus-left-commute

Useful for simp only: upper-plus-aci
lemmas upper-plus-aci =

upper-plus-ac upper-plus-absorb upper-plus-left-absorb

lemma upper-plus-below1 : xs ∪] ys v xs
〈proof 〉

lemma upper-plus-below2 : xs ∪] ys v ys
〈proof 〉

lemma upper-plus-greatest: [[xs v ys; xs v zs]] =⇒ xs v ys ∪] zs
〈proof 〉

lemma upper-below-plus-iff [simp]:

THEORY “UpperPD” 124

xs v ys ∪] zs ←→ xs v ys ∧ xs v zs
〈proof 〉

lemma upper-plus-below-unit-iff [simp]:
xs ∪] ys v {z}] ←→ xs v {z}] ∨ ys v {z}]
〈proof 〉

lemma upper-unit-below-iff [simp]: {x}] v {y}] ←→ x v y
〈proof 〉

lemmas upper-pd-below-simps =
upper-unit-below-iff
upper-below-plus-iff
upper-plus-below-unit-iff

lemma upper-unit-eq-iff [simp]: {x}] = {y}] ←→ x = y
〈proof 〉

lemma upper-unit-strict [simp]: {⊥}] = ⊥
〈proof 〉

lemma upper-plus-strict1 [simp]: ⊥ ∪] ys = ⊥
〈proof 〉

lemma upper-plus-strict2 [simp]: xs ∪] ⊥ = ⊥
〈proof 〉

lemma upper-unit-bottom-iff [simp]: {x}] = ⊥ ←→ x = ⊥
〈proof 〉

lemma upper-plus-bottom-iff [simp]:
xs ∪] ys = ⊥ ←→ xs = ⊥ ∨ ys = ⊥
〈proof 〉

lemma compact-upper-unit: compact x =⇒ compact {x}]
〈proof 〉

lemma compact-upper-unit-iff [simp]: compact {x}] ←→ compact x
〈proof 〉

lemma compact-upper-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪] ys)
〈proof 〉

29.4 Induction rules
lemma upper-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}]

THEORY “UpperPD” 125

assumes insert:
∧

x ys. [[P {x}]; P ys]] =⇒ P ({x}] ∪] ys)
shows P (xs:: ′a::bifinite upper-pd)
〈proof 〉

lemma upper-pd-induct [case-names adm upper-unit upper-plus, induct type: up-
per-pd]:

assumes P: adm P
assumes unit:

∧
x. P {x}]

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪] ys)
shows P (xs:: ′a::bifinite upper-pd)
〈proof 〉

29.5 Monadic bind
definition

upper-bind-basis ::
′a::bifinite pd-basis ⇒ (′a → ′b upper-pd) → ′b::bifinite upper-pd where
upper-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪] y·f)

lemma ACI-upper-bind:
semilattice (λx y. Λ f . x·f ∪] y·f)
〈proof 〉

lemma upper-bind-basis-simps [simp]:
upper-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

upper-bind-basis (PDPlus t u) =
(Λ f . upper-bind-basis t·f ∪] upper-bind-basis u·f)

〈proof 〉

lemma upper-bind-basis-mono:
t ≤] u =⇒ upper-bind-basis t v upper-bind-basis u
〈proof 〉

definition
upper-bind :: ′a::bifinite upper-pd → (′a → ′b upper-pd) → ′b::bifinite upper-pd

where
upper-bind = upper-pd.extension upper-bind-basis

syntax
-upper-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder upper-bind››

⋃
]-∈-./ -)› [0 , 0 , 10] 10)

translations⋃
]x∈xs. e == CONST upper-bind·xs·(Λ x. e)

lemma upper-bind-principal [simp]:

THEORY “UpperPD” 126

upper-bind·(upper-principal t) = upper-bind-basis t
〈proof 〉

lemma upper-bind-unit [simp]:
upper-bind·{x}]·f = f ·x
〈proof 〉

lemma upper-bind-plus [simp]:
upper-bind·(xs ∪] ys)·f = upper-bind·xs·f ∪] upper-bind·ys·f
〈proof 〉

lemma upper-bind-strict [simp]: upper-bind·⊥·f = f ·⊥
〈proof 〉

lemma upper-bind-bind:
upper-bind·(upper-bind·xs·f)·g = upper-bind·xs·(Λ x. upper-bind·(f ·x)·g)
〈proof 〉

29.6 Map
definition

upper-map :: (′a::bifinite → ′b::bifinite) → ′a upper-pd → ′b upper-pd where
upper-map = (Λ f xs. upper-bind·xs·(Λ x. {f ·x}]))

lemma upper-map-unit [simp]:
upper-map·f ·{x}] = {f ·x}]
〈proof 〉

lemma upper-map-plus [simp]:
upper-map·f ·(xs ∪] ys) = upper-map·f ·xs ∪] upper-map·f ·ys
〈proof 〉

lemma upper-map-bottom [simp]: upper-map·f ·⊥ = {f ·⊥}]
〈proof 〉

lemma upper-map-ident: upper-map·(Λ x. x)·xs = xs
〈proof 〉

lemma upper-map-ID: upper-map·ID = ID
〈proof 〉

lemma upper-map-map:
upper-map·f ·(upper-map·g·xs) = upper-map·(Λ x. f ·(g·x))·xs
〈proof 〉

lemma upper-bind-map:
upper-bind·(upper-map·f ·xs)·g = upper-bind·xs·(Λ x. g·(f ·x))
〈proof 〉

THEORY “UpperPD” 127

lemma upper-map-bind:
upper-map·f ·(upper-bind·xs·g) = upper-bind·xs·(Λ x. upper-map·f ·(g·x))
〈proof 〉

lemma ep-pair-upper-map: ep-pair e p =⇒ ep-pair (upper-map·e) (upper-map·p)
〈proof 〉

lemma deflation-upper-map: deflation d =⇒ deflation (upper-map·d)
〈proof 〉

lemma finite-deflation-upper-map:
assumes finite-deflation d shows finite-deflation (upper-map·d)
〈proof 〉

29.7 Upper powerdomain is bifinite
lemma approx-chain-upper-map:

assumes approx-chain a
shows approx-chain (λi. upper-map·(a i))
〈proof 〉

instance upper-pd :: (bifinite) bifinite
〈proof 〉

29.8 Join
definition

upper-join :: ′a::bifinite upper-pd upper-pd → ′a upper-pd where
upper-join = (Λ xss. upper-bind·xss·(Λ xs. xs))

lemma upper-join-unit [simp]:
upper-join·{xs}] = xs
〈proof 〉

lemma upper-join-plus [simp]:
upper-join·(xss ∪] yss) = upper-join·xss ∪] upper-join·yss
〈proof 〉

lemma upper-join-bottom [simp]: upper-join·⊥ = ⊥
〈proof 〉

lemma upper-join-map-unit:
upper-join·(upper-map·upper-unit·xs) = xs
〈proof 〉

lemma upper-join-map-join:
upper-join·(upper-map·upper-join·xsss) = upper-join·(upper-join·xsss)
〈proof 〉

THEORY “LowerPD” 128

lemma upper-join-map-map:
upper-join·(upper-map·(upper-map·f)·xss) =
upper-map·f ·(upper-join·xss)

〈proof 〉

end

30 Lower powerdomain
theory LowerPD
imports Compact-Basis
begin

30.1 Basis preorder
definition

lower-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤[› 50) where
lower-le = (λu v. ∀ x∈Rep-pd-basis u. ∃ y∈Rep-pd-basis v. x v y)

lemma lower-le-refl [simp]: t ≤[t
〈proof 〉

lemma lower-le-trans: [[t ≤[u; u ≤[v]] =⇒ t ≤[v
〈proof 〉

interpretation lower-le: preorder lower-le
〈proof 〉

lemma lower-le-minimal [simp]: PDUnit compact-bot ≤[t
〈proof 〉

lemma PDUnit-lower-mono: x v y =⇒ PDUnit x ≤[PDUnit y
〈proof 〉

lemma PDPlus-lower-mono: [[s ≤[t; u ≤[v]] =⇒ PDPlus s u ≤[PDPlus t v
〈proof 〉

lemma PDPlus-lower-le: t ≤[PDPlus t u
〈proof 〉

lemma lower-le-PDUnit-PDUnit-iff [simp]:
(PDUnit a ≤[PDUnit b) = (a v b)
〈proof 〉

lemma lower-le-PDUnit-PDPlus-iff :
(PDUnit a ≤[PDPlus t u) = (PDUnit a ≤[t ∨ PDUnit a ≤[u)
〈proof 〉

lemma lower-le-PDPlus-iff : (PDPlus t u ≤[v) = (t ≤[v ∧ u ≤[v)

THEORY “LowerPD” 129

〈proof 〉

lemma lower-le-induct [induct set: lower-le]:
assumes le: t ≤[u
assumes 1 :

∧
a b. a v b =⇒ P (PDUnit a) (PDUnit b)

assumes 2 :
∧

t u a. P (PDUnit a) t =⇒ P (PDUnit a) (PDPlus t u)
assumes 3 :

∧
t u v. [[P t v; P u v]] =⇒ P (PDPlus t u) v

shows P t u
〈proof 〉

30.2 Type definition
typedef ′a::bifinite lower-pd (‹(‹notation=‹postfix lower-pd›› ′(- ′)[)›) =
{S :: ′a pd-basis set. lower-le.ideal S}
〈proof 〉

instantiation lower-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-lower-pd x ⊆ Rep-lower-pd y

instance 〈proof 〉
end

instance lower-pd :: (bifinite) po
〈proof 〉

instance lower-pd :: (bifinite) cpo
〈proof 〉

definition
lower-principal :: ′a::bifinite pd-basis ⇒ ′a lower-pd where
lower-principal t = Abs-lower-pd {u. u ≤[t}

interpretation lower-pd:
ideal-completion lower-le lower-principal Rep-lower-pd
〈proof 〉

Lower powerdomain is pointed
lemma lower-pd-minimal: lower-principal (PDUnit compact-bot) v ys
〈proof 〉

instance lower-pd :: (bifinite) pcpo
〈proof 〉

lemma inst-lower-pd-pcpo: ⊥ = lower-principal (PDUnit compact-bot)
〈proof 〉

THEORY “LowerPD” 130

30.3 Monadic unit and plus
definition

lower-unit :: ′a::bifinite → ′a lower-pd where
lower-unit = compact-basis.extension (λa. lower-principal (PDUnit a))

definition
lower-plus :: ′a::bifinite lower-pd → ′a lower-pd → ′a lower-pd where
lower-plus = lower-pd.extension (λt. lower-pd.extension (λu.

lower-principal (PDPlus t u)))

abbreviation
lower-add :: ′a::bifinite lower-pd ⇒ ′a lower-pd ⇒ ′a lower-pd
(infixl ‹∪[› 65) where

xs ∪[ys == lower-plus·xs·ys

syntax
-lower-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix lower-pd enumera-

tion››{-}[)›)
translations
{x,xs}[== {x}[∪[{xs}[
{x}[== CONST lower-unit·x

lemma lower-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}[= lower-principal (PDUnit a)
〈proof 〉

lemma lower-plus-principal [simp]:
lower-principal t ∪[lower-principal u = lower-principal (PDPlus t u)
〈proof 〉

interpretation lower-add: semilattice lower-add 〈proof 〉

lemmas lower-plus-assoc = lower-add.assoc
lemmas lower-plus-commute = lower-add.commute
lemmas lower-plus-absorb = lower-add.idem
lemmas lower-plus-left-commute = lower-add.left-commute
lemmas lower-plus-left-absorb = lower-add.left-idem

Useful for simp add: lower-plus-ac
lemmas lower-plus-ac =

lower-plus-assoc lower-plus-commute lower-plus-left-commute

Useful for simp only: lower-plus-aci
lemmas lower-plus-aci =

lower-plus-ac lower-plus-absorb lower-plus-left-absorb

lemma lower-plus-below1 : xs v xs ∪[ys
〈proof 〉

THEORY “LowerPD” 131

lemma lower-plus-below2 : ys v xs ∪[ys
〈proof 〉

lemma lower-plus-least: [[xs v zs; ys v zs]] =⇒ xs ∪[ys v zs
〈proof 〉

lemma lower-plus-below-iff [simp]:
xs ∪[ys v zs ←→ xs v zs ∧ ys v zs
〈proof 〉

lemma lower-unit-below-plus-iff [simp]:
{x}[v ys ∪[zs ←→ {x}[v ys ∨ {x}[v zs
〈proof 〉

lemma lower-unit-below-iff [simp]: {x}[v {y}[←→ x v y
〈proof 〉

lemmas lower-pd-below-simps =
lower-unit-below-iff
lower-plus-below-iff
lower-unit-below-plus-iff

lemma lower-unit-eq-iff [simp]: {x}[= {y}[←→ x = y
〈proof 〉

lemma lower-unit-strict [simp]: {⊥}[= ⊥
〈proof 〉

lemma lower-unit-bottom-iff [simp]: {x}[= ⊥ ←→ x = ⊥
〈proof 〉

lemma lower-plus-bottom-iff [simp]:
xs ∪[ys = ⊥ ←→ xs = ⊥ ∧ ys = ⊥
〈proof 〉

lemma lower-plus-strict1 [simp]: ⊥ ∪[ys = ys
〈proof 〉

lemma lower-plus-strict2 [simp]: xs ∪[⊥ = xs
〈proof 〉

lemma compact-lower-unit: compact x =⇒ compact {x}[
〈proof 〉

lemma compact-lower-unit-iff [simp]: compact {x}[←→ compact x
〈proof 〉

lemma compact-lower-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪[ys)

THEORY “LowerPD” 132

〈proof 〉

30.4 Induction rules
lemma lower-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}[

assumes insert:
∧

x ys. [[P {x}[; P ys]] =⇒ P ({x}[∪[ys)
shows P (xs:: ′a::bifinite lower-pd)
〈proof 〉

lemma lower-pd-induct [case-names adm lower-unit lower-plus, induct type: lower-pd]:
assumes P: adm P
assumes unit:

∧
x. P {x}[

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪[ys)
shows P (xs:: ′a::bifinite lower-pd)
〈proof 〉

30.5 Monadic bind
definition

lower-bind-basis ::
′a::bifinite pd-basis ⇒ (′a → ′b lower-pd) → ′b::bifinite lower-pd where
lower-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪[y·f)

lemma ACI-lower-bind:
semilattice (λx y. Λ f . x·f ∪[y·f)
〈proof 〉

lemma lower-bind-basis-simps [simp]:
lower-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

lower-bind-basis (PDPlus t u) =
(Λ f . lower-bind-basis t·f ∪[lower-bind-basis u·f)

〈proof 〉

lemma lower-bind-basis-mono:
t ≤[u =⇒ lower-bind-basis t v lower-bind-basis u
〈proof 〉

definition
lower-bind :: ′a::bifinite lower-pd → (′a → ′b lower-pd) → ′b::bifinite lower-pd

where
lower-bind = lower-pd.extension lower-bind-basis

syntax
-lower-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder lower-bind››

⋃
[-∈-./ -)› [0 , 0 , 10] 10)

THEORY “LowerPD” 133

translations⋃
[x∈xs. e == CONST lower-bind·xs·(Λ x. e)

lemma lower-bind-principal [simp]:
lower-bind·(lower-principal t) = lower-bind-basis t
〈proof 〉

lemma lower-bind-unit [simp]:
lower-bind·{x}[·f = f ·x
〈proof 〉

lemma lower-bind-plus [simp]:
lower-bind·(xs ∪[ys)·f = lower-bind·xs·f ∪[lower-bind·ys·f
〈proof 〉

lemma lower-bind-strict [simp]: lower-bind·⊥·f = f ·⊥
〈proof 〉

lemma lower-bind-bind:
lower-bind·(lower-bind·xs·f)·g = lower-bind·xs·(Λ x. lower-bind·(f ·x)·g)
〈proof 〉

30.6 Map
definition

lower-map :: (′a::bifinite → ′b::bifinite) → ′a lower-pd → ′b lower-pd where
lower-map = (Λ f xs. lower-bind·xs·(Λ x. {f ·x}[))

lemma lower-map-unit [simp]:
lower-map·f ·{x}[= {f ·x}[
〈proof 〉

lemma lower-map-plus [simp]:
lower-map·f ·(xs ∪[ys) = lower-map·f ·xs ∪[lower-map·f ·ys
〈proof 〉

lemma lower-map-bottom [simp]: lower-map·f ·⊥ = {f ·⊥}[
〈proof 〉

lemma lower-map-ident: lower-map·(Λ x. x)·xs = xs
〈proof 〉

lemma lower-map-ID: lower-map·ID = ID
〈proof 〉

lemma lower-map-map:
lower-map·f ·(lower-map·g·xs) = lower-map·(Λ x. f ·(g·x))·xs
〈proof 〉

THEORY “LowerPD” 134

lemma lower-bind-map:
lower-bind·(lower-map·f ·xs)·g = lower-bind·xs·(Λ x. g·(f ·x))
〈proof 〉

lemma lower-map-bind:
lower-map·f ·(lower-bind·xs·g) = lower-bind·xs·(Λ x. lower-map·f ·(g·x))
〈proof 〉

lemma ep-pair-lower-map: ep-pair e p =⇒ ep-pair (lower-map·e) (lower-map·p)
〈proof 〉

lemma deflation-lower-map: deflation d =⇒ deflation (lower-map·d)
〈proof 〉

lemma finite-deflation-lower-map:
assumes finite-deflation d shows finite-deflation (lower-map·d)
〈proof 〉

30.7 Lower powerdomain is bifinite
lemma approx-chain-lower-map:

assumes approx-chain a
shows approx-chain (λi. lower-map·(a i))
〈proof 〉

instance lower-pd :: (bifinite) bifinite
〈proof 〉

30.8 Join
definition

lower-join :: ′a::bifinite lower-pd lower-pd → ′a lower-pd where
lower-join = (Λ xss. lower-bind·xss·(Λ xs. xs))

lemma lower-join-unit [simp]:
lower-join·{xs}[= xs
〈proof 〉

lemma lower-join-plus [simp]:
lower-join·(xss ∪[yss) = lower-join·xss ∪[lower-join·yss
〈proof 〉

lemma lower-join-bottom [simp]: lower-join·⊥ = ⊥
〈proof 〉

lemma lower-join-map-unit:
lower-join·(lower-map·lower-unit·xs) = xs
〈proof 〉

THEORY “ConvexPD” 135

lemma lower-join-map-join:
lower-join·(lower-map·lower-join·xsss) = lower-join·(lower-join·xsss)
〈proof 〉

lemma lower-join-map-map:
lower-join·(lower-map·(lower-map·f)·xss) =
lower-map·f ·(lower-join·xss)

〈proof 〉

end

31 Convex powerdomain
theory ConvexPD
imports UpperPD LowerPD
begin

31.1 Basis preorder
definition

convex-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤\› 50) where
convex-le = (λu v. u ≤] v ∧ u ≤[v)

lemma convex-le-refl [simp]: t ≤\ t
〈proof 〉

lemma convex-le-trans: [[t ≤\ u; u ≤\ v]] =⇒ t ≤\ v
〈proof 〉

interpretation convex-le: preorder convex-le
〈proof 〉

lemma upper-le-minimal [simp]: PDUnit compact-bot ≤\ t
〈proof 〉

lemma PDUnit-convex-mono: x v y =⇒ PDUnit x ≤\ PDUnit y
〈proof 〉

lemma PDPlus-convex-mono: [[s ≤\ t; u ≤\ v]] =⇒ PDPlus s u ≤\ PDPlus t v
〈proof 〉

lemma convex-le-PDUnit-PDUnit-iff [simp]:
(PDUnit a ≤\ PDUnit b) = (a v b)
〈proof 〉

lemma convex-le-PDUnit-lemma1 :
(PDUnit a ≤\ t) = (∀ b∈Rep-pd-basis t. a v b)
〈proof 〉

THEORY “ConvexPD” 136

lemma convex-le-PDUnit-PDPlus-iff [simp]:
(PDUnit a ≤\ PDPlus t u) = (PDUnit a ≤\ t ∧ PDUnit a ≤\ u)
〈proof 〉

lemma convex-le-PDUnit-lemma2 :
(t ≤\ PDUnit b) = (∀ a∈Rep-pd-basis t. a v b)
〈proof 〉

lemma convex-le-PDPlus-PDUnit-iff [simp]:
(PDPlus t u ≤\ PDUnit a) = (t ≤\ PDUnit a ∧ u ≤\ PDUnit a)
〈proof 〉

lemma convex-le-PDPlus-lemma:
assumes z: PDPlus t u ≤\ z
shows ∃ v w. z = PDPlus v w ∧ t ≤\ v ∧ u ≤\ w
〈proof 〉

lemma convex-le-induct [induct set: convex-le]:
assumes le: t ≤\ u
assumes 2 :

∧
t u v. [[P t u; P u v]] =⇒ P t v

assumes 3 :
∧

a b. a v b =⇒ P (PDUnit a) (PDUnit b)
assumes 4 :

∧
t u v w. [[P t v; P u w]] =⇒ P (PDPlus t u) (PDPlus v w)

shows P t u
〈proof 〉

31.2 Type definition
typedef ′a::bifinite convex-pd (‹(‹notation=‹postfix convex-pd›› ′(- ′)\)›) =
{S :: ′a pd-basis set. convex-le.ideal S}
〈proof 〉

instantiation convex-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-convex-pd x ⊆ Rep-convex-pd y

instance 〈proof 〉
end

instance convex-pd :: (bifinite) po
〈proof 〉

instance convex-pd :: (bifinite) cpo
〈proof 〉

definition
convex-principal :: ′a::bifinite pd-basis ⇒ ′a convex-pd where

THEORY “ConvexPD” 137

convex-principal t = Abs-convex-pd {u. u ≤\ t}

interpretation convex-pd:
ideal-completion convex-le convex-principal Rep-convex-pd
〈proof 〉

Convex powerdomain is pointed
lemma convex-pd-minimal: convex-principal (PDUnit compact-bot) v ys
〈proof 〉

instance convex-pd :: (bifinite) pcpo
〈proof 〉

lemma inst-convex-pd-pcpo: ⊥ = convex-principal (PDUnit compact-bot)
〈proof 〉

31.3 Monadic unit and plus
definition

convex-unit :: ′a::bifinite → ′a convex-pd where
convex-unit = compact-basis.extension (λa. convex-principal (PDUnit a))

definition
convex-plus :: ′a::bifinite convex-pd → ′a convex-pd → ′a convex-pd where
convex-plus = convex-pd.extension (λt. convex-pd.extension (λu.

convex-principal (PDPlus t u)))

abbreviation
convex-add :: ′a::bifinite convex-pd ⇒ ′a convex-pd ⇒ ′a convex-pd
(infixl ‹∪\› 65) where

xs ∪\ ys == convex-plus·xs·ys

syntax
-convex-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix convex-pd enumera-

tion››{-}\)›)
translations
{x,xs}\ == {x}\ ∪\ {xs}\
{x}\ == CONST convex-unit·x

lemma convex-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}\ = convex-principal (PDUnit a)
〈proof 〉

lemma convex-plus-principal [simp]:
convex-principal t ∪\ convex-principal u = convex-principal (PDPlus t u)
〈proof 〉

interpretation convex-add: semilattice convex-add 〈proof 〉

THEORY “ConvexPD” 138

lemmas convex-plus-assoc = convex-add.assoc
lemmas convex-plus-commute = convex-add.commute
lemmas convex-plus-absorb = convex-add.idem
lemmas convex-plus-left-commute = convex-add.left-commute
lemmas convex-plus-left-absorb = convex-add.left-idem

Useful for simp add: convex-plus-ac
lemmas convex-plus-ac =

convex-plus-assoc convex-plus-commute convex-plus-left-commute

Useful for simp only: convex-plus-aci
lemmas convex-plus-aci =

convex-plus-ac convex-plus-absorb convex-plus-left-absorb

lemma convex-unit-below-plus-iff [simp]:
{x}\ v ys ∪\ zs ←→ {x}\ v ys ∧ {x}\ v zs
〈proof 〉

lemma convex-plus-below-unit-iff [simp]:
xs ∪\ ys v {z}\ ←→ xs v {z}\ ∧ ys v {z}\
〈proof 〉

lemma convex-unit-below-iff [simp]: {x}\ v {y}\ ←→ x v y
〈proof 〉

lemma convex-unit-eq-iff [simp]: {x}\ = {y}\ ←→ x = y
〈proof 〉

lemma convex-unit-strict [simp]: {⊥}\ = ⊥
〈proof 〉

lemma convex-unit-bottom-iff [simp]: {x}\ = ⊥ ←→ x = ⊥
〈proof 〉

lemma compact-convex-unit: compact x =⇒ compact {x}\
〈proof 〉

lemma compact-convex-unit-iff [simp]: compact {x}\ ←→ compact x
〈proof 〉

lemma compact-convex-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪\ ys)
〈proof 〉

31.4 Induction rules
lemma convex-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}\

THEORY “ConvexPD” 139

assumes insert:
∧

x ys. [[P {x}\; P ys]] =⇒ P ({x}\ ∪\ ys)
shows P (xs:: ′a::bifinite convex-pd)
〈proof 〉

lemma convex-pd-induct [case-names adm convex-unit convex-plus, induct type:
convex-pd]:

assumes P: adm P
assumes unit:

∧
x. P {x}\

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪\ ys)
shows P (xs:: ′a::bifinite convex-pd)
〈proof 〉

31.5 Monadic bind
definition

convex-bind-basis ::
′a::bifinite pd-basis ⇒ (′a → ′b convex-pd) → ′b::bifinite convex-pd where
convex-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪\ y·f)

lemma ACI-convex-bind:
semilattice (λx y. Λ f . x·f ∪\ y·f)
〈proof 〉

lemma convex-bind-basis-simps [simp]:
convex-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

convex-bind-basis (PDPlus t u) =
(Λ f . convex-bind-basis t·f ∪\ convex-bind-basis u·f)

〈proof 〉

lemma convex-bind-basis-mono:
t ≤\ u =⇒ convex-bind-basis t v convex-bind-basis u
〈proof 〉

definition
convex-bind :: ′a::bifinite convex-pd → (′a → ′b convex-pd)→ ′b::bifinite convex-pd

where
convex-bind = convex-pd.extension convex-bind-basis

syntax
-convex-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder convex-bind››

⋃
\-∈-./ -)› [0 , 0 , 10] 10)

translations⋃
\x∈xs. e == CONST convex-bind·xs·(Λ x. e)

lemma convex-bind-principal [simp]:

THEORY “ConvexPD” 140

convex-bind·(convex-principal t) = convex-bind-basis t
〈proof 〉

lemma convex-bind-unit [simp]:
convex-bind·{x}\·f = f ·x
〈proof 〉

lemma convex-bind-plus [simp]:
convex-bind·(xs ∪\ ys)·f = convex-bind·xs·f ∪\ convex-bind·ys·f
〈proof 〉

lemma convex-bind-strict [simp]: convex-bind·⊥·f = f ·⊥
〈proof 〉

lemma convex-bind-bind:
convex-bind·(convex-bind·xs·f)·g =

convex-bind·xs·(Λ x. convex-bind·(f ·x)·g)
〈proof 〉

31.6 Map
definition

convex-map :: (′a::bifinite → ′b) → ′a convex-pd → ′b::bifinite convex-pd where
convex-map = (Λ f xs. convex-bind·xs·(Λ x. {f ·x}\))

lemma convex-map-unit [simp]:
convex-map·f ·{x}\ = {f ·x}\
〈proof 〉

lemma convex-map-plus [simp]:
convex-map·f ·(xs ∪\ ys) = convex-map·f ·xs ∪\ convex-map·f ·ys
〈proof 〉

lemma convex-map-bottom [simp]: convex-map·f ·⊥ = {f ·⊥}\
〈proof 〉

lemma convex-map-ident: convex-map·(Λ x. x)·xs = xs
〈proof 〉

lemma convex-map-ID: convex-map·ID = ID
〈proof 〉

lemma convex-map-map:
convex-map·f ·(convex-map·g·xs) = convex-map·(Λ x. f ·(g·x))·xs
〈proof 〉

lemma convex-bind-map:
convex-bind·(convex-map·f ·xs)·g = convex-bind·xs·(Λ x. g·(f ·x))
〈proof 〉

THEORY “ConvexPD” 141

lemma convex-map-bind:
convex-map·f ·(convex-bind·xs·g) = convex-bind·xs·(Λ x. convex-map·f ·(g·x))
〈proof 〉

lemma ep-pair-convex-map: ep-pair e p =⇒ ep-pair (convex-map·e) (convex-map·p)
〈proof 〉

lemma deflation-convex-map: deflation d =⇒ deflation (convex-map·d)
〈proof 〉

lemma finite-deflation-convex-map:
assumes finite-deflation d shows finite-deflation (convex-map·d)
〈proof 〉

31.7 Convex powerdomain is bifinite
lemma approx-chain-convex-map:

assumes approx-chain a
shows approx-chain (λi. convex-map·(a i))
〈proof 〉

instance convex-pd :: (bifinite) bifinite
〈proof 〉

31.8 Join
definition

convex-join :: ′a::bifinite convex-pd convex-pd → ′a convex-pd where
convex-join = (Λ xss. convex-bind·xss·(Λ xs. xs))

lemma convex-join-unit [simp]:
convex-join·{xs}\ = xs
〈proof 〉

lemma convex-join-plus [simp]:
convex-join·(xss ∪\ yss) = convex-join·xss ∪\ convex-join·yss
〈proof 〉

lemma convex-join-bottom [simp]: convex-join·⊥ = ⊥
〈proof 〉

lemma convex-join-map-unit:
convex-join·(convex-map·convex-unit·xs) = xs
〈proof 〉

lemma convex-join-map-join:
convex-join·(convex-map·convex-join·xsss) = convex-join·(convex-join·xsss)
〈proof 〉

THEORY “ConvexPD” 142

lemma convex-join-map-map:
convex-join·(convex-map·(convex-map·f)·xss) =
convex-map·f ·(convex-join·xss)

〈proof 〉

31.9 Conversions to other powerdomains

Convex to upper
lemma convex-le-imp-upper-le: t ≤\ u =⇒ t ≤] u
〈proof 〉

definition
convex-to-upper :: ′a::bifinite convex-pd → ′a upper-pd where
convex-to-upper = convex-pd.extension upper-principal

lemma convex-to-upper-principal [simp]:
convex-to-upper ·(convex-principal t) = upper-principal t
〈proof 〉

lemma convex-to-upper-unit [simp]:
convex-to-upper ·{x}\ = {x}]
〈proof 〉

lemma convex-to-upper-plus [simp]:
convex-to-upper ·(xs ∪\ ys) = convex-to-upper ·xs ∪] convex-to-upper ·ys
〈proof 〉

lemma convex-to-upper-bind [simp]:
convex-to-upper ·(convex-bind·xs·f) =

upper-bind·(convex-to-upper ·xs)·(convex-to-upper oo f)
〈proof 〉

lemma convex-to-upper-map [simp]:
convex-to-upper ·(convex-map·f ·xs) = upper-map·f ·(convex-to-upper ·xs)
〈proof 〉

lemma convex-to-upper-join [simp]:
convex-to-upper ·(convex-join·xss) =

upper-bind·(convex-to-upper ·xss)·convex-to-upper
〈proof 〉

Convex to lower
lemma convex-le-imp-lower-le: t ≤\ u =⇒ t ≤[u
〈proof 〉

definition
convex-to-lower :: ′a::bifinite convex-pd → ′a lower-pd where
convex-to-lower = convex-pd.extension lower-principal

THEORY “ConvexPD” 143

lemma convex-to-lower-principal [simp]:
convex-to-lower ·(convex-principal t) = lower-principal t
〈proof 〉

lemma convex-to-lower-unit [simp]:
convex-to-lower ·{x}\ = {x}[
〈proof 〉

lemma convex-to-lower-plus [simp]:
convex-to-lower ·(xs ∪\ ys) = convex-to-lower ·xs ∪[convex-to-lower ·ys
〈proof 〉

lemma convex-to-lower-bind [simp]:
convex-to-lower ·(convex-bind·xs·f) =

lower-bind·(convex-to-lower ·xs)·(convex-to-lower oo f)
〈proof 〉

lemma convex-to-lower-map [simp]:
convex-to-lower ·(convex-map·f ·xs) = lower-map·f ·(convex-to-lower ·xs)
〈proof 〉

lemma convex-to-lower-join [simp]:
convex-to-lower ·(convex-join·xss) =

lower-bind·(convex-to-lower ·xss)·convex-to-lower
〈proof 〉

Ordering property
lemma convex-pd-below-iff :
(xs v ys) =
(convex-to-upper ·xs v convex-to-upper ·ys ∧
convex-to-lower ·xs v convex-to-lower ·ys)

〈proof 〉

lemmas convex-plus-below-plus-iff =
convex-pd-below-iff [where xs=xs ∪\ ys and ys=zs ∪\ ws]
for xs ys zs ws

lemmas convex-pd-below-simps =
convex-unit-below-plus-iff
convex-plus-below-unit-iff
convex-plus-below-plus-iff
convex-unit-below-iff
convex-to-upper-unit
convex-to-upper-plus
convex-to-lower-unit
convex-to-lower-plus
upper-pd-below-simps
lower-pd-below-simps

THEORY “Powerdomains” 144

end

32 Powerdomains
theory Powerdomains
imports ConvexPD Domain
begin

32.1 Universal domain embeddings
definition upper-emb = udom-emb (λi. upper-map·(udom-approx i))
definition upper-prj = udom-prj (λi. upper-map·(udom-approx i))

definition lower-emb = udom-emb (λi. lower-map·(udom-approx i))
definition lower-prj = udom-prj (λi. lower-map·(udom-approx i))

definition convex-emb = udom-emb (λi. convex-map·(udom-approx i))
definition convex-prj = udom-prj (λi. convex-map·(udom-approx i))

lemma ep-pair-upper : ep-pair upper-emb upper-prj
〈proof 〉

lemma ep-pair-lower : ep-pair lower-emb lower-prj
〈proof 〉

lemma ep-pair-convex: ep-pair convex-emb convex-prj
〈proof 〉

32.2 Deflation combinators
definition upper-defl :: udom defl → udom defl

where upper-defl = defl-fun1 upper-emb upper-prj upper-map

definition lower-defl :: udom defl → udom defl
where lower-defl = defl-fun1 lower-emb lower-prj lower-map

definition convex-defl :: udom defl → udom defl
where convex-defl = defl-fun1 convex-emb convex-prj convex-map

lemma cast-upper-defl:
cast·(upper-defl·A) = upper-emb oo upper-map·(cast·A) oo upper-prj
〈proof 〉

lemma cast-lower-defl:
cast·(lower-defl·A) = lower-emb oo lower-map·(cast·A) oo lower-prj
〈proof 〉

lemma cast-convex-defl:

THEORY “Powerdomains” 145

cast·(convex-defl·A) = convex-emb oo convex-map·(cast·A) oo convex-prj
〈proof 〉

32.3 Domain class instances
instantiation upper-pd :: (domain) domain
begin

definition
emb = upper-emb oo upper-map·emb

definition
prj = upper-map·prj oo upper-prj

definition
defl (t:: ′a upper-pd itself) = upper-defl·DEFL(′a)

definition
(liftemb :: ′a upper-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a upper-pd u) = u-map·prj

definition
liftdefl (t:: ′a upper-pd itself) = liftdefl-of ·DEFL(′a upper-pd)

instance 〈proof 〉

end

instantiation lower-pd :: (domain) domain
begin

definition
emb = lower-emb oo lower-map·emb

definition
prj = lower-map·prj oo lower-prj

definition
defl (t:: ′a lower-pd itself) = lower-defl·DEFL(′a)

definition
(liftemb :: ′a lower-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a lower-pd u) = u-map·prj

definition

THEORY “Powerdomains” 146

liftdefl (t:: ′a lower-pd itself) = liftdefl-of ·DEFL(′a lower-pd)

instance 〈proof 〉

end

instantiation convex-pd :: (domain) domain
begin

definition
emb = convex-emb oo convex-map·emb

definition
prj = convex-map·prj oo convex-prj

definition
defl (t:: ′a convex-pd itself) = convex-defl·DEFL(′a)

definition
(liftemb :: ′a convex-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a convex-pd u) = u-map·prj

definition
liftdefl (t:: ′a convex-pd itself) = liftdefl-of ·DEFL(′a convex-pd)

instance 〈proof 〉

end

lemma DEFL-upper : DEFL(′a::domain upper-pd) = upper-defl·DEFL(′a)
〈proof 〉

lemma DEFL-lower : DEFL(′a::domain lower-pd) = lower-defl·DEFL(′a)
〈proof 〉

lemma DEFL-convex: DEFL(′a::domain convex-pd) = convex-defl·DEFL(′a)
〈proof 〉

32.4 Isomorphic deflations
lemma isodefl-upper :

isodefl d t =⇒ isodefl (upper-map·d) (upper-defl·t)
〈proof 〉

lemma isodefl-lower :
isodefl d t =⇒ isodefl (lower-map·d) (lower-defl·t)
〈proof 〉

THEORY “HOLCF” 147

lemma isodefl-convex:
isodefl d t =⇒ isodefl (convex-map·d) (convex-defl·t)
〈proof 〉

32.5 Domain package setup for powerdomains
lemmas [domain-defl-simps] = DEFL-upper DEFL-lower DEFL-convex
lemmas [domain-map-ID] = upper-map-ID lower-map-ID convex-map-ID
lemmas [domain-isodefl] = isodefl-upper isodefl-lower isodefl-convex

lemmas [domain-deflation] =
deflation-upper-map deflation-lower-map deflation-convex-map

〈ML〉

end

theory HOLCF
imports

Main
Domain
Powerdomains

begin

default-sort domain

end

	Partial orders
	Type class for partial orders
	Upper bounds
	Least upper bounds
	Countable chains
	Finite chains

	Classes cpo and pcpo
	Complete partial orders
	Pointed cpos
	Chain-finite and flat cpos
	Discrete cpos

	Continuity and monotonicity
	Definitions
	Equivalence of alternate definition
	Collection of continuity rules
	Continuity of basic functions
	Finite chains and flat pcpos

	Admissibility and compactness
	Definitions
	Admissibility on chain-finite types
	Admissibility of special formulae and propagation
	Compactness

	Class instances for the full function space
	Full function space is a partial order
	Full function space is chain complete
	Full function space is pointed
	Propagation of monotonicity and continuity

	The cpo of cartesian products
	Unit type is a pcpo
	Product type is a partial order
	Monotonicity of Pair, fst, snd
	Product type is a cpo
	Product type is pointed
	Continuity of Pair, fst, snd
	Compactness and chain-finiteness

	Discrete cpo types
	Discrete cpo class instance
	undiscr

	Subtypes of pcpos
	Proving a subtype is a partial order
	Proving a subtype is finite
	Proving a subtype is chain-finite
	Proving a subtype is complete
	Continuity of Rep and Abs

	Proving subtype elements are compact
	Proving a subtype is pointed
	Strictness of Rep and Abs

	Proving a subtype is flat
	HOLCF type definition package

	The type of continuous functions
	Definition of continuous function type
	Syntax for continuous lambda abstraction
	Continuous function space is pointed
	Basic properties of continuous functions
	Beta-reduction simproc

	Continuity of application
	Continuity simplification procedure
	Miscellaneous
	Continuous injection-retraction pairs
	Identity and composition
	Strictified functions
	Continuity of let-bindings

	Continuous deflations and ep-pairs
	Continuous deflations
	Deflations with finite range
	Continuous embedding-projection pairs
	Uniqueness of ep-pairs
	Composing ep-pairs

	The type of strict products
	Definition of strict product type
	Definitions of constants
	Case analysis
	Properties of spair
	Properties of sfst and ssnd
	Compactness
	Properties of ssplit
	Strict product preserves flatness

	The type of lifted values
	Definition of new type for lifting
	Ordering on lifted cpo
	Lifted cpo is a partial order
	Lifted cpo is a cpo
	Lifted cpo is pointed
	Continuity of Iup and Ifup
	Continuous versions of constants

	Lifting types of class type to flat pcpo's
	Lift as a datatype
	Lift is flat
	Continuity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 case-lift
	Further operations

	The type of lifted booleans
	Type definition and constructors
	Case analysis
	Boolean connectives
	Rewriting of HOLCF operations to HOL functions
	Compactness

	The type of strict sums
	Definition of strict sum type
	Definitions of constructors
	Properties of sinl and sinr
	Case analysis
	Case analysis combinator
	Strict sum preserves flatness

	The Strict Function Type
	Map functions for various types
	Map operator for continuous function space
	Map operator for product type
	Map function for lifted cpo
	Map function for strict products
	Map function for strict sums
	Map operator for strict function space

	The cpo of cartesian products
	Continuous case function for unit type
	Continuous version of split function
	Convert all lemmas to the continuous versions

	Profinite and bifinite cpos
	Chains of finite deflations
	Omega-profinite and bifinite domains
	Building approx chains
	Class instance proofs

	Defining algebraic domains by ideal completion
	Ideals over a preorder
	Lemmas about least upper bounds
	Locale for ideal completion
	Principal ideals approximate all elements

	Defining functions in terms of basis elements

	A universal bifinite domain
	Basis for universal domain
	Basis datatype
	Basis ordering
	Generic take function

	Defining the universal domain by ideal completion
	Compact bases of domains
	Universality of udom
	Choosing a maximal element from a finite set
	Compact basis take function
	Rank of basis elements
	Sequencing basis elements
	Embedding and projection on basis elements
	EP-pair from any bifinite domain into udom

	Chain of approx functions for type udom

	Algebraic deflations
	Type constructor for finite deflations
	Defining algebraic deflations by ideal completion
	Applying algebraic deflations
	Deflation combinators

	Representable domains
	Class of representable domains
	Domains are bifinite
	Universal domain ep-pairs
	Type combinators
	Class instance proofs
	Universal domain
	Lifted cpo
	Strict function space
	Continuous function space
	Strict product
	Cartesian product
	Unit type
	Discrete cpo
	Strict sum
	Lifted HOL type

	The unit domain
	Fixed point operator and admissibility
	Iteration
	Least fixed point operator
	Fixed point induction
	Fixed-points on product types

	Package for defining recursive functions in HOLCF
	Pattern-match monad
	Run operator
	Monad plus operator

	Match functions for built-in types
	Mutual recursion
	Initializing the fixrec package

	Domain package
	Continuous isomorphisms
	Proofs about take functions
	Finiteness
	Proofs about constructor functions
	ML setup
	Representations of types
	Deflations as sets
	Proving a subtype is representable
	Isomorphic deflations
	Setting up the domain package

	A compact basis for powerdomains
	A compact basis for powerdomains
	Unit and plus constructors
	Fold operator

	Upper powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Upper powerdomain is bifinite
	Join

	Lower powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Lower powerdomain is bifinite
	Join

	Convex powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Convex powerdomain is bifinite
	Join
	Conversions to other powerdomains

	Powerdomains
	Universal domain embeddings
	Deflation combinators
	Domain class instances
	Isomorphic deflations
	Domain package setup for powerdomains

