
Isabelle/HOLCF — Higher-Order Logic of
Computable Functions

January 18, 2026

Contents
1 Partial orders 3

1.1 Type class for partial orders 3
1.2 Upper bounds . 4
1.3 Least upper bounds . 5
1.4 Countable chains . 6
1.5 Finite chains . 7

2 Classes cpo and pcpo 9
2.1 Complete partial orders . 9
2.2 Pointed cpos . 12
2.3 Chain-finite and flat cpos . 13
2.4 Discrete cpos . 14

3 Continuity and monotonicity 14
3.1 Definitions . 14
3.2 Equivalence of alternate definition 15
3.3 Collection of continuity rules 16
3.4 Continuity of basic functions 16
3.5 Finite chains and flat pcpos 17

4 Admissibility and compactness 18
4.1 Definitions . 18
4.2 Admissibility on chain-finite types 19
4.3 Admissibility of special formulae and propagation 19
4.4 Compactness . 21

5 Class instances for the full function space 22
5.1 Full function space is a partial order 22
5.2 Full function space is chain complete 23
5.3 Full function space is pointed 23
5.4 Propagation of monotonicity and continuity 24

1

2

6 The cpo of cartesian products 25
6.1 Unit type is a pcpo . 25
6.2 Product type is a partial order 25
6.3 Monotonicity of Pair, fst, snd 26
6.4 Product type is a cpo . 27
6.5 Product type is pointed . 28
6.6 Continuity of Pair, fst, snd 28
6.7 Compactness and chain-finiteness 30

7 Discrete cpo types 31
7.1 Discrete cpo class instance . 31
7.2 undiscr . 31

8 Subtypes of pcpos 31
8.1 Proving a subtype is a partial order 31
8.2 Proving a subtype is finite . 32
8.3 Proving a subtype is chain-finite 32
8.4 Proving a subtype is complete 33

8.4.1 Continuity of Rep and Abs 34
8.5 Proving subtype elements are compact 34
8.6 Proving a subtype is pointed 35

8.6.1 Strictness of Rep and Abs 35
8.7 Proving a subtype is flat . 36
8.8 HOLCF type definition package 36

9 The type of continuous functions 37
9.1 Definition of continuous function type 37
9.2 Syntax for continuous lambda abstraction 37
9.3 Continuous function space is pointed 38
9.4 Basic properties of continuous functions 39

9.4.1 Beta-reduction simproc 39
9.5 Continuity of application . 40
9.6 Continuity simplification procedure 41
9.7 Miscellaneous . 43
9.8 Continuous injection-retraction pairs 43
9.9 Identity and composition . 44
9.10 Strictified functions . 45
9.11 Continuity of let-bindings . 46

10 Continuous deflations and ep-pairs 46
10.1 Continuous deflations . 46
10.2 Deflations with finite range 48
10.3 Continuous embedding-projection pairs 49
10.4 Uniqueness of ep-pairs . 52

3

10.5 Composing ep-pairs . 53

11 The type of strict products 54
11.1 Definition of strict product type 54
11.2 Definitions of constants . 55
11.3 Case analysis . 55
11.4 Properties of spair . 56
11.5 Properties of sfst and ssnd . 57
11.6 Compactness . 57
11.7 Properties of ssplit . 58
11.8 Strict product preserves flatness 58

12 The type of lifted values 58
12.1 Definition of new type for lifting 58
12.2 Ordering on lifted cpo . 59
12.3 Lifted cpo is a partial order 59
12.4 Lifted cpo is a cpo . 59
12.5 Lifted cpo is pointed . 61
12.6 Continuity of Iup and Ifup . 61
12.7 Continuous versions of constants 62

13 Lifting types of class type to flat pcpo’s 63
13.1 Lift as a datatype . 64
13.2 Lift is flat . 64
13.3 Continuity of case-lift . 65
13.4 Further operations . 65

14 The type of lifted booleans 66
14.1 Type definition and constructors 66
14.2 Case analysis . 67
14.3 Boolean connectives . 67
14.4 Rewriting of HOLCF operations to HOL functions 68
14.5 Compactness . 69

15 The type of strict sums 69
15.1 Definition of strict sum type 69
15.2 Definitions of constructors . 70
15.3 Properties of sinl and sinr . 70
15.4 Case analysis . 72
15.5 Case analysis combinator . 72
15.6 Strict sum preserves flatness 73

16 The Strict Function Type 73

4

17 Map functions for various types 74
17.1 Map operator for continuous function space 74
17.2 Map operator for product type 76
17.3 Map function for lifted cpo 77
17.4 Map function for strict products 78
17.5 Map function for strict sums 80
17.6 Map operator for strict function space 82

18 The cpo of cartesian products 84
18.1 Continuous case function for unit type 84
18.2 Continuous version of split function 84
18.3 Convert all lemmas to the continuous versions 85

19 Profinite and bifinite cpos 85
19.1 Chains of finite deflations . 85
19.2 Omega-profinite and bifinite domains 86
19.3 Building approx chains . 86
19.4 Class instance proofs . 88

20 Defining algebraic domains by ideal completion 90
20.1 Ideals over a preorder . 91
20.2 Lemmas about least upper bounds 93
20.3 Locale for ideal completion 93

20.3.1 Principal ideals approximate all elements 94
20.4 Defining functions in terms of basis elements 96

21 A universal bifinite domain 99
21.1 Basis for universal domain . 99

21.1.1 Basis datatype . 99
21.1.2 Basis ordering . 101
21.1.3 Generic take function 101

21.2 Defining the universal domain by ideal completion 102
21.3 Compact bases of domains . 103
21.4 Universality of udom . 104

21.4.1 Choosing a maximal element from a finite set 104
21.4.2 Compact basis take function 107
21.4.3 Rank of basis elements 108
21.4.4 Sequencing basis elements 109
21.4.5 Embedding and projection on basis elements 110
21.4.6 EP-pair from any bifinite domain into udom 116

21.5 Chain of approx functions for type udom 117

5

22 Algebraic deflations 119
22.1 Type constructor for finite deflations 119
22.2 Defining algebraic deflations by ideal completion 120
22.3 Applying algebraic deflations 122
22.4 Deflation combinators . 123

23 Representable domains 124
23.1 Class of representable domains 125
23.2 Domains are bifinite . 126
23.3 Universal domain ep-pairs . 127
23.4 Type combinators . 128
23.5 Class instance proofs . 129

23.5.1 Universal domain . 129
23.5.2 Lifted cpo . 130
23.5.3 Strict function space 130
23.5.4 Continuous function space 131
23.5.5 Strict product . 132
23.5.6 Cartesian product . 133
23.5.7 Unit type . 135
23.5.8 Discrete cpo . 135
23.5.9 Strict sum . 136
23.5.10 Lifted HOL type . 137

24 The unit domain 138

25 Fixed point operator and admissibility 139
25.1 Iteration . 139
25.2 Least fixed point operator . 140
25.3 Fixed point induction . 142
25.4 Fixed-points on product types 143

26 Package for defining recursive functions in HOLCF 144
26.1 Pattern-match monad . 144

26.1.1 Run operator . 144
26.1.2 Monad plus operator 145

26.2 Match functions for built-in types 145
26.3 Mutual recursion . 147
26.4 Initializing the fixrec package 148

27 Domain package 148
27.1 Continuous isomorphisms . 149
27.2 Proofs about take functions 151
27.3 Finiteness . 152
27.4 Proofs about constructor functions 154

6

27.5 ML setup . 155
27.6 Representations of types . 156
27.7 Deflations as sets . 156
27.8 Proving a subtype is representable 157
27.9 Isomorphic deflations . 158
27.10Setting up the domain package 162

28 A compact basis for powerdomains 162
28.1 A compact basis for powerdomains 163
28.2 Unit and plus constructors . 163
28.3 Fold operator . 164

29 Upper powerdomain 165
29.1 Basis preorder . 165
29.2 Type definition . 166
29.3 Monadic unit and plus . 167
29.4 Induction rules . 170
29.5 Monadic bind . 171
29.6 Map . 173
29.7 Upper powerdomain is bifinite 175
29.8 Join . 175

30 Lower powerdomain 176
30.1 Basis preorder . 176
30.2 Type definition . 177
30.3 Monadic unit and plus . 178
30.4 Induction rules . 181
30.5 Monadic bind . 182
30.6 Map . 184
30.7 Lower powerdomain is bifinite 185
30.8 Join . 186

31 Convex powerdomain 186
31.1 Basis preorder . 186
31.2 Type definition . 189
31.3 Monadic unit and plus . 190
31.4 Induction rules . 192
31.5 Monadic bind . 193
31.6 Map . 194
31.7 Convex powerdomain is bifinite 196
31.8 Join . 196
31.9 Conversions to other powerdomains 197

7

32 Powerdomains 199
32.1 Universal domain embeddings 199
32.2 Deflation combinators . 200
32.3 Domain class instances . 200
32.4 Isomorphic deflations . 203
32.5 Domain package setup for powerdomains 203

8

Algebraic

Bifinite

Cfun

Compact_Basis

Completion

ConvexPD

Cpo

Cpodef

Cprod Deflation

Domain

Fixrec

HOLCF

Lift

LowerPD

Map_Functions

One

Powerdomains

README

Representable

Sfun Sprod

Ssum

Tr

Universal

Up

UpperPD

[HOL-Library]

[HOL]

[Pure]

[Tools]

THEORY “Cpo” 9

theory Cpo
imports Main

begin

1 Partial orders
declare [[typedef-overloaded]]

1.1 Type class for partial orders
class below =

fixes below :: ′a ⇒ ′a ⇒ bool
begin

notation (ASCII)
below (infix ‹<<› 50)

notation
below (infix ‹v› 50)

abbreviation not-below :: ′a ⇒ ′a ⇒ bool (infix ‹ 6v› 50)
where not-below x y ≡ ¬ below x y

notation (ASCII)
not-below (infix ‹∼<<› 50)

lemma below-eq-trans: a v b =⇒ b = c =⇒ a v c
by (rule subst)

lemma eq-below-trans: a = b =⇒ b v c =⇒ a v c
by (rule ssubst)

end

class po = below +
assumes below-refl [iff]: x v x
assumes below-trans: x v y =⇒ y v z =⇒ x v z
assumes below-antisym: x v y =⇒ y v x =⇒ x = y

begin

lemma eq-imp-below: x = y =⇒ x v y
by simp

lemma box-below: a v b =⇒ c v a =⇒ b v d =⇒ c v d
by (rule below-trans [OF below-trans])

lemma po-eq-conv: x = y ←→ x v y ∧ y v x

THEORY “Cpo” 10

by (fast intro!: below-antisym)

lemma rev-below-trans: y v z =⇒ x v y =⇒ x v z
by (rule below-trans)

lemma not-below2not-eq: x 6v y =⇒ x 6= y
by auto

end

lemmas HOLCF-trans-rules [trans] =
below-trans
below-antisym
below-eq-trans
eq-below-trans

context po
begin

1.2 Upper bounds
definition is-ub :: ′a set ⇒ ′a ⇒ bool (infix ‹<|› 55)

where S <| x ←→ (∀ y∈S . y v x)

lemma is-ubI : (
∧

x. x ∈ S =⇒ x v u) =⇒ S <| u
by (simp add: is-ub-def)

lemma is-ubD: [[S <| u; x ∈ S]] =⇒ x v u
by (simp add: is-ub-def)

lemma ub-imageI : (
∧

x. x ∈ S =⇒ f x v u) =⇒ (λx. f x) ‘ S <| u
unfolding is-ub-def by fast

lemma ub-imageD: [[f ‘ S <| u; x ∈ S]] =⇒ f x v u
unfolding is-ub-def by fast

lemma ub-rangeI : (
∧

i. S i v x) =⇒ range S <| x
unfolding is-ub-def by fast

lemma ub-rangeD: range S <| x =⇒ S i v x
unfolding is-ub-def by fast

lemma is-ub-empty [simp]: {} <| u
unfolding is-ub-def by fast

lemma is-ub-insert [simp]: (insert x A) <| y = (x v y ∧ A <| y)
unfolding is-ub-def by fast

lemma is-ub-upward: [[S <| x; x v y]] =⇒ S <| y

THEORY “Cpo” 11

unfolding is-ub-def by (fast intro: below-trans)

1.3 Least upper bounds
definition is-lub :: ′a set ⇒ ′a ⇒ bool (infix ‹<<|› 55)

where S <<| x ←→ S <| x ∧ (∀ u. S <| u −→ x v u)

definition lub :: ′a set ⇒ ′a
where lub S = (THE x . S <<| x)

end

syntax (ASCII)
-BLub :: [pttrn, ′a set, ′b] ⇒ ′b (‹(‹indent=3 notation=‹binder LUB››LUB -:-./

-)› [0 ,0 , 10] 10)

syntax
-BLub :: [pttrn, ′a set, ′b] ⇒ ′b (‹(‹indent=3 notation=‹binder

⊔
››
⊔

-∈-./ -)›
[0 ,0 , 10] 10)

syntax-consts
-BLub ⇀↽ lub

translations
LUB x:A. t ⇀↽ CONST lub ((λx. t) ‘ A)

context po
begin

abbreviation Lub (binder ‹
⊔

› 10)
where

⊔
n. t n ≡ lub (range t)

notation (ASCII)
Lub (binder ‹LUB › 10)

access to some definition as inference rule
lemma is-lubD1 : S <<| x =⇒ S <| x

unfolding is-lub-def by fast

lemma is-lubD2 : [[S <<| x; S <| u]] =⇒ x v u
unfolding is-lub-def by fast

lemma is-lubI : [[S <| x;
∧

u. S <| u =⇒ x v u]] =⇒ S <<| x
unfolding is-lub-def by fast

lemma is-lub-below-iff : S <<| x =⇒ x v u ←→ S <| u
unfolding is-lub-def is-ub-def by (metis below-trans)

lubs are unique

THEORY “Cpo” 12

lemma is-lub-unique: S <<| x =⇒ S <<| y =⇒ x = y
unfolding is-lub-def is-ub-def by (blast intro: below-antisym)

technical lemmas about lub and (<<|)
lemma is-lub-lub: M <<| x =⇒ M <<| lub M

unfolding lub-def by (rule theI [OF - is-lub-unique])

lemma lub-eqI : M <<| l =⇒ lub M = l
by (rule is-lub-unique [OF is-lub-lub])

lemma is-lub-singleton [simp]: {x} <<| x
by (simp add: is-lub-def)

lemma lub-singleton [simp]: lub {x} = x
by (rule is-lub-singleton [THEN lub-eqI])

lemma is-lub-bin: x v y =⇒ {x, y} <<| y
by (simp add: is-lub-def)

lemma lub-bin: x v y =⇒ lub {x, y} = y
by (rule is-lub-bin [THEN lub-eqI])

lemma is-lub-maximal: S <| x =⇒ x ∈ S =⇒ S <<| x
by (erule is-lubI , erule (1) is-ubD)

lemma lub-maximal: S <| x =⇒ x ∈ S =⇒ lub S = x
by (rule is-lub-maximal [THEN lub-eqI])

1.4 Countable chains
definition chain :: (nat ⇒ ′a) ⇒ bool

where — Here we use countable chains and I prefer to code them as functions!
chain Y = (∀ i. Y i v Y (Suc i))

lemma chainI : (
∧

i. Y i v Y (Suc i)) =⇒ chain Y
unfolding chain-def by fast

lemma chainE : chain Y =⇒ Y i v Y (Suc i)
unfolding chain-def by fast

chains are monotone functions
lemma chain-mono-less: chain Y =⇒ i < j =⇒ Y i v Y j

by (erule less-Suc-induct, erule chainE , erule below-trans)

lemma chain-mono: chain Y =⇒ i ≤ j =⇒ Y i v Y j
by (cases i = j) (simp-all add: chain-mono-less)

lemma chain-shift: chain Y =⇒ chain (λi. Y (i + j))
by (rule chainI , simp, erule chainE)

THEORY “Cpo” 13

technical lemmas about (least) upper bounds of chains
lemma is-lub-rangeD1 : range S <<| x =⇒ S i v x

by (rule is-lubD1 [THEN ub-rangeD])

lemma is-ub-range-shift: chain S =⇒ range (λi. S (i + j)) <| x = range S <| x
apply (rule iffI)
apply (rule ub-rangeI)
apply (rule-tac y=S (i + j) in below-trans)
apply (erule chain-mono)
apply (rule le-add1)

apply (erule ub-rangeD)
apply (rule ub-rangeI)
apply (erule ub-rangeD)
done

lemma is-lub-range-shift: chain S =⇒ range (λi. S (i + j)) <<| x = range S <<|
x

by (simp add: is-lub-def is-ub-range-shift)

the lub of a constant chain is the constant
lemma chain-const [simp]: chain (λi. c)

by (simp add: chainI)

lemma is-lub-const: range (λx. c) <<| c
by (blast dest: ub-rangeD intro: is-lubI ub-rangeI)

lemma lub-const [simp]: (
⊔

i. c) = c
by (rule is-lub-const [THEN lub-eqI])

1.5 Finite chains
definition max-in-chain :: nat ⇒ (nat ⇒ ′a) ⇒ bool

where — finite chains, needed for monotony of continuous functions
max-in-chain i C ←→ (∀ j. i ≤ j −→ C i = C j)

definition finite-chain :: (nat ⇒ ′a) ⇒ bool
where finite-chain C = (chain C ∧ (∃ i. max-in-chain i C))

results about finite chains
lemma max-in-chainI : (

∧
j. i ≤ j =⇒ Y i = Y j) =⇒ max-in-chain i Y

unfolding max-in-chain-def by fast

lemma max-in-chainD: max-in-chain i Y =⇒ i ≤ j =⇒ Y i = Y j
unfolding max-in-chain-def by fast

lemma finite-chainI : chain C =⇒ max-in-chain i C =⇒ finite-chain C
unfolding finite-chain-def by fast

THEORY “Cpo” 14

lemma finite-chainE : [[finite-chain C ;
∧

i. [[chain C ; max-in-chain i C]] =⇒ R]]
=⇒ R

unfolding finite-chain-def by fast

lemma lub-finch1 : chain C =⇒ max-in-chain i C =⇒ range C <<| C i
apply (rule is-lubI)
apply (rule ub-rangeI , rename-tac j)
apply (rule-tac x=i and y=j in linorder-le-cases)
apply (drule (1) max-in-chainD, simp)

apply (erule (1) chain-mono)
apply (erule ub-rangeD)
done

lemma lub-finch2 : finite-chain C =⇒ range C <<| C (LEAST i. max-in-chain i
C)

apply (erule finite-chainE)
apply (erule LeastI2 [where Q=λi. range C <<| C i])
apply (erule (1) lub-finch1)
done

lemma finch-imp-finite-range: finite-chain Y =⇒ finite (range Y)
apply (erule finite-chainE)
apply (rule-tac B=Y ‘ {..i} in finite-subset)
apply (rule subsetI)
apply (erule rangeE , rename-tac j)
apply (rule-tac x=i and y=j in linorder-le-cases)
apply (subgoal-tac Y j = Y i, simp)
apply (simp add: max-in-chain-def)

apply simp
apply simp
done

lemma finite-range-has-max:
fixes f :: nat ⇒ ′a

and r :: ′a ⇒ ′a ⇒ bool
assumes mono:

∧
i j. i ≤ j =⇒ r (f i) (f j)

assumes finite-range: finite (range f)
shows ∃ k. ∀ i. r (f i) (f k)

proof (intro exI allI)
fix i :: nat
let ?j = LEAST k. f k = f i
let ?k = Max ((λx. LEAST k. f k = x) ‘ range f)
have ?j ≤ ?k
proof (rule Max-ge)

show finite ((λx. LEAST k. f k = x) ‘ range f)
using finite-range by (rule finite-imageI)

show ?j ∈ (λx. LEAST k. f k = x) ‘ range f
by (intro imageI rangeI)

qed

THEORY “Cpo” 15

hence r (f ?j) (f ?k)
by (rule mono)

also have f ?j = f i
by (rule LeastI , rule refl)

finally show r (f i) (f ?k) .
qed

lemma finite-range-imp-finch: chain Y =⇒ finite (range Y) =⇒ finite-chain Y
apply (subgoal-tac ∃ k. ∀ i. Y i v Y k)
apply (erule exE)
apply (rule finite-chainI , assumption)
apply (rule max-in-chainI)
apply (rule below-antisym)
apply (erule (1) chain-mono)

apply (erule spec)
apply (rule finite-range-has-max)
apply (erule (1) chain-mono)

apply assumption
done

lemma bin-chain: x v y =⇒ chain (λi. if i=0 then x else y)
by (rule chainI) simp

lemma bin-chainmax: x v y =⇒ max-in-chain (Suc 0) (λi. if i=0 then x else y)
by (simp add: max-in-chain-def)

lemma is-lub-bin-chain: x v y =⇒ range (λi::nat. if i=0 then x else y) <<| y
apply (frule bin-chain)
apply (drule bin-chainmax)
apply (drule (1) lub-finch1)
apply simp
done

the maximal element in a chain is its lub
lemma lub-chain-maxelem: Y i = c =⇒ ∀ i. Y i v c =⇒ lub (range Y) = c

by (blast dest: ub-rangeD intro: lub-eqI is-lubI ub-rangeI)

end

2 Classes cpo and pcpo
2.1 Complete partial orders

The class cpo of chain complete partial orders
class cpo = po +

assumes cpo: chain S =⇒ ∃ x. range S <<| x

default-sort cpo

THEORY “Cpo” 16

context cpo
begin

in cpo’s everthing equal to THE lub has lub properties for every chain
lemma cpo-lubI : chain S =⇒ range S <<| (

⊔
i. S i)

by (fast dest: cpo elim: is-lub-lub)

lemma thelubE : [[chain S ; (
⊔

i. S i) = l]] =⇒ range S <<| l
by (blast dest: cpo intro: is-lub-lub)

Properties of the lub
lemma is-ub-thelub: chain S =⇒ S x v (

⊔
i. S i)

by (blast dest: cpo intro: is-lub-lub [THEN is-lub-rangeD1])

lemma is-lub-thelub: [[chain S ; range S <| x]] =⇒ (
⊔

i. S i) v x
by (blast dest: cpo intro: is-lub-lub [THEN is-lubD2])

lemma lub-below-iff : chain S =⇒ (
⊔

i. S i) v x ←→ (∀ i. S i v x)
by (simp add: is-lub-below-iff [OF cpo-lubI] is-ub-def)

lemma lub-below: [[chain S ;
∧

i. S i v x]] =⇒ (
⊔

i. S i) v x
by (simp add: lub-below-iff)

lemma below-lub: [[chain S ; x v S i]] =⇒ x v (
⊔

i. S i)
by (erule below-trans, erule is-ub-thelub)

lemma lub-range-mono: [[range X ⊆ range Y ; chain Y ; chain X]] =⇒ (
⊔

i. X i)
v (

⊔
i. Y i)

apply (erule lub-below)
apply (subgoal-tac ∃ j. X i = Y j)
apply clarsimp
apply (erule is-ub-thelub)

apply auto
done

lemma lub-range-shift: chain Y =⇒ (
⊔

i. Y (i + j)) = (
⊔

i. Y i)
apply (rule below-antisym)
apply (rule lub-range-mono)

apply fast
apply assumption

apply (erule chain-shift)
apply (rule lub-below)
apply assumption

apply (rule-tac i=i in below-lub)
apply (erule chain-shift)

apply (erule chain-mono)
apply (rule le-add1)
done

THEORY “Cpo” 17

lemma maxinch-is-thelub: chain Y =⇒ max-in-chain i Y = ((
⊔

i. Y i) = Y i)
apply (rule iffI)
apply (fast intro!: lub-eqI lub-finch1)

apply (unfold max-in-chain-def)
apply (safe intro!: below-antisym)
apply (fast elim!: chain-mono)

apply (drule sym)
apply (force elim!: is-ub-thelub)
done

the v relation between two chains is preserved by their lubs
lemma lub-mono: [[chain X ; chain Y ;

∧
i. X i v Y i]] =⇒ (

⊔
i. X i) v (

⊔
i. Y i)

by (fast elim: lub-below below-lub)

the = relation between two chains is preserved by their lubs
lemma lub-eq: (

∧
i. X i = Y i) =⇒ (

⊔
i. X i) = (

⊔
i. Y i)

by simp

lemma ch2ch-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows chain (λi.

⊔
j. Y i j)

apply (rule chainI)
apply (rule lub-mono [OF 2 2])
apply (rule chainE [OF 1])
done

lemma diag-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows (

⊔
i.

⊔
j. Y i j) = (

⊔
i. Y i i)

proof (rule below-antisym)
have 3 : chain (λi. Y i i)

apply (rule chainI)
apply (rule below-trans)
apply (rule chainE [OF 1])

apply (rule chainE [OF 2])
done

have 4 : chain (λi.
⊔

j. Y i j)
by (rule ch2ch-lub [OF 1 2])

show (
⊔

i.
⊔

j. Y i j) v (
⊔

i. Y i i)
apply (rule lub-below [OF 4])
apply (rule lub-below [OF 2])
apply (rule below-lub [OF 3])
apply (rule below-trans)
apply (rule chain-mono [OF 1 max.cobounded1])

apply (rule chain-mono [OF 2 max.cobounded2])
done

THEORY “Cpo” 18

show (
⊔

i. Y i i) v (
⊔

i.
⊔

j. Y i j)
apply (rule lub-mono [OF 3 4])
apply (rule is-ub-thelub [OF 2])
done

qed

lemma ex-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows (

⊔
i.

⊔
j. Y i j) = (

⊔
j.

⊔
i. Y i j)

by (simp add: diag-lub 1 2)

end

2.2 Pointed cpos

The class pcpo of pointed cpos
class pcpo = cpo +

assumes least: ∃ x. ∀ y. x v y
begin

definition bottom :: ′a (‹⊥›)
where bottom = (THE x . ∀ y. x v y)

lemma minimal [iff]: ⊥ v x
unfolding bottom-def
apply (rule the1I2)
apply (rule ex-ex1I)
apply (rule least)

apply (blast intro: below-antisym)
apply simp
done

end

Old "UU" syntax:
abbreviation (input) UU ≡ bottom

Simproc to rewrite ⊥ = x to x = ⊥.
setup ‹Reorient-Proc.add (fn Const- ‹bottom -› => true | - => false)›
simproc-setup reorient-bottom (⊥ = x) = ‹K Reorient-Proc.proc›

useful lemmas about ⊥
lemma below-bottom-iff [simp]: x v ⊥ ←→ x = ⊥

by (simp add: po-eq-conv)

lemma eq-bottom-iff : x = ⊥ ←→ x v ⊥
by simp

THEORY “Cpo” 19

lemma bottomI : x v ⊥ =⇒ x = ⊥
by (subst eq-bottom-iff)

lemma lub-eq-bottom-iff : chain Y =⇒ (
⊔

i. Y i) = ⊥ ←→ (∀ i. Y i = ⊥)
by (simp only: eq-bottom-iff lub-below-iff)

2.3 Chain-finite and flat cpos

further useful classes for HOLCF domains
class chfin = po +

assumes chfin: chain Y =⇒ ∃n. max-in-chain n Y
begin

subclass cpo
apply standard
apply (frule chfin)
apply (blast intro: lub-finch1)
done

lemma chfin2finch: chain Y =⇒ finite-chain Y
by (simp add: chfin finite-chain-def)

end

class flat = pcpo +
assumes ax-flat: x v y =⇒ x = ⊥ ∨ x = y

begin

subclass chfin
proof

fix Y
assume ∗: chain Y
show ∃n. max-in-chain n Y

apply (unfold max-in-chain-def)
apply (cases ∀ i. Y i = ⊥)
apply simp

apply simp
apply (erule exE)
apply (rule-tac x=i in exI)
apply clarify
using ∗ apply (blast dest: chain-mono ax-flat)
done

qed

lemma flat-below-iff : x v y ←→ x = ⊥ ∨ x = y
by (safe dest!: ax-flat)

lemma flat-eq: a 6= ⊥ =⇒ a v b = (a = b)

THEORY “Cpo” 20

by (safe dest!: ax-flat)

end

2.4 Discrete cpos
class discrete-cpo = below +

assumes discrete-cpo [simp]: x v y ←→ x = y
begin

subclass po
by standard simp-all

In a discrete cpo, every chain is constant
lemma discrete-chain-const:

assumes S : chain S
shows ∃ x. S = (λi. x)

proof (intro exI ext)
fix i :: nat
from S le0 have S 0 v S i by (rule chain-mono)
then have S 0 = S i by simp
then show S i = S 0 by (rule sym)

qed

subclass chfin
proof

fix S :: nat ⇒ ′a
assume S : chain S
then have ∃ x. S = (λi. x)

by (rule discrete-chain-const)
then have max-in-chain 0 S

by (auto simp: max-in-chain-def)
then show ∃ i. max-in-chain i S ..

qed

end

3 Continuity and monotonicity
3.1 Definitions
definition monofun :: (′a::po ⇒ ′b::po) ⇒ bool — monotonicity

where monofun f ←→ (∀ x y. x v y −→ f x v f y)

definition cont :: (′a ⇒ ′b) ⇒ bool
where cont f = (∀Y . chain Y −→ range (λi. f (Y i)) <<| f (

⊔
i. Y i))

lemma contI : (
∧

Y . chain Y =⇒ range (λi. f (Y i)) <<| f (
⊔

i. Y i)) =⇒ cont f
by (simp add: cont-def)

THEORY “Cpo” 21

lemma contE : cont f =⇒ chain Y =⇒ range (λi. f (Y i)) <<| f (
⊔

i. Y i)
by (simp add: cont-def)

lemma monofunI : (
∧

x y. x v y =⇒ f x v f y) =⇒ monofun f
by (simp add: monofun-def)

lemma monofunE : monofun f =⇒ x v y =⇒ f x v f y
by (simp add: monofun-def)

3.2 Equivalence of alternate definition

monotone functions map chains to chains
lemma ch2ch-monofun: monofun f =⇒ chain Y =⇒ chain (λi. f (Y i))

apply (rule chainI)
apply (erule monofunE)
apply (erule chainE)
done

monotone functions map upper bound to upper bounds
lemma ub2ub-monofun: monofun f =⇒ range Y <| u =⇒ range (λi. f (Y i)) <|
f u

apply (rule ub-rangeI)
apply (erule monofunE)
apply (erule ub-rangeD)
done

a lemma about binary chains
lemma binchain-cont: cont f =⇒ x v y =⇒ range (λi::nat. f (if i = 0 then x else
y)) <<| f y

apply (subgoal-tac f (
⊔

i::nat. if i = 0 then x else y) = f y)
apply (erule subst)
apply (erule contE)
apply (erule bin-chain)

apply (rule-tac f=f in arg-cong)
apply (erule is-lub-bin-chain [THEN lub-eqI])
done

continuity implies monotonicity
lemma cont2mono: cont f =⇒ monofun f

apply (rule monofunI)
apply (drule (1) binchain-cont)
apply (drule-tac i=0 in is-lub-rangeD1)
apply simp
done

lemmas cont2monofunE = cont2mono [THEN monofunE]

THEORY “Cpo” 22

lemmas ch2ch-cont = cont2mono [THEN ch2ch-monofun]

continuity implies preservation of lubs
lemma cont2contlubE : cont f =⇒ chain Y =⇒ f (

⊔
i. Y i) = (

⊔
i. f (Y i))

apply (rule lub-eqI [symmetric])
apply (erule (1) contE)
done

lemma contI2 :
fixes f :: ′a ⇒ ′b
assumes mono: monofun f
assumes below:

∧
Y . [[chain Y ; chain (λi. f (Y i))]] =⇒ f (

⊔
i. Y i) v (

⊔
i. f

(Y i))
shows cont f

proof (rule contI)
fix Y :: nat ⇒ ′a
assume Y : chain Y
with mono have fY : chain (λi. f (Y i))

by (rule ch2ch-monofun)
have (

⊔
i. f (Y i)) = f (

⊔
i. Y i)

apply (rule below-antisym)
apply (rule lub-below [OF fY])
apply (rule monofunE [OF mono])
apply (rule is-ub-thelub [OF Y])

apply (rule below [OF Y fY])
done

with fY show range (λi. f (Y i)) <<| f (
⊔

i. Y i)
by (rule thelubE)

qed

3.3 Collection of continuity rules
named-theorems cont2cont continuity intro rule

3.4 Continuity of basic functions

The identity function is continuous
lemma cont-id [simp, cont2cont]: cont (λx. x)

apply (rule contI)
apply (erule cpo-lubI)
done

constant functions are continuous
lemma cont-const [simp, cont2cont]: cont (λx. c)

using is-lub-const by (rule contI)

application of functions is continuous
lemma cont-apply:

THEORY “Cpo” 23

fixes f :: ′a ⇒ ′b ⇒ ′c and t :: ′a ⇒ ′b
assumes 1 : cont (λx. t x)
assumes 2 :

∧
x. cont (λy. f x y)

assumes 3 :
∧

y. cont (λx. f x y)
shows cont (λx. (f x) (t x))

proof (rule contI2 [OF monofunI])
fix x y :: ′a
assume x v y
then show f x (t x) v f y (t y)

by (auto intro: cont2monofunE [OF 1]
cont2monofunE [OF 2]
cont2monofunE [OF 3]
below-trans)

next
fix Y :: nat ⇒ ′a
assume chain Y
then show f (

⊔
i. Y i) (t (

⊔
i. Y i)) v (

⊔
i. f (Y i) (t (Y i)))

by (simp only: cont2contlubE [OF 1] ch2ch-cont [OF 1]
cont2contlubE [OF 2] ch2ch-cont [OF 2]
cont2contlubE [OF 3] ch2ch-cont [OF 3]
diag-lub below-refl)

qed

lemma cont-compose: cont c =⇒ cont (λx. f x) =⇒ cont (λx. c (f x))
by (rule cont-apply [OF - - cont-const])

Least upper bounds preserve continuity
lemma cont2cont-lub [simp]:

assumes chain:
∧

x. chain (λi. F i x)
and cont:

∧
i. cont (λx. F i x)

shows cont (λx.
⊔

i. F i x)
apply (rule contI2)
apply (simp add: monofunI cont2monofunE [OF cont] lub-mono chain)

apply (simp add: cont2contlubE [OF cont])
apply (simp add: diag-lub ch2ch-cont [OF cont] chain)
done

if-then-else is continuous
lemma cont-if [simp, cont2cont]: cont f =⇒ cont g =⇒ cont (λx. if b then f x else
g x)

by (induct b) simp-all

3.5 Finite chains and flat pcpos

Monotone functions map finite chains to finite chains.
lemma monofun-finch2finch: monofun f =⇒ finite-chain Y =⇒ finite-chain (λn.
f (Y n))

by (force simp add: finite-chain-def ch2ch-monofun max-in-chain-def)

THEORY “Cpo” 24

The same holds for continuous functions.
lemma cont-finch2finch: cont f =⇒ finite-chain Y =⇒ finite-chain (λn. f (Y n))

by (rule cont2mono [THEN monofun-finch2finch])

All monotone functions with chain-finite domain are continuous.
lemma chfindom-monofun2cont: monofun f =⇒ cont f

for f :: ′a::chfin ⇒ ′b
apply (erule contI2)
apply (frule chfin2finch)
apply (clarsimp simp add: finite-chain-def)
apply (subgoal-tac max-in-chain i (λi. f (Y i)))
apply (simp add: maxinch-is-thelub ch2ch-monofun)

apply (force simp add: max-in-chain-def)
done

All strict functions with flat domain are continuous.
lemma flatdom-strict2mono: f ⊥ = ⊥ =⇒ monofun f

for f :: ′a::flat ⇒ ′b::pcpo
apply (rule monofunI)
apply (drule ax-flat)
apply auto
done

lemma flatdom-strict2cont: f ⊥ = ⊥ =⇒ cont f
for f :: ′a::flat ⇒ ′b::pcpo
by (rule flatdom-strict2mono [THEN chfindom-monofun2cont])

All functions with discrete domain are continuous.
lemma cont-discrete-cpo [simp, cont2cont]: cont f

for f :: ′a::discrete-cpo ⇒ ′b
apply (rule contI)
apply (drule discrete-chain-const, clarify)
apply simp
done

4 Admissibility and compactness
4.1 Definitions
context cpo
begin

definition adm :: (′a ⇒ bool) ⇒ bool
where adm P ←→ (∀Y . chain Y −→ (∀ i. P (Y i)) −→ P (

⊔
i. Y i))

lemma admI : (
∧

Y . [[chain Y ; ∀ i. P (Y i)]] =⇒ P (
⊔

i. Y i)) =⇒ adm P
unfolding adm-def by fast

THEORY “Cpo” 25

lemma admD: adm P =⇒ chain Y =⇒ (
∧

i. P (Y i)) =⇒ P (
⊔

i. Y i)
unfolding adm-def by fast

lemma admD2 : adm (λx. ¬ P x) =⇒ chain Y =⇒ P (
⊔

i. Y i) =⇒ ∃ i. P (Y i)
unfolding adm-def by fast

lemma triv-admI : ∀ x. P x =⇒ adm P
by (rule admI) (erule spec)

end

4.2 Admissibility on chain-finite types

For chain-finite (easy) types every formula is admissible.
lemma adm-chfin [simp]: adm P for P :: ′a::chfin ⇒ bool

by (rule admI , frule chfin, auto simp add: maxinch-is-thelub)

4.3 Admissibility of special formulae and propagation
context cpo
begin

lemma adm-const [simp]: adm (λx. t)
by (rule admI , simp)

lemma adm-conj [simp]: adm (λx. P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x ∧
Q x)

by (fast intro: admI elim: admD)

lemma adm-all [simp]: (
∧

y. adm (λx. P x y)) =⇒ adm (λx. ∀ y. P x y)
by (fast intro: admI elim: admD)

lemma adm-ball [simp]: (
∧

y. y ∈ A =⇒ adm (λx. P x y)) =⇒ adm (λx. ∀ y∈A.
P x y)

by (fast intro: admI elim: admD)

Admissibility for disjunction is hard to prove. It requires 2 lemmas.
lemma adm-disj-lemma1 :

assumes adm: adm P
assumes chain: chain Y
assumes P: ∀ i. ∃ j≥i. P (Y j)
shows P (

⊔
i. Y i)

proof −
define f where f i = (LEAST j. i ≤ j ∧ P (Y j)) for i
have chain ′: chain (λi. Y (f i))

unfolding f-def
apply (rule chainI)
apply (rule chain-mono [OF chain])
apply (rule Least-le)

THEORY “Cpo” 26

apply (rule LeastI2-ex)
apply (simp-all add: P)

done
have f1 :

∧
i. i ≤ f i and f2 :

∧
i. P (Y (f i))

using LeastI-ex [OF P [rule-format]] by (simp-all add: f-def)
have lub-eq: (

⊔
i. Y i) = (

⊔
i. Y (f i))

apply (rule below-antisym)
apply (rule lub-mono [OF chain chain ′])
apply (rule chain-mono [OF chain f1])

apply (rule lub-range-mono [OF - chain chain ′])
apply clarsimp
done

show P (
⊔

i. Y i)
unfolding lub-eq using adm chain ′ f2 by (rule admD)

qed

lemma adm-disj-lemma2 : ∀n::nat. P n ∨ Q n =⇒ (∀ i. ∃ j≥i. P j) ∨ (∀ i. ∃ j≥i.
Q j)

apply (erule contrapos-pp)
apply (clarsimp, rename-tac a b)
apply (rule-tac x=max a b in exI)
apply simp
done

lemma adm-disj [simp]: adm (λx. P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x ∨
Q x)

apply (rule admI)
apply (erule adm-disj-lemma2 [THEN disjE])
apply (erule (2) adm-disj-lemma1 [THEN disjI1])

apply (erule (2) adm-disj-lemma1 [THEN disjI2])
done

lemma adm-imp [simp]: adm (λx. ¬ P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x
−→ Q x)

by (subst imp-conv-disj) (rule adm-disj)

lemma adm-iff [simp]: adm (λx. P x −→ Q x) =⇒ adm (λx. Q x −→ P x) =⇒
adm (λx. P x ←→ Q x)

by (subst iff-conv-conj-imp) (rule adm-conj)

end

admissibility and continuity
lemma adm-below [simp]: cont (λx. u x) =⇒ cont (λx. v x) =⇒ adm (λx. u x v
v x)

by (simp add: adm-def cont2contlubE lub-mono ch2ch-cont)

lemma adm-eq [simp]: cont (λx. u x) =⇒ cont (λx. v x) =⇒ adm (λx. u x = v x)
by (simp add: po-eq-conv)

THEORY “Cpo” 27

lemma adm-subst: cont (λx. t x) =⇒ adm P =⇒ adm (λx. P (t x))
by (simp add: adm-def cont2contlubE ch2ch-cont)

lemma adm-not-below [simp]: cont (λx. t x) =⇒ adm (λx. t x 6v u)
by (rule admI) (simp add: cont2contlubE ch2ch-cont lub-below-iff)

4.4 Compactness
context cpo
begin

definition compact :: ′a ⇒ bool
where compact k = adm (λx. k 6v x)

lemma compactI : adm (λx. k 6v x) =⇒ compact k
unfolding compact-def .

lemma compactD: compact k =⇒ adm (λx. k 6v x)
unfolding compact-def .

lemma compactI2 : (
∧

Y . [[chain Y ; x v (
⊔

i. Y i)]] =⇒ ∃ i. x v Y i) =⇒ compact
x

unfolding compact-def adm-def by fast

lemma compactD2 : compact x =⇒ chain Y =⇒ x v (
⊔

i. Y i) =⇒ ∃ i. x v Y i
unfolding compact-def adm-def by fast

lemma compact-below-lub-iff : compact x =⇒ chain Y =⇒ x v (
⊔

i. Y i)←→ (∃ i.
x v Y i)

by (fast intro: compactD2 elim: below-lub)

end

lemma compact-chfin [simp]: compact x for x :: ′a::chfin
by (rule compactI [OF adm-chfin])

lemma compact-imp-max-in-chain: chain Y =⇒ compact (
⊔

i. Y i) =⇒ ∃ i. max-in-chain
i Y

apply (drule (1) compactD2 , simp)
apply (erule exE , rule-tac x=i in exI)
apply (rule max-in-chainI)
apply (rule below-antisym)
apply (erule (1) chain-mono)

apply (erule (1) below-trans [OF is-ub-thelub])
done

admissibility and compactness
lemma adm-compact-not-below [simp]:

THEORY “Cpo” 28

compact k =⇒ cont (λx. t x) =⇒ adm (λx. k 6v t x)
unfolding compact-def by (rule adm-subst)

lemma adm-neq-compact [simp]: compact k =⇒ cont (λx. t x) =⇒ adm (λx. t x
6= k)

by (simp add: po-eq-conv)

lemma adm-compact-neq [simp]: compact k =⇒ cont (λx. t x) =⇒ adm (λx. k 6=
t x)

by (simp add: po-eq-conv)

lemma compact-bottom [simp, intro]: compact ⊥
by (rule compactI) simp

Any upward-closed predicate is admissible.
lemma adm-upward:

assumes P:
∧

x y. [[P x; x v y]] =⇒ P y
shows adm P
by (rule admI , drule spec, erule P, erule is-ub-thelub)

lemmas adm-lemmas =
adm-const adm-conj adm-all adm-ball adm-disj adm-imp adm-iff
adm-below adm-eq adm-not-below
adm-compact-not-below adm-compact-neq adm-neq-compact

5 Class instances for the full function space
5.1 Full function space is a partial order
instantiation fun :: (type, below) below
begin

definition below-fun-def : (v) ≡ (λf g. ∀ x. f x v g x)

instance ..
end

instance fun :: (type, po) po
proof

fix f g h :: ′a ⇒ ′b
show f v f

by (simp add: below-fun-def)
show f v g =⇒ g v f =⇒ f = g

by (simp add: below-fun-def fun-eq-iff below-antisym)
show f v g =⇒ g v h =⇒ f v h

unfolding below-fun-def by (fast elim: below-trans)
qed

lemma fun-below-iff : f v g ←→ (∀ x. f x v g x)

THEORY “Cpo” 29

by (simp add: below-fun-def)

lemma fun-belowI : (
∧

x. f x v g x) =⇒ f v g
by (simp add: below-fun-def)

lemma fun-belowD: f v g =⇒ f x v g x
by (simp add: below-fun-def)

5.2 Full function space is chain complete

Properties of chains of functions.
lemma fun-chain-iff : chain S ←→ (∀ x. chain (λi. S i x))

by (auto simp: chain-def fun-below-iff)

lemma ch2ch-fun: chain S =⇒ chain (λi. S i x)
by (simp add: chain-def below-fun-def)

lemma ch2ch-lambda: (
∧

x. chain (λi. S i x)) =⇒ chain S
by (simp add: chain-def below-fun-def)

Type ′a ⇒ ′b is chain complete
lemma is-lub-lambda: (

∧
x. range (λi. Y i x) <<| f x) =⇒ range Y <<| f

by (simp add: is-lub-def is-ub-def below-fun-def)

lemma is-lub-fun: chain S =⇒ range S <<| (λx.
⊔

i. S i x)
for S :: nat ⇒ ′a::type ⇒ ′b
apply (rule is-lub-lambda)
apply (rule cpo-lubI)
apply (erule ch2ch-fun)
done

lemma lub-fun: chain S =⇒ (
⊔

i. S i) = (λx.
⊔

i. S i x)
for S :: nat ⇒ ′a::type ⇒ ′b
by (rule is-lub-fun [THEN lub-eqI])

instance fun :: (type, cpo) cpo
by intro-classes (rule exI , erule is-lub-fun)

instance fun :: (type, discrete-cpo) discrete-cpo
proof

fix f g :: ′a ⇒ ′b
show f v g ←→ f = g

by (simp add: fun-below-iff fun-eq-iff)
qed

5.3 Full function space is pointed
lemma minimal-fun: (λx. ⊥) v f

by (simp add: below-fun-def)

THEORY “Cpo” 30

instance fun :: (type, pcpo) pcpo
by standard (fast intro: minimal-fun)

lemma inst-fun-pcpo: ⊥ = (λx. ⊥)
by (rule minimal-fun [THEN bottomI , symmetric])

lemma app-strict [simp]: ⊥ x = ⊥
by (simp add: inst-fun-pcpo)

lemma lambda-strict: (λx. ⊥) = ⊥
by (rule bottomI , rule minimal-fun)

5.4 Propagation of monotonicity and continuity

The lub of a chain of monotone functions is monotone.
lemma adm-monofun: adm monofun

by (rule admI) (simp add: lub-fun fun-chain-iff monofun-def lub-mono)

The lub of a chain of continuous functions is continuous.
lemma adm-cont: adm cont

by (rule admI) (simp add: lub-fun fun-chain-iff)

Function application preserves monotonicity and continuity.
lemma mono2mono-fun: monofun f =⇒ monofun (λx. f x y)

by (simp add: monofun-def fun-below-iff)

lemma cont2cont-fun: cont f =⇒ cont (λx. f x y)
apply (rule contI2)
apply (erule cont2mono [THEN mono2mono-fun])

apply (simp add: cont2contlubE lub-fun ch2ch-cont)
done

lemma cont-fun: cont (λf . f x)
using cont-id by (rule cont2cont-fun)

simproc-setup apply-cont (‹cont (λf . E f)›) = ‹
fn - => fn ctxt => fn lhs =>
(case Thm.term-of lhs of

Const- ‹cont - - for ‹Abs (-, -, expr)›› =>
if case strip-comb expr of (f , args) =>

f = Bound 0 andalso not (exists Term.is-dependent args)
(∗ since ‹λf . E f › is too permissive, we ensure here that the term

is of the form ‹λf . f . . .›, with ‹f › no longer appearing in ‹. . .› ∗)
then

let
val tac = Metis-Tactic.metis-tac [no-types] combs ctxt @{thms cont2cont-fun

cont-id}

THEORY “Cpo” 31

val thm =
Goal.prove-internal ctxt [] instantiate ‹lhs in cprop ‹lhs = True››
(fn - => tac 1)

in SOME (mk-meta-eq thm) end
else NONE

| - => NONE)
›

lemma cont (λf . f x) and cont (λf . f x y) and cont (λf . f x y z)
by simp-all

Lambda abstraction preserves monotonicity and continuity. (Note (λx. λy.
f x y) = f.)
lemma mono2mono-lambda: (

∧
y. monofun (λx. f x y)) =⇒ monofun f

by (simp add: monofun-def fun-below-iff)

lemma cont2cont-lambda [simp]:
assumes f :

∧
y. cont (λx. f x y)

shows cont f
by (rule contI , rule is-lub-lambda, rule contE [OF f])

What D.A.Schmidt calls continuity of abstraction; never used here
lemma contlub-lambda: (

∧
x. chain (λi. S i x)) =⇒ (λx.

⊔
i. S i x) = (

⊔
i. (λx.

S i x))
for S :: nat ⇒ ′a::type ⇒ ′b
by (simp add: lub-fun ch2ch-lambda)

6 The cpo of cartesian products
6.1 Unit type is a pcpo
instantiation unit :: discrete-cpo
begin

definition below-unit-def [simp]: x v (y::unit) ←→ True

instance
by standard simp

end

instance unit :: pcpo
by standard simp

6.2 Product type is a partial order
instantiation prod :: (below, below) below
begin

THEORY “Cpo” 32

definition below-prod-def : (v) ≡ λp1 p2 . (fst p1 v fst p2 ∧ snd p1 v snd p2)

instance ..

end

instance prod :: (po, po) po
proof

fix x y z :: ′a × ′b
show x v x

by (simp add: below-prod-def)
show x v y =⇒ y v x =⇒ x = y

unfolding below-prod-def prod-eq-iff
by (fast intro: below-antisym)

show x v y =⇒ y v z =⇒ x v z
unfolding below-prod-def
by (fast intro: below-trans)

qed

6.3 Monotonicity of Pair, fst, snd
lemma prod-belowI : fst p v fst q =⇒ snd p v snd q =⇒ p v q

by (simp add: below-prod-def)

lemma Pair-below-iff [simp]: (a, b) v (c, d) ←→ a v c ∧ b v d
by (simp add: below-prod-def)

Pair (-,-) is monotone in both arguments
lemma monofun-pair1 : monofun (λx. (x, y))

by (simp add: monofun-def)

lemma monofun-pair2 : monofun (λy. (x, y))
by (simp add: monofun-def)

lemma monofun-pair : x1 v x2 =⇒ y1 v y2 =⇒ (x1 , y1) v (x2 , y2)
by simp

lemma ch2ch-Pair [simp]: chain X =⇒ chain Y =⇒ chain (λi. (X i, Y i))
by (rule chainI , simp add: chainE)

fst and snd are monotone
lemma fst-monofun: x v y =⇒ fst x v fst y

by (simp add: below-prod-def)

lemma snd-monofun: x v y =⇒ snd x v snd y
by (simp add: below-prod-def)

lemma monofun-fst: monofun fst
by (simp add: monofun-def below-prod-def)

THEORY “Cpo” 33

lemma monofun-snd: monofun snd
by (simp add: monofun-def below-prod-def)

lemmas ch2ch-fst [simp] = ch2ch-monofun [OF monofun-fst]

lemmas ch2ch-snd [simp] = ch2ch-monofun [OF monofun-snd]

lemma prod-chain-cases:
assumes chain: chain Y
obtains A B
where chain A and chain B and Y = (λi. (A i, B i))

proof
from chain show chain (λi. fst (Y i))

by (rule ch2ch-fst)
from chain show chain (λi. snd (Y i))

by (rule ch2ch-snd)
show Y = (λi. (fst (Y i), snd (Y i)))

by simp
qed

6.4 Product type is a cpo
lemma is-lub-Pair : range A <<| x =⇒ range B <<| y =⇒ range (λi. (A i, B i))
<<| (x, y)

by (simp add: is-lub-def is-ub-def below-prod-def)

lemma lub-Pair : chain A =⇒ chain B =⇒ (
⊔

i. (A i, B i)) = (
⊔

i. A i,
⊔

i. B i)
for A :: nat ⇒ ′a and B :: nat ⇒ ′b
by (fast intro: lub-eqI is-lub-Pair elim: thelubE)

lemma is-lub-prod:
fixes S :: nat ⇒ (′a × ′b)
assumes chain S
shows range S <<| (

⊔
i. fst (S i),

⊔
i. snd (S i))

using assms by (auto elim: prod-chain-cases simp: is-lub-Pair cpo-lubI)

lemma lub-prod: chain S =⇒ (
⊔

i. S i) = (
⊔

i. fst (S i),
⊔

i. snd (S i))
for S :: nat ⇒ ′a × ′b
by (rule is-lub-prod [THEN lub-eqI])

instance prod :: (cpo, cpo) cpo
proof

fix S :: nat ⇒ (′a × ′b)
assume chain S
then have range S <<| (

⊔
i. fst (S i),

⊔
i. snd (S i))

by (rule is-lub-prod)
then show ∃ x. range S <<| x ..

qed

THEORY “Cpo” 34

instance prod :: (discrete-cpo, discrete-cpo) discrete-cpo
proof

show x v y ←→ x = y for x y :: ′a × ′b
by (simp add: below-prod-def prod-eq-iff)

qed

6.5 Product type is pointed
lemma minimal-prod: (⊥, ⊥) v p

by (simp add: below-prod-def)

instance prod :: (pcpo, pcpo) pcpo
by intro-classes (fast intro: minimal-prod)

lemma inst-prod-pcpo: ⊥ = (⊥, ⊥)
by (rule minimal-prod [THEN bottomI , symmetric])

lemma Pair-bottom-iff [simp]: (x, y) = ⊥ ←→ x = ⊥ ∧ y = ⊥
by (simp add: inst-prod-pcpo)

lemma fst-strict [simp]: fst ⊥ = ⊥
unfolding inst-prod-pcpo by (rule fst-conv)

lemma snd-strict [simp]: snd ⊥ = ⊥
unfolding inst-prod-pcpo by (rule snd-conv)

lemma Pair-strict [simp]: (⊥, ⊥) = ⊥
by simp

lemma split-strict [simp]: case-prod f ⊥ = f ⊥ ⊥
by (simp add: split-def)

6.6 Continuity of Pair, fst, snd
lemma cont-pair1 : cont (λx. (x, y))

apply (rule contI)
apply (rule is-lub-Pair)
apply (erule cpo-lubI)

apply (rule is-lub-const)
done

lemma cont-pair2 : cont (λy. (x, y))
apply (rule contI)
apply (rule is-lub-Pair)
apply (rule is-lub-const)

apply (erule cpo-lubI)
done

lemma cont-fst: cont fst

THEORY “Cpo” 35

apply (rule contI)
apply (simp add: lub-prod)
apply (erule cpo-lubI [OF ch2ch-fst])
done

lemma cont-snd: cont snd
apply (rule contI)
apply (simp add: lub-prod)
apply (erule cpo-lubI [OF ch2ch-snd])
done

lemma cont2cont-Pair [simp, cont2cont]:
assumes f : cont (λx. f x)
assumes g: cont (λx. g x)
shows cont (λx. (f x, g x))
apply (rule cont-apply [OF f cont-pair1])
apply (rule cont-apply [OF g cont-pair2])
apply (rule cont-const)
done

lemmas cont2cont-fst [simp, cont2cont] = cont-compose [OF cont-fst]

lemmas cont2cont-snd [simp, cont2cont] = cont-compose [OF cont-snd]

lemma cont2cont-case-prod:
assumes f1 :

∧
a b. cont (λx. f x a b)

assumes f2 :
∧

x b. cont (λa. f x a b)
assumes f3 :

∧
x a. cont (λb. f x a b)

assumes g: cont (λx. g x)
shows cont (λx. case g x of (a, b) ⇒ f x a b)
unfolding split-def
apply (rule cont-apply [OF g])
apply (rule cont-apply [OF cont-fst f2])
apply (rule cont-apply [OF cont-snd f3])
apply (rule cont-const)

apply (rule f1)
done

lemma prod-contI :
assumes f1 :

∧
y. cont (λx. f (x, y))

assumes f2 :
∧

x. cont (λy. f (x, y))
shows cont f

proof −
have cont (λ(x, y). f (x, y))

by (intro cont2cont-case-prod f1 f2 cont2cont)
then show cont f

by (simp only: case-prod-eta)
qed

THEORY “Cpo” 36

lemma prod-cont-iff : cont f ←→ (∀ y. cont (λx. f (x, y))) ∧ (∀ x. cont (λy. f (x,
y)))

apply safe
apply (erule cont-compose [OF - cont-pair1])

apply (erule cont-compose [OF - cont-pair2])
apply (simp only: prod-contI)
done

lemma cont2cont-case-prod ′ [simp, cont2cont]:
assumes f : cont (λp. f (fst p) (fst (snd p)) (snd (snd p)))
assumes g: cont (λx. g x)
shows cont (λx. case-prod (f x) (g x))
using assms by (simp add: cont2cont-case-prod prod-cont-iff)

The simple version (due to Joachim Breitner) is needed if either element
type of the pair is not a cpo.
lemma cont2cont-split-simple [simp, cont2cont]:

assumes
∧

a b. cont (λx. f x a b)
shows cont (λx. case p of (a, b) ⇒ f x a b)
using assms by (cases p) auto

Admissibility of predicates on product types.
lemma adm-case-prod [simp]:

assumes adm (λx. P x (fst (f x)) (snd (f x)))
shows adm (λx. case f x of (a, b) ⇒ P x a b)
unfolding case-prod-beta using assms .

6.7 Compactness and chain-finiteness
lemma fst-below-iff : fst x v y ←→ x v (y, snd x) for x :: ′a × ′b

by (simp add: below-prod-def)

lemma snd-below-iff : snd x v y ←→ x v (fst x, y) for x :: ′a × ′b
by (simp add: below-prod-def)

lemma compact-fst: compact x =⇒ compact (fst x)
by (rule compactI) (simp add: fst-below-iff)

lemma compact-snd: compact x =⇒ compact (snd x)
by (rule compactI) (simp add: snd-below-iff)

lemma compact-Pair : compact x =⇒ compact y =⇒ compact (x, y)
by (rule compactI) (simp add: below-prod-def)

lemma compact-Pair-iff [simp]: compact (x, y) ←→ compact x ∧ compact y
apply (safe intro!: compact-Pair)
apply (drule compact-fst, simp)

apply (drule compact-snd, simp)
done

THEORY “Cpodef” 37

instance prod :: (chfin, chfin) chfin
apply intro-classes
apply (erule compact-imp-max-in-chain)
apply (case-tac

⊔
i. Y i, simp)

done

7 Discrete cpo types
datatype ′a discr = Discr ′a::type

7.1 Discrete cpo class instance
instantiation discr :: (type) discrete-cpo
begin

definition ((v) :: ′a discr ⇒ ′a discr ⇒ bool) = (=)

instance
by standard (simp add: below-discr-def)

end

7.2 undiscr
definition undiscr :: ′a::type discr ⇒ ′a

where undiscr x = (case x of Discr y ⇒ y)

lemma undiscr-Discr [simp]: undiscr (Discr x) = x
by (simp add: undiscr-def)

lemma Discr-undiscr [simp]: Discr (undiscr y) = y
by (induct y) simp

end

8 Subtypes of pcpos
theory Cpodef

imports Cpo
keywords pcpodef cpodef :: thy-goal-defn

begin

8.1 Proving a subtype is a partial order

A subtype of a partial order is itself a partial order, if the ordering is defined
in the standard way.
theorem (in below) typedef-class-po:

THEORY “Cpodef” 38

fixes Abs :: ′b::po ⇒ ′a
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
shows class.po below
apply (rule class.po.intro)
apply (unfold below)

apply (rule below-refl)
apply (fact below-trans)

apply (rule type-definition.Rep-inject [OF type, THEN iffD1])
apply (fact below-antisym)
done

lemmas typedef-po-class = below.typedef-class-po [THEN po.intro-of-class]

8.2 Proving a subtype is finite
lemma typedef-finite-UNIV :

fixes Abs :: ′a::type ⇒ ′b::type
assumes type: type-definition Rep Abs A
shows finite A =⇒ finite (UNIV :: ′b set)

proof −
assume finite A
then have finite (Abs ‘ A)

by (rule finite-imageI)
then show finite (UNIV :: ′b set)

by (simp only: type-definition.Abs-image [OF type])
qed

8.3 Proving a subtype is chain-finite
lemma ch2ch-Rep:

assumes below: (v) ≡ λx y. Rep x v Rep y
shows chain S =⇒ chain (λi. Rep (S i))
unfolding chain-def below .

theorem typedef-chfin:
fixes Abs :: ′a::chfin ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
shows OFCLASS(′b, chfin-class)
apply intro-classes
apply (drule ch2ch-Rep [OF below])
apply (drule chfin)
apply (unfold max-in-chain-def)
apply (simp add: type-definition.Rep-inject [OF type])
done

THEORY “Cpodef” 39

8.4 Proving a subtype is complete

A subtype of a cpo is itself a cpo if the ordering is defined in the standard
way, and the defining subset is closed with respect to limits of chains. A set
is closed if and only if membership in the set is an admissible predicate.
lemma typedef-is-lubI :

assumes below: (v) ≡ λx y. Rep x v Rep y
shows range (λi. Rep (S i)) <<| Rep x =⇒ range S <<| x
by (simp add: is-lub-def is-ub-def below)

lemma Abs-inverse-lub-Rep:
fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows chain S =⇒ Rep (Abs (
⊔

i. Rep (S i))) = (
⊔

i. Rep (S i))
apply (rule type-definition.Abs-inverse [OF type])
apply (erule admD [OF adm ch2ch-Rep [OF below]])
apply (rule type-definition.Rep [OF type])
done

theorem typedef-is-lub:
fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

assumes S : chain S
shows range S <<| Abs (

⊔
i. Rep (S i))

proof −
from S have chain (λi. Rep (S i))

by (rule ch2ch-Rep [OF below])
then have range (λi. Rep (S i)) <<| (

⊔
i. Rep (S i))

by (rule cpo-lubI)
then have range (λi. Rep (S i)) <<| Rep (Abs (

⊔
i. Rep (S i)))

by (simp only: Abs-inverse-lub-Rep [OF type below adm S])
then show range S <<| Abs (

⊔
i. Rep (S i))

by (rule typedef-is-lubI [OF below])
qed

lemmas typedef-lub = typedef-is-lub [THEN lub-eqI]

theorem typedef-cpo:
fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows OFCLASS(′b, cpo-class)
proof

fix S :: nat ⇒ ′b

THEORY “Cpodef” 40

assume chain S
then have range S <<| Abs (

⊔
i. Rep (S i))

by (rule typedef-is-lub [OF type below adm])
then show ∃ x. range S <<| x ..

qed

8.4.1 Continuity of Rep and Abs

For any sub-cpo, the Rep function is continuous.
theorem typedef-cont-Rep:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows cont (λx. f x) =⇒ cont (λx. Rep (f x))
apply (erule cont-apply [OF - - cont-const])
apply (rule contI)
apply (simp only: typedef-lub [OF type below adm])
apply (simp only: Abs-inverse-lub-Rep [OF type below adm])
apply (rule cpo-lubI)
apply (erule ch2ch-Rep [OF below])
done

For a sub-cpo, we can make the Abs function continuous only if we restrict
its domain to the defining subset by composing it with another continuous
function.
theorem typedef-cont-Abs:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
fixes f :: ′c::cpo ⇒ ′a::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)
and f-in-A:

∧
x. f x ∈ A

shows cont f =⇒ cont (λx. Abs (f x))
unfolding cont-def is-lub-def is-ub-def ball-simps below
by (simp add: type-definition.Abs-inverse [OF type f-in-A])

8.5 Proving subtype elements are compact
theorem typedef-compact:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows compact (Rep k) =⇒ compact k
proof (unfold compact-def)

have cont-Rep: cont Rep
by (rule typedef-cont-Rep [OF type below adm cont-id])

THEORY “Cpodef” 41

assume adm (λx. Rep k 6v x)
with cont-Rep have adm (λx. Rep k 6v Rep x) by (rule adm-subst)
then show adm (λx. k 6v x) by (unfold below)

qed

8.6 Proving a subtype is pointed

A subtype of a cpo has a least element if and only if the defining subset has
a least element.
theorem typedef-pcpo-generic:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and z-in-A: z ∈ A
and z-least:

∧
x. x ∈ A =⇒ z v x

shows OFCLASS(′b, pcpo-class)
apply (intro-classes)
apply (rule-tac x=Abs z in exI , rule allI)
apply (unfold below)
apply (subst type-definition.Abs-inverse [OF type z-in-A])
apply (rule z-least [OF type-definition.Rep [OF type]])
done

As a special case, a subtype of a pcpo has a least element if the defining
subset contains ⊥.
theorem typedef-pcpo:

fixes Abs :: ′a::pcpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows OFCLASS(′b, pcpo-class)
by (rule typedef-pcpo-generic [OF type below bottom-in-A], rule minimal)

8.6.1 Strictness of Rep and Abs

For a sub-pcpo where ⊥ is a member of the defining subset, Rep and Abs
are both strict.
theorem typedef-Abs-strict:

assumes type: type-definition Rep Abs A
and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows Abs ⊥ = ⊥
apply (rule bottomI , unfold below)
apply (simp add: type-definition.Abs-inverse [OF type bottom-in-A])
done

theorem typedef-Rep-strict:

THEORY “Cfun” 42

assumes type: type-definition Rep Abs A
and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows Rep ⊥ = ⊥
apply (rule typedef-Abs-strict [OF type below bottom-in-A, THEN subst])
apply (rule type-definition.Abs-inverse [OF type bottom-in-A])
done

theorem typedef-Abs-bottom-iff :
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows x ∈ A =⇒ (Abs x = ⊥) = (x = ⊥)
apply (rule typedef-Abs-strict [OF type below bottom-in-A, THEN subst])
apply (simp add: type-definition.Abs-inject [OF type] bottom-in-A)
done

theorem typedef-Rep-bottom-iff :
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows (Rep x = ⊥) = (x = ⊥)
apply (rule typedef-Rep-strict [OF type below bottom-in-A, THEN subst])
apply (simp add: type-definition.Rep-inject [OF type])
done

8.7 Proving a subtype is flat
theorem typedef-flat:

fixes Abs :: ′a::flat ⇒ ′b::pcpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows OFCLASS(′b, flat-class)
apply (intro-classes)
apply (unfold below)
apply (simp add: type-definition.Rep-inject [OF type, symmetric])
apply (simp add: typedef-Rep-strict [OF type below bottom-in-A])
apply (simp add: ax-flat)
done

8.8 HOLCF type definition package
ML-file ‹Tools/cpodef .ML›

end

THEORY “Cfun” 43

9 The type of continuous functions
theory Cfun

imports Cpodef
begin

9.1 Definition of continuous function type
definition cfun = {f :: ′a ⇒ ′b. cont f }

cpodef (′a, ′b) cfun (‹(‹notation=‹infix →››- →/ -)› [1 , 0] 0) = cfun :: (′a ⇒
′b) set

by (auto simp: cfun-def intro: cont-const adm-cont)

type-notation (ASCII)
cfun (infixr ‹−>› 0)

notation (ASCII)
Rep-cfun (‹(‹notation=‹infix $››-$/-)› [999 ,1000] 999)

notation
Rep-cfun (‹(‹notation=‹infix ·››-·/-)› [999 ,1000] 999)

9.2 Syntax for continuous lambda abstraction
syntax -cabs :: [logic, logic] ⇒ logic

parse-translation ‹
(∗ rewrite (-cabs x t) => (Abs-cfun (%x. t)) ∗)
[Syntax-Trans.mk-binder-tr (syntax-const ‹-cabs›, const-syntax ‹Abs-cfun›)]

›

print-translation ‹
[(const-syntax ‹Abs-cfun›, fn ctxt => fn [Abs abs] =>

let val (x, t) = Syntax-Trans.atomic-abs-tr ′ ctxt abs
in Syntax.const syntax-const ‹-cabs› $ x $ t end)]

› — To avoid eta-contraction of body

Syntax for nested abstractions
syntax (ASCII)

-Lambda :: [cargs, logic] ⇒ logic (‹(‹indent=3 notation=‹binder LAM ››LAM -./
-)› [1000 , 10] 10)

syntax
-Lambda :: [cargs, logic] ⇒ logic (‹(‹indent=3 notation=‹binder Λ››Λ -./ -)›

[1000 , 10] 10)

syntax-consts
-Lambda ⇀↽ Abs-cfun

THEORY “Cfun” 44

parse-ast-translation ‹
(∗ rewrite (LAM x y z. t) => (-cabs x (-cabs y (-cabs z t))) ∗)
(∗ cf . Syntax.lambda-ast-tr from src/Pure/Syntax/syn-trans.ML ∗)

let
fun Lambda-ast-tr [pats, body] =

Ast.fold-ast-p syntax-const ‹-cabs›
(Ast.unfold-ast syntax-const ‹-cargs› (Ast.strip-positions pats), body)

| Lambda-ast-tr asts = raise Ast.AST (Lambda-ast-tr, asts);
in [(syntax-const ‹-Lambda›, K Lambda-ast-tr)] end

›

print-ast-translation ‹
(∗ rewrite (-cabs x (-cabs y (-cabs z t))) => (LAM x y z. t) ∗)
(∗ cf . Syntax.abs-ast-tr ′ from src/Pure/Syntax/syn-trans.ML ∗)

let
fun cabs-ast-tr ′ asts =
(case Ast.unfold-ast-p syntax-const ‹-cabs›

(Ast.Appl (Ast.Constant syntax-const ‹-cabs› :: asts)) of
([], -) => raise Ast.AST (cabs-ast-tr ′, asts)
| (xs, body) => Ast.Appl

[Ast.Constant syntax-const ‹-Lambda›,
Ast.fold-ast syntax-const ‹-cargs› xs, body]);

in [(syntax-const ‹-cabs›, K cabs-ast-tr ′)] end
›

Dummy patterns for continuous abstraction
translations
Λ -. t ⇀ CONST Abs-cfun (λ-. t)

9.3 Continuous function space is pointed
lemma bottom-cfun: ⊥ ∈ cfun

by (simp add: cfun-def inst-fun-pcpo)

instance cfun :: (cpo, discrete-cpo) discrete-cpo
by intro-classes (simp add: below-cfun-def Rep-cfun-inject)

instance cfun :: (cpo, pcpo) pcpo
by (rule typedef-pcpo [OF type-definition-cfun below-cfun-def bottom-cfun])

lemmas Rep-cfun-strict =
typedef-Rep-strict [OF type-definition-cfun below-cfun-def bottom-cfun]

lemmas Abs-cfun-strict =
typedef-Abs-strict [OF type-definition-cfun below-cfun-def bottom-cfun]

function application is strict in its first argument
lemma Rep-cfun-strict1 [simp]: ⊥·x = ⊥

by (simp add: Rep-cfun-strict)

THEORY “Cfun” 45

lemma LAM-strict [simp]: (Λ x. ⊥) = ⊥
by (simp add: inst-fun-pcpo [symmetric] Abs-cfun-strict)

for compatibility with old HOLCF-Version
lemma inst-cfun-pcpo: ⊥ = (Λ x. ⊥)

by simp

9.4 Basic properties of continuous functions

Beta-equality for continuous functions
lemma Abs-cfun-inverse2 : cont f =⇒ Rep-cfun (Abs-cfun f) = f

by (simp add: Abs-cfun-inverse cfun-def)

lemma beta-cfun: cont f =⇒ (Λ x. f x)·u = f u
by (simp add: Abs-cfun-inverse2)

9.4.1 Beta-reduction simproc

Given the term (Λ x. f x)·y, the procedure tries to construct the theorem (Λ
x. f x)·y ≡ f y. If this theorem cannot be completely solved by the cont2cont
rules, then the procedure returns the ordinary conditional beta-cfun rule.
The simproc does not solve any more goals that would be solved by using
beta-cfun as a simp rule. The advantage of the simproc is that it can avoid
deeply-nested calls to the simplifier that would otherwise be caused by large
continuity side conditions.
Update: The simproc now uses rule Abs-cfun-inverse2 instead of beta-cfun,
to avoid problems with eta-contraction.
simproc-setup beta-cfun-proc (Rep-cfun (Abs-cfun f)) = ‹

K (fn ctxt => fn ct =>
let

val f = Thm.dest-arg (Thm.dest-arg ct);
val [T , U] = Thm.dest-ctyp (Thm.ctyp-of-cterm f);

val tr = Thm.instantiate ′ [SOME T , SOME U] [SOME f] (mk-meta-eq @{thm
Abs-cfun-inverse2});

val rules = Named-Theorems.get ctxt named-theorems ‹cont2cont›;
val tac = SOLVED ′ (REPEAT-ALL-NEW (match-tac ctxt (rev rules)));

in SOME (perhaps (SINGLE (tac 1)) tr) end)
›

Eta-equality for continuous functions
lemma eta-cfun: (Λ x. f ·x) = f

by (rule Rep-cfun-inverse)

Extensionality for continuous functions
lemma cfun-eq-iff : f = g ←→ (∀ x. f ·x = g·x)

THEORY “Cfun” 46

by (simp add: Rep-cfun-inject [symmetric] fun-eq-iff)

lemma cfun-eqI : (
∧

x. f ·x = g·x) =⇒ f = g
by (simp add: cfun-eq-iff)

Extensionality wrt. ordering for continuous functions
lemma cfun-below-iff : f v g ←→ (∀ x. f ·x v g·x)

by (simp add: below-cfun-def fun-below-iff)

lemma cfun-belowI : (
∧

x. f ·x v g·x) =⇒ f v g
by (simp add: cfun-below-iff)

Congruence for continuous function application
lemma cfun-cong: f = g =⇒ x = y =⇒ f ·x = g·y

by simp

lemma cfun-fun-cong: f = g =⇒ f ·x = g·x
by simp

lemma cfun-arg-cong: x = y =⇒ f ·x = f ·y
by simp

9.5 Continuity of application
lemma cont-Rep-cfun1 : cont (λf . f ·x)

by (rule cont-Rep-cfun [OF cont-id, THEN cont2cont-fun])

lemma cont-Rep-cfun2 : cont (λx. f ·x)
using Rep-cfun [where x = f] by (simp add: cfun-def)

lemmas monofun-Rep-cfun = cont-Rep-cfun [THEN cont2mono]

lemmas monofun-Rep-cfun1 = cont-Rep-cfun1 [THEN cont2mono]
lemmas monofun-Rep-cfun2 = cont-Rep-cfun2 [THEN cont2mono]

contlub, cont properties of Rep-cfun in each argument
lemma contlub-cfun-arg: chain Y =⇒ f ·(

⊔
i. Y i) = (

⊔
i. f ·(Y i))

by (rule cont-Rep-cfun2 [THEN cont2contlubE])

lemma contlub-cfun-fun: chain F =⇒ (
⊔

i. F i)·x = (
⊔

i. F i·x)
by (rule cont-Rep-cfun1 [THEN cont2contlubE])

monotonicity of application
lemma monofun-cfun-fun: f v g =⇒ f ·x v g·x

by (simp add: cfun-below-iff)

lemma monofun-cfun-arg: x v y =⇒ f ·x v f ·y
by (rule monofun-Rep-cfun2 [THEN monofunE])

THEORY “Cfun” 47

lemma monofun-cfun: f v g =⇒ x v y =⇒ f ·x v g·y
by (rule below-trans [OF monofun-cfun-fun monofun-cfun-arg])

ch2ch - rules for the type ′a → ′b
lemma chain-monofun: chain Y =⇒ chain (λi. f ·(Y i))

by (erule monofun-Rep-cfun2 [THEN ch2ch-monofun])

lemma ch2ch-Rep-cfunR: chain Y =⇒ chain (λi. f ·(Y i))
by (rule monofun-Rep-cfun2 [THEN ch2ch-monofun])

lemma ch2ch-Rep-cfunL: chain F =⇒ chain (λi. (F i)·x)
by (rule monofun-Rep-cfun1 [THEN ch2ch-monofun])

lemma ch2ch-Rep-cfun [simp]: chain F =⇒ chain Y =⇒ chain (λi. (F i)·(Y i))
by (simp add: chain-def monofun-cfun)

lemma ch2ch-LAM [simp]:
(
∧

x. chain (λi. S i x)) =⇒ (
∧

i. cont (λx. S i x)) =⇒ chain (λi. Λ x. S i x)
by (simp add: chain-def cfun-below-iff)

contlub, cont properties of Rep-cfun in both arguments
lemma lub-APP: chain F =⇒ chain Y =⇒ (

⊔
i. F i·(Y i)) = (

⊔
i. F i)·(

⊔
i. Y

i)
by (simp add: contlub-cfun-fun contlub-cfun-arg diag-lub)

lemma lub-LAM :
assumes

∧
x. chain (λi. F i x)

and
∧

i. cont (λx. F i x)
shows (

⊔
i. Λ x. F i x) = (Λ x.

⊔
i. F i x)

using assms by (simp add: lub-cfun lub-fun ch2ch-lambda)

lemmas lub-distribs = lub-APP lub-LAM

strictness
lemma strictI : f ·x = ⊥ =⇒ f ·⊥ = ⊥

apply (rule bottomI)
apply (erule subst)
apply (rule minimal [THEN monofun-cfun-arg])
done

type ′a → ′b is chain complete
lemma lub-cfun: chain F =⇒ (

⊔
i. F i) = (Λ x.

⊔
i. F i·x)

by (simp add: lub-cfun lub-fun ch2ch-lambda)

9.6 Continuity simplification procedure

cont2cont lemma for Rep-cfun
lemma cont2cont-APP [simp, cont2cont]:

THEORY “Cfun” 48

assumes f : cont (λx. f x)
assumes t: cont (λx. t x)
shows cont (λx. (f x)·(t x))

proof −
from cont-Rep-cfun1 f have cont (λx. (f x)·y) for y

by (rule cont-compose)
with t cont-Rep-cfun2 show cont (λx. (f x)·(t x))

by (rule cont-apply)
qed

Two specific lemmas for the combination of LCF and HOL terms. These
lemmas are needed in theories that use types like ′a → ′b ⇒ ′c.
lemma cont-APP-app [simp]: cont f =⇒ cont g =⇒ cont (λx. ((f x)·(g x)) s)

by (rule cont2cont-APP [THEN cont2cont-fun])

lemma cont-APP-app-app [simp]: cont f =⇒ cont g =⇒ cont (λx. ((f x)·(g x)) s
t)

by (rule cont-APP-app [THEN cont2cont-fun])

cont2mono Lemma for λx. Λ y. c1 x y
lemma cont2mono-LAM :
[[
∧

x. cont (λy. f x y);
∧

y. monofun (λx. f x y)]]
=⇒ monofun (λx. Λ y. f x y)

by (simp add: monofun-def cfun-below-iff)

cont2cont Lemma for λx. Λ y. f x y

Not suitable as a cont2cont rule, because on nested lambdas it causes expo-
nential blow-up in the number of subgoals.
lemma cont2cont-LAM :

assumes f1 :
∧

x. cont (λy. f x y)
assumes f2 :

∧
y. cont (λx. f x y)

shows cont (λx. Λ y. f x y)
proof (rule cont-Abs-cfun)

from f1 show f x ∈ cfun for x
by (simp add: cfun-def)

from f2 show cont f
by (rule cont2cont-lambda)

qed

This version does work as a cont2cont rule, since it has only a single subgoal.
lemma cont2cont-LAM ′ [simp, cont2cont]:

fixes f :: ′a::cpo ⇒ ′b::cpo ⇒ ′c::cpo
assumes f : cont (λp. f (fst p) (snd p))
shows cont (λx. Λ y. f x y)
using assms by (simp add: cont2cont-LAM prod-cont-iff)

lemma cont2cont-LAM-discrete [simp, cont2cont]:

THEORY “Cfun” 49

(
∧

y:: ′a::discrete-cpo. cont (λx. f x y)) =⇒ cont (λx. Λ y. f x y)
by (simp add: cont2cont-LAM)

9.7 Miscellaneous

Monotonicity of Abs-cfun
lemma monofun-LAM : cont f =⇒ cont g =⇒ (

∧
x. f x v g x) =⇒ (Λ x. f x) v

(Λ x. g x)
by (simp add: cfun-below-iff)

some lemmata for functions with flat/chfin domain/range types
lemma chfin-Rep-cfunR: chain Y =⇒ ∀ s. ∃n. (LUB i. Y i)·s = Y n·s

for Y :: nat ⇒ ′a::cpo → ′b::chfin
apply (rule allI)
apply (subst contlub-cfun-fun)
apply assumption

apply (fast intro!: lub-eqI chfin lub-finch2 chfin2finch ch2ch-Rep-cfunL)
done

lemma adm-chfindom: adm (λ(u:: ′a::cpo → ′b::chfin). P(u·s))
by (rule adm-subst, simp, rule adm-chfin)

9.8 Continuous injection-retraction pairs

Continuous retractions are strict.
lemma retraction-strict: ∀ x. f ·(g·x) = x =⇒ f ·⊥ = ⊥

apply (rule bottomI)
apply (drule-tac x=⊥ in spec)
apply (erule subst)
apply (rule monofun-cfun-arg)
apply (rule minimal)
done

lemma injection-eq: ∀ x. f ·(g·x) = x =⇒ (g·x = g·y) = (x = y)
apply (rule iffI)
apply (drule-tac f=f in cfun-arg-cong)
apply simp

apply simp
done

lemma injection-below: ∀ x. f ·(g·x) = x =⇒ (g·x v g·y) = (x v y)
apply (rule iffI)
apply (drule-tac f=f in monofun-cfun-arg)
apply simp

apply (erule monofun-cfun-arg)
done

lemma injection-defined-rev: ∀ x. f ·(g·x) = x =⇒ g·z = ⊥ =⇒ z = ⊥

THEORY “Cfun” 50

apply (drule-tac f=f in cfun-arg-cong)
apply (simp add: retraction-strict)
done

lemma injection-defined: ∀ x. f ·(g·x) = x =⇒ z 6= ⊥ =⇒ g·z 6= ⊥
by (erule contrapos-nn, rule injection-defined-rev)

a result about functions with flat codomain
lemma flat-eqI : x v y =⇒ x 6= ⊥ =⇒ x = y

for x y :: ′a::flat
by (drule ax-flat) simp

lemma flat-codom: f ·x = c =⇒ f ·⊥ = ⊥ ∨ (∀ z. f ·z = c)
for c :: ′b::flat
apply (cases f ·x = ⊥)
apply (rule disjI1)
apply (rule bottomI)
apply (erule-tac t=⊥ in subst)
apply (rule minimal [THEN monofun-cfun-arg])

apply clarify
apply (rule-tac a = f ·⊥ in refl [THEN box-equals])
apply (erule minimal [THEN monofun-cfun-arg, THEN flat-eqI])

apply (erule minimal [THEN monofun-cfun-arg, THEN flat-eqI])
done

9.9 Identity and composition
definition ID :: ′a → ′a

where ID = (Λ x. x)

definition cfcomp :: (′b → ′c) → (′a → ′b) → ′a → ′c
where oo-def : cfcomp = (Λ f g x. f ·(g·x))

abbreviation cfcomp-syn :: [′b → ′c, ′a → ′b] ⇒ ′a → ′c (infixr ‹oo› 100)
where f oo g == cfcomp·f ·g

lemma ID1 [simp]: ID·x = x
by (simp add: ID-def)

lemma cfcomp1 : (f oo g) = (Λ x. f ·(g·x))
by (simp add: oo-def)

lemma cfcomp2 [simp]: (f oo g)·x = f ·(g·x)
by (simp add: cfcomp1)

lemma cfcomp-LAM : cont g =⇒ f oo (Λ x. g x) = (Λ x. f ·(g x))
by (simp add: cfcomp1)

lemma cfcomp-strict [simp]: ⊥ oo f = ⊥

THEORY “Cfun” 51

by (simp add: cfun-eq-iff)

Show that interpretation of (pcpo, -→-) is a category.

• The class of objects is interpretation of syntactical class pcpo.

• The class of arrows between objects ′a and ′b is interpret. of ′a → ′b.

• The identity arrow is interpretation of ID.

• The composition of f and g is interpretation of oo.

lemma ID2 [simp]: f oo ID = f
by (rule cfun-eqI , simp)

lemma ID3 [simp]: ID oo f = f
by (rule cfun-eqI) simp

lemma assoc-oo: f oo (g oo h) = (f oo g) oo h
by (rule cfun-eqI) simp

9.10 Strictified functions
definition seq :: ′a::pcpo → ′b::pcpo → ′b

where seq = (Λ x. if x = ⊥ then ⊥ else ID)

lemma cont2cont-if-bottom [cont2cont, simp]:
assumes f : cont (λx. f x)

and g: cont (λx. g x)
shows cont (λx. if f x = ⊥ then ⊥ else g x)

proof (rule cont-apply [OF f])
show cont (λy. if y = ⊥ then ⊥ else g x) for x

unfolding cont-def is-lub-def is-ub-def ball-simps
by (simp add: lub-eq-bottom-iff)

show cont (λx. if y = ⊥ then ⊥ else g x) for y
by (simp add: g)

qed

lemma seq-conv-if : seq·x = (if x = ⊥ then ⊥ else ID)
by (simp add: seq-def)

lemma seq-simps [simp]:
seq·⊥ = ⊥
seq·x·⊥ = ⊥
x 6= ⊥ =⇒ seq·x = ID
by (simp-all add: seq-conv-if)

definition strictify :: (′a::pcpo → ′b::pcpo) → ′a → ′b
where strictify = (Λ f x. seq·x·(f ·x))

THEORY “Deflation” 52

lemma strictify-conv-if : strictify·f ·x = (if x = ⊥ then ⊥ else f ·x)
by (simp add: strictify-def)

lemma strictify1 [simp]: strictify·f ·⊥ = ⊥
by (simp add: strictify-conv-if)

lemma strictify2 [simp]: x 6= ⊥ =⇒ strictify·f ·x = f ·x
by (simp add: strictify-conv-if)

9.11 Continuity of let-bindings
lemma cont2cont-Let:

assumes f : cont (λx. f x)
assumes g1 :

∧
y. cont (λx. g x y)

assumes g2 :
∧

x. cont (λy. g x y)
shows cont (λx. let y = f x in g x y)
unfolding Let-def using f g2 g1 by (rule cont-apply)

lemma cont2cont-Let ′ [simp, cont2cont]:
assumes f : cont (λx. f x)
assumes g: cont (λp. g (fst p) (snd p))
shows cont (λx. let y = f x in g x y)
using f

proof (rule cont2cont-Let)
from g show cont (λy. g x y) for x

by (simp add: prod-cont-iff)
from g show cont (λx. g x y) for y

by (simp add: prod-cont-iff)
qed

The simple version (suggested by Joachim Breitner) is needed if the type of
the defined term is not a cpo.
lemma cont2cont-Let-simple [simp, cont2cont]:

assumes
∧

y. cont (λx. g x y)
shows cont (λx. let y = t in g x y)
unfolding Let-def using assms .

end

10 Continuous deflations and ep-pairs
theory Deflation

imports Cfun
begin

10.1 Continuous deflations
locale deflation =

fixes d :: ′a → ′a

THEORY “Deflation” 53

assumes idem:
∧

x. d·(d·x) = d·x
assumes below:

∧
x. d·x v x

begin

lemma below-ID: d v ID
by (rule cfun-belowI) (simp add: below)

The set of fixed points is the same as the range.
lemma fixes-eq-range: {x. d·x = x} = range (λx. d·x)

by (auto simp add: eq-sym-conv idem)

lemma range-eq-fixes: range (λx. d·x) = {x. d·x = x}
by (auto simp add: eq-sym-conv idem)

The pointwise ordering on deflation functions coincides with the subset or-
dering of their sets of fixed-points.
lemma belowI :

assumes f :
∧

x. d·x = x =⇒ f ·x = x
shows d v f

proof (rule cfun-belowI)
fix x
from below have f ·(d·x) v f ·x

by (rule monofun-cfun-arg)
also from idem have f ·(d·x) = d·x

by (rule f)
finally show d·x v f ·x .

qed

lemma belowD: [[f v d; f ·x = x]] =⇒ d·x = x
proof (rule below-antisym)

from below show d·x v x .
assume f v d
then have f ·x v d·x by (rule monofun-cfun-fun)
also assume f ·x = x
finally show x v d·x .

qed

end

lemma deflation-strict: deflation d =⇒ d·⊥ = ⊥
by (rule deflation.below [THEN bottomI])

lemma adm-deflation: adm (λd. deflation d)
by (simp add: deflation-def)

lemma deflation-ID: deflation ID
by (simp add: deflation.intro)

lemma deflation-bottom: deflation ⊥

THEORY “Deflation” 54

by (simp add: deflation.intro)

lemma deflation-below-iff : deflation p =⇒ deflation q =⇒ p v q ←→ (∀ x. p·x =
x −→ q·x = x)

apply safe
apply (simp add: deflation.belowD)

apply (simp add: deflation.belowI)
done

The composition of two deflations is equal to the lesser of the two (if they
are comparable).
lemma deflation-below-comp1 :

assumes deflation f
assumes deflation g
shows f v g =⇒ f ·(g·x) = f ·x

proof (rule below-antisym)
interpret g: deflation g by fact
from g.below show f ·(g·x) v f ·x by (rule monofun-cfun-arg)

next
interpret f : deflation f by fact
assume f v g
then have f ·x v g·x by (rule monofun-cfun-fun)
then have f ·(f ·x) v f ·(g·x) by (rule monofun-cfun-arg)
also have f ·(f ·x) = f ·x by (rule f .idem)
finally show f ·x v f ·(g·x) .

qed

lemma deflation-below-comp2 : deflation f =⇒ deflation g =⇒ f v g =⇒ g·(f ·x)
= f ·x

by (simp only: deflation.belowD deflation.idem)

10.2 Deflations with finite range
lemma finite-range-imp-finite-fixes:

assumes finite (range f)
shows finite {x. f x = x}

proof −
have {x. f x = x} ⊆ range f

by (clarify, erule subst, rule rangeI)
from this assms show finite {x. f x = x}

by (rule finite-subset)
qed

locale finite-deflation = deflation +
assumes finite-fixes: finite {x. d·x = x}

begin

lemma finite-range: finite (range (λx. d·x))
by (simp add: range-eq-fixes finite-fixes)

THEORY “Deflation” 55

lemma finite-image: finite ((λx. d·x) ‘ A)
by (rule finite-subset [OF image-mono [OF subset-UNIV] finite-range])

lemma compact: compact (d·x)
proof (rule compactI2)

fix Y :: nat ⇒ ′a
assume Y : chain Y
have finite-chain (λi. d·(Y i))
proof (rule finite-range-imp-finch)

from Y show chain (λi. d·(Y i)) by simp
have range (λi. d·(Y i)) ⊆ range (λx. d·x) by auto
then show finite (range (λi. d·(Y i)))

using finite-range by (rule finite-subset)
qed
then have ∃ j. (

⊔
i. d·(Y i)) = d·(Y j)

by (simp add: finite-chain-def maxinch-is-thelub Y)
then obtain j where j: (

⊔
i. d·(Y i)) = d·(Y j) ..

assume d·x v (
⊔

i. Y i)
then have d·(d·x) v d·(

⊔
i. Y i)

by (rule monofun-cfun-arg)
then have d·x v (

⊔
i. d·(Y i))

by (simp add: contlub-cfun-arg Y idem)
with j have d·x v d·(Y j) by simp
then have d·x v Y j

using below by (rule below-trans)
then show ∃ j. d·x v Y j ..

qed

end

lemma finite-deflation-intro: deflation d =⇒ finite {x. d·x = x} =⇒ finite-deflation
d

by (intro finite-deflation.intro finite-deflation-axioms.intro)

lemma finite-deflation-imp-deflation: finite-deflation d =⇒ deflation d
by (simp add: finite-deflation-def)

lemma finite-deflation-bottom: finite-deflation ⊥
by standard simp-all

10.3 Continuous embedding-projection pairs
locale ep-pair =

fixes e :: ′a → ′b and p :: ′b → ′a
assumes e-inverse [simp]:

∧
x. p·(e·x) = x

and e-p-below:
∧

y. e·(p·y) v y
begin

THEORY “Deflation” 56

lemma e-below-iff [simp]: e·x v e·y ←→ x v y
proof

assume e·x v e·y
then have p·(e·x) v p·(e·y) by (rule monofun-cfun-arg)
then show x v y by simp

next
assume x v y
then show e·x v e·y by (rule monofun-cfun-arg)

qed

lemma e-eq-iff [simp]: e·x = e·y ←→ x = y
unfolding po-eq-conv e-below-iff ..

lemma p-eq-iff : e·(p·x) = x =⇒ e·(p·y) = y =⇒ p·x = p·y ←→ x = y
by (safe, erule subst, erule subst, simp)

lemma p-inverse: (∃ x. y = e·x) ←→ e·(p·y) = y
by (auto, rule exI , erule sym)

lemma e-below-iff-below-p: e·x v y ←→ x v p·y
proof

assume e·x v y
then have p·(e·x) v p·y by (rule monofun-cfun-arg)
then show x v p·y by simp

next
assume x v p·y
then have e·x v e·(p·y) by (rule monofun-cfun-arg)
then show e·x v y using e-p-below by (rule below-trans)

qed

lemma compact-e-rev: compact (e·x) =⇒ compact x
proof −

assume compact (e·x)
then have adm (λy. e·x 6v y) by (rule compactD)
then have adm (λy. e·x 6v e·y) by (rule adm-subst [OF cont-Rep-cfun2])
then have adm (λy. x 6v y) by simp
then show compact x by (rule compactI)

qed

lemma compact-e:
assumes compact x
shows compact (e·x)

proof −
from assms have adm (λy. x 6v y) by (rule compactD)
then have adm (λy. x 6v p·y) by (rule adm-subst [OF cont-Rep-cfun2])
then have adm (λy. e·x 6v y) by (simp add: e-below-iff-below-p)
then show compact (e·x) by (rule compactI)

qed

THEORY “Deflation” 57

lemma compact-e-iff : compact (e·x) ←→ compact x
by (rule iffI [OF compact-e-rev compact-e])

Deflations from ep-pairs
lemma deflation-e-p: deflation (e oo p)

by (simp add: deflation.intro e-p-below)

lemma deflation-e-d-p:
assumes deflation d
shows deflation (e oo d oo p)

proof
interpret deflation d by fact
fix x :: ′b
show (e oo d oo p)·((e oo d oo p)·x) = (e oo d oo p)·x

by (simp add: idem)
show (e oo d oo p)·x v x

by (simp add: e-below-iff-below-p below)
qed

lemma finite-deflation-e-d-p:
assumes finite-deflation d
shows finite-deflation (e oo d oo p)

proof
interpret finite-deflation d by fact
fix x :: ′b
show (e oo d oo p)·((e oo d oo p)·x) = (e oo d oo p)·x

by (simp add: idem)
show (e oo d oo p)·x v x

by (simp add: e-below-iff-below-p below)
have finite ((λx. e·x) ‘ (λx. d·x) ‘ range (λx. p·x))

by (simp add: finite-image)
then have finite (range (λx. (e oo d oo p)·x))

by (simp add: image-image)
then show finite {x. (e oo d oo p)·x = x}

by (rule finite-range-imp-finite-fixes)
qed

lemma deflation-p-d-e:
assumes deflation d
assumes d:

∧
x. d·x v e·(p·x)

shows deflation (p oo d oo e)
proof −

interpret d: deflation d by fact
have p-d-e-below: (p oo d oo e)·x v x for x
proof −

have d·(e·x) v e·x
by (rule d.below)

then have p·(d·(e·x)) v p·(e·x)

THEORY “Deflation” 58

by (rule monofun-cfun-arg)
then show ?thesis by simp

qed
show ?thesis
proof

show (p oo d oo e)·x v x for x
by (rule p-d-e-below)

show (p oo d oo e)·((p oo d oo e)·x) = (p oo d oo e)·x for x
proof (rule below-antisym)

show (p oo d oo e)·((p oo d oo e)·x) v (p oo d oo e)·x
by (rule p-d-e-below)

have p·(d·(d·(d·(e·x)))) v p·(d·(e·(p·(d·(e·x)))))
by (intro monofun-cfun-arg d)

then have p·(d·(e·x)) v p·(d·(e·(p·(d·(e·x)))))
by (simp only: d.idem)

then show (p oo d oo e)·x v (p oo d oo e)·((p oo d oo e)·x)
by simp

qed
qed

qed

lemma finite-deflation-p-d-e:
assumes finite-deflation d
assumes d:

∧
x. d·x v e·(p·x)

shows finite-deflation (p oo d oo e)
proof −

interpret d: finite-deflation d by fact
show ?thesis
proof (rule finite-deflation-intro)

have deflation d ..
then show deflation (p oo d oo e)

using d by (rule deflation-p-d-e)
next

have finite ((λx. d·x) ‘ range (λx. e·x))
by (rule d.finite-image)

then have finite ((λx. p·x) ‘ (λx. d·x) ‘ range (λx. e·x))
by (rule finite-imageI)

then have finite (range (λx. (p oo d oo e)·x))
by (simp add: image-image)

then show finite {x. (p oo d oo e)·x = x}
by (rule finite-range-imp-finite-fixes)

qed
qed

end

10.4 Uniqueness of ep-pairs
lemma ep-pair-unique-e-lemma:

THEORY “Deflation” 59

assumes 1 : ep-pair e1 p
and 2 : ep-pair e2 p

shows e1 v e2
proof (rule cfun-belowI)

fix x
have e1 ·(p·(e2 ·x)) v e2 ·x

by (rule ep-pair .e-p-below [OF 1])
then show e1 ·x v e2 ·x

by (simp only: ep-pair .e-inverse [OF 2])
qed

lemma ep-pair-unique-e: ep-pair e1 p =⇒ ep-pair e2 p =⇒ e1 = e2
by (fast intro: below-antisym elim: ep-pair-unique-e-lemma)

lemma ep-pair-unique-p-lemma:
assumes 1 : ep-pair e p1

and 2 : ep-pair e p2
shows p1 v p2

proof (rule cfun-belowI)
fix x
have e·(p1 ·x) v x

by (rule ep-pair .e-p-below [OF 1])
then have p2 ·(e·(p1 ·x)) v p2 ·x

by (rule monofun-cfun-arg)
then show p1 ·x v p2 ·x

by (simp only: ep-pair .e-inverse [OF 2])
qed

lemma ep-pair-unique-p: ep-pair e p1 =⇒ ep-pair e p2 =⇒ p1 = p2
by (fast intro: below-antisym elim: ep-pair-unique-p-lemma)

10.5 Composing ep-pairs
lemma ep-pair-ID-ID: ep-pair ID ID

by standard simp-all

lemma ep-pair-comp:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (e2 oo e1) (p1 oo p2)

proof
interpret ep1 : ep-pair e1 p1 by fact
interpret ep2 : ep-pair e2 p2 by fact
fix x y
show (p1 oo p2)·((e2 oo e1)·x) = x

by simp
have e1 ·(p1 ·(p2 ·y)) v p2 ·y

by (rule ep1 .e-p-below)
then have e2 ·(e1 ·(p1 ·(p2 ·y))) v e2 ·(p2 ·y)

by (rule monofun-cfun-arg)

THEORY “Sprod” 60

also have e2 ·(p2 ·y) v y
by (rule ep2 .e-p-below)

finally show (e2 oo e1)·((p1 oo p2)·y) v y
by simp

qed

locale pcpo-ep-pair = ep-pair e p
for e :: ′a::pcpo → ′b::pcpo
and p :: ′b::pcpo → ′a::pcpo

begin

lemma e-strict [simp]: e·⊥ = ⊥
proof −

have ⊥ v p·⊥ by (rule minimal)
then have e·⊥ v e·(p·⊥) by (rule monofun-cfun-arg)
also have e·(p·⊥) v ⊥ by (rule e-p-below)
finally show e·⊥ = ⊥ by simp

qed

lemma e-bottom-iff [simp]: e·x = ⊥ ←→ x = ⊥
by (rule e-eq-iff [where y=⊥, unfolded e-strict])

lemma e-defined: x 6= ⊥ =⇒ e·x 6= ⊥
by simp

lemma p-strict [simp]: p·⊥ = ⊥
by (rule e-inverse [where x=⊥, unfolded e-strict])

lemmas stricts = e-strict p-strict

end

end

11 The type of strict products
theory Sprod

imports Cfun
begin

11.1 Definition of strict product type
definition sprod = {p:: ′a::pcpo × ′b::pcpo. p = ⊥ ∨ (fst p 6= ⊥ ∧ snd p 6= ⊥)}

pcpodef (′a::pcpo, ′b::pcpo) sprod (‹(‹notation=‹infix strict product››- ⊗/ -)›
[21 ,20] 20) =

sprod :: (′a × ′b) set
by (simp-all add: sprod-def)

THEORY “Sprod” 61

instance sprod :: ({chfin,pcpo}, {chfin,pcpo}) chfin
by (rule typedef-chfin [OF type-definition-sprod below-sprod-def])

type-notation (ASCII)
sprod (infixr ‹∗∗› 20)

11.2 Definitions of constants
definition sfst :: (′a::pcpo ∗∗ ′b::pcpo) → ′a

where sfst = (Λ p. fst (Rep-sprod p))

definition ssnd :: (′a::pcpo ∗∗ ′b::pcpo) → ′b
where ssnd = (Λ p. snd (Rep-sprod p))

definition spair :: ′a::pcpo → ′b::pcpo → (′a ∗∗ ′b)
where spair = (Λ a b. Abs-sprod (seq·b·a, seq·a·b))

definition ssplit :: (′a::pcpo → ′b::pcpo → ′c::pcpo) → (′a ∗∗ ′b) → ′c
where ssplit = (Λ f p. seq·p·(f ·(sfst·p)·(ssnd·p)))

syntax
-stuple :: [logic, args] ⇒ logic (‹(‹indent=1 notation=‹mixfix strict tuple›› ′(:-,/

-: ′))›)
syntax-consts

-stuple ⇀↽ spair
translations
(:x, y, z:) ⇀↽ (:x, (:y, z:):)
(:x, y:) ⇀↽ CONST spair ·x·y

translations
Λ(CONST spair ·x·y). t ⇀↽ CONST ssplit·(Λ x y. t)

11.3 Case analysis
lemma spair-sprod: (seq·b·a, seq·a·b) ∈ sprod

by (simp add: sprod-def seq-conv-if)

lemma Rep-sprod-spair : Rep-sprod (:a, b:) = (seq·b·a, seq·a·b)
by (simp add: spair-def cont-Abs-sprod Abs-sprod-inverse spair-sprod)

lemmas Rep-sprod-simps =
Rep-sprod-inject [symmetric] below-sprod-def
prod-eq-iff below-prod-def
Rep-sprod-strict Rep-sprod-spair

lemma sprodE [case-names bottom spair , cases type: sprod]:
obtains p = ⊥ | x y where p = (:x, y:) and x 6= ⊥ and y 6= ⊥
using Rep-sprod [of p] by (auto simp add: sprod-def Rep-sprod-simps)

lemma sprod-induct [case-names bottom spair , induct type: sprod]:

THEORY “Sprod” 62

[[P ⊥;
∧

x y. [[x 6= ⊥; y 6= ⊥]] =⇒ P (:x, y:)]] =⇒ P x
by (cases x) simp-all

11.4 Properties of spair
lemma spair-strict1 [simp]: (:⊥, y:) = ⊥

by (simp add: Rep-sprod-simps)

lemma spair-strict2 [simp]: (:x, ⊥:) = ⊥
by (simp add: Rep-sprod-simps)

lemma spair-bottom-iff [simp]: (:x, y:) = ⊥ ←→ x = ⊥ ∨ y = ⊥
by (simp add: Rep-sprod-simps seq-conv-if)

lemma spair-below-iff : (:a, b:) v (:c, d:) ←→ a = ⊥ ∨ b = ⊥ ∨ (a v c ∧ b v d)
by (simp add: Rep-sprod-simps seq-conv-if)

lemma spair-eq-iff : (:a, b:) = (:c, d:) ←→ a = c ∧ b = d ∨ (a = ⊥ ∨ b = ⊥) ∧
(c = ⊥ ∨ d = ⊥)

by (simp add: Rep-sprod-simps seq-conv-if)

lemma spair-strict: x = ⊥ ∨ y = ⊥ =⇒ (:x, y:) = ⊥
by simp

lemma spair-strict-rev: (:x, y:) 6= ⊥ =⇒ x 6= ⊥ ∧ y 6= ⊥
by simp

lemma spair-defined: [[x 6= ⊥; y 6= ⊥]] =⇒ (:x, y:) 6= ⊥
by simp

lemma spair-defined-rev: (:x, y:) = ⊥ =⇒ x = ⊥ ∨ y = ⊥
by simp

lemma spair-below: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) v (:a, b:) ←→ x v a ∧ y v b
by (simp add: spair-below-iff)

lemma spair-eq: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) = (:a, b:) ←→ x = a ∧ y = b
by (simp add: spair-eq-iff)

lemma spair-inject: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) = (:a, b:) =⇒ x = a ∧ y = b
by (rule spair-eq [THEN iffD1])

lemma inst-sprod-pcpo2 : ⊥ = (:⊥, ⊥:)
by simp

lemma sprodE2 : (
∧

x y. p = (:x, y:) =⇒ Q) =⇒ Q
by (cases p) (simp only: inst-sprod-pcpo2 , simp)

THEORY “Sprod” 63

11.5 Properties of sfst and ssnd
lemma sfst-strict [simp]: sfst·⊥ = ⊥

by (simp add: sfst-def cont-Rep-sprod Rep-sprod-strict)

lemma ssnd-strict [simp]: ssnd·⊥ = ⊥
by (simp add: ssnd-def cont-Rep-sprod Rep-sprod-strict)

lemma sfst-spair [simp]: y 6= ⊥ =⇒ sfst·(:x, y:) = x
by (simp add: sfst-def cont-Rep-sprod Rep-sprod-spair)

lemma ssnd-spair [simp]: x 6= ⊥ =⇒ ssnd·(:x, y:) = y
by (simp add: ssnd-def cont-Rep-sprod Rep-sprod-spair)

lemma sfst-bottom-iff [simp]: sfst·p = ⊥ ←→ p = ⊥
by (cases p) simp-all

lemma ssnd-bottom-iff [simp]: ssnd·p = ⊥ ←→ p = ⊥
by (cases p) simp-all

lemma sfst-defined: p 6= ⊥ =⇒ sfst·p 6= ⊥
by simp

lemma ssnd-defined: p 6= ⊥ =⇒ ssnd·p 6= ⊥
by simp

lemma spair-sfst-ssnd: (:sfst·p, ssnd·p:) = p
by (cases p) simp-all

lemma below-sprod: x v y ←→ sfst·x v sfst·y ∧ ssnd·x v ssnd·y
by (simp add: Rep-sprod-simps sfst-def ssnd-def cont-Rep-sprod)

lemma eq-sprod: x = y ←→ sfst·x = sfst·y ∧ ssnd·x = ssnd·y
by (auto simp add: po-eq-conv below-sprod)

lemma sfst-below-iff : sfst·x v y ←→ x v (:y, ssnd·x:)
by (cases x = ⊥, simp, cases y = ⊥, simp, simp add: below-sprod)

lemma ssnd-below-iff : ssnd·x v y ←→ x v (:sfst·x, y:)
by (cases x = ⊥, simp, cases y = ⊥, simp, simp add: below-sprod)

11.6 Compactness
lemma compact-sfst: compact x =⇒ compact (sfst·x)

by (rule compactI) (simp add: sfst-below-iff)

lemma compact-ssnd: compact x =⇒ compact (ssnd·x)
by (rule compactI) (simp add: ssnd-below-iff)

lemma compact-spair : compact x =⇒ compact y =⇒ compact (:x, y:)

THEORY “Up” 64

by (rule compact-sprod) (simp add: Rep-sprod-spair seq-conv-if)

lemma compact-spair-iff : compact (:x, y:) ←→ x = ⊥ ∨ y = ⊥ ∨ (compact x ∧
compact y)

apply (safe elim!: compact-spair)
apply (drule compact-sfst, simp)

apply (drule compact-ssnd, simp)
apply simp

apply simp
done

11.7 Properties of ssplit
lemma ssplit1 [simp]: ssplit·f ·⊥ = ⊥

by (simp add: ssplit-def)

lemma ssplit2 [simp]: x 6= ⊥ =⇒ y 6= ⊥ =⇒ ssplit·f ·(:x, y:) = f ·x·y
by (simp add: ssplit-def)

lemma ssplit3 [simp]: ssplit·spair ·z = z
by (cases z) simp-all

11.8 Strict product preserves flatness
instance sprod :: (flat, flat) flat
proof

fix x y :: ′a ⊗ ′b
assume x v y
then show x = ⊥ ∨ x = y

apply (induct x, simp)
apply (induct y, simp)
apply (simp add: spair-below-iff flat-below-iff)
done

qed

end

12 The type of lifted values
theory Up

imports Cfun
begin

12.1 Definition of new type for lifting
datatype ′a u (‹(‹notation=‹postfix lifting››-⊥)› [1000] 999) = Ibottom | Iup ′a

primrec Ifup :: (′a → ′b::pcpo) ⇒ ′a u ⇒ ′b
where

THEORY “Up” 65

Ifup f Ibottom = ⊥
| Ifup f (Iup x) = f ·x

12.2 Ordering on lifted cpo
instantiation u :: (cpo) below
begin

definition below-up-def :
(v) ≡
(λx y.
(case x of

Ibottom ⇒ True
| Iup a ⇒ (case y of Ibottom ⇒ False | Iup b ⇒ a v b)))

instance ..

end

lemma minimal-up [iff]: Ibottom v z
by (simp add: below-up-def)

lemma not-Iup-below [iff]: Iup x 6v Ibottom
by (simp add: below-up-def)

lemma Iup-below [iff]: (Iup x v Iup y) = (x v y)
by (simp add: below-up-def)

12.3 Lifted cpo is a partial order
instance u :: (cpo) po
proof

fix x :: ′a u
show x v x

by (simp add: below-up-def split: u.split)
next

fix x y :: ′a u
assume x v y y v x
then show x = y

by (auto simp: below-up-def split: u.split-asm intro: below-antisym)
next

fix x y z :: ′a u
assume x v y y v z
then show x v z

by (auto simp: below-up-def split: u.split-asm intro: below-trans)
qed

12.4 Lifted cpo is a cpo
lemma is-lub-Iup: range S <<| x =⇒ range (λi. Iup (S i)) <<| Iup x

THEORY “Up” 66

by (auto simp: is-lub-def is-ub-def ball-simps below-up-def split: u.split)

lemma up-chain-lemma:
assumes Y : chain Y
obtains ∀ i. Y i = Ibottom
| A k where ∀ i. Iup (A i) = Y (i + k) and chain A and range Y <<| Iup

(
⊔

i. A i)
proof (cases ∃ k. Y k 6= Ibottom)

case True
then obtain k where k: Y k 6= Ibottom ..
define A where A i = (THE a. Iup a = Y (i + k)) for i
have Iup-A: ∀ i. Iup (A i) = Y (i + k)
proof

fix i :: nat
from Y le-add2 have Y k v Y (i + k) by (rule chain-mono)
with k have Y (i + k) 6= Ibottom by (cases Y k) auto
then show Iup (A i) = Y (i + k)

by (cases Y (i + k), simp-all add: A-def)
qed
from Y have chain-A: chain A

by (simp add: chain-def Iup-below [symmetric] Iup-A)
then have range A <<| (

⊔
i. A i)

by (rule cpo-lubI)
then have range (λi. Iup (A i)) <<| Iup (

⊔
i. A i)

by (rule is-lub-Iup)
then have range (λi. Y (i + k)) <<| Iup (

⊔
i. A i)

by (simp only: Iup-A)
then have range (λi. Y i) <<| Iup (

⊔
i. A i)

by (simp only: is-lub-range-shift [OF Y])
with Iup-A chain-A show ?thesis ..

next
case False
then have ∀ i. Y i = Ibottom by simp
then show ?thesis ..

qed

instance u :: (cpo) cpo
proof

fix S :: nat ⇒ ′a u
assume S : chain S
then show ∃ x. range (λi. S i) <<| x
proof (rule up-chain-lemma)

assume ∀ i. S i = Ibottom
then have range (λi. S i) <<| Ibottom

by (simp add: is-lub-const)
then show ?thesis ..

next
fix A :: nat ⇒ ′a
assume range S <<| Iup (

⊔
i. A i)

THEORY “Up” 67

then show ?thesis ..
qed

qed

12.5 Lifted cpo is pointed
instance u :: (cpo) pcpo

by intro-classes fast

for compatibility with old HOLCF-Version
lemma inst-up-pcpo: ⊥ = Ibottom

by (rule minimal-up [THEN bottomI , symmetric])

12.6 Continuity of Iup and Ifup

continuity for Iup
lemma cont-Iup: cont Iup

apply (rule contI)
apply (rule is-lub-Iup)
apply (erule cpo-lubI)
done

continuity for Ifup
lemma cont-Ifup1 : cont (λf . Ifup f x)

by (induct x) simp-all

lemma monofun-Ifup2 : monofun (λx. Ifup f x)
apply (rule monofunI)
apply (case-tac x, simp)
apply (case-tac y, simp)
apply (simp add: monofun-cfun-arg)
done

lemma cont-Ifup2 : cont (λx. Ifup f x)
proof (rule contI2)

fix Y
assume Y : chain Y and Y ′: chain (λi. Ifup f (Y i))
from Y show Ifup f (

⊔
i. Y i) v (

⊔
i. Ifup f (Y i))

proof (rule up-chain-lemma)
fix A and k
assume A: ∀ i. Iup (A i) = Y (i + k)
assume chain A and range Y <<| Iup (

⊔
i. A i)

then have Ifup f (
⊔

i. Y i) = (
⊔

i. Ifup f (Iup (A i)))
by (simp add: lub-eqI contlub-cfun-arg)

also have . . . = (
⊔

i. Ifup f (Y (i + k)))
by (simp add: A)

also have . . . = (
⊔

i. Ifup f (Y i))
using Y ′ by (rule lub-range-shift)

THEORY “Up” 68

finally show ?thesis by simp
qed simp

qed (rule monofun-Ifup2)

12.7 Continuous versions of constants
definition up :: ′a → ′a u

where up = (Λ x. Iup x)

definition fup :: (′a → ′b::pcpo) → ′a u → ′b
where fup = (Λ f p. Ifup f p)

translations
case l of XCONST up·x ⇒ t ⇀↽ CONST fup·(Λ x. t)·l
case l of (XCONST up :: ′a)·x ⇒ t ⇀ CONST fup·(Λ x. t)·l
Λ(XCONST up·x). t ⇀↽ CONST fup·(Λ x. t)

continuous versions of lemmas for ′a⊥

lemma Exh-Up: z = ⊥ ∨ (∃ x. z = up·x)
by (induct z) (simp add: inst-up-pcpo, simp add: up-def cont-Iup)

lemma up-eq [simp]: (up·x = up·y) = (x = y)
by (simp add: up-def cont-Iup)

lemma up-inject: up·x = up·y =⇒ x = y
by simp

lemma up-defined [simp]: up·x 6= ⊥
by (simp add: up-def cont-Iup inst-up-pcpo)

lemma not-up-less-UU : up·x 6v ⊥
by simp

lemma up-below [simp]: up·x v up·y ←→ x v y
by (simp add: up-def cont-Iup)

lemma upE [case-names bottom up, cases type: u]: [[p = ⊥ =⇒ Q;
∧

x. p = up·x
=⇒ Q]] =⇒ Q

by (cases p) (simp add: inst-up-pcpo, simp add: up-def cont-Iup)

lemma up-induct [case-names bottom up, induct type: u]: P ⊥ =⇒ (
∧

x. P (up·x))
=⇒ P x

by (cases x) simp-all

lifting preserves chain-finiteness
lemma up-chain-cases:

assumes Y : chain Y
obtains ∀ i. Y i = ⊥

THEORY “Lift” 69

| A k where ∀ i. up·(A i) = Y (i + k) and chain A and (
⊔

i. Y i) = up·(
⊔

i.
A i)

by (rule up-chain-lemma [OF Y]) (simp-all add: inst-up-pcpo up-def cont-Iup
lub-eqI)

lemma compact-up: compact x =⇒ compact (up·x)
apply (rule compactI2)
apply (erule up-chain-cases)
apply simp

apply (drule (1) compactD2 , simp)
apply (erule exE)
apply (drule-tac f=up and x=x in monofun-cfun-arg)
apply (simp, erule exI)
done

lemma compact-upD: compact (up·x) =⇒ compact x
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=up]], simp)

lemma compact-up-iff [simp]: compact (up·x) = compact x
by (safe elim!: compact-up compact-upD)

instance u :: (chfin) chfin
apply intro-classes
apply (erule compact-imp-max-in-chain)
apply (rule-tac p=

⊔
i. Y i in upE , simp-all)

done

properties of fup
lemma fup1 [simp]: fup·f ·⊥ = ⊥

by (simp add: fup-def cont-Ifup1 cont-Ifup2 inst-up-pcpo cont2cont-LAM)

lemma fup2 [simp]: fup·f ·(up·x) = f ·x
by (simp add: up-def fup-def cont-Iup cont-Ifup1 cont-Ifup2 cont2cont-LAM)

lemma fup3 [simp]: fup·up·x = x
by (cases x) simp-all

end

13 Lifting types of class type to flat pcpo’s
theory Lift
imports Up
begin

pcpodef ′a::type lift = UNIV :: ′a discr u set
by simp-all

THEORY “Lift” 70

lemmas inst-lift-pcpo = Abs-lift-strict [symmetric]

definition
Def :: ′a::type ⇒ ′a lift where
Def x = Abs-lift (up·(Discr x))

13.1 Lift as a datatype
lemma lift-induct: [[P ⊥;

∧
x. P (Def x)]] =⇒ P y

apply (induct y)
apply (rule-tac p=y in upE)
apply (simp add: Abs-lift-strict)
apply (case-tac x)
apply (simp add: Def-def)
done

old-rep-datatype ⊥:: ′a::type lift Def
by (erule lift-induct) (simp-all add: Def-def Abs-lift-inject inst-lift-pcpo)

⊥ and Def
lemma not-Undef-is-Def : (x 6= ⊥) = (∃ y. x = Def y)

by (cases x) simp-all

lemma lift-definedE : [[x 6= ⊥;
∧

a. x = Def a =⇒ R]] =⇒ R
by (cases x) simp-all

For x 6= ⊥ in assumptions defined replaces x by Def a in conclusion.
method-setup defined = ‹

Scan.succeed (fn ctxt => SIMPLE-METHOD ′

(eresolve-tac ctxt @{thms lift-definedE} THEN ′ asm-simp-tac ctxt))
›

lemma DefE : Def x = ⊥ =⇒ R
by simp

lemma DefE2 : [[x = Def s; x = ⊥]] =⇒ R
by simp

lemma Def-below-Def : Def x v Def y ←→ x = y
by (simp add: below-lift-def Def-def Abs-lift-inverse)

lemma Def-below-iff [simp]: Def x v y ←→ Def x = y
by (induct y, simp, simp add: Def-below-Def)

13.2 Lift is flat
instance lift :: (type) flat
proof

fix x y :: ′a lift

THEORY “Lift” 71

assume x v y thus x = ⊥ ∨ x = y
by (induct x) auto

qed

13.3 Continuity of case-lift
lemma case-lift-eq: case-lift ⊥ f x = fup·(Λ y. f (undiscr y))·(Rep-lift x)
apply (induct x, unfold lift.case)
apply (simp add: Rep-lift-strict)
apply (simp add: Def-def Abs-lift-inverse)
done

lemma cont2cont-case-lift [simp]:
[[
∧

y. cont (λx. f x y); cont g]] =⇒ cont (λx. case-lift ⊥ (f x) (g x))
unfolding case-lift-eq by (simp add: cont-Rep-lift)

13.4 Further operations
definition

flift1 :: (′a::type ⇒ ′b::pcpo) ⇒ (′a lift → ′b) (binder ‹FLIFT › 10) where
flift1 = (λf . (Λ x. case-lift ⊥ f x))

translations
Λ(XCONST Def x). t => CONST flift1 (λx. t)
Λ(CONST Def x). FLIFT y. t <= FLIFT x y. t
Λ(CONST Def x). t <= FLIFT x . t

definition
flift2 :: (′a::type ⇒ ′b::type) ⇒ (′a lift → ′b lift) where
flift2 f = (FLIFT x. Def (f x))

lemma flift1-Def [simp]: flift1 f ·(Def x) = (f x)
by (simp add: flift1-def)

lemma flift2-Def [simp]: flift2 f ·(Def x) = Def (f x)
by (simp add: flift2-def)

lemma flift1-strict [simp]: flift1 f ·⊥ = ⊥
by (simp add: flift1-def)

lemma flift2-strict [simp]: flift2 f ·⊥ = ⊥
by (simp add: flift2-def)

lemma flift2-defined [simp]: x 6= ⊥ =⇒ (flift2 f)·x 6= ⊥
by (erule lift-definedE , simp)

lemma flift2-bottom-iff [simp]: (flift2 f ·x = ⊥) = (x = ⊥)
by (cases x, simp-all)

lemma FLIFT-mono:

THEORY “Tr” 72

(
∧

x. f x v g x) =⇒ (FLIFT x . f x) v (FLIFT x. g x)
by (rule cfun-belowI , case-tac x, simp-all)

lemma cont2cont-flift1 [simp, cont2cont]:
[[
∧

y. cont (λx. f x y)]] =⇒ cont (λx. FLIFT y. f x y)
by (simp add: flift1-def cont2cont-LAM)

end

14 The type of lifted booleans
theory Tr

imports Lift
begin

14.1 Type definition and constructors
type-synonym tr = bool lift

translations
(type) tr ↽ (type) bool lift

definition TT :: tr
where TT = Def True

definition FF :: tr
where FF = Def False

Exhaustion and Elimination for type tr
lemma Exh-tr : t = ⊥ ∨ t = TT ∨ t = FF

by (induct t) (auto simp: FF-def TT-def)

lemma trE [case-names bottom TT FF , cases type: tr]:
[[p = ⊥ =⇒ Q; p = TT =⇒ Q; p = FF =⇒ Q]] =⇒ Q
by (induct p) (auto simp: FF-def TT-def)

lemma tr-induct [case-names bottom TT FF , induct type: tr]:
P ⊥ =⇒ P TT =⇒ P FF =⇒ P x
by (cases x) simp-all

distinctness for type tr
lemma dist-below-tr [simp]:

TT 6v ⊥ FF 6v ⊥ TT 6v FF FF 6v TT
by (simp-all add: TT-def FF-def)

lemma dist-eq-tr [simp]: TT 6= ⊥ FF 6= ⊥ TT 6= FF ⊥ 6= TT ⊥ 6= FF FF 6= TT
by (simp-all add: TT-def FF-def)

THEORY “Tr” 73

lemma TT-below-iff [simp]: TT v x ←→ x = TT
by (induct x) simp-all

lemma FF-below-iff [simp]: FF v x ←→ x = FF
by (induct x) simp-all

lemma not-below-TT-iff [simp]: x 6v TT ←→ x = FF
by (induct x) simp-all

lemma not-below-FF-iff [simp]: x 6v FF ←→ x = TT
by (induct x) simp-all

14.2 Case analysis
definition tr-case :: ′a::pcpo → ′a → tr → ′a

where tr-case = (Λ t e (Def b). if b then t else e)

abbreviation cifte-syn :: [tr , ′c::pcpo, ′c] ⇒ ′c (‹(‹notation=‹mixfix If expres-
sion››If (-)/ then (-)/ else (-))› [0 , 0 , 60] 60)

where If b then e1 else e2 ≡ tr-case·e1 ·e2 ·b

translations
Λ (XCONST TT). t ⇀↽ CONST tr-case·t·⊥
Λ (XCONST FF). t ⇀↽ CONST tr-case·⊥·t

lemma ifte-thms [simp]:
If ⊥ then e1 else e2 = ⊥
If FF then e1 else e2 = e2
If TT then e1 else e2 = e1
by (simp-all add: tr-case-def TT-def FF-def)

14.3 Boolean connectives
definition trand :: tr → tr → tr

where andalso-def : trand = (Λ x y. If x then y else FF)

abbreviation andalso-syn :: tr ⇒ tr ⇒ tr (‹- andalso -› [36 ,35] 35)
where x andalso y ≡ trand·x·y

definition tror :: tr → tr → tr
where orelse-def : tror = (Λ x y. If x then TT else y)

abbreviation orelse-syn :: tr ⇒ tr ⇒ tr (‹- orelse -› [31 ,30] 30)
where x orelse y ≡ tror ·x·y

definition neg :: tr → tr
where neg = flift2 Not

definition If2 :: tr ⇒ ′c::pcpo ⇒ ′c ⇒ ′c
where If2 Q x y = (If Q then x else y)

THEORY “Tr” 74

tactic for tr-thms with case split
lemmas tr-defs = andalso-def orelse-def neg-def tr-case-def TT-def FF-def

lemmas about andalso, orelse, neg and if
lemma andalso-thms [simp]:
(TT andalso y) = y
(FF andalso y) = FF
(⊥ andalso y) = ⊥
(y andalso TT) = y
(y andalso y) = y

apply (unfold andalso-def , simp-all)
apply (cases y, simp-all)

apply (cases y, simp-all)
done

lemma orelse-thms [simp]:
(TT orelse y) = TT
(FF orelse y) = y
(⊥ orelse y) = ⊥
(y orelse FF) = y
(y orelse y) = y

apply (unfold orelse-def , simp-all)
apply (cases y, simp-all)

apply (cases y, simp-all)
done

lemma neg-thms [simp]:
neg·TT = FF
neg·FF = TT
neg·⊥ = ⊥
by (simp-all add: neg-def TT-def FF-def)

split-tac for If via If2 because the constant has to be a constant
lemma split-If2 : P (If2 Q x y) ←→ ((Q = ⊥ −→ P ⊥) ∧ (Q = TT −→ P x) ∧
(Q = FF −→ P y))

by (cases Q) (simp-all add: If2-def)

ML ‹
fun split-If-tac ctxt =

simp-tac (put-simpset HOL-basic-ss ctxt addsimps [@{thm If2-def } RS sym])
THEN ′ (split-tac ctxt [@{thm split-If2}])

›

14.4 Rewriting of HOLCF operations to HOL functions
lemma andalso-or : t 6= ⊥ =⇒ (t andalso s) = FF ←→ t = FF ∨ s = FF

by (cases t) simp-all

THEORY “Ssum” 75

lemma andalso-and: t 6= ⊥ =⇒ ((t andalso s) 6= FF) ←→ t 6= FF ∧ s 6= FF
by (cases t) simp-all

lemma Def-bool1 [simp]: Def x 6= FF ←→ x
by (simp add: FF-def)

lemma Def-bool2 [simp]: Def x = FF ←→ ¬ x
by (simp add: FF-def)

lemma Def-bool3 [simp]: Def x = TT ←→ x
by (simp add: TT-def)

lemma Def-bool4 [simp]: Def x 6= TT ←→ ¬ x
by (simp add: TT-def)

lemma If-and-if : (If Def P then A else B) = (if P then A else B)
by (cases Def P) (auto simp add: TT-def [symmetric] FF-def [symmetric])

14.5 Compactness
lemma compact-TT : compact TT

by (rule compact-chfin)

lemma compact-FF : compact FF
by (rule compact-chfin)

end

15 The type of strict sums
theory Ssum

imports Tr
begin

15.1 Definition of strict sum type
definition ssum =
{p :: tr × (′a::pcpo × ′b::pcpo). p = ⊥ ∨
(fst p = TT ∧ fst (snd p) 6= ⊥ ∧ snd (snd p) = ⊥) ∨
(fst p = FF ∧ fst (snd p) = ⊥ ∧ snd (snd p) 6= ⊥)}

pcpodef (′a::pcpo, ′b::pcpo) ssum (‹(‹notation=‹infix strict sum››- ⊕/ -)› [21 ,
20] 20) =

ssum :: (tr × ′a × ′b) set
by (simp-all add: ssum-def)

instance ssum :: ({chfin,pcpo}, {chfin,pcpo}) chfin
by (rule typedef-chfin [OF type-definition-ssum below-ssum-def])

THEORY “Ssum” 76

type-notation (ASCII)
ssum (infixr ‹++› 10)

15.2 Definitions of constructors
definition sinl :: ′a::pcpo → (′a ++ ′b::pcpo)

where sinl = (Λ a. Abs-ssum (seq·a·TT , a, ⊥))

definition sinr :: ′b::pcpo → (′a::pcpo ++ ′b)
where sinr = (Λ b. Abs-ssum (seq·b·FF , ⊥, b))

lemma sinl-ssum: (seq·a·TT , a, ⊥) ∈ ssum
by (simp add: ssum-def seq-conv-if)

lemma sinr-ssum: (seq·b·FF , ⊥, b) ∈ ssum
by (simp add: ssum-def seq-conv-if)

lemma Rep-ssum-sinl: Rep-ssum (sinl·a) = (seq·a·TT , a, ⊥)
by (simp add: sinl-def cont-Abs-ssum Abs-ssum-inverse sinl-ssum)

lemma Rep-ssum-sinr : Rep-ssum (sinr ·b) = (seq·b·FF , ⊥, b)
by (simp add: sinr-def cont-Abs-ssum Abs-ssum-inverse sinr-ssum)

lemmas Rep-ssum-simps =
Rep-ssum-inject [symmetric] below-ssum-def
prod-eq-iff below-prod-def
Rep-ssum-strict Rep-ssum-sinl Rep-ssum-sinr

15.3 Properties of sinl and sinr

Ordering
lemma sinl-below [simp]: sinl·x v sinl·y ←→ x v y

by (simp add: Rep-ssum-simps seq-conv-if)

lemma sinr-below [simp]: sinr ·x v sinr ·y ←→ x v y
by (simp add: Rep-ssum-simps seq-conv-if)

lemma sinl-below-sinr [simp]: sinl·x v sinr ·y ←→ x = ⊥
by (simp add: Rep-ssum-simps seq-conv-if)

lemma sinr-below-sinl [simp]: sinr ·x v sinl·y ←→ x = ⊥
by (simp add: Rep-ssum-simps seq-conv-if)

Equality
lemma sinl-eq [simp]: sinl·x = sinl·y ←→ x = y

by (simp add: po-eq-conv)

lemma sinr-eq [simp]: sinr ·x = sinr ·y ←→ x = y
by (simp add: po-eq-conv)

THEORY “Ssum” 77

lemma sinl-eq-sinr [simp]: sinl·x = sinr ·y ←→ x = ⊥ ∧ y = ⊥
by (subst po-eq-conv) simp

lemma sinr-eq-sinl [simp]: sinr ·x = sinl·y ←→ x = ⊥ ∧ y = ⊥
by (subst po-eq-conv) simp

lemma sinl-inject: sinl·x = sinl·y =⇒ x = y
by (rule sinl-eq [THEN iffD1])

lemma sinr-inject: sinr ·x = sinr ·y =⇒ x = y
by (rule sinr-eq [THEN iffD1])

Strictness
lemma sinl-strict [simp]: sinl·⊥ = ⊥

by (simp add: Rep-ssum-simps)

lemma sinr-strict [simp]: sinr ·⊥ = ⊥
by (simp add: Rep-ssum-simps)

lemma sinl-bottom-iff [simp]: sinl·x = ⊥ ←→ x = ⊥
using sinl-eq [of x ⊥] by simp

lemma sinr-bottom-iff [simp]: sinr ·x = ⊥ ←→ x = ⊥
using sinr-eq [of x ⊥] by simp

lemma sinl-defined: x 6= ⊥ =⇒ sinl·x 6= ⊥
by simp

lemma sinr-defined: x 6= ⊥ =⇒ sinr ·x 6= ⊥
by simp

Compactness
lemma compact-sinl: compact x =⇒ compact (sinl·x)

by (rule compact-ssum) (simp add: Rep-ssum-sinl)

lemma compact-sinr : compact x =⇒ compact (sinr ·x)
by (rule compact-ssum) (simp add: Rep-ssum-sinr)

lemma compact-sinlD: compact (sinl·x) =⇒ compact x
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=sinl]], simp)

lemma compact-sinrD: compact (sinr ·x) =⇒ compact x
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=sinr]], simp)

lemma compact-sinl-iff [simp]: compact (sinl·x) = compact x
by (safe elim!: compact-sinl compact-sinlD)

THEORY “Ssum” 78

lemma compact-sinr-iff [simp]: compact (sinr ·x) = compact x
by (safe elim!: compact-sinr compact-sinrD)

15.4 Case analysis
lemma ssumE [case-names bottom sinl sinr , cases type: ssum]:

obtains p = ⊥
| x where p = sinl·x and x 6= ⊥
| y where p = sinr ·y and y 6= ⊥
using Rep-ssum [of p] by (auto simp add: ssum-def Rep-ssum-simps)

lemma ssum-induct [case-names bottom sinl sinr , induct type: ssum]:
[[P ⊥;∧

x. x 6= ⊥ =⇒ P (sinl·x);∧
y. y 6= ⊥ =⇒ P (sinr ·y)]] =⇒ P x

by (cases x) simp-all

lemma ssumE2 [case-names sinl sinr]:
[[
∧

x. p = sinl·x =⇒ Q;
∧

y. p = sinr ·y =⇒ Q]] =⇒ Q
by (cases p, simp only: sinl-strict [symmetric], simp, simp)

lemma below-sinlD: p v sinl·x =⇒ ∃ y. p = sinl·y ∧ y v x
by (cases p, rule-tac x=⊥ in exI , simp-all)

lemma below-sinrD: p v sinr ·x =⇒ ∃ y. p = sinr ·y ∧ y v x
by (cases p, rule-tac x=⊥ in exI , simp-all)

15.5 Case analysis combinator
definition sscase :: (′a::pcpo → ′c::pcpo) → (′b::pcpo → ′c) → (′a ++ ′b) → ′c

where sscase = (Λ f g s. (λ(t, x, y). If t then f ·x else g·y) (Rep-ssum s))

translations
case s of XCONST sinl·x ⇒ t1 | XCONST sinr ·y ⇒ t2 ⇀↽ CONST sscase·(Λ x.

t1)·(Λ y. t2)·s
case s of (XCONST sinl :: ′a)·x ⇒ t1 | XCONST sinr ·y ⇒ t2 ⇀ CONST

sscase·(Λ x. t1)·(Λ y. t2)·s

translations
Λ(XCONST sinl·x). t ⇀↽ CONST sscase·(Λ x. t)·⊥
Λ(XCONST sinr ·y). t ⇀↽ CONST sscase·⊥·(Λ y. t)

lemma beta-sscase: sscase·f ·g·s = (λ(t, x, y). If t then f ·x else g·y) (Rep-ssum s)
by (simp add: sscase-def cont-Rep-ssum)

lemma sscase1 [simp]: sscase·f ·g·⊥ = ⊥
by (simp add: beta-sscase Rep-ssum-strict)

lemma sscase2 [simp]: x 6= ⊥ =⇒ sscase·f ·g·(sinl·x) = f ·x

THEORY “Sfun” 79

by (simp add: beta-sscase Rep-ssum-sinl)

lemma sscase3 [simp]: y 6= ⊥ =⇒ sscase·f ·g·(sinr ·y) = g·y
by (simp add: beta-sscase Rep-ssum-sinr)

lemma sscase4 [simp]: sscase·sinl·sinr ·z = z
by (cases z) simp-all

15.6 Strict sum preserves flatness
instance ssum :: (flat, flat) flat

apply (intro-classes, clarify)
apply (case-tac x, simp)
apply (case-tac y, simp-all add: flat-below-iff)

apply (case-tac y, simp-all add: flat-below-iff)
done

end

16 The Strict Function Type
theory Sfun

imports Cfun
begin

pcpodef (′a::pcpo, ′b::pcpo) sfun (infixr ‹→!› 0) = {f :: ′a → ′b. f ·⊥ = ⊥}
by simp-all

type-notation (ASCII)
sfun (infixr ‹−>!› 0)

TODO: Define nice syntax for abstraction, application.
definition sfun-abs :: (′a::pcpo → ′b::pcpo) → (′a →! ′b)

where sfun-abs = (Λ f . Abs-sfun (strictify·f))

definition sfun-rep :: (′a::pcpo →! ′b::pcpo) → ′a → ′b
where sfun-rep = (Λ f . Rep-sfun f)

lemma sfun-rep-beta: sfun-rep·f = Rep-sfun f
by (simp add: sfun-rep-def cont-Rep-sfun)

lemma sfun-rep-strict1 [simp]: sfun-rep·⊥ = ⊥
unfolding sfun-rep-beta by (rule Rep-sfun-strict)

lemma sfun-rep-strict2 [simp]: sfun-rep·f ·⊥ = ⊥
unfolding sfun-rep-beta by (rule Rep-sfun [simplified])

lemma strictify-cancel: f ·⊥ = ⊥ =⇒ strictify·f = f
by (simp add: cfun-eq-iff strictify-conv-if)

THEORY “Map-Functions” 80

lemma sfun-abs-sfun-rep [simp]: sfun-abs·(sfun-rep·f) = f
unfolding sfun-abs-def sfun-rep-def
apply (simp add: cont-Abs-sfun cont-Rep-sfun)
apply (simp add: Rep-sfun-inject [symmetric] Abs-sfun-inverse)
apply (simp add: cfun-eq-iff strictify-conv-if)
apply (simp add: Rep-sfun [simplified])
done

lemma sfun-rep-sfun-abs [simp]: sfun-rep·(sfun-abs·f) = strictify·f
unfolding sfun-abs-def sfun-rep-def
apply (simp add: cont-Abs-sfun cont-Rep-sfun)
apply (simp add: Abs-sfun-inverse)
done

lemma sfun-eq-iff : f = g ←→ sfun-rep·f = sfun-rep·g
by (simp add: sfun-rep-def cont-Rep-sfun Rep-sfun-inject)

lemma sfun-below-iff : f v g ←→ sfun-rep·f v sfun-rep·g
by (simp add: sfun-rep-def cont-Rep-sfun below-sfun-def)

end

17 Map functions for various types
theory Map-Functions

imports Deflation Sprod Ssum Sfun Up
begin

17.1 Map operator for continuous function space
definition cfun-map :: (′b → ′a) → (′c → ′d) → (′a → ′c) → (′b → ′d)

where cfun-map = (Λ a b f x. b·(f ·(a·x)))

lemma cfun-map-beta [simp]: cfun-map·a·b·f ·x = b·(f ·(a·x))
by (simp add: cfun-map-def)

lemma cfun-map-ID: cfun-map·ID·ID = ID
by (simp add: cfun-eq-iff)

lemma cfun-map-map: cfun-map·f1 ·g1 ·(cfun-map·f2 ·g2 ·p) = cfun-map·(Λ x. f2 ·(f1 ·x))·(Λ
x. g1 ·(g2 ·x))·p

by (rule cfun-eqI) simp

lemma ep-pair-cfun-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (cfun-map·p1 ·e2) (cfun-map·e1 ·p2)

proof
interpret e1p1 : ep-pair e1 p1 by fact

THEORY “Map-Functions” 81

interpret e2p2 : ep-pair e2 p2 by fact
show cfun-map·e1 ·p2 ·(cfun-map·p1 ·e2 ·f) = f for f

by (simp add: cfun-eq-iff)
show cfun-map·p1 ·e2 ·(cfun-map·e1 ·p2 ·g) v g for g

apply (rule cfun-belowI , simp)
apply (rule below-trans [OF e2p2 .e-p-below])
apply (rule monofun-cfun-arg)
apply (rule e1p1 .e-p-below)
done

qed

lemma deflation-cfun-map:
assumes deflation d1 and deflation d2
shows deflation (cfun-map·d1 ·d2)

proof
interpret d1 : deflation d1 by fact
interpret d2 : deflation d2 by fact
fix f
show cfun-map·d1 ·d2 ·(cfun-map·d1 ·d2 ·f) = cfun-map·d1 ·d2 ·f

by (simp add: cfun-eq-iff d1 .idem d2 .idem)
show cfun-map·d1 ·d2 ·f v f

apply (rule cfun-belowI , simp)
apply (rule below-trans [OF d2 .below])
apply (rule monofun-cfun-arg)
apply (rule d1 .below)
done

qed

lemma finite-range-cfun-map:
assumes a: finite (range (λx. a·x))
assumes b: finite (range (λy. b·y))
shows finite (range (λf . cfun-map·a·b·f)) (is finite (range ?h))

proof (rule finite-imageD)
let ?f = λg. range (λx. (a·x, g·x))
show finite (?f ‘ range ?h)
proof (rule finite-subset)

let ?B = Pow (range (λx. a·x) × range (λy. b·y))
show ?f ‘ range ?h ⊆ ?B

by clarsimp
show finite ?B

by (simp add: a b)
qed
show inj-on ?f (range ?h)
proof (rule inj-onI , rule cfun-eqI , clarsimp)

fix x f g
assume range (λx. (a·x, b·(f ·(a·x)))) = range (λx. (a·x, b·(g·(a·x))))
then have range (λx. (a·x, b·(f ·(a·x)))) ⊆ range (λx. (a·x, b·(g·(a·x))))

by (rule equalityD1)
then have (a·x, b·(f ·(a·x))) ∈ range (λx. (a·x, b·(g·(a·x))))

THEORY “Map-Functions” 82

by (simp add: subset-eq)
then obtain y where (a·x, b·(f ·(a·x))) = (a·y, b·(g·(a·y)))

by (rule rangeE)
then show b·(f ·(a·x)) = b·(g·(a·x))

by clarsimp
qed

qed

lemma finite-deflation-cfun-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (cfun-map·d1 ·d2)

proof (rule finite-deflation-intro)
interpret d1 : finite-deflation d1 by fact
interpret d2 : finite-deflation d2 by fact
from d1 .deflation-axioms d2 .deflation-axioms show deflation (cfun-map·d1 ·d2)

by (rule deflation-cfun-map)
have finite (range (λf . cfun-map·d1 ·d2 ·f))

using d1 .finite-range d2 .finite-range
by (rule finite-range-cfun-map)

then show finite {f . cfun-map·d1 ·d2 ·f = f }
by (rule finite-range-imp-finite-fixes)

qed

Finite deflations are compact elements of the function space
lemma finite-deflation-imp-compact: finite-deflation d =⇒ compact d

apply (frule finite-deflation-imp-deflation)
apply (subgoal-tac compact (cfun-map·d·d·d))
apply (simp add: cfun-map-def deflation.idem eta-cfun)

apply (rule finite-deflation.compact)
apply (simp only: finite-deflation-cfun-map)
done

17.2 Map operator for product type
definition prod-map :: (′a → ′b) → (′c → ′d) → ′a × ′c → ′b × ′d

where prod-map = (Λ f g p. (f ·(fst p), g·(snd p)))

lemma prod-map-Pair [simp]: prod-map·f ·g·(x, y) = (f ·x, g·y)
by (simp add: prod-map-def)

lemma prod-map-ID: prod-map·ID·ID = ID
by (auto simp: cfun-eq-iff)

lemma prod-map-map: prod-map·f1 ·g1 ·(prod-map·f2 ·g2 ·p) = prod-map·(Λ x. f1 ·(f2 ·x))·(Λ
x. g1 ·(g2 ·x))·p

by (induct p) simp

lemma ep-pair-prod-map:
assumes ep-pair e1 p1 and ep-pair e2 p2

THEORY “Map-Functions” 83

shows ep-pair (prod-map·e1 ·e2) (prod-map·p1 ·p2)
proof

interpret e1p1 : ep-pair e1 p1 by fact
interpret e2p2 : ep-pair e2 p2 by fact
show prod-map·p1 ·p2 ·(prod-map·e1 ·e2 ·x) = x for x

by (induct x) simp
show prod-map·e1 ·e2 ·(prod-map·p1 ·p2 ·y) v y for y

by (induct y) (simp add: e1p1 .e-p-below e2p2 .e-p-below)
qed

lemma deflation-prod-map:
assumes deflation d1 and deflation d2
shows deflation (prod-map·d1 ·d2)

proof
interpret d1 : deflation d1 by fact
interpret d2 : deflation d2 by fact
fix x
show prod-map·d1 ·d2 ·(prod-map·d1 ·d2 ·x) = prod-map·d1 ·d2 ·x

by (induct x) (simp add: d1 .idem d2 .idem)
show prod-map·d1 ·d2 ·x v x

by (induct x) (simp add: d1 .below d2 .below)
qed

lemma finite-deflation-prod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (prod-map·d1 ·d2)

proof (rule finite-deflation-intro)
interpret d1 : finite-deflation d1 by fact
interpret d2 : finite-deflation d2 by fact
from d1 .deflation-axioms d2 .deflation-axioms show deflation (prod-map·d1 ·d2)

by (rule deflation-prod-map)
have {p. prod-map·d1 ·d2 ·p = p} ⊆ {x. d1 ·x = x} × {y. d2 ·y = y}

by auto
then show finite {p. prod-map·d1 ·d2 ·p = p}

by (rule finite-subset, simp add: d1 .finite-fixes d2 .finite-fixes)
qed

17.3 Map function for lifted cpo
definition u-map :: (′a → ′b) → ′a u → ′b u

where u-map = (Λ f . fup·(up oo f))

lemma u-map-strict [simp]: u-map·f ·⊥ = ⊥
by (simp add: u-map-def)

lemma u-map-up [simp]: u-map·f ·(up·x) = up·(f ·x)
by (simp add: u-map-def)

lemma u-map-ID: u-map·ID = ID

THEORY “Map-Functions” 84

by (simp add: u-map-def cfun-eq-iff eta-cfun)

lemma u-map-map: u-map·f ·(u-map·g·p) = u-map·(Λ x. f ·(g·x))·p
by (induct p) simp-all

lemma u-map-oo: u-map·(f oo g) = u-map·f oo u-map·g
by (simp add: cfcomp1 u-map-map eta-cfun)

lemma ep-pair-u-map: ep-pair e p =⇒ ep-pair (u-map·e) (u-map·p)
apply standard
subgoal for x by (cases x) (simp-all add: ep-pair .e-inverse)
subgoal for y by (cases y) (simp-all add: ep-pair .e-p-below)
done

lemma deflation-u-map: deflation d =⇒ deflation (u-map·d)
apply standard
subgoal for x by (cases x) (simp-all add: deflation.idem)
subgoal for x by (cases x) (simp-all add: deflation.below)
done

lemma finite-deflation-u-map:
assumes finite-deflation d
shows finite-deflation (u-map·d)

proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (u-map·d)

by (rule deflation-u-map)
have {x. u-map·d·x = x} ⊆ insert ⊥ ((λx. up·x) ‘ {x. d·x = x})

by (rule subsetI , case-tac x, simp-all)
then show finite {x. u-map·d·x = x}

by (rule finite-subset) (simp add: d.finite-fixes)
qed

17.4 Map function for strict products
definition sprod-map :: (′a::pcpo → ′b::pcpo) → (′c::pcpo → ′d::pcpo) → ′a ⊗ ′c
→ ′b ⊗ ′d

where sprod-map = (Λ f g. ssplit·(Λ x y. (:f ·x, g·y:)))

lemma sprod-map-strict [simp]: sprod-map·a·b·⊥ = ⊥
by (simp add: sprod-map-def)

lemma sprod-map-spair [simp]: x 6= ⊥ =⇒ y 6= ⊥ =⇒ sprod-map·f ·g·(:x, y:) =
(:f ·x, g·y:)

by (simp add: sprod-map-def)

lemma sprod-map-spair ′: f ·⊥ = ⊥ =⇒ g·⊥ = ⊥ =⇒ sprod-map·f ·g·(:x, y:) = (:f ·x,
g·y:)

by (cases x = ⊥ ∨ y = ⊥) auto

THEORY “Map-Functions” 85

lemma sprod-map-ID: sprod-map·ID·ID = ID
by (simp add: sprod-map-def cfun-eq-iff eta-cfun)

lemma sprod-map-map:
[[f1 ·⊥ = ⊥; g1 ·⊥ = ⊥]] =⇒

sprod-map·f1 ·g1 ·(sprod-map·f2 ·g2 ·p) =
sprod-map·(Λ x. f1 ·(f2 ·x))·(Λ x. g1 ·(g2 ·x))·p

proof (induct p)
case bottom
then show ?case by simp

next
case (spair x y)
then show ?case

apply (cases f2 ·x = ⊥, simp)
apply (cases g2 ·y = ⊥, simp)
apply simp
done

qed

lemma ep-pair-sprod-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (sprod-map·e1 ·e2) (sprod-map·p1 ·p2)

proof
interpret e1p1 : pcpo-ep-pair e1 p1 unfolding pcpo-ep-pair-def by fact
interpret e2p2 : pcpo-ep-pair e2 p2 unfolding pcpo-ep-pair-def by fact
show sprod-map·p1 ·p2 ·(sprod-map·e1 ·e2 ·x) = x for x

by (induct x) simp-all
show sprod-map·e1 ·e2 ·(sprod-map·p1 ·p2 ·y) v y for y
proof (induct y)

case bottom
then show ?case by simp

next
case (spair x y)
then show ?case

apply simp
apply (cases p1 ·x = ⊥, simp, cases p2 ·y = ⊥, simp)
apply (simp add: monofun-cfun e1p1 .e-p-below e2p2 .e-p-below)
done

qed
qed

lemma deflation-sprod-map:
assumes deflation d1 and deflation d2
shows deflation (sprod-map·d1 ·d2)

proof
interpret d1 : deflation d1 by fact
interpret d2 : deflation d2 by fact
fix x

THEORY “Map-Functions” 86

show sprod-map·d1 ·d2 ·(sprod-map·d1 ·d2 ·x) = sprod-map·d1 ·d2 ·x
proof (induct x)

case bottom
then show ?case by simp

next
case (spair x y)
then show ?case

apply (cases d1 ·x = ⊥, simp, cases d2 ·y = ⊥, simp)
apply (simp add: d1 .idem d2 .idem)
done

qed
show sprod-map·d1 ·d2 ·x v x
proof (induct x)

case bottom
then show ?case by simp

next
case spair
then show ?case by (simp add: monofun-cfun d1 .below d2 .below)

qed
qed

lemma finite-deflation-sprod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (sprod-map·d1 ·d2)

proof (rule finite-deflation-intro)
interpret d1 : finite-deflation d1 by fact
interpret d2 : finite-deflation d2 by fact
from d1 .deflation-axioms d2 .deflation-axioms show deflation (sprod-map·d1 ·d2)

by (rule deflation-sprod-map)
have {x. sprod-map·d1 ·d2 ·x = x} ⊆

insert ⊥ ((λ(x, y). (:x, y:)) ‘ ({x. d1 ·x = x} × {y. d2 ·y = y}))
by (rule subsetI , case-tac x, auto simp add: spair-eq-iff)

then show finite {x. sprod-map·d1 ·d2 ·x = x}
by (rule finite-subset) (simp add: d1 .finite-fixes d2 .finite-fixes)

qed

17.5 Map function for strict sums
definition ssum-map :: (′a::pcpo → ′b::pcpo) → (′c::pcpo → ′d::pcpo) → ′a ⊕ ′c
→ ′b ⊕ ′d

where ssum-map = (Λ f g. sscase·(sinl oo f)·(sinr oo g))

lemma ssum-map-strict [simp]: ssum-map·f ·g·⊥ = ⊥
by (simp add: ssum-map-def)

lemma ssum-map-sinl [simp]: x 6= ⊥ =⇒ ssum-map·f ·g·(sinl·x) = sinl·(f ·x)
by (simp add: ssum-map-def)

lemma ssum-map-sinr [simp]: x 6= ⊥ =⇒ ssum-map·f ·g·(sinr ·x) = sinr ·(g·x)

THEORY “Map-Functions” 87

by (simp add: ssum-map-def)

lemma ssum-map-sinl ′: f ·⊥ = ⊥ =⇒ ssum-map·f ·g·(sinl·x) = sinl·(f ·x)
by (cases x = ⊥) simp-all

lemma ssum-map-sinr ′: g·⊥ = ⊥ =⇒ ssum-map·f ·g·(sinr ·x) = sinr ·(g·x)
by (cases x = ⊥) simp-all

lemma ssum-map-ID: ssum-map·ID·ID = ID
by (simp add: ssum-map-def cfun-eq-iff eta-cfun)

lemma ssum-map-map:
[[f1 ·⊥ = ⊥; g1 ·⊥ = ⊥]] =⇒

ssum-map·f1 ·g1 ·(ssum-map·f2 ·g2 ·p) =
ssum-map·(Λ x. f1 ·(f2 ·x))·(Λ x. g1 ·(g2 ·x))·p

proof (induct p)
case bottom
then show ?case by simp

next
case (sinl x)
then show ?case by (cases f2 ·x = ⊥) simp-all

next
case (sinr y)
then show ?case by (cases g2 ·y = ⊥) simp-all

qed

lemma ep-pair-ssum-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (ssum-map·e1 ·e2) (ssum-map·p1 ·p2)

proof
interpret e1p1 : pcpo-ep-pair e1 p1 unfolding pcpo-ep-pair-def by fact
interpret e2p2 : pcpo-ep-pair e2 p2 unfolding pcpo-ep-pair-def by fact
show ssum-map·p1 ·p2 ·(ssum-map·e1 ·e2 ·x) = x for x

by (induct x) simp-all
show ssum-map·e1 ·e2 ·(ssum-map·p1 ·p2 ·y) v y for y
proof (induct y)

case bottom
then show ?case by simp

next
case (sinl x)
then show ?case by (cases p1 ·x = ⊥) (simp-all add: e1p1 .e-p-below)

next
case (sinr y)
then show ?case by (cases p2 ·y = ⊥) (simp-all add: e2p2 .e-p-below)

qed
qed

lemma deflation-ssum-map:
assumes deflation d1 and deflation d2

THEORY “Map-Functions” 88

shows deflation (ssum-map·d1 ·d2)
proof

interpret d1 : deflation d1 by fact
interpret d2 : deflation d2 by fact
fix x
show ssum-map·d1 ·d2 ·(ssum-map·d1 ·d2 ·x) = ssum-map·d1 ·d2 ·x
proof (induct x)

case bottom
then show ?case by simp

next
case (sinl x)
then show ?case by (cases d1 ·x = ⊥) (simp-all add: d1 .idem)

next
case (sinr y)
then show ?case by (cases d2 ·y = ⊥) (simp-all add: d2 .idem)

qed
show ssum-map·d1 ·d2 ·x v x
proof (induct x)

case bottom
then show ?case by simp

next
case (sinl x)
then show ?case by (cases d1 ·x = ⊥) (simp-all add: d1 .below)

next
case (sinr y)
then show ?case by (cases d2 ·y = ⊥) (simp-all add: d2 .below)

qed
qed

lemma finite-deflation-ssum-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (ssum-map·d1 ·d2)

proof (rule finite-deflation-intro)
interpret d1 : finite-deflation d1 by fact
interpret d2 : finite-deflation d2 by fact
from d1 .deflation-axioms d2 .deflation-axioms show deflation (ssum-map·d1 ·d2)

by (rule deflation-ssum-map)
have {x. ssum-map·d1 ·d2 ·x = x} ⊆

(λx. sinl·x) ‘ {x. d1 ·x = x} ∪
(λx. sinr ·x) ‘ {x. d2 ·x = x} ∪ {⊥}

by (rule subsetI , case-tac x, simp-all)
then show finite {x. ssum-map·d1 ·d2 ·x = x}

by (rule finite-subset, simp add: d1 .finite-fixes d2 .finite-fixes)
qed

17.6 Map operator for strict function space
definition sfun-map :: (′b::pcpo → ′a::pcpo) → (′c::pcpo → ′d::pcpo) → (′a →! ′c)
→ (′b →! ′d)

THEORY “Map-Functions” 89

where sfun-map = (Λ a b. sfun-abs oo cfun-map·a·b oo sfun-rep)

lemma sfun-map-ID: sfun-map·ID·ID = ID
by (simp add: sfun-map-def cfun-map-ID cfun-eq-iff)

lemma sfun-map-map:
assumes f2 ·⊥ = ⊥ and g2 ·⊥ = ⊥
shows sfun-map·f1 ·g1 ·(sfun-map·f2 ·g2 ·p) =

sfun-map·(Λ x. f2 ·(f1 ·x))·(Λ x. g1 ·(g2 ·x))·p
by (simp add: sfun-map-def cfun-eq-iff strictify-cancel assms cfun-map-map)

lemma ep-pair-sfun-map:
assumes 1 : ep-pair e1 p1
assumes 2 : ep-pair e2 p2
shows ep-pair (sfun-map·p1 ·e2) (sfun-map·e1 ·p2)

proof
interpret e1p1 : pcpo-ep-pair e1 p1

unfolding pcpo-ep-pair-def by fact
interpret e2p2 : pcpo-ep-pair e2 p2

unfolding pcpo-ep-pair-def by fact
show sfun-map·e1 ·p2 ·(sfun-map·p1 ·e2 ·f) = f for f

unfolding sfun-map-def
apply (simp add: sfun-eq-iff strictify-cancel)
apply (rule ep-pair .e-inverse)
apply (rule ep-pair-cfun-map [OF 1 2])
done

show sfun-map·p1 ·e2 ·(sfun-map·e1 ·p2 ·g) v g for g
unfolding sfun-map-def
apply (simp add: sfun-below-iff strictify-cancel)
apply (rule ep-pair .e-p-below)
apply (rule ep-pair-cfun-map [OF 1 2])
done

qed

lemma deflation-sfun-map:
assumes 1 : deflation d1
assumes 2 : deflation d2
shows deflation (sfun-map·d1 ·d2)
apply (simp add: sfun-map-def)
apply (rule deflation.intro)
apply simp
apply (subst strictify-cancel)
apply (simp add: cfun-map-def deflation-strict 1 2)

apply (simp add: cfun-map-def deflation.idem 1 2)
apply (simp add: sfun-below-iff)
apply (subst strictify-cancel)
apply (simp add: cfun-map-def deflation-strict 1 2)

apply (rule deflation.below)
apply (rule deflation-cfun-map [OF 1 2])

THEORY “Cprod” 90

done

lemma finite-deflation-sfun-map:
assumes finite-deflation d1

and finite-deflation d2
shows finite-deflation (sfun-map·d1 ·d2)

proof (intro finite-deflation-intro)
interpret d1 : finite-deflation d1 by fact
interpret d2 : finite-deflation d2 by fact
from d1 .deflation-axioms d2 .deflation-axioms show deflation (sfun-map·d1 ·d2)

by (rule deflation-sfun-map)
from assms have finite-deflation (cfun-map·d1 ·d2)

by (rule finite-deflation-cfun-map)
then have finite {f . cfun-map·d1 ·d2 ·f = f }

by (rule finite-deflation.finite-fixes)
moreover have inj (λf . sfun-rep·f)

by (rule inj-onI) (simp add: sfun-eq-iff)
ultimately have finite ((λf . sfun-rep·f) −‘ {f . cfun-map·d1 ·d2 ·f = f })

by (rule finite-vimageI)
with ‹deflation d1 › ‹deflation d2 › show finite {f . sfun-map·d1 ·d2 ·f = f }

by (simp add: sfun-map-def sfun-eq-iff strictify-cancel deflation-strict)
qed

end

18 The cpo of cartesian products
theory Cprod

imports Cfun
begin

18.1 Continuous case function for unit type
definition unit-when :: ′a → unit → ′a

where unit-when = (Λ a -. a)

translations
Λ(). t ⇀↽ CONST unit-when·t

lemma unit-when [simp]: unit-when·a·u = a
by (simp add: unit-when-def)

18.2 Continuous version of split function
definition csplit :: (′a → ′b → ′c) → (′a × ′b) → ′c

where csplit = (Λ f p. f ·(fst p)·(snd p))

translations
Λ(CONST Pair x y). t ⇀↽ CONST csplit·(Λ x y. t)

THEORY “Bifinite” 91

abbreviation cfst :: ′a × ′b → ′a
where cfst ≡ Abs-cfun fst

abbreviation csnd :: ′a × ′b → ′b
where csnd ≡ Abs-cfun snd

18.3 Convert all lemmas to the continuous versions
lemma csplit1 [simp]: csplit·f ·⊥ = f ·⊥·⊥

by (simp add: csplit-def)

lemma csplit-Pair [simp]: csplit·f ·(x, y) = f ·x·y
by (simp add: csplit-def)

end

19 Profinite and bifinite cpos
theory Bifinite

imports Map-Functions Cprod Sprod Sfun Up HOL−Library.Countable
begin

19.1 Chains of finite deflations
locale approx-chain =

fixes approx :: nat ⇒ ′a → ′a
assumes chain-approx [simp]: chain (λi. approx i)
assumes lub-approx [simp]: (

⊔
i. approx i) = ID

assumes finite-deflation-approx [simp]:
∧

i. finite-deflation (approx i)
begin

lemma deflation-approx: deflation (approx i)
using finite-deflation-approx by (rule finite-deflation-imp-deflation)

lemma approx-idem: approx i·(approx i·x) = approx i·x
using deflation-approx by (rule deflation.idem)

lemma approx-below: approx i·x v x
using deflation-approx by (rule deflation.below)

lemma finite-range-approx: finite (range (λx. approx i·x))
apply (rule finite-deflation.finite-range)
apply (rule finite-deflation-approx)
done

lemma compact-approx [simp]: compact (approx n·x)
apply (rule finite-deflation.compact)
apply (rule finite-deflation-approx)

THEORY “Bifinite” 92

done

lemma compact-eq-approx: compact x =⇒ ∃ i. approx i·x = x
by (rule admD2 , simp-all)

end

19.2 Omega-profinite and bifinite domains
class bifinite = pcpo +

assumes bifinite: ∃ (a::nat ⇒ ′a → ′a). approx-chain a

class profinite = cpo +
assumes profinite: ∃ (a::nat ⇒ ′a⊥ → ′a⊥). approx-chain a

19.3 Building approx chains
lemma approx-chain-iso:

assumes a: approx-chain a
assumes [simp]:

∧
x. f ·(g·x) = x

assumes [simp]:
∧

y. g·(f ·y) = y
shows approx-chain (λi. f oo a i oo g)

proof −
have 1 : f oo g = ID by (simp add: cfun-eqI)
have 2 : ep-pair f g by (simp add: ep-pair-def)
from 1 2 show ?thesis

using a unfolding approx-chain-def
by (simp add: lub-APP ep-pair .finite-deflation-e-d-p)

qed

lemma approx-chain-u-map:
assumes approx-chain a
shows approx-chain (λi. u-map·(a i))
using assms unfolding approx-chain-def
by (simp add: lub-APP u-map-ID finite-deflation-u-map)

lemma approx-chain-sfun-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. sfun-map·(a i)·(b i))
using assms unfolding approx-chain-def
by (simp add: lub-APP sfun-map-ID finite-deflation-sfun-map)

lemma approx-chain-sprod-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. sprod-map·(a i)·(b i))
using assms unfolding approx-chain-def
by (simp add: lub-APP sprod-map-ID finite-deflation-sprod-map)

lemma approx-chain-ssum-map:
assumes approx-chain a and approx-chain b

THEORY “Bifinite” 93

shows approx-chain (λi. ssum-map·(a i)·(b i))
using assms unfolding approx-chain-def
by (simp add: lub-APP ssum-map-ID finite-deflation-ssum-map)

lemma approx-chain-cfun-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. cfun-map·(a i)·(b i))
using assms unfolding approx-chain-def
by (simp add: lub-APP cfun-map-ID finite-deflation-cfun-map)

lemma approx-chain-prod-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. prod-map·(a i)·(b i))
using assms unfolding approx-chain-def
by (simp add: lub-APP prod-map-ID finite-deflation-prod-map)

Approx chains for countable discrete types.
definition discr-approx :: nat ⇒ ′a::countable discr u → ′a discr u

where discr-approx = (λi. Λ(up·x). if to-nat (undiscr x) < i then up·x else ⊥)

lemma chain-discr-approx [simp]: chain discr-approx
unfolding discr-approx-def
by (rule chainI , simp add: monofun-cfun monofun-LAM)

lemma lub-discr-approx [simp]: (
⊔

i. discr-approx i) = ID
apply (rule cfun-eqI)
apply (simp add: contlub-cfun-fun)
apply (simp add: discr-approx-def)
subgoal for x

apply (cases x)
apply simp

apply (rule lub-eqI)
apply (rule is-lubI)
apply (rule ub-rangeI , simp)

apply (drule ub-rangeD)
apply (erule rev-below-trans)
apply simp
apply (rule lessI)
done

done

lemma inj-on-undiscr [simp]: inj-on undiscr A
using Discr-undiscr by (rule inj-on-inverseI)

lemma finite-deflation-discr-approx: finite-deflation (discr-approx i)
proof

fix x :: ′a discr u
show discr-approx i·x v x

unfolding discr-approx-def

THEORY “Bifinite” 94

by (cases x, simp, simp)
show discr-approx i·(discr-approx i·x) = discr-approx i·x

unfolding discr-approx-def
by (cases x, simp, simp)

show finite {x:: ′a discr u. discr-approx i·x = x}
proof (rule finite-subset)

let ?S = insert (⊥:: ′a discr u) ((λx. up·x) ‘ undiscr −‘ to-nat −‘ {..<i})
show {x:: ′a discr u. discr-approx i·x = x} ⊆ ?S

unfolding discr-approx-def
by (rule subsetI , case-tac x, simp, simp split: if-split-asm)

show finite ?S
by (simp add: finite-vimageI)

qed
qed

lemma discr-approx: approx-chain discr-approx
using chain-discr-approx lub-discr-approx finite-deflation-discr-approx
by (rule approx-chain.intro)

19.4 Class instance proofs
instance bifinite ⊆ profinite
proof

show ∃ (a::nat ⇒ ′a⊥ → ′a⊥). approx-chain a
using bifinite [where ′a= ′a]
by (fast intro!: approx-chain-u-map)

qed

instance u :: (profinite) bifinite
by standard (rule profinite)

Types ′a → ′b and ′a⊥ →! ′b are isomorphic.
definition encode-cfun = (Λ f . sfun-abs·(fup·f))

definition decode-cfun = (Λ g x. sfun-rep·g·(up·x))

lemma decode-encode-cfun [simp]: decode-cfun·(encode-cfun·x) = x
unfolding encode-cfun-def decode-cfun-def
by (simp add: eta-cfun)

lemma encode-decode-cfun [simp]: encode-cfun·(decode-cfun·y) = y
unfolding encode-cfun-def decode-cfun-def
apply (simp add: sfun-eq-iff strictify-cancel)
apply (rule cfun-eqI , case-tac x, simp-all)
done

instance cfun :: (profinite, bifinite) bifinite
proof

obtain a :: nat ⇒ ′a⊥ → ′a⊥ where a: approx-chain a

THEORY “Bifinite” 95

using profinite ..
obtain b :: nat ⇒ ′b → ′b where b: approx-chain b

using bifinite ..
have approx-chain (λi. decode-cfun oo sfun-map·(a i)·(b i) oo encode-cfun)

using a b by (simp add: approx-chain-iso approx-chain-sfun-map)
thus ∃ (a::nat ⇒ (′a → ′b) → (′a → ′b)). approx-chain a

by − (rule exI)
qed

Types (′a × ′b)⊥ and ′a⊥ ⊗ ′b⊥ are isomorphic.
definition encode-prod-u = (Λ(up·(x, y)). (:up·x, up·y:))

definition decode-prod-u = (Λ(:up·x, up·y:). up·(x, y))

lemma decode-encode-prod-u [simp]: decode-prod-u·(encode-prod-u·x) = x
unfolding encode-prod-u-def decode-prod-u-def
apply (cases x)
apply simp

subgoal for y by (cases y) simp
done

lemma encode-decode-prod-u [simp]: encode-prod-u·(decode-prod-u·y) = y
unfolding encode-prod-u-def decode-prod-u-def
apply (cases y)
apply simp

subgoal for a b
apply (cases a, simp)
apply (cases b, simp, simp)
done

done

instance prod :: (profinite, profinite) profinite
proof

obtain a :: nat ⇒ ′a⊥ → ′a⊥ where a: approx-chain a
using profinite ..

obtain b :: nat ⇒ ′b⊥ → ′b⊥ where b: approx-chain b
using profinite ..

have approx-chain (λi. decode-prod-u oo sprod-map·(a i)·(b i) oo encode-prod-u)
using a b by (simp add: approx-chain-iso approx-chain-sprod-map)

thus ∃ (a::nat ⇒ (′a × ′b)⊥ → (′a × ′b)⊥). approx-chain a
by − (rule exI)

qed

instance prod :: (bifinite, bifinite) bifinite
proof

show ∃ (a::nat ⇒ (′a × ′b) → (′a × ′b)). approx-chain a
using bifinite [where ′a= ′a] and bifinite [where ′a= ′b]
by (fast intro!: approx-chain-prod-map)

qed

THEORY “Completion” 96

instance sfun :: (bifinite, bifinite) bifinite
proof

show ∃ (a::nat ⇒ (′a →! ′b) → (′a →! ′b)). approx-chain a
using bifinite [where ′a= ′a] and bifinite [where ′a= ′b]
by (fast intro!: approx-chain-sfun-map)

qed

instance sprod :: (bifinite, bifinite) bifinite
proof

show ∃ (a::nat ⇒ (′a ⊗ ′b) → (′a ⊗ ′b)). approx-chain a
using bifinite [where ′a= ′a] and bifinite [where ′a= ′b]
by (fast intro!: approx-chain-sprod-map)

qed

instance ssum :: (bifinite, bifinite) bifinite
proof

show ∃ (a::nat ⇒ (′a ⊕ ′b) → (′a ⊕ ′b)). approx-chain a
using bifinite [where ′a= ′a] and bifinite [where ′a= ′b]
by (fast intro!: approx-chain-ssum-map)

qed

lemma approx-chain-unit: approx-chain (⊥ :: nat ⇒ unit → unit)
by (simp add: approx-chain-def cfun-eq-iff finite-deflation-bottom)

instance unit :: bifinite
by standard (fast intro!: approx-chain-unit)

instance discr :: (countable) profinite
by standard (fast intro!: discr-approx)

instance lift :: (countable) bifinite
proof

note [simp] = cont-Abs-lift cont-Rep-lift Rep-lift-inverse Abs-lift-inverse
obtain a :: nat ⇒ (′a discr)⊥ → (′a discr)⊥ where a: approx-chain a

using profinite ..
hence approx-chain (λi. (Λ y. Abs-lift y) oo a i oo (Λ x. Rep-lift x))

by (rule approx-chain-iso) simp-all
thus ∃ (a::nat ⇒ ′a lift → ′a lift). approx-chain a

by − (rule exI)
qed

end

20 Defining algebraic domains by ideal completion
theory Completion
imports Cfun
begin

THEORY “Completion” 97

20.1 Ideals over a preorder
locale preorder =

fixes r :: ′a::type ⇒ ′a ⇒ bool (infix ‹�› 50)
assumes r-refl: x � x
assumes r-trans: [[x � y; y � z]] =⇒ x � z

begin

definition
ideal :: ′a set ⇒ bool where
ideal A = ((∃ x. x ∈ A) ∧ (∀ x∈A. ∀ y∈A. ∃ z∈A. x � z ∧ y � z) ∧
(∀ x y. x � y −→ y ∈ A −→ x ∈ A))

lemma idealI :
assumes ∃ x. x ∈ A
assumes

∧
x y. [[x ∈ A; y ∈ A]] =⇒ ∃ z∈A. x � z ∧ y � z

assumes
∧

x y. [[x � y; y ∈ A]] =⇒ x ∈ A
shows ideal A

unfolding ideal-def using assms by fast

lemma idealD1 :
ideal A =⇒ ∃ x. x ∈ A

unfolding ideal-def by fast

lemma idealD2 :
[[ideal A; x ∈ A; y ∈ A]] =⇒ ∃ z∈A. x � z ∧ y � z

unfolding ideal-def by fast

lemma idealD3 :
[[ideal A; x � y; y ∈ A]] =⇒ x ∈ A

unfolding ideal-def by fast

lemma ideal-principal: ideal {x. x � z}
apply (rule idealI)

apply (rule exI [where x = z])
apply (fast intro: r-refl)

apply (rule bexI [where x = z], fast)
apply (fast intro: r-refl)

apply (fast intro: r-trans)
done

lemma ex-ideal: ∃A. A ∈ {A. ideal A}
by (fast intro: ideal-principal)

The set of ideals is a cpo
lemma ideal-UN :

fixes A :: nat ⇒ ′a set
assumes ideal-A:

∧
i. ideal (A i)

assumes chain-A:
∧

i j. i ≤ j =⇒ A i ⊆ A j
shows ideal (

⋃
i. A i)

THEORY “Completion” 98

apply (rule idealI)
using idealD1 [OF ideal-A] apply fast
apply (clarify)

subgoal for i j
apply (drule subsetD [OF chain-A [OF max.cobounded1]])
apply (drule subsetD [OF chain-A [OF max.cobounded2]])
apply (drule (1) idealD2 [OF ideal-A])
apply blast
done

apply clarify
apply (drule (1) idealD3 [OF ideal-A])
apply fast
done

lemma typedef-ideal-po:
fixes Abs :: ′a set ⇒ ′b::below
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

shows OFCLASS(′b, po-class)
apply (intro-classes, unfold below)

apply (rule subset-refl)
apply (erule (1) subset-trans)

apply (rule type-definition.Rep-inject [OF type, THEN iffD1])
apply (erule (1) subset-antisym)

done

lemma
fixes Abs :: ′a set ⇒ ′b::po
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

assumes S : chain S
shows typedef-ideal-lub: range S <<| Abs (

⋃
i. Rep (S i))

and typedef-ideal-rep-lub: Rep (
⊔

i. S i) = (
⋃

i. Rep (S i))
proof −

have 1 : ideal (
⋃

i. Rep (S i))
apply (rule ideal-UN)
apply (rule type-definition.Rep [OF type, unfolded mem-Collect-eq])

apply (subst below [symmetric])
apply (erule chain-mono [OF S])
done

hence 2 : Rep (Abs (
⋃

i. Rep (S i))) = (
⋃

i. Rep (S i))
by (simp add: type-definition.Abs-inverse [OF type])

show 3 : range S <<| Abs (
⋃

i. Rep (S i))
apply (rule is-lubI)
apply (rule is-ubI)
apply (simp add: below 2 , fast)

apply (simp add: below 2 is-ub-def , fast)
done

hence 4 : (
⊔

i. S i) = Abs (
⋃

i. Rep (S i))

THEORY “Completion” 99

by (rule lub-eqI)
show 5 : Rep (

⊔
i. S i) = (

⋃
i. Rep (S i))

by (simp add: 4 2)
qed

lemma typedef-ideal-cpo:
fixes Abs :: ′a set ⇒ ′b::po
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

shows OFCLASS(′b, cpo-class)
by standard (rule exI , erule typedef-ideal-lub [OF type below])

end

interpretation below: preorder below :: ′a::po ⇒ ′a ⇒ bool
apply unfold-locales
apply (rule below-refl)
apply (erule (1) below-trans)
done

20.2 Lemmas about least upper bounds
lemma is-ub-thelub-ex: [[∃ u. S <<| u; x ∈ S]] =⇒ x v lub S
apply (erule exE , drule is-lub-lub)
apply (drule is-lubD1)
apply (erule (1) is-ubD)
done

lemma is-lub-thelub-ex: [[∃ u. S <<| u; S <| x]] =⇒ lub S v x
by (erule exE , drule is-lub-lub, erule is-lubD2)

20.3 Locale for ideal completion
hide-const (open) Filter .principal

locale ideal-completion = preorder +
fixes principal :: ′a::type ⇒ ′b
fixes rep :: ′b ⇒ ′a::type set
assumes ideal-rep:

∧
x. ideal (rep x)

assumes rep-lub:
∧

Y . chain Y =⇒ rep (
⊔

i. Y i) = (
⋃

i. rep (Y i))
assumes rep-principal:

∧
a. rep (principal a) = {b. b � a}

assumes belowI :
∧

x y. rep x ⊆ rep y =⇒ x v y
assumes countable: ∃ f :: ′a ⇒ nat. inj f

begin

lemma rep-mono: x v y =⇒ rep x ⊆ rep y
apply (frule bin-chain)
apply (drule rep-lub)
apply (simp only: lub-eqI [OF is-lub-bin-chain])
apply (rule subsetI , rule UN-I [where a=0], simp-all)

THEORY “Completion” 100

done

lemma below-def : x v y ←→ rep x ⊆ rep y
by (rule iffI [OF rep-mono belowI])

lemma principal-below-iff-mem-rep: principal a v x ←→ a ∈ rep x
unfolding below-def rep-principal
by (auto intro: r-refl elim: idealD3 [OF ideal-rep])

lemma principal-below-iff [simp]: principal a v principal b ←→ a � b
by (simp add: principal-below-iff-mem-rep rep-principal)

lemma principal-eq-iff : principal a = principal b ←→ a � b ∧ b � a
unfolding po-eq-conv [where ′a= ′b] principal-below-iff ..

lemma eq-iff : x = y ←→ rep x = rep y
unfolding po-eq-conv below-def by auto

lemma principal-mono: a � b =⇒ principal a v principal b
by (simp only: principal-below-iff)

lemma ch2ch-principal [simp]:
∀ i. Y i � Y (Suc i) =⇒ chain (λi. principal (Y i))

by (simp add: chainI principal-mono)

20.3.1 Principal ideals approximate all elements
lemma compact-principal [simp]: compact (principal a)
by (rule compactI2 , simp add: principal-below-iff-mem-rep rep-lub)

Construct a chain whose lub is the same as a given ideal
lemma obtain-principal-chain:

obtains Y where ∀ i. Y i � Y (Suc i) and x = (
⊔

i. principal (Y i))
proof −

obtain count :: ′a ⇒ nat where inj: inj count
using countable ..

define enum where enum i = (THE a. count a = i) for i
have enum-count [simp]:

∧
x. enum (count x) = x

unfolding enum-def by (simp add: inj-eq [OF inj])
define a where a = (LEAST i. enum i ∈ rep x)
define b where b i = (LEAST j. enum j ∈ rep x ∧ ¬ enum j � enum i) for i
define c where c i j = (LEAST k. enum k ∈ rep x ∧ enum i � enum k ∧ enum

j � enum k) for i j
define P where P i ←→ (∃ j. enum j ∈ rep x ∧ ¬ enum j � enum i) for i
define X where X = rec-nat a (λn i. if P i then c i (b i) else i)
have X-0 : X 0 = a unfolding X-def by simp
have X-Suc:

∧
n. X (Suc n) = (if P (X n) then c (X n) (b (X n)) else X n)

unfolding X-def by simp
have a-mem: enum a ∈ rep x

THEORY “Completion” 101

unfolding a-def
apply (rule LeastI-ex)
apply (insert ideal-rep [of x])
apply (drule idealD1)
apply (clarify)
subgoal for a by (rule exI [where x=count a]) simp
done

have b:
∧

i. P i =⇒ enum i ∈ rep x
=⇒ enum (b i) ∈ rep x ∧ ¬ enum (b i) � enum i
unfolding P-def b-def by (erule LeastI2-ex, simp)

have c:
∧

i j. enum i ∈ rep x =⇒ enum j ∈ rep x
=⇒ enum (c i j) ∈ rep x ∧ enum i � enum (c i j) ∧ enum j � enum (c i j)
unfolding c-def
apply (drule (1) idealD2 [OF ideal-rep], clarify)
subgoal for . . . z by (rule LeastI2 [where a=count z], simp, simp)
done

have X-mem: enum (X n) ∈ rep x for n
proof (induct n)

case 0
then show ?case by (simp add: X-0 a-mem)

next
case (Suc n)
with b c show ?case by (auto simp: X-Suc)

qed
have X-chain:

∧
n. enum (X n) � enum (X (Suc n))

apply (clarsimp simp add: X-Suc r-refl)
apply (simp add: b c X-mem)
done

have less-b:
∧

n i. n < b i =⇒ enum n ∈ rep x =⇒ enum n � enum i
unfolding b-def by (drule not-less-Least, simp)

have X-covers: ∀ k≤n. enum k ∈ rep x −→ enum k � enum (X n) for n
proof (induct n)

case 0
then show ?case

apply (clarsimp simp add: X-0 a-def)
apply (drule Least-le [where k=0], simp add: r-refl)
done

next
case (Suc n)
then show ?case

apply clarsimp
apply (erule le-SucE)
apply (rule r-trans [OF - X-chain], simp)

apply (cases P (X n), simp add: X-Suc)
apply (rule linorder-cases [where x=b (X n) and y=Suc n])

apply (simp only: less-Suc-eq-le)
apply (drule spec, drule (1) mp, simp add: b X-mem)

apply (simp add: c X-mem)
apply (drule (1) less-b)

THEORY “Completion” 102

apply (erule r-trans)
apply (simp add: b c X-mem)

apply (simp add: X-Suc)
apply (simp add: P-def)
done

qed
have 1 : ∀ i. enum (X i) � enum (X (Suc i))

by (simp add: X-chain)
have x = (

⊔
n. principal (enum (X n)))

apply (simp add: eq-iff rep-lub 1 rep-principal)
apply auto
subgoal for a

apply (subgoal-tac ∃ i. a = enum i, erule exE)
apply (rule-tac x=i in exI , simp add: X-covers)

apply (rule-tac x=count a in exI , simp)
done

subgoal
apply (erule idealD3 [OF ideal-rep])
apply (rule X-mem)
done

done
with 1 show ?thesis ..

qed

lemma principal-induct:
assumes adm: adm P
assumes P:

∧
a. P (principal a)

shows P x
apply (rule obtain-principal-chain [of x])
apply (simp add: admD [OF adm] P)
done

lemma compact-imp-principal: compact x =⇒ ∃ a. x = principal a
apply (rule obtain-principal-chain [of x])
apply (drule adm-compact-neq [OF - cont-id])
apply (subgoal-tac chain (λi. principal (Y i)))
apply (drule (2) admD2 , fast, simp)
done

20.4 Defining functions in terms of basis elements
definition

extension :: (′a::type ⇒ ′c) ⇒ ′b → ′c where
extension = (λf . (Λ x. lub (f ‘ rep x)))

lemma extension-lemma:
fixes f :: ′a::type ⇒ ′c
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

shows ∃ u. f ‘ rep x <<| u

THEORY “Completion” 103

proof −
obtain Y where Y : ∀ i. Y i � Y (Suc i)
and x: x = (

⊔
i. principal (Y i))

by (rule obtain-principal-chain [of x])
have chain: chain (λi. f (Y i))

by (rule chainI , simp add: f-mono Y)
have rep-x: rep x = (

⋃
n. {a. a � Y n})

by (simp add: x rep-lub Y rep-principal)
have f ‘ rep x <<| (

⊔
n. f (Y n))

apply (rule is-lubI)
apply (rule ub-imageI)

subgoal for a
apply (clarsimp simp add: rep-x)
apply (drule f-mono)
apply (erule below-lub [OF chain])
done

apply (rule lub-below [OF chain])
subgoal for . . . n

apply (drule ub-imageD [where x=Y n])
apply (simp add: rep-x, fast intro: r-refl)

apply assumption
done

done
then show ?thesis ..

qed

lemma extension-beta:
fixes f :: ′a::type ⇒ ′c
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

shows extension f ·x = lub (f ‘ rep x)
unfolding extension-def
proof (rule beta-cfun)

have lub:
∧

x. ∃ u. f ‘ rep x <<| u
using f-mono by (rule extension-lemma)

show cont: cont (λx. lub (f ‘ rep x))
apply (rule contI2)
apply (rule monofunI)
apply (rule is-lub-thelub-ex [OF lub ub-imageI])
apply (rule is-ub-thelub-ex [OF lub imageI])
apply (erule (1) subsetD [OF rep-mono])

apply (rule is-lub-thelub-ex [OF lub ub-imageI])
apply (simp add: rep-lub, clarify)
apply (erule rev-below-trans [OF is-ub-thelub])
apply (erule is-ub-thelub-ex [OF lub imageI])
done

qed

lemma extension-principal:
fixes f :: ′a::type ⇒ ′c

THEORY “Completion” 104

assumes f-mono:
∧

a b. a � b =⇒ f a v f b
shows extension f ·(principal a) = f a

apply (subst extension-beta, erule f-mono)
apply (subst rep-principal)
apply (rule lub-eqI)
apply (rule is-lub-maximal)
apply (rule ub-imageI)
apply (simp add: f-mono)
apply (rule imageI)
apply (simp add: r-refl)
done

lemma extension-mono:
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

assumes g-mono:
∧

a b. a � b =⇒ g a v g b
assumes below:

∧
a. f a v g a

shows extension f v extension g
apply (rule cfun-belowI)
apply (simp only: extension-beta f-mono g-mono)
apply (rule is-lub-thelub-ex)
apply (rule extension-lemma, erule f-mono)

apply (rule ub-imageI)
subgoal for x a

apply (rule below-trans [OF below])
apply (rule is-ub-thelub-ex)
apply (rule extension-lemma, erule g-mono)

apply (erule imageI)
done

done

lemma cont-extension:
assumes f-mono:

∧
a b x. a � b =⇒ f x a v f x b

assumes f-cont:
∧

a. cont (λx. f x a)
shows cont (λx. extension (λa. f x a))

apply (rule contI2)
apply (rule monofunI)
apply (rule extension-mono, erule f-mono, erule f-mono)
apply (erule cont2monofunE [OF f-cont])

apply (rule cfun-belowI)
apply (rule principal-induct, simp)
apply (simp only: contlub-cfun-fun)
apply (simp only: extension-principal f-mono)
apply (simp add: cont2contlubE [OF f-cont])

done

end

lemma (in preorder) typedef-ideal-completion:
fixes Abs :: ′a set ⇒ ′b

THEORY “Universal” 105

assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

assumes principal:
∧

a. principal a = Abs {b. b � a}
assumes countable: ∃ f :: ′a ⇒ nat. inj f
shows ideal-completion r principal Rep

proof
interpret type-definition Rep Abs {S . ideal S} by fact
fix a b :: ′a and x y :: ′b and Y :: nat ⇒ ′b
show ideal (Rep x)

using Rep [of x] by simp
show chain Y =⇒ Rep (

⊔
i. Y i) = (

⋃
i. Rep (Y i))

using type below by (rule typedef-ideal-rep-lub)
show Rep (principal a) = {b. b � a}

by (simp add: principal Abs-inverse ideal-principal)
show Rep x ⊆ Rep y =⇒ x v y

by (simp only: below)
show ∃ f :: ′a ⇒ nat. inj f

by (rule countable)
qed

end

21 A universal bifinite domain
theory Universal
imports Bifinite Completion HOL−Library.Nat-Bijection
begin

unbundle no binomial-syntax

21.1 Basis for universal domain
21.1.1 Basis datatype
type-synonym ubasis = nat

definition
node :: nat ⇒ ubasis ⇒ ubasis set ⇒ ubasis

where
node i a S = Suc (prod-encode (i, prod-encode (a, set-encode S)))

lemma node-not-0 [simp]: node i a S 6= 0
unfolding node-def by simp

lemma node-gt-0 [simp]: 0 < node i a S
unfolding node-def by simp

lemma node-inject [simp]:
[[finite S ; finite T]]

THEORY “Universal” 106

=⇒ node i a S = node j b T ←→ i = j ∧ a = b ∧ S = T
unfolding node-def by (simp add: prod-encode-eq set-encode-eq)

lemma node-gt0 : i < node i a S
unfolding node-def less-Suc-eq-le
by (rule le-prod-encode-1)

lemma node-gt1 : a < node i a S
unfolding node-def less-Suc-eq-le
by (rule order-trans [OF le-prod-encode-1 le-prod-encode-2])

lemma nat-less-power2 : n < 2^n
by (fact less-exp)

lemma node-gt2 : [[finite S ; b ∈ S]] =⇒ b < node i a S
unfolding node-def less-Suc-eq-le set-encode-def
apply (rule order-trans [OF - le-prod-encode-2])
apply (rule order-trans [OF - le-prod-encode-2])
apply (rule order-trans [where y=sum ((^) 2) {b}])
apply (simp add: nat-less-power2 [THEN order-less-imp-le])
apply (erule sum-mono2 , simp, simp)
done

lemma eq-prod-encode-pairI :
[[fst (prod-decode x) = a; snd (prod-decode x) = b]] =⇒ x = prod-encode (a, b)
by auto

lemma node-cases:
assumes 1 : x = 0 =⇒ P
assumes 2 :

∧
i a S . [[finite S ; x = node i a S]] =⇒ P

shows P
apply (cases x)
apply (erule 1)

apply (rule 2)
apply (rule finite-set-decode)

apply (simp add: node-def)
apply (rule eq-prod-encode-pairI [OF refl])
apply (rule eq-prod-encode-pairI [OF refl refl])

done

lemma node-induct:
assumes 1 : P 0
assumes 2 :

∧
i a S . [[P a; finite S ; ∀ b∈S . P b]] =⇒ P (node i a S)

shows P x
apply (induct x rule: nat-less-induct)
apply (case-tac n rule: node-cases)
apply (simp add: 1)

apply (simp add: 2 node-gt1 node-gt2)
done

THEORY “Universal” 107

21.1.2 Basis ordering
inductive

ubasis-le :: nat ⇒ nat ⇒ bool
where

ubasis-le-refl: ubasis-le a a
| ubasis-le-trans:

[[ubasis-le a b; ubasis-le b c]] =⇒ ubasis-le a c
| ubasis-le-lower :

finite S =⇒ ubasis-le a (node i a S)
| ubasis-le-upper :

[[finite S ; b ∈ S ; ubasis-le a b]] =⇒ ubasis-le (node i a S) b

lemma ubasis-le-minimal: ubasis-le 0 x
apply (induct x rule: node-induct)
apply (rule ubasis-le-refl)
apply (erule ubasis-le-trans)
apply (erule ubasis-le-lower)
done

interpretation udom: preorder ubasis-le
apply standard
apply (rule ubasis-le-refl)
apply (erule (1) ubasis-le-trans)
done

21.1.3 Generic take function
function

ubasis-until :: (ubasis ⇒ bool) ⇒ ubasis ⇒ ubasis
where

ubasis-until P 0 = 0
| finite S =⇒ ubasis-until P (node i a S) =

(if P (node i a S) then node i a S else ubasis-until P a)
apply clarify
apply (rule-tac x=b in node-cases)
apply simp-all

done

termination ubasis-until
apply (relation measure snd)
apply (rule wf-measure)
apply (simp add: node-gt1)
done

lemma ubasis-until: P 0 =⇒ P (ubasis-until P x)
by (induct x rule: node-induct) simp-all

lemma ubasis-until ′: 0 < ubasis-until P x =⇒ P (ubasis-until P x)
by (induct x rule: node-induct) auto

THEORY “Universal” 108

lemma ubasis-until-same: P x =⇒ ubasis-until P x = x
by (induct x rule: node-induct) simp-all

lemma ubasis-until-idem:
P 0 =⇒ ubasis-until P (ubasis-until P x) = ubasis-until P x

by (rule ubasis-until-same [OF ubasis-until])

lemma ubasis-until-0 :
∀ x. x 6= 0 −→ ¬ P x =⇒ ubasis-until P x = 0

by (induct x rule: node-induct) simp-all

lemma ubasis-until-less: ubasis-le (ubasis-until P x) x
apply (induct x rule: node-induct)
apply (simp add: ubasis-le-refl)

by (metis ubasis-le.simps ubasis-until.simps(2))

lemma ubasis-until-chain:
assumes PQ:

∧
x. P x =⇒ Q x

shows ubasis-le (ubasis-until P x) (ubasis-until Q x)
apply (induct x rule: node-induct)
apply (simp add: ubasis-le-refl)

by (metis assms ubasis-until.simps(2) ubasis-until-less)

lemma ubasis-until-mono:
assumes

∧
i a S b. [[finite S ; P (node i a S); b ∈ S ; ubasis-le a b]] =⇒ P b

shows ubasis-le a b =⇒ ubasis-le (ubasis-until P a) (ubasis-until P b)
proof (induct set: ubasis-le)

case (ubasis-le-refl a) show ?case by (rule ubasis-le.ubasis-le-refl)
next

case (ubasis-le-trans a b c) thus ?case by − (rule ubasis-le.ubasis-le-trans)
next

case (ubasis-le-lower S a i) thus ?case
by (metis ubasis-le.simps ubasis-until.simps(2) ubasis-until-less)

next
case (ubasis-le-upper S b a i) thus ?case

by (metis assms ubasis-le.simps ubasis-until.simps(2) ubasis-until-same)
qed

lemma finite-range-ubasis-until:
finite {x. P x} =⇒ finite (range (ubasis-until P))

apply (rule finite-subset [where B=insert 0 {x. P x}])
apply (clarsimp simp add: ubasis-until ′)
apply simp
done

21.2 Defining the universal domain by ideal completion
typedef udom = {S . udom.ideal S}

THEORY “Universal” 109

by (rule udom.ex-ideal)

instantiation udom :: below
begin

definition
x v y ←→ Rep-udom x ⊆ Rep-udom y

instance ..
end

instance udom :: po
using type-definition-udom below-udom-def
by (rule udom.typedef-ideal-po)

instance udom :: cpo
using type-definition-udom below-udom-def
by (rule udom.typedef-ideal-cpo)

definition
udom-principal :: nat ⇒ udom where
udom-principal t = Abs-udom {u. ubasis-le u t}

lemma ubasis-countable: ∃ f ::ubasis ⇒ nat. inj f
by (rule exI , rule inj-on-id)

interpretation udom:
ideal-completion ubasis-le udom-principal Rep-udom

using type-definition-udom below-udom-def
using udom-principal-def ubasis-countable
by (rule udom.typedef-ideal-completion)

Universal domain is pointed
lemma udom-minimal: udom-principal 0 v x
apply (induct x rule: udom.principal-induct)
apply (simp, simp add: ubasis-le-minimal)
done

instance udom :: pcpo
by intro-classes (fast intro: udom-minimal)

lemma inst-udom-pcpo: ⊥ = udom-principal 0
by (rule udom-minimal [THEN bottomI , symmetric])

21.3 Compact bases of domains
typedef ′a compact-basis = {x:: ′a::pcpo. compact x}
by auto

THEORY “Universal” 110

lemma Rep-compact-basis ′ [simp]: compact (Rep-compact-basis a)
by (rule Rep-compact-basis [unfolded mem-Collect-eq])

lemma Abs-compact-basis-inverse ′ [simp]:
compact x =⇒ Rep-compact-basis (Abs-compact-basis x) = x

by (rule Abs-compact-basis-inverse [unfolded mem-Collect-eq])

instantiation compact-basis :: (pcpo) below
begin

definition
compact-le-def :
(v) ≡ (λx y. Rep-compact-basis x v Rep-compact-basis y)

instance ..
end

instance compact-basis :: (pcpo) po
using type-definition-compact-basis compact-le-def
by (rule typedef-po-class)

definition
approximants :: ′a::pcpo ⇒ ′a compact-basis set where
approximants = (λx. {a. Rep-compact-basis a v x})

definition
compact-bot :: ′a::pcpo compact-basis where
compact-bot = Abs-compact-basis ⊥

lemma Rep-compact-bot [simp]: Rep-compact-basis compact-bot = ⊥
unfolding compact-bot-def by simp

lemma compact-bot-minimal [simp]: compact-bot v a
unfolding compact-le-def Rep-compact-bot by simp

21.4 Universality of udom

We use a locale to parameterize the construction over a chain of approx
functions on the type to be embedded.
locale bifinite-approx-chain =

approx-chain approx for approx :: nat ⇒ ′a::bifinite → ′a
begin

21.4.1 Choosing a maximal element from a finite set
lemma finite-has-maximal:

fixes A :: ′a compact-basis set
shows [[finite A; A 6= {}]] =⇒ ∃ x∈A. ∀ y∈A. x v y −→ x = y

proof (induct rule: finite-ne-induct)

THEORY “Universal” 111

case (singleton x)
show ?case by simp

next
case (insert a A)
from ‹∃ x∈A. ∀ y∈A. x v y −→ x = y›
obtain x where x: x ∈ A

and x-eq:
∧

y. [[y ∈ A; x v y]] =⇒ x = y by fast
show ?case
proof (intro bexI ballI impI)

fix y
assume y ∈ insert a A and (if x v a then a else x) v y
thus (if x v a then a else x) = y

apply auto
apply (frule (1) below-trans)
apply (frule (1) x-eq)
apply (rule below-antisym, assumption)
apply simp
apply (erule (1) x-eq)
done

next
show (if x v a then a else x) ∈ insert a A

by (simp add: x)
qed

qed

definition
choose :: ′a compact-basis set ⇒ ′a compact-basis

where
choose A = (SOME x. x ∈ {x∈A. ∀ y∈A. x v y −→ x = y})

lemma choose-lemma:
[[finite A; A 6= {}]] =⇒ choose A ∈ {x∈A. ∀ y∈A. x v y −→ x = y}

unfolding choose-def
apply (rule someI-ex)
apply (frule (1) finite-has-maximal, fast)
done

lemma maximal-choose:
[[finite A; y ∈ A; choose A v y]] =⇒ choose A = y

apply (cases A = {}, simp)
apply (frule (1) choose-lemma, simp)
done

lemma choose-in: [[finite A; A 6= {}]] =⇒ choose A ∈ A
by (frule (1) choose-lemma, simp)

function
choose-pos :: ′a compact-basis set ⇒ ′a compact-basis ⇒ nat

where

THEORY “Universal” 112

choose-pos A x =
(if finite A ∧ x ∈ A ∧ x 6= choose A

then Suc (choose-pos (A − {choose A}) x) else 0)
by auto

termination choose-pos
apply (relation measure (card ◦ fst), simp)
apply clarsimp
apply (rule card-Diff1-less)
apply assumption
apply (erule choose-in)
apply clarsimp
done

declare choose-pos.simps [simp del]

lemma choose-pos-choose: finite A =⇒ choose-pos A (choose A) = 0
by (simp add: choose-pos.simps)

lemma inj-on-choose-pos [OF refl]:
[[card A = n; finite A]] =⇒ inj-on (choose-pos A) A

apply (induct n arbitrary: A)
apply simp

apply (case-tac A = {}, simp)
apply (frule (1) choose-in)
apply (rule inj-onI)
apply (drule-tac x=A − {choose A} in meta-spec, simp)
apply (simp add: choose-pos.simps)
apply (simp split: if-split-asm)
apply (erule (1) inj-onD, simp, simp)

done

lemma choose-pos-bounded [OF refl]:
[[card A = n; finite A; x ∈ A]] =⇒ choose-pos A x < n

apply (induct n arbitrary: A)
apply simp
apply (case-tac A = {}, simp)
apply (frule (1) choose-in)

apply (subst choose-pos.simps)
apply simp
done

lemma choose-pos-lessD:
[[choose-pos A x < choose-pos A y; finite A; x ∈ A; y ∈ A]] =⇒ x 6v y

apply (induct A x arbitrary: y rule: choose-pos.induct)
apply simp
apply (case-tac x = choose A)
apply simp
apply (rule notI)

THEORY “Universal” 113

apply (frule (2) maximal-choose)
apply simp

apply (case-tac y = choose A)
apply (simp add: choose-pos-choose)

apply (drule-tac x=y in meta-spec)
apply simp
apply (erule meta-mp)
apply (simp add: choose-pos.simps)

done

21.4.2 Compact basis take function
primrec

cb-take :: nat ⇒ ′a compact-basis ⇒ ′a compact-basis where
cb-take 0 = (λx. compact-bot)
| cb-take (Suc n) = (λa. Abs-compact-basis (approx n·(Rep-compact-basis a)))

declare cb-take.simps [simp del]

lemma cb-take-zero [simp]: cb-take 0 a = compact-bot
by (simp only: cb-take.simps)

lemma Rep-cb-take:
Rep-compact-basis (cb-take (Suc n) a) = approx n·(Rep-compact-basis a)

by (simp add: cb-take.simps(2))

lemmas approx-Rep-compact-basis = Rep-cb-take [symmetric]

lemma cb-take-covers: ∃n. cb-take n x = x
apply (subgoal-tac ∃n. cb-take (Suc n) x = x, fast)
apply (simp add: Rep-compact-basis-inject [symmetric])
apply (simp add: Rep-cb-take)
apply (rule compact-eq-approx)
apply (rule Rep-compact-basis ′)
done

lemma cb-take-less: cb-take n x v x
unfolding compact-le-def
by (cases n, simp, simp add: Rep-cb-take approx-below)

lemma cb-take-idem: cb-take n (cb-take n x) = cb-take n x
unfolding Rep-compact-basis-inject [symmetric]
by (cases n, simp, simp add: Rep-cb-take approx-idem)

lemma cb-take-mono: x v y =⇒ cb-take n x v cb-take n y
unfolding compact-le-def
by (cases n, simp, simp add: Rep-cb-take monofun-cfun-arg)

lemma cb-take-chain-le: m ≤ n =⇒ cb-take m x v cb-take n x

THEORY “Universal” 114

unfolding compact-le-def
apply (cases m, simp, cases n, simp)
apply (simp add: Rep-cb-take, rule chain-mono, simp, simp)
done

lemma finite-range-cb-take: finite (range (cb-take n))
apply (cases n)
apply (subgoal-tac range (cb-take 0) = {compact-bot}, simp, force)
apply (rule finite-imageD [where f=Rep-compact-basis])
apply (rule finite-subset [where B=range (λx. approx (n − 1)·x)])
apply (clarsimp simp add: Rep-cb-take)
apply (rule finite-range-approx)
apply (rule inj-onI , simp add: Rep-compact-basis-inject)
done

21.4.3 Rank of basis elements
definition

rank :: ′a compact-basis ⇒ nat
where

rank x = (LEAST n. cb-take n x = x)

lemma compact-approx-rank: cb-take (rank x) x = x
unfolding rank-def
apply (rule LeastI-ex)
apply (rule cb-take-covers)
done

lemma rank-leD: rank x ≤ n =⇒ cb-take n x = x
apply (rule below-antisym [OF cb-take-less])
apply (subst compact-approx-rank [symmetric])
apply (erule cb-take-chain-le)
done

lemma rank-leI : cb-take n x = x =⇒ rank x ≤ n
unfolding rank-def by (rule Least-le)

lemma rank-le-iff : rank x ≤ n ←→ cb-take n x = x
by (rule iffI [OF rank-leD rank-leI])

lemma rank-compact-bot [simp]: rank compact-bot = 0
using rank-leI [of 0 compact-bot] by simp

lemma rank-eq-0-iff [simp]: rank x = 0 ←→ x = compact-bot
using rank-le-iff [of x 0] by auto

definition
rank-le :: ′a compact-basis ⇒ ′a compact-basis set

where

THEORY “Universal” 115

rank-le x = {y. rank y ≤ rank x}

definition
rank-lt :: ′a compact-basis ⇒ ′a compact-basis set

where
rank-lt x = {y. rank y < rank x}

definition
rank-eq :: ′a compact-basis ⇒ ′a compact-basis set

where
rank-eq x = {y. rank y = rank x}

lemma rank-eq-cong: rank x = rank y =⇒ rank-eq x = rank-eq y
unfolding rank-eq-def by simp

lemma rank-lt-cong: rank x = rank y =⇒ rank-lt x = rank-lt y
unfolding rank-lt-def by simp

lemma rank-eq-subset: rank-eq x ⊆ rank-le x
unfolding rank-eq-def rank-le-def by auto

lemma rank-lt-subset: rank-lt x ⊆ rank-le x
unfolding rank-lt-def rank-le-def by auto

lemma finite-rank-le: finite (rank-le x)
unfolding rank-le-def
apply (rule finite-subset [where B=range (cb-take (rank x))])
apply clarify
apply (rule range-eqI)
apply (erule rank-leD [symmetric])
apply (rule finite-range-cb-take)
done

lemma finite-rank-eq: finite (rank-eq x)
by (rule finite-subset [OF rank-eq-subset finite-rank-le])

lemma finite-rank-lt: finite (rank-lt x)
by (rule finite-subset [OF rank-lt-subset finite-rank-le])

lemma rank-lt-Int-rank-eq: rank-lt x ∩ rank-eq x = {}
unfolding rank-lt-def rank-eq-def rank-le-def by auto

lemma rank-lt-Un-rank-eq: rank-lt x ∪ rank-eq x = rank-le x
unfolding rank-lt-def rank-eq-def rank-le-def by auto

21.4.4 Sequencing basis elements
definition

place :: ′a compact-basis ⇒ nat

THEORY “Universal” 116

where
place x = card (rank-lt x) + choose-pos (rank-eq x) x

lemma place-bounded: place x < card (rank-le x)
unfolding place-def
apply (rule ord-less-eq-trans)
apply (rule add-strict-left-mono)
apply (rule choose-pos-bounded)
apply (rule finite-rank-eq)

apply (simp add: rank-eq-def)
apply (subst card-Un-disjoint [symmetric])

apply (rule finite-rank-lt)
apply (rule finite-rank-eq)

apply (rule rank-lt-Int-rank-eq)
apply (simp add: rank-lt-Un-rank-eq)

done

lemma place-ge: card (rank-lt x) ≤ place x
unfolding place-def by simp

lemma place-rank-mono:
fixes x y :: ′a compact-basis
shows rank x < rank y =⇒ place x < place y

apply (rule less-le-trans [OF place-bounded])
apply (rule order-trans [OF - place-ge])
apply (rule card-mono)
apply (rule finite-rank-lt)
apply (simp add: rank-le-def rank-lt-def subset-eq)
done

lemma place-eqD: place x = place y =⇒ x = y
apply (rule linorder-cases [where x=rank x and y=rank y])

apply (drule place-rank-mono, simp)
apply (simp add: place-def)
apply (rule inj-on-choose-pos [where A=rank-eq x, THEN inj-onD])

apply (rule finite-rank-eq)
apply (simp cong: rank-lt-cong rank-eq-cong)

apply (simp add: rank-eq-def)
apply (simp add: rank-eq-def)

apply (drule place-rank-mono, simp)
done

lemma inj-place: inj place
by (rule inj-onI , erule place-eqD)

21.4.5 Embedding and projection on basis elements
definition

sub :: ′a compact-basis ⇒ ′a compact-basis

THEORY “Universal” 117

where
sub x = (case rank x of 0 ⇒ compact-bot | Suc k ⇒ cb-take k x)

lemma rank-sub-less: x 6= compact-bot =⇒ rank (sub x) < rank x
unfolding sub-def
apply (cases rank x, simp)
apply (simp add: less-Suc-eq-le)
apply (rule rank-leI)
apply (rule cb-take-idem)
done

lemma place-sub-less: x 6= compact-bot =⇒ place (sub x) < place x
apply (rule place-rank-mono)
apply (erule rank-sub-less)
done

lemma sub-below: sub x v x
unfolding sub-def by (cases rank x, simp-all add: cb-take-less)

lemma rank-less-imp-below-sub: [[x v y; rank x < rank y]] =⇒ x v sub y
unfolding sub-def
apply (cases rank y, simp)
apply (simp add: less-Suc-eq-le)
apply (subgoal-tac cb-take nat x v cb-take nat y)
apply (simp add: rank-leD)
apply (erule cb-take-mono)
done

function basis-emb :: ′a compact-basis ⇒ ubasis
where basis-emb x = (if x = compact-bot then 0 else

node (place x) (basis-emb (sub x))
(basis-emb ‘ {y. place y < place x ∧ x v y}))

by simp-all

termination basis-emb
by (relation measure place) (simp-all add: place-sub-less)

declare basis-emb.simps [simp del]

lemma basis-emb-compact-bot [simp]:
basis-emb compact-bot = 0
using basis-emb.simps [of compact-bot] by simp

lemma basis-emb-rec:
basis-emb x = node (place x) (basis-emb (sub x)) (basis-emb ‘ {y. place y < place

x ∧ x v y})
if x 6= compact-bot
using that basis-emb.simps [of x] by simp

THEORY “Universal” 118

lemma basis-emb-eq-0-iff [simp]:
basis-emb x = 0 ←→ x = compact-bot
by (cases x = compact-bot) (simp-all add: basis-emb-rec)

lemma fin1 : finite {y. place y < place x ∧ x v y}
apply (subst Collect-conj-eq)
apply (rule finite-Int)
apply (rule disjI1)
apply (subgoal-tac finite (place −‘ {n. n < place x}), simp)
apply (rule finite-vimageI [OF - inj-place])
apply (simp add: lessThan-def [symmetric])
done

lemma fin2 : finite (basis-emb ‘ {y. place y < place x ∧ x v y})
by (rule finite-imageI [OF fin1])

lemma rank-place-mono:
[[place x < place y; x v y]] =⇒ rank x < rank y

apply (rule linorder-cases, assumption)
apply (simp add: place-def cong: rank-lt-cong rank-eq-cong)
apply (drule choose-pos-lessD)
apply (rule finite-rank-eq)
apply (simp add: rank-eq-def)
apply (simp add: rank-eq-def)
apply simp
apply (drule place-rank-mono, simp)
done

lemma basis-emb-mono:
x v y =⇒ ubasis-le (basis-emb x) (basis-emb y)

proof (induct max (place x) (place y) arbitrary: x y rule: less-induct)
case less
show ?case proof (rule linorder-cases)

assume place x < place y
then have rank x < rank y

using ‹x v y› by (rule rank-place-mono)
with ‹place x < place y› show ?case

apply (case-tac y = compact-bot, simp)
apply (simp add: basis-emb.simps [of y])
apply (rule ubasis-le-trans [OF - ubasis-le-lower [OF fin2]])
apply (rule less)
apply (simp add: less-max-iff-disj)
apply (erule place-sub-less)

apply (erule rank-less-imp-below-sub [OF ‹x v y›])
done

next
assume place x = place y
hence x = y by (rule place-eqD)
thus ?case by (simp add: ubasis-le-refl)

THEORY “Universal” 119

next
assume place x > place y
with ‹x v y› show ?case

apply (case-tac x = compact-bot, simp add: ubasis-le-minimal)
apply (simp add: basis-emb.simps [of x])
apply (rule ubasis-le-upper [OF fin2], simp)
apply (rule less)
apply (simp add: less-max-iff-disj)
apply (erule place-sub-less)

apply (erule rev-below-trans)
apply (rule sub-below)
done

qed
qed

lemma inj-basis-emb: inj basis-emb
proof (rule injI)

fix x y
assume basis-emb x = basis-emb y
then show x = y

by (cases x = compact-bot ∨ y = compact-bot) (auto simp add: basis-emb-rec
fin2 place-eqD)
qed

definition
basis-prj :: ubasis ⇒ ′a compact-basis

where
basis-prj x = inv basis-emb
(ubasis-until (λx. x ∈ range (basis-emb :: ′a compact-basis ⇒ ubasis)) x)

lemma basis-prj-basis-emb:
∧

x. basis-prj (basis-emb x) = x
unfolding basis-prj-def
apply (subst ubasis-until-same)
apply (rule rangeI)

apply (rule inv-f-f)
apply (rule inj-basis-emb)

done

lemma basis-prj-node:
[[finite S ; node i a S /∈ range (basis-emb :: ′a compact-basis ⇒ nat)]]
=⇒ basis-prj (node i a S) = (basis-prj a :: ′a compact-basis)

unfolding basis-prj-def by simp

lemma basis-prj-0 : basis-prj 0 = compact-bot
apply (subst basis-emb-compact-bot [symmetric])
apply (rule basis-prj-basis-emb)
done

lemma node-eq-basis-emb-iff :

THEORY “Universal” 120

finite S =⇒ node i a S = basis-emb x ←→
x 6= compact-bot ∧ i = place x ∧ a = basis-emb (sub x) ∧

S = basis-emb ‘ {y. place y < place x ∧ x v y}
apply (cases x = compact-bot, simp)
apply (simp add: basis-emb.simps [of x])
apply (simp add: fin2)
done

lemma basis-prj-mono: ubasis-le a b =⇒ basis-prj a v basis-prj b
proof (induct a b rule: ubasis-le.induct)

case (ubasis-le-refl a) show ?case by (rule below-refl)
next

case (ubasis-le-trans a b c) thus ?case by − (rule below-trans)
next

case (ubasis-le-lower S a i) thus ?case
apply (cases node i a S ∈ range (basis-emb :: ′a compact-basis ⇒ nat))
apply (erule rangeE , rename-tac x)
apply (simp add: basis-prj-basis-emb)
apply (simp add: node-eq-basis-emb-iff)
apply (simp add: basis-prj-basis-emb)
apply (rule sub-below)

apply (simp add: basis-prj-node)
done

next
case (ubasis-le-upper S b a i) thus ?case

apply (cases node i a S ∈ range (basis-emb :: ′a compact-basis ⇒ nat))
apply (erule rangeE , rename-tac x)
apply (simp add: basis-prj-basis-emb)
apply (clarsimp simp add: node-eq-basis-emb-iff)
apply (simp add: basis-prj-basis-emb)

apply (simp add: basis-prj-node)
done

qed

lemma basis-emb-prj-less: ubasis-le (basis-emb (basis-prj x)) x
unfolding basis-prj-def
apply (subst f-inv-into-f [where f=basis-emb])
apply (rule ubasis-until)
apply (rule range-eqI [where x=compact-bot])
apply simp

apply (rule ubasis-until-less)
done

lemma ideal-completion:
ideal-completion below Rep-compact-basis (approximants :: ′a ⇒ -)

proof
fix w :: ′a
show below.ideal (approximants w)
proof (rule below.idealI)

THEORY “Universal” 121

have Abs-compact-basis (approx 0 ·w) ∈ approximants w
by (simp add: approximants-def approx-below)

thus ∃ x. x ∈ approximants w ..
next

fix x y :: ′a compact-basis
assume x: x ∈ approximants w and y: y ∈ approximants w
obtain i where i: approx i·(Rep-compact-basis x) = Rep-compact-basis x

using compact-eq-approx Rep-compact-basis ′ by fast
obtain j where j: approx j·(Rep-compact-basis y) = Rep-compact-basis y

using compact-eq-approx Rep-compact-basis ′ by fast
let ?z = Abs-compact-basis (approx (max i j)·w)
have ?z ∈ approximants w

by (simp add: approximants-def approx-below)
moreover from x y have x v ?z ∧ y v ?z

by (simp add: approximants-def compact-le-def)
(metis i j monofun-cfun chain-mono chain-approx max.cobounded1 max.cobounded2)

ultimately show ∃ z ∈ approximants w. x v z ∧ y v z ..
next

fix x y :: ′a compact-basis
assume x v y y ∈ approximants w thus x ∈ approximants w

unfolding approximants-def compact-le-def
by (auto elim: below-trans)

qed
next

fix Y :: nat ⇒ ′a
assume chain Y
thus approximants (

⊔
i. Y i) = (

⋃
i. approximants (Y i))

unfolding approximants-def
by (auto simp add: compact-below-lub-iff)

next
fix a :: ′a compact-basis
show approximants (Rep-compact-basis a) = {b. b v a}

unfolding approximants-def compact-le-def ..
next

fix x y :: ′a
assume approximants x ⊆ approximants y
hence ∀ z. compact z −→ z v x −→ z v y

by (simp add: approximants-def subset-eq)
(metis Abs-compact-basis-inverse ′)

hence (
⊔

i. approx i·x) v y
by (simp add: lub-below approx-below)

thus x v y
by (simp add: lub-distribs)

next
show ∃ f :: ′a compact-basis ⇒ nat. inj f

by (rule exI , rule inj-place)
qed

end

THEORY “Universal” 122

interpretation compact-basis:
ideal-completion below Rep-compact-basis

approximants :: ′a::bifinite ⇒ ′a compact-basis set
proof −

obtain a :: nat ⇒ ′a → ′a where approx-chain a
using bifinite ..

hence bifinite-approx-chain a
unfolding bifinite-approx-chain-def .

thus ideal-completion below Rep-compact-basis (approximants :: ′a ⇒ -)
by (rule bifinite-approx-chain.ideal-completion)

qed

21.4.6 EP-pair from any bifinite domain into udom
context bifinite-approx-chain begin

definition
udom-emb :: ′a → udom

where
udom-emb = compact-basis.extension (λx. udom-principal (basis-emb x))

definition
udom-prj :: udom → ′a

where
udom-prj = udom.extension (λx. Rep-compact-basis (basis-prj x))

lemma udom-emb-principal:
udom-emb·(Rep-compact-basis x) = udom-principal (basis-emb x)

unfolding udom-emb-def
apply (rule compact-basis.extension-principal)
apply (rule udom.principal-mono)
apply (erule basis-emb-mono)
done

lemma udom-prj-principal:
udom-prj·(udom-principal x) = Rep-compact-basis (basis-prj x)

unfolding udom-prj-def
apply (rule udom.extension-principal)
apply (rule compact-basis.principal-mono)
apply (erule basis-prj-mono)
done

lemma ep-pair-udom: ep-pair udom-emb udom-prj
apply standard
apply (rule compact-basis.principal-induct, simp)
apply (simp add: udom-emb-principal udom-prj-principal)
apply (simp add: basis-prj-basis-emb)

apply (rule udom.principal-induct, simp)

THEORY “Universal” 123

apply (simp add: udom-emb-principal udom-prj-principal)
apply (rule basis-emb-prj-less)

done

end

abbreviation udom-emb ≡ bifinite-approx-chain.udom-emb
abbreviation udom-prj ≡ bifinite-approx-chain.udom-prj

lemmas ep-pair-udom =
bifinite-approx-chain.ep-pair-udom [unfolded bifinite-approx-chain-def]

21.5 Chain of approx functions for type udom
definition

udom-approx :: nat ⇒ udom → udom
where

udom-approx i =
udom.extension (λx. udom-principal (ubasis-until (λy. y ≤ i) x))

lemma udom-approx-mono:
ubasis-le a b =⇒

udom-principal (ubasis-until (λy. y ≤ i) a) v
udom-principal (ubasis-until (λy. y ≤ i) b)

apply (rule udom.principal-mono)
apply (rule ubasis-until-mono)
apply (frule (2) order-less-le-trans [OF node-gt2])
apply (erule order-less-imp-le)
apply assumption
done

lemma adm-mem-finite: [[cont f ; finite S]] =⇒ adm (λx. f x ∈ S)
by (erule adm-subst, induct set: finite, simp-all)

lemma udom-approx-principal:
udom-approx i·(udom-principal x) =

udom-principal (ubasis-until (λy. y ≤ i) x)
unfolding udom-approx-def
apply (rule udom.extension-principal)
apply (erule udom-approx-mono)
done

lemma finite-deflation-udom-approx: finite-deflation (udom-approx i)
proof

fix x show udom-approx i·(udom-approx i·x) = udom-approx i·x
by (induct x rule: udom.principal-induct, simp)

(simp add: udom-approx-principal ubasis-until-idem)
next

fix x show udom-approx i·x v x

THEORY “Universal” 124

by (induct x rule: udom.principal-induct, simp)
(simp add: udom-approx-principal ubasis-until-less)

next
have ∗: finite (range (λx. udom-principal (ubasis-until (λy. y ≤ i) x)))

apply (subst range-composition [where f=udom-principal])
apply (simp add: finite-range-ubasis-until)
done

show finite {x. udom-approx i·x = x}
apply (rule finite-range-imp-finite-fixes)
apply (rule rev-finite-subset [OF ∗])
apply (clarsimp, rename-tac x)
apply (induct-tac x rule: udom.principal-induct)
apply (simp add: adm-mem-finite ∗)
apply (simp add: udom-approx-principal)
done

qed

interpretation udom-approx: finite-deflation udom-approx i
by (rule finite-deflation-udom-approx)

lemma chain-udom-approx [simp]: chain (λi. udom-approx i)
unfolding udom-approx-def
apply (rule chainI)
apply (rule udom.extension-mono)
apply (erule udom-approx-mono)
apply (erule udom-approx-mono)
apply (rule udom.principal-mono)
apply (rule ubasis-until-chain, simp)
done

lemma lub-udom-approx [simp]: (
⊔

i. udom-approx i) = ID
apply (rule cfun-eqI , simp add: contlub-cfun-fun)
apply (rule below-antisym)
apply (rule lub-below)
apply (simp)
apply (rule udom-approx.below)
apply (rule-tac x=x in udom.principal-induct)
apply (simp add: lub-distribs)
apply (rule-tac i=a in below-lub)
apply simp
apply (simp add: udom-approx-principal)
apply (simp add: ubasis-until-same ubasis-le-refl)
done

lemma udom-approx [simp]: approx-chain udom-approx
proof

show chain (λi. udom-approx i)
by (rule chain-udom-approx)

show (
⊔

i. udom-approx i) = ID

THEORY “Algebraic” 125

by (rule lub-udom-approx)
qed

instance udom :: bifinite
by standard (fast intro: udom-approx)

hide-const (open) node

unbundle binomial-syntax

end

22 Algebraic deflations
theory Algebraic
imports Universal Map-Functions
begin

22.1 Type constructor for finite deflations
typedef ′a::bifinite fin-defl = {d:: ′a → ′a. finite-deflation d}
by (fast intro: finite-deflation-bottom)

instantiation fin-defl :: (bifinite) below
begin

definition below-fin-defl-def :
below ≡ λx y. Rep-fin-defl x v Rep-fin-defl y

instance ..
end

instance fin-defl :: (bifinite) po
using type-definition-fin-defl below-fin-defl-def
by (rule typedef-po-class)

lemma finite-deflation-Rep-fin-defl: finite-deflation (Rep-fin-defl d)
using Rep-fin-defl by simp

lemma deflation-Rep-fin-defl: deflation (Rep-fin-defl d)
using finite-deflation-Rep-fin-defl
by (rule finite-deflation-imp-deflation)

interpretation Rep-fin-defl: finite-deflation Rep-fin-defl d
by (rule finite-deflation-Rep-fin-defl)

lemma fin-defl-belowI :
(
∧

x. Rep-fin-defl a·x = x =⇒ Rep-fin-defl b·x = x) =⇒ a v b
unfolding below-fin-defl-def

THEORY “Algebraic” 126

by (rule Rep-fin-defl.belowI)

lemma fin-defl-belowD:
[[a v b; Rep-fin-defl a·x = x]] =⇒ Rep-fin-defl b·x = x

unfolding below-fin-defl-def
by (rule Rep-fin-defl.belowD)

lemma fin-defl-eqI :
a = b if (

∧
x. Rep-fin-defl a·x = x ←→ Rep-fin-defl b·x = x)

proof (rule below-antisym)
show a v b by (rule fin-defl-belowI) (simp add: that)
show b v a by (rule fin-defl-belowI) (simp add: that)

qed

lemma Rep-fin-defl-mono: a v b =⇒ Rep-fin-defl a v Rep-fin-defl b
unfolding below-fin-defl-def .

lemma Abs-fin-defl-mono:
[[finite-deflation a; finite-deflation b; a v b]]
=⇒ Abs-fin-defl a v Abs-fin-defl b

unfolding below-fin-defl-def
by (simp add: Abs-fin-defl-inverse)

lemma (in finite-deflation) compact-belowI :
d v f if

∧
x. compact x =⇒ d·x = x =⇒ f ·x = x

by (rule belowI , rule that, erule subst, rule compact)

lemma compact-Rep-fin-defl [simp]: compact (Rep-fin-defl a)
using finite-deflation-Rep-fin-defl
by (rule finite-deflation-imp-compact)

22.2 Defining algebraic deflations by ideal completion
typedef ′a::bifinite defl = {S :: ′a fin-defl set. below.ideal S}
by (rule below.ex-ideal)

instantiation defl :: (bifinite) below
begin

definition x v y ←→ Rep-defl x ⊆ Rep-defl y

instance ..

end

instance defl :: (bifinite) po
using type-definition-defl below-defl-def
by (rule below.typedef-ideal-po)

THEORY “Algebraic” 127

instance defl :: (bifinite) cpo
using type-definition-defl below-defl-def
by (rule below.typedef-ideal-cpo)

definition defl-principal :: ′a::bifinite fin-defl ⇒ ′a defl
where defl-principal t = Abs-defl {u. u v t}

lemma fin-defl-countable: ∃ f :: ′a::bifinite fin-defl ⇒ nat. inj f
proof −

obtain f :: ′a compact-basis ⇒ nat where inj-f : inj f
using compact-basis.countable ..

have ∗:
∧

d. finite (f ‘ Rep-compact-basis −‘ {x. Rep-fin-defl d·x = x})
apply (rule finite-imageI)
apply (rule finite-vimageI)
apply (rule Rep-fin-defl.finite-fixes)
apply (simp add: inj-on-def Rep-compact-basis-inject)
done

have range-eq: range Rep-compact-basis = {x. compact x}
using type-definition-compact-basis by (rule type-definition.Rep-range)

have inj (λd. set-encode
(f ‘ Rep-compact-basis −‘ {x. Rep-fin-defl d·x = x}))
apply (rule inj-onI)
apply (simp only: set-encode-eq ∗)
apply (simp only: inj-image-eq-iff inj-f)
apply (drule-tac f=image Rep-compact-basis in arg-cong)
apply (simp del: vimage-Collect-eq add: range-eq set-eq-iff)
apply (rule Rep-fin-defl-inject [THEN iffD1])
apply (rule below-antisym)
apply (rule Rep-fin-defl.compact-belowI , rename-tac z)
apply (drule-tac x=z in spec, simp)
apply (rule Rep-fin-defl.compact-belowI , rename-tac z)
apply (drule-tac x=z in spec, simp)
done

thus ?thesis by − (rule exI)
qed

interpretation defl: ideal-completion below defl-principal Rep-defl
using type-definition-defl below-defl-def
using defl-principal-def fin-defl-countable
by (rule below.typedef-ideal-completion)

Algebraic deflations are pointed
lemma defl-minimal: defl-principal (Abs-fin-defl ⊥) v x
proof (induct x rule: defl.principal-induct)

fix a :: ′a fin-defl
have Abs-fin-defl ⊥ v a

by (simp add: below-fin-defl-def Abs-fin-defl-inverse finite-deflation-bottom)
then show defl-principal (Abs-fin-defl ⊥) v defl-principal a

by (rule defl.principal-mono)

THEORY “Algebraic” 128

qed simp

instance defl :: (bifinite) pcpo
by intro-classes (fast intro: defl-minimal)

lemma inst-defl-pcpo: ⊥ = defl-principal (Abs-fin-defl ⊥)
by (rule defl-minimal [THEN bottomI , symmetric])

22.3 Applying algebraic deflations
definition cast :: ′a::bifinite defl → ′a → ′a

where cast = defl.extension Rep-fin-defl

lemma cast-defl-principal: cast·(defl-principal a) = Rep-fin-defl a
unfolding cast-def
by (rule defl.extension-principal) (simp only: below-fin-defl-def)

lemma deflation-cast: deflation (cast·d)
apply (induct d rule: defl.principal-induct)
apply (rule adm-subst [OF - adm-deflation], simp)
apply (simp add: cast-defl-principal)
apply (rule finite-deflation-imp-deflation)
apply (rule finite-deflation-Rep-fin-defl)
done

lemma finite-deflation-cast: compact d =⇒ finite-deflation (cast·d)
apply (drule defl.compact-imp-principal)
apply clarify
apply (simp add: cast-defl-principal)
apply (rule finite-deflation-Rep-fin-defl)
done

interpretation cast: deflation cast·d
by (rule deflation-cast)

declare cast.idem [simp]

lemma compact-cast [simp]: compact (cast·d) if compact d
by (rule finite-deflation-imp-compact) (use that in ‹rule finite-deflation-cast›)

lemma cast-below-cast: cast·A v cast·B ←→ A v B
apply (induct A rule: defl.principal-induct, simp)
apply (induct B rule: defl.principal-induct, simp)
apply (simp add: cast-defl-principal below-fin-defl-def)
done

lemma compact-cast-iff : compact (cast·d) ←→ compact d
apply (rule iffI)
apply (simp only: compact-def cast-below-cast [symmetric])

THEORY “Algebraic” 129

apply (erule adm-subst [OF cont-Rep-cfun2])
apply (erule compact-cast)
done

lemma cast-below-imp-below: cast·A v cast·B =⇒ A v B
by (simp only: cast-below-cast)

lemma cast-eq-imp-eq: cast·A = cast·B =⇒ A = B
by (simp add: below-antisym cast-below-imp-below)

lemma cast-strict1 [simp]: cast·⊥ = ⊥
apply (subst inst-defl-pcpo)
apply (subst cast-defl-principal)
apply (rule Abs-fin-defl-inverse)
apply (simp add: finite-deflation-bottom)
done

lemma cast-strict2 [simp]: cast·A·⊥ = ⊥
by (rule cast.below [THEN bottomI])

22.4 Deflation combinators
definition

defl-fun1 e p f =
defl.extension (λa.

defl-principal (Abs-fin-defl
(e oo f ·(Rep-fin-defl a) oo p)))

definition
defl-fun2 e p f =

defl.extension (λa.
defl.extension (λb.

defl-principal (Abs-fin-defl
(e oo f ·(Rep-fin-defl a)·(Rep-fin-defl b) oo p))))

lemma cast-defl-fun1 :
assumes ep: ep-pair e p
assumes f :

∧
a. finite-deflation a =⇒ finite-deflation (f ·a)

shows cast·(defl-fun1 e p f ·A) = e oo f ·(cast·A) oo p
proof −

have 1 : finite-deflation (e oo f ·(Rep-fin-defl a) oo p) for a
proof −

have finite-deflation (f ·(Rep-fin-defl a))
using finite-deflation-Rep-fin-defl by (rule f)

with ep show ?thesis
by (rule ep-pair .finite-deflation-e-d-p)

qed
show ?thesis

by (induct A rule: defl.principal-induct, simp)

THEORY “Representable” 130

(simp only: defl-fun1-def
defl.extension-principal
defl.extension-mono
defl.principal-mono
Abs-fin-defl-mono [OF 1 1]
monofun-cfun below-refl
Rep-fin-defl-mono
cast-defl-principal
Abs-fin-defl-inverse [unfolded mem-Collect-eq, OF 1])

qed

lemma cast-defl-fun2 :
assumes ep: ep-pair e p
assumes f :

∧
a b. finite-deflation a =⇒ finite-deflation b =⇒

finite-deflation (f ·a·b)
shows cast·(defl-fun2 e p f ·A·B) = e oo f ·(cast·A)·(cast·B) oo p

proof −
have 1 : finite-deflation (e oo f ·(Rep-fin-defl a)·(Rep-fin-defl b) oo p) for a b
proof −

have finite-deflation (f ·(Rep-fin-defl a)·(Rep-fin-defl b))
using finite-deflation-Rep-fin-defl finite-deflation-Rep-fin-defl by (rule f)

with ep show ?thesis
by (rule ep-pair .finite-deflation-e-d-p)

qed
show ?thesis

apply (induct A rule: defl.principal-induct, simp)
apply (induct B rule: defl.principal-induct, simp)
by (simp only: defl-fun2-def

defl.extension-principal
defl.extension-mono
defl.principal-mono
Abs-fin-defl-mono [OF 1 1]
monofun-cfun below-refl
Rep-fin-defl-mono
cast-defl-principal
Abs-fin-defl-inverse [unfolded mem-Collect-eq, OF 1])

qed

end

23 Representable domains
theory Representable
imports Algebraic Map-Functions HOL−Library.Countable
begin

THEORY “Representable” 131

23.1 Class of representable domains

We define a “domain” as a pcpo that is isomorphic to some algebraic defla-
tion over the universal domain; this is equivalent to being omega-bifinite.
A predomain is a cpo that, when lifted, becomes a domain. Predomains are
represented by deflations over a lifted universal domain type.
class predomain-syn = cpo +

fixes liftemb :: ′a⊥ → udom⊥
fixes liftprj :: udom⊥ → ′a⊥
fixes liftdefl :: ′a itself ⇒ udom u defl

class predomain = predomain-syn +
assumes predomain-ep: ep-pair liftemb liftprj
assumes cast-liftdefl: cast·(liftdefl TYPE(′a)) = liftemb oo liftprj

syntax -LIFTDEFL :: type ⇒ logic (‹(1LIFTDEFL/(1 ′(- ′)))›)
syntax-consts -LIFTDEFL ⇀↽ liftdefl
translations LIFTDEFL(′t) ⇀↽ CONST liftdefl TYPE(′t)

definition liftdefl-of :: udom defl → udom u defl
where liftdefl-of = defl-fun1 ID ID u-map

lemma cast-liftdefl-of : cast·(liftdefl-of ·t) = u-map·(cast·t)
by (simp add: liftdefl-of-def cast-defl-fun1 ep-pair-def finite-deflation-u-map)

class domain = predomain-syn + pcpo +
fixes emb :: ′a → udom
fixes prj :: udom → ′a
fixes defl :: ′a itself ⇒ udom defl
assumes ep-pair-emb-prj: ep-pair emb prj
assumes cast-DEFL: cast·(defl TYPE(′a)) = emb oo prj
assumes liftemb-eq: liftemb = u-map·emb
assumes liftprj-eq: liftprj = u-map·prj
assumes liftdefl-eq: liftdefl TYPE(′a) = liftdefl-of ·(defl TYPE(′a))

syntax -DEFL :: type ⇒ logic (‹(1DEFL/(1 ′(- ′)))›)
syntax-consts -DEFL ⇀↽ defl
translations DEFL(′t) ⇀↽ CONST defl TYPE(′t)

instance domain ⊆ predomain
proof

show ep-pair liftemb (liftprj::udom⊥ → ′a⊥)
unfolding liftemb-eq liftprj-eq
by (intro ep-pair-u-map ep-pair-emb-prj)

show cast·LIFTDEFL(′a) = liftemb oo (liftprj::udom⊥ → ′a⊥)
unfolding liftemb-eq liftprj-eq liftdefl-eq
by (simp add: cast-liftdefl-of cast-DEFL u-map-oo)

qed

THEORY “Representable” 132

Constants liftemb and liftprj imply class predomain.
setup ‹

fold Sign.add-const-constraint
[(const-name ‹liftemb›, SOME typ ‹ ′a::predomain u → udom u›),
(const-name ‹liftprj›, SOME typ ‹udom u → ′a::predomain u›),
(const-name ‹liftdefl›, SOME typ ‹ ′a::predomain itself ⇒ udom u defl›)]

›

interpretation predomain: pcpo-ep-pair liftemb liftprj
unfolding pcpo-ep-pair-def by (rule predomain-ep)

interpretation domain: pcpo-ep-pair emb prj
unfolding pcpo-ep-pair-def by (rule ep-pair-emb-prj)

lemmas emb-inverse = domain.e-inverse
lemmas emb-prj-below = domain.e-p-below
lemmas emb-eq-iff = domain.e-eq-iff
lemmas emb-strict = domain.e-strict
lemmas prj-strict = domain.p-strict

23.2 Domains are bifinite
lemma approx-chain-ep-cast:

assumes ep: ep-pair (e:: ′a::pcpo → ′b::bifinite) (p:: ′b → ′a)
assumes cast-t: cast·t = e oo p
shows ∃ (a::nat ⇒ ′a::pcpo → ′a). approx-chain a

proof −
interpret ep-pair e p by fact
obtain Y where Y : ∀ i. Y i v Y (Suc i)
and t: t = (

⊔
i. defl-principal (Y i))

by (rule defl.obtain-principal-chain)
define approx where approx i = (p oo cast·(defl-principal (Y i)) oo e) for i
have approx-chain approx
proof (rule approx-chain.intro)

show chain (λi. approx i)
unfolding approx-def by (simp add: Y)

show (
⊔

i. approx i) = ID
unfolding approx-def
by (simp add: lub-distribs Y t [symmetric] cast-t cfun-eq-iff)

show
∧

i. finite-deflation (approx i)
unfolding approx-def
apply (rule finite-deflation-p-d-e)
apply (rule finite-deflation-cast)
apply (rule defl.compact-principal)
apply (rule below-trans [OF monofun-cfun-fun])
apply (rule is-ub-thelub, simp add: Y)
apply (simp add: lub-distribs Y t [symmetric] cast-t)
done

qed

THEORY “Representable” 133

thus ∃ (a::nat ⇒ ′a → ′a). approx-chain a by − (rule exI)
qed

instance domain ⊆ bifinite
by standard (rule approx-chain-ep-cast [OF ep-pair-emb-prj cast-DEFL])

instance predomain ⊆ profinite
by standard (rule approx-chain-ep-cast [OF predomain-ep cast-liftdefl])

23.3 Universal domain ep-pairs
definition u-emb = udom-emb (λi. u-map·(udom-approx i))
definition u-prj = udom-prj (λi. u-map·(udom-approx i))

definition prod-emb = udom-emb (λi. prod-map·(udom-approx i)·(udom-approx
i))
definition prod-prj = udom-prj (λi. prod-map·(udom-approx i)·(udom-approx i))

definition sprod-emb = udom-emb (λi. sprod-map·(udom-approx i)·(udom-approx
i))
definition sprod-prj = udom-prj (λi. sprod-map·(udom-approx i)·(udom-approx i))

definition ssum-emb = udom-emb (λi. ssum-map·(udom-approx i)·(udom-approx
i))
definition ssum-prj = udom-prj (λi. ssum-map·(udom-approx i)·(udom-approx i))

definition sfun-emb = udom-emb (λi. sfun-map·(udom-approx i)·(udom-approx i))
definition sfun-prj = udom-prj (λi. sfun-map·(udom-approx i)·(udom-approx i))

lemma ep-pair-u: ep-pair u-emb u-prj
unfolding u-emb-def u-prj-def
by (simp add: ep-pair-udom approx-chain-u-map)

lemma ep-pair-prod: ep-pair prod-emb prod-prj
unfolding prod-emb-def prod-prj-def
by (simp add: ep-pair-udom approx-chain-prod-map)

lemma ep-pair-sprod: ep-pair sprod-emb sprod-prj
unfolding sprod-emb-def sprod-prj-def
by (simp add: ep-pair-udom approx-chain-sprod-map)

lemma ep-pair-ssum: ep-pair ssum-emb ssum-prj
unfolding ssum-emb-def ssum-prj-def
by (simp add: ep-pair-udom approx-chain-ssum-map)

lemma ep-pair-sfun: ep-pair sfun-emb sfun-prj
unfolding sfun-emb-def sfun-prj-def
by (simp add: ep-pair-udom approx-chain-sfun-map)

THEORY “Representable” 134

23.4 Type combinators
definition u-defl :: udom defl → udom defl

where u-defl = defl-fun1 u-emb u-prj u-map

definition prod-defl :: udom defl → udom defl → udom defl
where prod-defl = defl-fun2 prod-emb prod-prj prod-map

definition sprod-defl :: udom defl → udom defl → udom defl
where sprod-defl = defl-fun2 sprod-emb sprod-prj sprod-map

definition ssum-defl :: udom defl → udom defl → udom defl
where ssum-defl = defl-fun2 ssum-emb ssum-prj ssum-map

definition sfun-defl :: udom defl → udom defl → udom defl
where sfun-defl = defl-fun2 sfun-emb sfun-prj sfun-map

lemma cast-u-defl:
cast·(u-defl·A) = u-emb oo u-map·(cast·A) oo u-prj

using ep-pair-u finite-deflation-u-map
unfolding u-defl-def by (rule cast-defl-fun1)

lemma cast-prod-defl:
cast·(prod-defl·A·B) =

prod-emb oo prod-map·(cast·A)·(cast·B) oo prod-prj
using ep-pair-prod finite-deflation-prod-map
unfolding prod-defl-def by (rule cast-defl-fun2)

lemma cast-sprod-defl:
cast·(sprod-defl·A·B) =

sprod-emb oo sprod-map·(cast·A)·(cast·B) oo sprod-prj
using ep-pair-sprod finite-deflation-sprod-map
unfolding sprod-defl-def by (rule cast-defl-fun2)

lemma cast-ssum-defl:
cast·(ssum-defl·A·B) =

ssum-emb oo ssum-map·(cast·A)·(cast·B) oo ssum-prj
using ep-pair-ssum finite-deflation-ssum-map
unfolding ssum-defl-def by (rule cast-defl-fun2)

lemma cast-sfun-defl:
cast·(sfun-defl·A·B) =

sfun-emb oo sfun-map·(cast·A)·(cast·B) oo sfun-prj
using ep-pair-sfun finite-deflation-sfun-map
unfolding sfun-defl-def by (rule cast-defl-fun2)

Special deflation combinator for unpointed types.
definition u-liftdefl :: udom u defl → udom defl

where u-liftdefl = defl-fun1 u-emb u-prj ID

THEORY “Representable” 135

lemma cast-u-liftdefl:
cast·(u-liftdefl·A) = u-emb oo cast·A oo u-prj

unfolding u-liftdefl-def by (simp add: cast-defl-fun1 ep-pair-u)

lemma u-liftdefl-liftdefl-of :
u-liftdefl·(liftdefl-of ·A) = u-defl·A

by (rule cast-eq-imp-eq)
(simp add: cast-u-liftdefl cast-liftdefl-of cast-u-defl)

23.5 Class instance proofs
23.5.1 Universal domain
instantiation udom :: domain
begin

definition [simp]:
emb = (ID :: udom → udom)

definition [simp]:
prj = (ID :: udom → udom)

definition
defl (t::udom itself) = (

⊔
i. defl-principal (Abs-fin-defl (udom-approx i)))

definition
(liftemb :: udom u → udom u) = u-map·emb

definition
(liftprj :: udom u → udom u) = u-map·prj

definition
liftdefl (t::udom itself) = liftdefl-of ·DEFL(udom)

instance proof
show ep-pair emb (prj :: udom → udom)

by (simp add: ep-pair .intro)
show cast·DEFL(udom) = emb oo (prj :: udom → udom)

unfolding defl-udom-def
apply (subst contlub-cfun-arg)
apply (rule chainI)
apply (rule defl.principal-mono)
apply (simp add: below-fin-defl-def)
apply (simp add: Abs-fin-defl-inverse finite-deflation-udom-approx)
apply (rule chainE)
apply (rule chain-udom-approx)
apply (subst cast-defl-principal)
apply (simp add: Abs-fin-defl-inverse finite-deflation-udom-approx)
done

qed (fact liftemb-udom-def liftprj-udom-def liftdefl-udom-def)+

THEORY “Representable” 136

end

23.5.2 Lifted cpo
instantiation u :: (predomain) domain
begin

definition
emb = u-emb oo liftemb

definition
prj = liftprj oo u-prj

definition
defl (t:: ′a u itself) = u-liftdefl·LIFTDEFL(′a)

definition
(liftemb :: ′a u u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a u u) = u-map·prj

definition
liftdefl (t:: ′a u itself) = liftdefl-of ·DEFL(′a u)

instance proof
show ep-pair emb (prj :: udom → ′a u)

unfolding emb-u-def prj-u-def
by (intro ep-pair-comp ep-pair-u predomain-ep)

show cast·DEFL(′a u) = emb oo (prj :: udom → ′a u)
unfolding emb-u-def prj-u-def defl-u-def
by (simp add: cast-u-liftdefl cast-liftdefl assoc-oo)

qed (fact liftemb-u-def liftprj-u-def liftdefl-u-def)+

end

lemma DEFL-u: DEFL(′a::predomain u) = u-liftdefl·LIFTDEFL(′a)
by (rule defl-u-def)

23.5.3 Strict function space
instantiation sfun :: (domain, domain) domain
begin

definition
emb = sfun-emb oo sfun-map·prj·emb

definition
prj = sfun-map·emb·prj oo sfun-prj

THEORY “Representable” 137

definition
defl (t::(′a →! ′b) itself) = sfun-defl·DEFL(′a)·DEFL(′b)

definition
(liftemb :: (′a →! ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → (′a →! ′b) u) = u-map·prj

definition
liftdefl (t::(′a →! ′b) itself) = liftdefl-of ·DEFL(′a →! ′b)

instance proof
show ep-pair emb (prj :: udom → ′a →! ′b)

unfolding emb-sfun-def prj-sfun-def
by (intro ep-pair-comp ep-pair-sfun ep-pair-sfun-map ep-pair-emb-prj)

show cast·DEFL(′a →! ′b) = emb oo (prj :: udom → ′a →! ′b)
unfolding emb-sfun-def prj-sfun-def defl-sfun-def cast-sfun-defl
by (simp add: cast-DEFL oo-def sfun-eq-iff sfun-map-map)

qed (fact liftemb-sfun-def liftprj-sfun-def liftdefl-sfun-def)+

end

lemma DEFL-sfun:
DEFL(′a::domain →! ′b::domain) = sfun-defl·DEFL(′a)·DEFL(′b)

by (rule defl-sfun-def)

23.5.4 Continuous function space
instantiation cfun :: (predomain, domain) domain
begin

definition
emb = emb oo encode-cfun

definition
prj = decode-cfun oo prj

definition
defl (t::(′a → ′b) itself) = DEFL(′a u →! ′b)

definition
(liftemb :: (′a → ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → (′a → ′b) u) = u-map·prj

definition

THEORY “Representable” 138

liftdefl (t::(′a → ′b) itself) = liftdefl-of ·DEFL(′a → ′b)

instance proof
have ep-pair encode-cfun decode-cfun

by (rule ep-pair .intro, simp-all)
thus ep-pair emb (prj :: udom → ′a → ′b)

unfolding emb-cfun-def prj-cfun-def
using ep-pair-emb-prj by (rule ep-pair-comp)

show cast·DEFL(′a → ′b) = emb oo (prj :: udom → ′a → ′b)
unfolding emb-cfun-def prj-cfun-def defl-cfun-def
by (simp add: cast-DEFL cfcomp1)

qed (fact liftemb-cfun-def liftprj-cfun-def liftdefl-cfun-def)+

end

lemma DEFL-cfun:
DEFL(′a::predomain → ′b::domain) = DEFL(′a u →! ′b)

by (rule defl-cfun-def)

23.5.5 Strict product
instantiation sprod :: (domain, domain) domain
begin

definition
emb = sprod-emb oo sprod-map·emb·emb

definition
prj = sprod-map·prj·prj oo sprod-prj

definition
defl (t::(′a ⊗ ′b) itself) = sprod-defl·DEFL(′a)·DEFL(′b)

definition
(liftemb :: (′a ⊗ ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → (′a ⊗ ′b) u) = u-map·prj

definition
liftdefl (t::(′a ⊗ ′b) itself) = liftdefl-of ·DEFL(′a ⊗ ′b)

instance proof
show ep-pair emb (prj :: udom → ′a ⊗ ′b)

unfolding emb-sprod-def prj-sprod-def
by (intro ep-pair-comp ep-pair-sprod ep-pair-sprod-map ep-pair-emb-prj)

show cast·DEFL(′a ⊗ ′b) = emb oo (prj :: udom → ′a ⊗ ′b)
unfolding emb-sprod-def prj-sprod-def defl-sprod-def cast-sprod-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff sprod-map-map)

THEORY “Representable” 139

qed (fact liftemb-sprod-def liftprj-sprod-def liftdefl-sprod-def)+

end

lemma DEFL-sprod:
DEFL(′a::domain ⊗ ′b::domain) = sprod-defl·DEFL(′a)·DEFL(′b)

by (rule defl-sprod-def)

23.5.6 Cartesian product
definition prod-liftdefl :: udom u defl → udom u defl → udom u defl

where prod-liftdefl = defl-fun2 (u-map·prod-emb oo decode-prod-u)
(encode-prod-u oo u-map·prod-prj) sprod-map

lemma cast-prod-liftdefl:
cast·(prod-liftdefl·a·b) =
(u-map·prod-emb oo decode-prod-u) oo sprod-map·(cast·a)·(cast·b) oo
(encode-prod-u oo u-map·prod-prj)

unfolding prod-liftdefl-def
apply (rule cast-defl-fun2)
apply (intro ep-pair-comp ep-pair-u-map ep-pair-prod)
apply (simp add: ep-pair .intro)
apply (erule (1) finite-deflation-sprod-map)
done

instantiation prod :: (predomain, predomain) predomain
begin

definition
liftemb = (u-map·prod-emb oo decode-prod-u) oo
(sprod-map·liftemb·liftemb oo encode-prod-u)

definition
liftprj = (decode-prod-u oo sprod-map·liftprj·liftprj) oo
(encode-prod-u oo u-map·prod-prj)

definition
liftdefl (t::(′a × ′b) itself) = prod-liftdefl·LIFTDEFL(′a)·LIFTDEFL(′b)

instance proof
show ep-pair liftemb (liftprj :: udom u → (′a × ′b) u)

unfolding liftemb-prod-def liftprj-prod-def
by (intro ep-pair-comp ep-pair-sprod-map ep-pair-u-map

ep-pair-prod predomain-ep, simp-all add: ep-pair .intro)
show cast·LIFTDEFL(′a × ′b) = liftemb oo (liftprj :: udom u → (′a × ′b) u)

unfolding liftemb-prod-def liftprj-prod-def liftdefl-prod-def
by (simp add: cast-prod-liftdefl cast-liftdefl cfcomp1 sprod-map-map)

qed

THEORY “Representable” 140

end

instantiation prod :: (domain, domain) domain
begin

definition
emb = prod-emb oo prod-map·emb·emb

definition
prj = prod-map·prj·prj oo prod-prj

definition
defl (t::(′a × ′b) itself) = prod-defl·DEFL(′a)·DEFL(′b)

instance proof
show 1 : ep-pair emb (prj :: udom → ′a × ′b)

unfolding emb-prod-def prj-prod-def
by (intro ep-pair-comp ep-pair-prod ep-pair-prod-map ep-pair-emb-prj)

show 2 : cast·DEFL(′a × ′b) = emb oo (prj :: udom → ′a × ′b)
unfolding emb-prod-def prj-prod-def defl-prod-def cast-prod-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff prod-map-map)

show 3 : liftemb = u-map·(emb :: ′a × ′b → udom)
unfolding emb-prod-def liftemb-prod-def liftemb-eq
unfolding encode-prod-u-def decode-prod-u-def
by (rule cfun-eqI , case-tac x, simp, clarsimp)

show 4 : liftprj = u-map·(prj :: udom → ′a × ′b)
unfolding prj-prod-def liftprj-prod-def liftprj-eq
unfolding encode-prod-u-def decode-prod-u-def
apply (rule cfun-eqI , case-tac x, simp)
apply (rename-tac y, case-tac prod-prj·y, simp)
done

show 5 : LIFTDEFL(′a × ′b) = liftdefl-of ·DEFL(′a × ′b)
by (rule cast-eq-imp-eq)
(simp add: cast-liftdefl cast-liftdefl-of cast-DEFL 2 3 4 u-map-oo)

qed

end

lemma DEFL-prod:
DEFL(′a::domain × ′b::domain) = prod-defl·DEFL(′a)·DEFL(′b)

by (rule defl-prod-def)

lemma LIFTDEFL-prod:
LIFTDEFL(′a::predomain × ′b::predomain) =

prod-liftdefl·LIFTDEFL(′a)·LIFTDEFL(′b)
by (rule liftdefl-prod-def)

THEORY “Representable” 141

23.5.7 Unit type
instantiation unit :: domain
begin

definition
emb = (⊥ :: unit → udom)

definition
prj = (⊥ :: udom → unit)

definition
defl (t::unit itself) = ⊥

definition
(liftemb :: unit u → udom u) = u-map·emb

definition
(liftprj :: udom u → unit u) = u-map·prj

definition
liftdefl (t::unit itself) = liftdefl-of ·DEFL(unit)

instance proof
show ep-pair emb (prj :: udom → unit)

unfolding emb-unit-def prj-unit-def
by (simp add: ep-pair .intro)

show cast·DEFL(unit) = emb oo (prj :: udom → unit)
unfolding emb-unit-def prj-unit-def defl-unit-def by simp

qed (fact liftemb-unit-def liftprj-unit-def liftdefl-unit-def)+

end

23.5.8 Discrete cpo
instantiation discr :: (countable) predomain
begin

definition
(liftemb :: ′a discr u → udom u) = strictify·up oo udom-emb discr-approx

definition
(liftprj :: udom u → ′a discr u) = udom-prj discr-approx oo fup·ID

definition
liftdefl (t:: ′a discr itself) =
(
⊔

i. defl-principal (Abs-fin-defl (liftemb oo discr-approx i oo (liftprj::udom u
→ ′a discr u))))

instance proof

THEORY “Representable” 142

show 1 : ep-pair liftemb (liftprj :: udom u → ′a discr u)
unfolding liftemb-discr-def liftprj-discr-def
apply (intro ep-pair-comp ep-pair-udom [OF discr-approx])
apply (rule ep-pair .intro)
apply (simp add: strictify-conv-if)
apply (case-tac y, simp, simp add: strictify-conv-if)
done

show cast·LIFTDEFL(′a discr) = liftemb oo (liftprj :: udom u → ′a discr u)
unfolding liftdefl-discr-def
apply (subst contlub-cfun-arg)
apply (rule chainI)
apply (rule defl.principal-mono)
apply (simp add: below-fin-defl-def)
apply (simp add: Abs-fin-defl-inverse

ep-pair .finite-deflation-e-d-p [OF 1]
approx-chain.finite-deflation-approx [OF discr-approx])

apply (intro monofun-cfun below-refl)
apply (rule chainE)
apply (rule chain-discr-approx)
apply (subst cast-defl-principal)
apply (simp add: Abs-fin-defl-inverse

ep-pair .finite-deflation-e-d-p [OF 1]
approx-chain.finite-deflation-approx [OF discr-approx])

apply (simp add: lub-distribs)
done

qed

end

23.5.9 Strict sum
instantiation ssum :: (domain, domain) domain
begin

definition
emb = ssum-emb oo ssum-map·emb·emb

definition
prj = ssum-map·prj·prj oo ssum-prj

definition
defl (t::(′a ⊕ ′b) itself) = ssum-defl·DEFL(′a)·DEFL(′b)

definition
(liftemb :: (′a ⊕ ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → (′a ⊕ ′b) u) = u-map·prj

THEORY “Representable” 143

definition
liftdefl (t::(′a ⊕ ′b) itself) = liftdefl-of ·DEFL(′a ⊕ ′b)

instance proof
show ep-pair emb (prj :: udom → ′a ⊕ ′b)

unfolding emb-ssum-def prj-ssum-def
by (intro ep-pair-comp ep-pair-ssum ep-pair-ssum-map ep-pair-emb-prj)

show cast·DEFL(′a ⊕ ′b) = emb oo (prj :: udom → ′a ⊕ ′b)
unfolding emb-ssum-def prj-ssum-def defl-ssum-def cast-ssum-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff ssum-map-map)

qed (fact liftemb-ssum-def liftprj-ssum-def liftdefl-ssum-def)+

end

lemma DEFL-ssum:
DEFL(′a::domain ⊕ ′b::domain) = ssum-defl·DEFL(′a)·DEFL(′b)

by (rule defl-ssum-def)

23.5.10 Lifted HOL type
instantiation lift :: (countable) domain
begin

definition
emb = emb oo (Λ x. Rep-lift x)

definition
prj = (Λ y. Abs-lift y) oo prj

definition
defl (t:: ′a lift itself) = DEFL(′a discr u)

definition
(liftemb :: ′a lift u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a lift u) = u-map·prj

definition
liftdefl (t:: ′a lift itself) = liftdefl-of ·DEFL(′a lift)

instance proof
note [simp] = cont-Rep-lift cont-Abs-lift Rep-lift-inverse Abs-lift-inverse
have ep-pair (Λ(x:: ′a lift). Rep-lift x) (Λ y. Abs-lift y)

by (simp add: ep-pair-def)
thus ep-pair emb (prj :: udom → ′a lift)

unfolding emb-lift-def prj-lift-def
using ep-pair-emb-prj by (rule ep-pair-comp)

show cast·DEFL(′a lift) = emb oo (prj :: udom → ′a lift)

THEORY “One” 144

unfolding emb-lift-def prj-lift-def defl-lift-def cast-DEFL
by (simp add: cfcomp1)

qed (fact liftemb-lift-def liftprj-lift-def liftdefl-lift-def)+

end

end

24 The unit domain
theory One

imports Lift
begin

type-synonym one = unit lift

translations
(type) one ↽ (type) unit lift

definition ONE :: one
where ONE ≡ Def ()

Exhaustion and Elimination for type one
lemma Exh-one: t = ⊥ ∨ t = ONE

by (induct t) (simp-all add: ONE-def)

lemma oneE [case-names bottom ONE]: [[p = ⊥ =⇒ Q; p = ONE =⇒ Q]] =⇒ Q
by (induct p) (simp-all add: ONE-def)

lemma one-induct [case-names bottom ONE]: P ⊥ =⇒ P ONE =⇒ P x
by (cases x rule: oneE) simp-all

lemma dist-below-one [simp]: ONE 6v ⊥
by (simp add: ONE-def)

lemma below-ONE [simp]: x v ONE
by (induct x rule: one-induct) simp-all

lemma ONE-below-iff [simp]: ONE v x ←→ x = ONE
by (induct x rule: one-induct) simp-all

lemma ONE-defined [simp]: ONE 6= ⊥
by (simp add: ONE-def)

lemma one-neq-iffs [simp]:
x 6= ONE ←→ x = ⊥
ONE 6= x ←→ x = ⊥
x 6= ⊥ ←→ x = ONE
⊥ 6= x ←→ x = ONE

THEORY “Fixrec” 145

by (induct x rule: one-induct) simp-all

lemma compact-ONE : compact ONE
by (rule compact-chfin)

Case analysis function for type one
definition one-case :: ′a::pcpo → one → ′a

where one-case = (Λ a x. seq·x·a)

translations
case x of XCONST ONE ⇒ t ⇀↽ CONST one-case·t·x
case x of XCONST ONE :: ′a ⇒ t ⇀ CONST one-case·t·x
Λ (XCONST ONE). t ⇀↽ CONST one-case·t

lemma one-case1 [simp]: (case ⊥ of ONE ⇒ t) = ⊥
by (simp add: one-case-def)

lemma one-case2 [simp]: (case ONE of ONE ⇒ t) = t
by (simp add: one-case-def)

lemma one-case3 [simp]: (case x of ONE ⇒ ONE) = x
by (induct x rule: one-induct) simp-all

end

theory Fixrec
imports Cprod Sprod Ssum Up One Tr Cfun
keywords fixrec :: thy-defn
begin

25 Fixed point operator and admissibility
25.1 Iteration
primrec iterate :: nat ⇒ (′a → ′a) → (′a → ′a)

where
iterate 0 = (Λ F x. x)
| iterate (Suc n) = (Λ F x. F ·(iterate n·F ·x))

Derive inductive properties of iterate from primitive recursion
lemma iterate-0 [simp]: iterate 0 ·F ·x = x

by simp

lemma iterate-Suc [simp]: iterate (Suc n)·F ·x = F ·(iterate n·F ·x)
by simp

declare iterate.simps [simp del]

THEORY “Fixrec” 146

lemma iterate-Suc2 : iterate (Suc n)·F ·x = iterate n·F ·(F ·x)
by (induct n) simp-all

lemma iterate-iterate: iterate m·F ·(iterate n·F ·x) = iterate (m + n)·F ·x
by (induct m) simp-all

The sequence of function iterations is a chain.
lemma chain-iterate [simp]: chain (λi. iterate i·F ·⊥)

by (rule chainI , unfold iterate-Suc2 , rule monofun-cfun-arg, rule minimal)

25.2 Least fixed point operator
definition fix :: (′a::pcpo → ′a) → ′a

where fix = (Λ F .
⊔

i. iterate i·F ·⊥)

Binder syntax for fix
abbreviation fix-syn :: (′a::pcpo ⇒ ′a) ⇒ ′a (binder ‹µ › 10)

where fix-syn (λx. f x) ≡ fix·(Λ x. f x)

notation (ASCII)
fix-syn (binder ‹FIX › 10)

Properties of fix

direct connection between fix and iteration
lemma fix-def2 : fix·F = (

⊔
i. iterate i·F ·⊥)

by (simp add: fix-def)

lemma iterate-below-fix: iterate n·f ·⊥ v fix·f
unfolding fix-def2
using chain-iterate by (rule is-ub-thelub)

Kleene’s fixed point theorems for continuous functions in pointed omega
cpo’s
lemma fix-eq: fix·F = F ·(fix·F)

apply (simp add: fix-def2)
apply (subst lub-range-shift [of - 1 , symmetric])
apply (rule chain-iterate)

apply (subst contlub-cfun-arg)
apply (rule chain-iterate)

apply simp
done

lemma fix-least-below: F ·x v x =⇒ fix·F v x
apply (simp add: fix-def2)
apply (rule lub-below)
apply (rule chain-iterate)

apply (induct-tac i)
apply simp

THEORY “Fixrec” 147

apply simp
apply (erule rev-below-trans)
apply (erule monofun-cfun-arg)
done

lemma fix-least: F ·x = x =⇒ fix·F v x
by (rule fix-least-below) simp

lemma fix-eqI :
assumes fixed: F ·x = x

and least:
∧

z. F ·z = z =⇒ x v z
shows fix·F = x
apply (rule below-antisym)
apply (rule fix-least [OF fixed])

apply (rule least [OF fix-eq [symmetric]])
done

lemma fix-eq2 : f ≡ fix·F =⇒ f = F ·f
by (simp add: fix-eq [symmetric])

lemma fix-eq3 : f ≡ fix·F =⇒ f ·x = F ·f ·x
by (erule fix-eq2 [THEN cfun-fun-cong])

lemma fix-eq4 : f = fix·F =⇒ f = F ·f
by (erule ssubst) (rule fix-eq)

lemma fix-eq5 : f = fix·F =⇒ f ·x = F ·f ·x
by (erule fix-eq4 [THEN cfun-fun-cong])

strictness of fix
lemma fix-bottom-iff : fix·F = ⊥ ←→ F ·⊥ = ⊥

apply (rule iffI)
apply (erule subst)
apply (rule fix-eq [symmetric])

apply (erule fix-least [THEN bottomI])
done

lemma fix-strict: F ·⊥ = ⊥ =⇒ fix·F = ⊥
by (simp add: fix-bottom-iff)

lemma fix-defined: F ·⊥ 6= ⊥ =⇒ fix·F 6= ⊥
by (simp add: fix-bottom-iff)

fix applied to identity and constant functions
lemma fix-id: (µ x. x) = ⊥

by (simp add: fix-strict)

lemma fix-const: (µ x. c) = c
by (subst fix-eq) simp

THEORY “Fixrec” 148

25.3 Fixed point induction
lemma fix-ind: adm P =⇒ P ⊥ =⇒ (

∧
x. P x =⇒ P (F ·x)) =⇒ P (fix·F)

unfolding fix-def2
apply (erule admD)
apply (rule chain-iterate)

apply (rule nat-induct, simp-all)
done

lemma cont-fix-ind: cont F =⇒ adm P =⇒ P ⊥ =⇒ (
∧

x. P x =⇒ P (F x)) =⇒
P (fix·(Abs-cfun F))

by (simp add: fix-ind)

lemma def-fix-ind: [[f ≡ fix·F ; adm P; P ⊥;
∧

x. P x =⇒ P (F ·x)]] =⇒ P f
by (simp add: fix-ind)

lemma fix-ind2 :
assumes adm: adm P
assumes 0 : P ⊥ and 1 : P (F ·⊥)
assumes step:

∧
x. [[P x; P (F ·x)]] =⇒ P (F ·(F ·x))

shows P (fix·F)
unfolding fix-def2
apply (rule admD [OF adm chain-iterate])
apply (rule nat-less-induct)
apply (case-tac n)
apply (simp add: 0)

apply (case-tac nat)
apply (simp add: 1)

apply (frule-tac x=nat in spec)
apply (simp add: step)
done

lemma parallel-fix-ind:
assumes adm: adm (λx. P (fst x) (snd x))
assumes base: P ⊥ ⊥
assumes step:

∧
x y. P x y =⇒ P (F ·x) (G·y)

shows P (fix·F) (fix·G)
proof −

from adm have adm ′: adm (case-prod P)
unfolding split-def .

have P (iterate i·F ·⊥) (iterate i·G·⊥) for i
by (induct i) (simp add: base, simp add: step)

then have
∧

i. case-prod P (iterate i·F ·⊥, iterate i·G·⊥)
by simp

then have case-prod P (
⊔

i. (iterate i·F ·⊥, iterate i·G·⊥))
by − (rule admD [OF adm ′], simp, assumption)

then have case-prod P (
⊔

i. iterate i·F ·⊥,
⊔

i. iterate i·G·⊥)
by (simp add: lub-Pair)

then have P (
⊔

i. iterate i·F ·⊥) (
⊔

i. iterate i·G·⊥)
by simp

THEORY “Fixrec” 149

then show P (fix·F) (fix·G)
by (simp add: fix-def2)

qed

lemma cont-parallel-fix-ind:
assumes cont F and cont G
assumes adm (λx. P (fst x) (snd x))
assumes P ⊥ ⊥
assumes

∧
x y. P x y =⇒ P (F x) (G y)

shows P (fix·(Abs-cfun F)) (fix·(Abs-cfun G))
by (rule parallel-fix-ind) (simp-all add: assms)

25.4 Fixed-points on product types

Bekic’s Theorem: Simultaneous fixed points over pairs can be written in
terms of separate fixed points.
lemma fix-cprod:

fixes F :: ′a::pcpo × ′b::pcpo → ′a × ′b
shows

fix·F =
(µ x. fst (F ·(x, µ y. snd (F ·(x, y)))),
µ y. snd (F ·(µ x. fst (F ·(x, µ y. snd (F ·(x, y)))), y)))

(is fix·F = (?x, ?y))
proof (rule fix-eqI)

have ∗: fst (F ·(?x, ?y)) = ?x
by (rule trans [symmetric, OF fix-eq], simp)

have snd (F ·(?x, ?y)) = ?y
by (rule trans [symmetric, OF fix-eq], simp)

with ∗ show F ·(?x, ?y) = (?x, ?y)
by (simp add: prod-eq-iff)

next
fix z
assume F-z: F ·z = z
obtain x y where z: z = (x, y) by (rule prod.exhaust)
from F-z z have F-x: fst (F ·(x, y)) = x by simp
from F-z z have F-y: snd (F ·(x, y)) = y by simp
let ?y1 = µ y. snd (F ·(x, y))
have ?y1 v y

by (rule fix-least) (simp add: F-y)
then have fst (F ·(x, ?y1)) v fst (F ·(x, y))

by (simp add: fst-monofun monofun-cfun)
with F-x have fst (F ·(x, ?y1)) v x

by simp
then have ∗: ?x v x

by (simp add: fix-least-below)
then have snd (F ·(?x, y)) v snd (F ·(x, y))

by (simp add: snd-monofun monofun-cfun)
with F-y have snd (F ·(?x, y)) v y

by simp

THEORY “Fixrec” 150

then have ?y v y
by (simp add: fix-least-below)

with z ∗ show (?x, ?y) v z
by simp

qed

26 Package for defining recursive functions in HOLCF
26.1 Pattern-match monad
pcpodef ′a match = UNIV ::(one ++ ′a u) set
by simp-all

definition
fail :: ′a match where
fail = Abs-match (sinl·ONE)

definition
succeed :: ′a → ′a match where
succeed = (Λ x. Abs-match (sinr ·(up·x)))

lemma matchE [case-names bottom fail succeed, cases type: match]:
[[p = ⊥ =⇒ Q; p = fail =⇒ Q;

∧
x. p = succeed·x =⇒ Q]] =⇒ Q

unfolding fail-def succeed-def
apply (cases p, rename-tac r)
apply (rule-tac p=r in ssumE , simp add: Abs-match-strict)
apply (rule-tac p=x in oneE , simp, simp)
apply (rule-tac p=y in upE , simp, simp add: cont-Abs-match)
done

lemma succeed-defined [simp]: succeed·x 6= ⊥
by (simp add: succeed-def cont-Abs-match Abs-match-bottom-iff)

lemma fail-defined [simp]: fail 6= ⊥
by (simp add: fail-def Abs-match-bottom-iff)

lemma succeed-eq [simp]: (succeed·x = succeed·y) = (x = y)
by (simp add: succeed-def cont-Abs-match Abs-match-inject)

lemma succeed-neq-fail [simp]:
succeed·x 6= fail fail 6= succeed·x

by (simp-all add: succeed-def fail-def cont-Abs-match Abs-match-inject)

26.1.1 Run operator
definition

run :: ′a match → ′a::pcpo where
run = (Λ m. sscase·⊥·(fup·ID)·(Rep-match m))

rewrite rules for run

THEORY “Fixrec” 151

lemma run-strict [simp]: run·⊥ = ⊥
unfolding run-def
by (simp add: cont-Rep-match Rep-match-strict)

lemma run-fail [simp]: run·fail = ⊥
unfolding run-def fail-def
by (simp add: cont-Rep-match Abs-match-inverse)

lemma run-succeed [simp]: run·(succeed·x) = x
unfolding run-def succeed-def
by (simp add: cont-Rep-match cont-Abs-match Abs-match-inverse)

26.1.2 Monad plus operator
definition

mplus :: ′a match → ′a match → ′a match where
mplus = (Λ m1 m2 . sscase·(Λ -. m2)·(Λ -. m1)·(Rep-match m1))

abbreviation
mplus-syn :: [′a match, ′a match] ⇒ ′a match (infixr ‹+++› 65) where
m1 +++ m2 == mplus·m1 ·m2

rewrite rules for mplus
lemma mplus-strict [simp]: ⊥ +++ m = ⊥
unfolding mplus-def
by (simp add: cont-Rep-match Rep-match-strict)

lemma mplus-fail [simp]: fail +++ m = m
unfolding mplus-def fail-def
by (simp add: cont-Rep-match Abs-match-inverse)

lemma mplus-succeed [simp]: succeed·x +++ m = succeed·x
unfolding mplus-def succeed-def
by (simp add: cont-Rep-match cont-Abs-match Abs-match-inverse)

lemma mplus-fail2 [simp]: m +++ fail = m
by (cases m, simp-all)

lemma mplus-assoc: (x +++ y) +++ z = x +++ (y +++ z)
by (cases x, simp-all)

26.2 Match functions for built-in types
definition

match-bottom :: ′a::pcpo → ′c match → ′c match
where

match-bottom = (Λ x k. seq·x·fail)

definition

THEORY “Fixrec” 152

match-Pair :: ′a × ′b → (′a → ′b → ′c match) → ′c match
where

match-Pair = (Λ x k. csplit·k·x)

definition
match-spair :: ′a::pcpo ⊗ ′b::pcpo → (′a → ′b → ′c match) → ′c::pcpo match

where
match-spair = (Λ x k. ssplit·k·x)

definition
match-sinl :: ′a::pcpo ⊕ ′b::pcpo → (′a → ′c::pcpo match) → ′c match

where
match-sinl = (Λ x k. sscase·k·(Λ b. fail)·x)

definition
match-sinr :: ′a::pcpo ⊕ ′b::pcpo → (′b → ′c::pcpo match) → ′c match

where
match-sinr = (Λ x k. sscase·(Λ a. fail)·k·x)

definition
match-up :: ′a u → (′a → ′c::pcpo match) → ′c match

where
match-up = (Λ x k. fup·k·x)

definition
match-ONE :: one → ′c::pcpo match → ′c match

where
match-ONE = (Λ ONE k. k)

definition
match-TT :: tr → ′c::pcpo match → ′c match

where
match-TT = (Λ x k. If x then k else fail)

definition
match-FF :: tr → ′c::pcpo match → ′c match

where
match-FF = (Λ x k. If x then fail else k)

lemma match-bottom-simps [simp]:
match-bottom·x·k = (if x = ⊥ then ⊥ else fail)

by (simp add: match-bottom-def)

lemma match-Pair-simps [simp]:
match-Pair ·(x, y)·k = k·x·y

by (simp-all add: match-Pair-def)

lemma match-spair-simps [simp]:
[[x 6= ⊥; y 6= ⊥]] =⇒ match-spair ·(:x, y:)·k = k·x·y

THEORY “Fixrec” 153

match-spair ·⊥·k = ⊥
by (simp-all add: match-spair-def)

lemma match-sinl-simps [simp]:
x 6= ⊥ =⇒ match-sinl·(sinl·x)·k = k·x
y 6= ⊥ =⇒ match-sinl·(sinr ·y)·k = fail
match-sinl·⊥·k = ⊥

by (simp-all add: match-sinl-def)

lemma match-sinr-simps [simp]:
x 6= ⊥ =⇒ match-sinr ·(sinl·x)·k = fail
y 6= ⊥ =⇒ match-sinr ·(sinr ·y)·k = k·y
match-sinr ·⊥·k = ⊥

by (simp-all add: match-sinr-def)

lemma match-up-simps [simp]:
match-up·(up·x)·k = k·x
match-up·⊥·k = ⊥

by (simp-all add: match-up-def)

lemma match-ONE-simps [simp]:
match-ONE ·ONE ·k = k
match-ONE ·⊥·k = ⊥

by (simp-all add: match-ONE-def)

lemma match-TT-simps [simp]:
match-TT ·TT ·k = k
match-TT ·FF ·k = fail
match-TT ·⊥·k = ⊥

by (simp-all add: match-TT-def)

lemma match-FF-simps [simp]:
match-FF ·FF ·k = k
match-FF ·TT ·k = fail
match-FF ·⊥·k = ⊥

by (simp-all add: match-FF-def)

26.3 Mutual recursion

The following rules are used to prove unfolding theorems from fixed-point
definitions of mutually recursive functions.
lemma Pair-equalI : [[x ≡ fst p; y ≡ snd p]] =⇒ (x, y) ≡ p
by simp

lemma Pair-eqD1 : (x, y) = (x ′, y ′) =⇒ x = x ′

by simp

lemma Pair-eqD2 : (x, y) = (x ′, y ′) =⇒ y = y ′

by simp

THEORY “Domain” 154

lemma def-cont-fix-eq:
[[f ≡ fix·(Abs-cfun F); cont F]] =⇒ f = F f

by (simp, subst fix-eq, simp)

lemma def-cont-fix-ind:
[[f ≡ fix·(Abs-cfun F); cont F ; adm P; P ⊥;

∧
x. P x =⇒ P (F x)]] =⇒ P f

by (simp add: fix-ind)

lemma for proving rewrite rules
lemma ssubst-lhs: [[t = s; P s = Q]] =⇒ P t = Q
by simp

26.4 Initializing the fixrec package
ML-file ‹Tools/holcf-library.ML›
ML-file ‹Tools/fixrec.ML›

method-setup fixrec-simp = ‹
Scan.succeed (SIMPLE-METHOD ′ o Fixrec.fixrec-simp-tac)

› pattern prover for fixrec constants

setup ‹
Fixrec.add-matchers
[(const-name ‹up›, const-name ‹match-up›),
(const-name ‹sinl›, const-name ‹match-sinl›),
(const-name ‹sinr›, const-name ‹match-sinr›),
(const-name ‹spair›, const-name ‹match-spair›),
(const-name ‹Pair›, const-name ‹match-Pair›),
(const-name ‹ONE›, const-name ‹match-ONE›),
(const-name ‹TT ›, const-name ‹match-TT ›),
(const-name ‹FF›, const-name ‹match-FF›),
(const-name ‹bottom›, const-name ‹match-bottom›)]

›

hide-const (open) succeed fail run

end

27 Domain package
theory Domain
imports Representable Map-Functions Fixrec
keywords

lazy unsafe and
domaindef domain :: thy-defn and
domain-isomorphism :: thy-decl

begin

THEORY “Domain” 155

27.1 Continuous isomorphisms

A locale for continuous isomorphisms
locale iso =

fixes abs :: ′a::pcpo → ′b::pcpo
fixes rep :: ′b → ′a
assumes abs-iso [simp]: rep·(abs·x) = x
assumes rep-iso [simp]: abs·(rep·y) = y

begin

lemma swap: iso rep abs
by (rule iso.intro [OF rep-iso abs-iso])

lemma abs-below: (abs·x v abs·y) = (x v y)
proof

assume abs·x v abs·y
then have rep·(abs·x) v rep·(abs·y) by (rule monofun-cfun-arg)
then show x v y by simp

next
assume x v y
then show abs·x v abs·y by (rule monofun-cfun-arg)

qed

lemma rep-below: (rep·x v rep·y) = (x v y)
by (rule iso.abs-below [OF swap])

lemma abs-eq: (abs·x = abs·y) = (x = y)
by (simp add: po-eq-conv abs-below)

lemma rep-eq: (rep·x = rep·y) = (x = y)
by (rule iso.abs-eq [OF swap])

lemma abs-strict: abs·⊥ = ⊥
proof −

have ⊥ v rep·⊥ ..
then have abs·⊥ v abs·(rep·⊥) by (rule monofun-cfun-arg)
then have abs·⊥ v ⊥ by simp
then show ?thesis by (rule bottomI)

qed

lemma rep-strict: rep·⊥ = ⊥
by (rule iso.abs-strict [OF swap])

lemma abs-defin ′: abs·x = ⊥ =⇒ x = ⊥
proof −

have x = rep·(abs·x) by simp
also assume abs·x = ⊥
also note rep-strict
finally show x = ⊥ .

THEORY “Domain” 156

qed

lemma rep-defin ′: rep·z = ⊥ =⇒ z = ⊥
by (rule iso.abs-defin ′ [OF swap])

lemma abs-defined: z 6= ⊥ =⇒ abs·z 6= ⊥
by (erule contrapos-nn, erule abs-defin ′)

lemma rep-defined: z 6= ⊥ =⇒ rep·z 6= ⊥
by (rule iso.abs-defined [OF iso.swap]) (rule iso-axioms)

lemma abs-bottom-iff : (abs·x = ⊥) = (x = ⊥)
by (auto elim: abs-defin ′ intro: abs-strict)

lemma rep-bottom-iff : (rep·x = ⊥) = (x = ⊥)
by (rule iso.abs-bottom-iff [OF iso.swap]) (rule iso-axioms)

lemma casedist-rule: rep·x = ⊥ ∨ P =⇒ x = ⊥ ∨ P
by (simp add: rep-bottom-iff)

lemma compact-abs-rev: compact (abs·x) =⇒ compact x
proof (unfold compact-def)

assume adm (λy. abs·x 6v y)
with cont-Rep-cfun2
have adm (λy. abs·x 6v abs·y) by (rule adm-subst)
then show adm (λy. x 6v y) using abs-below by simp

qed

lemma compact-rep-rev: compact (rep·x) =⇒ compact x
by (rule iso.compact-abs-rev [OF iso.swap]) (rule iso-axioms)

lemma compact-abs: compact x =⇒ compact (abs·x)
by (rule compact-rep-rev) simp

lemma compact-rep: compact x =⇒ compact (rep·x)
by (rule iso.compact-abs [OF iso.swap]) (rule iso-axioms)

lemma iso-swap: (x = abs·y) = (rep·x = y)
proof

assume x = abs·y
then have rep·x = rep·(abs·y) by simp
then show rep·x = y by simp

next
assume rep·x = y
then have abs·(rep·x) = abs·y by simp
then show x = abs·y by simp

qed

end

THEORY “Domain” 157

27.2 Proofs about take functions

This section contains lemmas that are used in a module that supports the
domain isomorphism package; the module contains proofs related to take
functions and the finiteness predicate.
lemma deflation-abs-rep:

fixes abs and rep and d
assumes abs-iso:

∧
x. rep·(abs·x) = x

assumes rep-iso:
∧

y. abs·(rep·y) = y
shows deflation d =⇒ deflation (abs oo d oo rep)

by (rule ep-pair .deflation-e-d-p) (simp add: ep-pair .intro assms)

lemma deflation-chain-min:
assumes chain: chain d
assumes defl:

∧
n. deflation (d n)

shows d m·(d n·x) = d (min m n)·x
proof (rule linorder-le-cases)

assume m ≤ n
with chain have d m v d n by (rule chain-mono)
then have d m·(d n·x) = d m·x

by (rule deflation-below-comp1 [OF defl defl])
moreover from ‹m ≤ n› have min m n = m by simp
ultimately show ?thesis by simp

next
assume n ≤ m
with chain have d n v d m by (rule chain-mono)
then have d m·(d n·x) = d n·x

by (rule deflation-below-comp2 [OF defl defl])
moreover from ‹n ≤ m› have min m n = n by simp
ultimately show ?thesis by simp

qed

lemma lub-ID-take-lemma:
assumes chain t and (

⊔
n. t n) = ID

assumes
∧

n. t n·x = t n·y shows x = y
proof −

have (
⊔

n. t n·x) = (
⊔

n. t n·y)
using assms(3) by simp

then have (
⊔

n. t n)·x = (
⊔

n. t n)·y
using assms(1) by (simp add: lub-distribs)

then show x = y
using assms(2) by simp

qed

lemma lub-ID-reach:
assumes chain t and (

⊔
n. t n) = ID

shows (
⊔

n. t n·x) = x
using assms by (simp add: lub-distribs)

THEORY “Domain” 158

lemma lub-ID-take-induct:
assumes chain t and (

⊔
n. t n) = ID

assumes adm P and
∧

n. P (t n·x) shows P x
proof −

from ‹chain t› have chain (λn. t n·x) by simp
from ‹adm P› this ‹

∧
n. P (t n·x)› have P (

⊔
n. t n·x) by (rule admD)

with ‹chain t› ‹(
⊔

n. t n) = ID› show P x by (simp add: lub-distribs)
qed

27.3 Finiteness

Let a “decisive” function be a deflation that maps every input to either itself
or bottom. Then if a domain’s take functions are all decisive, then all values
in the domain are finite.
definition

decisive :: (′a::pcpo → ′a) ⇒ bool
where

decisive d ←→ (∀ x. d·x = x ∨ d·x = ⊥)

lemma decisiveI : (
∧

x. d·x = x ∨ d·x = ⊥) =⇒ decisive d
unfolding decisive-def by simp

lemma decisive-cases:
assumes decisive d obtains d·x = x | d·x = ⊥

using assms unfolding decisive-def by auto

lemma decisive-bottom: decisive ⊥
unfolding decisive-def by simp

lemma decisive-ID: decisive ID
unfolding decisive-def by simp

lemma decisive-ssum-map:
assumes f : decisive f
assumes g: decisive g
shows decisive (ssum-map·f ·g)
apply (rule decisiveI)
subgoal for s

apply (cases s, simp-all)
apply (rule-tac x=x in decisive-cases [OF f], simp-all)

apply (rule-tac x=y in decisive-cases [OF g], simp-all)
done

done

lemma decisive-sprod-map:
assumes f : decisive f
assumes g: decisive g
shows decisive (sprod-map·f ·g)
apply (rule decisiveI)

THEORY “Domain” 159

subgoal for s
apply (cases s, simp)
subgoal for x y

apply (rule decisive-cases [OF f , where x = x], simp-all)
apply (rule decisive-cases [OF g, where x = y], simp-all)
done

done
done

lemma decisive-abs-rep:
fixes abs rep
assumes iso: iso abs rep
assumes d: decisive d
shows decisive (abs oo d oo rep)
apply (rule decisiveI)
subgoal for s

apply (rule decisive-cases [OF d, where x=rep·s])
apply (simp add: iso.rep-iso [OF iso])

apply (simp add: iso.abs-strict [OF iso])
done

done

lemma lub-ID-finite:
assumes chain: chain d
assumes lub: (

⊔
n. d n) = ID

assumes decisive:
∧

n. decisive (d n)
shows ∃n. d n·x = x

proof −
have 1 : chain (λn. d n·x) using chain by simp
have 2 : (

⊔
n. d n·x) = x using chain lub by (rule lub-ID-reach)

have ∀n. d n·x = x ∨ d n·x = ⊥
using decisive unfolding decisive-def by simp

hence range (λn. d n·x) ⊆ {x, ⊥}
by auto

hence finite (range (λn. d n·x))
by (rule finite-subset, simp)

with 1 have finite-chain (λn. d n·x)
by (rule finite-range-imp-finch)

then have ∃n. (
⊔

n. d n·x) = d n·x
unfolding finite-chain-def by (auto simp add: maxinch-is-thelub)

with 2 show ∃n. d n·x = x by (auto elim: sym)
qed

lemma lub-ID-finite-take-induct:
assumes chain d and (

⊔
n. d n) = ID and

∧
n. decisive (d n)

shows (
∧

n. P (d n·x)) =⇒ P x
using lub-ID-finite [OF assms] by metis

THEORY “Domain” 160

27.4 Proofs about constructor functions

Lemmas for proving nchotomy rule:
lemma ex-one-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) = P ONE

by simp

lemma ex-up-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) = (∃ x. P (up·x))

by (safe, case-tac x, auto)

lemma ex-sprod-bottom-iff :
(∃ y. P y ∧ y 6= ⊥) =
(∃ x y. (P (:x, y:) ∧ x 6= ⊥) ∧ y 6= ⊥)

by (safe, case-tac y, auto)

lemma ex-sprod-up-bottom-iff :
(∃ y. P y ∧ y 6= ⊥) =
(∃ x y. P (:up·x, y:) ∧ y 6= ⊥)

by (safe, case-tac y, simp, case-tac x, auto)

lemma ex-ssum-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) =
((∃ x. P (sinl·x) ∧ x 6= ⊥) ∨
(∃ x. P (sinr ·x) ∧ x 6= ⊥))

by (safe, case-tac x, auto)

lemma exh-start: p = ⊥ ∨ (∃ x. p = x ∧ x 6= ⊥)
by auto

lemmas ex-bottom-iffs =
ex-ssum-bottom-iff
ex-sprod-up-bottom-iff
ex-sprod-bottom-iff
ex-up-bottom-iff
ex-one-bottom-iff

Rules for turning nchotomy into exhaust:
lemma exh-casedist0 : [[R; R =⇒ P]] =⇒ P

by auto

lemma exh-casedist1 : ((P ∨ Q =⇒ R) =⇒ S) ≡ ([[P =⇒ R; Q =⇒ R]] =⇒ S)
by rule auto

lemma exh-casedist2 : (∃ x. P x =⇒ Q) ≡ (
∧

x. P x =⇒ Q)
by rule auto

lemma exh-casedist3 : (P ∧ Q =⇒ R) ≡ (P =⇒ Q =⇒ R)
by rule auto

THEORY “Domain” 161

lemmas exh-casedists = exh-casedist1 exh-casedist2 exh-casedist3

Rules for proving constructor properties
lemmas con-strict-rules =

sinl-strict sinr-strict spair-strict1 spair-strict2

lemmas con-bottom-iff-rules =
sinl-bottom-iff sinr-bottom-iff spair-bottom-iff up-defined ONE-defined

lemmas con-below-iff-rules =
sinl-below sinr-below sinl-below-sinr sinr-below-sinl con-bottom-iff-rules

lemmas con-eq-iff-rules =
sinl-eq sinr-eq sinl-eq-sinr sinr-eq-sinl con-bottom-iff-rules

lemmas sel-strict-rules =
cfcomp2 sscase1 sfst-strict ssnd-strict fup1

lemma sel-app-extra-rules:
sscase·ID·⊥·(sinr ·x) = ⊥
sscase·ID·⊥·(sinl·x) = x
sscase·⊥·ID·(sinl·x) = ⊥
sscase·⊥·ID·(sinr ·x) = x
fup·ID·(up·x) = x

by (cases x = ⊥, simp, simp)+

lemmas sel-app-rules =
sel-strict-rules sel-app-extra-rules
ssnd-spair sfst-spair up-defined spair-defined

lemmas sel-bottom-iff-rules =
cfcomp2 sfst-bottom-iff ssnd-bottom-iff

lemmas take-con-rules =
ssum-map-sinl ′ ssum-map-sinr ′ sprod-map-spair ′ u-map-up
deflation-strict deflation-ID ID1 cfcomp2

27.5 ML setup
named-theorems domain-deflation theorems like deflation a ==> deflation (foo-map$a)

and domain-map-ID theorems like foo-map$ID = ID

ML-file ‹Tools/Domain/domain-take-proofs.ML›
ML-file ‹Tools/cont-consts.ML›
ML-file ‹Tools/cont-proc.ML›
simproc-setup cont (cont f) = ‹K ContProc.cont-proc›

ML-file ‹Tools/Domain/domain-constructors.ML›

THEORY “Domain” 162

ML-file ‹Tools/Domain/domain-induction.ML›

27.6 Representations of types
lemma emb-prj: emb·((prj·x):: ′a::domain) = cast·DEFL(′a)·x
by (simp add: cast-DEFL)

lemma emb-prj-emb:
fixes x :: ′a::domain
assumes DEFL(′a) v DEFL(′b)
shows emb·(prj·(emb·x) :: ′b::domain) = emb·x

unfolding emb-prj
apply (rule cast.belowD)
apply (rule monofun-cfun-arg [OF assms])
apply (simp add: cast-DEFL)
done

lemma prj-emb-prj:
assumes DEFL(′a::domain) v DEFL(′b::domain)
shows prj·(emb·(prj·x :: ′b)) = (prj·x :: ′a)

apply (rule emb-eq-iff [THEN iffD1])
apply (simp only: emb-prj)
apply (rule deflation-below-comp1)

apply (rule deflation-cast)
apply (rule deflation-cast)

apply (rule monofun-cfun-arg [OF assms])
done

Isomorphism lemmas used internally by the domain package:
lemma domain-abs-iso:

fixes abs and rep
assumes DEFL: DEFL(′b::domain) = DEFL(′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows rep·(abs·x) = x

unfolding abs-def rep-def
by (simp add: emb-prj-emb DEFL)

lemma domain-rep-iso:
fixes abs and rep
assumes DEFL: DEFL(′b::domain) = DEFL(′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows abs·(rep·x) = x

unfolding abs-def rep-def
by (simp add: emb-prj-emb DEFL)

27.7 Deflations as sets
definition defl-set :: ′a::bifinite defl ⇒ ′a set

THEORY “Domain” 163

where defl-set A = {x. cast·A·x = x}

lemma adm-defl-set: adm (λx. x ∈ defl-set A)
unfolding defl-set-def by simp

lemma defl-set-bottom: ⊥ ∈ defl-set A
unfolding defl-set-def by simp

lemma defl-set-cast [simp]: cast·A·x ∈ defl-set A
unfolding defl-set-def by simp

lemma defl-set-subset-iff : defl-set A ⊆ defl-set B ←→ A v B
apply (simp add: defl-set-def subset-eq cast-below-cast [symmetric])
apply (auto simp add: cast.belowI cast.belowD)
done

27.8 Proving a subtype is representable

Temporarily relax type constraints.
setup ‹

fold Sign.add-const-constraint
[(const-name ‹defl›, SOME typ ‹ ′a::pcpo itself ⇒ udom defl›)
, (const-name ‹emb›, SOME typ ‹ ′a::pcpo → udom›)
, (const-name ‹prj›, SOME typ ‹udom → ′a::pcpo›)
, (const-name ‹liftdefl›, SOME typ ‹ ′a::pcpo itself ⇒ udom u defl›)
, (const-name ‹liftemb›, SOME typ ‹ ′a::pcpo u → udom u›)
, (const-name ‹liftprj›, SOME typ ‹udom u → ′a::pcpo u›)]

›

lemma typedef-domain-class:
fixes Rep :: ′a::pcpo ⇒ udom
fixes Abs :: udom ⇒ ′a::pcpo
fixes t :: udom defl
assumes type: type-definition Rep Abs (defl-set t)
assumes below: (v) ≡ λx y. Rep x v Rep y
assumes emb: emb ≡ (Λ x. Rep x)
assumes prj: prj ≡ (Λ x. Abs (cast·t·x))
assumes defl: defl ≡ (λ a:: ′a itself . t)
assumes liftemb: (liftemb :: ′a u → udom u) ≡ u-map·emb
assumes liftprj: (liftprj :: udom u → ′a u) ≡ u-map·prj
assumes liftdefl: (liftdefl :: ′a itself ⇒ -) ≡ (λt. liftdefl-of ·DEFL(′a))
shows OFCLASS(′a, domain-class)

proof
have emb-beta:

∧
x. emb·x = Rep x

unfolding emb
apply (rule beta-cfun)
apply (rule typedef-cont-Rep [OF type below adm-defl-set cont-id])
done

have prj-beta:
∧

y. prj·y = Abs (cast·t·y)

THEORY “Domain” 164

unfolding prj
apply (rule beta-cfun)
apply (rule typedef-cont-Abs [OF type below adm-defl-set])
apply simp-all
done

have prj-emb:
∧

x:: ′a. prj·(emb·x) = x
using type-definition.Rep [OF type]
unfolding prj-beta emb-beta defl-set-def
by (simp add: type-definition.Rep-inverse [OF type])

have emb-prj:
∧

y. emb·(prj·y :: ′a) = cast·t·y
unfolding prj-beta emb-beta
by (simp add: type-definition.Abs-inverse [OF type])

show ep-pair (emb :: ′a → udom) prj
apply standard
apply (simp add: prj-emb)
apply (simp add: emb-prj cast.below)
done

show cast·DEFL(′a) = emb oo (prj :: udom → ′a)
by (rule cfun-eqI , simp add: defl emb-prj)

qed (simp-all only: liftemb liftprj liftdefl)

lemma typedef-DEFL:
assumes defl ≡ (λa:: ′a::pcpo itself . t)
shows DEFL(′a::pcpo) = t

unfolding assms ..

Restore original typing constraints.
setup ‹

fold Sign.add-const-constraint
[(const-name ‹defl›, SOME typ ‹ ′a::domain itself ⇒ udom defl›),
(const-name ‹emb›, SOME typ ‹ ′a::domain → udom›),
(const-name ‹prj›, SOME typ ‹udom → ′a::domain›),
(const-name ‹liftdefl›, SOME typ ‹ ′a::predomain itself ⇒ udom u defl›),
(const-name ‹liftemb›, SOME typ ‹ ′a::predomain u → udom u›),
(const-name ‹liftprj›, SOME typ ‹udom u → ′a::predomain u›)]

›

ML-file ‹Tools/domaindef .ML›

27.9 Isomorphic deflations
definition isodefl :: (′a::domain → ′a) ⇒ udom defl ⇒ bool

where isodefl d t ←→ cast·t = emb oo d oo prj

definition isodefl ′ :: (′a::predomain → ′a) ⇒ udom u defl ⇒ bool
where isodefl ′ d t ←→ cast·t = liftemb oo u-map·d oo liftprj

lemma isodeflI : (
∧

x. cast·t·x = emb·(d·(prj·x))) =⇒ isodefl d t
unfolding isodefl-def by (simp add: cfun-eqI)

THEORY “Domain” 165

lemma cast-isodefl: isodefl d t =⇒ cast·t = (Λ x. emb·(d·(prj·x)))
unfolding isodefl-def by (simp add: cfun-eqI)

lemma isodefl-strict: isodefl d t =⇒ d·⊥ = ⊥
unfolding isodefl-def
by (drule cfun-fun-cong [where x=⊥], simp)

lemma isodefl-imp-deflation:
fixes d :: ′a::domain → ′a
assumes isodefl d t shows deflation d

proof
note assms [unfolded isodefl-def , simp]
fix x :: ′a
show d·(d·x) = d·x

using cast.idem [of t emb·x] by simp
show d·x v x

using cast.below [of t emb·x] by simp
qed

lemma isodefl-ID-DEFL: isodefl (ID :: ′a → ′a) DEFL(′a::domain)
unfolding isodefl-def by (simp add: cast-DEFL)

lemma isodefl-LIFTDEFL:
isodefl ′ (ID :: ′a → ′a) LIFTDEFL(′a::predomain)

unfolding isodefl ′-def by (simp add: cast-liftdefl u-map-ID)

lemma isodefl-DEFL-imp-ID: isodefl (d :: ′a → ′a) DEFL(′a::domain) =⇒ d =
ID
unfolding isodefl-def
apply (simp add: cast-DEFL)
apply (simp add: cfun-eq-iff)
apply (rule allI)
apply (drule-tac x=emb·x in spec)
apply simp
done

lemma isodefl-bottom: isodefl ⊥ ⊥
unfolding isodefl-def by (simp add: cfun-eq-iff)

lemma adm-isodefl:
cont f =⇒ cont g =⇒ adm (λx. isodefl (f x) (g x))

unfolding isodefl-def by simp

lemma isodefl-lub:
assumes chain d and chain t
assumes

∧
i. isodefl (d i) (t i)

shows isodefl (
⊔

i. d i) (
⊔

i. t i)
using assms unfolding isodefl-def

THEORY “Domain” 166

by (simp add: contlub-cfun-arg contlub-cfun-fun)

lemma isodefl-fix:
assumes

∧
d t. isodefl d t =⇒ isodefl (f ·d) (g·t)

shows isodefl (fix·f) (fix·g)
unfolding fix-def2
apply (rule isodefl-lub, simp, simp)
apply (induct-tac i)
apply (simp add: isodefl-bottom)
apply (simp add: assms)
done

lemma isodefl-abs-rep:
fixes abs and rep and d
assumes DEFL: DEFL(′b::domain) = DEFL(′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows isodefl d t =⇒ isodefl (abs oo d oo rep) t

unfolding isodefl-def
by (simp add: cfun-eq-iff assms prj-emb-prj emb-prj-emb)

lemma isodefl ′-liftdefl-of : isodefl d t =⇒ isodefl ′ d (liftdefl-of ·t)
unfolding isodefl-def isodefl ′-def
by (simp add: cast-liftdefl-of u-map-oo liftemb-eq liftprj-eq)

lemma isodefl-sfun:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (sfun-map·d1 ·d2) (sfun-defl·t1 ·t2)
apply (rule isodeflI)
apply (simp add: cast-sfun-defl cast-isodefl)
apply (simp add: emb-sfun-def prj-sfun-def)
apply (simp add: sfun-map-map isodefl-strict)
done

lemma isodefl-ssum:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (ssum-map·d1 ·d2) (ssum-defl·t1 ·t2)
apply (rule isodeflI)
apply (simp add: cast-ssum-defl cast-isodefl)
apply (simp add: emb-ssum-def prj-ssum-def)
apply (simp add: ssum-map-map isodefl-strict)
done

lemma isodefl-sprod:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (sprod-map·d1 ·d2) (sprod-defl·t1 ·t2)
apply (rule isodeflI)
apply (simp add: cast-sprod-defl cast-isodefl)
apply (simp add: emb-sprod-def prj-sprod-def)

THEORY “Domain” 167

apply (simp add: sprod-map-map isodefl-strict)
done

lemma isodefl-prod:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (prod-map·d1 ·d2) (prod-defl·t1 ·t2)
apply (rule isodeflI)
apply (simp add: cast-prod-defl cast-isodefl)
apply (simp add: emb-prod-def prj-prod-def)
apply (simp add: prod-map-map cfcomp1)
done

lemma isodefl-u:
isodefl d t =⇒ isodefl (u-map·d) (u-defl·t)

apply (rule isodeflI)
apply (simp add: cast-u-defl cast-isodefl)
apply (simp add: emb-u-def prj-u-def liftemb-eq liftprj-eq u-map-map)
done

lemma isodefl-u-liftdefl:
isodefl ′ d t =⇒ isodefl (u-map·d) (u-liftdefl·t)

apply (rule isodeflI)
apply (simp add: cast-u-liftdefl isodefl ′-def)
apply (simp add: emb-u-def prj-u-def liftemb-eq liftprj-eq)
done

lemma encode-prod-u-map:
encode-prod-u·(u-map·(prod-map·f ·g)·(decode-prod-u·x))
= sprod-map·(u-map·f)·(u-map·g)·x

unfolding encode-prod-u-def decode-prod-u-def
apply (case-tac x, simp, rename-tac a b)
apply (case-tac a, simp, case-tac b, simp, simp)
done

lemma isodefl-prod-u:
assumes isodefl ′ d1 t1 and isodefl ′ d2 t2
shows isodefl ′ (prod-map·d1 ·d2) (prod-liftdefl·t1 ·t2)

using assms unfolding isodefl ′-def
unfolding liftemb-prod-def liftprj-prod-def
by (simp add: cast-prod-liftdefl cfcomp1 encode-prod-u-map sprod-map-map)

lemma encode-cfun-map:
encode-cfun·(cfun-map·f ·g·(decode-cfun·x))
= sfun-map·(u-map·f)·g·x

unfolding encode-cfun-def decode-cfun-def
apply (simp add: sfun-eq-iff cfun-map-def sfun-map-def)
apply (rule cfun-eqI , rename-tac y, case-tac y, simp-all)
done

THEORY “Compact-Basis” 168

lemma isodefl-cfun:
assumes isodefl (u-map·d1) t1 and isodefl d2 t2
shows isodefl (cfun-map·d1 ·d2) (sfun-defl·t1 ·t2)

using isodefl-sfun [OF assms] unfolding isodefl-def
by (simp add: emb-cfun-def prj-cfun-def cfcomp1 encode-cfun-map)

27.10 Setting up the domain package
named-theorems domain-defl-simps theorems like DEFL(′a t) = t-defl$DEFL(′a)

and domain-isodefl theorems like isodefl d t ==> isodefl (foo-map$d) (foo-defl$t)

ML-file ‹Tools/Domain/domain-isomorphism.ML›
ML-file ‹Tools/Domain/domain-axioms.ML›
ML-file ‹Tools/Domain/domain.ML›

lemmas [domain-defl-simps] =
DEFL-cfun DEFL-sfun DEFL-ssum DEFL-sprod DEFL-prod DEFL-u
liftdefl-eq LIFTDEFL-prod u-liftdefl-liftdefl-of

lemmas [domain-map-ID] =
cfun-map-ID sfun-map-ID ssum-map-ID sprod-map-ID prod-map-ID u-map-ID

lemmas [domain-isodefl] =
isodefl-u isodefl-sfun isodefl-ssum isodefl-sprod
isodefl-cfun isodefl-prod isodefl-prod-u isodefl ′-liftdefl-of
isodefl-u-liftdefl

lemmas [domain-deflation] =
deflation-cfun-map deflation-sfun-map deflation-ssum-map
deflation-sprod-map deflation-prod-map deflation-u-map

setup ‹
fold Domain-Take-Proofs.add-rec-type
[(type-name ‹cfun›, [true, true]),
(type-name ‹sfun›, [true, true]),
(type-name ‹ssum›, [true, true]),
(type-name ‹sprod›, [true, true]),
(type-name ‹prod›, [true, true]),
(type-name ‹u›, [true])]

›

end

28 A compact basis for powerdomains
theory Compact-Basis
imports Universal
begin

THEORY “Compact-Basis” 169

28.1 A compact basis for powerdomains
definition pd-basis = {S :: ′a::bifinite compact-basis set. finite S ∧ S 6= {}}

typedef ′a::bifinite pd-basis = pd-basis :: ′a compact-basis set set
proof

show {a} ∈ ?pd-basis for a
by (simp add: pd-basis-def)

qed

lemma finite-Rep-pd-basis [simp]: finite (Rep-pd-basis u)
using Rep-pd-basis [of u, unfolded pd-basis-def] by simp

lemma Rep-pd-basis-nonempty [simp]: Rep-pd-basis u 6= {}
using Rep-pd-basis [of u, unfolded pd-basis-def] by simp

The powerdomain basis type is countable.
lemma pd-basis-countable: ∃ f :: ′a::bifinite pd-basis ⇒ nat. inj f (is Ex ?P)
proof −

obtain g :: ′a compact-basis ⇒ nat where inj g
using compact-basis.countable ..

hence image-g-eq: g ‘ A = g ‘ B ←→ A = B for A B
by (rule inj-image-eq-iff)

have inj (λt. set-encode (g ‘ Rep-pd-basis t))
by (simp add: inj-on-def set-encode-eq image-g-eq Rep-pd-basis-inject)

thus ?thesis by (rule exI [of ?P])
qed

28.2 Unit and plus constructors
definition

PDUnit :: ′a::bifinite compact-basis ⇒ ′a pd-basis where
PDUnit = (λx. Abs-pd-basis {x})

definition
PDPlus :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ ′a pd-basis where
PDPlus t u = Abs-pd-basis (Rep-pd-basis t ∪ Rep-pd-basis u)

lemma Rep-PDUnit:
Rep-pd-basis (PDUnit x) = {x}

unfolding PDUnit-def by (rule Abs-pd-basis-inverse) (simp add: pd-basis-def)

lemma Rep-PDPlus:
Rep-pd-basis (PDPlus u v) = Rep-pd-basis u ∪ Rep-pd-basis v

unfolding PDPlus-def by (rule Abs-pd-basis-inverse) (simp add: pd-basis-def)

lemma PDUnit-inject [simp]: (PDUnit a = PDUnit b) = (a = b)
unfolding Rep-pd-basis-inject [symmetric] Rep-PDUnit by simp

lemma PDPlus-assoc: PDPlus (PDPlus t u) v = PDPlus t (PDPlus u v)

THEORY “Compact-Basis” 170

unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-assoc)

lemma PDPlus-commute: PDPlus t u = PDPlus u t
unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-commute)

lemma PDPlus-absorb: PDPlus t t = t
unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-absorb)

lemma pd-basis-induct1 [case-names PDUnit PDPlus]:
assumes PDUnit:

∧
a. P (PDUnit a)

assumes PDPlus:
∧

a t. P t =⇒ P (PDPlus (PDUnit a) t)
shows P x

proof (induct x)
case (Abs-pd-basis y)
then have finite y and y 6= {} by (simp-all add: pd-basis-def)
then show ?case
proof (induct rule: finite-ne-induct)

case (singleton x)
show ?case by (rule PDUnit [unfolded PDUnit-def])

next
case (insert x F)

from insert(4) have P (PDPlus (PDUnit x) (Abs-pd-basis F)) by (rule PDPlus)
with insert(1 ,2) show ?case
by (simp add: PDUnit-def PDPlus-def Abs-pd-basis-inverse [unfolded pd-basis-def])

qed
qed

lemma pd-basis-induct [case-names PDUnit PDPlus]:
assumes PDUnit:

∧
a. P (PDUnit a)

assumes PDPlus:
∧

t u. [[P t; P u]] =⇒ P (PDPlus t u)
shows P x
by (induct x rule: pd-basis-induct1) (fact PDUnit, fact PDPlus [OF PDUnit])

28.3 Fold operator
definition

fold-pd ::
(′a::bifinite compact-basis ⇒ ′b::type) ⇒ (′b ⇒ ′b ⇒ ′b) ⇒ ′a pd-basis ⇒ ′b

where fold-pd g f t = semilattice-set.F f (g ‘ Rep-pd-basis t)

lemma fold-pd-PDUnit:
assumes semilattice f
shows fold-pd g f (PDUnit x) = g x

proof −
from assms interpret semilattice-set f by (rule semilattice-set.intro)
show ?thesis by (simp add: fold-pd-def Rep-PDUnit)

qed

lemma fold-pd-PDPlus:

THEORY “UpperPD” 171

assumes semilattice f
shows fold-pd g f (PDPlus t u) = f (fold-pd g f t) (fold-pd g f u)

proof −
from assms interpret semilattice-set f by (rule semilattice-set.intro)
show ?thesis by (simp add: image-Un fold-pd-def Rep-PDPlus union)

qed

end

29 Upper powerdomain
theory UpperPD
imports Compact-Basis
begin

29.1 Basis preorder
definition

upper-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤]› 50) where
upper-le = (λu v. ∀ y∈Rep-pd-basis v. ∃ x∈Rep-pd-basis u. x v y)

lemma upper-le-refl [simp]: t ≤] t
unfolding upper-le-def by fast

lemma upper-le-trans: [[t ≤] u; u ≤] v]] =⇒ t ≤] v
unfolding upper-le-def
apply (rule ballI)
apply (drule (1) bspec, erule bexE)
apply (drule (1) bspec, erule bexE)
apply (erule rev-bexI)
apply (erule (1) below-trans)
done

interpretation upper-le: preorder upper-le
by (rule preorder .intro, rule upper-le-refl, rule upper-le-trans)

lemma upper-le-minimal [simp]: PDUnit compact-bot ≤] t
unfolding upper-le-def Rep-PDUnit by simp

lemma PDUnit-upper-mono: x v y =⇒ PDUnit x ≤] PDUnit y
unfolding upper-le-def Rep-PDUnit by simp

lemma PDPlus-upper-mono: [[s ≤] t; u ≤] v]] =⇒ PDPlus s u ≤] PDPlus t v
unfolding upper-le-def Rep-PDPlus by fast

lemma PDPlus-upper-le: PDPlus t u ≤] t
unfolding upper-le-def Rep-PDPlus by fast

lemma upper-le-PDUnit-PDUnit-iff [simp]:

THEORY “UpperPD” 172

(PDUnit a ≤] PDUnit b) = (a v b)
unfolding upper-le-def Rep-PDUnit by fast

lemma upper-le-PDPlus-PDUnit-iff :
(PDPlus t u ≤] PDUnit a) = (t ≤] PDUnit a ∨ u ≤] PDUnit a)

unfolding upper-le-def Rep-PDPlus Rep-PDUnit by fast

lemma upper-le-PDPlus-iff : (t ≤] PDPlus u v) = (t ≤] u ∧ t ≤] v)
unfolding upper-le-def Rep-PDPlus by fast

lemma upper-le-induct [induct set: upper-le]:
assumes le: t ≤] u
assumes 1 :

∧
a b. a v b =⇒ P (PDUnit a) (PDUnit b)

assumes 2 :
∧

t u a. P t (PDUnit a) =⇒ P (PDPlus t u) (PDUnit a)
assumes 3 :

∧
t u v. [[P t u; P t v]] =⇒ P t (PDPlus u v)

shows P t u
using le

proof (induct u arbitrary: t rule: pd-basis-induct)
case (PDUnit a)
then show ?case
proof (induct t rule: pd-basis-induct)

case PDUnit
then show ?case by (simp add: 1)

next
case (PDPlus t u)
from PDPlus(3) consider (t) t ≤] PDUnit a | (u) u ≤] PDUnit a

by (auto simp: upper-le-PDPlus-PDUnit-iff)
then show ?case
proof cases

case t
then have P t (PDUnit a) by (rule PDPlus(1))
then show ?thesis by (rule 2)

next
case u
then have P u (PDUnit a) by (rule PDPlus(2))
then have P (PDPlus u t) (PDUnit a) by (rule 2)
then show ?thesis by (simp only: PDPlus-commute)

qed
qed

next
case (PDPlus t t ′ u)
then show ?case by (simp add: upper-le-PDPlus-iff 3)

qed

29.2 Type definition
typedef ′a::bifinite upper-pd (‹(‹notation=‹postfix upper-pd›› ′(- ′)])›) =
{S :: ′a pd-basis set. upper-le.ideal S}

by (rule upper-le.ex-ideal)

THEORY “UpperPD” 173

instantiation upper-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-upper-pd x ⊆ Rep-upper-pd y

instance ..
end

instance upper-pd :: (bifinite) po
using type-definition-upper-pd below-upper-pd-def
by (rule upper-le.typedef-ideal-po)

instance upper-pd :: (bifinite) cpo
using type-definition-upper-pd below-upper-pd-def
by (rule upper-le.typedef-ideal-cpo)

definition
upper-principal :: ′a::bifinite pd-basis ⇒ ′a upper-pd where
upper-principal t = Abs-upper-pd {u. u ≤] t}

interpretation upper-pd:
ideal-completion upper-le upper-principal Rep-upper-pd

using type-definition-upper-pd below-upper-pd-def
using upper-principal-def pd-basis-countable
by (rule upper-le.typedef-ideal-completion)

Upper powerdomain is pointed
lemma upper-pd-minimal: upper-principal (PDUnit compact-bot) v ys
by (induct ys rule: upper-pd.principal-induct, simp, simp)

instance upper-pd :: (bifinite) pcpo
by intro-classes (fast intro: upper-pd-minimal)

lemma inst-upper-pd-pcpo: ⊥ = upper-principal (PDUnit compact-bot)
by (rule upper-pd-minimal [THEN bottomI , symmetric])

29.3 Monadic unit and plus
definition

upper-unit :: ′a::bifinite → ′a upper-pd where
upper-unit = compact-basis.extension (λa. upper-principal (PDUnit a))

definition
upper-plus :: ′a::bifinite upper-pd → ′a upper-pd → ′a upper-pd where
upper-plus = upper-pd.extension (λt. upper-pd.extension (λu.

upper-principal (PDPlus t u)))

THEORY “UpperPD” 174

abbreviation
upper-add :: ′a::bifinite upper-pd ⇒ ′a upper-pd ⇒ ′a upper-pd
(infixl ‹∪]› 65) where

xs ∪] ys == upper-plus·xs·ys

syntax
-upper-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix upper-pd enumera-

tion››{-}])›)
translations
{x,xs}] == {x}] ∪] {xs}]
{x}] == CONST upper-unit·x

lemma upper-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}] = upper-principal (PDUnit a)

unfolding upper-unit-def
by (simp add: compact-basis.extension-principal PDUnit-upper-mono)

lemma upper-plus-principal [simp]:
upper-principal t ∪] upper-principal u = upper-principal (PDPlus t u)

unfolding upper-plus-def
by (simp add: upper-pd.extension-principal

upper-pd.extension-mono PDPlus-upper-mono)

interpretation upper-add: semilattice upper-add proof
fix xs ys zs :: ′a upper-pd
show (xs ∪] ys) ∪] zs = xs ∪] (ys ∪] zs)

apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (induct zs rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done

show xs ∪] ys = ys ∪] xs
apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done

show xs ∪] xs = xs
apply (induct xs rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done

qed

lemmas upper-plus-assoc = upper-add.assoc
lemmas upper-plus-commute = upper-add.commute
lemmas upper-plus-absorb = upper-add.idem
lemmas upper-plus-left-commute = upper-add.left-commute
lemmas upper-plus-left-absorb = upper-add.left-idem

Useful for simp add: upper-plus-ac

THEORY “UpperPD” 175

lemmas upper-plus-ac =
upper-plus-assoc upper-plus-commute upper-plus-left-commute

Useful for simp only: upper-plus-aci
lemmas upper-plus-aci =

upper-plus-ac upper-plus-absorb upper-plus-left-absorb

lemma upper-plus-below1 : xs ∪] ys v xs
apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-upper-le)
done

lemma upper-plus-below2 : xs ∪] ys v ys
by (subst upper-plus-commute, rule upper-plus-below1)

lemma upper-plus-greatest: [[xs v ys; xs v zs]] =⇒ xs v ys ∪] zs
apply (subst upper-plus-absorb [of xs, symmetric])
apply (erule (1) monofun-cfun [OF monofun-cfun-arg])
done

lemma upper-below-plus-iff [simp]:
xs v ys ∪] zs ←→ xs v ys ∧ xs v zs

apply safe
apply (erule below-trans [OF - upper-plus-below1])
apply (erule below-trans [OF - upper-plus-below2])
apply (erule (1) upper-plus-greatest)
done

lemma upper-plus-below-unit-iff [simp]:
xs ∪] ys v {z}] ←→ xs v {z}] ∨ ys v {z}]

apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (induct z rule: compact-basis.principal-induct, simp)
apply (simp add: upper-le-PDPlus-PDUnit-iff)
done

lemma upper-unit-below-iff [simp]: {x}] v {y}] ←→ x v y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp
done

lemmas upper-pd-below-simps =
upper-unit-below-iff
upper-below-plus-iff
upper-plus-below-unit-iff

lemma upper-unit-eq-iff [simp]: {x}] = {y}] ←→ x = y

THEORY “UpperPD” 176

unfolding po-eq-conv by simp

lemma upper-unit-strict [simp]: {⊥}] = ⊥
using upper-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-upper-pd-pcpo)

lemma upper-plus-strict1 [simp]: ⊥ ∪] ys = ⊥
by (rule bottomI , rule upper-plus-below1)

lemma upper-plus-strict2 [simp]: xs ∪] ⊥ = ⊥
by (rule bottomI , rule upper-plus-below2)

lemma upper-unit-bottom-iff [simp]: {x}] = ⊥ ←→ x = ⊥
unfolding upper-unit-strict [symmetric] by (rule upper-unit-eq-iff)

lemma upper-plus-bottom-iff [simp]:
xs ∪] ys = ⊥ ←→ xs = ⊥ ∨ ys = ⊥

apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: inst-upper-pd-pcpo upper-pd.principal-eq-iff

upper-le-PDPlus-PDUnit-iff)
done

lemma compact-upper-unit: compact x =⇒ compact {x}]
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-upper-unit-iff [simp]: compact {x}] ←→ compact x
apply (safe elim!: compact-upper-unit)
apply (simp only: compact-def upper-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2])
done

lemma compact-upper-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪] ys)

by (auto dest!: upper-pd.compact-imp-principal)

29.4 Induction rules
lemma upper-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}]

assumes insert:
∧

x ys. [[P {x}]; P ys]] =⇒ P ({x}] ∪] ys)
shows P (xs:: ′a::bifinite upper-pd)

proof (induct xs rule: upper-pd.principal-induct)
have ∗: P {Rep-compact-basis a}] for a

by (rule unit)
show P (upper-principal a) for a
proof (induct a rule: pd-basis-induct1)

case (PDUnit a)

THEORY “UpperPD” 177

with ∗ show ?case
by (simp only: upper-unit-Rep-compact-basis [symmetric])

next
case (PDPlus a t)
with ∗ have P ({Rep-compact-basis a}] ∪] upper-principal t)

by (rule insert)
then show ?case

by (simp only: upper-unit-Rep-compact-basis [symmetric]
upper-plus-principal [symmetric])

qed
qed (rule P)

lemma upper-pd-induct [case-names adm upper-unit upper-plus, induct type: up-
per-pd]:

assumes P: adm P
assumes unit:

∧
x. P {x}]

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪] ys)
shows P (xs:: ′a::bifinite upper-pd)

proof (induct xs rule: upper-pd.principal-induct)
show P (upper-principal a) for a
proof (induct a rule: pd-basis-induct)

case PDUnit
then show ?case

by (simp only: upper-unit-Rep-compact-basis [symmetric] unit)
next

case PDPlus
then show ?case

by (simp only: upper-plus-principal [symmetric] plus)
qed

qed (rule P)

29.5 Monadic bind
definition

upper-bind-basis ::
′a::bifinite pd-basis ⇒ (′a → ′b upper-pd) → ′b::bifinite upper-pd where
upper-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪] y·f)

lemma ACI-upper-bind:
semilattice (λx y. Λ f . x·f ∪] y·f)

apply unfold-locales
apply (simp add: upper-plus-assoc)
apply (simp add: upper-plus-commute)
apply (simp add: eta-cfun)
done

lemma upper-bind-basis-simps [simp]:

THEORY “UpperPD” 178

upper-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

upper-bind-basis (PDPlus t u) =
(Λ f . upper-bind-basis t·f ∪] upper-bind-basis u·f)

unfolding upper-bind-basis-def
apply −
apply (rule fold-pd-PDUnit [OF ACI-upper-bind])
apply (rule fold-pd-PDPlus [OF ACI-upper-bind])
done

lemma upper-bind-basis-mono:
t ≤] u =⇒ upper-bind-basis t v upper-bind-basis u

unfolding cfun-below-iff
apply (erule upper-le-induct, safe)
apply (simp add: monofun-cfun)
apply (simp add: below-trans [OF upper-plus-below1])
apply simp
done

definition
upper-bind :: ′a::bifinite upper-pd → (′a → ′b upper-pd) → ′b::bifinite upper-pd

where
upper-bind = upper-pd.extension upper-bind-basis

syntax
-upper-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder upper-bind››

⋃
]-∈-./ -)› [0 , 0 , 10] 10)

translations⋃
]x∈xs. e == CONST upper-bind·xs·(Λ x. e)

lemma upper-bind-principal [simp]:
upper-bind·(upper-principal t) = upper-bind-basis t

unfolding upper-bind-def
apply (rule upper-pd.extension-principal)
apply (erule upper-bind-basis-mono)
done

lemma upper-bind-unit [simp]:
upper-bind·{x}]·f = f ·x

by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma upper-bind-plus [simp]:
upper-bind·(xs ∪] ys)·f = upper-bind·xs·f ∪] upper-bind·ys·f

by (induct xs rule: upper-pd.principal-induct, simp,
induct ys rule: upper-pd.principal-induct, simp, simp)

lemma upper-bind-strict [simp]: upper-bind·⊥·f = f ·⊥
unfolding upper-unit-strict [symmetric] by (rule upper-bind-unit)

THEORY “UpperPD” 179

lemma upper-bind-bind:
upper-bind·(upper-bind·xs·f)·g = upper-bind·xs·(Λ x. upper-bind·(f ·x)·g)

by (induct xs, simp-all)

29.6 Map
definition

upper-map :: (′a::bifinite → ′b::bifinite) → ′a upper-pd → ′b upper-pd where
upper-map = (Λ f xs. upper-bind·xs·(Λ x. {f ·x}]))

lemma upper-map-unit [simp]:
upper-map·f ·{x}] = {f ·x}]

unfolding upper-map-def by simp

lemma upper-map-plus [simp]:
upper-map·f ·(xs ∪] ys) = upper-map·f ·xs ∪] upper-map·f ·ys

unfolding upper-map-def by simp

lemma upper-map-bottom [simp]: upper-map·f ·⊥ = {f ·⊥}]
unfolding upper-map-def by simp

lemma upper-map-ident: upper-map·(Λ x. x)·xs = xs
by (induct xs rule: upper-pd-induct, simp-all)

lemma upper-map-ID: upper-map·ID = ID
by (simp add: cfun-eq-iff ID-def upper-map-ident)

lemma upper-map-map:
upper-map·f ·(upper-map·g·xs) = upper-map·(Λ x. f ·(g·x))·xs

by (induct xs rule: upper-pd-induct, simp-all)

lemma upper-bind-map:
upper-bind·(upper-map·f ·xs)·g = upper-bind·xs·(Λ x. g·(f ·x))

by (simp add: upper-map-def upper-bind-bind)

lemma upper-map-bind:
upper-map·f ·(upper-bind·xs·g) = upper-bind·xs·(Λ x. upper-map·f ·(g·x))

by (simp add: upper-map-def upper-bind-bind)

lemma ep-pair-upper-map: ep-pair e p =⇒ ep-pair (upper-map·e) (upper-map·p)
apply standard
apply (induct-tac x rule: upper-pd-induct, simp-all add: ep-pair .e-inverse)
apply (induct-tac y rule: upper-pd-induct)
apply (simp-all add: ep-pair .e-p-below monofun-cfun del: upper-below-plus-iff)
done

lemma deflation-upper-map: deflation d =⇒ deflation (upper-map·d)
apply standard

THEORY “UpperPD” 180

apply (induct-tac x rule: upper-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: upper-pd-induct)
apply (simp-all add: deflation.below monofun-cfun del: upper-below-plus-iff)
done

lemma finite-deflation-upper-map:
assumes finite-deflation d shows finite-deflation (upper-map·d)

proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (upper-map·d)

by (rule deflation-upper-map)
have finite (range (λx. d·x)) by (rule d.finite-range)
hence finite (Rep-compact-basis −‘ range (λx. d·x))

by (rule finite-vimageI , simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis −‘ range (λx. d·x))) by simp
hence finite (Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘ range (λx. d·x))))

by (rule finite-vimageI , simp add: inj-on-def Rep-pd-basis-inject)
hence ∗: finite (upper-principal ‘ Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘

range (λx. d·x)))) by simp
hence finite (range (λxs. upper-map·d·xs))

apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac xs rule: upper-pd.principal-induct)
apply (simp add: adm-mem-finite ∗)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: upper-unit-Rep-compact-basis [symmetric] upper-map-unit)
apply simp
apply (subgoal-tac ∃ b. d·(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imageI)
apply (rule vimageI2)
apply (simp add: Rep-PDUnit)
apply (rule range-eqI)
apply (erule sym)
apply (rule exI)
apply (rule Abs-compact-basis-inverse [symmetric])
apply (simp add: d.compact)
apply (simp only: upper-plus-principal [symmetric] upper-map-plus)
apply clarsimp
apply (rule imageI)
apply (rule vimageI2)
apply (simp add: Rep-PDPlus)
done

thus finite {xs. upper-map·d·xs = xs}
by (rule finite-range-imp-finite-fixes)

qed

THEORY “LowerPD” 181

29.7 Upper powerdomain is bifinite
lemma approx-chain-upper-map:

assumes approx-chain a
shows approx-chain (λi. upper-map·(a i))
using assms unfolding approx-chain-def
by (simp add: lub-APP upper-map-ID finite-deflation-upper-map)

instance upper-pd :: (bifinite) bifinite
proof

show ∃ (a::nat ⇒ ′a upper-pd → ′a upper-pd). approx-chain a
using bifinite [where ′a= ′a]
by (fast intro!: approx-chain-upper-map)

qed

29.8 Join
definition

upper-join :: ′a::bifinite upper-pd upper-pd → ′a upper-pd where
upper-join = (Λ xss. upper-bind·xss·(Λ xs. xs))

lemma upper-join-unit [simp]:
upper-join·{xs}] = xs

unfolding upper-join-def by simp

lemma upper-join-plus [simp]:
upper-join·(xss ∪] yss) = upper-join·xss ∪] upper-join·yss

unfolding upper-join-def by simp

lemma upper-join-bottom [simp]: upper-join·⊥ = ⊥
unfolding upper-join-def by simp

lemma upper-join-map-unit:
upper-join·(upper-map·upper-unit·xs) = xs

by (induct xs rule: upper-pd-induct, simp-all)

lemma upper-join-map-join:
upper-join·(upper-map·upper-join·xsss) = upper-join·(upper-join·xsss)

by (induct xsss rule: upper-pd-induct, simp-all)

lemma upper-join-map-map:
upper-join·(upper-map·(upper-map·f)·xss) =
upper-map·f ·(upper-join·xss)

by (induct xss rule: upper-pd-induct, simp-all)

end

THEORY “LowerPD” 182

30 Lower powerdomain
theory LowerPD
imports Compact-Basis
begin

30.1 Basis preorder
definition

lower-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤[› 50) where
lower-le = (λu v. ∀ x∈Rep-pd-basis u. ∃ y∈Rep-pd-basis v. x v y)

lemma lower-le-refl [simp]: t ≤[t
unfolding lower-le-def by fast

lemma lower-le-trans: [[t ≤[u; u ≤[v]] =⇒ t ≤[v
unfolding lower-le-def
apply (rule ballI)
apply (drule (1) bspec, erule bexE)
apply (drule (1) bspec, erule bexE)
apply (erule rev-bexI)
apply (erule (1) below-trans)
done

interpretation lower-le: preorder lower-le
by (rule preorder .intro, rule lower-le-refl, rule lower-le-trans)

lemma lower-le-minimal [simp]: PDUnit compact-bot ≤[t
unfolding lower-le-def Rep-PDUnit
by (simp, rule Rep-pd-basis-nonempty [folded ex-in-conv])

lemma PDUnit-lower-mono: x v y =⇒ PDUnit x ≤[PDUnit y
unfolding lower-le-def Rep-PDUnit by fast

lemma PDPlus-lower-mono: [[s ≤[t; u ≤[v]] =⇒ PDPlus s u ≤[PDPlus t v
unfolding lower-le-def Rep-PDPlus by fast

lemma PDPlus-lower-le: t ≤[PDPlus t u
unfolding lower-le-def Rep-PDPlus by fast

lemma lower-le-PDUnit-PDUnit-iff [simp]:
(PDUnit a ≤[PDUnit b) = (a v b)

unfolding lower-le-def Rep-PDUnit by fast

lemma lower-le-PDUnit-PDPlus-iff :
(PDUnit a ≤[PDPlus t u) = (PDUnit a ≤[t ∨ PDUnit a ≤[u)

unfolding lower-le-def Rep-PDPlus Rep-PDUnit by fast

lemma lower-le-PDPlus-iff : (PDPlus t u ≤[v) = (t ≤[v ∧ u ≤[v)
unfolding lower-le-def Rep-PDPlus by fast

THEORY “LowerPD” 183

lemma lower-le-induct [induct set: lower-le]:
assumes le: t ≤[u
assumes 1 :

∧
a b. a v b =⇒ P (PDUnit a) (PDUnit b)

assumes 2 :
∧

t u a. P (PDUnit a) t =⇒ P (PDUnit a) (PDPlus t u)
assumes 3 :

∧
t u v. [[P t v; P u v]] =⇒ P (PDPlus t u) v

shows P t u
using le

proof (induct t arbitrary: u rule: pd-basis-induct)
case (PDUnit a)
then show ?case
proof (induct u rule: pd-basis-induct)

case PDUnit
then show ?case by (simp add: 1)

next
case (PDPlus t u)
from PDPlus(3) consider (t) PDUnit a ≤[t | (u) PDUnit a ≤[u

by (auto simp: lower-le-PDUnit-PDPlus-iff)
then show ?case
proof cases

case t
then have P (PDUnit a) t by (rule PDPlus(1))
then show ?thesis by (rule 2)

next
case u
then have P (PDUnit a) u by (rule PDPlus(2))
then have P (PDUnit a) (PDPlus u t) by (rule 2)
then show ?thesis by (simp only: PDPlus-commute)

qed
qed

next
case (PDPlus t t ′)
then show ?case by (simp add: lower-le-PDPlus-iff 3)

qed

30.2 Type definition
typedef ′a::bifinite lower-pd (‹(‹notation=‹postfix lower-pd›› ′(- ′)[)›) =
{S :: ′a pd-basis set. lower-le.ideal S}

by (rule lower-le.ex-ideal)

instantiation lower-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-lower-pd x ⊆ Rep-lower-pd y

instance ..
end

THEORY “LowerPD” 184

instance lower-pd :: (bifinite) po
using type-definition-lower-pd below-lower-pd-def
by (rule lower-le.typedef-ideal-po)

instance lower-pd :: (bifinite) cpo
using type-definition-lower-pd below-lower-pd-def
by (rule lower-le.typedef-ideal-cpo)

definition
lower-principal :: ′a::bifinite pd-basis ⇒ ′a lower-pd where
lower-principal t = Abs-lower-pd {u. u ≤[t}

interpretation lower-pd:
ideal-completion lower-le lower-principal Rep-lower-pd

using type-definition-lower-pd below-lower-pd-def
using lower-principal-def pd-basis-countable
by (rule lower-le.typedef-ideal-completion)

Lower powerdomain is pointed
lemma lower-pd-minimal: lower-principal (PDUnit compact-bot) v ys
by (induct ys rule: lower-pd.principal-induct, simp, simp)

instance lower-pd :: (bifinite) pcpo
by intro-classes (fast intro: lower-pd-minimal)

lemma inst-lower-pd-pcpo: ⊥ = lower-principal (PDUnit compact-bot)
by (rule lower-pd-minimal [THEN bottomI , symmetric])

30.3 Monadic unit and plus
definition

lower-unit :: ′a::bifinite → ′a lower-pd where
lower-unit = compact-basis.extension (λa. lower-principal (PDUnit a))

definition
lower-plus :: ′a::bifinite lower-pd → ′a lower-pd → ′a lower-pd where
lower-plus = lower-pd.extension (λt. lower-pd.extension (λu.

lower-principal (PDPlus t u)))

abbreviation
lower-add :: ′a::bifinite lower-pd ⇒ ′a lower-pd ⇒ ′a lower-pd
(infixl ‹∪[› 65) where

xs ∪[ys == lower-plus·xs·ys

syntax
-lower-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix lower-pd enumera-

tion››{-}[)›)
translations

THEORY “LowerPD” 185

{x,xs}[== {x}[∪[{xs}[
{x}[== CONST lower-unit·x

lemma lower-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}[= lower-principal (PDUnit a)

unfolding lower-unit-def
by (simp add: compact-basis.extension-principal PDUnit-lower-mono)

lemma lower-plus-principal [simp]:
lower-principal t ∪[lower-principal u = lower-principal (PDPlus t u)

unfolding lower-plus-def
by (simp add: lower-pd.extension-principal

lower-pd.extension-mono PDPlus-lower-mono)

interpretation lower-add: semilattice lower-add proof
fix xs ys zs :: ′a::bifinite lower-pd
show (xs ∪[ys) ∪[zs = xs ∪[(ys ∪[zs)

apply (induct xs rule: lower-pd.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done

show xs ∪[ys = ys ∪[xs
apply (induct xs rule: lower-pd.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done

show xs ∪[xs = xs
apply (induct xs rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done

qed

lemmas lower-plus-assoc = lower-add.assoc
lemmas lower-plus-commute = lower-add.commute
lemmas lower-plus-absorb = lower-add.idem
lemmas lower-plus-left-commute = lower-add.left-commute
lemmas lower-plus-left-absorb = lower-add.left-idem

Useful for simp add: lower-plus-ac
lemmas lower-plus-ac =

lower-plus-assoc lower-plus-commute lower-plus-left-commute

Useful for simp only: lower-plus-aci
lemmas lower-plus-aci =

lower-plus-ac lower-plus-absorb lower-plus-left-absorb

lemma lower-plus-below1 : xs v xs ∪[ys
apply (induct xs rule: lower-pd.principal-induct, simp)

THEORY “LowerPD” 186

apply (induct ys rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-lower-le)
done

lemma lower-plus-below2 : ys v xs ∪[ys
by (subst lower-plus-commute, rule lower-plus-below1)

lemma lower-plus-least: [[xs v zs; ys v zs]] =⇒ xs ∪[ys v zs
apply (subst lower-plus-absorb [of zs, symmetric])
apply (erule (1) monofun-cfun [OF monofun-cfun-arg])
done

lemma lower-plus-below-iff [simp]:
xs ∪[ys v zs ←→ xs v zs ∧ ys v zs

apply safe
apply (erule below-trans [OF lower-plus-below1])
apply (erule below-trans [OF lower-plus-below2])
apply (erule (1) lower-plus-least)
done

lemma lower-unit-below-plus-iff [simp]:
{x}[v ys ∪[zs ←→ {x}[v ys ∨ {x}[v zs

apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (simp add: lower-le-PDUnit-PDPlus-iff)
done

lemma lower-unit-below-iff [simp]: {x}[v {y}[←→ x v y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp
done

lemmas lower-pd-below-simps =
lower-unit-below-iff
lower-plus-below-iff
lower-unit-below-plus-iff

lemma lower-unit-eq-iff [simp]: {x}[= {y}[←→ x = y
by (simp add: po-eq-conv)

lemma lower-unit-strict [simp]: {⊥}[= ⊥
using lower-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-lower-pd-pcpo)

lemma lower-unit-bottom-iff [simp]: {x}[= ⊥ ←→ x = ⊥
unfolding lower-unit-strict [symmetric] by (rule lower-unit-eq-iff)

THEORY “LowerPD” 187

lemma lower-plus-bottom-iff [simp]:
xs ∪[ys = ⊥ ←→ xs = ⊥ ∧ ys = ⊥

apply safe
apply (rule bottomI , erule subst, rule lower-plus-below1)
apply (rule bottomI , erule subst, rule lower-plus-below2)
apply (rule lower-plus-absorb)
done

lemma lower-plus-strict1 [simp]: ⊥ ∪[ys = ys
apply (rule below-antisym [OF - lower-plus-below2])
apply (simp add: lower-plus-least)
done

lemma lower-plus-strict2 [simp]: xs ∪[⊥ = xs
apply (rule below-antisym [OF - lower-plus-below1])
apply (simp add: lower-plus-least)
done

lemma compact-lower-unit: compact x =⇒ compact {x}[
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-lower-unit-iff [simp]: compact {x}[←→ compact x
apply (safe elim!: compact-lower-unit)
apply (simp only: compact-def lower-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2])
done

lemma compact-lower-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪[ys)

by (auto dest!: lower-pd.compact-imp-principal)

30.4 Induction rules
lemma lower-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}[

assumes insert:
∧

x ys. [[P {x}[; P ys]] =⇒ P ({x}[∪[ys)
shows P (xs:: ′a::bifinite lower-pd)

proof (induct xs rule: lower-pd.principal-induct)
have ∗: P {Rep-compact-basis a}[for a

by (rule unit)
show P (lower-principal a) for a
proof (induct a rule: pd-basis-induct1)

case PDUnit
from ∗ show ?case

by (simp only: lower-unit-Rep-compact-basis [symmetric])
next

case (PDPlus a t)
with ∗ have P ({Rep-compact-basis a}[∪[lower-principal t)

THEORY “LowerPD” 188

by (rule insert)
then show ?case

by (simp only: lower-unit-Rep-compact-basis [symmetric] lower-plus-principal
[symmetric])

qed
qed (rule P)

lemma lower-pd-induct [case-names adm lower-unit lower-plus, induct type: lower-pd]:
assumes P: adm P
assumes unit:

∧
x. P {x}[

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪[ys)
shows P (xs:: ′a::bifinite lower-pd)

proof (induct xs rule: lower-pd.principal-induct)
show P (lower-principal a) for a
proof (induct a rule: pd-basis-induct)

case PDUnit
then show ?case

by (simp only: lower-unit-Rep-compact-basis [symmetric] unit)
next

case PDPlus
then show ?case

by (simp only: lower-plus-principal [symmetric] plus)
qed

qed (rule P)

30.5 Monadic bind
definition

lower-bind-basis ::
′a::bifinite pd-basis ⇒ (′a → ′b lower-pd) → ′b::bifinite lower-pd where
lower-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪[y·f)

lemma ACI-lower-bind:
semilattice (λx y. Λ f . x·f ∪[y·f)

apply unfold-locales
apply (simp add: lower-plus-assoc)
apply (simp add: lower-plus-commute)
apply (simp add: eta-cfun)
done

lemma lower-bind-basis-simps [simp]:
lower-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

lower-bind-basis (PDPlus t u) =
(Λ f . lower-bind-basis t·f ∪[lower-bind-basis u·f)

unfolding lower-bind-basis-def
apply −

THEORY “LowerPD” 189

apply (rule fold-pd-PDUnit [OF ACI-lower-bind])
apply (rule fold-pd-PDPlus [OF ACI-lower-bind])
done

lemma lower-bind-basis-mono:
t ≤[u =⇒ lower-bind-basis t v lower-bind-basis u

unfolding cfun-below-iff
apply (erule lower-le-induct, safe)
apply (simp add: monofun-cfun)
apply (simp add: rev-below-trans [OF lower-plus-below1])
apply simp
done

definition
lower-bind :: ′a::bifinite lower-pd → (′a → ′b lower-pd) → ′b::bifinite lower-pd

where
lower-bind = lower-pd.extension lower-bind-basis

syntax
-lower-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder lower-bind››

⋃
[-∈-./ -)› [0 , 0 , 10] 10)

translations⋃
[x∈xs. e == CONST lower-bind·xs·(Λ x. e)

lemma lower-bind-principal [simp]:
lower-bind·(lower-principal t) = lower-bind-basis t

unfolding lower-bind-def
apply (rule lower-pd.extension-principal)
apply (erule lower-bind-basis-mono)
done

lemma lower-bind-unit [simp]:
lower-bind·{x}[·f = f ·x

by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma lower-bind-plus [simp]:
lower-bind·(xs ∪[ys)·f = lower-bind·xs·f ∪[lower-bind·ys·f

by (induct xs rule: lower-pd.principal-induct, simp,
induct ys rule: lower-pd.principal-induct, simp, simp)

lemma lower-bind-strict [simp]: lower-bind·⊥·f = f ·⊥
unfolding lower-unit-strict [symmetric] by (rule lower-bind-unit)

lemma lower-bind-bind:
lower-bind·(lower-bind·xs·f)·g = lower-bind·xs·(Λ x. lower-bind·(f ·x)·g)

by (induct xs, simp-all)

THEORY “LowerPD” 190

30.6 Map
definition

lower-map :: (′a::bifinite → ′b::bifinite) → ′a lower-pd → ′b lower-pd where
lower-map = (Λ f xs. lower-bind·xs·(Λ x. {f ·x}[))

lemma lower-map-unit [simp]:
lower-map·f ·{x}[= {f ·x}[

unfolding lower-map-def by simp

lemma lower-map-plus [simp]:
lower-map·f ·(xs ∪[ys) = lower-map·f ·xs ∪[lower-map·f ·ys

unfolding lower-map-def by simp

lemma lower-map-bottom [simp]: lower-map·f ·⊥ = {f ·⊥}[
unfolding lower-map-def by simp

lemma lower-map-ident: lower-map·(Λ x. x)·xs = xs
by (induct xs rule: lower-pd-induct, simp-all)

lemma lower-map-ID: lower-map·ID = ID
by (simp add: cfun-eq-iff ID-def lower-map-ident)

lemma lower-map-map:
lower-map·f ·(lower-map·g·xs) = lower-map·(Λ x. f ·(g·x))·xs

by (induct xs rule: lower-pd-induct, simp-all)

lemma lower-bind-map:
lower-bind·(lower-map·f ·xs)·g = lower-bind·xs·(Λ x. g·(f ·x))

by (simp add: lower-map-def lower-bind-bind)

lemma lower-map-bind:
lower-map·f ·(lower-bind·xs·g) = lower-bind·xs·(Λ x. lower-map·f ·(g·x))

by (simp add: lower-map-def lower-bind-bind)

lemma ep-pair-lower-map: ep-pair e p =⇒ ep-pair (lower-map·e) (lower-map·p)
apply standard
apply (induct-tac x rule: lower-pd-induct, simp-all add: ep-pair .e-inverse)
apply (induct-tac y rule: lower-pd-induct)
apply (simp-all add: ep-pair .e-p-below monofun-cfun del: lower-plus-below-iff)
done

lemma deflation-lower-map: deflation d =⇒ deflation (lower-map·d)
apply standard
apply (induct-tac x rule: lower-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: lower-pd-induct)
apply (simp-all add: deflation.below monofun-cfun del: lower-plus-below-iff)
done

THEORY “LowerPD” 191

lemma finite-deflation-lower-map:
assumes finite-deflation d shows finite-deflation (lower-map·d)

proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (lower-map·d)

by (rule deflation-lower-map)
have finite (range (λx. d·x)) by (rule d.finite-range)
hence finite (Rep-compact-basis −‘ range (λx. d·x))

by (rule finite-vimageI , simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis −‘ range (λx. d·x))) by simp
hence finite (Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘ range (λx. d·x))))

by (rule finite-vimageI , simp add: inj-on-def Rep-pd-basis-inject)
hence ∗: finite (lower-principal ‘ Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘

range (λx. d·x)))) by simp
hence finite (range (λxs. lower-map·d·xs))

apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac xs rule: lower-pd.principal-induct)
apply (simp add: adm-mem-finite ∗)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: lower-unit-Rep-compact-basis [symmetric] lower-map-unit)
apply simp
apply (subgoal-tac ∃ b. d·(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imageI)
apply (rule vimageI2)
apply (simp add: Rep-PDUnit)
apply (rule range-eqI)
apply (erule sym)
apply (rule exI)
apply (rule Abs-compact-basis-inverse [symmetric])
apply (simp add: d.compact)
apply (simp only: lower-plus-principal [symmetric] lower-map-plus)
apply clarsimp
apply (rule imageI)
apply (rule vimageI2)
apply (simp add: Rep-PDPlus)
done

thus finite {xs. lower-map·d·xs = xs}
by (rule finite-range-imp-finite-fixes)

qed

30.7 Lower powerdomain is bifinite
lemma approx-chain-lower-map:

assumes approx-chain a
shows approx-chain (λi. lower-map·(a i))
using assms unfolding approx-chain-def
by (simp add: lub-APP lower-map-ID finite-deflation-lower-map)

THEORY “ConvexPD” 192

instance lower-pd :: (bifinite) bifinite
proof

show ∃ (a::nat ⇒ ′a lower-pd → ′a lower-pd). approx-chain a
using bifinite [where ′a= ′a]
by (fast intro!: approx-chain-lower-map)

qed

30.8 Join
definition

lower-join :: ′a::bifinite lower-pd lower-pd → ′a lower-pd where
lower-join = (Λ xss. lower-bind·xss·(Λ xs. xs))

lemma lower-join-unit [simp]:
lower-join·{xs}[= xs

unfolding lower-join-def by simp

lemma lower-join-plus [simp]:
lower-join·(xss ∪[yss) = lower-join·xss ∪[lower-join·yss

unfolding lower-join-def by simp

lemma lower-join-bottom [simp]: lower-join·⊥ = ⊥
unfolding lower-join-def by simp

lemma lower-join-map-unit:
lower-join·(lower-map·lower-unit·xs) = xs

by (induct xs rule: lower-pd-induct, simp-all)

lemma lower-join-map-join:
lower-join·(lower-map·lower-join·xsss) = lower-join·(lower-join·xsss)

by (induct xsss rule: lower-pd-induct, simp-all)

lemma lower-join-map-map:
lower-join·(lower-map·(lower-map·f)·xss) =
lower-map·f ·(lower-join·xss)

by (induct xss rule: lower-pd-induct, simp-all)

end

31 Convex powerdomain
theory ConvexPD
imports UpperPD LowerPD
begin

31.1 Basis preorder
definition

THEORY “ConvexPD” 193

convex-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤\› 50) where
convex-le = (λu v. u ≤] v ∧ u ≤[v)

lemma convex-le-refl [simp]: t ≤\ t
unfolding convex-le-def by (fast intro: upper-le-refl lower-le-refl)

lemma convex-le-trans: [[t ≤\ u; u ≤\ v]] =⇒ t ≤\ v
unfolding convex-le-def by (fast intro: upper-le-trans lower-le-trans)

interpretation convex-le: preorder convex-le
by (rule preorder .intro, rule convex-le-refl, rule convex-le-trans)

lemma upper-le-minimal [simp]: PDUnit compact-bot ≤\ t
unfolding convex-le-def Rep-PDUnit by simp

lemma PDUnit-convex-mono: x v y =⇒ PDUnit x ≤\ PDUnit y
unfolding convex-le-def by (fast intro: PDUnit-upper-mono PDUnit-lower-mono)

lemma PDPlus-convex-mono: [[s ≤\ t; u ≤\ v]] =⇒ PDPlus s u ≤\ PDPlus t v
unfolding convex-le-def by (fast intro: PDPlus-upper-mono PDPlus-lower-mono)

lemma convex-le-PDUnit-PDUnit-iff [simp]:
(PDUnit a ≤\ PDUnit b) = (a v b)

unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit by fast

lemma convex-le-PDUnit-lemma1 :
(PDUnit a ≤\ t) = (∀ b∈Rep-pd-basis t. a v b)

unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit
using Rep-pd-basis-nonempty [of t, folded ex-in-conv] by fast

lemma convex-le-PDUnit-PDPlus-iff [simp]:
(PDUnit a ≤\ PDPlus t u) = (PDUnit a ≤\ t ∧ PDUnit a ≤\ u)

unfolding convex-le-PDUnit-lemma1 Rep-PDPlus by fast

lemma convex-le-PDUnit-lemma2 :
(t ≤\ PDUnit b) = (∀ a∈Rep-pd-basis t. a v b)

unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit
using Rep-pd-basis-nonempty [of t, folded ex-in-conv] by fast

lemma convex-le-PDPlus-PDUnit-iff [simp]:
(PDPlus t u ≤\ PDUnit a) = (t ≤\ PDUnit a ∧ u ≤\ PDUnit a)

unfolding convex-le-PDUnit-lemma2 Rep-PDPlus by fast

lemma convex-le-PDPlus-lemma:
assumes z: PDPlus t u ≤\ z
shows ∃ v w. z = PDPlus v w ∧ t ≤\ v ∧ u ≤\ w

proof (intro exI conjI)
let ?A = {b∈Rep-pd-basis z. ∃ a∈Rep-pd-basis t. a v b}
let ?B = {b∈Rep-pd-basis z. ∃ a∈Rep-pd-basis u. a v b}

THEORY “ConvexPD” 194

let ?v = Abs-pd-basis ?A
let ?w = Abs-pd-basis ?B
have Rep-v: Rep-pd-basis ?v = ?A

apply (rule Abs-pd-basis-inverse)
apply (rule Rep-pd-basis-nonempty [of t, folded ex-in-conv, THEN exE])
apply (cut-tac z, simp only: convex-le-def lower-le-def , clarify)
apply (drule-tac x=x in bspec, simp add: Rep-PDPlus, erule bexE)
apply (simp add: pd-basis-def)
apply fast
done

have Rep-w: Rep-pd-basis ?w = ?B
apply (rule Abs-pd-basis-inverse)
apply (rule Rep-pd-basis-nonempty [of u, folded ex-in-conv, THEN exE])
apply (cut-tac z, simp only: convex-le-def lower-le-def , clarify)
apply (drule-tac x=x in bspec, simp add: Rep-PDPlus, erule bexE)
apply (simp add: pd-basis-def)
apply fast
done

show z = PDPlus ?v ?w
apply (insert z)
apply (simp add: convex-le-def , erule conjE)
apply (simp add: Rep-pd-basis-inject [symmetric] Rep-PDPlus)
apply (simp add: Rep-v Rep-w)
apply (rule equalityI)
apply (rule subsetI)
apply (simp only: upper-le-def)
apply (drule (1) bspec, erule bexE)
apply (simp add: Rep-PDPlus)
apply fast

apply fast
done

show t ≤\ ?v u ≤\ ?w
using z by (simp-all add: convex-le-def upper-le-def lower-le-def Rep-PDPlus

Rep-v Rep-w) fast+
qed

lemma convex-le-induct [induct set: convex-le]:
assumes le: t ≤\ u
assumes 2 :

∧
t u v. [[P t u; P u v]] =⇒ P t v

assumes 3 :
∧

a b. a v b =⇒ P (PDUnit a) (PDUnit b)
assumes 4 :

∧
t u v w. [[P t v; P u w]] =⇒ P (PDPlus t u) (PDPlus v w)

shows P t u
using le

proof (induct t arbitrary: u rule: pd-basis-induct)
case (PDUnit a)
then show ?case
proof (induct u rule: pd-basis-induct1)

case (PDUnit b)
then show ?case by (simp add: 3)

THEORY “ConvexPD” 195

next
case (PDPlus b t)
have P (PDPlus (PDUnit a) (PDUnit a)) (PDPlus (PDUnit b) t)

by (rule 4 [OF 3]) (use PDPlus in simp-all)
then show ?case by (simp add: PDPlus-absorb)

qed
next

case PDPlus
from PDPlus(1 ,2) show ?case

using convex-le-PDPlus-lemma [OF PDPlus(3)] by (auto simp add: 4)
qed

31.2 Type definition
typedef ′a::bifinite convex-pd (‹(‹notation=‹postfix convex-pd›› ′(- ′)\)›) =
{S :: ′a pd-basis set. convex-le.ideal S}

by (rule convex-le.ex-ideal)

instantiation convex-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-convex-pd x ⊆ Rep-convex-pd y

instance ..
end

instance convex-pd :: (bifinite) po
using type-definition-convex-pd below-convex-pd-def
by (rule convex-le.typedef-ideal-po)

instance convex-pd :: (bifinite) cpo
using type-definition-convex-pd below-convex-pd-def
by (rule convex-le.typedef-ideal-cpo)

definition
convex-principal :: ′a::bifinite pd-basis ⇒ ′a convex-pd where
convex-principal t = Abs-convex-pd {u. u ≤\ t}

interpretation convex-pd:
ideal-completion convex-le convex-principal Rep-convex-pd

using type-definition-convex-pd below-convex-pd-def
using convex-principal-def pd-basis-countable
by (rule convex-le.typedef-ideal-completion)

Convex powerdomain is pointed
lemma convex-pd-minimal: convex-principal (PDUnit compact-bot) v ys
by (induct ys rule: convex-pd.principal-induct, simp, simp)

THEORY “ConvexPD” 196

instance convex-pd :: (bifinite) pcpo
by intro-classes (fast intro: convex-pd-minimal)

lemma inst-convex-pd-pcpo: ⊥ = convex-principal (PDUnit compact-bot)
by (rule convex-pd-minimal [THEN bottomI , symmetric])

31.3 Monadic unit and plus
definition

convex-unit :: ′a::bifinite → ′a convex-pd where
convex-unit = compact-basis.extension (λa. convex-principal (PDUnit a))

definition
convex-plus :: ′a::bifinite convex-pd → ′a convex-pd → ′a convex-pd where
convex-plus = convex-pd.extension (λt. convex-pd.extension (λu.

convex-principal (PDPlus t u)))

abbreviation
convex-add :: ′a::bifinite convex-pd ⇒ ′a convex-pd ⇒ ′a convex-pd
(infixl ‹∪\› 65) where

xs ∪\ ys == convex-plus·xs·ys

syntax
-convex-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix convex-pd enumera-

tion››{-}\)›)
translations
{x,xs}\ == {x}\ ∪\ {xs}\
{x}\ == CONST convex-unit·x

lemma convex-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}\ = convex-principal (PDUnit a)

unfolding convex-unit-def
by (simp add: compact-basis.extension-principal PDUnit-convex-mono)

lemma convex-plus-principal [simp]:
convex-principal t ∪\ convex-principal u = convex-principal (PDPlus t u)

unfolding convex-plus-def
by (simp add: convex-pd.extension-principal

convex-pd.extension-mono PDPlus-convex-mono)

interpretation convex-add: semilattice convex-add proof
fix xs ys zs :: ′a convex-pd
show (xs ∪\ ys) ∪\ zs = xs ∪\ (ys ∪\ zs)

apply (induct xs rule: convex-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (induct zs rule: convex-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done

show xs ∪\ ys = ys ∪\ xs

THEORY “ConvexPD” 197

apply (induct xs rule: convex-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done

show xs ∪\ xs = xs
apply (induct xs rule: convex-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done

qed

lemmas convex-plus-assoc = convex-add.assoc
lemmas convex-plus-commute = convex-add.commute
lemmas convex-plus-absorb = convex-add.idem
lemmas convex-plus-left-commute = convex-add.left-commute
lemmas convex-plus-left-absorb = convex-add.left-idem

Useful for simp add: convex-plus-ac
lemmas convex-plus-ac =

convex-plus-assoc convex-plus-commute convex-plus-left-commute

Useful for simp only: convex-plus-aci
lemmas convex-plus-aci =

convex-plus-ac convex-plus-absorb convex-plus-left-absorb

lemma convex-unit-below-plus-iff [simp]:
{x}\ v ys ∪\ zs ←→ {x}\ v ys ∧ {x}\ v zs

apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (induct zs rule: convex-pd.principal-induct, simp)
apply simp
done

lemma convex-plus-below-unit-iff [simp]:
xs ∪\ ys v {z}\ ←→ xs v {z}\ ∧ ys v {z}\

apply (induct xs rule: convex-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (induct z rule: compact-basis.principal-induct, simp)
apply simp
done

lemma convex-unit-below-iff [simp]: {x}\ v {y}\ ←→ x v y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp
done

lemma convex-unit-eq-iff [simp]: {x}\ = {y}\ ←→ x = y
unfolding po-eq-conv by simp

THEORY “ConvexPD” 198

lemma convex-unit-strict [simp]: {⊥}\ = ⊥
using convex-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-convex-pd-pcpo)

lemma convex-unit-bottom-iff [simp]: {x}\ = ⊥ ←→ x = ⊥
unfolding convex-unit-strict [symmetric] by (rule convex-unit-eq-iff)

lemma compact-convex-unit: compact x =⇒ compact {x}\
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-convex-unit-iff [simp]: compact {x}\ ←→ compact x
apply (safe elim!: compact-convex-unit)
apply (simp only: compact-def convex-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2])
done

lemma compact-convex-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪\ ys)

by (auto dest!: convex-pd.compact-imp-principal)

31.4 Induction rules
lemma convex-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}\

assumes insert:
∧

x ys. [[P {x}\; P ys]] =⇒ P ({x}\ ∪\ ys)
shows P (xs:: ′a::bifinite convex-pd)

proof (induct xs rule: convex-pd.principal-induct)
show P (convex-principal a) for a
proof (induct a rule: pd-basis-induct1)

case PDUnit
show ?case by (simp only: convex-unit-Rep-compact-basis [symmetric]) (rule

unit)
next

case PDPlus
show ?case
by (simp only: convex-unit-Rep-compact-basis [symmetric] convex-plus-principal

[symmetric])
(rule insert [OF unit PDPlus])

qed
qed (rule P)

lemma convex-pd-induct [case-names adm convex-unit convex-plus, induct type:
convex-pd]:

assumes P: adm P
assumes unit:

∧
x. P {x}\

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪\ ys)
shows P (xs:: ′a::bifinite convex-pd)

proof (induct xs rule: convex-pd.principal-induct)

THEORY “ConvexPD” 199

show P (convex-principal a) for a
proof (induct a rule: pd-basis-induct)

case PDUnit
then show ?case by (simp only: convex-unit-Rep-compact-basis [symmetric]

unit)
next

case PDPlus
then show ?case by (simp only: convex-plus-principal [symmetric] plus)

qed
qed (rule P)

31.5 Monadic bind
definition

convex-bind-basis ::
′a::bifinite pd-basis ⇒ (′a → ′b convex-pd) → ′b::bifinite convex-pd where
convex-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪\ y·f)

lemma ACI-convex-bind:
semilattice (λx y. Λ f . x·f ∪\ y·f)

apply unfold-locales
apply (simp add: convex-plus-assoc)
apply (simp add: convex-plus-commute)
apply (simp add: eta-cfun)
done

lemma convex-bind-basis-simps [simp]:
convex-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

convex-bind-basis (PDPlus t u) =
(Λ f . convex-bind-basis t·f ∪\ convex-bind-basis u·f)

unfolding convex-bind-basis-def
apply −
apply (rule fold-pd-PDUnit [OF ACI-convex-bind])
apply (rule fold-pd-PDPlus [OF ACI-convex-bind])
done

lemma convex-bind-basis-mono:
t ≤\ u =⇒ convex-bind-basis t v convex-bind-basis u

apply (erule convex-le-induct)
apply (erule (1) below-trans)
apply (simp add: monofun-LAM monofun-cfun)
apply (simp add: monofun-LAM monofun-cfun)
done

definition
convex-bind :: ′a::bifinite convex-pd → (′a → ′b convex-pd)→ ′b::bifinite convex-pd

THEORY “ConvexPD” 200

where
convex-bind = convex-pd.extension convex-bind-basis

syntax
-convex-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder convex-bind››

⋃
\-∈-./ -)› [0 , 0 , 10] 10)

translations⋃
\x∈xs. e == CONST convex-bind·xs·(Λ x. e)

lemma convex-bind-principal [simp]:
convex-bind·(convex-principal t) = convex-bind-basis t

unfolding convex-bind-def
apply (rule convex-pd.extension-principal)
apply (erule convex-bind-basis-mono)
done

lemma convex-bind-unit [simp]:
convex-bind·{x}\·f = f ·x

by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma convex-bind-plus [simp]:
convex-bind·(xs ∪\ ys)·f = convex-bind·xs·f ∪\ convex-bind·ys·f

by (induct xs rule: convex-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)

lemma convex-bind-strict [simp]: convex-bind·⊥·f = f ·⊥
unfolding convex-unit-strict [symmetric] by (rule convex-bind-unit)

lemma convex-bind-bind:
convex-bind·(convex-bind·xs·f)·g =

convex-bind·xs·(Λ x. convex-bind·(f ·x)·g)
by (induct xs, simp-all)

31.6 Map
definition

convex-map :: (′a::bifinite → ′b) → ′a convex-pd → ′b::bifinite convex-pd where
convex-map = (Λ f xs. convex-bind·xs·(Λ x. {f ·x}\))

lemma convex-map-unit [simp]:
convex-map·f ·{x}\ = {f ·x}\

unfolding convex-map-def by simp

lemma convex-map-plus [simp]:
convex-map·f ·(xs ∪\ ys) = convex-map·f ·xs ∪\ convex-map·f ·ys

unfolding convex-map-def by simp

lemma convex-map-bottom [simp]: convex-map·f ·⊥ = {f ·⊥}\

THEORY “ConvexPD” 201

unfolding convex-map-def by simp

lemma convex-map-ident: convex-map·(Λ x. x)·xs = xs
by (induct xs rule: convex-pd-induct, simp-all)

lemma convex-map-ID: convex-map·ID = ID
by (simp add: cfun-eq-iff ID-def convex-map-ident)

lemma convex-map-map:
convex-map·f ·(convex-map·g·xs) = convex-map·(Λ x. f ·(g·x))·xs

by (induct xs rule: convex-pd-induct, simp-all)

lemma convex-bind-map:
convex-bind·(convex-map·f ·xs)·g = convex-bind·xs·(Λ x. g·(f ·x))

by (simp add: convex-map-def convex-bind-bind)

lemma convex-map-bind:
convex-map·f ·(convex-bind·xs·g) = convex-bind·xs·(Λ x. convex-map·f ·(g·x))

by (simp add: convex-map-def convex-bind-bind)

lemma ep-pair-convex-map: ep-pair e p =⇒ ep-pair (convex-map·e) (convex-map·p)
apply standard
apply (induct-tac x rule: convex-pd-induct, simp-all add: ep-pair .e-inverse)
apply (induct-tac y rule: convex-pd-induct)
apply (simp-all add: ep-pair .e-p-below monofun-cfun)
done

lemma deflation-convex-map: deflation d =⇒ deflation (convex-map·d)
apply standard
apply (induct-tac x rule: convex-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: convex-pd-induct)
apply (simp-all add: deflation.below monofun-cfun)
done

lemma finite-deflation-convex-map:
assumes finite-deflation d shows finite-deflation (convex-map·d)

proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (convex-map·d)

by (rule deflation-convex-map)
have finite (range (λx. d·x)) by (rule d.finite-range)
hence finite (Rep-compact-basis −‘ range (λx. d·x))

by (rule finite-vimageI , simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis −‘ range (λx. d·x))) by simp
hence finite (Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘ range (λx. d·x))))

by (rule finite-vimageI , simp add: inj-on-def Rep-pd-basis-inject)
hence ∗: finite (convex-principal ‘ Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘

range (λx. d·x)))) by simp

THEORY “ConvexPD” 202

hence finite (range (λxs. convex-map·d·xs))
apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac xs rule: convex-pd.principal-induct)
apply (simp add: adm-mem-finite ∗)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: convex-unit-Rep-compact-basis [symmetric] convex-map-unit)
apply simp
apply (subgoal-tac ∃ b. d·(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imageI)
apply (rule vimageI2)
apply (simp add: Rep-PDUnit)
apply (rule range-eqI)
apply (erule sym)
apply (rule exI)
apply (rule Abs-compact-basis-inverse [symmetric])
apply (simp add: d.compact)
apply (simp only: convex-plus-principal [symmetric] convex-map-plus)
apply clarsimp
apply (rule imageI)
apply (rule vimageI2)
apply (simp add: Rep-PDPlus)
done

thus finite {xs. convex-map·d·xs = xs}
by (rule finite-range-imp-finite-fixes)

qed

31.7 Convex powerdomain is bifinite
lemma approx-chain-convex-map:

assumes approx-chain a
shows approx-chain (λi. convex-map·(a i))
using assms unfolding approx-chain-def
by (simp add: lub-APP convex-map-ID finite-deflation-convex-map)

instance convex-pd :: (bifinite) bifinite
proof

show ∃ (a::nat ⇒ ′a convex-pd → ′a convex-pd). approx-chain a
using bifinite [where ′a= ′a]
by (fast intro!: approx-chain-convex-map)

qed

31.8 Join
definition

convex-join :: ′a::bifinite convex-pd convex-pd → ′a convex-pd where
convex-join = (Λ xss. convex-bind·xss·(Λ xs. xs))

lemma convex-join-unit [simp]:

THEORY “ConvexPD” 203

convex-join·{xs}\ = xs
unfolding convex-join-def by simp

lemma convex-join-plus [simp]:
convex-join·(xss ∪\ yss) = convex-join·xss ∪\ convex-join·yss

unfolding convex-join-def by simp

lemma convex-join-bottom [simp]: convex-join·⊥ = ⊥
unfolding convex-join-def by simp

lemma convex-join-map-unit:
convex-join·(convex-map·convex-unit·xs) = xs

by (induct xs rule: convex-pd-induct, simp-all)

lemma convex-join-map-join:
convex-join·(convex-map·convex-join·xsss) = convex-join·(convex-join·xsss)

by (induct xsss rule: convex-pd-induct, simp-all)

lemma convex-join-map-map:
convex-join·(convex-map·(convex-map·f)·xss) =
convex-map·f ·(convex-join·xss)

by (induct xss rule: convex-pd-induct, simp-all)

31.9 Conversions to other powerdomains

Convex to upper
lemma convex-le-imp-upper-le: t ≤\ u =⇒ t ≤] u
unfolding convex-le-def by simp

definition
convex-to-upper :: ′a::bifinite convex-pd → ′a upper-pd where
convex-to-upper = convex-pd.extension upper-principal

lemma convex-to-upper-principal [simp]:
convex-to-upper ·(convex-principal t) = upper-principal t

unfolding convex-to-upper-def
apply (rule convex-pd.extension-principal)
apply (rule upper-pd.principal-mono)
apply (erule convex-le-imp-upper-le)
done

lemma convex-to-upper-unit [simp]:
convex-to-upper ·{x}\ = {x}]

by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma convex-to-upper-plus [simp]:
convex-to-upper ·(xs ∪\ ys) = convex-to-upper ·xs ∪] convex-to-upper ·ys

by (induct xs rule: convex-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)

THEORY “ConvexPD” 204

lemma convex-to-upper-bind [simp]:
convex-to-upper ·(convex-bind·xs·f) =

upper-bind·(convex-to-upper ·xs)·(convex-to-upper oo f)
by (induct xs rule: convex-pd-induct, simp, simp, simp)

lemma convex-to-upper-map [simp]:
convex-to-upper ·(convex-map·f ·xs) = upper-map·f ·(convex-to-upper ·xs)

by (simp add: convex-map-def upper-map-def cfcomp-LAM)

lemma convex-to-upper-join [simp]:
convex-to-upper ·(convex-join·xss) =

upper-bind·(convex-to-upper ·xss)·convex-to-upper
by (simp add: convex-join-def upper-join-def cfcomp-LAM eta-cfun)

Convex to lower
lemma convex-le-imp-lower-le: t ≤\ u =⇒ t ≤[u
unfolding convex-le-def by simp

definition
convex-to-lower :: ′a::bifinite convex-pd → ′a lower-pd where
convex-to-lower = convex-pd.extension lower-principal

lemma convex-to-lower-principal [simp]:
convex-to-lower ·(convex-principal t) = lower-principal t

unfolding convex-to-lower-def
apply (rule convex-pd.extension-principal)
apply (rule lower-pd.principal-mono)
apply (erule convex-le-imp-lower-le)
done

lemma convex-to-lower-unit [simp]:
convex-to-lower ·{x}\ = {x}[

by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma convex-to-lower-plus [simp]:
convex-to-lower ·(xs ∪\ ys) = convex-to-lower ·xs ∪[convex-to-lower ·ys

by (induct xs rule: convex-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)

lemma convex-to-lower-bind [simp]:
convex-to-lower ·(convex-bind·xs·f) =

lower-bind·(convex-to-lower ·xs)·(convex-to-lower oo f)
by (induct xs rule: convex-pd-induct, simp, simp, simp)

lemma convex-to-lower-map [simp]:
convex-to-lower ·(convex-map·f ·xs) = lower-map·f ·(convex-to-lower ·xs)

by (simp add: convex-map-def lower-map-def cfcomp-LAM)

THEORY “Powerdomains” 205

lemma convex-to-lower-join [simp]:
convex-to-lower ·(convex-join·xss) =

lower-bind·(convex-to-lower ·xss)·convex-to-lower
by (simp add: convex-join-def lower-join-def cfcomp-LAM eta-cfun)

Ordering property
lemma convex-pd-below-iff :
(xs v ys) =
(convex-to-upper ·xs v convex-to-upper ·ys ∧
convex-to-lower ·xs v convex-to-lower ·ys)

apply (induct xs rule: convex-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (simp add: convex-le-def)
done

lemmas convex-plus-below-plus-iff =
convex-pd-below-iff [where xs=xs ∪\ ys and ys=zs ∪\ ws]
for xs ys zs ws

lemmas convex-pd-below-simps =
convex-unit-below-plus-iff
convex-plus-below-unit-iff
convex-plus-below-plus-iff
convex-unit-below-iff
convex-to-upper-unit
convex-to-upper-plus
convex-to-lower-unit
convex-to-lower-plus
upper-pd-below-simps
lower-pd-below-simps

end

32 Powerdomains
theory Powerdomains
imports ConvexPD Domain
begin

32.1 Universal domain embeddings
definition upper-emb = udom-emb (λi. upper-map·(udom-approx i))
definition upper-prj = udom-prj (λi. upper-map·(udom-approx i))

definition lower-emb = udom-emb (λi. lower-map·(udom-approx i))
definition lower-prj = udom-prj (λi. lower-map·(udom-approx i))

definition convex-emb = udom-emb (λi. convex-map·(udom-approx i))
definition convex-prj = udom-prj (λi. convex-map·(udom-approx i))

THEORY “Powerdomains” 206

lemma ep-pair-upper : ep-pair upper-emb upper-prj
unfolding upper-emb-def upper-prj-def
by (simp add: ep-pair-udom approx-chain-upper-map)

lemma ep-pair-lower : ep-pair lower-emb lower-prj
unfolding lower-emb-def lower-prj-def
by (simp add: ep-pair-udom approx-chain-lower-map)

lemma ep-pair-convex: ep-pair convex-emb convex-prj
unfolding convex-emb-def convex-prj-def
by (simp add: ep-pair-udom approx-chain-convex-map)

32.2 Deflation combinators
definition upper-defl :: udom defl → udom defl

where upper-defl = defl-fun1 upper-emb upper-prj upper-map

definition lower-defl :: udom defl → udom defl
where lower-defl = defl-fun1 lower-emb lower-prj lower-map

definition convex-defl :: udom defl → udom defl
where convex-defl = defl-fun1 convex-emb convex-prj convex-map

lemma cast-upper-defl:
cast·(upper-defl·A) = upper-emb oo upper-map·(cast·A) oo upper-prj

using ep-pair-upper finite-deflation-upper-map
unfolding upper-defl-def by (rule cast-defl-fun1)

lemma cast-lower-defl:
cast·(lower-defl·A) = lower-emb oo lower-map·(cast·A) oo lower-prj

using ep-pair-lower finite-deflation-lower-map
unfolding lower-defl-def by (rule cast-defl-fun1)

lemma cast-convex-defl:
cast·(convex-defl·A) = convex-emb oo convex-map·(cast·A) oo convex-prj

using ep-pair-convex finite-deflation-convex-map
unfolding convex-defl-def by (rule cast-defl-fun1)

32.3 Domain class instances
instantiation upper-pd :: (domain) domain
begin

definition
emb = upper-emb oo upper-map·emb

definition
prj = upper-map·prj oo upper-prj

THEORY “Powerdomains” 207

definition
defl (t:: ′a upper-pd itself) = upper-defl·DEFL(′a)

definition
(liftemb :: ′a upper-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a upper-pd u) = u-map·prj

definition
liftdefl (t:: ′a upper-pd itself) = liftdefl-of ·DEFL(′a upper-pd)

instance proof
show ep-pair emb (prj :: udom → ′a upper-pd)

unfolding emb-upper-pd-def prj-upper-pd-def
by (intro ep-pair-comp ep-pair-upper ep-pair-upper-map ep-pair-emb-prj)

next
show cast·DEFL(′a upper-pd) = emb oo (prj :: udom → ′a upper-pd)

unfolding emb-upper-pd-def prj-upper-pd-def defl-upper-pd-def cast-upper-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff upper-map-map)

qed (fact liftemb-upper-pd-def liftprj-upper-pd-def liftdefl-upper-pd-def)+

end

instantiation lower-pd :: (domain) domain
begin

definition
emb = lower-emb oo lower-map·emb

definition
prj = lower-map·prj oo lower-prj

definition
defl (t:: ′a lower-pd itself) = lower-defl·DEFL(′a)

definition
(liftemb :: ′a lower-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a lower-pd u) = u-map·prj

definition
liftdefl (t:: ′a lower-pd itself) = liftdefl-of ·DEFL(′a lower-pd)

instance proof
show ep-pair emb (prj :: udom → ′a lower-pd)

unfolding emb-lower-pd-def prj-lower-pd-def
by (intro ep-pair-comp ep-pair-lower ep-pair-lower-map ep-pair-emb-prj)

THEORY “Powerdomains” 208

next
show cast·DEFL(′a lower-pd) = emb oo (prj :: udom → ′a lower-pd)

unfolding emb-lower-pd-def prj-lower-pd-def defl-lower-pd-def cast-lower-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff lower-map-map)

qed (fact liftemb-lower-pd-def liftprj-lower-pd-def liftdefl-lower-pd-def)+

end

instantiation convex-pd :: (domain) domain
begin

definition
emb = convex-emb oo convex-map·emb

definition
prj = convex-map·prj oo convex-prj

definition
defl (t:: ′a convex-pd itself) = convex-defl·DEFL(′a)

definition
(liftemb :: ′a convex-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a convex-pd u) = u-map·prj

definition
liftdefl (t:: ′a convex-pd itself) = liftdefl-of ·DEFL(′a convex-pd)

instance proof
show ep-pair emb (prj :: udom → ′a convex-pd)

unfolding emb-convex-pd-def prj-convex-pd-def
by (intro ep-pair-comp ep-pair-convex ep-pair-convex-map ep-pair-emb-prj)

next
show cast·DEFL(′a convex-pd) = emb oo (prj :: udom → ′a convex-pd)
unfolding emb-convex-pd-def prj-convex-pd-def defl-convex-pd-def cast-convex-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff convex-map-map)

qed (fact liftemb-convex-pd-def liftprj-convex-pd-def liftdefl-convex-pd-def)+

end

lemma DEFL-upper : DEFL(′a::domain upper-pd) = upper-defl·DEFL(′a)
by (rule defl-upper-pd-def)

lemma DEFL-lower : DEFL(′a::domain lower-pd) = lower-defl·DEFL(′a)
by (rule defl-lower-pd-def)

lemma DEFL-convex: DEFL(′a::domain convex-pd) = convex-defl·DEFL(′a)
by (rule defl-convex-pd-def)

THEORY “HOLCF” 209

32.4 Isomorphic deflations
lemma isodefl-upper :

isodefl d t =⇒ isodefl (upper-map·d) (upper-defl·t)
apply (rule isodeflI)
apply (simp add: cast-upper-defl cast-isodefl)
apply (simp add: emb-upper-pd-def prj-upper-pd-def)
apply (simp add: upper-map-map)
done

lemma isodefl-lower :
isodefl d t =⇒ isodefl (lower-map·d) (lower-defl·t)

apply (rule isodeflI)
apply (simp add: cast-lower-defl cast-isodefl)
apply (simp add: emb-lower-pd-def prj-lower-pd-def)
apply (simp add: lower-map-map)
done

lemma isodefl-convex:
isodefl d t =⇒ isodefl (convex-map·d) (convex-defl·t)

apply (rule isodeflI)
apply (simp add: cast-convex-defl cast-isodefl)
apply (simp add: emb-convex-pd-def prj-convex-pd-def)
apply (simp add: convex-map-map)
done

32.5 Domain package setup for powerdomains
lemmas [domain-defl-simps] = DEFL-upper DEFL-lower DEFL-convex
lemmas [domain-map-ID] = upper-map-ID lower-map-ID convex-map-ID
lemmas [domain-isodefl] = isodefl-upper isodefl-lower isodefl-convex

lemmas [domain-deflation] =
deflation-upper-map deflation-lower-map deflation-convex-map

setup ‹
fold Domain-Take-Proofs.add-rec-type
[(type-name ‹upper-pd›, [true]),
(type-name ‹lower-pd›, [true]),
(type-name ‹convex-pd›, [true])]

›

end

theory HOLCF
imports

Main
Domain
Powerdomains

THEORY “HOLCF” 210

begin

default-sort domain

end

	Partial orders
	Type class for partial orders
	Upper bounds
	Least upper bounds
	Countable chains
	Finite chains

	Classes cpo and pcpo
	Complete partial orders
	Pointed cpos
	Chain-finite and flat cpos
	Discrete cpos

	Continuity and monotonicity
	Definitions
	Equivalence of alternate definition
	Collection of continuity rules
	Continuity of basic functions
	Finite chains and flat pcpos

	Admissibility and compactness
	Definitions
	Admissibility on chain-finite types
	Admissibility of special formulae and propagation
	Compactness

	Class instances for the full function space
	Full function space is a partial order
	Full function space is chain complete
	Full function space is pointed
	Propagation of monotonicity and continuity

	The cpo of cartesian products
	Unit type is a pcpo
	Product type is a partial order
	Monotonicity of Pair, fst, snd
	Product type is a cpo
	Product type is pointed
	Continuity of Pair, fst, snd
	Compactness and chain-finiteness

	Discrete cpo types
	Discrete cpo class instance
	undiscr

	Subtypes of pcpos
	Proving a subtype is a partial order
	Proving a subtype is finite
	Proving a subtype is chain-finite
	Proving a subtype is complete
	Continuity of Rep and Abs

	Proving subtype elements are compact
	Proving a subtype is pointed
	Strictness of Rep and Abs

	Proving a subtype is flat
	HOLCF type definition package

	The type of continuous functions
	Definition of continuous function type
	Syntax for continuous lambda abstraction
	Continuous function space is pointed
	Basic properties of continuous functions
	Beta-reduction simproc

	Continuity of application
	Continuity simplification procedure
	Miscellaneous
	Continuous injection-retraction pairs
	Identity and composition
	Strictified functions
	Continuity of let-bindings

	Continuous deflations and ep-pairs
	Continuous deflations
	Deflations with finite range
	Continuous embedding-projection pairs
	Uniqueness of ep-pairs
	Composing ep-pairs

	The type of strict products
	Definition of strict product type
	Definitions of constants
	Case analysis
	Properties of spair
	Properties of sfst and ssnd
	Compactness
	Properties of ssplit
	Strict product preserves flatness

	The type of lifted values
	Definition of new type for lifting
	Ordering on lifted cpo
	Lifted cpo is a partial order
	Lifted cpo is a cpo
	Lifted cpo is pointed
	Continuity of Iup and Ifup
	Continuous versions of constants

	Lifting types of class type to flat pcpo's
	Lift as a datatype
	Lift is flat
	Continuity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 case-lift
	Further operations

	The type of lifted booleans
	Type definition and constructors
	Case analysis
	Boolean connectives
	Rewriting of HOLCF operations to HOL functions
	Compactness

	The type of strict sums
	Definition of strict sum type
	Definitions of constructors
	Properties of sinl and sinr
	Case analysis
	Case analysis combinator
	Strict sum preserves flatness

	The Strict Function Type
	Map functions for various types
	Map operator for continuous function space
	Map operator for product type
	Map function for lifted cpo
	Map function for strict products
	Map function for strict sums
	Map operator for strict function space

	The cpo of cartesian products
	Continuous case function for unit type
	Continuous version of split function
	Convert all lemmas to the continuous versions

	Profinite and bifinite cpos
	Chains of finite deflations
	Omega-profinite and bifinite domains
	Building approx chains
	Class instance proofs

	Defining algebraic domains by ideal completion
	Ideals over a preorder
	Lemmas about least upper bounds
	Locale for ideal completion
	Principal ideals approximate all elements

	Defining functions in terms of basis elements

	A universal bifinite domain
	Basis for universal domain
	Basis datatype
	Basis ordering
	Generic take function

	Defining the universal domain by ideal completion
	Compact bases of domains
	Universality of udom
	Choosing a maximal element from a finite set
	Compact basis take function
	Rank of basis elements
	Sequencing basis elements
	Embedding and projection on basis elements
	EP-pair from any bifinite domain into udom

	Chain of approx functions for type udom

	Algebraic deflations
	Type constructor for finite deflations
	Defining algebraic deflations by ideal completion
	Applying algebraic deflations
	Deflation combinators

	Representable domains
	Class of representable domains
	Domains are bifinite
	Universal domain ep-pairs
	Type combinators
	Class instance proofs
	Universal domain
	Lifted cpo
	Strict function space
	Continuous function space
	Strict product
	Cartesian product
	Unit type
	Discrete cpo
	Strict sum
	Lifted HOL type

	The unit domain
	Fixed point operator and admissibility
	Iteration
	Least fixed point operator
	Fixed point induction
	Fixed-points on product types

	Package for defining recursive functions in HOLCF
	Pattern-match monad
	Run operator
	Monad plus operator

	Match functions for built-in types
	Mutual recursion
	Initializing the fixrec package

	Domain package
	Continuous isomorphisms
	Proofs about take functions
	Finiteness
	Proofs about constructor functions
	ML setup
	Representations of types
	Deflations as sets
	Proving a subtype is representable
	Isomorphic deflations
	Setting up the domain package

	A compact basis for powerdomains
	A compact basis for powerdomains
	Unit and plus constructors
	Fold operator

	Upper powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Upper powerdomain is bifinite
	Join

	Lower powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Lower powerdomain is bifinite
	Join

	Convex powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Convex powerdomain is bifinite
	Join
	Conversions to other powerdomains

	Powerdomains
	Universal domain embeddings
	Deflation combinators
	Domain class instances
	Isomorphic deflations
	Domain package setup for powerdomains

