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THEORY “Cpo”

theory Cpo
imports Main
begin

1 Partial orders

declare [[typedef-overloaded))

1.1 Type class for partial orders

class below =
fixes below :: 'a = 'a = bool
begin

notation (ASCII)
below (infix << 50)

notation
below (infix <C» 50)

abbreviation not-below :: 'a = 'a = bool (infix «Z» 50)
where not-below z y = — below = y

notation (ASCII)
not-below (infix (~<<> 50)

lemma below-eq-trans: a & b — b=c=— a C ¢
by (rule subst)

lemma eg-below-trans: a = b=— bC ¢c = a C ¢
by (rule ssubst)

end

class po = below +
assumes below-refl [iff]: z C x
assumes below-trans: x Ty —= yC 2 —= 2z C 2
assumes below-antisym: t Cy—= yCz =z =y
begin

lemma eg-imp-below: © =y =z C y
by simp

lemma boz-below: a T b=—cCa=—=bC d=— cC d
by (rule below-trans [OF below-trans])

lemma po-eq-conv: zt =y+— 2z CyAyLCx



THEORY “Cpo” 10

by (fast intro!: below-antisym)

lemma rev-below-trans: yC 2 —= a2 C y = z C 2
by (rule below-trans)

lemma not-below2not-eq: x L y = x + y
by auto

end

lemmas HOLCF-trans-rules [trans] =
below-trans
below-antisym
below-eq-trans
eq-below-trans

context po
begin

1.2 Upper bounds

definition is-ub :: ‘a set = 'a = bool (infix «<|> 55)
where S <| z +— (VyeS. y C z)

lemma is-ubl: (A\z.z€ S=2C u) = S <|u
by (simp add: is-ub-def)

lemma is-ubD: [S <] u; 2 € ] =z C u
by (simp add: is-ub-def)

lemma ub-imagel: (A\z. z € S = fz Cu) = (A\z. fz) ‘S <] u
unfolding is-ub-def by fast

lemma ub-imageD: [f ‘S <| u;z € 8] = fz C u
unfolding is-ub-def by fast

lemma ub-rangel: (\i. S i C z) = range S <| z
unfolding is-ub-def by fast

lemma ub-rangeD: range S <| 2 = SiC z
unfolding is-ub-def by fast

lemma is-ub-empty [simp]: {} <] u
unfolding is-ub-def by fast

lemma is-ub-insert [simp): (insert z A) <] y=(z Sy A A <] y)
unfolding is-ub-def by fast

lemma is-ub-upward: [S <|z; 2 Cy] = S <| y
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unfolding is-ub-def by (fast intro: below-trans)

1.3 Least upper bounds
definition is-lub :: ‘a set = 'a = bool (infix «<<|> 55)
where S <<|z+— S <]z A Vu. S<|lu— 2zC u)

definition lub :: ‘a set = 'a
where lub S = (THE z. S <<| 1)

end

syntax (ASCII)
-BLub :: [pttrn, 'a set, 'b] = 'b («(<indent=3 notation=<binder LUB»LUB -:-./
) (0,0, 10] 10)

syntax
-BLub :: [pttrn, 'a set, 'b] = ‘b («(<indent=3 notation=<binder | |»|]-€-./ -)»
0,0, 10] 10)

syntax-consts
-BLub = lub

translations
LUB z:A. t &= CONST lub ((M\z. t) < A)

context po
begin

abbreviation Lub (binder «| |» 10)
where | |n. t n = lub (range t)

notation (ASCII)
Lub (binder <LUB » 10)

access to some definition as inference rule

lemma is-lubD1: S <<|z = S <| z
unfolding is-lub-def by fast

lemma is-lubD2: [S <<|z; S <] u] = 2 C u
unfolding is-lub-def by fast

lemma is-lubl: [S <| z; Au. S <] u=2Cu] = S <<|z
unfolding is-lub-def by fast

lemma is-lub-below-iff: S <<| z = 2 C u +— 5 <| u
unfolding is-lub-def is-ub-def by (metis below-trans)

lubs are unique
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lemma is-lub-unique: S <<|z = S <<|y= 2=y
unfolding is-lub-def is-ub-def by (blast intro: below-antisym)
technical lemmas about lub and (<<])
lemma is-lub-lub: M <<| 2 = M <<| lub M
unfolding lub-def by (rule thel [OF - is-lub-unique])

lemma lub-eql: M <<| | = lub M =1
by (rule is-lub-unique [OF is-lub-lub])

lemma is-lub-singleton [simpl: {z} <<| z
by (simp add: is-lub-def)

lemma lub-singleton [simp]: lub {z} = =
by (rule is-lub-singleton [THEN lub-eql])

lemma is-lub-bin:  C y = {z, y} <<| y
by (simp add: is-lub-def)

lemma lub-bin: 2 C y = lub {z, y} =y
by (rule is-lub-bin [THEN lub-eql])

lemma is-lub-mazimal: S <| = 2 € S = S <<| =
by (erule is-lubl, erule (1) is-ubD)

lemma lub-mazimal: S <|z =z € S = lub S ==z
by (rule is-lub-mazimal [THEN lub-eql))

1.4 Countable chains

definition chain :: (nat = 'a) = bool
where — Here we use countable chains and I prefer to code them as functions!
chain Y = (Vi. Yi T Y (Suc 1))

lemma chainl: (N\i. YiC Y (Suc i)) = chain Y
unfolding chain-def by fast

lemma chainE: chain Y = Y i C Y (Suc i)
unfolding chain-def by fast

chains are monotone functions
lemma chain-mono-less: chain ¥ —= i< j= Yi¢LC Yj

by (erule less-Suc-induct, erule chainE, erule below-trans)

lemma chain-mono: chain ¥ — i< j=— YiC Yj
by (cases i = j) (simp-all add: chain-mono-less)

lemma chain-shift: chain ¥ = chain (Ai. Y (¢ + 7))
by (rule chainl, simp, erule chainkE)



THEORY “Cpo” 13

technical lemmas about (least) upper bounds of chains

lemma is-lub-rangeD1: range S <<|z = SiC
by (rule is-lubD1 [THEN ub-rangeD))

lemma is-ub-range-shift: chain S = range (A\i. S (i + j)) <| z = range S <| z
apply (rule iffT)
apply (rule ub-rangel)
apply (rule-tac y=S (i + j) in below-trans)
apply (erule chain-mono)
apply (rule le-addl)
apply (erule ub-rangeD)
apply (rule ub-rangel)
apply (erule ub-rangeD)
done

lemma is-lub-range-shift: chain S = range (\i. S (i + j)) <<| £ = range S <<|
x
by (simp add: is-lub-def is-ub-range-shift)
the lub of a constant chain is the constant
lemma chain-const [simp]: chain (\i. ¢)

by (simp add: chainl)

lemma is-lub-const: range (Az. ¢) <<| ¢
by (blast dest: ub-rangeD intro: is-lubl ub-rangel)

lemma lub-const [simp]: (| |i. ¢) = ¢
by (rule is-lub-const [THEN lub-eql])

1.5 Finite chains

definition maz-in-chain :: nat = (nat = 'a) = bool
where — finite chains, needed for monotony of continuous functions
maz-in-chain i C +— (Vj. i <j— Ci= C})

definition finite-chain :: (nat = 'a) = bool
where finite-chain C = (chain C A (3i. maz-in-chain i C))

results about finite chains

lemma maz-in-chainl: (\j. i < j = Yi= Y j) = maz-in-chain i ¥
unfolding max-in-chain-def by fast

lemma maz-in-chainD: max-in-chain i ¥ — i < j— Yi=Y}j
unfolding maz-in-chain-def by fast

lemma finite-chainl: chain C =—> max-in-chain i C = finite-chain C
unfolding finite-chain-def by fast
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lemma finite-chainE: [finite-chain C; Ni. [chain C; maz-in-chain i C] = R]
= R
unfolding finite-chain-def by fast

lemma lub-finchi: chain C = max-in-chain i C = range C <<| C'i
apply (rule is-lubl)
apply (rule ub-rangel, rename-tac j)
apply (rule-tac =i and y=j in linorder-le-cases)
apply (drule (1) max-in-chainD, simp)
apply (erule (1) chain-mono)
apply (erule ub-rangeD)
done

lemma lub-finch2: finite-chain C = range C <<| C (LEAST i. max-in-chain i
)

apply (erule finite-chainFE)

apply (erule LeastI2 [where Q=M\i. range C <<| C i)

apply (erule (1) lub-finchl)

done

lemma finch-imp-finite-range: finite-chain Y = finite (range Y)

apply (erule finite-chainFE)

apply (rule-tac B=Y ‘ {..i} in finite-subset)
apply (rule subsetl)

apply (erule rangeE, rename-tac j)

apply (rule-tac z=i and y=j in linorder-le-cases)
apply (subgoal-tac Y j = Y i, simp)
apply (simp add: maz-in-chain-def)

apply simp

apply simp

done

lemma finite-range-has-mazx:
fixes f :: nat = 'a
and 7 :: 'a = 'a = bool
assumes mono: \ij. i <j= r (fi) (fj)
assumes finite-range: finite (range f)
shows 3k. Vi. r (fi) (fk)
proof (intro exl alll)
fix 7 :: nat
let % — LEAST k. fk = fi
let %k = Maz ((Ax. LEAST k. f k = z) ‘ range f)
have ?j < %
proof (rule Maz-ge)
show finite ((Ax. LEAST k. fk = z) ‘ range f)
using finite-range by (rule finite-imagel)
show ?j € (Az. LEAST k. fk = z) ‘ range f
by (intro imagel rangel)
qed
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hence 7 (f %)) (f %)
by (rule mono)
also have f 7j = f 1
by (rule Leastl, rule refl)
finally show r (f ) (f %) .
qed

15

lemma finite-range-imp-finch: chain ¥ = finite (range Y) = finite-chain Y

apply (subgoal-tac k. Vi. YiC Y k)
apply (erule exE)

apply (rule finite-chainl, assumption)
apply (rule maz-in-chainl)

apply (rule below-antisym)

apply (erule (1) chain-mono)
apply (erule spec)
apply (rule finite-range-has-max)
apply (erule (1) chain-mono)
apply assumption
done

lemma bin-chain: © © y = chain (Ai. if i=0 then x else y)

by (rule chainl) simp

lemma bin-chainmaz: © T y = maz-in-chain (Suc 0) (ANi. if i=0 then z else y)

by (simp add: maz-in-chain-def)

lemma is-lub-bin-chain: * C y = range (Ai::nat. if i=0 then x else y) <<| y

apply (frule bin-chain)
apply (drule bin-chainmax)
apply (drule (1) lub-finchl)
apply simp

done

the maximal element in a chain is its lub

lemma lub-chain-mazelem: Yi=c = Vi. YiC ¢ = lub (range Y) = ¢

by (blast dest: ub-rangeD intro: lub-eql is-lubl ub-rangel)

end

2 Classes cpo and pcpo

2.1 Complete partial orders

The class cpo of chain complete partial orders

class cpo = po +
assumes cpo: chain S = Jz. range S <<| z

default-sort cpo
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context cpo
begin

in cpo’s everthing equal to THE lub has lub properties for every chain

lemma cpo-lubl: chain S = range S <<| (| |i. S i)
by (fast dest: cpo elim: is-lub-lub)

lemma thelubE: [chain S; (| ]i. S i) =[] = range S <<| 1
by (blast dest: cpo intro: is-lub-lub)

Properties of the lub

lemma is-ub-thelub: chain S = Sz C (| 4. S 1)
by (blast dest: cpo intro: is-lub-lub [THEN is-lub-rangeD1])

lemma is-lub-thelub: [chain S; range S <| z] = (|Ji. S9) C «
by (blast dest: cpo intro: is-lub-lub [THEN is-lubD2])

lemma lub-below-iff: chain S = (| |i. S4) CE z +— (Vi. S C z)
by (simp add: is-lub-below-iff [OF cpo-lubl] is-ub-def)

lemma [ub-below: [chain S; N\i. SiC z] = (| ]i. S C =
by (simp add: lub-below-iff)

lemma below-lub: [chain S; x C Si] = « C (| ] S i)
by (erule below-trans, erule is-ub-thelub)

lemma lub-range-mono: [range X C range Y; chain Y; chain X]| = (| ]i. X @)
C (s Y9

apply (erule lub-below)

apply (subgoal-tac 3j. X i = Y j)

apply clarsimp

apply (erule is-ub-thelub)

apply auto

done

lemma [ub-range-shift: chain ¥ = (| |i. Y (i + j)) = (IJi. Y 9)
apply (rule below-antisym)
apply (rule lub-range-mono)
apply fast
apply assumption
apply (erule chain-shift)
apply (rule lub-below)
apply assumption
apply (rule-tac i=i in below-lub)
apply (erule chain-shift)
apply (erule chain-mono)
apply (rule le-addl)
done
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lemma mazinch-is-thelub: chain Y = maz-in-chain i ¥ = ((| 4. Y i) = Y i)
apply (rule iffI)
apply (fast intro!: lub-eql lub-finchl)
apply (unfold maz-in-chain-def)
apply (safe intro!: below-antisym)
apply (fast elim!: chain-mono)
apply (drule sym)
apply (force elim!: is-ub-thelub)
done

the C relation between two chains is preserved by their lubs

lemma lub-mono: [chain X; chain Y; Ni. X1 C Yi] = (| ]i. X ) C (| ]i. Y9)
by (fast elim: lub-below below-lub)

the = relation between two chains is preserved by their lubs

lemma lub-eq: (N\i. X i=Yi)= (IJi. X9) = (] Y1)
by simp

lemma ch2ch-lub:
assumes 1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (Nj. Y ij)
shows chain (\i. | |j. Y i7)
apply (rule chainl)
apply (rule lub-mono [OF 2 2])
apply (rule chainE [OF 1])
done

lemma diag-lub:
assumes I1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (Nj. Y ij)
shows (| |i. | ]j. Yij) = (i Yii)
proof (rule below-antisym)
have 3: chain (\i. Y i 1)
apply (rule chainl)
apply (rule below-trans)
apply (rule chainE [OF 1])
apply (rule chainE [OF 2])
done
have /: chain (M\i. | |j. Y ij)
by (rule ch2ch-lub [OF 1 2])
show (| |4. [ |4. Yij) C (e Yid)
apply (rule lub-below [OF 4])
apply (rule lub-below [OF 2])
apply (rule below-lub [OF 3])
apply (rule below-trans)
apply (rule chain-mono [OF 1 maz.cobounded1])
apply (rule chain-mono [OF 2 maz.cobounded?2))
done

Py
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show (| |i. Yid) C (] |]j. Yij)
apply (rule lub-mono [OF 3 4])
apply (rule is-ub-thelub [OF 2])
done
qed

lemma ez-lub:
assumes I1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (\j. Y ij)

shows (|]7. | |j. Yij) = (Lj. Ll Yij)
by (simp add: diag-lub 1 2)

end

2.2 Pointed cpos

The class pcpo of pointed cpos

class pcpo = cpo +
assumes least: dz. Vy. 2 C y
begin

definition bottom :: 'a (<L»)
where bottom = (THE z. Vy. z C y)

lemma minimal [iff]: L C x
unfolding bottom-def
apply (rule the1l2)
apply (rule ex-ex1I)
apply (rule least)
apply (blast intro: below-antisym)

apply simp
done

end

Old "UU" syntax:
abbreviation (input) UU = bottom

Simproc to rewrite L = z to x = L.

setup <Reorient-Proc.add (fn Const- <bottom -» => true | - => false)»
simproc-setup reorient-bottom (L = x) = <K Reorient-Proc.procy

useful lemmas about L
lemma below-bottom-iff [simp]: t C L «— = L
by (simp add: po-eq-conv)

lemma eg-bottom-iff: t = L +— z C L
by simp

18
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lemma bottoml: x C 1 — =z = L
by (subst eg-bottom-iff)

lemma lub-eg-bottom-iff: chain ¥ = (| ]i. Y i) = L +— (Vi. Yi= 1)
by (simp only: eq-bottom-iff lub-below-iff)

2.3 Chain-finite and flat cpos

further useful classes for HOLCF domains

class chfin = po +
assumes chfin: chain Y = I n. maz-in-chain n Y
begin

subclass cpo
apply standard
apply (frule chfin)
apply (blast intro: lub-finchl)
done

lemma chfin2finch: chain Y = finite-chain Y
by (simp add: chfin finite-chain-def)

end

class flat = pcpo +
assumes az-flat: tCy =z =1 Vzr=y
begin

subclass chfin
proof
fix Y
assume *: chain Y
show I n. maz-in-chain n Y
apply (unfold maz-in-chain-def)
apply (cases Vi. Yi= 1)
apply simp
apply simp
apply (erule exE)
apply (rule-tac z=i in ezl)
apply clarify
using * apply (blast dest: chain-mono ax-flat)
done
qed

lemma flat-below-iff: x CE y+—z=1LVz=y
by (safe dest!: az-flat)

lemma flat-eq: a # L = a C b= (a =)

19
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by (safe dest!: az-flat)

end

2.4 Discrete cpos

class discrete-cpo = below +
assumes discrete-cpo [simp]: x C y «— z =y
begin

subclass po
by standard simp-all

In a discrete cpo, every chain is constant

lemma discrete-chain-const:
assumes S: chain S
shows Jz. S = (Ai. z)
proof (intro exl ext)
fix 7 :: nat
from S le0 have S 0 C S i by (rule chain-mono)
then have S 0 = S i by simp
then show S i = S 0 by (rule sym)
qed

subclass chfin
proof
fix S :: nat = a
assume S: chain S
then have 3z. S = (\i. )
by (rule discrete-chain-const)
then have max-in-chain 0 S
by (auto simp: max-in-chain-def)
then show 3i. maz-in-chain i S ..
qed

end

3 Continuity and monotonicity

3.1 Definitions

definition monofun :: (‘a::po = 'b::po) = bool — monotonicity
where monofun f «+— Vzy. 2 Cy — fz C fy)

definition cont :: (‘a = 'b) = bool
where cont f = (VY. chain Y — range (Mi. f (Y i) <<| f (IUi. Y 7))

lemma contl: (AY. chain Y = range (\i. f (Y i) <<| f (| ]é. Y i)) = cont f
by (simp add: cont-def)
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lemma contE: cont f = chain Y = range (Mi. f (Y i) <<| f (Ui. Y 9)
by (simp add: cont-def)

lemma monofunl: (Nzy. 2 C y = fz C fy) = monofun f
by (simp add: monofun-def)

lemma monofunk: monofun f = 2 Cy = foz C fy
by (simp add: monofun-def)

3.2 Equivalence of alternate definition

monotone functions map chains to chains

lemma ch2ch-monofun: monofun f = chain ¥ = chain (Ai. f (Y 7))
apply (rule chainl)
apply (erule monofunE)
apply (erule chainE)
done

monotone functions map upper bound to upper bounds

lemma ub2ub-monofun: monofun f = range Y <| v = range (Xi. f (Y 7)) <]
fu

apply (rule ub-rangel)

apply (erule monofunE)

apply (erule ub-rangeD)

done

a lemma about binary chains

lemma binchain-cont: cont f = x C y = range (Aiznat. f (if i = 0 then x else
y) <<|fy

apply (subgoal-tac f (|| i::nat. if i = 0 then x else y) = fy)

apply (erule subst)

apply (erule contE)

apply (erule bin-chain)

apply (rule-tac f=f in arg-cong)

apply (erule is-lub-bin-chain [THEN lub-eql])

done

continuity implies monotonicity

lemma cont2mono: cont f = monofun f
apply (rule monofunl)
apply (drule (1) binchain-cont)
apply (drule-tac i=0 in is-lub-rangeD1)
apply simp
done

lemmas cont2monofunE = cont2mono [THEN monofunFE)
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lemmas ch2ch-cont = cont2mono [THEN ch2ch-monofun)

continuity implies preservation of lubs

lemma cont2contiubE: cont f = chain ¥ = f (| |i. Y i) = (Ui f (Y 9))
apply (rule lub-eql [symmetric])
apply (erule (1) contE)
done

lemma contl2:
fixes f : 'a = b
assumes mono: monofun f
assumes below: \Y. [chain Y; chain (Ai. f (Y )] = f (Ui Yi)C (] f
(v )
shows cont f
proof (rule contl)
fix YV :: nat = 'a
assume Y: chain Y
with mono have fY: chain (Ai. f (Y ©))
by (rule ch2ch-monofun)
have (| |i. f (Y1) =f (| ]i. Y9)
apply (rule below-antisym)
apply (rule lub-below [OF fY])
apply (rule monofunE [OF mono))
apply (rule is-ub-thelub [OF Y])
apply (rule below [OF Y fY])
done
with fY show range (Ai. f (Y i) <<| f (4. Y9)
by (rule thelubE)
qed

3.3 Collection of continuity rules

named-theorems cont2cont continuity intro rule

3.4 Continuity of basic functions

The identity function is continuous

lemma cont-id [simp, cont2cont]: cont (Az. x)
apply (rule contl)
apply (erule cpo-lubl)
done

constant functions are continuous

lemma cont-const [simp, cont2cont]: cont (Az. c)
using is-lub-const by (rule contl)

application of functions is continuous

lemma cont-apply:
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fixes f::'a='b='cand t:: '"a="b
assumes 1: cont (Az. t )
assumes 2: Az. cont (Ay. fz y)
assumes 3: Ay. cont (Az. fz y)
shows cont (Az. (f z) (t z))
proof (rule contI2 [OF monofunl])
fixzy:'a
assume z C y
then show fz (tz) C fy (ty)
by (auto intro: cont2monofunE [OF 1]
cont2monofunE [OF 2]
cont2monofunE [OF 3]
below-trans)
next
fix Y :: nat = ‘a
assume chain Y
then show f (| |i. Y i) (¢t (i YY) C (i f (Vi) (¢ (Y4)
by (simp only: cont2contlubE [OF 1] ch2ch-cont [OF 1]
cont2contlubE [OF 2] ch2ch-cont [OF 2]
cont2contlubE [OF 8] ch2ch-cont [OF 3]
diag-lub below-refl)
qged

lemma cont-compose: cont ¢ = cont (A\z. f x) = cont (A\z. ¢ (f z))
by (rule cont-apply [OF - - cont-const))

Least upper bounds preserve continuity

lemma cont2cont-lub [simp):
assumes chain: N\z. chain (Mi. F i z)
and cont: N\i. cont (A\z. Fix)
shows cont (Az. | |i. F i x)
apply (rule conti2)
apply (simp add: monofunl cont2monofunE [OF cont] lub-mono chain)
apply (simp add: cont2contlubE [OF cont))
apply (simp add: diag-lub ch2ch-cont [OF cont] chain)
done

if-then-else is continuous

lemma cont-if [simp, cont2cont]: cont f = cont g = cont (Ax. if b then f x else

g x)
by (induct b) simp-all

3.5 Finite chains and flat pcpos

Monotone functions map finite chains to finite chains.

lemma monofun-finch2finch: monofun f = finite-chain Y = finite-chain (An.

f(Yn))
by (force simp add: finite-chain-def ch2ch-monofun maz-in-chain-def)
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The same holds for continuous functions.

lemma cont-finch2finch: cont f = finite-chain ¥ = finite-chain (An. f (Y

by (rule cont2mono [THEN monofun-finch2finch])

All monotone functions with chain-finite domain are continuous.

lemma chfindom-monofun2cont: monofun f = cont f
for f :: ‘az:chfin = b
apply (erule contI2)
apply (frule chfin2finch)
apply (clarsimp simp add: finite-chain-def)
apply (subgoal-tac maz-in-chain i (Mi. f (Y ©)))
apply (simp add: mazinch-is-thelub ch2ch-monofun)
apply (force simp add: maz-in-chain-def)
done

PRy

All strict functions with flat domain are continuous.

lemma flatdom-strict2mono: f L = 1 = monofun f
for f :: 'a::flat = "b::pcpo
apply (rule monofunlI)
apply (drule az-flat)
apply auto
done

lemma flatdom-strict2cont: f L = 1 = cont f
for f :: ‘a::flat = "b::pepo
by (rule flatdom-strict2mono [THEN chfindom-monofun2cont])

All functions with discrete domain are continuous.

lemma cont-discrete-cpo [simp, cont2cont]: cont f
for f :: 'a::discrete-cpo = 'b
apply (rule contl)
apply (drule discrete-chain-const, clarify)
apply simp
done

4 Admissibility and compactness

4.1 Definitions

context cpo
begin

definition adm :: (‘a = bool) = bool
where adm P +— (VY. chain Y — (Vi. P (Y i)) — P (| ]i. Y 1))

lemma admlI: (Y. [chain Y;Vi. P (Yi)] = P (|Ji. Vi) = adm P
unfolding adm-def by fast

24
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lemma admD: adm P = chain Y = (A\i. P (Y i)) = P (|Ji. Y1)
unfolding adm-def by fast

lemma admD2: adm (Ax. = P z) = chain Y = P (| ]i. Y i) = 3i. P (Y i)
unfolding adm-def by fast

lemma triv-adml: Vz. P x = adm P
by (rule adml) (erule spec)

end

4.2 Admissibility on chain-finite types

For chain-finite (easy) types every formula is admissible.

lemma adm-chfin [simp]: adm P for P :: 'a::chfin = bool
by (rule adml, frule chfin, auto simp add: maxinch-is-thelub)

4.3 Admissibility of special formulae and propagation

context cpo
begin

lemma adm-const [simp]: adm (Az. t)
by (rule adml, simp)

lemma adm-conj [simp]: adm (Az. P z) = adm (Az. Q z) = adm (Az. Pz A

Q)
by (fast intro: adml elim: admD)

lemma adm-all [simp]: (\y. adm (Az. Pz y)) = adm (Az. Vy. Pz y)
by (fast intro: adml elim: admD)

lemma adm-ball [simp]: (\y. y € A = adm (Az. Pz y)) = adm (Az. VyeA.
Pzy)
by (fast intro: adml elim: admD)

Admissibility for disjunction is hard to prove. It requires 2 lemmas.

lemma adm-disj-lemmal:
assumes adm: adm P
assumes chain: chain Y
assumes P: Vi. 3j>i. P (Y j)
shows P (| |i. Y1)
proof —
define f where fi = (LEAST j. i < j A P (Y}j)) for i
have chain’: chain (Mi. Y (f ©))
unfolding f-def
apply (rule chainl)
apply (rule chain-mono [OF chain))
apply (rule Least-le)
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apply (rule LeastI2-ex)
apply (simp-all add: P)
done
have f1: \i. ¢ < fiand f2: Ai. P (Y (fi))
using Leastl-ex [OF P [rule-format]] by (simp-all add: f-def)
have lub-eq: (| |i. Y i) = (] Y (f1))
apply (rule below-antisym)
apply (rule lub-mono [OF chain chain’])
apply (rule chain-mono [OF chain f1])
apply (rule lub-range-mono [OF - chain chain’])
apply clarsimp
done
show P (| |i. Y i)
unfolding lub-eq using adm chain’ f2 by (rule admD)
qed

lemma adm-disj-lemma2: Vn:nat. Pn VvV Q@ n = (Vi. 3j>i. Pj) Vv (Vi. 3j>1.
QJ)

apply (erule contrapos-pp)

apply (clarsimp, rename-tac a b)

apply (rule-tac z==maz a b in exl)

apply simp

done

lemma adm-disj [simp]: adm (Az. P £) = adm (Az. Q z) = adm (Az. Pz V
Q z)

apply (rule admlI)

apply (erule adm-disj-lemma2 [THEN disjE))

apply (erule (2) adm-disj-lemmal [THEN disjI1])

apply (erule (2) adm-disj-lemmal [THEN disjI2])

done

lemma adm-imp [simp]: adm (Ax. = P z) = adm (Az. Q ) = adm (A\z. Pz
— Q)
by (subst imp-conv-disj) (rule adm-disj)

lemma adm-iff [simp]: adm (Az. Pz — Q ) = adm (M\z. Q 2 — P 1) =
adm (A\z. Pz +— Q x)
by (subst iff-conv-conj-imp) (rule adm-conyj)

end

admissibility and continuity

lemma adm-below [simp]: cont (Az. u ) = cont (A\z. v ) = adm (Az. uz C
v T)
by (simp add: adm-def cont2contlubE lub-mono ch2ch-cont)

lemma adm-eq [simp]: cont (A\z. u £) = cont (A\z. vx) = adm (A\z. uz = v 1)
by (simp add: po-eq-conv)
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lemma adm-subst: cont (Az. t ©) = adm P = adm (Az. P (t z))
by (simp add: adm-def cont2contlubE ch2ch-cont)

lemma adm-not-below [simp]: cont (Az. t ©) = adm (Az. t z £ u)
by (rule admlI) (simp add: cont2contlubE ch2ch-cont lub-below-iff)

4.4 Compactness

context cpo
begin

definition compact :: 'a = bool
where compact k = adm (Az. k £ z)

lemma compactl: adm (\z. k £ x) = compact k
unfolding compact-def .

lemma compactD: compact k = adm (Az. k £ z)
unfolding compact-def .

lemma compactI2: (\Y. [chain Y; 2 C (| ]i. Yi)] = 3i. 2 C Y i) = compact
T
unfolding compact-def adm-def by fast

lemma compactD2: compact x => chain ¥ =z C (| |i. Yi) = Fi. 2 C Y
unfolding compact-def adm-def by fast

lemma compact-below-lub-iff: compact t = chain Y = z C (| |i. Yi) +— (4.
xC Yi)
by (fast intro: compactD2 elim: below-lub)

end

lemma compact-chfin [simp]: compact x for z :: 'a::chfin
by (rule compact] [OF adm-chfin])

lemma compact-imp-maz-in-chain: chain Y => compact (| |i. Y i) = 3i. maz-in-chain
1Y

apply (drule (1) compactD2, simp)

apply (erule exE, rule-tac x=i in exl)

apply (rule max-in-chainl)

apply (rule below-antisym)

apply (erule (1) chain-mono)

apply (erule (1) below-trans [OF is-ub-thelub])

done

admissibility and compactness

lemma adm-compact-not-below [simp]:
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compact k = cont (A\z. t ) = adm (A\z. k L t x)
unfolding compact-def by (rule adm-subst)

lemma adm-neqg-compact [simpl: compact k = cont (Az. t ) = adm (Az. t

4 k)
by (simp add: po-eq-conv)

lemma adm-compact-neq [simp]: compact k = cont (Az. t ) = adm (\z. k #
tz)
by (simp add: po-eq-conv)

lemma compact-bottom [simp, intro]: compact L
by (rule compactl) simp

Any upward-closed predicate is admissible.

lemma adm-upward:
assumes P: Az y. [Pz; 2 C y] = Py
shows adm P
by (rule adml, drule spec, erule P, erule is-ub-thelub)

lemmas adm-lemmas =
adm-const adm-conj adm-all adm-ball adm-disj adm-imp adm-iff
adm-below adm-eq adm-not-below
adm-compact-not-below adm-compact-neq adm-neg-compact

5 Class instances for the full function space

5.1 Full function space is a partial order

instantiation fun :: (type, below) below
begin

definition below-fun-def: (C) = (Afg. V. fz C g x)

instance ..
end

instance fun :: (type, po) po
proof
fix fgh:'a="b
show f C f
by (simp add: below-fun-def)
show fCyg=gCEf=[=yg
by (simp add: below-fun-def fun-eq-iff below-antisym)
show fCg= gC h=fLCh
unfolding below-fun-def by (fast elim: below-trans)
qed

lemma fun-below-iff: f C g +— (Vz. fz C g x)
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by (simp add: below-fun-def)

lemma fun-belowl: (Az. fr T gz) = fCyg
by (simp add: below-fun-def)

lemma fun-belowD: fC g —= fz C gx
by (simp add: below-fun-def)

5.2 Full function space is chain complete

Properties of chains of functions.

lemma fun-chain-iff: chain S <— (Vz. chain (\i. S i z))
by (auto simp: chain-def fun-below-iff)

lemma ch2ch-fun: chain S => chain (A\i. S i z)
by (simp add: chain-def below-fun-def)

lemma ch2ch-lambda: (\z. chain (Ni. S i z)) = chain S
by (simp add: chain-def below-fun-def)

Type ‘a = b is chain complete

lemma is-lub-lambda: (\z. range (Mi. Yiz) <<| fz) = range ¥ <<| f
by (simp add: is-lub-def is-ub-def below-fun-def)

lemma is-lub-fun: chain S = range S <<| (Az. | |i. S i)
for S :: nat = 'a::type = 'b
apply (rule is-lub-lambda)
apply (rule cpo-lubl)
apply (erule ch2ch-fun)
done

lemma [ub-fun: chain S = (| |i. Si) = (Az. | ]i. Six)
for S :: nat = ‘a::type = b
by (rule is-lub-fun [THEN lub-eql])

instance fun :: (type, cpo) cpo
by intro-classes (rule exl, erule is-lub-fun)

instance fun :: (type, discrete-cpo) discrete-cpo
proof
fix fg:'a="b
show fEg«— f=y
by (simp add: fun-below-iff fun-eq-iff)
qed

5.3 Full function space is pointed

lemma minimal-fun: (Az. L) C f
by (simp add: below-fun-def)

29
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instance fun :: (type, pcpo) pepo
by standard (fast intro: minimal-fun)

lemma inst-fun-pcpo: L = (Az. 1)
by (rule minimal-fun [THEN bottomlI, symmetric])

lemma app-strict [simp]: L x = L
by (simp add: inst-fun-pcpo)

lemma lambda-strict: (Az. L) = L
by (rule bottoml, rule minimal-fun)

5.4 Propagation of monotonicity and continuity

The lub of a chain of monotone functions is monotone.

lemma adm-monofun: adm monofun
by (rule adml) (simp add: lub-fun fun-chain-iff monofun-def lub-mono)

The lub of a chain of continuous functions is continuous.

lemma adm-cont: adm cont
by (rule adml) (simp add: lub-fun fun-chain-iff)

Function application preserves monotonicity and continuity.

lemma mono2mono-fun: monofun f = monofun (A\z. fz y)
by (simp add: monofun-def fun-below-iff)

lemma cont2cont-fun: cont f = cont (Az. fz y)
apply (rule contlI2)
apply (erule cont2mono [THEN mono2mono-fun))
apply (simp add: cont2contlubE lub-fun ch2ch-cont)
done

lemma cont-fun: cont (Af. f z)
using cont-id by (rule cont2cont-fun)

simproc-setup apply-cont (<cont (Af. E f)») = «
fmn-=> fn ctet => fn lhs =>
(case Thm.term-of lhs of
Const- <cont - - for <Abs (-, -, expr)y =>
if case strip-comb expr of (f, args) =>
f = Bound 0 andalso not (exists Term.is-dependent args)
(x since <\f. E f» is too permissive, we ensure here that the term
is of the form <\f. f ..o, with <f> no longer appearing in <...» x)
then
let
val tac = Metis-Tactic.metis-tac [no-types| combs ctat Q{thms cont2cont-fun
cont-id}
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val thm =
Goal.prove-internal ctzt [| instantiate <lhs in cprop <lhs = Truey»
(fn - => tac 1)
in SOME (mk-meta-eq thm) end
else NONE
| - => NONE)
)

lemma cont (Af. fz) and cont (\f. fz y) and cont (Af. fz y 2)
by simp-all
Lambda abstraction preserves monotonicity and continuity. (Note (Az. Ay.
fzy)=1F)
lemma mono2mono-lambda: (A\y. monofun (A\z. f x y)) = monofun f

by (simp add: monofun-def fun-below-iff)

lemma cont2cont-lambda [simp]:
assumes f: \y. cont (\z. fz y)
shows cont f
by (rule contl, rule is-lub-lambda, rule contE [OF f])

What D.A.Schmidt calls continuity of abstraction; never used here

lemma contlub-lambda: (A\z. chain (Mi. S iz)) = (Az. | |i. Siz) = (]i (Az.
S i)

for S :: nat = 'a::type = b

by (simp add: lub-fun ch2ch-lambda)

6 The cpo of cartesian products

6.1 Unit type is a pcpo

instantiation unit :: discrete-cpo
begin

definition below-unit-def [simp]: x T (y::unit) «— True

instance
by standard simp

end

instance unit :: pcpo
by standard simp
6.2 Product type is a partial order

instantiation prod :: (below, below) below
begin
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definition below-prod-def: (E) = Apl p2. (fst pI C fst p2 A snd pl C snd p2)

instance ..
end

instance prod :: (po, po) po
proof
fixzyz:'ax'b
show z C z
by (simp add: below-prod-def)
show s Cy—=yCorx=— 2=y
unfolding below-prod-def prod-eq-iff
by (fast intro: below-antisym)
showzrz Cy— yLC 2=z C 2
unfolding below-prod-def
by (fast intro: below-trans)
qed

6.3 Monotonicity of Pair, fst, snd

lemma prod-belowl: fst p C fst ¢ = snd p C snd g = p C ¢

by (simp add: below-prod-def)

lemma Pair-below-iff [simp]: (a, b)) C (¢, d) «—aC cADLC d

by (simp add: below-prod-def)

Pair (-,-) is monotone in both arguments
lemma monofun-pairl: monofun (Az. (z, y))

by (simp add: monofun-def)

lemma monofun-pair2: monofun (\y. (z, y))
by (simp add: monofun-def)

lemma monofun-pair: z1 C 22 — yl C y2 = (1, y1) C (22, y2)

by simp

lemma ch2ch-Pair [simp]: chain X => chain Y = chain (\i. (X i, Y 1))

by (rule chainl, simp add: chainE)

fst and snd are monotone
lemma fst-monofun: t C y = fst x C fst y
by (simp add: below-prod-def)

lemma snd-monofun: © C y = snd x C snd y
by (simp add: below-prod-def)

lemma monofun-fst: monofun fst
by (simp add: monofun-def below-prod-def)
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lemma monofun-snd: monofun snd
by (simp add: monofun-def below-prod-def)

lemmas ch2ch-fst [simp] = ch2ch-monofun [OF monofun-fst]
lemmas ch2ch-snd [simp] = ch2ch-monofun [OF monofun-snd]

lemma prod-chain-cases:
assumes chain: chain Y
obtains A B
where chain A and chain B and Y = (\i. (A 4, B 1))
proof
from chain show chain (\i. fst (Y ©))
by (rule ch2ch-fst)
from chain show chain (\i. snd (Y 7))
by (rule ch2ch-snd)
show Y = (Ai. (fst (Y i), snd (Y 1)))
by simp
qed

6.4 Product type is a cpo

lemma is-lub-Pair: range A <<| * = range B <<| y = range (Ai. (4 i, B 1))
<<l (z, )
by (simp add: is-lub-def is-ub-def below-prod-def)

lemma lub-Pair: chain A = chain B = (| |i. (A 4, Bi)) = (¢ A i, |]i. Bi)
for A :: nat = 'a and B :: nat = b
by (fast intro: lub-eql is-lub-Pair elim: thelubF)

lemma is-lub-prod:
fixes S :: nat = ('a x 'b)
assumes chain S
shows range S <<| (|]i. fst (S i), | ] snd (S 1))

using assms by (auto elim: prod-chain-cases simp: is-lub-Pair cpo-lubl)

lemma lub-prod: chain S = (| ]i. S i) = (] fst (S i), 4. snd (S 7))
for S :: nat = 'a x 'b
by (rule is-lub-prod [THEN lub-eql))

instance prod :: (cpo, cpo) cpo
proof
fix S :: nat = (‘a x 'b)
assume chain S
then have range S <<| (| |7. fst (S 9), | ]i. snd (S 7))
by (rule is-lub-prod)
then show Jz. range S <<| z ..
qed
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instance prod :: (discrete-cpo, discrete-cpo) discrete-cpo
proof
showz Cy«+—z=yforzy:'ax’'d
by (simp add: below-prod-def prod-eq-iff)
qed

6.5 Product type is pointed

lemma minimal-prod: (L, L) C p
by (simp add: below-prod-def)

instance prod :: (pcpo, pcpo) pepo
by intro-classes (fast intro: minimal-prod)

lemma inst-prod-pepo: L = (L, 1)
by (rule minimal-prod [THEN bottomlI, symmetric])

lemma Pair-bottom-iff [simp]: (z,y) = L+— =L Ay=1
by (simp add: inst-prod-pcpo)

lemma fst-strict [simp]: fst L = L
unfolding inst-prod-pcpo by (rule fst-conv)

lemma snd-strict [simp]: snd L = L
unfolding inst-prod-pcpo by (rule snd-conv)

lemma Pair-strict [simp]: (L, 1) = L
by simp

lemma split-strict [simpl: case-prod f L = f 1 L
by (simp add: split-def)

6.6 Continuity of Pair, fst, snd

lemma cont-pairl: cont (A\z. (z, y))
apply (rule contl)
apply (rule is-lub-Pair)
apply (erule cpo-lubl)
apply (rule is-lub-const)
done

lemma cont-pair2: cont (Ay. (z, y))
apply (rule contl)
apply (rule is-lub-Pair)
apply (rule is-lub-const)
apply (erule cpo-lubl)
done

lemma cont-fst: cont fst

34
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apply (rule contl)

apply (simp add: lub-prod)

apply (erule cpo-lubl [OF ch2ch-fst])
done

lemma cont-snd: cont snd
apply (rule contl)
apply (simp add: lub-prod)
apply (erule cpo-lubl [OF ch2ch-snd))
done

lemma cont2cont-Pair [simp, cont2cont]:
assumes f: cont (A\z. f )
assumes g: cont (\z. g )
shows cont (Az. (f z, g z))
apply (rule cont-apply [OF f cont-pairl])
apply (rule cont-apply [OF g cont-pair2])
apply (rule cont-const)
done

lemmas cont2cont-fst [simp, cont2cont] = cont-compose [OF cont-fst)
lemmas cont2cont-snd [simp, cont2cont] = cont-compose [OF cont-snd)

lemma cont2cont-case-prod:
assumes fI: Aa b. cont (A\z. fz ab)
assumes f2: Az b. cont (Aa. fz a b)
assumes f3: Az a. cont (\b. fz a D)
assumes g: cont (\z. g )
shows cont (Az. case g x of (a, b) = fz ab)
unfolding split-def
apply (rule cont-apply [OF g))
apply (rule cont-apply [OF cont-fst f2])
apply (rule cont-apply [OF cont-snd f3])
apply (rule cont-const)
apply (rule f1)
done

lemma prod-contl:
assumes fI1: A\y. cont (A\z. [ (z, y))
assumes f2: Az. cont (Ay. f (z, y))
shows cont f
proof —
have cont (A(z, y). [ (z, v))
by (intro cont2cont-case-prod f1 f2 cont2cont)
then show cont f
by (simp only: case-prod-eta)
qed

35
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lemma prod-cont-iff: cont f «— (Vy. cont (Az. [ (z, y))) A (Vz. cont (\y. f (z,
y)))
apply safe
apply (erule cont-compose [OF - cont-pairl])
apply (erule cont-compose [OF - cont-pair2])
apply (simp only: prod-contl)
done

lemma cont2cont-case-prod’ [simp, cont2cont]:
assumes f: cont (Ap. f (fst p) (fst (snd p)) (snd (snd p)))
assumes g: cont (\z. g )
shows cont (Az. case-prod (f z) (g z))
using assms by (simp add: cont2cont-case-prod prod-cont-iff)

The simple version (due to Joachim Breitner) is needed if either element
type of the pair is not a cpo.

lemma cont2cont-split-simple [simp, cont2cont]:
assumes Aa b. cont (\z. fx a b)
shows cont (Az. case p of (a, b) = fzab)
using assms by (cases p) auto

Admissibility of predicates on product types.

lemma adm-case-prod [simp):
assumes adm (Az. Pz (fst (fz)) (snd (f z)))
shows adm (Az. case fz of (a, b) = Pz ab)
unfolding case-prod-beta using assms .

6.7 Compactness and chain-finiteness

lemma fst-below-iff: fst 2 C y +— z C (y, snd z) for z :: 'a x 'b
by (simp add: below-prod-def)

lemma snd-below-iff: snd t C y «— z C (fst z, y) for z :: ‘a x 'b
by (simp add: below-prod-def)

lemma compact-fst: compact ¥ = compact (fst z)
by (rule compactl) (simp add: fst-below-iff)

lemma compact-snd: compact x = compact (snd x)
by (rule compactl) (simp add: snd-below-iff)

lemma compact-Pair: compact © = compact y = compact (z, y)
by (rule compactl) (simp add: below-prod-def)

lemma compact-Pair-iff [simp]: compact (z, y) +— compact x A compact y
apply (safe intro!: compact-Pair)
apply (drule compact-fst, simp)
apply (drule compact-snd, simp)
done
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instance prod :: (chfin, chfin) chfin
apply intro-classes
apply (erule compact-imp-maz-in-chain)
apply (case-tac | |i. Y i, simp)
done

7 Discrete cpo types
datatype ‘a discr = Discr 'a:type

7.1 Discrete cpo class instance

instantiation discr :: (type) discrete-cpo
begin

definition ((C) :: ‘a discr = 'a discr = bool) = (=)

instance
by standard (simp add: below-discr-def)

end

7.2 wundiscr
definition undiscr :: 'a::type discr = 'a

where undiscr z = (case x of Discr y = y)

lemma undiscr-Discr [simp]: undiscr (Discr x) = x
by (simp add: undiscr-def)

lemma Discr-undiscr [simp]: Discr (undiscr y) = y
by (induct y) simp

end

8 Subtypes of pcpos

theory Cpodef

imports Cpo

keywords pcpodef cpodef :: thy-goal-defn
begin

8.1 Proving a subtype is a partial order

A subtype of a partial order is itself a partial order, if the ordering is defined
in the standard way.

theorem (in below) typedef-class-po:
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fixes Abs :: 'bi:po = 'a
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
shows class.po below
apply (rule class.po.intro)
apply (unfold below)
apply (rule below-refl)
apply (fact below-trans)
apply (rule type-definition. Rep-inject [OF type, THEN iffD1])
apply (fact below-antisym)
done

lemmas typedef-po-class = below.typedef-class-po [THEN po.intro-of-class)

8.2 Proving a subtype is finite

lemma typedef-finite-UNIV:
fixes Abs :: 'a::type = 'bi:type
assumes type: type-definition Rep Abs A
shows finite A = finite (UNIV :: b set)
proof —
assume finite A
then have finite (Abs ‘ A)
by (rule finite-imagel)
then show finite (UNIV :: 'b set)
by (simp only: type-definition. Abs-image [OF typel)
qed

8.3 Proving a subtype is chain-finite

lemma ch2ch-Rep:
assumes below: (C) = Az y. Rep x C Rep y
shows chain S = chain (\i. Rep (S 1))
unfolding chain-def below .

theorem typedef-chfin:

fixes Abs :: 'a::chfin = 'b::po

assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y

shows OFCLASS('b, chfin-class)

apply intro-classes

apply (drule ch2ch-Rep [OF below])

apply (drule chfin)

apply (unfold maz-in-chain-def)

apply (simp add: type-definition. Rep-inject [OF type])

done

38
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8.4 Proving a subtype is complete

A subtype of a cpo is itself a cpo if the ordering is defined in the standard
way, and the defining subset is closed with respect to limits of chains. A set
is closed if and only if membership in the set is an admissible predicate.

lemma typedef-is-lubl:
assumes below: (C) = Az y. Rep z C Rep y
shows range (Ai. Rep (S 7)) <<| Rep x = range S <<|
by (simp add: is-lub-def is-ub-def below)

lemma Abs-inverse-lub-Rep:
fixes Abs :: 'a::cpo = 'b:po
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and adm: adm (Az. z € A)
shows chain S = Rep (Abs (| ]i. Rep (S 7)) = (|4 Rep (S 1))
apply (rule type-definition. Abs-inverse [OF type])
apply (erule admD [OF adm ch2ch-Rep [OF below)])
apply (rule type-definition.Rep [OF type])
done

theorem typedef-is-lub:
fixes Abs :: 'a::cpo = 'bi:po
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (Az. x € A)
assumes S: chain S
shows range S <<| Abs (| ]i. Rep (S 7))
proof —
from S have chain (\i. Rep (S 1))
by (rule ch2ch-Rep [OF below))
then have range (Ai. Rep (S 7)) <<| ([]7. Rep (S 7))
by (rule cpo-lubl)
then have range (Ai. Rep (S i)) <<| Rep (Abs (| |i. Rep (S 1)))
by (simp only: Abs-inverse-lub-Rep [OF type below adm S])
then show range S <<| Abs (| |i. Rep (S 7))
by (rule typedef-is-lubl [OF below])
qed

lemmas typedef-lub = typedef-is-lub [THEN lub-eql]

theorem typedef-cpo:
fixes Abs :: ‘a::cpo = 'bipo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and adm: adm (\z. x € A)
shows OFCLASS(’b, cpo-class)
proof
fix S :: nat = b
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assume chain S
then have range S <<| Abs (| |i. Rep (S 7))
by (rule typedef-is-lub [OF type below adm))
then show 3z. range S <<| z ..
qed

8.4.1 Continuity of Rep and Abs

For any sub-cpo, the Rep function is continuous.

theorem typedef-cont-Rep:
fixes Abs :: 'a::cpo = 'b::cpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (Az. x € A)
shows cont (Az. fz) = cont (Az. Rep (f z))
apply (erule cont-apply [OF - - cont-const))
apply (rule contl)
apply (simp only: typedef-lub [OF type below adm])
apply (simp only: Abs-inverse-lub-Rep [OF type below adml])
apply (rule cpo-lubl)
apply (erule ch2ch-Rep [OF below))
done

For a sub-cpo, we can make the Abs function continuous only if we restrict
its domain to the defining subset by composing it with another continuous
function.

theorem typedef-cont-Abs:
fixes Abs :: 'a::cpo = 'biicpo
fixes [ :: 'ciicpo = 'a::epo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and adm: adm (\z. x € A)
and f-in-A: N\z. fz € A
shows cont f = cont (Az. Abs (f z))
unfolding cont-def is-lub-def is-ub-def ball-simps below
by (simp add: type-definition. Abs-inverse [OF type f-in-A])

8.5 Proving subtype elements are compact

theorem typedef-compact:
fixes Abs :: 'a::cpo = 'bi:cpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (Az. z € A)
shows compact (Rep k) => compact k
proof (unfold compact-def)
have cont-Rep: cont Rep
by (rule typedef-cont-Rep [OF type below adm cont-id])
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assume adm (Az. Rep k I z)
with cont-Rep have adm (Az. Rep k L Rep x) by (rule adm-subst)
then show adm (Az. k IZ z) by (unfold below)

qed

8.6 Proving a subtype is pointed

A subtype of a cpo has a least element if and only if the defining subset has
a least element.

theorem typedef-pcpo-generic:
fixes Abs :: ‘a::cpo = 'bicpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and z-in-A: z € A
and z-least: A\o.z € A= z2LC z
shows OFCLASS(’b, pcpo-class)
apply (intro-classes)
apply (rule-tac z=Abs z in exl, rule alll)
apply (unfold below)
apply (subst type-definition. Abs-inverse [OF type z-in-A])
apply (rule z-least [OF type-definition.Rep [OF type]])
done

As a special case, a subtype of a pcpo has a least element if the defining
subset contains L.

theorem typedef-pcpo:
fixes Abs :: 'a::pcpo = 'b:icpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep 2 C Rep y
and bottom-in-A: 1L € A
shows OFCLASS('b, pcpo-class)
by (rule typedef-pcpo-generic [OF type below bottom-in-A], rule minimal)

8.6.1 Strictness of Rep and Abs

For a sub-pcpo where | is a member of the defining subset, Rep and Abs
are both strict.

theorem typedef-Abs-strict:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and bottom-in-A: 1 € A
shows Abs | = L
apply (rule bottoml, unfold below)
apply (simp add: type-definition. Abs-inverse [OF type bottom-in-A])
done

theorem typedef-Rep-strict:
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assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1. € A
shows Rep 1 = |
apply (rule typedef-Abs-strict [OF type below bottom-in-A, THEN subst])
apply (rule type-definition. Abs-inverse [OF type bottom-in-A))
done

theorem typedef-Abs-bottom-iff:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1 € A
shows z € A = (Absz = 1) =(z = 1)
apply (rule typedef-Abs-strict [OF type below bottom-in-A, THEN subst])
apply (simp add: type-definition. Abs-inject [OF type] bottom-in-A)
done

theorem typedef- Rep-bottom-iff:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep 2 C Rep y
and bottom-in-A: 1L € A
shows (Repz = 1) = (z = 1)
apply (rule typedef-Rep-strict [OF type below bottom-in-A, THEN subst])
apply (simp add: type-definition. Rep-inject [OF type))
done

8.7 Proving a subtype is flat

theorem typedef-flat:
fixes Abs :: 'a:flat = 'b::pcpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1L € A
shows OFCLASS('b, flat-class)
apply (intro-classes)
apply (unfold below)
apply (simp add: type-definition. Rep-inject [OF type, symmetric])
apply (simp add: typedef-Rep-strict [OF type below bottom-in-A))
apply (simp add: az-flat)
done

8.8 HOLCEF type definition package
ML-file «Tools/cpodef.ML»

end
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9 The type of continuous functions

theory Cfun
imports Cpodef
begin

9.1 Definition of continuous function type

definition cfun = {f::’a = 'b. cont f}

cpodef (a, 'b) cfun (<(<notation=<infix —»- —/ -)» [1, 0] 0) = cfun :: ('a =
'b) set
by (auto simp: cfun-def intro: cont-const adm-cont)

type-notation (ASCII)
cfun (infixr «<—>> 0)

notation (ASCII)
Rep-cfun (<(<notation=<infix $>>-$/-)> [999,1000] 999)

notation
Rep-cfun  («(<notation=<infix -»»--/-)» [999,1000] 999)

9.2 Syntax for continuous lambda abstraction

syntax -cabs :: [logic, logic] = logic

parse-translation «
(* rewrite (-cabs x t) => (Abs-cfun (%ox. t)) *)

[Syntaz- Trans.mk-binder-tr (syntax-const -cabs), const-syntax < Abs-cfun)]
)

print-translation «

[(const-syntax < Abs-cfuny, fn ctet => fn [Abs abs] =>
let val (z, t) = Syntax-Trans.atomic-abs-tr' ctxt abs
in Syntaz.const syntax-const-cabsy $ © $ ¢ end)]

» — To avoid eta-contraction of body

Syntax for nested abstractions

syntax (ASCII)
-Lambda :: [cargs, logic] = logic (<(<indent=3 notation=<binder LAM>»LAM -./
) 1000, 10] 10)

syntax
-Lambda :: [cargs, logic] = logic (<(<indent=3 notation=<binder A»A -./ -)
(1000, 10] 10)

syntax-consts
-Lambda = Abs-cfun
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parse-ast-translation ¢
(x rewrite (LAM z y z. t) => (-cabs x (-cabs y (-cabs z t))) *)
(* ¢f. Syntax.lambda-ast-tr from src/Pure/Syntaz/syn-trans. ML x)

let

fun Lambda-ast-tr [pats, body] =
Ast.fold-ast-p syntax-const (-cabs»
(Ast.unfold-ast syntax-const -cargs) (Ast.strip-positions pats), body)
| Lambda-ast-tr asts = raise Ast.AST (Lambda-ast-tr, asts);

in [(syntaz-const -Lambday, K Lambda-ast-tr)] end

)

print-ast-translation ¢
(* rewrite (-cabs © (-cabs y (-cabs z t))) => (LAM xz y 2. t) )
(x ¢f. Syntax.abs-ast-tr’ from src/Pure/Syntax/syn-trans. ML x)
let
fun cabs-ast-tr' asts =
(case Ast.unfold-ast-p syntaxz-const -cabs
(Ast. Appl (Ast.Constant syntax-const<-cabs) :: asts)) of
([, -) => raise Ast.AST (cabs-ast-tr', asts)
| (zs, body) => Ast.Appl
[Ast.Constant syntax-const<-Lambdas,
Ast.fold-ast syntax-const -cargs) s, body));
in [(syntax-const -cabs), K cabs-ast-tr’)] end
)

Dummy patterns for continuous abstraction
translations

A -. t = CONST Abs-cfun (A-. t)
9.3 Continuous function space is pointed
lemma bottom-cfun: L € cfun

by (simp add: cfun-def inst-fun-pcpo)

instance cfun :: (cpo, discrete-cpo) discrete-cpo
by intro-classes (simp add: below-cfun-def Rep-cfun-inject)

instance cfun :: (cpo, pcpo) pcpo
by (rule typedef-pcpo [OF type-definition-cfun below-cfun-def bottom-cfun])

lemmas Rep-cfun-strict =
typedef-Rep-strict [OF type-definition-cfun below-cfun-def bottom-cfun)]

lemmas Abs-cfun-strict =
typedef-Abs-strict [OF type-definition-cfun below-cfun-def bottom-cfun)
function application is strict in its first argument

lemma Rep-cfun-strict! [simp]: L.z = L
by (simp add: Rep-cfun-strict)
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lemma LAM-strict [simp]: (A z. L) = L
by (simp add: inst-fun-pcpo [symmetric] Abs-cfun-strict)

for compatibility with old HOLCF-Version

lemma inst-cfun-pcpo: L = (A z. L)
by simp

9.4 Basic properties of continuous functions

Beta-equality for continuous functions

lemma Abs-cfun-inverse2: cont f = Rep-cfun (Abs-cfun f) = f
by (simp add: Abs-cfun-inverse cfun-def)

lemma beta-cfun: cont f = (A z. fz)u = fu
by (simp add: Abs-cfun-inverse2)

9.4.1 Beta-reduction simproc

Given the term (A z. f z)-y, the procedure tries to construct the theorem (A
z. fz)-y = fy. If this theorem cannot be completely solved by the cont2cont
rules, then the procedure returns the ordinary conditional beta-cfun rule.

The simproc does not solve any more goals that would be solved by using
beta-cfun as a simp rule. The advantage of the simproc is that it can avoid
deeply-nested calls to the simplifier that would otherwise be caused by large
continuity side conditions.

Update: The simproc now uses rule Abs-cfun-inverse2 instead of beta-cfun,
to avoid problems with eta-contraction.

simproc-setup beta-cfun-proc (Rep-cfun (Abs-cfun f)) = «
K (fn ctat => fn ct =>
let
val f = Thm.dest-arg (Thm.dest-arg ct);
val [T, U] = Thm.dest-ctyp (Thm.ctyp-of-cterm f);
val tr = Thm.instantiate’ [SOME T, SOME U] [SOME f] (mk-meta-eq @{thm
Abs-cfun-inverse2});
val rules = Named-Theorems.get ctxt named-theorems <cont2conty;
val tac = SOLVED' (REPEAT-ALL-NEW (match-tac ctat (rev rules)));
in SOME (perhaps (SINGLE (tac 1)) tr) end)
)

Eta-equality for continuous functions
lemma eta-cfun: (A z. f-x) = f

by (rule Rep-cfun-inverse)
Extensionality for continuous functions

lemma cfun-eq-iff: f = g +— (Vz. f-x = gx)
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by (simp add: Rep-cfun-inject [symmetric] fun-eq-iff)

lemma cfun-eql: (N\z. f-o = gz) = f=g

by (simp add: cfun-eq-iff)
Extensionality wrt. ordering for continuous functions
lemma cfun-below-iff: f C g +— (Vz. f-z C g-x)

by (simp add: below-cfun-def fun-below-iff)

lemma cfun-belowl: (N\z. fx CE gz) = fC g
by (simp add: cfun-below-iff)

Congruence for continuous function application

lemma cfun-cong: f = g —= z =y = f-x = gy
by simp

lemma cfun-fun-cong: f = ¢ = f-x = gz
by simp

lemma cfun-arg-cong: © = y = f-x = f-y
by simp

9.5 Continuity of application
lemma cont-Rep-cfunl: cont (Af. f-z)
by (rule cont-Rep-cfun [OF cont-id, THEN cont2cont-fun))

lemma cont-Rep-cfun2: cont (Az. f-x)
using Rep-cfun [where z = f] by (simp add: cfun-def)

lemmas monofun-Rep-cfun = cont-Rep-cfun [THEN cont2mono]

lemmas monofun-Rep-cfunl = cont-Rep-cfunl [THEN cont2mono)
lemmas monofun-Rep-cfun2 = cont-Rep-cfun2 [THEN cont2mono)

contlub, cont properties of Rep-cfun in each argument
lemma contlub-cfun-arg: chain ¥ = f-(|]i. Y i) = (¢ f-(Y 1))
by (rule cont-Rep-cfun2 [THEN cont2contlubE))

lemma contlub-cfun-fun: chain F = (| |i. F i)z = (| ]i. F i-x)
by (rule cont-Rep-cfunl [THEN cont2contlubE])
monotonicity of application
lemma monofun-cfun-fun: f € ¢ = f-x C gz
by (simp add: cfun-below-iff)

lemma monofun-cfun-arg: t C y = f-x C f.y
by (rule monofun-Rep-cfun2 [THEN monofunE])
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lemma monofun-cfun: fC g =2 C y = f-x C gy
by (rule below-trans [OF monofun-cfun-fun monofun-cfun-arg))

ch2ch - rules for the type ‘a — 'b

lemma chain-monofun: chain Y = chain (Ai. f-(Y 7))
by (erule monofun-Rep-cfun2 [THEN ch2ch-monofun])

lemma ch2ch-Rep-cfunR: chain Y = chain (Mi. f-(Y 7))
by (rule monofun-Rep-cfun2 [THEN ch2ch-monofun))

lemma ch2ch-Rep-cfunL: chain F = chain (Ai. (F i)-z)
by (rule monofun-Rep-cfunl [THEN ch2ch-monofun))

lemma ch2ch-Rep-cfun [simp]: chain F = chain ¥ = chain (Ai. (F i)-(Y 7))
by (simp add: chain-def monofun-cfun)

lemma ch2ch-LAM [simp]:
(Az. chain (Ai. S iz)) = (\i. cont (A\x. Six)) = chain (\i. A z. S i)
by (simp add: chain-def cfun-below-iff)

contlub, cont properties of Rep-cfun in both arguments
lemma [ub-APP: chain F = chain ¥ = (|i. Fi-(Y4) =i Fi-(i YV
)

by (simp add: contlub-cfun-fun contlub-cfun-arg diag-lub)

lemma lub-LAM:
assumes Az. chain (\i. F i z)
and Ai. cont (Az. Fix)
shows (| |i. Az. Fiz)=(Az. |]i Fixz)
using assms by (simp add: lub-cfun lub-fun ch2ch-lambda)

lemmas lub-distribs = lub-APP lub-LAM

strictness

lemma strictl: ffo = 1 — f-1 = 1
apply (rule bottomlI)
apply (erule subst)
apply (rule minimal [THEN monofun-cfun-arg))
done
type ‘a — 'b is chain complete

lemma [ub-cfun: chain F = (| ]i. F i) = (A z. | ]i. F i)
by (simp add: lub-cfun lub-fun ch2ch-lambda)

9.6 Continuity simplification procedure

cont2cont lemma for Rep-cfun

lemma cont2cont-APP [simp, cont2cont]:
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assumes f: cont (A\z. f z)
assumes t: cont (Az. t x)
shows cont (Az. (f z)-(t x))
proof —
from cont-Rep-cfuni f have cont (Az. (f z)-y) for y
by (rule cont-compose)
with ¢ cont-Rep-cfun2 show cont (\z. (f z)-(t z))
by (rule cont-apply)
qed

Two specific lemmas for the combination of LCF and HOL terms. These
lemmas are needed in theories that use types like ‘a — b = 'c.

lemma cont-APP-app [simp]: cont f => cont g = cont (Az. ((f z)-(g x)) s)
by (rule cont2cont-APP [THEN cont2cont-fun))

lemma cont-APP-app-app [simp]: cont f = cont g = cont (Az. ((f z)-(g9 z)) s

t)
by (rule cont-APP-app [THEN cont2cont-fun))

cont2mono Lemma for A\z. A y. ¢l z gy

lemma cont2mono-LAM:
[Az. cont (Ny. [z y); Ay. monofun (Az. f z y)]
= monofun (A\x. A y. fzy)
by (simp add: monofun-def cfun-below-iff)

cont2cont Lemma for Axz. A y. fzy

Not suitable as a cont2cont rule, because on nested lambdas it causes expo-
nential blow-up in the number of subgoals.

lemma cont2cont-LAM:
assumes fI: Az. cont (Ay. fz y)
assumes f2: A\y. cont (Az. fzy)
shows cont (A\z. A y. fzy)
proof (rule cont-Abs-cfun)
from f1 show fx € cfun for x
by (simp add: cfun-def)
from f2 show cont f
by (rule cont2cont-lambda)
qed

This version does work as a cont2cont rule, since it has only a single subgoal.

lemma cont2cont-LAM’ [simp, cont2cont]:
fixes [ :: 'a::cpo = 'biicpo = ciicpo
assumes f: cont (Ap. f (fst p) (snd p))
shows cont (A\z. A y. fzy)
using assms by (simp add: cont2cont-LAM prod-cont-iff)

lemma cont2cont-LAM-discrete [simp, cont2cont]:
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(Ay:'a:discrete-cpo. cont (Az. fzy)) = cont (Az. A y. fzy)
by (simp add: cont2cont-LAM)

9.7 Miscellaneous

Monotonicity of Abs-cfun

lemma monofun-LAM: cont f = cont g — (A\z. fr C gz) = (A z. fz) C
(A z. g2)
by (simp add: cfun-below-iff)

some lemmata for functions with flat/chfin domain/range types

lemma chfin-Rep-cfunR: chain Y = Vs. In. (LUBi. Yi)s= Y ns
for Y :: nat = 'a::cpo — 'b::chfin
apply (rule alll)
apply (subst contlub-cfun-fun)
apply assumption
apply (fast intro!: lub-eql chfin lub-finch2 chfin2finch ch2ch-Rep-cfunL)
done

lemma adm-chfindom: adm (A(u::’'a::cpo — 'bi:chfin). P(u-s))
by (rule adm-subst, simp, rule adm-chfin)

9.8 Continuous injection-retraction pairs

Continuous retractions are strict.

lemma retraction-strict: Vz. f-(gox) =2 = f-1 = L
apply (rule bottomI)
apply (drule-tac z=_1 in spec)
apply (erule subst)
apply (rule monofun-cfun-arg)
apply (rule minimal)
done

Py

lemma injection-eq: Vz. f-(gx) = 2 = (gox = gy) = (x = y)
apply (rule iffI)
apply (drule-tac f=f in cfun-arg-cong)
apply simp
apply simp
done

lemma injection-below: Vz. f-(g-x) = ¢ = (g-z C g-y) = (z C y)
apply (rule iffT)
apply (drule-tac f=f in monofun-cfun-arg)
apply simp
apply (erule monofun-cfun-arg)
done

lemma injection-defined-rev: V. f-(gx) =10 = gz=1 = z= 1
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apply (drule-tac f=f in cfun-arg-cong)
apply (simp add: retraction-strict)
done

lemma injection-defined: Vz. f-(gx) =2 —= 2 # L = gz # L
by (erule contrapos-nn, rule injection-defined-rev)

a result about functions with flat codomain

lemma flat-eql: t Cy =z # 1L —= x =y
for z y :: 'a::flat
by (drule az-flat) simp

lemma flat-codom: f-x =c= f-L =1V Vz fz=c¢)
for ¢ :: 'b::flat
apply (cases f-z = 1)
apply (rule disjl1)
apply (rule bottomI)
apply (erule-tac t=_1 in subst)
apply (rule minimal [THEN monofun-cfun-arg])
apply clarify
apply (rule-tac a = f-L in refl [THEN box-equals])
apply (erule minimal [THEN monofun-cfun-arg, THEN flat-eqI])
apply (erule minimal [THEN monofun-cfun-arg, THEN flat-eqI])
done

9.9 Identity and composition

definition ID :: ‘a — 'a
where ID = (A z. z)

definition cfcomp :: (‘b = '¢c) = (‘la = 'b) = ‘a = c
where oo-def: cfcomp = (A fg x. f-(g-1))

abbreviation cfcomp-syn :: ['b — ¢, 'a — 'b] = 'a — 'c (infixr <o0o) 100)
where f oo g == cfcomp-f-g

lemma ID1 [simp]: ID-z = x
by (simp add: ID-def)

lemma cfcompl: (f oo g) = (A z. f-(g-x))
by (simp add: oo-def)

lemma cfcomp2 [simp]: (f oo g)-z = f-(g-x)
by (simp add: cfcompl)

lemma cfcomp-LAM: cont g = foo (A z. gz) = (A z. f-(g92))
by (simp add: cfcompl)

lemma cfecomp-strict [simp]: L oo f = L
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by (simp add: cfun-eq-iff)

Show that interpretation of (pcpo, -—-) is a category.

e The class of objects is interpretation of syntactical class pcpo.
o The class of arrows between objects ‘a and 'b is interpret. of ‘a — 'b.
e The identity arrow is interpretation of ID.

e The composition of f and g is interpretation of oo.

lemma ID2 [simp]: f oo ID = f
by (rule cfun-eql, simp)

lemma ID3 [simp]: ID oo f = f
by (rule cfun-eql) simp

lemma assoc-00: f oo (g oo h) = (f oo g) oo h
by (rule cfun-eql) simp

9.10 Strictified functions

definition seq :: ‘a::pcpo — 'b:ipcpo — b
where seq = (A z. if z = L then L else ID)

lemma cont2cont-if-bottom [cont2cont, simp):
assumes f: cont (A\z. f )
and ¢: cont (A\z. g z)
shows cont (Az. if fz = L then L else g x)
proof (rule cont-apply [OF f])
show cont (Ay. if y = L then L else g z) for z
unfolding cont-def is-lub-def is-ub-def ball-simps
by (simp add: lub-eg-bottom-iff)
show cont (Az. if y = L then L else g z) for y
by (simp add: g)
qed

lemma seg-conv-if: seq-x = (if x = L then L else ID)
by (simp add: seq-def)

lemma seg-simps [simp]:
seq- 1L = L
seqx- L = 1
x# 1 = seq-x = ID
by (simp-all add: seq-conv-if)

definition strictify :: (‘a::pcpo — 'b::pepo) — ‘a — b
where strictify = (A f z. seq-x-(f-x))
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lemma strictify-conv-if: strictify-f-x = (if x = L then L else f-x)
by (simp add: strictify-def)

lemma strictifyl [simp]: strictify-f-L = L
by (simp add: strictify-conv-if)

lemma strictify2 [simpl: x # L = strictify-f-z = f-x
by (simp add: strictify-conv-if)

9.11 Continuity of let-bindings

lemma cont2cont-Let:
assumes f: cont (A\z. f )
assumes g1: Ay. cont (Az. g x y)
assumes ¢2: Az. cont (Ay. g z y)
shows cont (Az. let y = fzin g xy)
unfolding Let-def using f g2 g1 by (rule cont-apply)

lemma cont2cont-Let’ [simp, cont2cont]:
assumes f: cont (Az. f )
assumes g: cont (Ap. g (fst p) (snd p))
shows cont (Az. let y = fxin g x y)
using f
proof (rule cont2cont-Let)
from g show cont (Ay. g z y) for z
by (simp add: prod-cont-iff)
from g show cont (A\z. g z y) for y
by (simp add: prod-cont-iff)
qed

The simple version (suggested by Joachim Breitner) is needed if the type of
the defined term is not a cpo.

lemma cont2cont-Let-simple [simp, cont2cont]:
assumes Ay. cont (\x. g x y)
shows cont (Az. let y = tin g x y)
unfolding Let-def using assms .

end

10 Continuous deflations and ep-pairs

theory Deflation
imports Cfun
begin

10.1 Continuous deflations

locale deflation =
fixes d :: 'a — 'a
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assumes idem: Az. d-(d-z) = d-x
assumes below: A\z. d-z C ¢
begin

lemma below-ID: d T ID
by (rule cfun-belowl) (simp add: below)

The set of fixed points is the same as the range.

lemma fizes-eq-range: {z. d-x = x} = range (Az. d-x)
by (auto simp add: eq-sym-conv idem)

lemma range-eq-fizes: range (Az. d-z) = {z. d-z = z}
by (auto simp add: eq-sym-conv idem)

The pointwise ordering on deflation functions coincides with the subset or-
dering of their sets of fixed-points.

lemma belowl:
assumes f: A\z. dz =2 = fr =1
shows d C f
proof (rule cfun-belowl)
fix z
from below have f-(d-z) C f-x
by (rule monofun-cfun-arg)
also from idem have f-(d-z) = d-x
by (rule f)
finally show d-z C f-z .
qed

lemma belowD: [f C d; fx = 2] = dz ==z
proof (rule below-antisym)
from below show d-z C z .
assume f C d
then have f-z C d-z by (rule monofun-cfun-fun)
also assume f-x = x
finally show z C d-z .
qed

end

lemma deflation-strict: deflation d = d-1L = L
by (rule deflation.below [THEN bottomlI])

lemma adm-deflation: adm (Ad. deflation d)
by (simp add: deflation-def)

lemma deflation-ID: deflation 1D
by (simp add: deflation.intro)

lemma deflation-bottom: deflation 1



THEORY “Deflation” 54

by (simp add: deflation.intro)

lemma deflation-below-iff: deflation p = deflation ¢ = p C q <— (Vz. px =
T — ¢z = x)

apply safe

apply (simp add: deflation.belowD)

apply (simp add: deflation.belowl)

done

The composition of two deflations is equal to the lesser of the two (if they
are comparable).

lemma deflation-below-compl:
assumes deflation f
assumes deflation g
shows f C g = f-(¢gz) = fx
proof (rule below-antisym)
interpret g: deflation g by fact
from g.below show f-(g-z) C f-z by (rule monofun-cfun-arg)
next
interpret f: deflation f by fact
assume f C g
then have f-z C g-x by (rule monofun-cfun-fun)
then have f-(f-x) C f-(g-z) by (rule monofun-cfun-arg)
also have f-(f-z) = f-z by (rule f.idem)
finally show f-z C f-(g-z) .
qed

lemma deflation-below-comp2: deflation f = deflation ¢ = [ C g = ¢-(f-x)
= fu
by (simp only: deflation.belowD deflation.idem)

10.2 Deflations with finite range

lemma finite-range-imp-finite-fixes:
assumes finite (range f)
shows finite {z. fz = z}
proof —
have {z. fz = z} C range f
by (clarify, erule subst, rule rangel)
from this assms show finite {z. fz = z}
by (rule finite-subset)
qed

locale finite-deflation = deflation +
assumes finite-fizes: finite {z. d-x = x}
begin

lemma finite-range: finite (range (Az. d-x))
by (simp add: range-eq-fizes finite-fizes)
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lemma finite-image: finite ((Az. d-z) ¢ A)
by (rule finite-subset [OF image-mono [OF subset-UNIV] finite-range)

lemma compact: compact (d-x)
proof (rule compactI2)
fix Y ::nat = a
assume Y: chain Y
have finite-chain (M\i. d-(Y 7))
proof (rule finite-range-imp-finch)
from Y show chain (M\i. d-(Y ©)) by simp
have range (\i. d-(Y 7)) C range (Az. d-z) by auto
then show finite (range (Ai. d-(Y 7)))
using finite-range by (rule finite-subset)
qed
then have 3j. (| |i. d-(Y 7)) = d-(Y j)
by (simp add: finite-chain-def maxinch-is-thelub Y')
then obtain j where j: (| |i. d-(Y i) = d-(Yj) ..

assume d-x C (| |7. Y 9)
then have d-(d-z) C d-(| |i. Y 7)

by (rule monofun-cfun-arg)
then have d-z C (| |4. d-(Y 7))

by (simp add: contlub-cfun-arg Y idem)
with j have d-2 C d-(Y j) by simp
then have d-2 C Y j

using below by (rule below-trans)
then show 3j. d-z C Yj..

qed

end

lemma finite-deflation-intro: deflation d = finite {z. d-x = ©} = finite-deflation
d
by (intro finite-deflation.intro finite-deflation-azioms.intro)

lemma finite-deflation-imp-deflation: finite-deflation d = deflation d
by (simp add: finite-deflation-def)

lemma finite-deflation-bottom: finite-deflation L
by standard simp-all

10.3 Continuous embedding-projection pairs

locale ep-pair =
fixese: 'a— band p:: 'b — 'a
assumes e-inverse [simp|: Az. p-(ex) = x
and e-p-below: Ny. e(py) E y

begin
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lemma e-below-iff [simp|: ez C ey +— zC gy
proof
assume ez C ey
then have p-(e-x) C p-(e-y) by (rule monofun-cfun-arg)
then show z C y by simp
next
assume z C y
then show ez C e-y by (rule monofun-cfun-arg)
qed

lemma e-eq-iff [simp]: ex = ey +— x =y
unfolding po-eq-conv e-below-iff ..

lemma p-eq-iff: e:(px) =2 = e(py) =y = pr=py<+— =y
by (safe, erule subst, erule subst, simp)

lemma p-inverse: (3z. y = e-x) «— e(py) =y
by (auto, rule exl, erule sym)

lemma e-below-iff-below-p: eex C y +— z C p-y
proof
assume ez C y
then have p-(e-x) C p-y by (rule monofun-cfun-arg)
then show z C p-y by simp
next
assume z L p-y
then have ez C e(p-y) by (rule monofun-cfun-arg)
then show e-z C y using e-p-below by (rule below-trans)
qed

lemma compact-e-rev: compact (e-x) => compact x
proof —
assume compact (e-x)
then have adm (\y. e-x [Z y) by (rule compactD)
then have adm (\y. e-x L e-y) by (rule adm-subst [OF cont-Rep-cfun2])
then have adm (\y. z [Z y) by simp
then show compact = by (rule compactl)
qed

lemma compact-e:
assumes compact T
shows compact (e-x)
proof —
from assms have adm (A\y. z [Z y) by (rule compactD)
then have adm (\y. z [Z p-y) by (rule adm-subst [OF cont-Rep-cfun2])
then have adm (\y. ez £ y) by (simp add: e-below-iff-below-p)
then show compact (e-z) by (rule compactl)
qed
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lemma compact-e-iff: compact (e-x) <— compact x
by (rule iffl [OF compact-e-rev compact-e])

Deflations from ep-pairs
lemma deflation-e-p: deflation (e oo p)

by (simp add: deflation.intro e-p-below)

lemma deflation-e-d-p:
assumes deflation d
shows deflation (e oo d oo p)

proof
interpret deflation d by fact
fix z:: b

show (e 0o d 0o p)-((e 0o d oo p)-z) = (e 0o d oo p)-z
by (simp add: idem)
show (e oo d oo p)-z C z
by (simp add: e-below-iff-below-p below)
qed

lemma finite-deflation-e-d-p:
assumes finite-deflation d
shows finite-deflation (e oo d oo p)

proof
interpret finite-deflation d by fact
fix z::'b

show (e oo d oo p)-((e oo d oo p)-z) = (e oo d oo p)z
by (simp add: idem)

show (e oo d oo p)z C z
by (simp add: e-below-iff-below-p below)

have finite ((\z. e-xz) ‘ (Az. d-z) ‘ range (A\z. p-x))
by (simp add: finite-image)

then have finite (range (Az. (e oo d oo p)-x))
by (simp add: image-image)

then show finite {z. (e 0o d oo p)-x = z}
by (rule finite-range-imp-finite-fizes)

qed

lemma deflation-p-d-e:
assumes deflation d
assumes d: A\z. d-z C e(p-x)
shows deflation (p oo d oo e)
proof —
interpret d: deflation d by fact
have p-d-e-below: (p oo d oo e)-x C z for z
proof —
have d-(e:z) C e-x
by (rule d.below)
then have p-(d-(e-z)) C p-(e-x)
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by (rule monofun-cfun-arg)
then show ?thesis by simp
qed
show ?thesis
proof
show (p oo d 00 €)-x C z for x
by (rule p-d-e-below)
show (p oo d 0o €)-((p oo d oo €)-x) = (p oo d oo e)-z for x
proof (rule below-antisym)
show (p oo d oo e)-((p oo d oo e)-x) C (p oo d oo e)-x
by (rule p-d-e-below)
have p-(d-(d(d-(¢-2)))) T p-(d-(e-(p-(d-(e2)))))
by (intro monofun-cfun-arg d)
then have p-(d-(e-2)) C p-(d-(e-(p-(d(e:2))))
by (simp only: d.idem)
then show (p 0o d 00 e)-x C (p oo d oo €)-((p oo d oo €)-x)
by simp
qed
qed
qed

lemma finite-deflation-p-d-e:
assumes finite-deflation d
assumes d: Az. d-z C e(p-x)
shows finite-deflation (p oo d oo e)
proof —
interpret d: finite-deflation d by fact
show ?thesis
proof (rule finite-deflation-intro)
have deflation d ..
then show deflation (p oo d oo e)
using d by (rule deflation-p-d-e)
next
have finite ((A\z. d-z) ‘ range (Az. e-x))
by (rule d.finite-image)
then have finite (\z. p-x) * (A\z. d-z) ‘ range (\z. e-x))
by (rule finite-imagel)
then have finite (range (Az. (p oo d oo €)-x))
by (simp add: image-image)
then show finite {z. (p oo d oo €)-z = z}
by (rule finite-range-imp-finite-fizes)
qed
qed

end

10.4 Uniqueness of ep-pairs

lemma ep-pair-unique-e-lemma:
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assumes [: ep-pair el p
and 2: ep-pair e2 p
shows el C e2
proof (rule cfun-belowl)
fix z
have el-(p-(e2-z)) C e2-z
by (rule ep-pair.e-p-below [OF 1))
then show el-z C e2-z
by (simp only: ep-pair.e-inverse [OF 2])
qed

lemma ep-pair-unique-e: ep-pair el p =—> ep-pair e2 p —> el = e2
by (fast intro: below-antisym elim: ep-pair-unique-e-lemma)

lemma ep-pair-unique-p-lemma:
assumes 1: ep-pair e pl
and 2: ep-pair e p2
shows p1 C p2
proof (rule cfun-belowl)
fix z
have e (pl-z) C z
by (rule ep-pair.e-p-below [OF 1))
then have p2-(e:(p!-z)) C p2-x
by (rule monofun-cfun-arg)
then show pi-z C p2-x
by (simp only: ep-pair.e-inverse [OF 2])
qged

lemma ep-pair-unique-p: ep-pair e p1 = ep-pair e p2 —> pl = p2
by (fast intro: below-antisym elim: ep-pair-unique-p-lemma)

10.5 Composing ep-pairs

lemma ep-pair-ID-1D: ep-pair ID ID
by standard simp-all

lemma ep-pair-comp:
assumes ep-pair el pl and ep-pair e2 p2
shows ep-pair (e2 oo el) (pl oo p2)
proof
interpret epl: ep-pair el p1 by fact
interpret ep2: ep-pair e2 p2 by fact
fix x y
show (p! oo p2)-((e2 oo el)-x) = x
by simp
have el-(p1-(p2-y)) E p2-y
by (rule epl.e-p-below)
then have e2-(el-(p1-(p2-y))) C e2-(p2-y)
by (rule monofun-cfun-arg)

99
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also have e2-(p2-y) C y
by (rule ep2.e-p-below)
finally show (e2 oo el)-((pl oo p2)-y) C y
by simp
qed

locale pcpo-ep-pair = ep-pair e p
for e :: 'a::pcpo — 'b::pepo
and p :: 'b::pcpo — 'a::pepo
begin

lemma e-strict [simp]: el = L
proof —
have L C p-1 by (rule minimal)
then have e- L C e:(p-L1) by (rule monofun-cfun-arg)
also have e:(p-L) C L by (rule e-p-below)
finally show e-1 = | by simp
qed

lemma e-bottom-iff [simp]: ex = L +— z = L
by (rule e-eq-iff [where y=_, unfolded e-strict])

lemma e-defined: v # L =— ex # L
by simp

lemma p-strict [simp]: p-L = L
by (rule e-inverse [where z=_L1, unfolded e-strict])

lemmas stricts = e-strict p-strict
end

end

11 The type of strict products

theory Sprod
imports Cfun
begin

11.1 Definition of strict product type

definition sprod = {p::’a::pcpo x "b:ipcpo. p = LV (fstp # L A sndp # 1)}
pcpodef (‘a::pepo, 'b::pepo) sprod  («(snotation=<infix strict producty>- @/ -)»
[21,20] 20) =

sprod :: ('a x 'b) set
by (simp-all add: sprod-def)
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instance sprod :: ({chfin,pcpo}, {chfin,pcpo}) chfin
by (rule typedef-chfin [OF type-definition-sprod below-sprod-def])

type-notation (ASCII)
sprod (infixr ¢ 20)

11.2 Definitions of constants

definition sfst :: (‘a::pepo *x 'b:ipepo) — 'a
where sfst = (A p. fst (Rep-sprod p))

definition ssnd :: (‘a::pepo xx 'bipepo) — b
where ssnd = (A p. snd (Rep-sprod p))

definition spair :: ‘a::pcpo — 'b:ipecpo — (‘a xx 'b)
where spair = (A a b. Abs-sprod (seq-b-a, seq-a-b))

definition ssplit :: (‘a::pcpo — 'bi:pepo — 'ciipepo) — (a xx 'b) — ‘¢
where ssplit = (A [ p. seq-p-(f-(sfst-p)-(ssnd-p)))

syntax
-stuple :: [logic, args] = logic («(¢<indent=1 notation=<mizfix strict tuple»)(:-,/
1))
syntax-consts
-stuple = spair
translations
Gz, y, z:) = (:z, (cy, 2:):)
(:z, y:) = CONST spair-xz-y

translations
A(CONST spair-z-y). t = CONST ssplit-(A z y. t)

11.3 Case analysis

lemma spair-sprod: (seq-b-a, seq-a-b) € sprod
by (simp add: sprod-def seq-conv-if)

lemma Rep-sprod-spair: Rep-sprod (:a, b:) = (seq-b-a, seq-a-b)
by (simp add: spair-def cont-Abs-sprod Abs-sprod-inverse spair-sprod)

lemmas Rep-sprod-simps =
Rep-sprod-inject [symmetric] below-sprod-def
prod-eq-iff below-prod-def
Rep-sprod-strict Rep-sprod-spair

lemma sprodE [case-names bottom spair, cases type: sprod):
obtains p = 1 | z y where p = (:z, y:) and = # | and y # L
using Rep-sprod [of p] by (auto simp add: sprod-def Rep-sprod-simps)

lemma sprod-induct [case-names bottom spair, induct type: sprod):
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[PLiAvy [z# Ly# L] = P (2 y)]= Pz
by (cases x) simp-all

11.4 Properties of spair
1

lemma spair-strictl [simp]: (: L, y:)
by (simp add: Rep-sprod-simps)

lemma spair-strict2 [simp): (:z, L:) = L
by (simp add: Rep-sprod-simps)

lemma spair-bottom-iff [simpl: (:z, y:) = L+— 2z =1V y=_1
by (simp add: Rep-sprod-simps seq-conv-if)

lemma spair-below-iff: (ta, b:) C (¢, d:) «—a=LVb=1LV (aCcAbLCd)
by (simp add: Rep-sprod-simps seq-conv-if)

lemma spair-eq-iff: (:a, b)) = (t¢, d:) +—a=cAb=dV(a=LVb=1)A
(c=1lvd=1)
by (simp add: Rep-sprod-simps seq-conv-if )

lemma spair-strict: t = L Vy=1 = (z,y:) = L
by simp

lemma spair-strict-rev: (x, y:) # L =z £ L Ay # L
by simp

lemma spair-defined: [x # 1; y # L] = (z, y:) # L
by simp

lemma spair-defined-rev: (iz, y:) = L =z =1Vy=_1
by simp

lemma spair-below: © # 1 = y # L = (2, y:) C (g, b)) «—2Ca Ay b
by (simp add: spair-below-iff)

lemma spair-eq: t # 1L — y# L = (z, y:) = (g, b)) «—z=aAy=1b
by (simp add: spair-eq-iff)

lemma spair-inject: t # 1L — y # 1L = (z, ;) = (o, b)) =z =aANy=D>
by (rule spair-eq [THEN 1iffD1])

lemma inst-sprod-pcpo2: L = (: L, L:)
by simp

lemma sprodE2: (Azy. p = (iz, y:) = Q) = @
by (cases p) (simp only: inst-sprod-pcpo2, simp)
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11.5 Properties of sfst and ssnd

lemma sfst-strict [simp]: sfst-L = L
by (simp add: sfst-def cont-Rep-sprod Rep-sprod-strict)

lemma ssnd-strict [simp]: ssnd-L = L
by (simp add: ssnd-def cont-Rep-sprod Rep-sprod-strict)

lemma sfst-spair [simpl: y # L = sfst-(:z, y:) = x
by (simp add: sfst-def cont-Rep-sprod Rep-sprod-spair)

lemma ssnd-spair [simp]: © # L = ssnd-(:z, y:) = y
by (simp add: ssnd-def cont-Rep-sprod Rep-sprod-spair)

lemma sfst-bottom-iff [simp]: sfstp = L +— p= 1
by (cases p) simp-all

lemma ssnd-bottom-iff [simp]: ssnd-p = L +— p= 1
by (cases p) simp-all

lemma sfst-defined: p # 1 = sfst-p # L
by simp

lemma ssnd-defined: p # 1L = ssnd-p # L
by simp

lemma spair-sfst-ssnd: (:sfst-p, ssnd-p:) = p
by (cases p) simp-all

lemma below-sprod: x = y +— sfst-x T sfst-y A\ ssnd-x E ssnd-y
by (simp add: Rep-sprod-simps sfst-def ssnd-def cont-Rep-sprod)

lemma eg-sprod: © = y «— sfst-x = sfst-y A\ ssnd-x = ssnd-y
by (auto simp add: po-eq-conv below-sprod)

lemma sfst-below-iff: sfst-x C y +— z C (:y, ssnd-x:)
by (cases x = L, simp, cases y = L, simp, simp add: below-sprod)

lemma ssnd-below-iff: ssnd-x C y +— x C (:sfst-z, y:)
by (cases x = L, simp, cases y = L, simp, simp add: below-sprod)

11.6 Compactness

lemma compact-sfst: compact ¥ = compact (sfst-z)
by (rule compactl) (simp add: sfst-below-iff)

lemma compact-ssnd: compact © = compact (ssnd-x)
by (rule compactl) (simp add: ssnd-below-iff)

lemma compact-spair: compact t = compact y = compact (:x, y:)
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by (rule compact-sprod) (simp add: Rep-sprod-spair seq-conv-if )

lemma compact-spair-iff: compact (:z, y:) +— = L V y = L V (compact A
compact y)
apply (safe elim!: compact-spair)
apply (drule compact-sfst, simp)
apply (drule compact-ssnd, simp)
apply simp
apply simp
done

11.7 Properties of ssplit

lemma ssplit [simp): ssplit-f-1L = L
by (simp add: ssplit-def)

lemma ssplit2 [simp): © # L = y # L = ssplit-f-(:z, y:) = f-z-y
by (simp add: ssplit-def)

lemma ssplitd [simp]: ssplit-spair-z = 2z
by (cases z) simp-all

11.8 Strict product preserves flatness

instance sprod :: (flat, flat) flat
proof
fixzy:'a®'b
assume v L y
thenshowz =1 Vaz=y
apply (induct z, simp)
apply (induct y, simp)
apply (simp add: spair-below-iff flat-below-iff)
done
qed

end

12 The type of lifted values

theory Up
imports Cfun
begin
12.1 Definition of new type for lifting
datatype ‘a u (<(<notation=<postfix lifting>>-, )> [1000] 999) = Ibottom | Iup 'a

primrec Ifup :: ('a — 'bupepo) = ‘a u = b
where
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Ifup f Ibottom = L
| Ifup f (Iup z) = f-z

12.2 Ordering on lifted cpo

instantiation v :: (cpo) below
begin

definition below-up-def:
©) =
Az y.
(case z of
Ibottom = True
| Tup a = (case y of Ibottom = False | Tup b = a C b)))

instance ..
end

lemma minimal-up [iff]: Ibottom C z
by (simp add: below-up-def)

lemma not-Tup-below [iff]: Tup = £ ITbottom
by (simp add: below-up-def)

lemma Tup-below [iff]: (Tup z C Tup y) = (x C y)
by (simp add: below-up-def)

12.3 Lifted cpo is a partial order

instance u :: (¢po) po
proof
fixz:'au
show z C z
by (simp add: below-up-def split: w.split)
next
fixzy:'au
assume z L yy C z
then show z = y
by (auto simp: below-up-def split: w.split-asm intro: below-antisym)
next
fixzyz:'au
assume z L yy C 2z
then show z C 2
by (auto simp: below-up-def split: w.split-asm intro: below-trans)
qed

12.4 Lifted cpo is a cpo

lemma is-lub-Tup: range S <<| = range (Ai. Tup (S 7)) <<| Tup x
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by (auto simp: is-lub-def is-ub-def ball-simps below-up-def split: u.split)

lemma up-chain-lemma:
assumes Y: chain Y
obtains Vi. Y ¢ = Ibottom
| A k where Vi. Iup (A i) =Y (i + k) and chain A and range Y <<| Iup
proof (cases k. Y k # Ibottom)
case True
then obtain k where k: Y k # Ibottom ..
define A where A i = (THE a. Iup a =Y (i + k)) for ¢
have Tup-A: Vi. Iup (A i) =Y (i + k)
proof
fix i :: nat
from Y le-add2 have YEC Y (i + k) by (rule chain-mono)
with £ have Y (i + k) # Ibottom by (cases Y k) auto
then show Tup (A i) =Y (i + k)
by (cases Y (i + k), simp-all add: A-def)
qed
from Y have chain-A: chain A
by (simp add: chain-def Tup-below [symmetric] Tup-A)
then have range A <<| (|]i. A 9)
by (rule cpo-lubl)
then have range (Ai. Tup (A 7)) <<| Tup (| ]i. A 1)
by (rule is-lub-Iup)
then have range (A\i. Y (i + k)) <<| Tup (| |i. A i)
by (simp only: Tup-A)
then have range (Ai. Y i) <<| Tup (| ]i. A 7)
by (simp only: is-lub-range-shift [OF Y])
with Tup-A chain-A show ?thesis ..
next
case Fulse
then have Vi. Y i = Ibottom by simp
then show ?thesis ..
qed

instance u :: (¢po) cpo
proof
fix S ::nat = ‘au
assume S: chain S
then show Jz. range (\i. S i) <<| =z
proof (rule up-chain-lemma)
assume Vi. S i = Ibottom
then have range (\i. S i) <<| Ibottom
by (simp add: is-lub-const)
then show ?thesis ..
next
fix A :: nat = 'a
assume range S <<| Tup (| |i. A 1)
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then show ?thesis ..
qed
qed

12.5 Lifted cpo is pointed

instance u :: (¢po) pepo
by intro-classes fast

for compatibility with old HOLCF-Version

lemma inst-up-pcpo: L = Ibottom
by (rule minimal-up [THEN bottomlI, symmetric])

12.6 Continuity of Tup and Ifup

continuity for Tup

lemma cont-ITup: cont Iup
apply (rule contl)
apply (rule is-lub-Tup)
apply (erule cpo-lubl)
done

continuity for Ifup

lemma cont-Ifupl: cont (Af. Ifup f x)
by (induct z) simp-all

lemma monofun-Ifup2: monofun (Az. Ifup f x)
apply (rule monofunl)
apply (case-tac z, simp)
apply (case-tac y, simp)
apply (simp add: monofun-cfun-arg)
done

lemma cont-Ifup2: cont (Az. Ifup f x)
proof (rule contl2)
fix V
assume Y: chain Y and Y': chain (Ai. Ifup f (Y Q)
from Y show Ifup f (| |i. Vi) C (] Ifup f (Y 1))
proof (rule up-chain-lemma)
fix A and k
assume A: Vi. Tup (Ai) =Y (i + k)
assume chain A and range Y <<| ITup (| ]i. A7)
then have Ifup f (| ]i. Y i) = (|4 Ifup f (Tup (A 7))
by (simp add: lub-eql contlub-cfun-arg)

also have ... = (| ]i. Ifup f (Y (i + k)))
by (simp add: A)
also have ... = (| |i. Ifup f (Y i))

using Y’ by (rule lub-range-shift)
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finally show ?thesis by simp
qed simp
qed (rule monofun-Ifup2)

12.7 Continuous versions of constants

definition up :: ‘a — ‘a u
where up = (A z. Tup z)

definition fup :: (‘a — 'b::pcpo) — 'a u — b
where fup = (A f p. Ifup f p)

translations
case 1 of XCONST up-x = t = CONST fup-(A z. t)-1
case | of (XCONST up :: 'a)-x = t = CONST fup-(A . t)-1
A(XCONST up-z). t = CONST fup-(A z. t)

continuous versions of lemmas for ‘a |

lemma Fzh-Up: z = L V (2. z = up-x)
by (induct z) (simp add: inst-up-pcpo, simp add: up-def cont-Tup)

lemma up-eq [simpl: (up-z = up-y) = (z = y)
by (simp add: up-def cont-Iup)

lemma up-inject: up-x = up-y = x =y
by simp

lemma up-defined [simp]: up-z # L
by (simp add: up-def cont-Iup inst-up-pcpo)

lemma not-up-less-UU: up-x £ L
by simp

lemma up-below [simp]: up-x C upy +— 2 C y
by (simp add: up-def cont-Iup)

lemma upFE [case-names bottom up, cases type: ul: [p = L = Q; A\z. p = up-x
= Q] = @
by (cases p) (simp add: inst-up-pcpo, simp add: up-def cont-Tup)

lemma up-induct [case-names bottom up, induct type: u]: P L = (Az. P (up-z))
= Pz
by (cases x) simp-all

lifting preserves chain-finiteness

lemma up-chain-cases:
assumes Y: chain Y
obtains Vi. Y i = 1
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| A k where Vi. up-(A i) =Y (i + k) and chain A and (| |i. Y i) = up-(|] 1.
A i)

by (rule up-chain-lemma [OF Y]) (simp-all add: inst-up-pcpo up-def cont-Iup
lub-eql )

lemma compact-up: compact x = compact (up-x)
apply (rule compactI2)
apply (erule up-chain-cases)
apply simp
apply (drule (1) compactD2, simp)
apply (erule exFE)
apply (drule-tac f=up and z=z in monofun-cfun-arg)
apply (simp, erule exl)
done

lemma compact-upD: compact (up-z) => compact x
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=upl|, simp)

lemma compact-up-iff [simp]: compact (up-z) = compact x
by (safe elim!: compact-up compact-upD)

instance u :: (chfin) chfin
apply intro-classes
apply (erule compact-imp-maz-in-chain)
apply (rule-tac p=||i. Y i in upE, simp-all)
done

properties of fup

lemma fup! [simp]: fup-f-L = L
by (simp add: fup-def cont-Ifupl cont-Ifup2 inst-up-pcpo cont2cont-LAM)

lemma fup2 [simp]: fup-f-(up-x) = f-x
by (simp add: up-def fup-def cont-Tup cont-Ifupl cont-Ifup2 cont2cont-LAM)

lemma fup3 [simpl: fup-up-z = x
by (cases x) simp-all

end

13 Lifting types of class type to flat pcpo’s

theory Lift
imports Up
begin

pepodef ‘a::type lift = UNIV :: 'a discr u set
by simp-all
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lemmas inst-lift-pcpo = Abs-lift-strict [symmetric]

definition
Def :: 'a::type = ’a lift where
Def x = Abs-lift (up-(Discr x))

13.1 Lift as a datatype

lemma lift-induct: [P L; Az. P (Defz)] = Py
apply (induct y)

apply (rule-tac p=y in upE)

apply (simp add: Abs-lift-strict)

apply (case-tac x)

apply (simp add: Def-def)

done

old-rep-datatype _L::a::type lift Def
by (erule lift-induct) (simp-all add: Def-def Abs-lift-inject inst-lift-pcpo)

1 and Def
lemma not-Undef-is-Def: (x # L) = (3y. x = Def y)

by (cases x) simp-all

lemma lift-definedE: [z # L; Aa. 2 = Def a = R] = R
by (cases x) simp-all

For x # L in assumptions defined replaces = by Def a in conclusion.

method-setup defined = «
Scan.succeed (fn ctet => SIMPLE-METHOD'
(eresolve-tac ctzt Q{thms lift-definedE} THEN' asm-simp-tac ctzt))
)

lemma DefE: Defr = 1L — R
by simp

lemma DefE2: [x = Defs; 2 = 1] = R
by simp

lemma Def-below-Def: Def xt C Defy +— z =y
by (simp add: below-lift-def Def-def Abs-lift-inverse)

lemma Def-below-iff [simp]: Def x C y <— Defz =y
by (induct y, simp, simp add: Def-below-Def)

13.2 Lift is flat

instance lift :: (type) flat
proof
fix zy :: 'a lift
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assume z C ythusz =1L Vz=y
by (induct z) auto
qed

13.3 Continuity of case-lift

lemma case-lift-eq: case-lift L fz = fup-(A y. f (undiscr y))-(Rep-lift x)
apply (induct x, unfold lift.case)

apply (simp add: Rep-lift-strict)

apply (simp add: Def-def Abs-lift-inverse)

done

lemma cont2cont-case-lift [simp]:
[Ay. cont (Az. fz y); cont g] = cont (Az. case-lift L (f z) (g z))
unfolding case-lift-eq by (simp add: cont-Rep-lift)

13.4 Further operations

definition
flift1 = (Ya::type = 'bipepo) = (‘a lift — 'b) (binder «FLIFT » 10) where
fliftl = (Af. (A z. case-lift L fx))

translations
A(XCONST Def z). t => CONST flift1 (Ax. t)
A(CONST Def x). FLIFT y. t <= FLIFT z y. t
A(CONST Def z). t <= FLIFT x. t

definition
flift2 = (Ya::type = 'butype) = (‘a lift — 'b lift) where
flift2 f = (FLIFT x. Def (f z))

lemma flift1-Def [simp]: fliftl f-(Def z) = (f z)
by (simp add: flift1-def)

lemma flift2-Def [simp]: flift2 f-(Def ) = Def (f )
by (simp add: flift2-def)

lemma flift1-strict [simp]: fliftl f-1 = L
by (simp add: flift1-def)

lemma flift2-strict [simp]: flift2 f-1L = L
by (simp add: flift2-def)

lemma flift2-defined [simp]: © # L = (flift2 f)-x # L
by (erule lift-definedE, simp)

lemma flift2-bottom-iff [simp]: (flift2 f-o = L) = (z = 1)
by (cases x, simp-all)

lemma FLIFT-mono:
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(Nz. fz C gz) = (FLIFT z. fz) C (FLIFT z. g )
by (rule cfun-belowl, case-tac x, simp-all)

lemma cont2cont-flift1 [simp, cont2cont]:
[Ay. cont (\z. fz y)] = cont (A\x. FLIFT y. f x y)
by (simp add: flift1-def cont2cont-LAM)

end

14 The type of lifted booleans

theory Tr
imports Lift
begin

14.1 Type definition and constructors

type-synonym tr = bool lift

translations
(type) tr — (type) bool lift

definition TT :: tr
where TT = Def True

definition FF : tr
where FF = Def False

Exhaustion and Elimination for type tr

lemma Ezh-tr:t =1V it=TT V t=FF
by (induct t) (auto simp: FF-def TT-def)

lemma irE [case-names bottom TT FF, cases type: tr]:
[p=L=Q@Q;p=TT = Q;p=FF = Q] = @
by (induct p) (auto simp: FF-def TT-def)

lemma tr-induct [case-names bottom TT FF, induct type: tr]:
Pl—=PTT— PFF = Pz
by (cases x) simp-all

distinctness for type tr

lemma dist-below-tr [simpl:
TTZ | FFZ | TT ¢ FF FF Z TT
by (simp-all add: TT-def FF-def)

lemma dist-eq-tr [simp]: TT # L FF + 1 TT #FF 1 # TT L # FFFF #+# TT
by (simp-all add: TT-def FF-def)
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lemma TT-below-iff [simp]: TT C z +— z =TT
by (induct ) simp-all

lemma FF-below-iff [simp]: FF C z +— © = FF
by (induct z) simp-all

lemma not-below-TT-iff [simp]: ¢ L TT +— = = FF
by (induct z) simp-all

lemma not-below-FF-iff [simp|: L FF «— x = TT
by (induct z) simp-all

14.2 Case analysis

definition tr-case :: 'a::pcpo — 'a — tr — 'a
where tr-case = (A t e (Def b). if b then t else e)

abbreviation cifte-syn :: [tr, ‘c:ipcpo, 'c] = ‘¢ («(<notation=«mizfix If expres-
sionnIf (-)/ then (-)/ else (-))» [0, 0, 60] 60)
where If b then el else e2 = tr-case-el-e2-b

translations
A (XCONST TT). t = CONST tr-case-t- L
A (XCONST FF). t = CONST tr-case-L-1

lemma ifte-thms [simp):
If 1 then el else e2 = L
If FF then el else e2 = e2
If TT then el else e2 = el
by (simp-all add: tr-case-def TT-def FF-def)

14.3 Boolean connectives

definition trand :: tr — tr — tr
where andalso-def: trand = (A z y. If z then y else FF)

abbreviation andalso-syn :: tr = tr = tr (- andalso - [36,35] 35)
where z andalso y = trand-z-y

definition tror :: tr — tr — tr
where orelse-def: tror = (A z y. If z then TT else y)

abbreviation orelse-syn :: tr = tr = tr (- orelse - [31,30] 30)
where z orelse y = tror-x-y

definition neg :: tr — tr
where neg = flift2 Not

definition If2 :: tr = ’cipcpo = 'c = 'c
where If2 Q ¢y = (If Q then z else y)
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tactic for tr-thms with case split
lemmas tr-defs = andalso-def orelse-def neg-def tr-case-def TT-def FF-def

lemmas about andalso, orelse, neg and if

lemma andalso-thms [simp]:
(TT andalso y) = y
(FF andalso y) = FF
(L andalso y) = L
(y andalso TT) =y
(y andalso y) = y
apply (unfold andalso-def, simp-all)
apply (cases y, simp-all)
apply (cases y, simp-all)
done

lemma orelse-thms [simp]:
(TT orelse y) = TT
(FF orelse y) = y
(L orelse y) = L
(y orelse FF') = y
(y orelse y) = y
apply (unfold orelse-def, simp-all)
apply (cases y, simp-all)
apply (cases y, simp-all)
done

lemma neg-thms [simp]:

neg-TT = FF
neg-FF =TT
neg- L = L

by (simp-all add: neg-def TT-def FF-def)

split-tac for If via If2 because the constant has to be a constant

lemma split-If2: P (If2 Qzy) «— (@=L — P L)A(Q=TT — P2x) A
(Q = FF — Puy))
by (cases Q) (simp-all add: If2-def)

ML «
fun split-If-tac ctxt =
simp-tac (put-simpset HOL-basic-ss ctzt addsimps [Q{thm If2-def} RS sym])
THEN' (split-tac ctxt [Q{thm split-If2}])

14.4 Rewriting of HOLCF operations to HOL functions

lemma andalso-or: t # L = (t andalso s) = FF «— t = FF vV s = FF
by (cases t) simp-all
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lemma andalso-and: t # L = ((t andalso s) # FF) «— t # FF AN s # FF
by (cases t) simp-all

lemma Def-booll [simp|: Def x # FF +— x
by (simp add: FF-def)

lemma Def-bool2 [simp|: Def x = FF «— — x
by (simp add: FF-def)

lemma Def-bool3 [simp]: Def x = TT «— x
by (simp add: TT-def)

lemma Def-bool) [simp]: Defx # TT +— -z
by (simp add: TT-def)

lemma If-and-if: (If Def P then A else B) = (if P then A else B)
by (cases Def P) (auto simp add: TT-def[symmetric] FF-def[symmetric])

14.5 Compactness

lemma compact-TT: compact TT
by (rule compact-chfin)

lemma compact-FF: compact FF
by (rule compact-chfin)

end

15 The type of strict sums

theory Ssum
imports Tr
begin

15.1 Definition of strict sum type

definition ssum =
{p : tr x (Ya::pepo x 'b:pcpo). p = LV
(fstp =TT A fst (snd p) # L A snd (sndp) = L)V
(fstp = FF A fst (snd p) = L A snd (snd p) # 1)}

pcpodef (‘a::pepo, 'biipepo) ssum  (<(«notation=<infix strict sumy»- &/ -)» [21,
20] 20) =

ssum :: (tr x 'a x 'b) set

by (simp-all add: ssum-def)

instance ssum :: ({chfin,pcpo}, {chfin,pcpo}) chfin
by (rule typedef-chfin [OF type-definition-ssum below-ssum-def])
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type-notation (ASCII)
ssum (infixr <++> 10)

15.2 Definitions of constructors
definition sinl :: ‘a::pcpo — (‘a ++ 'b::pcpo)
where sinl = (A a. Abs-ssum (seq-a-TT, a, 1))

definition sinr :: ‘b::pcpo — (‘a:pepo ++ 'b)
where sinr = (A b. Abs-ssum (seq-b-FF, L, b))

lemma sinl-ssum: (seq-a-TT, a, L) € ssum
by (simp add: ssum-def seq-conv-if)

lemma sinr-ssum: (seq-b-FF, 1, b) € ssum
by (simp add: ssum-def seq-conuv-if)

lemma Rep-ssum-sinl: Rep-ssum (sinl-a) = (seq-a-TT, a, L)
by (simp add: sinl-def cont-Abs-ssum Abs-ssum-inverse sinl-ssum)

lemma Rep-ssum-sinr: Rep-ssum (sinr-b) = (seq-b-FF, L, b)
by (simp add: sinr-def cont-Abs-ssum Abs-ssum-inverse sinr-ssum)

lemmas Rep-ssum-simps =
Rep-ssum-inject [symmetric] below-ssum-def
prod-eq-iff below-prod-def
Rep-ssum-strict Rep-ssum-sinl Rep-ssum-sinr

15.3 Properties of sinl and sinr

Ordering
lemma sinl-below [simp]: sinl-z T sinl-y +— z C y

by (simp add: Rep-ssum-simps seq-conv-if)

lemma sinr-below [simp]: sinr-x C sinr-y «— z C y
by (simp add: Rep-ssum-simps seq-conv-if )

lemma sinl-below-sinr [simpl: sinl-z C sinr-y +— = L
by (simp add: Rep-ssum-simps seq-conv-if )

lemma sinr-below-sinl [simp]: sinr-z T sinl-y +— x = L
by (simp add: Rep-ssum-simps seq-conv-if )

Equality

lemma sinl-eq [simp]: sinl-z = sinl-y +— z =y

by (simp add: po-eq-conv)

lemma sinr-eq [simp|: sinr-z = sinr-y +— x =y
by (simp add: po-eq-conv)
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lemma sinl-eg-sinr [simp]: sinl-x = sinry «— =1L Ay= 1
by (subst po-eq-conv) simp

lemma sinr-eg-sinl [simp]: sinr-x = sinly «— =1L ANy= 1
by (subst po-eq-conv) simp

lemma sinl-inject: sinl-x = sinl-y = z =y
by (rule sinl-eq [THEN iffD1])

lemma sinr-inject: sinr-x = sinry = =y
by (rule sinr-eq [THEN iffD1])

Strictness
lemma sinl-strict [simp]: sinl- L = L

by (simp add: Rep-ssum-simps)

lemma sinr-strict [simp]: sinr-L = L
by (simp add: Rep-ssum-simps)

lemma sinl-bottom-iff [simp]: sinl-z = L +— x = 1
using sinl-eq [of x L] by simp

lemma sinr-bottom-iff [simp]: sinr-x = L +— z = L
using sinr-eq [of x L] by simp

lemma sinl-defined: © # 1 = sinl-x # L
by simp

lemma sinr-defined: © # L = sinr-x # L
by simp

Compactness

lemma compact-sinl: compact + = compact (sinl-x)
by (rule compact-ssum) (simp add: Rep-ssum-sinl)

lemma compact-sinr: compact z = compact (sinr-r)
by (rule compact-ssum) (simp add: Rep-ssum-sinr)

lemma compact-sinlD: compact (sinl-z) = compact z
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=sinl]], simp)

lemma compact-sinrD: compact (sinr-x) = compact
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=sinr]], simp)

lemma compact-sinl-iff [simp]: compact (sinl-x) = compact
by (safe elim!: compact-sinl compact-sinlD)
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lemma compact-sinr-iff [simp|: compact (sinr-z) = compact ©
by (safe elim!: compact-sinr compact-sinrD)

15.4 Case analysis

lemma ssumkE [case-names bottom sinl sinr, cases type: ssum:
obtains p = L
| z where p = sinl-z and z # L
| y where p = sinr-y and y # L
using Rep-ssum [of p| by (auto simp add: ssum-def Rep-ssum-simps)

lemma ssum-induct [case-names bottom sinl sinr, induct type: ssum]:
[P L
Nz. z # L = P (sinl-x);
Ny. y# L = P (sinry)] = Pz
by (cases x) simp-all

lemma ssumE2 [case-names sinl sinr]:

[Az. p = sinl-z = Q; N\y. p = sinry = Q] = Q
by (cases p, simp only: sinl-strict [symmetric|, simp, simp)

lemma below-sinlD: p C sinl-c = dy. p=sinly Ny C
by (cases p, rule-tac z=_ in exl, simp-all)

lemma below-sinrD: p C sinr-c = Jy. p=sinry Ay C
by (cases p, rule-tac z=_ in exl, simp-all)

15.5 Case analysis combinator

definition sscase :: (‘a::pcpo — 'ci:pepo) — ("bipepo — '¢) = (Ya ++ 'b) — ¢
where sscase = (A fgs. (A(t, z, y). If t then f-z else g-y) (Rep-ssum s))

translations

case s of XCONST sinl-x = t1 | XCONST sinr-y = t2 = CONST sscase-(A x.
t1)-(A y. t2)-s

case s of (XCONST sinl :: 'a)-x = t1 | XCONST sinr-y = t2 — CONST
sscase-(A x. t1)-(A y. 12)-s

translations
A(XCONST sinl-x). t = CONST sscase-(A x. t)-L
A(XCONST sinr-y). t = CONST sscase-L-(A y. t)

lemma beta-sscase: sscase-f-g-s = (A(t, z, y). If t then f-x else g-y) (Rep-ssum s)
by (simp add: sscase-def cont-Rep-ssum,)

lemma sscasel [simp]: sscase-f-g-L = L
by (simp add: beta-sscase Rep-ssum-strict)

lemma sscase2 [simp]: x # L = sscase-f-g-(sinl-z) = f-z
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by (simp add: beta-sscase Rep-ssum-sinl)

lemma sscased [simp]: y # L = sscase-f-g-(sinr-y) = g-y
by (simp add: beta-sscase Rep-ssum-sinr)

lemma sscases [simp]: sscase-sinl-sinr-z = z
by (cases z) simp-all

15.6 Strict sum preserves flatness

instance ssum :: (flat, flat) flat
apply (intro-classes, clarify)
apply (case-tac z, simp)
apply (case-tac y, simp-all add: flat-below-iff)
apply (case-tac y, simp-all add: flat-below-iff)
done

end

16 The Strict Function Type

theory Sfun
imports Cfun
begin

pcpodef (‘a::pepo, 'bipepo) sfun (infixr <—h 0) = {f = 'a —» 'b. f-L = 1}

by simp-all

type-notation (ASCII)
sfun (infixr <—>! 0)
TODO: Define nice syntax for abstraction, application.
definition sfun-abs :: ("a::pcpo — 'biipepo) — (‘a —! 'b)
where sfun-abs = (A f. Abs-sfun (strictify-f))

definition sfun-rep :: (‘a::pcpo —! 'b::pepo) — 'a — b
where sfun-rep = (A f. Rep-sfun f)

lemma sfun-rep-beta: sfun-rep-f = Rep-sfun f
by (simp add: sfun-rep-def cont-Rep-sfun)

lemma sfun-rep-strictl [simpl: sfun-rep-L = L
unfolding sfun-rep-beta by (rule Rep-sfun-strict)

lemma sfun-rep-strict2 [simp|: sfun-rep-f-L = L
unfolding sfun-rep-beta by (rule Rep-sfun [simplified])

lemma strictify-cancel: f-1 = | = strictify-f = f
by (simp add: cfun-eq-iff strictify-conv-if)

79
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lemma sfun-abs-sfun-rep [simpl: sfun-abs-(sfun-rep-f) = f
unfolding sfun-abs-def sfun-rep-def
apply (simp add: cont-Abs-sfun cont-Rep-sfun)
apply (simp add: Rep-sfun-inject [symmetric] Abs-sfun-inverse)
apply (simp add: cfun-eq-iff strictify-conv-if)
apply (simp add: Rep-sfun [simplified])
done

lemma sfun-rep-sfun-abs [simpl: sfun-rep-(sfun-abs-f) = strictify-f
unfolding sfun-abs-def sfun-rep-def
apply (simp add: cont-Abs-sfun cont-Rep-sfun)
apply (simp add: Abs-sfun-inverse)
done

lemma sfun-eq-iff: f = g <— sfun-rep-f = sfun-rep-g
by (simp add: sfun-rep-def cont-Rep-sfun Rep-sfun-inject)

lemma sfun-below-iff: f C g +— sfun-rep-f T sfun-rep-g
by (simp add: sfun-rep-def cont-Rep-sfun below-sfun-def)

end

17 Map functions for various types

theory Map-Functions
imports Deflation Sprod Ssum Sfun Up
begin

17.1 Map operator for continuous function space

definition cfun-map :: ('b = ‘a) = (‘¢ = 'd) = ('a = '¢) = ('b = 'd)
where cfun-map = (A a b fz. b-(f-(a-x)))

lemma cfun-map-beta [simp]: cfun-map-a-b-f-x = b-(f-(a-z))
by (simp add: cfun-map-def)

lemma cfun-map-ID: cfun-map-ID-ID = ID
by (simp add: cfun-eq-iff)

lemma cfun-map-map: cfun-map-f1-g1-(cfun-map-f2-g2-p) = cfun-map-(A z. f2-(f1-x))-(A

. g1-(92-x))-p
by (rule cfun-eql) simp

lemma ep-pair-cfun-map:

assumes ep-pair el pl and ep-pair e2 p2

shows ep-pair (cfun-map-pl-e2) (cfun-map-el-p2)
proof

interpret elpl: ep-pair el pl by fact
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interpret e2p2: ep-pair e2 p2 by fact

show cfun-map-el-p2-(cfun-map-pl-e2-f) = f for f
by (simp add: cfun-eq-iff)

show cfun-map-p1-e2-(cfun-map-el-p2-g) C g for g
apply (rule cfun-belowl, simp)
apply (rule below-trans [OF e2p2.e-p-below))
apply (rule monofun-cfun-arg)
apply (rule elpl.e-p-below)
done

qed

lemma deflation-cfun-map:
assumes deflation d1 and deflation d2
shows deflation (cfun-map-d1-d2)
proof
interpret dI: deflation d1 by fact
interpret d2: deflation d2 by fact
fix f
show cfun-map-d1-d2-(cfun-map-d1-d2-f) = cfun-map-d1-d2-f
by (simp add: cfun-eq-iff d1.idem d2.idem)
show cfun-map-d1-d2-f C f
apply (rule cfun-belowl, simp)
apply (rule below-trans [OF d2.below])
apply (rule monofun-cfun-arg)
apply (rule d1.below)
done
qged

lemma finite-range-cfun-map:
assumes a: finite (range (Az. a-x))
assumes b: finite (range (\y. b-y))
shows finite (range (A\f. cfun-map-a-b-f)) (is finite (range ?h))
proof (rule finite-imageD)
let f = Ag. range (\z. (a-z, g-x))
show finite (?f ¢ range ?h)
proof (rule finite-subset)
let B = Pow (range (Az. a-x) X range (A\y. b-y))
show ?f ‘ range ?h C 7B
by clarsimp
show finite ?B
by (simp add: a b)
qed
show inj-on ?f (range ?h)
proof (rule inj-onl, rule cfun-eql, clarsimp)
fixzfg
assume range (Az. (a-z, b-(f-(a-z)))) = range (Az. (a-z, b-(g-(a-
then have range (Az. (a-z, b-(f-(a-2)))) C range (Az. (a-z, b-(g
by (rule equalityD1)
then have (a-z, b-(f-(a-z))) € range (Az. (a-z, b-(g-(a-x))))

o

)
a-x))))

81
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by (simp add: subset-eq)
then obtain y where (a-z, b-(f-(a-2))) = (ay, b-(g:-(a-y)))
by (rule rangeE)
then show b-(f-(a-z)) = b-(g-(a-x))
by clarsimp
qed
qed

lemma finite-deflation-cfun-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (cfun-map-d1-d2)
proof (rule finite-deflation-intro)
interpret dI: finite-deflation d1 by fact
interpret d2: finite-deflation d2 by fact
from dI.deflation-azioms d2.deflation-azioms show deflation (cfun-map-d1-d2)
by (rule deflation-cfun-map)
have finite (range (Af. cfun-map-d1-d2-f))
using dI.finite-range d2.finite-range
by (rule finite-range-cfun-map)
then show finite {f. cfun-map-d1-d2-f = f}
by (rule finite-range-imp-finite-fizes)
qged

Finite deflations are compact elements of the function space

lemma finite-deflation-imp-compact: finite-deflation d = compact d
apply (frule finite-deflation-imp-deflation)
apply (subgoal-tac compact (cfun-map-d-d-d))
apply (simp add: cfun-map-def deflation.idem eta-cfun)
apply (rule finite-deflation.compact)
apply (simp only: finite-deflation-cfun-map)
done

17.2 Map operator for product type
definition prod-map :: ('a = 'b) = (‘¢ = 'd) = 'a x 'c = b x 'd

where prod-map = (A f g p. (f-(fst p), g-(snd p)))

lemma prod-map-Pair [simp]: prod-map-f-g-(z, y) = (f-z, g-y)
by (simp add: prod-map-def)

lemma prod-map-ID: prod-map-1D-ID = ID
by (auto simp: cfun-eq-iff)

lemma prod-map-map: prod-map-f1-g1-(prod-map-f2-92-p) = prod-map-(A z. f1-(f2-z))-(A
. g1-(g2-x))-p
by (induct p) simp

lemma ep-pair-prod-map:
assumes ep-pair el pl and ep-pair e2 p2



THEORY “Map-Functions” 83

shows ep-pair (prod-map-el-e2) (prod-map-pl-p2)
proof
interpret elpl: ep-pair el pl by fact
interpret e2p2: ep-pair e2 p2 by fact
show prod-map-p1-p2-(prod-map-el-e2-z) = z for z
by (induct ) simp
show prod-map-el-e2-(prod-map-p1-p2-y) C y for y
by (induct y) (simp add: elpl.e-p-below e2p2.e-p-below)
qed

lemma deflation-prod-map:
assumes deflation d1 and deflation d2
shows deflation (prod-map-d1-d2)
proof
interpret dI: deflation d1 by fact
interpret d2: deflation d2 by fact
fix z
show prod-map-d1-d2-(prod-map-d1-d2-z) = prod-map-d1-d2-x
by (induct x) (simp add: d1.idem d2.idem)
show prod-map-di-d2-z C x
by (induct x) (simp add: d1.below d2.below)
qged

lemma finite-deflation-prod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (prod-map-d1-d2)
proof (rule finite-deflation-intro)
interpret dI: finite-deflation d1 by fact
interpret d2: finite-deflation d2 by fact
from d1.deflation-azioms d2.deflation-azioms show deflation (prod-map-d1-d2)
by (rule deflation-prod-map)
have {p. prod-map-d1-d2-p = p} C {z. dl-z = z} x {y. d2-y = y}
by auto
then show finite {p. prod-map-d1-d2-p = p}
by (rule finite-subset, simp add: d1.finite-fizes d2.finite-fizes)
qed

17.3 Map function for lifted cpo

definition u-map :: (‘a - 'b) = ‘au — 'bu
where u-map = (A f. fup-(up oo f))

lemma u-map-strict [simp|: u-map-f-L = L
by (simp add: u-map-def)

lemma u-map-up [simp]: u-map-f-(up-z) = up-(f-z)
by (simp add: u-map-def)

lemma u-map-ID: u-map-ID = ID
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by (simp add: u-map-def cfun-eq-iff eta-cfun)

lemma u-map-map: u-map-f-(u-map-g-p) = u-map-(A z. f-(g-z))-p
by (induct p) simp-all

lemma u-map-oo: u-map-(f oo g) = u-map-f oo u-map-g
by (simp add: cfcompl u-map-map eta-cfun)

lemma ep-pair-u-map: ep-pair e p = ep-pair (u-map-e) (u-map-p)
apply standard
subgoal for z by (cases x) (simp-all add: ep-pair.e-inverse)
subgoal for y by (cases y) (simp-all add: ep-pair.e-p-below)
done

lemma deflation-u-map: deflation d = deflation (u-map-d)
apply standard
subgoal for z by (cases x) (simp-all add: deflation.idem)
subgoal for z by (cases x) (simp-all add: deflation.below)
done

lemma finite-deflation-u-map:
assumes finite-deflation d
shows finite-deflation (u-map-d)
proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (u-map-d)
by (rule deflation-u-map)
have {z. u-map-d-z = z} C insert L ((A\z. up-z) ‘ {z. d-xz = z})
by (rule subsetl, case-tac z, simp-all)
then show finite {z. u-map-d-x = z}
by (rule finite-subset) (simp add: d.finite-fizes)
qed

17.4 Map function for strict products
definition sprod-map :: (‘a::pcpo — 'b::pepo) — (‘cipepo — 'dipepo) = a ® ¢
= 'b®'d

where sprod-map = (A f g. ssplit-(A z y. (:f-z, g-y)))

lemma sprod-map-strict [simpl: sprod-map-a-b-1 = L
by (simp add: sprod-map-def)

lemma sprod-map-spair [simp]: © # L — y # L = sprod-map-f-g-(:z, y:) =
(f, gv)
by (simp add: sprod-map-def)

lemma sprod-map-spair’. -1 = 1| = ¢g-1 = 1 = sprod-map-f-g-(:x, y:) = (:f -z,
9y:)
by (casesx = L V y = 1) auto
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lemma sprod-map-ID: sprod-map-1D-ID = ID
by (simp add: sprod-map-def cfun-eq-iff eta-cfun)

lemma sprod-map-map:
[ft-L=1;¢91-1L =1] =
sprod-map-f1-g1-(sprod-map-f2-g2-p) =
sprod-map-(A . f1-(f2-2))-(A z. g1-(g2-x))p
proof (induct p)
case bottom
then show ?Zcase by simp
next
case (spair = y)
then show Zcase
apply (cases f2-x = L, simp)
apply (cases g2-y = L, simp)
apply simp
done
qed

lemma ep-pair-sprod-map:
assumes ep-pair el pl and ep-pair e2 p2
shows ep-pair (sprod-map-el-e2) (sprod-map-pl-p2)
proof
interpret elpl: pcpo-ep-pair el pl unfolding pcpo-ep-pair-def by fact
interpret e2p2: pcpo-ep-pair e2 p2 unfolding pcpo-ep-pair-def by fact
show sprod-map-p1-p2-(sprod-map-el-e2-x) = z for x
by (induct z) simp-all
show sprod-map-el-e2-(sprod-map-p1-p2-y) C y for y
proof (induct y)
case bottom
then show ?case by simp
next
case (spair z y)
then show ?Zcase
apply simp
apply (cases pl-z = L, simp, cases p2-y = L, simp)
apply (simp add: monofun-cfun elpl.e-p-below e2p2.e-p-below)
done
qed
qed

lemma deflation-sprod-map:
assumes deflation d1 and deflation d2
shows deflation (sprod-map-d1-d2)
proof
interpret dI: deflation d1 by fact
interpret d2: deflation d2 by fact
fix z
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show sprod-map-d1-d2-(sprod-map-d1-d2-x) = sprod-map-d1-d2-x
proof (induct x)
case bottom
then show ?case by simp
next
case (spair z y)
then show ?case
apply (cases d1-z = L, simp, cases d2-y = L, simp)
apply (simp add: d1.idem d2.idem)
done
qed
show sprod-map-d1-d2-z C x
proof (induct x)
case bottom
then show ?case by simp
next
case spair
then show ?case by (simp add: monofun-cfun d1.below d2.below)
qed
qed

lemma finite-deflation-sprod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (sprod-map-d1-d2)
proof (rule finite-deflation-intro)
interpret dI: finite-deflation di by fact
interpret d2: finite-deflation d2 by fact
from d1.deflation-azioms d2.deflation-axioms show deflation (sprod-map-d1-d2)
by (rule deflation-sprod-map)
have {z. sprod-map-d1-d2-x = z} C
insert L (M(z, y). Gz, v:)) ‘ ({z. dl-z = z} x {y. d2-y = y}))
by (rule subsetl, case-tac x, auto simp add: spair-eq-iff)
then show finite {z. sprod-map-d1-d2-x = x}
by (rule finite-subset) (simp add: dI.finite-fizes d2.finite-fizes)
qed

17.5 Map function for strict sums
definition ssum-map :: (‘a::pcpo — 'biipepo) — (‘ciipepo — 'diipepo) = 'a & e
—'b@'d

where ssum-map = (A f g. sscase-(sinl oo f)-(sinr oo g))

lemma ssum-map-strict [simp|: ssum-map-f-g-L = L
by (simp add: ssum-map-def)

lemma ssum-map-sinl [simp]: © # L = ssum-map-f-g-(sinl-z) = sinl-(f-z)
by (simp add: ssum-map-def)

lemma ssum-map-sinr [simpl: © # L = ssum-map-f-g-(sinr-z) = sinr-(g-x)
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by (simp add: ssum-map-def)

lemma ssum-map-sinl”: f-1 = 1L = ssum-map-f-g-(sinl-z) = sinl-(f-z)
by (cases x = L) simp-all

lemma ssum-map-sinr’: g-1L = 1 = ssum-map-f-g-(sinr-z) = sinr-(g-x)
by (cases x = L) simp-all

lemma ssum-map-ID: ssum-map-ID-ID = ID
by (simp add: ssum-map-def cfun-eq-iff eta-cfun)

lemma ssum-map-map:
[fl-L=1;g11=1]=
ssum-map-f1-g1-(ssum-map-f2-g2-p) =
ssum-map-(A z. f1-(f2-x))-(A x. g1-(92-2))p
proof (induct p)
case bottom
then show ?case by simp
next
case (sinl )
then show ?Zcase by (cases f2-x = 1) simp-all
next
case (sinr y)
then show ?case by (cases g2y = L) simp-all
qed

lemma ep-pair-ssum-map:
assumes ep-pair el pl and ep-pair e2 p2
shows ep-pair (ssum-map-el-e2) (ssum-map-pl-p2)
proof
interpret elpl: pcpo-ep-pair el pl unfolding pcpo-ep-pair-def by fact
interpret e2p2: pcpo-ep-pair e2 p2 unfolding pcpo-ep-pair-def by fact
show ssum-map-p1-p2-(ssum-map-el-e2-z) = z for =
by (induct z) simp-all
show ssum-map-el-e2-(ssum-map-p1-p2-y) C y for y
proof (induct y)
case bottom
then show Zcase by simp
next
case (sinl z)
then show Zcase by (cases pl-z = L) (simp-all add: elpl.e-p-below)
next
case (sinr y)
then show ?case by (cases p2-y = L) (simp-all add: e2p2.e-p-below)
qed
qed

lemma deflation-ssum-map:
assumes deflation d1 and deflation d2
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shows deflation (ssum-map-d1-d2)
proof
interpret dI: deflation d1 by fact
interpret d2: deflation d2 by fact
fix z
show ssum-map-d1-d2-(ssum-map-d1-d2-z) = ssum-map-d1-d2-z
proof (induct x)
case bottom
then show ?case by simp
next
case (sinl x)
then show ?case by (cases d1-z = 1) (simp-all add: d1.idem)
next
case (sinr y)
then show Zcase by (cases d2-y = L) (simp-all add: d2.idem)
qged
show ssum-map-d1-d2-z C x
proof (induct x)
case bottom
then show ?case by simp
next
case (sinl )
then show ?case by (cases d1-x = 1) (simp-all add: d1.below)
next
case (sinr y)
then show ?case by (cases d2-y = L) (simp-all add: d2.below)
qed
qed

lemma finite-deflation-ssum-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (ssum-map-d1-d2)
proof (rule finite-deflation-intro)
interpret dI: finite-deflation d1 by fact
interpret d2: finite-deflation d2 by fact
from d1.deflation-axioms d2.deflation-axioms show deflation (ssum-map-d1-d2)
by (rule deflation-ssum-map)
have {z. ssum-map-d1-d2-x = ¢} C
(Az. sinl-z) ‘{z. dl-x =z} U
(Az. sinr-z) ‘{z. d2-x = 2} U {L}
by (rule subsetl, case-tac z, simp-all)
then show finite {z. ssum-map-d1-d2-x = z}
by (rule finite-subset, simp add: d1.finite-fixes d2.finite-fixes)
qed

17.6 Map operator for strict function space

definition sfun-map :: ('b::pcpo — 'a::pepo) — (‘ci:pepo — 'd::pepo) — (‘a —! 'c)
= ('b=!'d)
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where sfun-map = (A a b. sfun-abs oo cfun-map-a-b oo sfun-rep)

lemma sfun-map-ID: sfun-map-ID-ID = ID
by (simp add: sfun-map-def cfun-map-ID cfun-eq-iff)

lemma sfun-map-map:
assumes f2-1 = 1 and ¢2-1 = |
shows sfun-map-f1-g1-(sfun-map-f2-92-p) =
sfun-map-(A z. f2-(f1-x))-(A z. g1-(92-x))-p
by (simp add: sfun-map-def cfun-eq-iff strictify-cancel assms cfun-map-map)

lemma ep-pair-sfun-map:
assumes 1: ep-pair el pl
assumes 2: ep-pair e2 p2
shows ep-pair (sfun-map-p1-e2) (sfun-map-el-p2)
proof
interpret elpl: pcpo-ep-pair el pl
unfolding pcpo-ep-pair-def by fact
interpret e2p2: pcpo-ep-pair e2 p2
unfolding pcpo-ep-pair-def by fact
show sfun-map-el-p2-(sfun-map-p1-e2-f) = f for f
unfolding sfun-map-def
apply (simp add: sfun-eq-iff strictify-cancel)
apply (rule ep-pair.e-inverse)
apply (rule ep-pair-cfun-map [OF 1 2])
done
show sfun-map-p1-e2-(sfun-map-el-p2-g) C g for g
unfolding sfun-map-def
apply (simp add: sfun-below-iff strictify-cancel)
apply (rule ep-pair.e-p-below)
apply (rule ep-pair-cfun-map [OF 1 2])
done
qed

lemma deflation-sfun-map:
assumes 1: deflation d1
assumes 2: deflation d2
shows deflation (sfun-map-d1-d2)
apply (simp add: sfun-map-def)
apply (rule deflation.intro)
apply simp
apply (subst strictify-cancel)
apply (simp add: cfun-map-def deflation-strict 1 2)
apply (simp add: cfun-map-def deflation.idem 1 2)
apply (simp add: sfun-below-iff)
apply (subst strictify-cancel)
apply (simp add: cfun-map-def deflation-strict 1 2)
apply (rule deflation.below)
apply (rule deflation-cfun-map [OF 1 2])
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done

lemma finite-deflation-sfun-map:
assumes finite-deflation d1
and finite-deflation d2
shows finite-deflation (sfun-map-d1-d2)
proof (intro finite-deflation-intro)
interpret dI: finite-deflation d1 by fact
interpret d2: finite-deflation d2 by fact
from dI.deflation-azioms d2.deflation-azioms show deflation (sfun-map-d1-d2)
by (rule deflation-sfun-map)
from assms have finite-deflation (cfun-map-d1-d2)
by (rule finite-deflation-cfun-map)
then have finite {f. cfun-map-d1-d2-f = f}
by (rule finite-deflation.finite-fizes)
moreover have inj (Af. sfun-rep-f)
by (rule inj-onl) (simp add: sfun-eq-iff)
ultimately have finite ((\f. sfun-rep-f) —*{f. cfun-map-d1-d2-f = f})
by (rule finite-vimagel)
with «deflation d1» «deflation d2> show finite {f. sfun-map-d1-d2-f = f}
by (simp add: sfun-map-def sfun-eq-iff strictify-cancel deflation-strict)
qed

end

18 The cpo of cartesian products

theory Cprod
imports Cfun
begin
18.1 Continuous case function for unit type
definition unit-when :: 'a — unit — ’a

where unit-when = (A a -. a)

translations
A(). t = CONST unit-when-t

lemma unit-when [simpl: unit-when-a-u = a

by (simp add: unit-when-def)
18.2 Continuous version of split function
definition csplit :: (‘a — b — '¢c) = ('a x 'b) = 'c

where csplit = (A fp. f-(fst p)-(snd p))

translations
A(CONST Pair z y). t = CONST csplit-(A z y. t)
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abbreviation cfst :: ‘a x 'b — 'a
where cfst = Abs-cfun fst

abbreviation csnd :: ‘a x b — b
where csnd = Abs-cfun snd

18.3 Convert all lemmas to the continuous versions

lemma csplitl [simp]: csplit-f-1 = f- 1.1
by (simp add: csplit-def)

lemma csplit-Pair [simp]: csplit-f-(z, y) = f-z-y
by (simp add: csplit-def)

end

19 Profinite and bifinite cpos

theory Bifinite
imports Map-Functions Cprod Sprod Sfun Up HOL— Library.Countable
begin

19.1 Chains of finite deflations

locale approx-chain =

fixes approz :: nat = 'a = a

assumes chain-approx [simp|: chain (\i. approx i)

assumes lub-approzx [simp]: (| |i. approx i) = ID

assumes finite-deflation-approx [simp]: \i. finite-deflation (approz i)
begin

lemma deflation-approx: deflation (approx i)
using finite-deflation-approx by (rule finite-deflation-imp-deflation)

lemma approz-idem: approz i-(approz i-x) = approz i-x
using deflation-approx by (rule deflation.idem)

lemma approz-below: approx i-x C x
using deflation-approx by (rule deflation.below)

lemma finite-range-approx: finite (range (Ax. approx i-x))
apply (rule finite-deflation.finite-range)

apply (rule finite-deflation-approz)

done

lemma compact-approx [simp]: compact (approz n-z)
apply (rule finite-deflation.compact)
apply (rule finite-deflation-approx)
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done

lemma compact-eq-approx: compact © = Ji. approx i-x = &
by (rule admD2, simp-all)

end

19.2 Omega-profinite and bifinite domains

class bifinite = pcpo +
assumes bifinite: 3 (a::nat = 'a — 'a). approz-chain a

class profinite = cpo +
assumes profinite: 3 (a::nat = 'a; — 'ay). approz-chain a

19.3 Building approx chains

lemma approz-chain-iso:
assumes a: approz-chain a
assumes [simp]: Az. f-(gz) = x
assumes [simp]: A\y. g-(f'y) = y
shows approx-chain (M\i. f oo a i 0o g)
proof —
have I: f oo g = ID by (simp add: cfun-eql)
have 2: ep-pair f g by (simp add: ep-pair-def)
from 1 2 show ?thesis
using a unfolding approx-chain-def
by (simp add: lub-APP ep-pair.finite-deflation-e-d-p)
qed

lemma approz-chain-u-map:
assumes approx-chain a
shows approz-chain (\i. u-map-(a 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP u-map-ID finite-deflation-u-map)

lemma approz-chain-sfun-map:
assumes approx-chain a and approx-chain b
shows approz-chain (\i. sfun-map-(a 7)-(b 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP sfun-map-ID finite-deflation-sfun-map)

lemma approz-chain-sprod-map:
assumes approx-chain a and approx-chain b
shows approz-chain (\i. sprod-map-(a i)-(b 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP sprod-map-ID finite-deflation-sprod-map)

lemma approzx-chain-ssum-map:
assumes approx-chain a and approx-chain b
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shows approz-chain (Ai. ssum-map-(a 7)-(b 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP ssum-map-ID finite-deflation-ssum-map)

lemma approz-chain-cfun-map:
assumes approz-chain a and approx-chain b
shows approx-chain (M\i. cfun-map-(a 7)-(b 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP cfun-map-ID finite-deflation-cfun-map)

lemma approz-chain-prod-map:
assumes approz-chain a and approx-chain b
shows approz-chain (\i. prod-map-(a ©)-(b 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP prod-map-ID finite-deflation-prod-map)

Approx chains for countable discrete types.

definition discr-approx :: nat = ’a::countable discr v — 'a discr u
where discr-approx = (Ni. A(up-z). if to-nat (undiscr ) < i then up-x else L)

lemma chain-discr-approx [simpl: chain discr-approx
unfolding discr-approz-def
by (rule chainl, simp add: monofun-cfun monofun-LAM)

lemma lub-discr-approx [simp|: (| ]i. discr-approx i) = ID
apply (rule cfun-eql)
apply (simp add: contlub-cfun-fun)
apply (simp add: discr-approx-def)
subgoal for z
apply (cases x)
apply simp
apply (rule lub-eql)
apply (rule is-lubl)
apply (rule ub-rangel, simp)
apply (drule ub-rangeD)
apply (erule rev-below-trans)
apply simp
apply (rule lessI)
done
done

lemma inj-on-undiscr [simp): inj-on undiscr A
using Discr-undiscr by (rule inj-on-inversel )

lemma finite-deflation-discr-approx: finite-deflation (discr-approz 7)
proof
fix z :: ‘a discr u
show discr-approx i-x C x
unfolding discr-approx-def
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by (cases x, simp, simp)

show discr-approz i-(discr-approx i-x) = discr-approz i-x
unfolding discr-approx-def
by (cases x, simp, simp)

show finite {z::'a discr u. discr-approx i-x = x}

proof (rule finite-subset)

let 2S = insert (L:a discr u) ((Az. up-z) < undiscr —* to-nat —* {..<i})

show {z::'a discr u. discr-approx i-x = z} C 25
unfolding discr-approxz-def
by (rule subsetl, case-tac x, simp, simp split: if-split-asm)
show finite 25
by (simp add: finite-vimagel )
qed
qed

lemma discr-approx: approx-chain discr-approx
using chain-discr-approz lub-discr-approx finite-deflation-discr-approx
by (rule approz-chain.intro)

19.4 Class instance proofs

instance bifinite C profinite
proof
show I (a:nat = 'ay — 'a)). approx-chain a
using bifinite [where ‘a="a]
by (fast intro!: approz-chain-u-map)
qed

instance u :: (profinite) bifinite
by standard (rule profinite)

Types ‘a — 'b and ’a; —! 'b are isomorphic.
definition encode-cfun = (A f. sfun-abs-(fup-f))

definition decode-cfun = (A g z. sfun-rep-g-(up-x))

lemma decode-encode-cfun [simpl: decode-cfun-(encode-cfun-z) = x
unfolding encode-cfun-def decode-cfun-def
by (simp add: eta-cfun)

lemma encode-decode-cfun [simp]: encode-cfun-(decode-cfun-y) = y
unfolding encode-cfun-def decode-cfun-def

apply (simp add: sfun-eq-iff strictify-cancel)

apply (rule cfun-eql, case-tac x, simp-all)

done

instance cfun :: (profinite, bifinite) bifinite
proof
obtain a :: nat = ‘ay — 'a, where a: approz-chain a
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using profinite ..

obtain b :: nat = 'b — 'b where b: approx-chain b
using bifinite ..

have approz-chain (Mi. decode-cfun oo sfun-map-(a i)-(b ©) oo encode-cfun)
using a b by (simp add: approz-chain-iso approz-chain-sfun-map)

thus 3 (a:nat = (Ya — 'b) — (Ya — 'b)). approz-chain a
by — (rule exI)

qed

Types (‘a x 'b); and ‘a; ® b, are isomorphic.

definition encode-prod-u = (A(up-(z, y)). Gup-z, up-y:))
definition decode-prod-u = (A(:up-z, up-y:). up-(x, y))

lemma decode-encode-prod-u [simp]: decode-prod-u-(encode-prod-u-x) = x
unfolding encode-prod-u-def decode-prod-u-def
apply (cases z)
apply simp
subgoal for y by (cases y) simp
done

lemma encode-decode-prod-u [simp): encode-prod-u-(decode-prod-u-y) = y
unfolding encode-prod-u-def decode-prod-u-def
apply (cases y)
apply simp
subgoal for a b
apply (cases a, simp)
apply (cases b, simp, simp)
done
done

instance prod :: (profinite, profinite) profinite
proof
obtain a :: nat = 'a; — 'a; where a: approz-chain a
using profinite ..
obtain b :: nat = ‘b, — ‘b, where b: approz-chain b
using profinite ..
have approz-chain (\i. decode-prod-u oo sprod-map-(a i)-(b ©) oo encode-prod-u)
using a b by (simp add: approz-chain-iso approz-chain-sprod-map)
thus 3 (a:nat = (Ya x 'b)L — ('a x 'b)1). approz-chain a
by — (rule exI)
qed

instance prod :: (bifinite, bifinite) bifinite
proof
show J(a:nat = (‘a x 'b) = (‘a x 'b)). approz-chain a
using bifinite [where ‘a=’a] and bifinite [where 'a="0]
by (fast intro!: approz-chain-prod-map)
qed



THEORY “Completion” 96

instance sfun :: (bifinite, bifinite) bifinite
proof
show 3 (a:nat = (‘a =! 'b) = (‘a =! 'b)). approz-chain a
using bifinite [where ‘a="a] and bifinite [where 'a="b]
by (fast intro!: approz-chain-sfun-map)
qed

instance sprod :: (bifinite, bifinite) bifinite
proof
show J(a:nat = ('a ® 'b) = (‘a ® 'b)). approx-chain a
using bifinite [where ‘a='a] and bifinite [where ‘a="0]
by (fast intro!: approz-chain-sprod-map)
qed

instance ssum :: (bifinite, bifinite) bifinite
proof
show 3 (a:nat = ('a @ 'b) — (‘a ® 'b)). approz-chain a
using bifinite [where ‘a=’a] and bifinite [where 'a="b]
by (fast introl: approz-chain-ssum-map)
qed

lemma approx-chain-unit: approz-chain (L :: nat = unit — unit)
by (simp add: approz-chain-def cfun-eq-iff finite-deflation-bottom)

instance unit :: bifinite
by standard (fast introl: approx-chain-unit)

instance discr :: (countable) profinite
by standard (fast intro!: discr-approz)

instance lift :: (countable) bifinite
proof
note [simp] = cont-Abs-lift cont-Rep-lift Rep-lift-inverse Abs-lift-inverse
obtain a :: nat = ('a discr), — ('a discr), where a: approz-chain a
using profinite ..
hence approx-chain (Ni. (A y. Abs-lift y) oo a i oo (A z. Rep-lift x))
by (rule approz-chain-iso) simp-all
thus 3 (a:nat = 'a lift — 'a lift). approz-chain a
by — (rule exI)
qed

end

20 Defining algebraic domains by ideal completion

theory Completion
imports Cfun
begin
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20.1 Ideals over a preorder

locale preorder =
fixes r :: ‘a::type = a
assumes r-refl: © X x
assumes r-trans: [z =
begin

= bool (infix «=» 50)

Y,y 2 2] =2z

definition
ideal :: 'a set = bool where
ideal A= ((Fz. z € A) AN (Va€A. VyeA. F2€A. 2 S 2 Ny < 2) A
Vzy. z23y—yeAd— xe )

lemma ideall:
assumes Jz.z € A
assumes Az y. [t € A;ye A] = Fz€d. 2 <2 Ny =<z
assumes Az y. [x < y;y € Al =z€ A
shows ideal A
unfolding ideal-def using assms by fast

lemma idealD1:
ideal A = Jzx. z € A
unfolding ideal-def by fast

lemma idealD2:
[ideal A; x € Ay y€ A] = Fz2€A. 2 22Ny 32
unfolding ideal-def by fast

lemma idealDS5:
[ideal A; 2 < y; y € Al =z € A
unfolding ideal-def by fast

lemma ideal-principal: ideal {z. z < z}
apply (rule ideall)
apply (rule exI [where z = z])
apply (fast intro: r-refl)
apply (rule bexl [where z = z], fast)
apply (fast intro: r-refl)
apply (fast intro: r-trans)
done

lemma ez-ideal: 3A. A € {A. ideal A}
by (fast intro: ideal-principal)

The set of ideals is a cpo

lemma ideal-UN:
fixes A :: nat = 'a set
assumes ideal-A: Ni. ideal (A )
assumes chain-A: N\ij. i <j= AiCAj
shows ideal (|Ji. A @)
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apply (rule ideall)

using idealD1 [OF ideal-A] apply fast

apply (clarify)

subgoal for i j
apply (drule subsetD [OF chain-A [OF max.cobounded!]])
apply (drule subsetD [OF chain-A [OF max.cobounded2]])
apply (drule (1) idealD2 [OF ideal-A)
apply blast
done

apply clarify

apply (drule (1) idealD3 [OF ideal-A))

apply fast

done

lemma typedef-ideal-po:
fixes Abs :: 'a set = 'b::below
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Az y. t C y «— Rep z C Rep y
shows OFCLASS('b, po-class)
apply (intro-classes, unfold below)
apply (rule subset-refl)
apply (erule (1) subset-trans)
apply (rule type-definition. Rep-inject [OF type, THEN iffD1])
apply (erule (1) subset-antisym)
done

lemma
fixes Abs :: 'a set = 'b::po
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Az y. t Ty «— Repax C Rep y
assumes S: chain S
shows typedef-ideal-lub: range S <<| Abs (|Ji. Rep (S 7))
and typedef-ideal-rep-lub: Rep (| ]i. S i) = (U4 Rep (S 1))
proof —
have 1: ideal (|Ji. Rep (S 1))
apply (rule ideal-UN)
apply (rule type-definition.Rep [OF type, unfolded mem-Collect-eq))
apply (subst below [symmetric])
apply (erule chain-mono [OF S])
done
hence 2: Rep (Abs (Ji. Rep (S 1)) = (Ui. Rep (S i)
by (simp add: type-definition. Abs-inverse [OF type])
show 3: range S <<| Abs (Ji. Rep (S 1))
apply (rule is-lubl)
apply (rule is-ubl)
apply (simp add: below 2, fast)
apply (simp add: below 2 is-ub-def, fast)
done
hence 4: (| ]i. S i) = Abs (. Rep (S 7))
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by (rule lub-eqI)
show 5: Rep (| |i. Si) = (Ui Rep (S 1))
by (simp add: 4 2)
qed

lemma typedef-ideal-cpo:
fixes Abs :: 'a set = 'b::po
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Axy. t Ty «— Repx C Rep y
shows OFCLASS('b, cpo-class)
by standard (rule exI, erule typedef-ideal-lub [OF type below))

end

interpretation below: preorder below :: 'a::po = 'a = bool
apply unfold-locales

apply (rule below-refl)

apply (erule (1) below-trans)

done

20.2 Lemmas about least upper bounds

lemma is-ub-thelub-ex: [Fu. S <<| u; z € S] = z C lub S
apply (erule exE, drule is-lub-lub)

apply (drule is-lubD1)

apply (erule (1) is-ubD)

done

lemma is-lub-thelub-ex: [Fu. § <<] u; S <| 2] = lub SC z
by (erule exE, drule is-lub-lub, erule is-lubD2)

20.3 Locale for ideal completion

hide-const (open) Filter.principal

locale ideal-completion = preorder +
fixes principal :: 'a::type = b
fixes rep :: 'b = 'a::type set
assumes ideal-rep: \z. ideal (rep z)
assumes rep-lub: AY. chain Y = rep (| ]i. Y i) = (Ui rep (Y 7))
assumes rep-principal: Na. rep (principal a) = {b. b < a}
assumes belowl: Nz y. repx Crepy = zC gy
assumes countable: 3f::'a = nat. inj f
begin

lemma rep-mono: t &y = rep x C 1ep y

apply (frule bin-chain)

apply (drule rep-lub)

apply (simp only: lub-eql [OF is-lub-bin-chain])

apply (rule subsetl, rule UN-I [where a=0], simp-all)
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done

lemma below-def: © C y «— repz C rep y
by (rule iffI [OF rep-mono belowl])

lemma principal-below-iff-mem-rep: principal a & x <— a € 1ep x
unfolding below-def rep-principal
by (auto intro: r-refl elim: idealD3 [OF ideal-rep])

lemma principal-below-iff [simp]: principal a T principal b +— a < b
by (simp add: principal-below-iff-mem-rep rep-principal)

lemma principal-eq-iff: principal a = principal b +— a < b AN b < a
unfolding po-eg-conv [where 'a='b] principal-below-iff ..

lemma eg-iff: c =y +— repx =rep y
unfolding po-eq-conv below-def by auto

lemma principal-mono: a = b = principal a T principal b
by (simp only: principal-below-iff)

lemma ch2ch-principal [simp]:
Vi. Yi=<Y (Suci) = chain (Ai. principal (Y 7))
by (simp add: chainl principal-mono)

20.3.1 Principal ideals approximate all elements

lemma compact-principal [simp]: compact (principal a)
by (rule compactl2, simp add: principal-below-iff-mem-rep rep-lub)

Construct a chain whose lub is the same as a given ideal

lemma obtain-principal-chain:
obtains Y where Vi. Vi < Y (Suc i) and z = (|| . principal (Y 7))
proof —
obtain count :: 'a = nat where inj: inj count
using countable ..
define enum where enum ¢ = (THE a. count a = i) for 4
have enum-count [simpl: A\z. enum (count z) = x
unfolding enum-def by (simp add: inj-eq [OF inj))
define a where a = (LEAST i. enum i € rep x)
define b where b i = (LEAST j. enum j € rep x A — enum j < enum i) for i
define ¢ where ¢ i j = (LEAST k. enum k € rep © A enum { < enum k A enum
j = enum k) for i j
define P where P i «+— (3j. enum j € rep © A = enum j =< enum i) for {
define X where X = rec-nat a (An i. if P i then c i (b4) else i)
have X-0: X 0 = a unfolding X-def by simp
have X-Suc: An. X (Suc n) = (if P (X n) then ¢ (X n) (b (X n)) else X n)
unfolding X-def by simp
have a-mem: enum a € rep x
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unfolding a-def
apply (rule Leastl-ex)
apply (insert ideal-rep [of x])
apply (drule idealD1)
apply (clarify)
subgoal for a by (rule ex] [where x=count a]) simp
done
have b: \i. Pi = enum i € rep x
= enum (b i) € rep z A = enum (b i) < enum @
unfolding P-def b-def by (erule LeastI2-ex, simp)
have c¢: A\ij. enum i € rep x = enum j € rep x
= enum (cij) € rep x A enum i < enum (c @ j) A enum j < enum (c 7 j)
unfolding c-def
apply (drule (1) idealD2 [OF ideal-rep), clarify)
subgoal for ... z by (rule LeastI2 [where a=count z|, simp, simp)
done
have X-mem: enum (X n) € rep z for n
proof (induct n)
case 0
then show ?Zcase by (simp add: X-0 a-mem)
next
case (Suc n)
with b ¢ show ?case by (auto simp: X-Suc)
qed
have X-chain: An. enum (X n) < enum (X (Suc n))
apply (clarsimp simp add: X-Suc r-refl)
apply (simp add: b ¢ X-mem)
done
have less-b: Ani. n < bi = enum n € rep t = enum n = enum i
unfolding b-def by (drule not-less-Least, simp)
have X-covers: Vk<n. enum k € rep x — enum k < enum (X n) for n
proof (induct n)
case (
then show ?case
apply (clarsimp simp add: X-0 a-def)
apply (drule Least-le [where k=0], simp add: r-refl)
done
next
case (Suc n)
then show ?case
apply clarsimp
apply (erule le-SucE)
apply (rule r-trans [OF - X-chain], simp)
apply (cases P (X n), simp add: X-Suc)
apply (rule linorder-cases [where z=»b (X n) and y==Suc n])
apply (simp only: less-Suc-eg-le)
apply (drule spec, drule (1) mp, simp add: b X-mem)
apply (simp add: ¢ X-mem)
apply (drule (1) less-b)
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apply (erule r-trans)
apply (simp add: b ¢ X-mem)
apply (simp add: X-Suc)
apply (simp add: P-def)
done
qed
have 1: Vi. enum (X i) < enum (X (Suc 7))
by (simp add: X-chain)
have z = (| | n. principal (enum (X n)))
apply (simp add: eq-iff rep-lub 1 rep-principal)
apply auto
subgoal for a
apply (subgoal-tac 3i. a = enum i, erule exE)
apply (rule-tac z=i in ezl, simp add: X-covers)
apply (rule-tac x=count a in exl, simp)
done
subgoal
apply (erule idealD3 [OF ideal-rep])
apply (rule X-mem)
done
done
with 7 show ?%thesis ..
qed

lemma principal-induct:
assumes adm: adm P
assumes P: Aa. P (principal a)
shows P x
apply (rule obtain-principal-chain [of z])
apply (simp add: admD [OF adm] P)
done

lemma compact-imp-principal: compact x = Ja. x = principal a
apply (rule obtain-principal-chain [of z])

apply (drule adm-compact-neq [OF - cont-id))

apply (subgoal-tac chain (Xi. principal (Y 7)))

apply (drule (2) admD2, fast, simp)

done

20.4 Defining functions in terms of basis elements

definition
extension :: (‘a:type = '¢) = 'b — 'c where
extension = (Af. (A z. b (f “ rep z)))

lemma extension-lemma:
fixes f :: 'a:type = 'c
assumes f-mono: Nab.a b= faC fb
shows Ju. f ‘rep z <<| u
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proof —
obtain Y where Y:Vi. Y i <Y (Suci)
and z: ¢ = (| |i. principal (Y 7))
by (rule obtain-principal-chain [of z])
have chain: chain (Ai. f (Y 7))
by (rule chainl, simp add: f-mono Y)
have rep-z: rep x = (Un. {a. a 2 Y n})
by (simp add: x rep-lub Y rep-principal)
have f ‘rep z <<| (n. f (Y n))
apply (rule is-lubl)
apply (rule ub-imagel)
subgoal for a
apply (clarsimp simp add: rep-z)
apply (drule f-mono)
apply (erule below-lub [OF chain))

done
apply (rule lub-below [OF chain))
subgoal for ... n

apply (drule ub-imageD [where z=Y n])
apply (simp add: rep-z, fast intro: r-refl)
apply assumption
done
done
then show ?thesis ..
qed

lemma extension-beta:
fixes f :: 'a:type = 'c
assumes f-mono: Nab.a b= faC fb
shows extension f-x = lub (f ‘ rep z)
unfolding extension-def
proof (rule beta-cfun)
have lub: Az. Ju. f ‘rep xz <<| u
using f-mono by (rule extension-lemma)
show cont: cont (Az. lub (f ‘ rep z))
apply (rule contI2)
apply (rule monofunl)
apply (rule is-lub-thelub-ex [OF lub ub-imagel))
apply (rule is-ub-thelub-ex [OF lub imagell)
apply (erule (1) subsetD [OF rep-mono)
apply (rule is-lub-thelub-ex [OF lub ub-imagell)
apply (simp add: rep-lub, clarify)
apply (erule rev-below-trans [OF is-ub-thelub])
apply (erule is-ub-thelub-ex [OF lub imagel])
done
qed

Py

lemma extension-principal:
fixes [ :: 'a:type = 'c
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assumes f-mono: Nab.a b= faC fb
shows extension f-(principal a) = f a
apply (subst extension-beta, erule f~mono)
apply (subst rep-principal)
apply (rule lub-eqI)
apply (rule is-lub-mazimal)
apply (rule ub-imagel)
apply (simp add: f~mono)
apply (rule imagel)
apply (simp add: r-refl)
done

lemma extension-mono:
assumes f-mono: Nab.a < b= faC fb
assumes g-mono: Aab.a b= ga Ll gb
assumes below: Aa. faC ga
shows extension f T extension g
apply (rule cfun-belowl)
apply (simp only: extension-beta f-mono g-mono)
apply (rule is-lub-thelub-ex)
apply (rule extension-lemma, erule f-mono)
apply (rule ub-imagel)
subgoal for z a
apply (rule below-trans [OF below))
apply (rule is-ub-thelub-ex)
apply (rule extension-lemma, erule g-mono)
apply (erule imagel)
done
done

lemma cont-extension:
assumes f-mono: Aabz.a <b= fzal fab
assumes f-cont: Na. cont (Az. fz a)
shows cont (A\z. extension (Aa. f z a))
apply (rule conti2)
apply (rule monofunl)
apply (rule extension-mono, erule f-mono, erule f-mono)
apply (erule cont2monofunE [OF f-cont])
apply (rule cfun-belowl)
apply (rule principal-induct, simp)
apply (simp only: contlub-cfun-fun)
apply (simp only: extension-principal f-mono)
apply (simp add: cont2contlubE [OF f-cont])
done

end

lemma (in preorder) typedef-ideal-completion:
fixes Abs :: 'a set = 'b
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assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Az y. t C y «— Rep z C Rep y
assumes principal: Aa. principal a = Abs {b. b < a}
assumes countable: 3 f::'a = nat. inj f
shows ideal-completion r principal Rep
proof
interpret type-definition Rep Abs {S. ideal S} by fact
fixab:'acandzy:: 'band Y :: nat = 'b
show ideal (Rep x)
using Rep [of z] by simp
show chain Y = Rep (| |i. Y i) = (Ji. Rep (Y 7))
using type below by (rule typedef-ideal-rep-lub)
show Rep (principal a) = {b. b = a}
by (simp add: principal Abs-inverse ideal-principal)
show Rep x C Repy = z C y
by (simp only: below)
show 3f::'a = nat. inj f
by (rule countable)
qed

end

21 A universal bifinite domain

theory Universal
imports Bifinite Completion HOL— Library. Nat-Bijection
begin

unbundle no binomial-syntax

21.1 Basis for universal domain

21.1.1 Basis datatype

type-synonym ubasis = nat

definition
node :: nat = ubasis = ubasis set = ubasis
where

node i a S = Suc (prod-encode (i, prod-encode (a, set-encode S)))

lemma node-not-0 [simp]: node i a S # 0
unfolding node-def by simp

lemma node-gt-0 [simp]: 0 < node i a S
unfolding node-def by simp

lemma node-inject [simp]:
[finite S; finite T
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= nodeiaS=nodejbT —i=jANa=bNS=T
unfolding node-def by (simp add: prod-encode-eq set-encode-eq)

lemma node-gt0: i < node i a S
unfolding node-def less-Suc-eg-le
by (rule le-prod-encode-1)

lemma node-gt1: a < node i a S
unfolding node-def less-Suc-eg-le
by (rule order-trans [OF le-prod-encode-1 le-prod-encode-2])

lemma nat-less-power2: n < 27n
by (fact less-exp)

lemma node-gt2: [finite S; b € S] = b < nodeia S
unfolding node-def less-Suc-eg-le set-encode-def

apply (rule order-trans [OF - le-prod-encode-2])

apply (rule order-trans [OF - le-prod-encode-2))

apply (rule order-trans [where y=sum ((7) 2) {b}])

apply (simp add: nat-less-power2 [THEN order-less-imp-le])
apply (erule sum-mono2, simp, simp)

done

lemma eg-prod-encode-pairl:
[fst (prod-decode x) = a; snd (prod-decode z) = b] = = = prod-encode (a, b)
by auto

lemma node-cases:
assumes [:z =0 = P
assumes 2: A\ia S. [finite S; x = node i a S] = P
shows P
apply (cases x)
apply (erule 1)
apply (rule 2)
apply (rule finite-set-decode)
apply (simp add: node-def)
apply (rule eg-prod-encode-pairl [OF refl])
apply (rule eg-prod-encode-pairl [OF refl refl])
done

lemma node-induct:
assumes 1: P 0
assumes 2: Ai a S. [P q; finite S; YbeS. P b] = P (node i a S)
shows P x
apply (induct x rule: nat-less-induct)
apply (case-tac n rule: node-cases)
apply (simp add: 1)
apply (simp add: 2 node-gt1 node-gt2)
done
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21.1.2 Basis ordering

inductive
ubasis-le :: nat = nat = bool
where
ubasis-le-refl: ubasis-le a a
| ubasis-le-trans:
[ubasis-le a b; ubasis-le b ¢] = ubasis-le a ¢
| ubasis-le-lower:
finite S = ubasis-le a (node i a S)
| ubasis-le-upper:
[finite S; b € S; ubasis-le a b] = ubasis-le (node i a S) b

lemma ubasis-le-minimal: ubasis-le 0 x
apply (induct x rule: node-induct)
apply (rule ubasis-le-refl)

apply (erule ubasis-le-trans)

apply (erule ubasis-le-lower)

done

interpretation udom: preorder ubasis-le
apply standard

apply (rule ubasis-le-refl)

apply (erule (1) ubasis-le-trans)

done

21.1.3 Generic take function

function
ubasis-until :: (ubasis = bool) = ubasis = ubasis
where
ubasis-until P 0 = 0
| finite S = ubasis-until P (node i a S) =
(if P (node i a S) then node i a S else ubasis-until P a)
apply clarify
apply (rule-tac z=b in node-cases)
apply simp-all
done

termination ubasis-until
apply (relation measure snd)
apply (rule wf-measure)
apply (simp add: node-gt1)
done

lemma ubasis-until: P 0 = P (ubasis-until P x)
by (induct z rule: node-induct) simp-all

lemma ubasis-until: 0 < ubasis-until P x = P (ubasis-until P x)
by (induct © rule: node-induct) auto
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lemma ubasis-until-same: P x —> ubasis-until P x = x
by (induct = rule: node-induct) simp-all

lemma ubasis-until-idem:
P 0 = ubasis-until P (ubasis-until P x) = ubasis-until P x
by (rule ubasis-until-same [OF ubasis-until])

lemma ubasis-until-0:
Vz.z# 0 — - Px = ubasis-until Pz = 0
by (induct z rule: node-induct) simp-all

lemma ubasis-until-less: ubasis-le (ubasis-until P x) x
apply (induct x rule: node-induct)
apply (simp add: ubasis-le-refl)

by (metis ubasis-le.simps ubasis-until.simps(2))

lemma ubasis-until-chain:

assumes PQ: A\z. Pz = Qz

shows ubasis-le (ubasis-until P x) (ubasis-until Q x)
apply (induct x rule: node-induct)
apply (simp add: ubasis-le-refl)

by (metis assms ubasis-until.simps(2) ubasis-until-less)

lemma ubasis-until-mono:
assumes A7 a S b. [finite S; P (nodeia S); b € S; ubasis-le a b = P b
shows ubasis-le a b = ubasis-le (ubasis-until P a) (ubasis-until P b)
proof (induct set: ubasis-le)
case (ubasis-le-refl a) show Zcase by (rule ubasis-le.ubasis-le-refl)
next
case (ubasis-le-trans a b ¢) thus Zcase by — (rule ubasis-le.ubasis-le-trans)
next
case (ubasis-le-lower S a 7) thus ?case
by (metis ubasis-le.simps ubasis-until.simps(2) ubasis-until-less)
next
case (ubasis-le-upper S b a i) thus ?case
by (metis assms ubasis-le.simps ubasis-until.simps(2) ubasis-until-same)
qged

lemma finite-range-ubasis-until:

finite {z. P z} = finite (range (ubasis-until P))
apply (rule finite-subset [where B=insert 0 {z. P z}])
apply (clarsimp simp add: ubasis-until”)
apply simp
done

21.2 Defining the universal domain by ideal completion

typedef udom = {S. udom.ideal S}
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by (rule udom.ex-ideal)

instantiation udom :: below
begin

definition
x C y <— Rep-udom x C Rep-udom y

instance ..
end

instance udom :: po
using type-definition-udom below-udom-def
by (rule udom.typedef-ideal-po)

instance udom :: cpo
using type-definition-udom below-udom-def
by (rule udom.typedef-ideal-cpo)

definition
udom-principal :: nat = udom where
udom-principal t = Abs-udom {u. ubasis-le u t}

lemma ubasis-countable: 3 f::ubasis = nat. inj f
by (rule exl, rule inj-on-id)

interpretation udom:
ideal-completion ubasis-le udom-principal Rep-udom
using type-definition-udom below-udom-def
using udom-principal-def ubasis-countable
by (rule udom.typedef-ideal-completion)

Universal domain is pointed

lemma udom-minimal: udom-principal 0 C x
apply (induct x rule: udom.principal-induct)
apply (simp, simp add: ubasis-le-minimal)
done

instance udom :: pcpo
by intro-classes (fast intro: udom-minimal)

lemma inst-udom-pcpo: L = udom-principal 0
by (rule udom-minimal [THEN bottomI, symmetric])

21.3 Compact bases of domains

typedef ‘a compact-basis = {x::’a::pepo. compact x}
by auto
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lemma Rep-compact-basis’ [simpl: compact (Rep-compact-basis a)
by (rule Rep-compact-basis [unfolded mem-Collect-eq])

lemma Abs-compact-basis-inverse’ [simp]:
compact © => Rep-compact-basis (Abs-compact-basis ) = x
by (rule Abs-compact-basis-inverse [unfolded mem-Collect-eq])

instantiation compact-basis :: (pcpo) below
begin

definition
compact-le-def:
(E) = (Az y. Rep-compact-basis x T Rep-compact-basis y)

instance ..
end

instance compact-basis :: (pcpo) po
using type-definition-compact-basis compact-le-def
by (rule typedef-po-class)

definition
approzimants :: 'a::pcpo = 'a compact-basis set where
approzimants = (Az. {a. Rep-compact-basis a T z})

definition
compact-bot :: 'a::pcpo compact-basis where
compact-bot = Abs-compact-basis L

lemma Rep-compact-bot [simp]: Rep-compact-basis compact-bot = L
unfolding compact-bot-def by simp

lemma compact-bot-minimal [simpl: compact-bot C a
unfolding compact-le-def Rep-compact-bot by simp

21.4 Universality of udom

We use a locale to parameterize the construction over a chain of approx
functions on the type to be embedded.

locale bifinite-approz-chain =
approz-chain approz for approx :: nat = 'a::bifinite — 'a
begin

21.4.1 Choosing a maximal element from a finite set

lemma finite-has-mazimal:

fixes A :: 'a compact-basis set

shows [finite A; A # {}] = Jz€A. VycAd. 2 Cy —z =1y
proof (induct rule: finite-ne-induct)
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case (singleton x)
show ?case by simp
next
case (insert a A)
from «(Jz€A. VycA. 2 Cy — z =
obtain z where z: z € A
and z-eq: Ay. [y € A; 2 C y] = = = y by fast
show Zcase
proof (intro bexl balll impl)
fix y
assume y € insert a A and (if x C a then a else x) C y
thus (if z C a then a else ) = y
apply auto
apply (frule (1) below-trans)
apply (frule (1) z-eq)
apply (rule below-antisym, assumption)
apply simp
apply (erule (1) z-eq)
done
next
show (if  C a then a else x) € insert a A
by (simp add: x)
qed
qed

definition
choose :: 'a compact-basis set = 'a compact-basis
where
choose A = (SOME z. ¢ € {z€cA. VycA. 2 C y — z = y})

lemma choose-lemma:
[finite A; A # {}] = choose A € {z€A.VycA. 2z Cy — z = y}
unfolding choose-def
apply (rule somel-ex)
apply (frule (1) finite-has-maximal, fast)
done

lemma mazimal-choose:
[finite A; y € A; choose A C y] = choose A =y
apply (cases A = {}, simp)
apply (frule (1) choose-lemma, simp)
done

lemma choose-in: [finite A; A # {}] = choose A € A
by (frule (1) choose-lemma, simp)

function
choose-pos :: 'a compact-basis set = 'a compact-basis = nat
where
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choose-pos A © =
(if finite ANz € ANz # choose A
then Suc (choose-pos (A — {choose A}) z) else 0)
by auto

termination choose-pos

apply (relation measure (card o fst), simp)
apply clarsimp

apply (rule card-Diff1-less)

apply assumption

apply (erule choose-in)

apply clarsimp

done

declare choose-pos.simps [simp del]

lemma choose-pos-choose: finite A => choose-pos A (choose A) = 0
by (simp add: choose-pos.simps)

lemma inj-on-choose-pos [OF refl]:
[card A = n; finite A] = inj-on (choose-pos A) A
apply (induct n arbitrary: A)
apply simp
apply (case-tac A = {}, simp)
apply (frule (1) choose-in)
apply (rule inj-onl)
apply (drule-tac z=A — {choose A} in meta-spec, simp)
apply (simp add: choose-pos.simps)
apply (simp split: if-split-asm)
apply (erule (1) inj-onD, simp, simp)
done

lemma choose-pos-bounded [OF refl]:
[card A = n; finite A; x € A] = choose-pos A © < n
apply (induct n arbitrary: A)
apply simp
apply (case-tac A = {}, simp)
apply (frule (1) choose-in)
apply (subst choose-pos.simps)
apply simp
done

lemma choose-pos-lessD:
[choose-pos A x < choose-pos A y; finite A; x € A,y € Al = 2z L y
apply (induct A x arbitrary: y rule: choose-pos.induct)
apply simp
apply (case-tac x = choose A)
apply simp
apply (rule notl)
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apply (frule (2) mazimal-choose)
apply simp
apply (case-tac y = choose A)
apply (simp add: choose-pos-choose)
apply (drule-tac z=y in meta-spec)
apply simp
apply (erule meta-mp)
apply (simp add: choose-pos.simps)
done

21.4.2 Compact basis take function

primrec
cb-take :: nat = 'a compact-basis = 'a compact-basis where
cb-take 0 = (A\z. compact-bot)
| cb-take (Suc n) = (Aa. Abs-compact-basis (approx n-(Rep-compact-basis a)))

declare cb-take.simps [simp del]

lemma cb-take-zero [simp]: cb-take 0 a = compact-bot
by (simp only: cb-take.simps)

lemma Rep-cb-take:
Rep-compact-basis (cb-take (Suc n) a) = approx n-(Rep-compact-basis a)
by (simp add: cb-take.simps(2))

lemmas approz-Rep-compact-basis = Rep-cb-take [symmetric)

lemma cb-take-covers: In. cb-take n v = x

apply (subgoal-tac In. cb-take (Suc n) © = x, fast)
apply (simp add: Rep-compact-basis-inject [symmetric])
apply (simp add: Rep-cb-take)

apply (rule compact-eg-approzx)

apply (rule Rep-compact-basis’)

done

lemma cb-take-less: cb-take n z C z
unfolding compact-le-def
by (cases n, simp, simp add: Rep-cb-take approx-below)

lemma cb-take-idem: cb-take n (cb-take n x) = cb-take n x
unfolding Rep-compact-basis-inject [symmetric]
by (cases n, simp, simp add: Rep-cb-take approz-idem)

lemma cb-take-mono: © C y = cb-take n © T cb-take n y
unfolding compact-le-def

by (cases n, simp, simp add: Rep-cb-take monofun-cfun-arg)

lemma cb-take-chain-le: m < n —> cb-take m z C cb-take n z
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unfolding compact-le-def

apply (cases m, simp, cases n, simp)

apply (simp add: Rep-cb-take, rule chain-mono, simp, simp)
done

lemma finite-range-cb-take: finite (range (cb-take n))

apply (cases n)

apply (subgoal-tac range (cb-take 0) = {compact-bot}, simp, force)
apply (rule finite-imageD [where f=Rep-compact-basis))

apply (rule finite-subset [where B=range (Az. approz (n — 1)-z)])
apply (clarsimp simp add: Rep-cb-take)

apply (rule finite-range-approx)

apply (rule inj-onl, simp add: Rep-compact-basis-inject)

done

21.4.3 Rank of basis elements

definition
rank :: 'a compact-basis = nat
where

rank © = (LEAST n. cb-take n z = x)

lemma compact-approz-rank: cb-take (rank x) z = x
unfolding rank-def

apply (rule Leastl-ex)

apply (rule cb-take-covers)

done

lemma rank-leD: rank v < n — cb-take n x = =
apply (rule below-antisym [OF cb-take-less])
apply (subst compact-approz-rank [symmetric])
apply (erule cb-take-chain-le)

done

lemma rank-lel: cb-take n v = z =— rank z < n
unfolding rank-def by (rule Least-le)

lemma rank-le-iff: rank v < n <— cb-take n z =z
by (rule iffl [OF rank-leD rank-lel])

lemma rank-compact-bot [simpl: rank compact-bot = 0
using rank-lel [of 0 compact-bot] by simp

lemma rank-eq-0-iff [simp]: rank © = 0 <— x = compact-bot
using rank-le-iff [of = 0] by auto

definition
rank-le :: 'a compact-basis = 'a compact-basis set
where
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rank-le = {y. rank y < rank x}

definition

rank-lt :: 'a compact-basis = 'a compact-basis set
where

rank-lt x = {y. rank y < rank z}

definition

rank-eq :: 'a compact-basis = 'a compact-basis set
where

rank-eq © = {y. rank y = rank x}

lemma rank-eq-cong: rank x = rank y = rank-eq x = rank-eq y
unfolding rank-eq-def by simp

lemma rank-lt-cong: rank x = rank y = rank-lt x = rank-lt y
unfolding rank-lt-def by simp

lemma rank-eg-subset: rank-eq x C rank-le x
unfolding rank-eq-def rank-le-def by auto

lemma rank-lt-subset: rank-lt x C rank-le x
unfolding rank-lt-def rank-le-def by auto

lemma finite-rank-le: finite (rank-le x)

unfolding rank-le-def

apply (rule finite-subset [where B=range (cb-take (rank z))])
apply clarify

apply (rule range-eql)

apply (erule rank-leD [symmetric])

apply (rule finite-range-cb-take)

done

lemma finite-rank-eq: finite (rank-eq x)
by (rule finite-subset [OF rank-eq-subset finite-rank-le])

lemma finite-rank-lt: finite (rank-lt x)
by (rule finite-subset [OF rank-lt-subset finite-rank-le])

lemma rank-it-Int-rank-eq: rank-lt x N rank-eq x = {}
unfolding rank-lt-def rank-eq-def rank-le-def by auto

lemma rank-lt-Un-rank-eq: rank-lt x U rank-eq x = rank-le x
unfolding rank-lt-def rank-eq-def rank-le-def by auto
21.4.4 Sequencing basis elements

definition
place :: 'a compact-basis = nat
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where
place x = card (rank-It x) + choose-pos (rank-eq ) x

lemma place-bounded: place © < card (rank-le x)
unfolding place-def
apply (rule ord-less-eg-trans)

apply (rule add-strict-left-mono)

apply (rule choose-pos-bounded)

apply (rule finite-rank-eq)

apply (simp add: rank-eq-def)
apply (subst card-Un-disjoint [symmetric])

apply (rule finite-rank-It)

apply (rule finite-rank-eq)

apply (rule rank-lt-Int-rank-eq)
apply (simp add: rank-lt-Un-rank-eq)
done

lemma place-ge: card (rank-lt ) < place
unfolding place-def by simp

lemma place-rank-mono:

fixes = y :: 'a compact-basis

shows rank © < rank y = place x < place y
apply (rule less-le-trans [OF place-bounded))
apply (rule order-trans [OF - place-ge])
apply (rule card-mono)
apply (rule finite-rank-lt)
apply (simp add: rank-le-def rank-lt-def subset-eq)
done

lemma place-eqD: place x = place y = x =y
apply (rule linorder-cases [where r=rank  and y=rank y))
apply (drule place-rank-mono, simp)
apply (simp add: place-def)
apply (rule inj-on-choose-pos [where A=rank-eq x, THEN inj-onD])
apply (rule finite-rank-eq)
apply (simp cong: rank-lt-cong rank-eg-cong)
apply (simp add: rank-eq-def)
apply (simp add: rank-eq-def)
apply (drule place-rank-mono, simp)
done

lemma inj-place: inj place
by (rule inj-onl, erule place-eqD)
21.4.5 Embedding and projection on basis elements

definition
sub :: 'a compact-basis = 'a compact-basis
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where
sub x = (case rank x of 0 = compact-bot | Suc k = cb-take k x)

lemma rank-sub-less: © # compact-bot => rank (sub z) < rank
unfolding sub-def

apply (cases rank x, simp)

apply (simp add: less-Suc-eg-le)

apply (rule rank-lel)

apply (rule cb-take-idem)

done

lemma place-sub-less: © # compact-bot = place (sub x) < place x
apply (rule place-rank-mono)

apply (erule rank-sub-less)

done

lemma sub-below: sub z C
unfolding sub-def by (cases rank z, simp-all add: cb-take-less)

lemma rank-less-imp-below-sub: [z T y; rank © < rank y] = = C sub y
unfolding sub-def

apply (cases rank y, simp)

apply (simp add: less-Suc-eg-le)

apply (subgoal-tac cb-take nat x T cb-take nat y)

apply (simp add: rank-leD)

apply (erule cb-take-mono)

done

function basis-emb :: 'a compact-basis = ubasis
where basis-emb © = (if x = compact-bot then 0 else
node (place x) (basis-emb (sub x))
(basis-emb ‘ {y. place y < place z A z C y}))
by simp-all

termination basis-emb
by (relation measure place) (simp-all add: place-sub-less)

declare basis-emb.simps [simp del]

lemma basis-emb-compact-bot [simp]:
basis-emb compact-bot = 0
using basis-emb.simps [of compact-bot] by simp

lemma basis-emb-rec:

basis-emb © = node (place z) (basis-emb (sub x)) (basis-emb ‘ {y. place y < place
AT C o))

if © # compact-bot

using that basis-emb.simps [of z] by simp



THEORY “Universal”

lemma basis-emb-eq-0-iff [simp]:
basis-emb v = 0 <— x = compact-bot
by (cases x = compact-bot) (simp-all add: basis-emb-rec)

lemma finl: finite {y. place y < place © A z C y}

apply (subst Collect-conj-eq)

apply (rule finite-Int)

apply (rule disjl1)

apply (subgoal-tac finite (place —* {n. n < place z}), simp)
apply (rule finite-vimagel [OF - inj-place))

apply (simp add: lessThan-def [symmetric])

done

lemma fin2: finite (basis-emb ‘ {y. place y < place x N z C y})
by (rule finite-imagel [OF finl])

lemma rank-place-mono:
[place z < place y; z C y] = rank z < rank y
apply (rule linorder-cases, assumption)
apply (simp add: place-def cong: rank-lt-cong rank-eq-cong)
apply (drule choose-pos-lessD)
apply (rule finite-rank-eq)
apply (simp add: rank-eq-def)
apply (simp add: rank-eq-def)
apply simp
apply (drule place-rank-mono, simp)
done

lemma basis-emb-mono:
z C y = ubasis-le (basis-emb ) (basis-emb y)

proof (induct maz (place x) (place y) arbitrary: © y rule: less-induct)

case less
show ?case proof (rule linorder-cases)
assume place z < place y
then have rank z < rank y
using <z C y» by (rule rank-place-mono)
with «place © < place y» show Zcase
apply (case-tac y = compact-bot, simp)
apply (simp add: basis-emb.simps [of y])
apply (rule ubasis-le-trans [OF - ubasis-le-lower [OF fin2]])
apply (rule less)
apply (simp add: less-maz-iff-disj)
apply (erule place-sub-less)
apply (erule rank-less-imp-below-sub [OF «x T ])
done
next
assume place x = place y
hence = = y by (rule place-eqD)
thus ?case by (simp add: ubasis-le-refl)

118
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next
assume place © > place y
with <z C gy show Zcase
apply (case-tac x = compact-bot, simp add: ubasis-le-minimal)
apply (simp add: basis-emb.simps [of x])
apply (rule ubasis-le-upper [OF fin2], simp)
apply (rule less)
apply (simp add: less-maz-iff-disj)
apply (erule place-sub-less)
apply (erule rev-below-trans)
apply (rule sub-below)
done
qed
qed

lemma inj-basis-emb: inj basis-emb
proof (rule injI)

fix x y

assume basis-emb x = basis-emb y

then show z = y

by (cases & = compact-bot V y = compact-bot) (auto simp add: basis-emb-rec

fin2 place-eqD)
qed

definition
basis-prj :: ubasis = 'a compact-basis
where
basis-prj x = inv basis-emb
(ubasis-until (A\z. = € range (basis-emb :: 'a compact-basis = ubasis)) x)

lemma basis-prj-basis-emb: \z. basis-prj (basis-emb z) = x
unfolding basis-prj-def
apply (subst ubasis-until-same)
apply (rule rangel)
apply (rule inv-f-f)
apply (rule inj-basis-emb)
done

lemma basis-prj-node:
[finite S; node i a S ¢ range (basis-emb :: 'a compact-basis = nat)]
= basis-prj (node i a S) = (basis-prj a :: 'a compact-basis)
unfolding basis-prj-def by simp

lemma basis-prj-0: basis-prj 0 = compact-bot
apply (subst basis-emb-compact-bot [symmetric])
apply (rule basis-prj-basis-emb)

done

lemma node-eq-basis-emb-iff:
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finite S = node i a S = basis-emb  <—
x # compact-bot A i = place x N\ a = basis-emb (sub x) A
S = basis-emb ‘{y. place y < place z N z C y}
apply (cases © = compact-bot, simp)
apply (simp add: basis-emb.simps [of x])
apply (simp add: fin2)
done

lemma basis-prj-mono: ubasis-le a b = basis-prj a = basis-prj b
proof (induct a b rule: ubasis-le.induct)
case (ubasis-le-refl a) show Zcase by (rule below-refl)
next
case (ubasis-le-trans a b ¢) thus Zcase by — (rule below-trans)
next
case (ubasis-le-lower S a i) thus ?case
apply (cases node i a S € range (basis-emb :: 'a compact-basis = nat))
apply (erule rangeE, rename-tac x)
apply (simp add: basis-prj-basis-emb)
apply (simp add: node-eq-basis-emb-iff)
apply (simp add: basis-prj-basis-emb)
apply (rule sub-below)
apply (simp add: basis-prj-node)
done
next
case (ubasis-le-upper S b a i) thus ?case
apply (cases node i a S € range (basis-emb :: 'a compact-basis = nat))
apply (erule rangeE, rename-tac x)
apply (simp add: basis-prj-basis-emb)
apply (clarsimp simp add: node-eq-basis-emb-iff)
apply (simp add: basis-prj-basis-emb)
apply (simp add: basis-prj-node)
done
qed

lemma basis-emb-prj-less: ubasis-le (basis-emb (basis-prj ©))
unfolding basis-prj-def
apply (subst f-inv-into-f [where f=basis-embl)
apply (rule ubasis-until)
apply (rule range-eql [where x=compact-bot])
apply simp
apply (rule ubasis-until-less)
done

lemma ideal-completion:
ideal-completion below Rep-compact-basis (approzimants :: 'a = -)
proof
fix w: 'a
show below.ideal (approximants w)
proof (rule below.ideall)
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have Abs-compact-basis (approx 0-w) € approzimants w
by (simp add: approzimants-def approz-below)
thus Jz. € approzimants w ..
next
fix Ty :: 'a compact-basis
assume z: © € approximants w and y: y € approximants w
obtain i where i: approz i-(Rep-compact-basis ©) = Rep-compact-basis
using compact-eg-approx Rep-compact-basis’ by fast
obtain j where j: approz j-(Rep-compact-basis y) = Rep-compact-basis y
using compact-eq-approx Rep-compact-basis’ by fast
let 22 = Abs-compact-basis (approzx (maz i j)-w)
have ?z € approximants w
by (simp add: approzimants-def approz-below)
moreover from z y have x C 22 A y C 22
by (simp add: approzimants-def compact-le-def)
(metis i j monofun-cfun chain-mono chain-approx maz.coboundedl mazx.cobounded?)
ultimately show 3z € approzimants w. t C z A y C z ..
next
fix Ty :: 'a compact-basis
assume z C y y € approrimants w thus z € approximants w
unfolding approximants-def compact-le-def
by (auto elim: below-trans)
qed
next
fix YV :: nat = 'a
assume chain Y
thus approzimants (| |i. Y i) = (U4. approzimants (Y 7))
unfolding approximants-def
by (auto simp add: compact-below-lub-iff)
next
fix a :: 'a compact-basis
show approzimants (Rep-compact-basis a) = {b. b C a}
unfolding approximants-def compact-le-def ..
next
fixzy:'a
assume approrimants © C approrimants y
hence Vz. compact z — z2Cx — 2z C gy
by (simp add: approzimants-def subset-eq)
(metis Abs-compact-basis-inverse’)
hence (| |i. approz i-z) C y
by (simp add: lub-below approz-below)
thus z C y
by (simp add: lub-distribs)
next
show 3f::’a compact-basis = nat. inj f
by (rule exl, rule inj-place)
qed

end
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interpretation compact-basis:
ideal-completion below Rep-compact-basis
approximants :: 'a::bifinite = 'a compact-basis set
proof —
obtain a :: nat = 'a — 'a where approz-chain a
using bifinite ..
hence bifinite-approz-chain a
unfolding bifinite-approz-chain-def .
thus ideal-completion below Rep-compact-basis (approzimants :: 'a = -)
by (rule bifinite-approz-chain.ideal-completion)
qed

21.4.6 EP-pair from any bifinite domain into udom

context bifinite-approx-chain begin

definition
udom-emb :: 'a — udom
where
udom-emb = compact-basis.extension (Ax. udom-principal (basis-emb r))

definition
udom-prj :: udom — 'a
where
udom-prj = udom.extension (Ax. Rep-compact-basis (basis-prj x))

lemma udom-emb-principal:
udom-emb-( Rep-compact-basis ) = udom-principal (basis-emb x)
unfolding udom-emb-def
apply (rule compact-basis.extension-principal)
apply (rule udom.principal-mono)
apply (erule basis-emb-mono)
done

lemma udom-prj-principal:
udom-prj-(udom-principal ) = Rep-compact-basis (basis-prj x)
unfolding udom-prj-def
apply (rule udom.extension-principal)
apply (rule compact-basis.principal-mono)
apply (erule basis-prj-mono)
done

lemma ep-pair-udom: ep-pair udom-emb udom-prj

apply standard
apply (rule compact-basis.principal-induct, simp)
apply (simp add: udom-emb-principal udom-prj-principal)
apply (simp add: basis-prj-basis-emb)

apply (rule udom.principal-induct, simp)
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apply (simp add: udom-emb-principal udom-prj-principal)
apply (rule basis-emb-prj-less)
done

end

abbreviation udom-emb = bifinite-approz-chain.udom-emb
abbreviation udom-prj = bifinite-approx-chain.udom-prj

lemmas ep-pair-udom =
bifinite-approz-chain.ep-pair-udom [unfolded bifinite-approx-chain-def]

21.5 Chain of approx functions for type udom

definition
udom-approz :: nat = udom — udom
where
udom-approxr © =
udom.extension (Az. udom-principal (ubasis-until (Ay. y < i) x))

lemma udom-approx-mono:
ubasis-le a b =
udom-principal (ubasis-until (Ay. y < i) a) C
udom-principal (ubasis-until (Ay. y < i) b)
apply (rule udom.principal-mono)
apply (rule ubasis-until-mono)
apply (frule (2) order-less-le-trans [OF node-gt2])
apply (erule order-less-imp-le)
apply assumption
done

lemma adm-mem-finite: [cont f; finite S| = adm (Az. fz € S)
by (erule adm-subst, induct set: finite, simp-all)

lemma udom-approx-principal:
udom-approx i-(udom-principal x) =
udom-principal (ubasis-until (Ay. y < @) x)
unfolding udom-approz-def
apply (rule udom.extension-principal)
apply (erule udom-approz-mono)
done

lemma finite-deflation-udom-approx: finite-deflation (udom-approx )
proof
fix « show udom-approz i-(udom-approz i-x) = udom-approx i-z
by (induct z rule: udom.principal-induct, simp)
(simp add: udom-approx-principal ubasis-until-idem)
next
fix z show udom-approzx i-x C x
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by (induct z rule: udom.principal-induct, simp)
(simp add: udom-approx-principal ubasis-until-less)
next
have «: finite (range (Az. udom-principal (ubasis-until (Ay. y < i) z)))
apply (subst range-composition [where f=udom-principal])
apply (simp add: finite-range-ubasis-until)
done
show finite {z. udom-approz i-x = z}
apply (rule finite-range-imp-finite-fizes)
apply (rule rev-finite-subset [OF x])
apply (clarsimp, rename-tac x)
apply (induct-tac x rule: udom.principal-induct)
apply (simp add: adm-mem-finite x)
apply (simp add: udom-approz-principal)
done
qed

interpretation udom-approz: finite-deflation udom-approx i
by (rule finite-deflation-udom-approz)

lemma chain-udom-approz [simp]: chain (Ai. udom-approx 7)
unfolding udom-approz-def

apply (rule chainl)

apply (rule udom.extension-mono)

apply (erule udom-approz-mono)

apply (erule udom-approxz-mono)

apply (rule udom.principal-mono)

apply (rule ubasis-until-chain, simp)

done

lemma lub-udom-approz [simp]: (| |i. udom-approzx i) = ID
apply (rule cfun-eql, simp add: contlub-cfun-fun)
apply (rule below-antisym)

apply (rule lub-below)

apply (simp)

apply (rule udom-approz.below)

apply (rule-tac z=x in udom.principal-induct)
apply (simp add: lub-distribs)

apply (rule-tac i=a in below-lub)

apply simp

apply (simp add: udom-approz-principal)

apply (simp add: ubasis-until-same ubasis-le-refl)
done

lemma udom-approzx [simp]: approz-chain udom-approx
proof
show chain (\i. udom-approx 7)
by (rule chain-udom-appror)
show (| |i. udom-approzx i) = ID
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by (rule lub-udom-approzx)
qed

instance udom :: bifinite
by standard (fast intro: udom-approz)

hide-const (open) node
unbundle binomial-syntax

end

22 Algebraic deflations

theory Algebraic
imports Universal Map-Functions
begin

22.1 Type constructor for finite deflations

typedef ‘a:bifinite fin-defl = {d::’a — 'a. finite-deflation d}
by (fast intro: finite-deflation-bottom)

instantiation fin-defl :: (bifinite) below
begin

definition below-fin-defi-def:
below = Az y. Rep-fin-defl x © Rep-fin-defl y

instance ..
end

instance fin-defl :: (bifinite) po
using type-definition-fin-defl below-fin-defi-def
by (rule typedef-po-class)

lemma finite-deflation-Rep-fin-defl: finite-deflation (Rep-fin-defl d)
using Rep-fin-defl by simp

lemma deflation-Rep-fin-defl: deflation (Rep-fin-defl d)
using finite-deflation-Rep-fin-defl
by (rule finite-deflation-imp-deflation)

interpretation Rep-fin-defl: finite-deflation Rep-fin-defl d
by (rule finite-deflation-Rep-fin-defl)

lemma fin-defi-belowl:
(Az. Rep-fin-defl a-x = x = Rep-fin-defl bx = z) = a C b
unfolding below-fin-defl-def
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by (rule Rep-fin-defl.belowl)

lemma fin-defl-belowD:

[a C b; Rep-fin-defl a-x = z] = Rep-fin-defl b-x = z
unfolding below-fin-defi-def
by (rule Rep-fin-defl.belowD)

lemma fin-defl-eql:

a = b if (Az. Rep-fin-defl a-x = x +— Rep-fin-defl b-x = z)
proof (rule below-antisym)

show a C b by (rule fin-defl-belowl) (simp add: that)

show b C a by (rule fin-defl-belowl) (simp add: that)
qed

lemma Rep-fin-defl-mono: a & b = Rep-fin-defl a = Rep-fin-defl b
unfolding below-fin-defi-def .

lemma Abs-fin-defl-mono:
[finite-deflation a; finite-deflation b; a T b]
= Abs-fin-defl a © Abs-fin-defl b
unfolding below-fin-defi-def
by (simp add: Abs-fin-defl-inverse)

lemma (in finite-deflation) compact-belowl:
dC fif Az. compact 1 = dz =2 = fax =1z
by (rule belowl, rule that, erule subst, rule compact)

lemma compact-Rep-fin-defl [simp]: compact (Rep-fin-defl a)

using finite-deflation-Rep-fin-defl
by (rule finite-deflation-imp-compact)

22.2 Defining algebraic deflations by ideal completion

typedef ‘a:bifinite defl = {S::'a fin-defl set. below.ideal S}
by (rule below.ez-ideal)

instantiation defl :: (bifinite) below
begin

definition z C y «— Rep-defl x C Rep-defl y
instance ..

end

instance defl :: (bifinite) po

using type-definition-defl below-defl-def
by (rule below.typedef-ideal-po)
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instance defl :: (bifinite) cpo
using type-definition-defl below-defl-def
by (rule below.typedef-ideal-cpo)

definition defl-principal :: 'a::bifinite fin-defl = 'a defl
where defl-principal t = Abs-defl {u. u C t}

lemma fin-defl-countable: 3 f::'a::bifinite fin-defl = nat. inj f
proof —
obtain f :: ‘a compact-basis = nat where inj-f: inj f
using compact-basis.countable ..
have x: A\d. finite (f ¢ Rep-compact-basis —* {z. Rep-fin-defl d-x = x})
apply (rule finite-imagel)
apply (rule finite-vimagel )
apply (rule Rep-fin-defl.finite-fizes)
apply (simp add: inj-on-def Rep-compact-basis-inject)
done
have range-eq: range Rep-compact-basis = {x. compact z}
using type-definition-compact-basis by (rule type-definition. Rep-range)
have inj (Ad. set-encode
(f ¢ Rep-compact-basis —‘ {x. Rep-fin-defl d-x = z}))
apply (rule inj-onl)
apply (simp only: set-encode-eq *)
apply (simp only: inj-image-eq-iff inj-f)
apply (drule-tac f=image Rep-compact-basis in arg-cong)
apply (simp del: vimage-Collect-eq add: range-eq set-eq-iff)
apply (rule Rep-fin-defl-inject [THEN 4ffD1])
apply (rule below-antisym)
apply (rule Rep-fin-defl.compact-belowl, rename-tac z)
apply (drule-tac z=z in spec, simp)
apply (rule Rep-fin-defl.compact-belowl, rename-tac z)
apply (drule-tac z=2 in spec, simp)
done
thus ?thesis by — (rule exl)
qed

Py

interpretation defi: ideal-completion below defi-principal Rep-defl
using type-definition-defl below-defi-def

using defil-principal-def fin-defi-countable

by (rule below.typedef-ideal-completion)

Algebraic deflations are pointed

lemma defl-minimal: defl-principal (Abs-fin-defl L) C z
proof (induct x rule: defl.principal-induct)
fix a :: 'a fin-defl
have Abs-fin-defl 1. C a
by (simp add: below-fin-defl-def Abs-fin-defl-inverse finite-deflation-bottom)
then show defl-principal (Abs-fin-defl 1) C defl-principal a
by (rule defl.principal-mono)
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qed simp

instance defl :: (bifinite) pcpo
by intro-classes (fast intro: defl-minimal)

lemma inst-defl-pcpo: L = defl-principal (Abs-fin-defl 1)
by (rule defl-minimal [THEN bottomlI, symmetric])

22.3 Applying algebraic deflations

definition cast :: 'a::bifinite defl — 'a — 'a
where cast = defl.extension Rep-fin-defl

lemma cast-defl-principal: cast-(defl-principal a) = Rep-fin-defl a
unfolding cast-def
by (rule defl.extension-principal) (simp only: below-fin-defl-def)

lemma deflation-cast: deflation (cast-d)

apply (induct d rule: defl.principal-induct)

apply (rule adm-subst [OF - adm-deflation], simp)
apply (simp add: cast-defl-principal)

apply (rule finite-deflation-imp-deflation)

apply (rule finite-deflation-Rep-fin-defl)

done

lemma finite-deflation-cast: compact d = finite-deflation (cast-d)
apply (drule defl.compact-imp-principal)
apply clarify
apply (simp add: cast-defl-principal)
apply (rule finite-deflation-Rep-fin-defl)
done

interpretation cast: deflation cast-d
by (rule deflation-cast)

declare cast.idem [simp]

lemma compact-cast [simp]: compact (cast-d) if compact d

128

by (rule finite-deflation-imp-compact) (use that in <rule finite-deflation-casty)

lemma cast-below-cast: cast-A T cast-B +—— A C B
apply (induct A rule: defl.principal-induct, simp)
apply (induct B rule: defl.principal-induct, simp)
apply (simp add: cast-defl-principal below-fin-defl-def)
done

lemma compact-cast-iff: compact (cast-d) +— compact d

apply (rule iffI)
apply (simp only: compact-def cast-below-cast [symmetric])
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apply (erule adm-subst [OF cont-Rep-cfun2])
apply (erule compact-cast)
done

lemma cast-below-imp-below: cast-A C cast-B =— A C B
by (simp only: cast-below-cast)

lemma cast-eq-imp-eq: cast-A = cast-B — A = B
by (simp add: below-antisym cast-below-imp-below)

lemma cast-strict! [simp]: cast-L = L1
apply (subst inst-defl-pcpo)

apply (subst cast-defl-principal)

apply (rule Abs-fin-defl-inverse)

apply (simp add: finite-deflation-bottom)
done

lemma cast-strict2 [simp]: cast-A-L = L
by (rule cast.below [THEN bottoml])

22.4 Deflation combinators

definition
defl-funl ep f =
defl.extension (\a.
defl-principal (Abs-fin-defl
(¢ 00 f-(Rep-fin-defl. a) 00 p)))

definition
defl-fun2 ep f =
defl.extension (\a.
defl.extension (\b.
defl-principal (Abs-fin-defl
(¢ 00 f-(Rep-fin-defl a)-(Rep-fin-defl b) 00 p)))

lemma cast-defl-funi:
assumes ep: ep-pair e p
assumes f: Aa. finite-deflation a = finite-deflation (f-a)
shows cast-(defl-funl e p f-A) = e oo f-(cast-A) oo p
proof —
have 1: finite-deflation (e oo f-(Rep-fin-defl a) oo p) for a
proof —
have finite-deflation (f-(Rep-fin-defl a))
using finite-deflation-Rep-fin-defl by (rule f)
with ep show ?thesis
by (rule ep-pair.finite-deflation-e-d-p)
qed
show ?thesis
by (induct A rule: defl.principal-induct, simp)

129
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(simp only: defl-funi-def
defl.extension-principal
defl.extension-mono
defl.principal-mono
Abs-fin-defl-mono [OF 1 1]
monofun-cfun below-refl
Rep-fin-defl-mono
cast-defl-principal
Abs-fin-defl-inverse [unfolded mem-Collect-eq, OF 1])
qed

lemma cast-defl-fun2:
assumes ep: ep-pair e p
assumes f: A\a b. finite-deflation a = finite-deflation b —>
finite-deflation (f-a-b)
shows cast-(defl-fun2 e p f-A-B) = € oo f-(cast-A)-(cast-B) oo p
proof —
have 1: finite-deflation (e oo f-(Rep-fin-defl a)-(Rep-fin-defl b) oo p) for a b
proof —
have finite-deflation (f-(Rep-fin-defl a)-(Rep-fin-defi b))
using finite-deflation-Rep-fin-defl finite-deflation-Rep-fin-defl by (rule f)
with ep show ?thesis
by (rule ep-pair.finite-deflation-e-d-p)
qed
show ?thesis
apply (induct A rule: defl.principal-induct, simp)
apply (induct B rule: defl.principal-induct, simp)
by (simp only: defl-fun2-def
defl.extension-principal
defl.extension-mono
defl.principal-mono
Abs-fin-defl-mono [OF 1 1]
monofun-cfun below-refl
Rep-fin-defl-mono
cast-defl-principal
Abs-fin-defl-inverse [unfolded mem-Collect-eq, OF 1])
qed

end

23 Representable domains

theory Representable
imports Algebraic Map-Functions HOL— Library. Countable
begin
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23.1 Class of representable domains

We define a “domain” as a pcpo that is isomorphic to some algebraic defla-
tion over the universal domain; this is equivalent to being omega-bifinite.

A predomain is a cpo that, when lifted, becomes a domain. Predomains are
represented by deflations over a lifted universal domain type.

class predomain-syn = cpo +
fixes liftemb :: 'a; — udom
fixes liftprj :: udom, — 'a)
fixes liftdefl :: 'a itself = udom u defl

class predomain = predomain-syn +
assumes predomain-ep: ep-pair liftemb liftprj
assumes cast-liftdefl: cast-(liftdefl TYPE('a)) = liftemb oo liftprj

syntax -LIFTDEFL :: type = logic (<«(1LIFTDEFL/(1'(-"))))
syntax-consts -LIFTDEFL <= liftdefl
translations LIFTDEFL('t) = CONST liftdefil TYPE('t)

definition liftdefl-of :: udom defl — udom u defl
where liftdefl-of = defi-funi ID ID u-map

lemma cast-liftdefl-of: cast-(liftdefl-of -t) = u-map-(cast-t)
by (simp add: liftdefl-of-def cast-defl-funl ep-pair-def finite-deflation-u-map)

class domain = predomain-syn + pcpo +
fixes emb :: 'a — udom
fixes prj :: udom — 'a
fixes defl :: 'a itself = udom defl
assumes ep-pair-emb-prj: ep-pair emb prj
assumes cast-DEFL: cast-(defl TYPE('a)) = emb oo prj
assumes liftemb-eq: liftemb = u-map-emb
assumes liftprj-eq: liftprj = u-map-prj
assumes liftdefl-eq: liftdefl TYPE('a) = liftdefl-of -(defl TYPE('a))

syntax -DEFL :: type = logic (<(1DEFL/(1'(-"))»)
syntax-consts -DEFL = defl
translations DEFL('t) = CONST defl TYPE('t)

instance domain C predomain
proof
show ep-pair liftemb (liftprj:udom, — 'a])
unfolding liftemb-eq liftprj-eq
by (intro ep-pair-u-map ep-pair-emb-prj)
show cast-LIFTDEFL('a) = liftemb oo (liftprj::udom, — 'a))
unfolding liftemb-eq liftprj-eq liftdefl-eq
by (simp add: cast-liftdefl-of cast-DEFL u-map-00)
qed
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Constants liftemb and liftprj imply class predomain.

setup ¢«
fold Sign.add-const-constraint
[(const-name <liftemby, SOME typ <'a::predomain v — udom uy),
(const-name <liftprj>, SOME typ <udom u — 'a:predomain w)),
(const-name <liftdefly, SOME typ <'a::predomain itself = udom u defl))]

interpretation predomain: pcpo-ep-pair liftemb liftprj
unfolding pcpo-ep-pair-def by (rule predomain-ep)

interpretation domain: pcpo-ep-pair emb prj
unfolding pcpo-ep-pair-def by (rule ep-pair-emb-pry)

lemmas emb-inverse = domain.e-inverse
lemmas emb-prj-below = domain.e-p-below
lemmas emb-eq-iff = domain.e-eq-iff
lemmas emb-strict = domain.e-strict
lemmas prj-strict = domain.p-strict

23.2 Domains are bifinite

lemma approz-chain-ep-cast:
assumes ep: ep-pair (e:'a::pepo — 'b::bifinite) (p::'b — 'a)
assumes cast-t: cast-t = e 0o p
shows 3 (a::nat = 'a::pcpo — 'a). approz-chain a
proof —
interpret ep-pair e p by fact
obtain Y where Y:Vi. YiC Y (Suc i)
and ¢: t = (| 4. defl-principal (Y 7))
by (rule defl.obtain-principal-chain)
define approz where approz i = (p oo cast-(defl-principal (Y 7)) oo e) for i
have approx-chain approx
proof (rule approz-chain.intro)
show chain (\i. approz 7)
unfolding approz-def by (simp add: Y)
show (| |i. approz i) = ID
unfolding approx-def
by (simp add: lub-distribs Y t [symmetric] cast-t cfun-eq-iff)
show Ai. finite-deflation (approx 7)
unfolding approx-def
apply (rule finite-deflation-p-d-e)
apply (rule finite-deflation-cast)
apply (rule defl.compact-principal)
apply (rule below-trans [OF monofun-cfun-fun))
apply (rule is-ub-thelub, simp add: Y)
apply (simp add: lub-distribs Y t [symmetric] cast-t)
done
qed
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thus 3 (a:nat = 'a — 'a). approx-chain a by — (rule exl)
qed

instance domain C bifinite
by standard (rule approz-chain-ep-cast [OF ep-pair-emb-prj cast-DEFL])

instance predomain C profinite
by standard (rule approz-chain-ep-cast [OF predomain-ep cast-liftdefl])

23.3 Universal domain ep-pairs

definition u-emb = udom-emb (A\i. u-map-(udom-approx 7))
definition u-prj = udom-prj (Ai. u-map-(udom-approzx 1))

definition prod-emb = udom-emb (\i. prod-map-(udom-approzx i)-(udom-approz
i)

definition prod-prj = udom-prj (\i. prod-map-(udom-approz i)-(udom-approz 1))

definition sprod-emb = udom-emb (\i. sprod-map-(udom-approx i)-(udom-approx
7))

definition sprod-prj = udom-prj (X\i. sprod-map-(udom-approz i)-(udom-approx 7))

definition ssum-emb = udom-emb (Ai. ssum-map-(udom-approx i)-(udom-approx
i)

definition ssum-prj = udom-prj (\i. ssum-map-(udom-approx i)-(udom-approz 7))

definition sfun-emb = udom-emb (Ai. sfun-map-(udom-approz i)-(udom-approx 7))
definition sfun-prj = udom-prj (A\i. sfun-map-(udom-approz i)-(udom-approz i))

lemma ep-pair-u: ep-pair u-emb u-prj
unfolding u-emb-def u-prj-def
by (simp add: ep-pair-udom approz-chain-u-map)

lemma ep-pair-prod: ep-pair prod-emb prod-prj
unfolding prod-emb-def prod-prj-def
by (simp add: ep-pair-udom approz-chain-prod-map)

lemma ep-pair-sprod: ep-pair sprod-emb sprod-prj
unfolding sprod-emb-def sprod-prj-def
by (simp add: ep-pair-udom approx-chain-sprod-map)

lemma ep-pair-ssum: ep-pair ssum-emb ssum-prj
unfolding ssum-emb-def ssum-prj-def
by (simp add: ep-pair-udom approz-chain-ssum-map)

lemma ep-pair-sfun: ep-pair sfun-emb sfun-prj
unfolding sfun-emb-def sfun-prj-def
by (simp add: ep-pair-udom approz-chain-sfun-map)
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23.4 Type combinators

definition u-defl :: udom defl — udom defl
where u-defl = defi-funl u-emb u-prj u-map

definition prod-defl :: udom defl — udom defl — udom defl
where prod-defl = defi-fun2 prod-emb prod-prj prod-map

definition sprod-defl :: udom defl — udom defl — udom defl
where sprod-defl = defl-fun?2 sprod-emb sprod-prj sprod-map

definition ssum-defi :: udom defl — udom defl — udom defl
where ssum-defl = defl-fun2 ssum-emb ssum-prj ssum-map

definition sfun-defl :: udom defl — udom defl — udom defl
where sfun-defl = defi-fun2 sfun-emb sfun-prj sfun-map

lemma cast-u-defl:

cast-(u-defl-A) = u-emb oo u-map-(cast-A) oo u-prj
using ep-pair-u finite-deflation-u-map
unfolding u-defl-def by (rule cast-defl-funl)

lemma cast-prod-defi:
cast-(prod-defl-A-B) =
prod-emb oo prod-map-(cast-A)-(cast-B) oo prod-prj
using ep-pair-prod finite-deflation-prod-map
unfolding prod-defi-def by (rule cast-defl-fun2)

lemma cast-sprod-defl:
cast-(sprod-defl-A-B) =
sprod-emb oo sprod-map-(cast-A)-(cast-B) oo sprod-prj
using ep-pair-sprod finite-deflation-sprod-map
unfolding sprod-defl-def by (rule cast-defl-fun2)

lemma cast-ssum-defi:
cast-(ssum-defl-A-B) =
ssum-emb oo ssum-map-(cast-A)-(cast-B) oo ssum-prj
using ep-pair-ssum finite-deflation-ssum-map
unfolding ssum-defl-def by (rule cast-defl-fun2)

lemma cast-sfun-defi:
cast-(sfun-defl-A-B) =
sfun-emb oo sfun-map-(cast-A)-(cast-B) oo sfun-prj
using ep-pair-sfun finite-deflation-sfun-map
unfolding sfun-defl-def by (rule cast-defl-fun2)

Special deflation combinator for unpointed types.

definition u-liftdefl :: udom u defl — udom defi
where u-liftdefl = defl-funl u-emb u-prj ID
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lemma cast-u-liftdefi:
cast-(u-liftdefl-A) = u-emb oo cast-A oo u-prj
unfolding u-liftdefl-def by (simp add: cast-defl-funl ep-pair-u)

lemma u-liftdefi-liftdefi-of:
u-liftdefl-(liftdefl-of -A) = u-defl-A
by (rule cast-eq-imp-eq)
(simp add: cast-u-liftdefl cast-liftdefl-of cast-u-defl)

23.5 Class instance proofs

23.5.1 TUniversal domain

instantiation udom :: domain
begin

definition [simp]:
emb = (ID :: udom — udom)

definition [simp]:
prj = (ID :: udom — udom)

definition
defl (t::udom itself) = (|| 4. defl-principal (Abs-fin-defl (udom-approz i)))

definition
(liftemb :: udom u — udom u) = u-map-emb

definition
(liftpry :: udom u — udom u) = u-map-prj

definition
liftdefl (t::udom itself) = liftdefl-of - DEFL(udom)

instance proof
show ep-pair emb (prj :: udom — udom)
by (simp add: ep-pair.intro)
show cast- DEFL(udom) = emb oo (prj :: udom — udom)
unfolding defl-udom-def
apply (subst contlub-cfun-arg)
apply (rule chainl)
apply (rule defl.principal-mono)
apply (simp add: below-fin-defi-def)
apply (simp add: Abs-fin-defl-inverse finite-deflation-udom-approx)
apply (rule chainFE)
apply (rule chain-udom-approzx)
apply (subst cast-defl-principal)
apply (simp add: Abs-fin-defl-inverse finite-deflation-udom-approx)
done
qed (fact liftemb-udom-def liftprj-udom-def liftdefl-udom-def)+

Py
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end

23.5.2 Lifted cpo

instantiation v :: (predomain) domain
begin

definition
emb = u-emb oo liftemb

definition
prj = liftprj oo u-prj

definition
defl (t::'a u itself) = u-liftdefl. LIFTDEFL('a)

definition
(liftemb :: 'a w u = udom u) = u-map-emb

definition
(liftpry :: udom v — 'a u u) = u-map-prj

definition
liftdefl (t::'a w itself) = liftdefl-of -DEFL('a u)

instance proof
show ep-pair emb (prj :: udom — 'a u)
unfolding emb-u-def prj-u-def
by (intro ep-pair-comp ep-pair-u predomain-ep)
show cast-DEFL('a u) = emb oo (prj :: udom — 'a u)
unfolding emb-u-def prj-u-def defl-u-def
by (simp add: cast-u-liftdefl cast-liftdefl assoc-00)
qed (fact liftemb-u-def liftprj-u-def liftdefl-u-def )+

end

lemma DEFL-u: DEFL('a::predomain u) = u-liftdefl- LIFTDEFL('a)
by (rule defl-u-def)

23.5.3 Strict function space

instantiation sfun :: (domain, domain) domain

begin

definition
emb = sfun-emb oo sfun-map-prj-emb

definition
prj = sfun-map-emb-prj oo sfun-prj
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definition
defl (t::("a —=! 'b) itself) = sfun-defl- DEFL(’a)-DEFL(’D)

definition
(liftemb :: ("a —! 'b) w — udom u) = u-map-emb

definition
(liftprj = udom u — ('a —=! 'b) u) = u-map-prj

definition
liftdefl (t::("a —! 'b) itself) = liftdefl-of -DEFL('a —! 'b)

instance proof
show ep-pair emb (prj :: udom — 'a —! ')
unfolding emb-sfun-def prj-sfun-def
by (intro ep-pair-comp ep-pair-sfun ep-pair-sfun-map ep-pair-emb-pryj)
show cast-DEFL('a —! 'b) = emb oo (prj :: udom — 'a —! 'b)
unfolding emb-sfun-def prj-sfun-def defi-sfun-def cast-sfun-defl
by (simp add: cast-DEFL oo-def sfun-eg-iff sfun-map-map)
qed (fact liftemb-sfun-def liftprj-sfun-def liftdefl-sfun-def )+

end

lemma DEFL-sfun:
DEFL('a::domain —! 'b::domain) = sfun-defl- DEFL(’a)- DEFL('D)
by (rule defl-sfun-def)
23.5.4 Continuous function space
instantiation cfun :: (predomain, domain) domain

begin

definition
emb = emb oo encode-cfun

definition
prj = decode-cfun oo prj

definition
defl (t::("a — 'b) itself) = DEFL('a u —! 'b)

definition
(liftemb :: ('"a — 'b) u — udom u) = u-map-emb

definition
(liftprj = udom u — ('a — 'b) u) = u-map-prj

definition
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liftdefl (t::("a — 'b) itself) = liftdefl-of-DEFL('a — 'b)

instance proof
have ep-pair encode-cfun decode-cfun
by (rule ep-pair.intro, simp-all)
thus ep-pair emb (prj :: udom — 'a — 'b)
unfolding emb-cfun-def prj-cfun-def
using ep-pair-emb-prj by (rule ep-pair-comp)
show cast-DEFL('a — 'b) = emb oo (prj :: udom — 'a — 'b)
unfolding emb-cfun-def prj-cfun-def defi-cfun-def
by (simp add: cast-DEFL cfcompl)
qed (fact liftemb-cfun-def liftpri-cfun-def liftdefl-cfun-def)+

end

lemma DEFL-cfun:
DEFL('a::predomain — 'b::domain) = DEFL('a u —! 'b)
by (rule defl-cfun-def)

23.5.5 Strict product

instantiation sprod :: (domain, domain) domain
begin

definition
emb = sprod-emb oo sprod-map-emb-emb

definition
prj = sprod-map-prj-prj oo sprod-prj

definition
defl (t::("a @ 'b) itself) = sprod-defl- DEFL('a)- DEFL('b)

definition
(liftemd :: ('a ® 'b) u — udom u) = u-map-emb

definition
(liftprj = udom u — ('a ® 'b) u) = u-map-prj

definition
liftdefl (t::("a ® 'b) itself) = liftdefl-of -DEFL('a ® 'b)

instance proof
show ep-pair emb (prj :: udom — 'a @ 'b)
unfolding emb-sprod-def prj-sprod-def
by (intro ep-pair-comp ep-pair-sprod ep-pair-sprod-map ep-pair-emb-pry)
show cast-DEFL('a ® 'b) = emb oo (prj :: udom — 'a ® 'b)
unfolding emb-sprod-def prj-sprod-def defi-sprod-def cast-sprod-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff sprod-map-map)
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qed (fact liftemb-sprod-def liftprj-sprod-def liftdefl-sprod-def)+
end

lemma DEFL-sprod:
DEFL('a::domain ® 'b::domain) = sprod-defl- DEFL('a)- DEFL('b)
by (rule defl-sprod-def)

23.5.6 Cartesian product

definition prod-liftdefl :: udom u defl — udom u defl — udom u defl
where prod-liftdefl = defl-fun2 (u-map-prod-emb oo decode-prod-u)
(encode-prod-u oo u-map-prod-prj) sprod-map

lemma cast-prod-liftdefi:

cast-(prod-liftdefl-a-b) =

(u-map-prod-emb oo decode-prod-u) oo sprod-map-(cast-a)-(cast-b) oo
(encode-prod-u oo u-map-prod-pry)

unfolding prod-liftdefi-def
apply (rule cast-defl-fun2)
apply (intro ep-pair-comp ep-pair-u-map ep-pair-prod)
apply (simp add: ep-pair.intro)
apply (erule (1) finite-deflation-sprod-map)
done

instantiation prod :: (predomain, predomain) predomain
begin

definition
liftemb = (u-map-prod-emb oo decode-prod-u) oo
(sprod-map-liftemb-liftemb oo encode-prod-u)

definition
liftprj = (decode-prod-u oo sprod-map-liftprj-liftprj) oo
(encode-prod-u oo u-map-prod-pry)

definition
liftdefl (t::("a x 'b) itself) = prod-liftdefl. LIFTDEFL(’a)- LIFTDEFL('b)

instance proof
show ep-pair liftemb (liftpr :: udom v — (Ya x 'b) u)
unfolding liftemb-prod-def liftprj-prod-def
by (intro ep-pair-comp ep-pair-sprod-map ep-pair-u-map
ep-pair-prod predomain-ep, simp-all add: ep-pair.intro)
show cast-LIFTDEFL('a x 'b) = liftemb oo (liftprj :: udom v — ('a x 'b) u)
unfolding liftemb-prod-def liftprj-prod-def liftdefi-prod-def
by (simp add: cast-prod-liftdefl cast-liftdefl cfcompl sprod-map-map)
qged
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end

instantiation prod :: (domain, domain) domain
begin

definition
emb = prod-emb oo prod-map-emb-emb

definition
prj = prod-map-prj-prj oo prod-prj

definition
defl (t::("a x 'b) itself) = prod-defl- DEFL('a)-DEFL('b)

instance proof
show 1: ep-pair emb (prj :: udom — 'a X 'b)
unfolding emb-prod-def prj-prod-def
by (intro ep-pair-comp ep-pair-prod ep-pair-prod-map ep-pair-emb-pryj)
show 2: cast-DEFL('a x 'b) = emb oo (prj :: udom — 'a x 'b)
unfolding emb-prod-def prj-prod-def defi-prod-def cast-prod-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff prod-map-map)
show 3: liftemb = u-map-(embd :: 'a x 'b — udom)
unfolding emb-prod-def liftemb-prod-def liftemb-eq
unfolding encode-prod-u-def decode-prod-u-def
by (rule cfun-eql, case-tac x, simp, clarsimp)
show /: liftprj = u-map-(prj :: udom — 'a x 'b)
unfolding prj-prod-def liftprj-prod-def liftprj-eq
unfolding encode-prod-u-def decode-prod-u-def
apply (rule cfun-eql, case-tac z, simp)
apply (rename-tac y, case-tac prod-prj-y, simp)
done
show 5: LIFTDEFL('a x 'b) = liftdefl-of-DEFL('a x 'b)
by (rule cast-eq-imp-eq)
(simp add: cast-liftdefl cast-liftdefl-of cast-DEFL 2 3 4 u-map-00)
qed

end

lemma DEFL-prod:
DEFL(’a::domain x 'b::domain) = prod-defl- DEFL('a)- DEFL('b)
by (rule defl-prod-def)

lemma LIFTDEFL-prod:
LIFTDEFL('a::predomain x 'b::predomain) =
prod-liftdefl: LIFTDEFL('a)- LIFTDEFL('b)
by (rule liftdefl-prod-def)
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23.5.7 Unit type

instantiation unit :: domain
begin

definition
emb = (L :: unit — udom)

definition
prj = (L :: udom — unit)

definition
defl (t::unit itself) = L

definition
(liftemb :: unit uw — udom u) = u-map-emb

definition
(liftprj :: udom u — unit u) = u-map-prj

definition
liftdefl (t::unit itself) = liftdefl-of - DEFL(unit)

instance proof
show ep-pair emb (prj :: udom — unit)
unfolding emb-unit-def prj-unit-def
by (simp add: ep-pair.intro)
show cast-DEFL(unit) = emb oo (prj :: udom — unit)
unfolding emb-unit-def prj-unit-def defl-unit-def by simp
qed (fact liftemb-unit-def liftprj-unit-def liftdefl-unit-def )+

end

23.5.8 Discrete cpo

instantiation discr :: (countable) predomain
begin

definition
(liftemb :: 'a discr v — udom u) = strictify-up oo udom-emb discr-approx

definition
(liftpry =2 udom u — 'a discr w) = udom-prj discr-approz oo fup-ID

definition
liftdefl (t::'a discr itself) =
(L|%. defl-principal (Abs-fin-defl (liftemb oo discr-approz i oo (liftprj::udom u
— 'a discr u))))

instance proof



THEORY “Representable” 142

show 1: ep-pair liftemb (liftprj :: udom v — 'a discr u)

unfolding liftemb-discr-def liftprj-discr-def

apply (intro ep-pair-comp ep-pair-udom [OF discr-approx))

apply (rule ep-pair.intro)

apply (simp add: strictify-conv-if)

apply (case-tac y, simp, simp add: strictify-conv-if )

done

show cast-LIFTDEFL('a discr) = liftemb oo (liftprj :: udom v — 'a discr u)

unfolding liftdefi-discr-def

apply (subst contlub-cfun-arg)

apply (rule chainl)

apply (rule defl.principal-mono)

apply (simp add: below-fin-defl-def)

apply (simp add: Abs-fin-defl-inverse
ep-pair. finite-deflation-e-d-p [OF 1]
approz-chain. finite-deflation-approx [OF discr-approz])

apply (intro monofun-cfun below-refl)

apply (rule chainFE)

apply (rule chain-discr-approz)

apply (subst cast-defl-principal)

apply (simp add: Abs-fin-defl-inverse
ep-pair.finite-deflation-e-d-p [OF 1]
approx-chain.finite-deflation-approz [OF discr-approz])

apply (simp add: lub-distribs)

done

qged

end

23.5.9 Strict sum

instantiation ssum :: (domain, domain) domain
begin

definition
emb = ssum-emb oo ssum-map-emb-emb

definition
prj = SSum-map-prj-prj 00 Ssum-prj

definition
defl (t::("a @ 'b) itself) = ssum-defl- DEFL('a)-DEFL(’b)

definition
(liftemb :: ('a & 'b) v — udom u) = u-map-emb

definition
(liftpry :: udom v — ('a ® 'b) u) = u-map-prj
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definition
liftdefl (t::("a @ 'b) itself) = liftdefl-of-DEFL('a & 'b)

instance proof
show ep-pair emb (prj :: udom — 'a @ 'b)
unfolding emb-ssum-def prj-ssum-def
by (intro ep-pair-comp ep-pair-ssum ep-pair-ssum-map ep-pair-emb-prj)
show cast-DEFL('a & 'b) = emb oo (prj :: udom — 'a & 'b)
unfolding emb-ssum-def prj-ssum-def defi-ssum-def cast-ssum-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff ssum-map-map)
qed (fact liftemb-ssum-def liftprj-ssum-def liftdefl-ssum-def )+

end

lemma DEFL-ssum:
DEFL('a::domain & 'b::domain) = ssum-defl- DEFL('a)-DEFL('b)
by (rule defl-ssum-def)

23.5.10 Lifted HOL type

instantiation lift :: (countable) domain
begin

definition
emb = emb oo (A z. Rep-lift )

definition
prj = (A y. Abs-lift y) oo prj

definition
defl (t::'a lift itself) = DEFL('a discr u)

definition
(liftembd :: 'a lift w — udom u) = u-map-emb

definition
(liftpry :: udom u — 'a lift u) = u-map-prj

definition
liftdefl (t::'a lift itself) = liftdefl-of - DEFL('a lift)

instance proof
note [simp] = cont-Rep-lift cont-Abs-lift Rep-lift-inverse Abs-lift-inverse
have ep-pair (A(z::'a lift). Rep-lift x) (A y. Abs-lift y)
by (simp add: ep-pair-def)
thus ep-pair emb (prj :: udom — 'a lift)
unfolding emb-lift-def prj-lift-def
using ep-pair-emb-prj by (rule ep-pair-comp)
show cast-DEFL('a lift) = emb oo (prj :: udom — 'a lift)
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unfolding emb-lift-def prj-lift-def defl-lift-def cast-DEFL
by (simp add: cfcompl)
qed (fact liftemb-lift-def liftpri-lift-def liftdefl-lift-def )+

end

end

24 The unit domain

theory One
imports Lift
begin

type-synonym one = unit lift

translations
(type) one ~— (type) unit lift

definition ONF :: one
where ONE = Def ()

Exhaustion and Elimination for type one

lemma Ezh-one: t = L V t = ONE
by (induct t) (simp-all add: ONE-def)

lemma oneFE [case-names bottom ONE|: [p= 1 = Q; p= ONE = Q] = @
by (induct p) (simp-all add: ONE-def)

lemma one-induct [case-names bottom ONE]: P L =— P ONE = Pz
by (cases x rule: oneE) simp-all

lemma dist-below-one [simp]: ONE [Z L
by (simp add: ONE-def)

lemma below-ONE [simp]: ¢ T ONE
by (induct z rule: one-induct) simp-all

lemma ONE-below-iff [simp]: ONE C z +— © = ONE
by (induct x rule: one-induct) simp-all

lemma ONE-defined [simp]: ONE # 1
by (simp add: ONE-def)

lemma one-neq-iffs [simp]:
x# ONE +— z = 1
ONE #z+—z=1
x# L +— = ONE
1l #x+— 2= ONE
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by (induct z rule: one-induct) simp-all

lemma compact-ONE: compact ONE
by (rule compact-chfin)

Case analysis function for type one

definition one-case :: 'a::pcpo — one — 'a
where one-case = (A a z. seq-z-a)

translations
case x of XCONST ONE = t = CONST one-case-t-x
case  of XCONST ONE :: 'a = t — CONST one-case-t-x
A (XCONST ONE). t = CONST one-case-t

lemma one-casel [simp]: (case L of ONE = t) = L
by (simp add: one-case-def)

lemma one-case2 [simpl: (case ONE of ONE = t) =t
by (simp add: one-case-def)

lemma one-case3 [simp]: (case x of ONE = ONE) = z
by (induct z rule: one-induct) simp-all

end

theory Fizrec

imports Cprod Sprod Ssum Up One Tr Cfun
keywords fizrec :: thy-defn

begin

25 Fixed point operator and admissibility

25.1 Iteration

primrec iterate :: nat = (‘a — 'a) = (‘a — 'a)
where

iterate 0 = (A F z. x)

| iterate (Suc n) = (A F z. F-(iterate n-F-z))

Derive inductive properties of iterate from primitive recursion

lemma iterate-0 [simp]: iterate 0-F-x = x
by simp

lemma iterate-Suc [simp]: iterate (Suc n)-F-x = F-(iterate n-F-x)
by simp

declare iterate.simps [simp del]
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lemma iterate-Suc2: iterate (Suc n)-F-x = iterate n-F-(F-x)
by (induct n) simp-all

lemma iterate-iterate: iterate m-F-(iterate n-F-x) = iterate (m + n)-F-z
by (induct m) simp-all

The sequence of function iterations is a chain.

lemma chain-iterate [simpl: chain (\i. iterate i-F-1)
by (rule chainl, unfold iterate-Suc2, rule monofun-cfun-arg, rule minimal)

25.2 Least fixed point operator

definition fiz :: (‘a::pcpo — 'a) = 'a
where fix = (A F. | |i. iterate i-F- L)

Binder syntax for fiz

abbreviation fiz-syn :: (‘a:pepo = ‘a) = ‘a (binder «u » 10)
where fiz-syn (A\z. f z) = fiz-(A 2. f z)

notation (ASCII)
fiz-syn (binder <FIX » 10)

Properties of fix

direct connection between fix and iteration

lemma fiz-def2: fiz-F = (| |i. iterate i-F-1)
by (simp add: fiz-def)

lemma iterate-below-fix: iterate n-f-L T fix-f
unfolding fiz-def2
using chain-iterate by (rule is-ub-thelub)

Kleene’s fixed point theorems for continuous functions in pointed omega
cpo’s
lemma fiz-eq: fix-F = F-(fiz-F)

apply (simp add: fiz-def2)

apply (subst lub-range-shift [of - 1, symmetric])

apply (rule chain-iterate)

apply (subst contlub-cfun-arg)

apply (rule chain-iterate)

apply simp

done

lemma fiz-least-below: F-x C v = fiz-F C x
apply (simp add: fiz-def2)
apply (rule lub-below)
apply (rule chain-iterate)
apply (induct-tac )
apply simp
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apply simp

apply (erule rev-below-trans)
apply (erule monofun-cfun-arg)
done

lemma fiz-least: F'o = ¢ — fis-F C x
by (rule fiz-least-below) simp

lemma fiz-eql:
assumes fized: F-x = x
and least: Nz. F-z =2 =z C 2
shows fix-F' = x
apply (rule below-antisym)
apply (rule fiz-least [OF fized])
apply (rule least [OF fiz-eq [symmetric]])
done

lemma fiz-eq2: f = fix-F — f = F-f
by (simp add: fiz-eq [symmetric])

lemma fiz-eq3: f = fir-F = f-x = F-fx
by (erule fix-eq2 [THEN cfun-fun-cong])

lemma fiz-eq): f = fix: FF = f = F-f
by (erule ssubst) (rule fiz-eq)

lemma fiz-eq5: f = fir-F = f-x = F-fx
by (erule fix-eq) [THEN cfun-fun-cong])

strictness of fix

lemma fiz-bottom-iff: fix- ¥ = L +— F-1 = 1
apply (rule iffI)
apply (erule subst)
apply (rule fiz-eq [symmetric])
apply (erule fiz-least [THEN bottomlI])
done

lemma fiz-strict: F-1 = 1| = fiz-F = L
by (simp add: fiz-bottom-iff)

lemma fiz-defined: F-1 # | = fix-F # L

by (simp add: fix-bottom-iff)
fix applied to identity and constant functions
lemma fiz-id: (p z. z) = L

by (simp add: fiz-strict)

lemma fiz-const: (u x. ¢) = ¢
by (subst fiz-eq) simp
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25.3 Fixed point induction

lemma fiz-ind: adm P —= P | — (A\z. P2z = P (F-z)) = P (fiz-F)
unfolding fiz-def2
apply (erule admD)
apply (rule chain-iterate)
apply (rule nat-induct, simp-all)
done

lemma cont-fiz-ind: cont F — adm P — P L — (Az. Pz — P (F2)) =
P (fiz-(Abs-cfun F))
by (simp add: fix-ind)

lemma def-fiz-ind: [f = fiz-F; adm P; P L; Ao. Px = P (F-2)] = P f
by (simp add: fiz-ind)

lemma fiz-ind2:
assumes adm: adm P
assumes 0: P | and 1: P (F-1)
assumes step: A\z. [P z; P (F-z)] = P (F-(F-z))
shows P (fiz-F)
unfolding fiz-def2
apply (rule admD [OF adm chain-iterate])
apply (rule nat-less-induct)
apply (case-tac n)
apply (simp add: 0)
apply (case-tac nat)
apply (simp add: 1)
apply (frule-tac z=nat in spec)
apply (simp add: step)
done

lemma parallel-fiz-ind:
assumes adm: adm (Az. P (fst ) (snd z))
assumes base: P L |
assumes step: Az y. Pxy = P (F-z) (G-y)
shows P (fiz-F) (fiz-G)
proof —
from adm have adm’: adm (case-prod P)
unfolding split-def .
have P (iterate i-F-1) (iterate i-G-1) for
by (induct ©) (simp add: base, simp add: step)
then have Ai. case-prod P (iterate i-F- L, iterate i-G-1)
by simp
then have case-prod P (| ]i. (iterate i-F-L, iterate i-G-1))
by — (rule admD [OF adm’), simp, assumption)
then have case-prod P (| |i. iterate i-F-L, | |i. iterate i-G-1)
by (simp add: lub-Pair)
then have P (| |i. iterate i-F-L1) (|]i. iterate i-G-L1)
by simp
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then show P (fiz-F) (fiz-G)
by (simp add: fix-def2)
qed

lemma cont-parallel-fiz-ind:
assumes cont F' and cont G
assumes adm (Az. P (fst z) (snd x))
assumes P | |
assumes Az y. Pzy = P (Fz) (Gy)
shows P (fiz-(Abs-cfun F)) (fix-(Abs-cfun G))
by (rule parallel-fix-ind) (simp-all add: assms)

25.4 Fixed-points on product types

Bekic’s Theorem: Simultaneous fixed points over pairs can be written in
terms of separate fixed points.

lemma fiz-cprod:
fixes F :: 'a::pcpo x 'bipecpo — 'a x b
shows
fix-F =
(1 z. fst (F-(z, p y. snd (F(z, y)))),
oy snd (F-(p o fst (F-(z, py. snd (F-(z, y)))), y)))
(is fix-F = (%z, ?y))
proof (rule fiz-eql)
have «: fst (F-(%z, ?y)) = %z
by (rule trans [symmetric, OF fiz-eq|, simp)
have snd (F-(%z, ?y)) = %y
by (rule trans [symmetric, OF fiz-eq], simp)
with * show F-(%z, %y) = (%z, %y)
by (simp add: prod-eq-iff)
next
fix z
assume F-z: F-z = 2
obtain z y where z: z = (z, y) by (rule prod.ezhaust)
from F-z z have F-z: fst (F-(z, y)) = = by simp
from F-z z have F-y: snd (F-(z, y)) = y by simp
let 2y1 = py. snd (F-(z, y))
have 7y1 C y
by (rule fiz-least) (simp add: F-y)
then have fst (F-(z, ?y1)) C fst (F-(z, y))
by (simp add: fst-monofun monofun-cfun)
with F-z have fst (F-(z, ?y1)) C x
by simp
then have x: %2 C 2
by (simp add: fiz-least-below)
then have snd (F-(%z, y)) C snd (F-(z, y))
by (simp add: snd-monofun monofun-cfun)
with F-y have snd (F-(%z, y)) C y
by simp
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then have 2y C y
by (simp add: fiz-least-below)
with z x show (%z, %y) C 2
by simp
qed

26 Package for defining recursive functions in HOLCF

26.1 Pattern-match monad

pcpodef ‘a match = UNIV::(one ++ 'a u) set
by simp-all

definition
fail :: 'a match where
fail = Abs-match (sinl-ONE)

definition
succeed 1 'a — 'a match where
succeed = (A x. Abs-match (sinr-(up-x)))

lemma matchE [case-names bottom fail succeed, cases type: match):
[p=1L= @;p=fail = Q; \z. p = succeed-x = Q] = @

unfolding fail-def succeed-def

apply (cases p, rename-tac r)

apply (rule-tac p=r in ssumkE, simp add: Abs-match-strict)

apply (rule-tac p=z in oneE, simp, simp)

apply (rule-tac p=y in upE, simp, simp add: cont-Abs-match)

done

lemma succeed-defined [simp]: succeed-x # L
by (simp add: succeed-def cont-Abs-match Abs-match-bottom-iff)

lemma fail-defined [simpl: fail # L
by (simp add: fail-def Abs-match-bottom-iff)

lemma succeed-eq [simp]: (succeed-z = succeed-y) = (x = y)
by (simp add: succeed-def cont-Abs-match Abs-match-inject)

lemma succeed-neg-fail [simp):
succeed-x # fail fail # succeed-x
by (simp-all add: succeed-def fail-def cont-Abs-match Abs-match-inject)

26.1.1 Run operator

definition
run :: 'a match — 'a::pcpo where
run = (A m. sscase- L-(fup-ID)-(Rep-match m))

rewrite rules for run
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lemma run-strict [simpl: run-L = L
unfolding run-def
by (simp add: cont-Rep-match Rep-match-strict)

lemma run-fail [simpl]: run-fail = L
unfolding run-def fail-def
by (simp add: cont-Rep-match Abs-match-inverse)

lemma run-succeed [simpl: run-(succeed-z) = x
unfolding run-def succeed-def
by (simp add: cont-Rep-match cont-Abs-match Abs-match-inverse)

26.1.2 Monad plus operator

definition
mplus :: 'a match — 'a match — 'a match where
mplus = (A m1 m2. sscase-(A -. m2)-(A -. m1)-(Rep-match m1))

abbreviation
mplus-syn :: ['a match, 'a match] = 'a match (infixr <+++> 65) where
ml +++ m2 == mplus-m1-m2

rewrite rules for mplus

lemma mplus-strict [simp]: L +++ m = L
unfolding mplus-def
by (simp add: cont-Rep-match Rep-match-strict)

lemma mplus-fail [simpl: fail +++ m = m
unfolding mplus-def fail-def
by (simp add: cont-Rep-match Abs-match-inverse)

lemma mplus-succeed [simp): succeed-z +++ m = succeed-x
unfolding mplus-def succeed-def
by (simp add: cont-Rep-match cont-Abs-match Abs-match-inverse)

lemma mplus-fail2 [simp]: m +++ fail = m
by (cases m, simp-all)

lemma mplus-assoc: (z +++ y) +++ 2z = z +++ (y +++ 2)
by (cases x, simp-all)

26.2 Match functions for built-in types

definition

match-bottom :: 'a::pcpo — 'c match — 'c match
where

match-bottom = (A x k. seq-x-fail)

definition
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match-Pair - 'a X 'b — ('la = 'b — ‘¢ match) — "¢ match
where
match-Pair = (A z k. csplit-k-x)

definition

match-spair :: 'a:pepo ® 'bipepo — (‘a — 'b — ‘¢ match) — 'c:pepo match
where

match-spair = (A z k. ssplit-k-x)

definition

match-sinl :: 'a::pepo @ 'bipepo — (‘a — 'e:ipepo match) — ‘¢ match
where

match-sinl = (A z k. sscase-k-(A b. fail)-x)

definition

match-sinr 2 'a:pepo & 'bipepo — (b — 'ci:pepo match) — ¢ match
where

match-sinr = (A x k. sscase-(A a. fail)-k-x)

definition

match-up :: 'a u — ('a — 'ciipepo match) — ¢ match
where

match-up = (A z k. fup-k-x)

definition

match-ONE :: one — 'c::pcpo match — ‘¢ match
where

match-ONE = (A ONE k. k)

definition

match-TT :: tr — 'c::pcpo match — 'c match
where

match-TT = (A z k. If z then k else fail)

definition

match-FF :: tr — 'c::pcpo match — 'c match
where

match-FF = (A z k. If z then fail else k)

lemma match-bottom-simps [simp]:
match-bottom-z-k = (if = L then L else fail)
by (simp add: match-bottom-def)

lemma match-Pair-simps [simpl:
match-Pair-(z, y)-k = k-x-y
by (simp-all add: match-Pair-def)

lemma match-spair-simps [simpl:
[x # L; y # L] = match-spair-(:z, y:)-k = k-z-y
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match-spair-L-k = L
by (simp-all add: match-spair-def)

lemma match-sinl-simps [simp]:
x # 1 = match-sinl-(sinl-x)-k = k-x
y # L = match-sinl-(sinr-y)-k = fail
match-sinl- L-k = 1

by (simp-all add: match-sinl-def)

lemma match-sinr-simps [simpl:
x # 1 = match-sinr-(sinl-x)-k = fail
y # L = match-sinr-(sinr-y)-k = k-y
match-sinr- L-k = 1

by (simp-all add: match-sinr-def)

lemma match-up-simps [simp]:
match-up-(up-z)-k = k-x
match-up- L-k = 1

by (simp-all add: match-up-def)

lemma match-ONE-simps [simp]:
match-ONE-ONE-k = k
match-ONE- 1L -k = |

by (simp-all add: match-ONE-def)

lemma match-TT-simps [simp]:
match-TT-TT-k = k
match-TT-FF-k = fail
match-TT-1L-k = 1

by (simp-all add: match-TT-def)

lemma match-FF-simps [simp]:
match-FF-FF-k = k
match-FF-TT-k = fail
match-FF-1-k = |

by (simp-all add: match-FF-def)

26.3 Mutual recursion

The following rules are used to prove unfolding theorems from fixed-point
definitions of mutually recursive functions.

lemma Pair-equall: [z = fst p; y = snd p] = (z, y) = p
by simp
lemma Pair-eqD1: (z, y) = (z/, y') = z =2’
by simp
lemma Pair-eqD2: (z, y) = (2, y') = y =1y’
by simp



THEORY “Domain” 154

lemma def-cont-fiz-eq:
[f = fiz-(Abs-cfun F); cont F] = f = F f
by (simp, subst fix-eq, simp)

lemma def-cont-fiz-ind:
If = fix-(Abs-cfun F); cont F; adm P; P L; NAe. Pz — P (Fz)] = P f
by (simp add: fiz-ind)

lemma for proving rewrite rules

lemma ssubst-lhs: [t =s; Ps= Q] = Pt=Q
by simp

26.4 Initializing the fixrec package

ML-file < Tools/holcf-library. ML»
ML-file < Tools/ fixrec. ML»

method-setup fixrec-simp = «
Scan.succeed (SIMPLE-METHOD' o Fizrec.fixrec-simp-tac)
y pattern prover for fizrec constants

setup <«

Fizrec.add-matchers

[ (const-name <up), const-name <match-up),

const-name <sinly, const-name <match-sinly),
const-name <sinry, const-name <match-sinry),
const-name <spair), const-name <match-spair»),
const-name < Pair), const-name <match-Pair»),
const-name <ONE>, const-name (match-ONE»),
const-name<TT», const-name ¢match-TT)),
const-name <FF», const-name <match-FF)),
const-name <bottom», const-name (match-bottom)) |

(
(
(
(
(
(
(
(

)
hide-const (open) succeed fail run

end

27 Domain package

theory Domain
imports Representable Map-Functions Fizrec
keywords
lazy unsafe and
domaindef domain :: thy-defn and
domain-isomorphism :: thy-decl
begin
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27.1 Continuous isomorphisms

A locale for continuous isomorphisms

locale iso =
fixes abs :: 'a::pcpo — 'b::pcpo
fixes rep :: 'b — 'a
assumes abs-iso [simp]: rep-(abs-x) = x
assumes rep-iso [simp|: abs-(rep-y) = y
begin

lemma swap: iso rep abs
by (rule iso.intro [OF rep-iso abs-iso])

lemma abs-below: (abs-z C abs-y) = (z C y)
proof
assume abs-x T abs-y
then have rep-(abs-z) C rep-(abs-y) by (rule monofun-cfun-arg)
then show z C y by simp
next
assume z C y
then show abs-z C abs-y by (rule monofun-cfun-arg)
qed

lemma rep-below: (rep-z C rep-y) = (x C y)
by (rule iso.abs-below [OF swap))

lemma abs-eq: (abs-x = abs-y) = (z = y)
by (simp add: po-eq-conv abs-below)

lemma rep-eq: (rep-x = rep-y) = (z = y)
by (rule iso.abs-eq [OF swap])

lemma abs-strict: abs- L = L
proof —
have | C rep-L ..
then have abs- L C abs-(rep-L) by (rule monofun-cfun-arg)
then have abs- L T | by simp
then show ?thesis by (rule bottoml)
qed

lemma rep-strict: rep- L = 1
by (rule iso.abs-strict [OF swap))

lemma abs-defin’: absx = L = z = L
proof —

have z = rep-(abs-z) by simp

also assume abs-x = L

also note rep-strict

finally show z = | .
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qed

lemma rep-defin”: repz = L = 2z = 1

by (rule iso.abs-defin’ [OF swap])

lemma abs-defined: z # 1 = abs-z # L

by (erule contrapos-nn, erule abs-defin’)

lemma rep-defined: z # 1 = rep-z # L
by (rule iso.abs-defined [OF iso.swap)) (rule iso-azioms)

lemma abs-bottom-iff: (abs-x = L) = (z = 1)
by (auto elim: abs-defin’ intro: abs-strict)

lemma rep-bottom-iff: (rep-x = L) =

by (rule iso.abs-bottom-iff [OF iso.swap]) (rule iso-axioms)

lemma casedist-rule: repx = L VP =—z=1VP
by (simp add: rep-bottom-iff)

lemma compact-abs-rev: compact (abs-x) = compact x
proof (unfold compact-def)

assume adm (Ay. abs-z L y)

with cont-Rep-cfun?

have adm (\y. abs-z L abs-y) by (rule adm-subst)
then show adm (\y. z [Z y) using abs-below by simp
qged

lemma compact-rep-rev: compact (rep-r) = compact x
by (rule iso.compact-abs-rev [OF iso.swap]) (rule iso-axioms)

lemma compact-abs: compact t => compact (abs-x)
by (rule compact-rep-rev) simp

lemma compact-rep: compact © = compact (rep-x)
by (rule iso.compact-abs [OF iso.swap]) (rule iso-axioms)

lemma iso-swap: (z = abs-y) = (rep-xz = y)
proof

assume zr = abs-y
then have rep-x

then show rep-z =
next

rep-(abs-y) by simp
y by simp
assume rep-x = y

then have abs-(rep-z) = abs-y by simp
then show x = abs-y by simp
qed

end
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27.2 Proofs about take functions

This section contains lemmas that are used in a module that supports the
domain isomorphism package; the module contains proofs related to take
functions and the finiteness predicate.

lemma deflation-abs-rep:
fixes abs and rep and d
assumes abs-iso: \z. rep-(abs-z) = x
assumes rep-iso: N\y. abs-(rep-y) = y
shows deflation d = deflation (abs oo d oo rep)
by (rule ep-pair.deflation-e-d-p) (simp add: ep-pair.intro assms)

lemma deflation-chain-min:
assumes chain: chain d
assumes defl: A\n. deflation (d n)
shows d m-(d n-z) = d (min m n)-x
proof (rule linorder-le-cases)
assume m < n
with chain have d m C d n by (rule chain-mono)
then have d m-(d n-x) = d m-x
by (rule deflation-below-comp1 [OF defl defl])
moreover from (m < n» have min m n = m by simp
ultimately show ?thesis by simp
next
assume n < m
with chain have d n C d m by (rule chain-mono)
then have d m-(d n-x) = d n-x
by (rule deflation-below-comp2 [OF defl defl])
moreover from (n < my have min m n = n by simp
ultimately show %thesis by simp
qed

lemma lub-ID-take-lemma:
assumes chain t and (| |n. t n) = ID
assumes An. t n-z = t n-y shows z = y
proof —
have (| |n. t nz) = (| n. t n-y)
using assms(3) by simp
then have (| [n. t n)-z = (| |n. t n)y
using assms(1) by (simp add: lub-distribs)
then show z =y
using assms(2) by simp
qed

lemma lub-ID-reach:
assumes chain t and (| |n. t n) = ID
shows (| [n. t n-z) = x

using assms by (simp add: lub-distribs)
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lemma lub-ID-take-induct:
assumes chain t and (| |n. t n) = ID
assumes adm P and An. P (¢t n-z) shows P z
proof —
from <chain t> have chain (An. t n-x) by simp
from <adm P> this <An. P (t n-z)> have P (| |n. t n-z) by (rule admD)
with <chain t» <(| | n. t n) = ID> show P z by (simp add: lub-distribs)
qed

27.3 Finiteness

Let a “decisive” function be a deflation that maps every input to either itself
or bottom. Then if a domain’s take functions are all decisive, then all values
in the domain are finite.

definition

decisive :: ('az:pcpo — 'a) = bool
where

decisive d +— (Vz. d-z =z V dz = 1)

lemma decisivel: (Nz. d-x =z V d-x = L) = decisive d
unfolding decisive-def by simp

lemma decisive-cases:
assumes decisive d obtains d-x =z | d-z = L
using assms unfolding decisive-def by auto

lemma decisive-bottom: decisive L
unfolding decisive-def by simp

lemma decisive-1D: decisive 1D
unfolding decisive-def by simp

lemma decisive-ssum-map:

assumes f: decisive f

assumes ¢: decisive g

shows decisive (ssum-map-f-g)

apply (rule decisivel)

subgoal for s
apply (cases s, simp-all)
apply (rule-tac x=x in decisive-cases [OF f], simp-all)
apply (rule-tac =y in decisive-cases [OF g|, simp-all)
done

done

lemma decisive-sprod-map:
assumes f: decisive f
assumes g: decisive g
shows decisive (sprod-map-f-g)
apply (rule decisivel)
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subgoal for s
apply (cases s, simp)
subgoal for z y
apply (rule decisive-cases [OF f, where x = z], simp-all)
apply (rule decisive-cases [OF g, where z = y|, simp-all)
done
done
done

lemma decisive-abs-rep:

fixes abs rep

assumes iso: iso abs rep

assumes d: decisive d

shows decisive (abs oo d oo rep)

apply (rule decisivel)

subgoal for s
apply (rule decisive-cases [OF d, where z=rep-s])
apply (simp add: iso.rep-iso [OF iso])
apply (simp add: iso.abs-strict [OF iso])
done

done

lemma [ub-ID-finite:
assumes chain: chain d
assumes lub: (| |n. d n) = ID
assumes decisive: A\n. decisive (d n)
shows In. dnz =2
proof —
have 1: chain (An. d n-z) using chain by simp
have 2: (| |n. d n-z) = x using chain lub by (rule lub-ID-reach)
have Vn.dnz=zVdnz=_1
using decisive unfolding decisive-def by simp
hence range (An. d n-z) C {z, 1}
by auto
hence finite (range (An. d n-z))
by (rule finite-subset, simp)
with 1 have finite-chain (An. d n-x)
by (rule finite-range-imp-finch)
then have In. (| |n. d n-z) = dnx
unfolding finite-chain-def by (auto simp add: mazinch-is-thelub)
with 2 show 3n. d n-z = z by (auto elim: sym)
qed

lemma [ub-ID-finite-take-induct:
assumes chain d and (| |n. d n) = ID and An. decisive (d n)
shows (An. P (d nz)) = Pz

using lub-ID-finite [OF assms] by metis

159
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27.4 Proofs about constructor functions

Lemmas for proving nchotomy rule:

lemma ex-one-bottom-iff:
(3z. Pz Nz # 1)=P ONE
by simp

lemma ex-up-bottom-iff:
FBz. Pz ANz #1)= 3z P (upx))
by (safe, case-tac x, auto)

lemma ex-sprod-bottom-iff:

(Fy. PyAy#1)=

Fzy. (P (z,y) AN # L) Ay # 1)
by (safe, case-tac y, auto)

lemma ex-sprod-up-bottom-iff:
(Fy. PyAy#1)=
(Fzy. P (upz, y:) Ny # 1)
by (safe, case-tac y, simp, case-tac x, auto)

lemma ex-ssum-bottom-iff:
Fz. Pz ANz #1)=

(Fz. P (sinlz) Nz # L)V
(Fz. P (sinr-z) Az # 1))

by (safe, case-tac x, auto)

lemma exh-start: p= LV 3z.p=xz Az # 1)
by auto

lemmas ex-bottom-iffs =
ex-ssum-bottom-iff
ex-sprod-up-bottom-iff
ez-sprod-bottom-iff
ex-up-bottom-iff
ex-one-bottom-iff

Rules for turning nchotomy into exhaust:
lemma ezh-casedist0: [R; R = P] = P
by auto

lemma exh-casedist!: (PV Q@ = R) = S) = ([P = R; Q = R] = 9)
by rule auto

lemma ezh-casedist?2: (3z. Pz = Q) = (A\z. Pz = Q)
by rule auto

lemma exh-casedist3: (P N Q@ = R) = (P = @ = R)
by rule auto
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lemmas ezh-casedists = exh-casedist]l exh-casedist? exh-casedist3

Rules for proving constructor properties

lemmas con-strict-rules =
sinl-strict sinr-strict spair-strictl spair-strict2

lemmas con-bottom-iff-rules =

sinl-bottom-iff sinr-bottom-iff spair-bottom-iff up-defined ONE-defined

lemmas con-below-iff-rules =

sinl-below sinr-below sinl-below-sinr sinr-below-sinl con-bottom-iff-rules

lemmas con-eq-iff-rules =
sinl-eq sinr-eq sinl-eq-sinr sinr-eq-sinl con-bottom-iff-rules

lemmas sel-strict-rules =
cfcomp?2 sscasel sfst-strict ssnd-strict fupl

lemma sel-app-extra-rules:
sscase-ID- 1 -(sinr-z) = L
sscase-ID- 1 -(sinl-z) = x
sscase- L-ID-(sinl-z) = L
sscase: L -ID- (smr x) =
Jup-ID-(up-z) =

by (cases x = L, simp, simp)+

lemmas sel-app-rules =
sel-strict-rules sel-app-extra-rules
ssnd-spair sfst-spair up-defined spair-defined

lemmas sel-bottom-iff-rules =
cfcomp?2 sfst-bottom-iff ssnd-bottom-iff

lemmas take-con-rules =

ssum-map-sinl’ ssum-map-sinr’ sprod-map-spair’ u-map-up
deflation-strict deflation-ID ID1 cfcomp2

27.5 ML setup

named-theorems domain-deflation theorems like deflation a ==

and domain-map-ID theorems like foo-map$ID = ID

ML-file < Tools/ Domain/domain-take-proofs. ML»
ML-file ¢ Tools/cont-consts. ML)

ML-file «Tools/cont-proc. ML»

simproc-setup cont (cont f) = <K ContProc.cont-procs

ML-file < Tools/ Domain/domain-constructors. ML»

> deflation (foo-map$a)
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ML-file < Tools/ Domain/domain-induction. ML)

27.6 Representations of types

lemma emb-prj: emb-((prj-x)::'a::domain) = cast-DEFL('a)-x
by (simp add: cast-DEFL)

lemma emb-prj-emb:

fixes z :: ‘a::domain

assumes DEFL(’a) C DEFL(’D)

shows emb-(prj-(emb-x) :: 'b::domain) = emb-x
unfolding emb-prj
apply (rule cast.belowD)
apply (rule monofun-cfun-arg [OF assms])
apply (simp add: cast-DEFL)
done

lemma prj-emb-prj:
assumes DEFL('a::domain) C DEFL(’b::domain)
shows prj-(emb-(prj-z :: 'b)) = (prj-z :: 'a)
apply (rule emb-eq-iff |[THEN iffD1])
apply (simp only: emb-prj)
apply (rule deflation-below-comp1)
apply (rule deflation-cast)
apply (rule deflation-cast)
apply (rule monofun-cfun-arg [OF assms])
done

Isomorphism lemmas used internally by the domain package:

lemma domain-abs-iso:
fixes abs and rep
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: '‘a — 'b) = prj oo emb
assumes rep-def: (rep :: 'b — ‘a) = prj oo emb
shows rep-(abs-z) = z

unfolding abs-def rep-def

by (simp add: emb-prj-emb DEFL)

lemma domain-rep-iso:
fixes abs and rep
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: 'a — 'b) = prj oo emb
assumes rep-def: (rep :: 'b — 'a) = prj oo emb
shows abs-(rep-z) = z

unfolding abs-def rep-def

by (simp add: emb-prj-emb DEFL)

27.7 Deflations as sets
definition defl-set :: 'a::bifinite defl = 'a set
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where defl-set A = {z. cast-A-x = x}

lemma adm-defi-set: adm (A\z. © € defl-set A)
unfolding defi-set-def by simp

lemma defl-set-bottom: L € defl-set A
unfolding defi-set-def by simp

lemma defl-set-cast [simp]: cast-A-z € defl-set A
unfolding defi-set-def by simp

lemma defl-set-subset-iff: defl-set A C defl-set B<+— AC B
apply (simp add: defl-set-def subset-eq cast-below-cast [symmetric))
apply (auto simp add: cast.belowl cast.belowD)

done

27.8 Proving a subtype is representable

Temporarily relax type constraints.

setup <«
fold Sign.add-const-constraint
[ (const-name «defly, SOME typ <'a::pcpo itself = udom defly)
, (const-name <emby, SOME typ <'a::pcpo — udomy)
, (const-name <prj>, SOME typ <udom — 'a::pcpoy)
, (const-name liftdefly, SOME typ <'a::pcpo itself = udom u defly)
, (const-name (liftemby, SOME typ <'a::pcpo u — udom u»)
, (const-name liftprj>, SOME typ <udom u — 'a::pcpo w)) |
)

lemma typedef-domain-class:
fixes Rep :: 'a::pcpo = udom
fixes Abs :: udom = 'a::pcpo
fixes t :: udom defi
assumes type: type-definition Rep Abs (defl-set t)
assumes below: (C) = Az y. Rep z C Rep y
assumes emb: emb = (A z. Rep z)
assumes prj: prj = (A z. Abs (cast-t-z))
assumes defl: defl = (\ a::'a itself. t)
assumes liftemb: (liftemb :: 'a v — udom u) = u-map-emb
assumes liftpry: (liftprj :: udom v — 'a u) = u-map-prj
assumes liftdefl: (liftdefl :: 'a itself = -) = (At. liftdefl-of-DEFL('a))
shows OFCLASS('a, domain-class)
proof
have emb-beta: A\z. emb-x = Rep z
unfolding emb
apply (rule beta-cfun)
apply (rule typedef-cont-Rep [OF type below adm-defl-set cont-id))
done
have prj-beta: Ny. prj-y = Abs (cast-t-y)
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unfolding prj
apply (rule beta-cfun)
apply (rule typedef-cont-Abs [OF type below adm-defl-set])
apply simp-all
done
have prj-emb: Az::'a. prj-(emb-x) = z
using type-definition.Rep [OF type]
unfolding prj-beta emb-beta defl-set-def
by (simp add: type-definition. Rep-inverse [OF type])
have emb-prj: A\y. emb-(prj-y :: 'a) = cast-t-y
unfolding prj-beta emb-beta
by (simp add: type-definition. Abs-inverse [OF typel)
show ep-pair (emb :: '‘a — udom) prj
apply standard
apply (simp add: prj-emb)
apply (simp add: emb-prj cast.below)
done
show cast-DEFL('a) = emb oo (prj :: udom — 'a)
by (rule cfun-eql, simp add: defl emb-pry)
qed (simp-all only: liftemb liftprj liftdefl)

lemma typedef-DEFL:
assumes defl = (Aa::'a::pepo itself. t)
shows DEFL('a::pcpo) = t
unfolding assms ..

Restore original typing constraints.

setup <«
fold Sign.add-const-constraint
[(const-name «defly, SOME typ <'a::domain itself = udom defly),
(const-name <emby, SOME typ <'a::domain — udomy),
(const-name <prjy, SOME typ <udom — 'a::domain)),
(const-name «liftdefly, SOME typ <'a::predomain itself = udom u defly),
(const-name <liftemby, SOME typ 'a::predomain v — udom w)),
(const-name liftprjy, SOME typ <udom u — 'a::predomain uy))
)

ML-file «Tools/domaindef.ML»

27.9 Isomorphic deflations
definition isodefl :: (‘a::domain — 'a) = udom defl = bool
where isodefl d t «+— cast-t = emb oo d oo prj

definition isodefl’ :: ('a::predomain — 'a) = udom u defl = bool
where isodefl’ d t +— cast-t = liftemb oo u-map-d oo liftprj

lemma isodefill: (Axz. cast-t-x = emb-(d-(prj-x))) = isodefl d t
unfolding isodefl-def by (simp add: cfun-eqI)



THEORY “Domain” 165

lemma cast-isodefl: isodefl d t = cast-t = (A z. emb-(d-(prj-x)))
unfolding isodefl-def by (simp add: cfun-eql)

lemma isodefi-strict: isodefl d t = d-1 = 1
unfolding isodefi-def
by (drule cfun-fun-cong [where z=_1], simp)

lemma isodefl-imp-deflation:
fixes d :: 'a::domain — 'a
assumes isodefl d t shows deflation d

proof
note assms [unfolded isodefl-def, simp]
fix z:: 'a

show d-(d-z) = d-x
using cast.idem [of t emb-z] by simp
show d-z C z
using cast.below [of t emb-x] by simp
qed

lemma isodefl-ID-DEFL: isodefl (ID :: 'a — 'a) DEFL('a::domain)
unfolding isodefl-def by (simp add: cast-DEFL)

lemma isodefl-LIFTDEFL:
isodefl’ (ID :: 'a — 'a) LIFTDEFL('a::predomain)
unfolding isodefl’-def by (simp add: cast-liftdefl u-map-ID)

lemma isodefl-DEFL-imp-ID: isodefl (d :: ‘a — 'a) DEFL('a::domain) = d =
ID

unfolding isodefi-def

apply (simp add: cast-DEFL)

apply (simp add: cfun-eq-iff)

apply (rule alll)

apply (drule-tac z=emb-z in spec)

apply simp

done

lemma isodefi-bottom: isodefl L 1
unfolding isodefl-def by (simp add: cfun-eq-iff)

lemma adm-isodefi:
cont f = cont g = adm (Az. isodefl (f x) (g ))
unfolding isodefl-def by simp

lemma isodefl-lub:
assumes chain d and chain t
assumes Ai. isodefl (d i) (t 1)
shows isodefl (| |4. d i) (| ]7. ¢ 7)

using assms unfolding isodefi-def
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by (simp add: contlub-cfun-arg contlub-cfun-fun)

lemma isodefl-fiz:
assumes Ad t. isodefl d t = isodefl (f-d) (g-t)
shows isodefl (fix-f) (fiz-g)

unfolding fix-def2

apply (rule isodefl-lub, simp, simp)

apply (induct-tac )

apply (simp add: isodefl-bottom)

apply (simp add: assms)

done

lemma isodefl-abs-rep:
fixes abs and rep and d
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: ‘a — 'b) = prj oo emb
assumes rep-def: (rep :: 'b — 'a) = prj oo emb
shows isodefl d t = isodefl (abs oo d oo rep) t
unfolding isodefi-def
by (simp add: cfun-eq-iff assms prj-emb-prj emb-prj-emb)

lemma isodefl’-liftdefl-of : isodefl d t = isodefl’ d (liftdefl-of-t)
unfolding isodefl-def isodefl’-def
by (simp add: cast-liftdefi-of u-map-oo liftemb-eq liftprj-eq)

lemma isodefi-sfun:
isodefl d1 t1 = isodefl d2 t2 —

isodefl (sfun-map-d1-d2) (sfun-defl-t1-t2)
apply (rule isodefil)
apply (simp add: cast-sfun-defl cast-isodefl)
apply (simp add: emb-sfun-def prj-sfun-def)
apply (simp add: sfun-map-map isodefl-strict)
done

lemma isodefl-ssum:

isodefl d1 t1 = isodefl d2 t2 —

isodefl (ssum-map-d1-d2) (ssum-defl-t1-t2)

apply (rule isodefil)
apply (simp add: cast-ssum-defl cast-isodefl)
apply (simp add: emb-ssum-def prj-ssum-def)
apply (simp add: ssum-map-map isodefl-strict)
done

lemma isodefi-sprod:
isodefl d1 t1 = isodefl d2 12 —
isodefl (sprod-map-d1-d2) (sprod-defl-t1-t2)
apply (rule isodefil)
apply (simp add: cast-sprod-defl cast-isodefl)
apply (simp add: emb-sprod-def prj-sprod-def)
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apply (simp add: sprod-map-map isodefl-strict)
done

lemma isodefl-prod:
isodefl d1 t1 = isodefl d2 t2 —

isodefl (prod-map-d1-d2) (prod-defl-t1-t2)
apply (rule isodefil)
apply (simp add: cast-prod-defl cast-isodefl)
apply (simp add: emb-prod-def prj-prod-def)
apply (simp add: prod-map-map cfcompl)
done

lemma isodefl-u:
isodefl d t = isodefl (u-map-d) (u-defi-t)
apply (rule isodefil)
apply (simp add: cast-u-defl cast-isodefl)
apply (simp add: emb-u-def prj-u-def liftemb-eq liftpri-eq u-map-map)
done

lemma isodefl-u-liftdefi:
isodefl’ d t = isodefl (u-map-d) (u-liftdefi-t)
apply (rule isodefil)
apply (simp add: cast-u-liftdefl isodefl’-def)
apply (simp add: emb-u-def prj-u-def liftemb-eq liftpri-eq)
done

lemma encode-prod-u-map:
encode-prod-u-(u-map-(prod-map-f-g)-(decode-prod-u-x))
= sprod-map-(u-map-f)-(u-map-g)-x
unfolding encode-prod-u-def decode-prod-u-def
apply (case-tac x, simp, rename-tac a b)
apply (case-tac a, simp, case-tac b, simp, simp)
done

lemma isodefl-prod-u:
assumes isodefl’ d1 t1 and isodefl’ d2 t2
shows isodefl’ (prod-map-d1-d2) (prod-liftdefi-t1-t2)
using assms unfolding isodefl’-def
unfolding liftemb-prod-def liftprj-prod-def
by (simp add: cast-prod-liftdefl cfcompl encode-prod-u-map sprod-map-map)

lemma encode-cfun-map:
encode-cfun-(cfun-map-f-g-(decode-cfun-r))
= sfun-map-(u-map-f)-g-x
unfolding encode-cfun-def decode-cfun-def
apply (simp add: sfun-eq-iff cfun-map-def sfun-map-def)
apply (rule cfun-eql, rename-tac y, case-tac y, simp-all)
done
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lemma isodefi-cfun:
assumes isodefl (u-map-d1) t1 and isodefl d2 2
shows isodefl (cfun-map-d1-d2) (sfun-defl-11-12)
using isodefl-sfun [OF assms] unfolding isodefl-def
by (simp add: emb-cfun-def prj-cfun-def cfecompl encode-cfun-map)

27.10 Setting up the domain package

named-theorems domain-defl-simps theorems like DEFL('a t) = t-deflSDEFL(’a)
and domain-isodefl theorems like isodefl d t ==> isodefl (foo-map$d) (foo-defi$t)

ML-file < Tools/ Domain/domain-isomorphism.ML»
ML-file < Tools/ Domain/domain-azioms.ML»
ML-file < Tools/ Domain/domain. ML>

lemmas [domain-defl-simps] =
DEFL-cfun DEFL-sfun DEFL-ssum DEFL-sprod DEFL-prod DEFL-u
liftdefl-eq LIFTDEFL-prod u-liftdefi-liftdefi-of

lemmas [domain-map-ID] =
cfun-map-ID sfun-map-ID ssum-map-ID sprod-map-ID prod-map-ID u-map-ID

lemmas [domain-isodefl] =
isodefl-u isodefl-sfun isodefl-ssum isodefi-sprod
isodefl-cfun isodefl-prod isodefl-prod-u isodefl’-liftdefl-of
isodefi-u-liftdefl

lemmas [domain-deflation] =
deflation-cfun-map deflation-sfun-map deflation-ssum-map
deflation-sprod-map deflation-prod-map deflation-u-map

setup <«
fold Domain-Take-Proofs.add-rec-type

[(type-name (cfuny, [true, true]),
(type-name <sfuny, [true, true]),
(type-name <ssumy, [true, true]),

(type-name <sprody, [true, truel),

(type-name <prod>, [true, truel),

(type-name <uy, [true])]

>

end

28 A compact basis for powerdomains

theory Compact-Basis
imports Universal
begin
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28.1 A compact basis for powerdomains

definition pd-basis = {S::’a::bifinite compact-basis set. finite S N S # {}}

typedef ‘a::bifinite pd-basis = pd-basis :: 'a compact-basis set set
proof
show {a} € ?pd-basis for a
by (simp add: pd-basis-def)
qed

lemma finite-Rep-pd-basis [simp]: finite (Rep-pd-basis u)
using Rep-pd-basis [of u, unfolded pd-basis-def] by simp

lemma Rep-pd-basis-nonempty [simp]: Rep-pd-basis u # {}
using Rep-pd-basis [of u, unfolded pd-basis-def] by simp

The powerdomain basis type is countable.

lemma pd-basis-countable: 3 f::'a::bifinite pd-basis = nat. inj f (is Ex ¢P)
proof —
obtain ¢ :: 'a compact-basis = nat where inj g
using compact-basis.countable ..
hence image-g-eq: g *A=9g ‘B<+— A= Bfor A B
by (rule inj-image-eq-iff)
have inj (At. set-encode (g ‘ Rep-pd-basis t))
by (simp add: inj-on-def set-encode-eq image-g-eq Rep-pd-basis-inject)
thus ?thesis by (rule exl [of 7P))
qed

28.2 Unit and plus constructors

definition
PDUnit :: 'a::bifinite compact-basis = 'a pd-basis where
PDUnit = (Az. Abs-pd-basis {z})

definition
PDPlus :: 'a::bifinite pd-basis = 'a pd-basis = 'a pd-basis where
PDPlus t u = Abs-pd-basis (Rep-pd-basis t U Rep-pd-basis u)

lemma Rep-PDUnit:
Rep-pd-basis (PDUnit ©) = {z}
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unfolding PDUnit-def by (rule Abs-pd-basis-inverse) (simp add: pd-basis-def)

lemma Rep-PDPlus:
Rep-pd-basis (PDPlus u v) = Rep-pd-basis u U Rep-pd-basis v

unfolding PDPlus-def by (rule Abs-pd-basis-inverse) (simp add: pd-basis-def)

lemma PDUnit-inject [simp]: (PDUnit a = PDUnit b) = (a = b)
unfolding Rep-pd-basis-inject [symmetric] Rep-PDUnit by simp

lemma PDPlus-assoc: PDPlus (PDPlus t u) v = PDPlus t (PDPlus u v)
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unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-assoc)

lemma PDPlus-commute: PDPlus t w = PDPlus u t
unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-commute)

lemma PDPlus-absorb: PDPlus tt =t
unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-absorb)

lemma pd-basis-induct! [case-names PDUnit PDPlus:
assumes PDUnit: Na. P (PDUnit a)
assumes PDPlus: Aa t. Pt = P (PDPlus (PDUnit a) t)
shows P z
proof (induct x)
case (Abs-pd-basis y)
then have finite y and y # {} by (simp-all add: pd-basis-def)
then show Zcase
proof (induct rule: finite-ne-induct)
case (singleton z)
show Zcase by (rule PDUnit [unfolded PDUnit-def])
next
case (insert z F)
from insert(4) have P (PDPlus (PDUnit x) (Abs-pd-basis F)) by (rule PDPlus)
with insert(1,2) show ?case
by (simp add: PDUnit-def PDPlus-def Abs-pd-basis-inverse [unfolded pd-basis-def])
qed
qged

lemma pd-basis-induct [case-names PDUnit PDPlus]:
assumes PDUnit: Na. P (PDUnit a)
assumes PDPlus: At u. [P t; P u] = P (PDPlus t u)
shows P z
by (induct x rule: pd-basis-inductl) (fact PDUnit, fact PDPlus [OF PDUnit])

28.3 Fold operator

definition
fold-pd ::
("a::bifinite compact-basis = 'b::type) = ('b = 'b = 'b) = 'a pd-basis = b
where fold-pd g f t = semilattice-set.F' f (g * Rep-pd-basis t)

lemma fold-pd-PDUnit:
assumes semilattice f
shows fold-pd g f (PDUnit z) = g x
proof —
from assms interpret semilattice-set f by (rule semilattice-set.intro)
show ?thesis by (simp add: fold-pd-def Rep-PDUnit)
qed

lemma fold-pd-PDPlus:
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assumes semilattice f

shows fold-pd g f (PDPlus t u) = f (fold-pd g f t) (fold-pd g f )
proof —

from assms interpret semilattice-set f by (rule semilattice-set.intro)

show ?thesis by (simp add: image-Un fold-pd-def Rep-PDPlus union)
qed

end

29 Upper powerdomain

theory UpperPD
imports Compact-Basis
begin

29.1 Basis preorder

definition
upper-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix <<y 50) where
upper-le = (Au v. V y€ Rep-pd-basis v. 3 x€ Rep-pd-basis u.  C y)

lemma upper-le-refl [simp]: t <f ¢
unfolding upper-le-def by fast

lemma upper-le-trans: [t < u; u <f v] =t <f v
unfolding upper-le-def

apply (rule balll)

apply (drule (1) bspec, erule bezE)

apply (drule (1) bspec, erule bezE)

apply (erule rev-bexl)

apply (erule (1) below-trans)

done

interpretation upper-le: preorder upper-le
by (rule preorder.intro, rule upper-le-refl, rule upper-le-trans)

lemma upper-le-minimal [simp]: PDUnit compact-bot <t t
unfolding upper-le-def Rep-PDUnit by simp

lemma PDUnit-upper-mono: ¢ C y = PDUnit x <§ PDUnit y
unfolding upper-le-def Rep-PDUnit by simp

lemma PDPlus-upper-mono: [s <# t; v <§ v] = PDPlus s u <§ PDPlus t v
unfolding upper-le-def Rep-PDPlus by fast

lemma PDPlus-upper-le: PDPlus t uw <f t
unfolding upper-le-def Rep-PDPlus by fast

lemma upper-le-PD Unit-PD Unit-iff [simp]:
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(PDUnit a < PDUnit b) = (a C b)
unfolding upper-le-def Rep-PDUnit by fast

lemma upper-le-PDPlus-PD Unit-iff :
(PDPlus t w <t PDUnit a) = (t <§ PDUnit a V u <f PDUnit a)
unfolding upper-le-def Rep-PDPlus Rep-PDUnit by fast

lemma upper-le-PDPlus-iff: (t <t PDPlus uv) = (t <t u At <§ v)
unfolding upper-le-def Rep-PDPlus by fast

lemma upper-le-induct [induct set: upper-le]:
assumes le: t <f u
assumes I: Aa b. a T b = P (PDUnit a) (PDUnit b)
assumes 2: At v a. Pt (PDUnit a) = P (PDPlus t u) (PDUnit a)
assumes 3: At uwv. [Ptu; Ptv] = Pt (PDPlus u v)
shows Pt u
using le
proof (induct u arbitrary: t rule: pd-basis-induct)
case (PDUnit a)
then show ?case
proof (induct t rule: pd-basis-induct)
case PDUnit
then show ?case by (simp add: 1)
next
case (PDPlus t u)
from PDPlus(3) consider (t) ¢t <t PDUnit a | (u) u <§ PDUnit a
by (auto simp: upper-le-PDPlus-PD Unit-iff)
then show ?case
proof cases
case t
then have P ¢ (PDUnit a) by (rule PDPlus(1))
then show ?thesis by (rule 2)
next
case u
then have P u (PDUnit a) by (rule PDPlus(2))
then have P (PDPlus u t) (PDUnit a) by (rule 2)
then show ?thesis by (simp only: PDPlus-commute)
qed
qed
next
case (PDPlus t t’ u)
then show ?Zcase by (simp add: upper-le-PDPlus-iff 3)
qed

29.2 Type definition

typedef ‘a::bifinite upper-pd (<(<notation=<postfix upper-pds»'(-"))») =
{S::’a pd-basis set. upper-le.ideal S}
by (rule upper-le.ezx-ideal)
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instantiation upper-pd :: (bifinite) below
begin

definition
x C y «— Rep-upper-pd x C Rep-upper-pd y

instance ..
end

instance upper-pd :: (bifinite) po
using type-definition-upper-pd below-upper-pd-def
by (rule upper-le.typedef-ideal-po)

instance upper-pd :: (bifinite) cpo
using type-definition-upper-pd below-upper-pd-def
by (rule upper-le.typedef-ideal-cpo)

definition
upper-principal :: 'a::bifinite pd-basis = 'a upper-pd where
upper-principal t = Abs-upper-pd {u. v <f§ t}

interpretation upper-pd:

ideal-completion upper-le upper-principal Rep-upper-pd
using type-definition-upper-pd below-upper-pd-def
using upper-principal-def pd-basis-countable
by (rule upper-le.typedef-ideal-completion)

Upper powerdomain is pointed

lemma upper-pd-minimal: upper-principal (PDUnit compact-bot) T ys
by (induct ys rule: upper-pd.principal-induct, simp, simp)

instance upper-pd :: (bifinite) pcpo
by intro-classes (fast intro: upper-pd-minimal)

lemma inst-upper-pd-pcpo: L = upper-principal (PDUnit compact-bot)
by (rule upper-pd-minimal [THEN bottomlI, symmetric))

29.3 Monadic unit and plus

definition
upper-unit :: 'a:bifinite — ’a upper-pd where
upper-unit = compact-basis.extension (Aa. upper-principal (PDUnit a))

definition
upper-plus :: 'a::bifinite upper-pd — 'a upper-pd — 'a upper-pd where
upper-plus = upper-pd.extension (A\t. upper-pd.extension (Au.
upper-principal (PDPlus t u)))
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abbreviation
upper-add :: 'a::bifinite upper-pd = 'a upper-pd = 'a upper-pd
(infix]l Uty 65) where
xs U ys == upper-plus-xs-ys

syntax

-upper-pd :: args = logic («(<indent=1 notation=«mizfix upper-pd enumera-
tion»{-H)»)
translations

(w25}t == {a}t Uf {as}t

{z}f == CONST upper-unit-z

lemma upper-unit-Rep-compact-basis [simp):
{ Rep-compact-basis a}t = upper-principal (PDUnit a)
unfolding upper-unit-def
by (simp add: compact-basis.extension-principal PD Unit-upper-mono)

lemma upper-plus-principal [simp):
upper-principal t U upper-principal v = upper-principal (PDPlus t u)
unfolding upper-plus-def
by (simp add: upper-pd.extension-principal
upper-pd.extension-mono PDPlus-upper-mono)

interpretation upper-add: semilattice upper-add proof
fix zs ys zs :: 'a upper-pd
show (zs Ut ys) Uf zs = xs Ut (ys U 2s)
apply (induct zs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (induct zs rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done
show xs Uf ys = ys Ut s
apply (induct s rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done
show zs Uf zs = xs
apply (induct zs rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done
qed

lemmas upper-plus-assoc = upper-add.assoc

lemmas upper-plus-commute = upper-add.commute
lemmas upper-plus-absorb = upper-add.idem

lemmas upper-plus-left-commute = upper-add.left-commute
lemmas upper-plus-left-absorb = upper-add.left-idem

Useful for simp add: upper-plus-ac
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lemmas upper-plus-ac =
upper-plus-assoc upper-plus-commute upper-plus-left-commute

Useful for simp only: upper-plus-aci

lemmas upper-plus-aci =
upper-plus-ac upper-plus-absorb upper-plus-left-absorb

lemma upper-plus-below!: xs Uf ys C zs

apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-upper-le)

done

lemma upper-plus-below2: zs Ut ys C ys
by (subst upper-plus-commute, rule upper-plus-belowl)

lemma upper-plus-greatest: [xs T ys; xs C zs] = s T ys Uf zs

apply (subst upper-plus-absorb [of xs, symmetric])
apply (erule (1) monofun-cfun [OF monofun-cfun-arg])
done

lemma upper-below-plus-iff [simp]:

s E ys U zs «— 2zs C ys A zs C zs
apply safe
apply (erule below-trans [OF - upper-plus-belowl])
apply (erule below-trans [OF - upper-plus-below2])
apply (erule (1) upper-plus-greatest)
done

lemma upper-plus-below-unit-iff [simp]:

zs Ul ys C {2z} «— as C {z}t V ys C {z}4
apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (induct z rule: compact-basis.principal-induct, simp)
apply (simp add: upper-le-PDPlus-PD Unit-iff)
done

lemma upper-unit-below-iff [simp]: {z}f C {yH +— 2 C y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp

done

lemmas upper-pd-below-simps =
upper-unit-below-iff
upper-below-plus-iff
upper-plus-below-unit-iff

lemma upper-unit-eq-iff [simp]: {a} = {yH +— 2=y

175
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unfolding po-eq-conv by simp

lemma upper-unit-strict [simp]: {L}f = L
using upper-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-upper-pd-pcpo)

lemma upper-plus-strict! [simp]: L Uf ys = L
by (rule bottomlI, rule upper-plus-belowl)

lemma upper-plus-strict2 [simp]: zs Uf L = L
by (rule bottomlI, rule upper-plus-below2)

lemma upper-unit-bottom-iff [simp]: {z}f = L «— z = L
unfolding upper-unit-strict [symmetric] by (rule upper-unit-eq-iff)

lemma upper-plus-bottom-iff [simp]:
zsUfys=L+—azs=1LVy=_1
apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: inst-upper-pd-pcpo upper-pd.principal-eq-iff
upper-le-PDPlus-PD Unit-iff )
done

lemma compact-upper-unit: compact & = compact {z}
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-upper-unit-iff [simp]: compact {z}f «— compact ©
apply (safe elim!: compact-upper-unit)

apply (simp only: compact-def upper-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2])

done

lemma compact-upper-plus [simp]:
[compact xs; compact ys] = compact (xs Uf ys)
by (auto dest!: upper-pd.compact-imp-principal)

29.4 Induction rules

lemma upper-pd-induct1:
assumes P: adm P
assumes unit: Az. P {z}
assumes insert: Az ys. [P {z}t; P ys] = P ({z}t Ut ys)
shows P (zs::'a::bifinite upper-pd)
proof (induct zs rule: upper-pd.principal-induct)
have x: P {Rep-compact-basis a}f for a
by (rule unit)
show P (upper-principal ) for a
proof (induct a rule: pd-basis-induct1)
case (PDUnit a)
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with x show ?case
by (simp only: upper-unit-Rep-compact-basis [symmetric])
next
case (PDPlus a t)
with x have P ({Rep-compact-basis a}t Ut upper-principal t)
by (rule insert)
then show ?case
by (simp only: upper-unit-Rep-compact-basis [symmetric]
upper-plus-principal [symmetric])
qged
qed (rule P)

lemma upper-pd-induct [case-names adm upper-unit upper-plus, induct type: up-
per-pd]:
assumes P: adm P
assumes unit: Nz. P {z}4
assumes plus: Axs ys. [P xs; P ys] = P (xs Uf ys)
shows P (zs::'a::bifinite upper-pd)
proof (induct xs rule: upper-pd.principal-induct)
show P (upper-principal o) for a
proof (induct a rule: pd-basis-induct)
case PDUnit
then show ?case
by (simp only: upper-unit-Rep-compact-basis [symmetric] unit)
next
case PDPlus
then show ?case
by (simp only: upper-plus-principal [symmetric] plus)
qed
qed (rule P)

29.5 Monadic bind

definition
upper-bind-basis ::
‘a::bifinite pd-basis = ('a — 'b upper-pd) — 'b::bifinite upper-pd where
upper-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
Az y. A f.af U yf)

lemma ACI-upper-bind:

semilattice Az y. A f. z-f Ut y-f)
apply unfold-locales
apply (simp add: upper-plus-assoc)
apply (simp add: upper-plus-commute)
apply (simp add: eta-cfun)
done

lemma upper-bind-basis-simps [simp]:
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upper-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
upper-bind-basis (PDPlus t u) =
(A f. upper-bind-basis t-f Uf upper-bind-basis u-f)
unfolding upper-bind-basis-def
apply —
apply (rule fold-pd-PDUnit [OF ACI-upper-bind])
apply (rule fold-pd-PDPlus [OF ACI-upper-bind))
done

lemma upper-bind-basis-mono:
t <# u = upper-bind-basis t = upper-bind-basis u
unfolding cfun-below-iff
apply (erule upper-le-induct, safe)
apply (simp add: monofun-cfun)
apply (simp add: below-trans [OF upper-plus-belowl])
apply simp
done

definition

upper-bind :: 'a::bifinite upper-pd — ('a — 'b upper-pd) — 'b::bifinite upper-pd
where

upper-bind = upper-pd.extension upper-bind-basis

syntax
-upper-bind :: [logic, logic, logic] = logic
(<(<indent=3 notation=<binder upper-bind»»\Jt-€-./ -)» [0, 0, 10] 10)

translations
Utzexs. e == CONST upper-bind-zs-(A z. e)

lemma upper-bind-principal [simp]:
upper-bind-(upper-principal t) = upper-bind-basis t

unfolding upper-bind-def

apply (rule upper-pd.extension-principal)

apply (erule upper-bind-basis-mono)

done

lemma upper-bind-unit [simpl:

upper-bind-{z}-f = f-x
by (induct z rule: compact-basis.principal-induct, simp, simp)

lemma upper-bind-plus [simp]:
upper-bind-(zs Ut ys)-f = upper-bind-zs-f Uf upper-bind-ys-f
by (induct zs rule: upper-pd.principal-induct, simp,
induct ys rule: upper-pd.principal-induct, simp, simp)

lemma upper-bind-strict [simp]: upper-bind-L-f = f-L
unfolding upper-unit-strict [symmetric] by (rule upper-bind-unit)
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lemma upper-bind-bind:
upper-bind-(upper-bind-xs-f)-g = upper-bind-zs-(A z. upper-bind-(f-x)-g)
by (induct zs, simp-all)

29.6 Map

definition
upper-map :: ('a:bifinite — 'b::bifinite) — 'a upper-pd — 'b upper-pd where
upper-map = (A f zs. upper-bind-zs-(A z. {f-z}1))

lemma upper-map-unit [simpl:

upper-map-f-{z}t = {f-z}
unfolding upper-map-def by simp

lemma upper-map-plus [simp):
upper-map-f-(xs U ys) = upper-map-f-zs Uf upper-map-f-ys
unfolding upper-map-def by simp

lemma upper-map-bottom [simp]: upper-map-f-L = {f- L}
unfolding upper-map-def by simp

lemma upper-map-ident: upper-map-(A x. z)-1s = x5
by (induct xzs rule: upper-pd-induct, simp-all)

lemma upper-map-ID: upper-map-1D = ID
by (simp add: cfun-eq-iff ID-def upper-map-ident)

lemma upper-map-map:
upper-map-f-(upper-map-g-xs) = upper-map-(A z. f-(g-x))-zs
by (induct zs rule: upper-pd-induct, simp-all)

lemma upper-bind-map:
upper-bind-(upper-map-f-xs)-g = upper-bind-xs-(A z. g-(f-x))
by (simp add: upper-map-def upper-bind-bind)

lemma upper-map-bind:
upper-map-f-(upper-bind-zs-g) = upper-bind-zs-(A z. upper-map-f-(g-x))
by (simp add: upper-map-def upper-bind-bind)

lemma ep-pair-upper-map: ep-pair e p => ep-pair (upper-map-e) (upper-map-p)
apply standard

apply (induct-tac x rule: upper-pd-induct, simp-all add: ep-pair.e-inverse)
apply (induct-tac y rule: upper-pd-induct)

apply (simp-all add: ep-pair.e-p-below monofun-cfun del: upper-below-plus-iff)
done

lemma deflation-upper-map: deflation d = deflation (upper-map-d)
apply standard
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apply (induct-tac x rule: upper-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: upper-pd-induct)

apply (simp-all add: deflation.below monofun-cfun del: upper-below-plus-iff)
done

lemma finite-deflation-upper-map:
assumes finite-deflation d shows finite-deflation (upper-map-d)
proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-azioms show deflation (upper-map-d)
by (rule deflation-upper-map)
have finite (range (Az. d-x)) by (rule d.finite-range)
hence finite (Rep-compact-basis —* range (A\z. d-z))
by (rule finite-vimagel, simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis —* range (A\z. d-x))) by simp
hence finite (Rep-pd-basis —‘ (Pow (Rep-compact-basis —* range (Az. d-z))))
by (rule finite-vimagel, simp add: inj-on-def Rep-pd-basis-inject)
hence *: finite (upper-principal ¢ Rep-pd-basis —‘ (Pow (Rep-compact-basis —°
range (Az. d-x)))) by simp
hence finite (range (Axs. upper-map-d-xs))
apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac xs rule: upper-pd.principal-induct)
apply (simp add: adm-mem-finite *)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: upper-unit-Rep-compact-basis [symmetric] upper-map-unit)
apply simp
apply (subgoal-tac 3b. d-(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDUnit)
apply (rule range-eql)
apply (erule sym)
apply (rule exl)
apply (rule Abs-compact-basis-inverse [symmetric))
apply (simp add: d.compact)
apply (simp only: upper-plus-principal [symmetric] upper-map-plus)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDPlus)
done
thus finite {zs. upper-map-d-zs = zs}
by (rule finite-range-imp-finite-fizes)
qed
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29.7 Upper powerdomain is bifinite

lemma approz-chain-upper-map:
assumes approz-chain a
shows approz-chain (A\i. upper-map-(a 1))
using assms unfolding approz-chain-def
by (simp add: lub-APP upper-map-1D finite-deflation-upper-map)

instance upper-pd :: (bifinite) bifinite
proof
show 3 (a:nat = 'a upper-pd — 'a upper-pd). approz-chain a
using bifinite [where ‘a='a]
by (fast intro!: approz-chain-upper-map)

qed
29.8 Join
definition

upper-join :: 'a::bifinite upper-pd upper-pd — 'a upper-pd where
upper-join = (A xss. upper-bind-zss-(A xs. xs))

lemma upper-join-unit [simp]:
upper-join-{xs}f = xs
unfolding upper-join-def by simp

lemma upper-join-plus [simp]:
upper-join-(xss U yss) = upper-join-zss U upper-join-yss
unfolding upper-join-def by simp

lemma upper-join-bottom [simpl: upper-join- L = L
unfolding upper-join-def by simp

lemma upper-join-map-unit:
upper-join-(upper-map-upper-unit-s) = s
by (induct zs rule: upper-pd-induct, simp-all)

lemma upper-join-map-join:
upper-join-(upper-map-upper-join-xsss) = upper-join-(upper-join-sss)
by (induct xzsss rule: upper-pd-induct, simp-all)

lemma upper-join-map-map:
upper-join-(upper-map-(upper-map-f)-xss) =
upper-map-f-(upper-join-xss)

by (induct zss rule: upper-pd-induct, simp-all)

end
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30 Lower powerdomain

theory LowerPD
imports Compact-Basis
begin

30.1 Basis preorder

definition
lower-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix «<b» 50) where
lower-le = (Au v. V z€ Rep-pd-basis u. 3 y€ Rep-pd-basis v.  C y)

lemma lower-le-refl [simp]: t <b t
unfolding lower-le-def by fast

lemma lower-le-trans: [t <b u; u <b v] =t <b v
unfolding lower-le-def

apply (rule balll)

apply (drule (1) bspec, erule bezE)

apply (drule (1) bspec, erule bezE)

apply (erule rev-bexl)

apply (erule (1) below-trans)

done

interpretation lower-le: preorder lower-le
by (rule preorder.intro, rule lower-le-refl, rule lower-le-trans)

lemma lower-le-minimal [simp]: PDUnit compact-bot <b t
unfolding lower-le-def Rep-PDUnit
by (simp, rule Rep-pd-basis-nonempty [folded ex-in-conuv])

lemma PDUnit-lower-mono: x C y => PDUnit z <b PDUnit y
unfolding lower-le-def Rep-PDUnit by fast

lemma PDPlus-lower-mono: [s <b t; u <b v] = PDPlus s u <b PDPlus t v
unfolding lower-le-def Rep-PDPlus by fast

lemma PDPlus-lower-le: t <b PDPlus t u
unfolding lower-le-def Rep-PDPlus by fast

lemma lower-le-PD Unit-PD Unit-iff [simp]:
(PDUnit a <b PDUnit b) = (a C b)
unfolding lower-le-def Rep-PDUnit by fast

lemma lower-le-PD Unit-PDPlus-iff:
(PDUnit a <b PDPlus t u) = (PDUnit a <b ¢t V PDUnit a <b u)
unfolding lower-le-def Rep-PDPlus Rep-PDUnit by fast

lemma lower-le-PDPlus-iff: (PDPlus t u <b v) = (t <b v A u <b v)
unfolding lower-le-def Rep-PDPlus by fast
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lemma lower-le-induct [induct set: lower-le]:
assumes le: t <b u
assumes I: Aa b. a CT b = P (PDUnit a) (PDUnit b)
assumes 2: At u a. P (PDUnit a) t = P (PDUnit a) (PDPlus t u)
assumes 3: At uv. [Ptv; Puv] = P (PDPlustu) v
shows Pt u
using le
proof (induct t arbitrary: u rule: pd-basis-induct)
case (PDUnit a)
then show Zcase
proof (induct u rule: pd-basis-induct)
case PDUnit
then show ?case by (simp add: 1)
next
case (PDPlus t u)
from PDPlus(3) consider (t) PDUnit a <b t | (u) PDUnit a <b u
by (auto simp: lower-le-PD Unit-PDPlus-iff)
then show ?case
proof cases
case {
then have P (PDUnit a) t by (rule PDPlus(1))
then show ?thesis by (rule 2)
next
case u
then have P (PDUnit a) u by (rule PDPlus(2))
then have P (PDUnit a) (PDPlus u t) by (rule 2)
then show %thesis by (simp only: PDPlus-commute)
qed
qed
next
case (PDPlus t t')
then show ?case by (simp add: lower-le-PDPlus-iff 3)
qed

30.2 Type definition

typedef ‘a:bifinite lower-pd (<(<notation=<postfix lower-pd»'(-\b)») =
{S::’a pd-basis set. lower-le.ideal S}
by (rule lower-le.ex-ideal)

instantiation lower-pd :: (bifinite) below
begin

definition
z C y «— Rep-lower-pd x C Rep-lower-pd y

instance ..
end
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instance lower-pd :: (bifinite) po
using type-definition-lower-pd below-lower-pd-def
by (rule lower-le.typedef-ideal-po)

instance lower-pd :: (bifinite) cpo
using type-definition-lower-pd below-lower-pd-def
by (rule lower-le.typedef-ideal-cpo)

definition
lower-principal :: 'a::bifinite pd-basis = 'a lower-pd where
lower-principal t = Abs-lower-pd {u. v <b t}

interpretation lower-pd:

ideal-completion lower-le lower-principal Rep-lower-pd
using type-definition-lower-pd below-lower-pd-def
using lower-principal-def pd-basis-countable
by (rule lower-le.typedef-ideal-completion)

Lower powerdomain is pointed

lemma lower-pd-minimal: lower-principal (PDUnit compact-bot) T ys
by (induct ys rule: lower-pd.principal-induct, simp, simp)

instance lower-pd :: (bifinite) pcpo
by intro-classes (fast intro: lower-pd-minimal)

lemma inst-lower-pd-pcpo: L = lower-principal (PDUnit compact-bot)
by (rule lower-pd-minimal [THEN bottomlI, symmetric])

30.3 Monadic unit and plus

definition
lower-unit :: 'a::bifinite — ’a lower-pd where
lower-unit = compact-basis.extension (Aa. lower-principal (PDUnit a))

definition
lower-plus :: 'a::bifinite lower-pd — 'a lower-pd — 'a lower-pd where
lower-plus = lower-pd.extension (At. lower-pd.extension (Au.
lower-principal (PDPlus t w)))

abbreviation
lower-add :: 'a::bifinite lower-pd = 'a lower-pd = 'a lower-pd
(infix] «Ub» 65) where
xs Ub ys == lower-plus-zs-ys

syntax
-lower-pd :: args = logic (<(<indent=1 notation=<mizfix lower-pd enumera-
tion» {-}b)»)

translations
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{z,zs}b == {z}b Ub {zs}b
{z}b == CONST lower-unit-z

lemma lower-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}b = lower-principal (PDUnit a)
unfolding lower-unit-def
by (simp add: compact-basis.extension-principal PD Unit-lower-mono)

lemma lower-plus-principal [simp]:
lower-principal t Ub lower-principal w = lower-principal (PDPlus t u)
unfolding lower-plus-def
by (simp add: lower-pd.extension-principal
lower-pd.extension-mono PDPlus-lower-mono)

interpretation lower-add: semilattice lower-add proof
fix zs ys zs :: 'a::bifinite lower-pd
show (zs Ub ys) Ub zs = xs Ub (ys Ub zs)
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done
show zs Ub ys = ys Ub xs
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done
show zs Ub zs = zs
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done
qed

lemmas lower-plus-assoc = lower-add.assoc

lemmas lower-plus-commute = lower-add.commute
lemmas lower-plus-absorb = lower-add.idem

lemmas lower-plus-left-commute = lower-add.left-commute
lemmas lower-plus-left-absorb = lower-add.left-idem

Useful for simp add: lower-plus-ac

lemmas lower-plus-ac =
lower-plus-assoc lower-plus-commute lower-plus-left-commute

Useful for simp only: lower-plus-aci
lemmas lower-plus-aci =

lower-plus-ac lower-plus-absorb lower-plus-left-absorb

lemma lower-plus-belowl: xs C xs Ub ys
apply (induct xs rule: lower-pd.principal-induct, simp)



THEORY “LowerPD”

apply (induct ys rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-lower-le)
done

lemma lower-plus-below2: ys C xs Ub ys
by (subst lower-plus-commute, rule lower-plus-belowl)

lemma lower-plus-least: [zs T zs; ys C zs] = zs b ys C zs
apply (subst lower-plus-absorb [of zs, symmetric))

apply (erule (1) monofun-cfun [OF monofun-cfun-arg))
done

lemma lower-plus-below-iff [simp]:

s Ub ys C 28 +— 28 C 28 A\ ys C zs
apply safe
apply (erule below-trans [OF lower-plus-below1])
apply (erule below-trans [OF lower-plus-below?2])
apply (erule (1) lower-plus-least)
done

lemma lower-unit-below-plus-iff [simp):

{z}b C ys Ub 25 «+— {z}b C ys V {z}b C 2s
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (simp add: lower-le-PD Unit-PDPlus-iff)
done

lemma lower-unit-below-iff [simp]: {z}b C {y}p +— 2z C y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp

done

lemmas lower-pd-below-simps =
lower-unit-below-iff
lower-plus-below-iff
lower-unit-below-plus-iff

lemma lower-unit-eq-iff [simp]: {z}b = {y}p +— z =y
by (simp add: po-eq-conv)

lemma lower-unit-strict [simp]: {L}b = L
using lower-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-lower-pd-pcpo)

lemma lower-unit-bottom-iff [simpl: {z}b = L +— x = L
unfolding lower-unit-strict [symmetric] by (rule lower-unit-eq-iff)

186
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lemma lower-plus-bottom-iff [simp]:
zsUbys=1L+—>azs=1LAys= 1L

apply safe

apply (rule bottomlI, erule subst, rule lower-plus-belowl)

apply (rule bottomI, erule subst, rule lower-plus-below?2)

apply (rule lower-plus-absorb)

done

lemma lower-plus-strict] [simp]: L Ub ys = ys
apply (rule below-antisym [OF - lower-plus-below?2])
apply (simp add: lower-plus-least)

done

lemma lower-plus-strict2 [simp]: xs Ub L = zs
apply (rule below-antisym [OF - lower-plus-belowl])
apply (simp add: lower-plus-least)

done

lemma compact-lower-unit: compact © = compact {x}b
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-lower-unit-iff [simpl: compact {x}b +— compact =
apply (safe elim!: compact-lower-unit)

apply (simp only: compact-def lower-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2])

done

lemma compact-lower-plus [simp):
[compact zs; compact ys] = compact (xs Ub ys)
by (auto dest!: lower-pd.compact-imp-principal)

30.4 Induction rules

lemma lower-pd-induct1:
assumes P: adm P
assumes unit: Nz. P {z}b
assumes insert: Az ys. [P {z}b; P ys] = P ({z}b Wb ys)
shows P (zs::'a:bifinite lower-pd)
proof (induct zs rule: lower-pd.principal-induct)
have x: P {Rep-compact-basis a}b for a
by (rule unit)
show P (lower-principal a) for a
proof (induct a rule: pd-basis-induct1)
case PDUnit
from x show ?case
by (simp only: lower-unit-Rep-compact-basis [symmetric])
next
case (PDPlus a t)
with * have P ({ Rep-compact-basis a}b Ub lower-principal t)
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by (rule insert)
then show ?case
by (simp only: lower-unit-Rep-compact-basis [symmetric] lower-plus-principal
[symmetric])
qed
qed (rule P)

lemma lower-pd-induct [case-names adm lower-unit lower-plus, induct type: lower-pd):
assumes P: adm P
assumes unit: Nz. P {z}b
assumes plus: Axs ys. [P xs; P ys] = P (xs Ub ys)
shows P (zs::'a::bifinite lower-pd)
proof (induct xs rule: lower-pd.principal-induct)
show P (lower-principal a) for a
proof (induct a rule: pd-basis-induct)
case PDUnit
then show ?case
by (simp only: lower-unit-Rep-compact-basis [symmetric] unit)
next
case PDPlus
then show ?case
by (simp only: lower-plus-principal [symmetric] plus)
qed
qed (rule P)

30.5 Monadic bind

definition
lower-bind-basis ::
‘a::bifinite pd-basis = ('a — 'b lower-pd) — 'b::bifinite lower-pd where
lower-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
Az y. Af.ozf U yf)

lemma ACI-lower-bind:

semilattice Az y. A f. z-f Ub y-f)
apply unfold-locales
apply (simp add: lower-plus-assoc)
apply (simp add: lower-plus-commute)
apply (simp add: eta-cfun)
done

lemma lower-bind-basis-simps [simp]:
lower-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
lower-bind-basis (PDPlus t u) =
(A f. lower-bind-basis t-f Ub lower-bind-basis u-f)
unfolding lower-bind-basis-def
apply —
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apply (rule fold-pd-PDUnit [OF ACI-lower-bind])
apply (rule fold-pd-PDPlus [OF ACI-lower-bind)])
done

lemma lower-bind-basis-mono:
t <b u = lower-bind-basis t T lower-bind-basis u
unfolding cfun-below-iff
apply (erule lower-le-induct, safe)
apply (simp add: monofun-cfun)
apply (simp add: rev-below-trans [OF lower-plus-below1])
apply simp
done

definition

lower-bind :: 'a::bifinite lower-pd — (‘a — 'b lower-pd) — 'b::bifinite lower-pd
where

lower-bind = lower-pd.extension lower-bind-basis

syntax
-lower-bind :: [logic, logic, logic] = logic
(¢(¢indent=3 notation=<binder lower-bind»|Jb-€-./ -)» [0, 0, 10] 10)

translations
Ubzexs. e == CONST lower-bind-zs-(A . €)

lemma lower-bind-principal [simpl:
lower-bind-(lower-principal t) = lower-bind-basis t

unfolding lower-bind-def

apply (rule lower-pd.extension-principal)

apply (erule lower-bind-basis-mono)

done

lemma lower-bind-unit [simpl:
lower-bind-{z}b-f = f-x
by (induct = rule: compact-basis.principal-induct, simp, simp)

lemma lower-bind-plus [simp]:
lower-bind-(zs Ub ys)-f = lower-bind-zs-f Ub lower-bind-ys-f
by (induct zs rule: lower-pd.principal-induct, simp,
induct ys rule: lower-pd.principal-induct, simp, simp)

lemma lower-bind-strict [simp]: lower-bind-L-f = f-1
unfolding lower-unit-strict [symmetric] by (rule lower-bind-unit)

lemma lower-bind-bind:
lower-bind-(lower-bind-zs-f)-g = lower-bind-xs-(A z. lower-bind-(f-x)-g)
by (induct xs, simp-all)
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30.6 Map

definition
lower-map :: ('a::bifinite — 'bi:bifinite) — 'a lower-pd — 'b lower-pd where
lower-map = (A f zs. lower-bind-xzs-(A z. {f-z}b))

lemma lower-map-unit [simpl:

lower-map-f-{z}b = {f-z}b
unfolding lower-map-def by simp

lemma lower-map-plus [simp]:
lower-map-f-(xs Wb ys) = lower-map-f-zs Ub lower-map-f-ys
unfolding lower-map-def by simp

lemma lower-map-bottom [simp]: lower-map-f-1L = {f-L}b
unfolding lower-map-def by simp

lemma lower-map-ident: lower-map-(A z. x)-xs = xs
by (induct zs rule: lower-pd-induct, simp-all)

lemma lower-map-ID: lower-map-ID = ID
by (simp add: cfun-eq-iff ID-def lower-map-ident)

lemma lower-map-map:
lower-map-f-(lower-map-g-zs) = lower-map-(A . f-(g-x))-zs
by (induct zs rule: lower-pd-induct, simp-all)

lemma lower-bind-map:
lower-bind-(lower-map-f-xs)-g = lower-bind-zs-(A z. g-(f-x))
by (simp add: lower-map-def lower-bind-bind)

lemma lower-map-bind:
lower-map-f-(lower-bind-zs-g) = lower-bind-zs-(A z. lower-map-f-(g-x))
by (simp add: lower-map-def lower-bind-bind)

lemma ep-pair-lower-map: ep-pair e p => ep-pair (lower-map-e) (lower-map-p)
apply standard

apply (induct-tac x rule: lower-pd-induct, simp-all add: ep-pair.e-inverse)
apply (induct-tac y rule: lower-pd-induct)

apply (simp-all add: ep-pair.e-p-below monofun-cfun del: lower-plus-below-iff)
done

lemma deflation-lower-map: deflation d = deflation (lower-map-d)
apply standard

apply (induct-tac x rule: lower-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: lower-pd-induct)

apply (simp-all add: deflation.below monofun-cfun del: lower-plus-below-iff)
done



THEORY “LowerPD” 191

lemma finite-deflation-lower-map:
assumes finite-deflation d shows finite-deflation (lower-map-d)
proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (lower-map-d)
by (rule deflation-lower-map)
have finite (range (Az. d-x)) by (rule d.finite-range)
hence finite (Rep-compact-basis —* range (Az. d-z))
by (rule finite-vimagel, simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis —* range (Az. d-x))) by simp
hence finite (Rep-pd-basis —* (Pow (Rep-compact-basis —* range (Az. d-x))))
by (rule finite-vimagel, simp add: inj-on-def Rep-pd-basis-inject)
hence x*: finite (lower-principal ‘ Rep-pd-basis —‘ (Pow (Rep-compact-basis —
range (Az. d-z)))) by simp
hence finite (range (Axs. lower-map-d-xs))
apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac xs rule: lower-pd.principal-induct)
apply (simp add: adm-mem-finite x)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: lower-unit-Rep-compact-basis [symmetric] lower-map-unit)
apply simp
apply (subgoal-tac 3b. d-(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDUnit)
apply (rule range-eql)
apply (erule sym)
(
(
(

¢

apply (rule exl)
apply (rule Abs-compact-basis-inverse [symmetric))
apply (simp add: d.compact)
apply (simp only: lower-plus-principal [symmetric] lower-map-plus)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDPlus)
done

thus finite {zs. lower-map-d-zs = xs}
by (rule finite-range-imp-finite-fizes)

qed

30.7 Lower powerdomain is bifinite

lemma approz-chain-lower-map:
assumes approz-chain a
shows approx-chain (M\i. lower-map-(a 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP lower-map-ID finite-deflation-lower-map)
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instance lower-pd :: (bifinite) bifinite
proof
show 3 (a:nat = 'a lower-pd — 'a lower-pd). approz-chain a
using bifinite [where ‘a="a]
by (fast intro!: approz-chain-lower-map)

qed
30.8 Join
definition

lower-join :: 'a::bifinite lower-pd lower-pd — 'a lower-pd where
lower-join = (A xss. lower-bind-zss-(A zs. xs))

lemma lower-join-unit [simp):
lower-join-{xs}b = s
unfolding lower-join-def by simp

lemma lower-join-plus [simp]:
lower-join-(xss Ub yss) = lower-join-zss Ub lower-join-yss
unfolding lower-join-def by simp

lemma lower-join-bottom [simp]: lower-join- L = L
unfolding lower-join-def by simp

lemma lower-join-map-unit:
lower-join-(lower-map-lower-unit-zs) = xs
by (induct zs rule: lower-pd-induct, simp-all)

lemma lower-join-map-join:
lower-join-(lower-map-lower-join-zsss) = lower-join-(lower-join-zsss)
by (induct zsss rule: lower-pd-induct, simp-all)

lemma lower-join-map-map:
lower-join-(lower-map-(lower-map-f)-zss) =
lower-map-f-(lower-join-zss)

by (induct xzss rule: lower-pd-induct, simp-all)

end

31 Convex powerdomain

theory ConvexzPD

imports UpperPD LowerPD
begin

31.1 Basis preorder

definition
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convex-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix «<fpp 50) where
convez-le = (Auv. u <f v A u <b v)

lemma convez-le-refl [simp]: t <h t
unfolding convez-le-def by (fast intro: upper-le-refl lower-le-refl)

lemma convez-le-trans: [t <f u; u <hv] =t <po
unfolding convez-le-def by (fast intro: upper-le-trans lower-le-trans)

interpretation convez-le: preorder convez-le
by (rule preorder.intro, rule convez-le-refl, rule convex-le-trans)

lemma upper-le-minimal [simp]: PDUnit compact-bot <f t
unfolding convex-le-def Rep-PDUnit by simp

lemma PDUnit-convex-mono: © C y = PDUnit x <t PDUnit y
unfolding convez-le-def by (fast intro: PDUnit-upper-mono PDUnit-lower-mono)

lemma PDPlus-convex-mono: s <b t; u <b v] = PDPlus s u < PDPlus t v
unfolding convex-le-def by (fast intro: PDPlus-upper-mono PDPlus-lower-mono)

lemma convez-le-PDUnit-PD Unit-iff [simp]:
(PDUnit a <ij PDUnit b) = (a C b)
unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit by fast

lemma convez-le-PDUnit-lemmal:

(PDUnit a <fj t) = (V b€ Rep-pd-basis t. a T b)
unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit
using Rep-pd-basis-nonempty [of t, folded ex-in-conv| by fast

lemma convez-le-PDUnit-PDPlus-iff [simp]:
(PDUnit a <hj PDPlus t u) = (PDUnit a < t A PDUnit a <hj u)
unfolding convex-le-PD Unit-lemmal Rep-PDPlus by fast

lemma convez-le-PD Unit-lemma?2:

(t <t PDUnit b) = (VY a€Rep-pd-basis t. a T b)
unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit
using Rep-pd-basis-nonempty [of t, folded ex-in-conv] by fast

lemma convez-le-PDPlus-PDUnit-iff [simp]:
(PDPlus t u <t PDUnit a) = (t < PDUnit a A\ u <t PDUnit a)
unfolding convex-le-PD Unit-lemma2 Rep-PDPlus by fast

lemma convez-le-PDPlus-lemma:
assumes z: PDPlus t u <f z
shows v w. 2 = PDPlusvw At <gv A u<hw
proof (intro exI conjI)
let ?A = {b€Rep-pd-basis z. I a€ Rep-pd-basis t. a T b}
let B = {beRep-pd-basis z. I a€ Rep-pd-basis u. a C b}
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let 2v = Abs-pd-basis ?A

let 7w = Abs-pd-basis ?B

have Rep-v: Rep-pd-basis v = ?A
apply (rule Abs-pd-basis-inverse)
apply (rule Rep-pd-basis-nonempty [of t, folded ex-in-conv, THEN ezE])
apply (cut-tac z, simp only: convex-le-def lower-le-def, clarify)
apply (drule-tac z=xz in bspec, simp add: Rep-PDPlus, erule bezE)
apply (simp add: pd-basis-def)
apply fast
done

have Rep-w: Rep-pd-basis fw = ¢B
apply (rule Abs-pd-basis-inverse)
apply (rule Rep-pd-basis-nonempty [of u, folded ex-in-conv, THEN ezE])
apply (cut-tac z, simp only: convez-le-def lower-le-def, clarify)
apply (drule-tac x=x in bspec, simp add: Rep-PDPlus, erule bexE)
apply (simp add: pd-basis-def)
apply fast
done

show z = PDPlus ?v ?w
apply (insert z)
apply (simp add: convez-le-def, erule conjE)
apply (simp add: Rep-pd-basis-inject [symmetric] Rep-PDPlus)
apply (simp add: Rep-v Rep-w)
apply (rule equalityl)
apply (rule subsetl)
apply (simp only: upper-le-def)
apply (drule (1) bspec, erule bexFE)
apply (simp add: Rep-PDPlus)
apply fast
apply fast
done

show ¢t <ij 2v u <f %w
using 2z by (simp-all add: convex-le-def upper-le-def lower-le-def Rep-PDPlus

Rep-v Rep-w) fast+
qed

Py

lemma convez-le-induct [induct set: convez-le]:
assumes le: t <f u
assumes 2: Atuwv. [Ptu; Puv] = Ptwo
assumes 3: Aa b. a T b = P (PDUnit a) (PDUnit b)
assumes 4: At w v w. [Ptv; Puw] = P (PDPlus t u) (PDPlus v w)
shows Pt u
using le
proof (induct t arbitrary: u rule: pd-basis-induct)
case (PDUnit a)
then show ?case
proof (induct u rule: pd-basis-inductl)
case (PDUnit b)
then show Zcase by (simp add: 3)
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next
case (PDPlus b t)
have P (PDPlus (PDUnit a) (PDUnit a)) (PDPlus (PDUnit b) t)
by (rule 4 [OF 3]) (use PDPlus in simp-all)
then show Zcase by (simp add: PDPlus-absorb)
qed
next
case PDPlus
from PDPlus(1,2) show Zcase
using convez-le-PDPlus-lemma [OF PDPlus(3)] by (auto simp add: 4)
qged

31.2 Type definition

typedef ‘a::bifinite conver-pd («(<notation=<postfix convex-pd»'(-)h)») =
{S::'a pd-basis set. convex-le.ideal S}
by (rule convex-le.ex-ideal)

instantiation convez-pd :: (bifinite) below
begin

definition
x C y «— Rep-convex-pd r C Rep-convex-pd y

instance ..
end

instance convex-pd :: (bifinite) po
using type-definition-conver-pd below-convezr-pd-def
by (rule convez-le.typedef-ideal-po)

instance convez-pd :: (bifinite) cpo
using type-definition-convez-pd below-convezr-pd-def
by (rule convez-le.typedef-ideal-cpo)

definition
convex-principal :: 'a::bifinite pd-basis = 'a convex-pd where
convez-principal t = Abs-convez-pd {u. u <fj t}

interpretation convex-pd:
ideal-completion convez-le convex-principal Rep-convex-pd
using type-definition-convez-pd below-convexr-pd-def
using convez-principal-def pd-basis-countable
by (rule convez-le.typedef-ideal-completion)

Convex powerdomain is pointed

lemma convez-pd-minimal: convez-principal (PDUnit compact-bot) C ys
by (induct ys rule: convez-pd.principal-induct, simp, simp)
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instance convez-pd :: (bifinite) pcpo
by intro-classes (fast intro: convex-pd-minimal)

lemma inst-convex-pd-pcpo: L = convez-principal (PDUnit compact-bot)
by (rule convex-pd-minimal [THEN bottoml, symmetric])

31.3 Monadic unit and plus

definition
convex-unit :: 'a::bifinite — 'a convex-pd where
convezr-unit = compact-basis.extension (Aa. convezr-principal (PDUnit a))

definition
convez-plus :: 'a::bifinite conver-pd — 'a conver-pd — 'a convezr-pd where
convex-plus = convez-pd.extension (At. conver-pd.extension (Au.
convez-principal (PDPlus t u)))

abbreviation
convezr-add :: 'a::bifinite convex-pd = 'a convez-pd = 'a convez-pd
(infix] U 65) where
xs Uy ys == convez-plus-zs-ys

syntax

-conver-pd :: args = logic (<(<indent=1 notation=<mixfix convex-pd enumera-
tion»{-}h)»)
translations

{z,2s}y == {2} Uy {as}l

{z}f == CONST convez-unit-z

lemma convez-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}h = convex-principal (PDUnit a)
unfolding convex-unit-def
by (simp add: compact-basis.extension-principal PD Unit-convez-mono)

lemma convez-plus-principal [simp]:
convez-principal t U convex-principal u = convex-principal (PDPlus t u)
unfolding convex-plus-def
by (simp add: convez-pd.extension-principal
convez-pd.extension-mono PDPlus-convez-mono)

interpretation convez-add: semilattice convez-add proof

fix zs ys zs :: 'a convex-pd

show (zs U ys) Ul zs = xs U (ys Uf 2s)
apply (induct xs rule: convezr-pd.principal-induct, simp)
apply (induct ys rule: convez-pd.principal-induct, simp)
apply (induct zs rule: convez-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done

show zs Uf ys = ys Ug zs
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apply (induct zs rule: convex-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done
show zs U zs = xs
apply (induct zs rule: convex-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done
qed

lemmas convez-plus-assoc = convex-add.assoc

lemmas convez-plus-commute = convex-add.commute
lemmas convez-plus-absorb = convex-add.idem

lemmas convex-plus-left-commute = convez-add.left-commute
lemmas convex-plus-left-absorb = convez-add.left-idem

Useful for simp add: convezr-plus-ac

lemmas convez-plus-ac =
convez-plus-assoc convex-plus-commute convez-plus-left-commute

Useful for simp only: convex-plus-aci

lemmas convez-plus-aci =
convez-plus-ac convexr-plus-absorb convexr-plus-left-absorb

lemma convez-unit-below-plus-iff [simp]:

{z}0 E ys Ug zs «— {z}t E ys A {z}§ E 25
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (induct zs rule: convez-pd.principal-induct, simp)
apply simp
done

lemma convez-plus-below-unit-iff [simp]:

os U ys E {2t «— s C {2} A ys C {2}f
apply (induct zs rule: convez-pd.principal-induct, simp)
apply (induct ys rule: conver-pd.principal-induct, simp)
apply (induct z rule: compact-basis.principal-induct, simp)
apply simp
done

lemma convez-unit-below-iff [simp]: {z}h C {y}h+— z C y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp

done

lemma convez-unit-eq-iff [simpl: {z}t = {yh+— z =y
unfolding po-eq-conv by simp
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lemma convez-unit-strict [simp]: {L}f = L
using convez-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-convez-pd-pcpo)

lemma convez-unit-bottom-iff [simp]: {z}h = L +— =1
unfolding convez-unit-strict [symmetric] by (rule conver-unit-eq-iff)

lemma compact-convex-unit: compact t = compact {z}f
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-convex-unit-iff [simp]: compact {x}l «— compact ©
apply (safe elim!: compact-convez-unit)

apply (simp only: compact-def convex-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2])

done

lemma compact-convex-plus [simp]:
[compact xs; compact ys] = compact (xs Ul ys)
by (auto dest!: convez-pd.compact-imp-principal)

31.4 Induction rules

lemma conver-pd-induct1:
assumes P: adm P
assumes unit: A\z. P {z}f
assumes insert: Az ys. [P {z}t; P ys] = P ({z}§ Uh ys)
shows P (zs::'a::bifinite convez-pd)
proof (induct zs rule: convex-pd.principal-induct)
show P (convez-principal a) for a
proof (induct a rule: pd-basis-induct1)
case PDUnit
show ?Zcase by (simp only: convexr-unit-Rep-compact-basis [symmetric]) (rule
unit)
next
case PDPlus
show ?case
by (simp only: convex-unit-Rep-compact-basis [symmetric] convex-plus-principal
[symmetric])
(rule insert [OF unit PDPlus])
qged
qed (rule P)

lemma convex-pd-induct [case-names adm convez-unit convex-plus, induct type:
convez-pd):

assumes P: adm P

assumes unit: Az. P {z}f

assumes plus: Axs ys. [P xs; P ys] = P (ws U ys)

shows P (zs::'a::bifinite convez-pd)
proof (induct xs rule: convez-pd.principal-induct)
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show P (convez-principal a) for a
proof (induct a rule: pd-basis-induct)
case PDUnit
then show ?case by (simp only: convex-unit-Rep-compact-basis [symmetric]
unit)
next
case PDPlus
then show ?case by (simp only: convez-plus-principal [symmetric] plus)
qed
qed (rule P)

31.5 Monadic bind

definition
convez-bind-basis ::
'a::bifinite pd-basis = (‘a — 'b convez-pd) — 'b::bifinite convez-pd where
convez-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
(Azy. A f.af Ugyf)

lemma ACI-convez-bind:

semilattice Az y. A f. z-f Up y-f)
apply unfold-locales
apply (simp add: conver-plus-assoc)
apply (simp add: convez-plus-commute)
apply (simp add: eta-cfun)
done

lemma convez-bind-basis-simps [simp]:
convex-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
convez-bind-basis (PDPlus t u) =
(A f. convex-bind-basis t-f U convez-bind-basis u-f)
unfolding convex-bind-basis-def
apply —
apply (rule fold-pd-PDUnit [OF ACI-convez-bind))
apply (rule fold-pd-PDPlus [OF ACI-convez-bind))
done

lemma convex-bind-basis-mono:

t <t u = convex-bind-basis t T convex-bind-basis u
apply (erule convez-le-induct)
apply (erule (1) below-trans)
apply (simp add: monofun-LAM monofun-cfun)
apply (simp add: monofun-LAM monofun-cfun)
done

definition
convez-bind :: 'a::bifinite conver-pd — (‘a — 'b convex-pd) — 'b::bifinite conver-pd
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where
convez-bind = convex-pd.extension convex-bind-basis

syntax
-convex-bind :: [logic, logic, logic] = logic
(«(<indent=3 notation=<binder convex-bind»\Jy-€-./ -)» [0, 0, 10] 10)

translations
Uhzexs. e == CONST convez-bind-zs-(A z. e)

lemma convez-bind-principal [simp]:
convex-bind-(convez-principal t) = convex-bind-basis t

unfolding convex-bind-def

apply (rule convex-pd.extension-principal)

apply (erule convex-bind-basis-mono)

done

lemma convez-bind-unit [simp]:
convez-bind-{z}g-f = f-x
by (induct z rule: compact-basis.principal-induct, simp, simp)

lemma convez-bind-plus [simp]:
convez-bind-(zs U ys)-f = convez-bind-zs-f U convez-bind-ys-f
by (induct zs rule: convex-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)

lemma convez-bind-strict [simp]: convez-bind-L-f = f-L
unfolding convez-unit-strict [symmetric] by (rule convezr-bind-unit)

lemma convez-bind-bind:
convez-bind-(convex-bind-xs-f)-g =
convex-bind-zs-(A z. conver-bind-(f-x)-g)
by (induct zs, simp-all)

31.6 Map

definition
convez-map :: ('a::bifinite — 'b) — 'a conver-pd — 'b::bifinite conver-pd where
conver-map = (A f xs. convex-bind-xzs-(A z. {f-z}t))

lemma convez-map-unit [simp]:

convez-map-f-{z}h = {f-z}t

unfolding convex-map-def by simp
lemma conver-map-plus [simp):
convex-map-f-(zs U ys) = convex-map-f-xs Uy conver-map-f-ys

unfolding convex-map-def by simp

lemma convez-map-bottom [simp]: convex-map-f-L = {f- L}t
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unfolding convex-map-def by simp

lemma convez-map-ident: convez-map-(A z. T)-15 = T8
by (induct zs rule: convex-pd-induct, simp-all)

lemma convex-map-ID: conver-map-ID = ID
by (simp add: cfun-eq-iff ID-def convex-map-ident)

lemma convex-map-map:
conver-map-f-(convex-map-g-xs) = conver-map-(A z. f-(g-x))-xs
by (induct zs rule: convex-pd-induct, simp-all)

lemma convez-bind-map:
convez-bind-(convez-map-f-xs)-g = convez-bind-zs-(A z. g-(f-x))
by (simp add: convex-map-def conver-bind-bind)

lemma convez-map-bind:
convez-map-f-(convex-bind-zs-g) = convex-bind-zs-(A x. conver-map-f-(g-z))
by (simp add: convez-map-def convez-bind-bind)

lemma ep-pair-convex-map: ep-pair e p = ep-pair (convex-map-e) (convex-map-p)
apply standard

apply (induct-tac x rule: convez-pd-induct, simp-all add: ep-pair.e-inverse)
apply (induct-tac y rule: convez-pd-induct)

apply (simp-all add: ep-pair.e-p-below monofun-cfun)

done

lemma deflation-convez-map: deflation d = deflation (conver-map-d)
apply standard

apply (induct-tac x rule: convez-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: convez-pd-induct)

apply (simp-all add: deflation.below monofun-cfun)

done

lemma finite-deflation-convex-map:
assumes finite-deflation d shows finite-deflation (conver-map-d)
proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-azioms show deflation (convex-map-d)
by (rule deflation-convez-map)
have finite (range (A\z. d-x)) by (rule d.finite-range)
hence finite (Rep-compact-basis —* range (Az. d-x))
by (rule finite-vimagel, simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis —* range (Az. d-x))) by simp
hence finite (Rep-pd-basis —‘ (Pow (Rep-compact-basis —* range (Az. d-x))))
by (rule finite-vimagel, simp add: inj-on-def Rep-pd-basis-inject)
hence *: finite (convex-principal ¢ Rep-pd-basis —* (Pow (Rep-compact-basis —
range (Az. d-x)))) by simp
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hence finite (range (Axs. convez-map-d-xs))
apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac zs rule: convex-pd.principal-induct)
apply (simp add: adm-mem-finite x)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: conver-unit-Rep-compact-basis [symmetric] convex-map-unit)
apply simp
apply (subgoal-tac 3b. d-(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDUnit)
apply (rule range-eql)
apply (erule sym)
apply (rule exl)
apply (rule Abs-compact-basis-inverse [symmetric])
apply (simp add: d.compact)
apply (simp only: convex-plus-principal [symmetric] conver-map-plus)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDPlus)
done
thus finite {zs. convezr-map-d-xs = xs}
by (rule finite-range-imp-finite-fizes)
qged

31.7 Convex powerdomain is bifinite

lemma approz-chain-conver-map:
assumes approz-chain a
shows approz-chain (M\i. conver-map-(a 1))
using assms unfolding approz-chain-def
by (simp add: lub-APP convex-map-ID finite-deflation-conver-map)

instance convez-pd :: (bifinite) bifinite
proof
show 3 (a:nat = 'a convex-pd — 'a conver-pd). approz-chain a
using bifinite [where ‘a='a]
by (fast intro!: approz-chain-convex-map)

qed
31.8 Join
definition

convez-join :: 'a::bifinite convez-pd conver-pd — 'a conver-pd where
convez-join = (A zss. convex-bind-zss-(A zs. xs))

lemma convez-join-unit [simp]:



THEORY “ConvexPD”

convex-join-{zs}ty = xs
unfolding convex-join-def by simp

lemma convez-join-plus [simp]:
convez-join-(xss U yss) = convex-join-zss U convex-join-yss
unfolding convex-join-def by simp

lemma convez-join-bottom [simp]: convez-join-L = L
unfolding convex-join-def by simp

lemma convex-join-map-unit:
convex-join-( convex-map- conver-unit-xs) = s

by (induct zs rule: convex-pd-induct, simp-all)

lemma convez-join-map-join:

convex-join-(convex-map- conver-join-1sss) = conver-join-( conver-join-rsss)

by (induct xzsss rule: convezr-pd-induct, simp-all)

lemma convez-join-map-map:
convez-join-(conver-map-(convex-map-f)-xss) =
convex-map-f-(convex-join-xss)

by (induct zss rule: convezr-pd-induct, simp-all)

31.9 Conversions to other powerdomains

Convex to upper

lemma convez-le-imp-upper-le: t <t u = t <f u
unfolding convex-le-def by simp

definition
convez-to-upper :: 'a::bifinite conver-pd — 'a upper-pd where
convez-to-upper = convex-pd.extension upper-principal

lemma convez-to-upper-principal [simp):
convez-to-upper-( convez-principal t) = upper-principal t

unfolding convex-to-upper-def

apply (rule convex-pd.extension-principal)

apply (rule upper-pd.principal-mono)

apply (erule convez-le-imp-upper-le)

done

lemma convez-to-upper-unit [simp):
convex-to-upper-{z}t = {z}t

by (induct z rule: compact-basis.principal-induct, simp, simp)

lemma convez-to-upper-plus [simp]:

convex-to-upper-(xs U ys) = convex-to-upper-zs Uf convex-to-upper-ys

by (induct zs rule: convex-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)
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lemma convez-to-upper-bind [simp]:
convez-to-upper-(convez-bind-zs-f) =
upper-bind-(convez-to-upper-xs)-(convez-to-upper oo f)
by (induct zs rule: convez-pd-induct, simp, simp, simp)

lemma convez-to-upper-map [simpl:
convez-to-upper-(convex-map-f-xs) = upper-map-f-(convex-to-upper-s)
by (simp add: convex-map-def upper-map-def cfcomp-LAM)

lemma convez-to-upper-join [simp]:
convex-to-upper-( convez-join-rss) =
upper-bind-(convez-to-upper-xss)- convex-to-upper
by (simp add: convex-join-def upper-join-def cfcomp-LAM eta-cfun)

Convex to lower

lemma convez-le-imp-lower-le: t <j v = t <b u
unfolding convezx-le-def by simp

definition
convez-to-lower :: 'a::bifinite conver-pd — 'a lower-pd where
convex-to-lower = convex-pd.extension lower-principal

lemma convez-to-lower-principal [simp]:
convez-to-lower-(convex-principal t) = lower-principal t

unfolding convex-to-lower-def

apply (rule convex-pd.extension-principal)

apply (rule lower-pd.principal-mono)

apply (erule convez-le-imp-lower-le)

done

lemma convez-to-lower-unit [simp):
convez-to-lower-{z}f = {z}b
by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma convez-to-lower-plus [simpl:
convez-to-lower-(zs U ys) = convex-to-lower-zs Ub convez-to-lower-ys
by (induct s rule: convez-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)

lemma convez-to-lower-bind [simpl:
convez-to-lower-(convex-bind-zs-f) =
lower-bind-( convez-to-lower-xs)-( convex-to-lower oo f)
by (induct xzs rule: convez-pd-induct, simp, simp, simp)

lemma convez-to-lower-map [simp):
convez-to-lower-(convex-map-f-xs) = lower-map-f-(convez-to-lower-xs)
by (simp add: convez-map-def lower-map-def cfcomp-LAM)
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lemma convez-to-lower-join [simp]:
convez-to-lower-(convex-join-xss) =
lower-bind-(convez-to-lower-zss)- convex-to-lower
by (simp add: convex-join-def lower-join-def cfcomp-LAM eta-cfun)

Ordering property

lemma convex-pd-below-iff:
(zs T ys) =
(convez-to-upper-xs T convex-to-upper-ys A
convez-to-lower-zs T conve:r—to—lower-ys)
apply (induct xs rule: convez-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (simp add: convez-le-def)
done

lemmas convez-plus-below-plus-iff =
convez-pd-below-iff [where zs=zs U ys and ys=zs Uj ws]
for zs ys zs ws

lemmas convez-pd-below-simps =
convez-unit-below-plus-iff
convez-plus-below-unit-iff
convez-plus-below-plus-iff
convez-unit-below-iff
convez-to-upper-unit
convez-to-upper-plus
convez-to-lower-unit
convez-to-lower-plus
upper-pd-below-simps
lower-pd-below-simps

end

32 Powerdomains

theory Powerdomains
imports ConvexPD Domain
begin

32.1 Universal domain embeddings
definition upper-emb = udom-emb (\i. upper-map-(udom-approz 7))

definition upper-prj = udom-prj (A\i. upper-map-(udom-approz 1))

definition lower-emb = udom-emb (\i. lower-map-(udom-approz i))
definition lower-prj = udom-prj (X\i. lower-map-(udom-approx 7))

definition convez-emb = udom-emb (Ai. convex-map-(udom-approx i))
definition convex-prj = udom-prj (Ai. convex-map-(udom-approz 7))



THEORY “Powerdomains”

lemma ep-pair-upper: ep-pair upper-emb upper-prj
unfolding upper-emb-def upper-prj-def
by (simp add: ep-pair-udom approx-chain-upper-map)

lemma ep-pair-lower: ep-pair lower-emb lower-prj
unfolding lower-emb-def lower-prj-def
by (simp add: ep-pair-udom approx-chain-lower-map)

lemma ep-pair-convez: ep-pair convex-emb conver-prj
unfolding convex-emb-def convez-prj-def
by (simp add: ep-pair-udom approx-chain-conver-map)

32.2 Deflation combinators

definition upper-defi :: udom defl — udom defi
where upper-defl = defi-funl upper-emb upper-prj upper-map

definition lower-defl :: udom defl — udom defl
where lower-defl = defl-funl lower-emb lower-prj lower-map

definition convez-defl :: udom defl — udom defl
where convez-defl = defi-funl convex-emb convezr-prj convexr-map

lemma cast-upper-defi:

cast-(upper-defl-A) = upper-emb oo upper-map-(cast-A) oo upper-prj
using ep-pair-upper finite-deflation-upper-map
unfolding upper-defl-def by (rule cast-defl-funl)

lemma cast-lower-defi:

cast-(lower-defl- A) = lower-emb oo lower-map-(cast-A) oo lower-prj
using ep-pair-lower finite-deflation-lower-map
unfolding lower-defl-def by (rule cast-defl-funl)

lemma cast-convex-defi:

cast-(convez-defl-A) = convex-emb oo convex-map-(cast-A) oo conver-prj

using ep-pair-convez finite-deflation-convex-map
unfolding convez-defi-def by (rule cast-defl-funl)
32.3 Domain class instances
instantiation upper-pd :: (domain) domain

begin

definition
emb = upper-emb oo upper-map-emb

definition
pPrj = upper-map-prj 00 upper-prj
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definition
defl (t::'a upper-pd itself) = upper-defl- DEFL(’a)

definition
(liftemb :: 'a upper-pd v — udom u) = u-map-emb

definition
(liftprj :: udom u — 'a upper-pd u) = u-map-prj

definition
liftdefl (t::'a upper-pd itself) = liftdefl-of - DEFL('a upper-pd)

instance proof
show ep-pair emb (prj :: udom — 'a upper-pd)
unfolding emb-upper-pd-def prj-upper-pd-def
by (intro ep-pair-comp ep-pair-upper ep-pair-upper-map ep-pair-emb-pry)
next
show cast-DEFL('a upper-pd) = emb oo (prj :: udom — 'a upper-pd)
unfolding emb-upper-pd-def prj-upper-pd-def defl-upper-pd-def cast-upper-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff upper-map-map)
qed (fact liftemb-upper-pd-def liftprj-upper-pd-def liftdefl-upper-pd-def )+

end

instantiation lower-pd :: (domain) domain
begin

definition
emb = lower-emb oo lower-map-emb

definition
prj = lower-map-prj oo lower-prj

definition
defl (t::'a lower-pd itself) = lower-defl- DEFL(’a)

definition
(liftemb :: 'a lower-pd u — udom u) = u-map-emb

definition
(liftprj :: udom u — 'a lower-pd u) = u-map-prj

definition
liftdefl (t::'a lower-pd itself) = liftdefl-of - DEFL('a lower-pd)

instance proof
show ep-pair emb (prj :: udom — 'a lower-pd)
unfolding emb-lower-pd-def prj-lower-pd-def
by (intro ep-pair-comp ep-pair-lower ep-pair-lower-map ep-pair-emb-pry)
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next
show cast-DEFL('a lower-pd) = emb oo (prj :: udom — 'a lower-pd)
unfolding emb-lower-pd-def prj-lower-pd-def defl-lower-pd-def cast-lower-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff lower-map-map)
qed (fact liftemb-lower-pd-def liftpri-lower-pd-def liftdefl-lower-pd-def )+

end

instantiation convez-pd :: (domain) domain
begin

definition
emb = convex-emb oo convex-map-emb

definition
Prj = convexr-map-prj 00 CONvVer-prj

definition
defl (t::'a convex-pd itself) = convex-defl- DEFL('a)

definition
(liftemb :: 'a conver-pd v — udom u) = u-map-emb

definition
(liftprj = udom u — 'a conver-pd u) = u-map-prj

definition
liftdefl (t::'a convex-pd itself) = liftdefl-of -DEFL(’a convex-pd)

instance proof
show ep-pair emb (prj :: udom — 'a convezr-pd)
unfolding emb-convex-pd-def prj-convex-pd-def
by (intro ep-pair-comp ep-pair-conver ep-pair-conver-map ep-pair-emb-pry)
next
show cast-DEFL('a convez-pd) = emb oo (prj :: udom — 'a convex-pd)
unfolding emb-convez-pd-def prj-convex-pd-def defl-convezr-pd-def cast-convex-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff convez-map-map)
qed (fact liftemb-convez-pd-def liftprj-convex-pd-def liftdefl-convex-pd-def )+

end

lemma DEFL-upper: DEFL('a::domain upper-pd) = upper-defl- DEFL('a)
by (rule defl-upper-pd-def)

lemma DEFL-lower: DEFL(’a::domain lower-pd) = lower-defl- DEFL('a)
by (rule defl-lower-pd-def)

lemma DEFL-convex: DEFL(’a::domain conver-pd) = convez-defl- DEFL('a)
by (rule defl-convez-pd-def)
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32.4 Isomorphic deflations

lemma isodefl-upper:

isodefl d t = isodefl (upper-map-d) (upper-defi-t)
apply (rule isodefil)
apply (simp add: cast-upper-defl cast-isodefl)
apply (simp add: emb-upper-pd-def prj-upper-pd-def)
apply (simp add: upper-map-map)
done

lemma isodefi-lower:

isodefl d t = isodefl (lower-map-d) (lower-defi-t)
apply (rule isodefil)
apply (simp add: cast-lower-defl cast-isodefl)
apply (simp add: emb-lower-pd-def prj-lower-pd-def)
apply (simp add: lower-map-map)
done

lemma isodefl-convez:

isodefl d t = isodefl (convex-map-d) (convez-defi-t)
apply (rule isodefil)
apply (simp add: cast-convex-defl cast-isodefl)
apply (simp add: emb-convez-pd-def prj-convex-pd-def)
apply (simp add: convez-map-map)
done

32.5 Domain package setup for powerdomains

lemmas [domain-defl-simps] = DEFL-upper DEFL-lower DEFL-convex
lemmas [domain-map-ID] = upper-map-ID lower-map-ID convex-map-ID
lemmas [domain-isodefl] = isodefl-upper isodefl-lower isodefl-convex

lemmas [domain-deflation] =
deflation-upper-map deflation-lower-map deflation-conver-map

setup <«
fold Domain-Take-Proofs.add-rec-type
[(type-name <upper-pd», [true]),
(type-name <lower-pdy, [true]),
(type-name conver-pdy, [true])]

end

theory HOLCF
imports
Main
Domain
Powerdomains
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begin
default-sort domain

end
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