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theory Cpo
imports Main

begin

1 Partial orders
declare [[typedef-overloaded]]

1.1 Type class for partial orders
class below =

fixes below :: ′a ⇒ ′a ⇒ bool
begin

notation (ASCII )
below (infix ‹<<› 50 )

notation
below (infix ‹v› 50 )

abbreviation not-below :: ′a ⇒ ′a ⇒ bool (infix ‹ 6v› 50 )
where not-below x y ≡ ¬ below x y

notation (ASCII )
not-below (infix ‹∼<<› 50 )

lemma below-eq-trans: a v b =⇒ b = c =⇒ a v c
by (rule subst)

lemma eq-below-trans: a = b =⇒ b v c =⇒ a v c
by (rule ssubst)

end

class po = below +
assumes below-refl [iff ]: x v x
assumes below-trans: x v y =⇒ y v z =⇒ x v z
assumes below-antisym: x v y =⇒ y v x =⇒ x = y

begin

lemma eq-imp-below: x = y =⇒ x v y
by simp

lemma box-below: a v b =⇒ c v a =⇒ b v d =⇒ c v d
by (rule below-trans [OF below-trans])

lemma po-eq-conv: x = y ←→ x v y ∧ y v x
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by (fast intro!: below-antisym)

lemma rev-below-trans: y v z =⇒ x v y =⇒ x v z
by (rule below-trans)

lemma not-below2not-eq: x 6v y =⇒ x 6= y
by auto

end

lemmas HOLCF-trans-rules [trans] =
below-trans
below-antisym
below-eq-trans
eq-below-trans

context po
begin

1.2 Upper bounds
definition is-ub :: ′a set ⇒ ′a ⇒ bool (infix ‹<|› 55 )

where S <| x ←→ (∀ y∈S . y v x)

lemma is-ubI : (
∧

x. x ∈ S =⇒ x v u) =⇒ S <| u
by (simp add: is-ub-def )

lemma is-ubD: [[S <| u; x ∈ S ]] =⇒ x v u
by (simp add: is-ub-def )

lemma ub-imageI : (
∧

x. x ∈ S =⇒ f x v u) =⇒ (λx. f x) ‘ S <| u
unfolding is-ub-def by fast

lemma ub-imageD: [[f ‘ S <| u; x ∈ S ]] =⇒ f x v u
unfolding is-ub-def by fast

lemma ub-rangeI : (
∧

i. S i v x) =⇒ range S <| x
unfolding is-ub-def by fast

lemma ub-rangeD: range S <| x =⇒ S i v x
unfolding is-ub-def by fast

lemma is-ub-empty [simp]: {} <| u
unfolding is-ub-def by fast

lemma is-ub-insert [simp]: (insert x A) <| y = (x v y ∧ A <| y)
unfolding is-ub-def by fast

lemma is-ub-upward: [[S <| x; x v y]] =⇒ S <| y
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unfolding is-ub-def by (fast intro: below-trans)

1.3 Least upper bounds
definition is-lub :: ′a set ⇒ ′a ⇒ bool (infix ‹<<|› 55 )

where S <<| x ←→ S <| x ∧ (∀ u. S <| u −→ x v u)

definition lub :: ′a set ⇒ ′a
where lub S = (THE x . S <<| x)

end

syntax (ASCII )
-BLub :: [pttrn, ′a set, ′b] ⇒ ′b (‹(‹indent=3 notation=‹binder LUB››LUB -:-./

-)› [0 ,0 , 10 ] 10 )

syntax
-BLub :: [pttrn, ′a set, ′b] ⇒ ′b (‹(‹indent=3 notation=‹binder

⊔
››
⊔

-∈-./ -)›
[0 ,0 , 10 ] 10 )

syntax-consts
-BLub ⇀↽ lub

translations
LUB x:A. t ⇀↽ CONST lub ((λx. t) ‘ A)

context po
begin

abbreviation Lub (binder ‹
⊔

› 10 )
where

⊔
n. t n ≡ lub (range t)

notation (ASCII )
Lub (binder ‹LUB › 10 )

access to some definition as inference rule
lemma is-lubD1 : S <<| x =⇒ S <| x

unfolding is-lub-def by fast

lemma is-lubD2 : [[S <<| x; S <| u]] =⇒ x v u
unfolding is-lub-def by fast

lemma is-lubI : [[S <| x;
∧

u. S <| u =⇒ x v u]] =⇒ S <<| x
unfolding is-lub-def by fast

lemma is-lub-below-iff : S <<| x =⇒ x v u ←→ S <| u
unfolding is-lub-def is-ub-def by (metis below-trans)

lubs are unique
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lemma is-lub-unique: S <<| x =⇒ S <<| y =⇒ x = y
unfolding is-lub-def is-ub-def by (blast intro: below-antisym)

technical lemmas about lub and (<<|)
lemma is-lub-lub: M <<| x =⇒ M <<| lub M

unfolding lub-def by (rule theI [OF - is-lub-unique])

lemma lub-eqI : M <<| l =⇒ lub M = l
by (rule is-lub-unique [OF is-lub-lub])

lemma is-lub-singleton [simp]: {x} <<| x
by (simp add: is-lub-def )

lemma lub-singleton [simp]: lub {x} = x
by (rule is-lub-singleton [THEN lub-eqI ])

lemma is-lub-bin: x v y =⇒ {x, y} <<| y
by (simp add: is-lub-def )

lemma lub-bin: x v y =⇒ lub {x, y} = y
by (rule is-lub-bin [THEN lub-eqI ])

lemma is-lub-maximal: S <| x =⇒ x ∈ S =⇒ S <<| x
by (erule is-lubI , erule (1 ) is-ubD)

lemma lub-maximal: S <| x =⇒ x ∈ S =⇒ lub S = x
by (rule is-lub-maximal [THEN lub-eqI ])

1.4 Countable chains
definition chain :: (nat ⇒ ′a) ⇒ bool

where — Here we use countable chains and I prefer to code them as functions!
chain Y = (∀ i. Y i v Y (Suc i))

lemma chainI : (
∧

i. Y i v Y (Suc i)) =⇒ chain Y
unfolding chain-def by fast

lemma chainE : chain Y =⇒ Y i v Y (Suc i)
unfolding chain-def by fast

chains are monotone functions
lemma chain-mono-less: chain Y =⇒ i < j =⇒ Y i v Y j

by (erule less-Suc-induct, erule chainE , erule below-trans)

lemma chain-mono: chain Y =⇒ i ≤ j =⇒ Y i v Y j
by (cases i = j) (simp-all add: chain-mono-less)

lemma chain-shift: chain Y =⇒ chain (λi. Y (i + j))
by (rule chainI , simp, erule chainE)
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technical lemmas about (least) upper bounds of chains
lemma is-lub-rangeD1 : range S <<| x =⇒ S i v x

by (rule is-lubD1 [THEN ub-rangeD])

lemma is-ub-range-shift: chain S =⇒ range (λi. S (i + j)) <| x = range S <| x
apply (rule iffI )
apply (rule ub-rangeI )
apply (rule-tac y=S (i + j) in below-trans)
apply (erule chain-mono)
apply (rule le-add1 )

apply (erule ub-rangeD)
apply (rule ub-rangeI )
apply (erule ub-rangeD)
done

lemma is-lub-range-shift: chain S =⇒ range (λi. S (i + j)) <<| x = range S <<|
x

by (simp add: is-lub-def is-ub-range-shift)

the lub of a constant chain is the constant
lemma chain-const [simp]: chain (λi. c)

by (simp add: chainI )

lemma is-lub-const: range (λx. c) <<| c
by (blast dest: ub-rangeD intro: is-lubI ub-rangeI )

lemma lub-const [simp]: (
⊔

i. c) = c
by (rule is-lub-const [THEN lub-eqI ])

1.5 Finite chains
definition max-in-chain :: nat ⇒ (nat ⇒ ′a) ⇒ bool

where — finite chains, needed for monotony of continuous functions
max-in-chain i C ←→ (∀ j. i ≤ j −→ C i = C j)

definition finite-chain :: (nat ⇒ ′a) ⇒ bool
where finite-chain C = (chain C ∧ (∃ i. max-in-chain i C ))

results about finite chains
lemma max-in-chainI : (

∧
j. i ≤ j =⇒ Y i = Y j) =⇒ max-in-chain i Y

unfolding max-in-chain-def by fast

lemma max-in-chainD: max-in-chain i Y =⇒ i ≤ j =⇒ Y i = Y j
unfolding max-in-chain-def by fast

lemma finite-chainI : chain C =⇒ max-in-chain i C =⇒ finite-chain C
unfolding finite-chain-def by fast
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lemma finite-chainE : [[finite-chain C ;
∧

i. [[chain C ; max-in-chain i C ]] =⇒ R]]
=⇒ R

unfolding finite-chain-def by fast

lemma lub-finch1 : chain C =⇒ max-in-chain i C =⇒ range C <<| C i
apply (rule is-lubI )
apply (rule ub-rangeI , rename-tac j)
apply (rule-tac x=i and y=j in linorder-le-cases)
apply (drule (1 ) max-in-chainD, simp)

apply (erule (1 ) chain-mono)
apply (erule ub-rangeD)
done

lemma lub-finch2 : finite-chain C =⇒ range C <<| C (LEAST i. max-in-chain i
C )

apply (erule finite-chainE)
apply (erule LeastI2 [where Q=λi. range C <<| C i])
apply (erule (1 ) lub-finch1 )
done

lemma finch-imp-finite-range: finite-chain Y =⇒ finite (range Y )
apply (erule finite-chainE)
apply (rule-tac B=Y ‘ {..i} in finite-subset)
apply (rule subsetI )
apply (erule rangeE , rename-tac j)
apply (rule-tac x=i and y=j in linorder-le-cases)
apply (subgoal-tac Y j = Y i, simp)
apply (simp add: max-in-chain-def )

apply simp
apply simp
done

lemma finite-range-has-max:
fixes f :: nat ⇒ ′a

and r :: ′a ⇒ ′a ⇒ bool
assumes mono:

∧
i j. i ≤ j =⇒ r (f i) (f j)

assumes finite-range: finite (range f )
shows ∃ k. ∀ i. r (f i) (f k)

proof (intro exI allI )
fix i :: nat
let ?j = LEAST k. f k = f i
let ?k = Max ((λx. LEAST k. f k = x) ‘ range f )
have ?j ≤ ?k
proof (rule Max-ge)

show finite ((λx. LEAST k. f k = x) ‘ range f )
using finite-range by (rule finite-imageI )

show ?j ∈ (λx. LEAST k. f k = x) ‘ range f
by (intro imageI rangeI )

qed
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hence r (f ?j) (f ?k)
by (rule mono)

also have f ?j = f i
by (rule LeastI , rule refl)

finally show r (f i) (f ?k) .
qed

lemma finite-range-imp-finch: chain Y =⇒ finite (range Y ) =⇒ finite-chain Y
apply (subgoal-tac ∃ k. ∀ i. Y i v Y k)
apply (erule exE)
apply (rule finite-chainI , assumption)
apply (rule max-in-chainI )
apply (rule below-antisym)
apply (erule (1 ) chain-mono)

apply (erule spec)
apply (rule finite-range-has-max)
apply (erule (1 ) chain-mono)

apply assumption
done

lemma bin-chain: x v y =⇒ chain (λi. if i=0 then x else y)
by (rule chainI ) simp

lemma bin-chainmax: x v y =⇒ max-in-chain (Suc 0 ) (λi. if i=0 then x else y)
by (simp add: max-in-chain-def )

lemma is-lub-bin-chain: x v y =⇒ range (λi::nat. if i=0 then x else y) <<| y
apply (frule bin-chain)
apply (drule bin-chainmax)
apply (drule (1 ) lub-finch1 )
apply simp
done

the maximal element in a chain is its lub
lemma lub-chain-maxelem: Y i = c =⇒ ∀ i. Y i v c =⇒ lub (range Y ) = c

by (blast dest: ub-rangeD intro: lub-eqI is-lubI ub-rangeI )

end

2 Classes cpo and pcpo
2.1 Complete partial orders

The class cpo of chain complete partial orders
class cpo = po +

assumes cpo: chain S =⇒ ∃ x. range S <<| x

default-sort cpo
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context cpo
begin

in cpo’s everthing equal to THE lub has lub properties for every chain
lemma cpo-lubI : chain S =⇒ range S <<| (

⊔
i. S i)

by (fast dest: cpo elim: is-lub-lub)

lemma thelubE : [[chain S ; (
⊔

i. S i) = l]] =⇒ range S <<| l
by (blast dest: cpo intro: is-lub-lub)

Properties of the lub
lemma is-ub-thelub: chain S =⇒ S x v (

⊔
i. S i)

by (blast dest: cpo intro: is-lub-lub [THEN is-lub-rangeD1 ])

lemma is-lub-thelub: [[chain S ; range S <| x]] =⇒ (
⊔

i. S i) v x
by (blast dest: cpo intro: is-lub-lub [THEN is-lubD2 ])

lemma lub-below-iff : chain S =⇒ (
⊔

i. S i) v x ←→ (∀ i. S i v x)
by (simp add: is-lub-below-iff [OF cpo-lubI ] is-ub-def )

lemma lub-below: [[chain S ;
∧

i. S i v x]] =⇒ (
⊔

i. S i) v x
by (simp add: lub-below-iff )

lemma below-lub: [[chain S ; x v S i]] =⇒ x v (
⊔

i. S i)
by (erule below-trans, erule is-ub-thelub)

lemma lub-range-mono: [[range X ⊆ range Y ; chain Y ; chain X ]] =⇒ (
⊔

i. X i)
v (

⊔
i. Y i)

apply (erule lub-below)
apply (subgoal-tac ∃ j. X i = Y j)
apply clarsimp
apply (erule is-ub-thelub)

apply auto
done

lemma lub-range-shift: chain Y =⇒ (
⊔

i. Y (i + j)) = (
⊔

i. Y i)
apply (rule below-antisym)
apply (rule lub-range-mono)

apply fast
apply assumption

apply (erule chain-shift)
apply (rule lub-below)
apply assumption

apply (rule-tac i=i in below-lub)
apply (erule chain-shift)

apply (erule chain-mono)
apply (rule le-add1 )
done
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lemma maxinch-is-thelub: chain Y =⇒ max-in-chain i Y = ((
⊔

i. Y i) = Y i)
apply (rule iffI )
apply (fast intro!: lub-eqI lub-finch1 )

apply (unfold max-in-chain-def )
apply (safe intro!: below-antisym)
apply (fast elim!: chain-mono)

apply (drule sym)
apply (force elim!: is-ub-thelub)
done

the v relation between two chains is preserved by their lubs
lemma lub-mono: [[chain X ; chain Y ;

∧
i. X i v Y i]] =⇒ (

⊔
i. X i) v (

⊔
i. Y i)

by (fast elim: lub-below below-lub)

the = relation between two chains is preserved by their lubs
lemma lub-eq: (

∧
i. X i = Y i) =⇒ (

⊔
i. X i) = (

⊔
i. Y i)

by simp

lemma ch2ch-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows chain (λi.

⊔
j. Y i j)

apply (rule chainI )
apply (rule lub-mono [OF 2 2 ])
apply (rule chainE [OF 1 ])
done

lemma diag-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows (

⊔
i.

⊔
j. Y i j) = (

⊔
i. Y i i)

proof (rule below-antisym)
have 3 : chain (λi. Y i i)

apply (rule chainI )
apply (rule below-trans)
apply (rule chainE [OF 1 ])

apply (rule chainE [OF 2 ])
done

have 4 : chain (λi.
⊔

j. Y i j)
by (rule ch2ch-lub [OF 1 2 ])

show (
⊔

i.
⊔

j. Y i j) v (
⊔

i. Y i i)
apply (rule lub-below [OF 4 ])
apply (rule lub-below [OF 2 ])
apply (rule below-lub [OF 3 ])
apply (rule below-trans)
apply (rule chain-mono [OF 1 max.cobounded1 ])

apply (rule chain-mono [OF 2 max.cobounded2 ])
done
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show (
⊔

i. Y i i) v (
⊔

i.
⊔

j. Y i j)
apply (rule lub-mono [OF 3 4 ])
apply (rule is-ub-thelub [OF 2 ])
done

qed

lemma ex-lub:
assumes 1 :

∧
j. chain (λi. Y i j)

assumes 2 :
∧

i. chain (λj. Y i j)
shows (

⊔
i.

⊔
j. Y i j) = (

⊔
j.

⊔
i. Y i j)

by (simp add: diag-lub 1 2 )

end

2.2 Pointed cpos

The class pcpo of pointed cpos
class pcpo = cpo +

assumes least: ∃ x. ∀ y. x v y
begin

definition bottom :: ′a (‹⊥›)
where bottom = (THE x . ∀ y. x v y)

lemma minimal [iff ]: ⊥ v x
unfolding bottom-def
apply (rule the1I2 )
apply (rule ex-ex1I )
apply (rule least)

apply (blast intro: below-antisym)
apply simp
done

end

Old "UU" syntax:
abbreviation (input) UU ≡ bottom

Simproc to rewrite ⊥ = x to x = ⊥.
setup ‹Reorient-Proc.add (fn Const- ‹bottom -› => true | - => false)›
simproc-setup reorient-bottom (⊥ = x) = ‹K Reorient-Proc.proc›

useful lemmas about ⊥
lemma below-bottom-iff [simp]: x v ⊥ ←→ x = ⊥

by (simp add: po-eq-conv)

lemma eq-bottom-iff : x = ⊥ ←→ x v ⊥
by simp
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lemma bottomI : x v ⊥ =⇒ x = ⊥
by (subst eq-bottom-iff )

lemma lub-eq-bottom-iff : chain Y =⇒ (
⊔

i. Y i) = ⊥ ←→ (∀ i. Y i = ⊥)
by (simp only: eq-bottom-iff lub-below-iff )

2.3 Chain-finite and flat cpos

further useful classes for HOLCF domains
class chfin = po +

assumes chfin: chain Y =⇒ ∃n. max-in-chain n Y
begin

subclass cpo
apply standard
apply (frule chfin)
apply (blast intro: lub-finch1 )
done

lemma chfin2finch: chain Y =⇒ finite-chain Y
by (simp add: chfin finite-chain-def )

end

class flat = pcpo +
assumes ax-flat: x v y =⇒ x = ⊥ ∨ x = y

begin

subclass chfin
proof

fix Y
assume ∗: chain Y
show ∃n. max-in-chain n Y

apply (unfold max-in-chain-def )
apply (cases ∀ i. Y i = ⊥)
apply simp

apply simp
apply (erule exE)
apply (rule-tac x=i in exI )
apply clarify
using ∗ apply (blast dest: chain-mono ax-flat)
done

qed

lemma flat-below-iff : x v y ←→ x = ⊥ ∨ x = y
by (safe dest!: ax-flat)

lemma flat-eq: a 6= ⊥ =⇒ a v b = (a = b)
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by (safe dest!: ax-flat)

end

2.4 Discrete cpos
class discrete-cpo = below +

assumes discrete-cpo [simp]: x v y ←→ x = y
begin

subclass po
by standard simp-all

In a discrete cpo, every chain is constant
lemma discrete-chain-const:

assumes S : chain S
shows ∃ x. S = (λi. x)

proof (intro exI ext)
fix i :: nat
from S le0 have S 0 v S i by (rule chain-mono)
then have S 0 = S i by simp
then show S i = S 0 by (rule sym)

qed

subclass chfin
proof

fix S :: nat ⇒ ′a
assume S : chain S
then have ∃ x. S = (λi. x)

by (rule discrete-chain-const)
then have max-in-chain 0 S

by (auto simp: max-in-chain-def )
then show ∃ i. max-in-chain i S ..

qed

end

3 Continuity and monotonicity
3.1 Definitions
definition monofun :: ( ′a::po ⇒ ′b::po) ⇒ bool — monotonicity

where monofun f ←→ (∀ x y. x v y −→ f x v f y)

definition cont :: ( ′a ⇒ ′b) ⇒ bool
where cont f = (∀Y . chain Y −→ range (λi. f (Y i)) <<| f (

⊔
i. Y i))

lemma contI : (
∧

Y . chain Y =⇒ range (λi. f (Y i)) <<| f (
⊔

i. Y i)) =⇒ cont f
by (simp add: cont-def )
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lemma contE : cont f =⇒ chain Y =⇒ range (λi. f (Y i)) <<| f (
⊔

i. Y i)
by (simp add: cont-def )

lemma monofunI : (
∧

x y. x v y =⇒ f x v f y) =⇒ monofun f
by (simp add: monofun-def )

lemma monofunE : monofun f =⇒ x v y =⇒ f x v f y
by (simp add: monofun-def )

3.2 Equivalence of alternate definition

monotone functions map chains to chains
lemma ch2ch-monofun: monofun f =⇒ chain Y =⇒ chain (λi. f (Y i))

apply (rule chainI )
apply (erule monofunE)
apply (erule chainE)
done

monotone functions map upper bound to upper bounds
lemma ub2ub-monofun: monofun f =⇒ range Y <| u =⇒ range (λi. f (Y i)) <|
f u

apply (rule ub-rangeI )
apply (erule monofunE)
apply (erule ub-rangeD)
done

a lemma about binary chains
lemma binchain-cont: cont f =⇒ x v y =⇒ range (λi::nat. f (if i = 0 then x else
y)) <<| f y

apply (subgoal-tac f (
⊔

i::nat. if i = 0 then x else y) = f y)
apply (erule subst)
apply (erule contE)
apply (erule bin-chain)

apply (rule-tac f=f in arg-cong)
apply (erule is-lub-bin-chain [THEN lub-eqI ])
done

continuity implies monotonicity
lemma cont2mono: cont f =⇒ monofun f

apply (rule monofunI )
apply (drule (1 ) binchain-cont)
apply (drule-tac i=0 in is-lub-rangeD1 )
apply simp
done

lemmas cont2monofunE = cont2mono [THEN monofunE ]
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lemmas ch2ch-cont = cont2mono [THEN ch2ch-monofun]

continuity implies preservation of lubs
lemma cont2contlubE : cont f =⇒ chain Y =⇒ f (

⊔
i. Y i) = (

⊔
i. f (Y i))

apply (rule lub-eqI [symmetric])
apply (erule (1 ) contE)
done

lemma contI2 :
fixes f :: ′a ⇒ ′b
assumes mono: monofun f
assumes below:

∧
Y . [[chain Y ; chain (λi. f (Y i))]] =⇒ f (

⊔
i. Y i) v (

⊔
i. f

(Y i))
shows cont f

proof (rule contI )
fix Y :: nat ⇒ ′a
assume Y : chain Y
with mono have fY : chain (λi. f (Y i))

by (rule ch2ch-monofun)
have (

⊔
i. f (Y i)) = f (

⊔
i. Y i)

apply (rule below-antisym)
apply (rule lub-below [OF fY ])
apply (rule monofunE [OF mono])
apply (rule is-ub-thelub [OF Y ])

apply (rule below [OF Y fY ])
done

with fY show range (λi. f (Y i)) <<| f (
⊔

i. Y i)
by (rule thelubE)

qed

3.3 Collection of continuity rules
named-theorems cont2cont continuity intro rule

3.4 Continuity of basic functions

The identity function is continuous
lemma cont-id [simp, cont2cont]: cont (λx. x)

apply (rule contI )
apply (erule cpo-lubI )
done

constant functions are continuous
lemma cont-const [simp, cont2cont]: cont (λx. c)

using is-lub-const by (rule contI )

application of functions is continuous
lemma cont-apply:
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fixes f :: ′a ⇒ ′b ⇒ ′c and t :: ′a ⇒ ′b
assumes 1 : cont (λx. t x)
assumes 2 :

∧
x. cont (λy. f x y)

assumes 3 :
∧

y. cont (λx. f x y)
shows cont (λx. (f x) (t x))

proof (rule contI2 [OF monofunI ])
fix x y :: ′a
assume x v y
then show f x (t x) v f y (t y)

by (auto intro: cont2monofunE [OF 1 ]
cont2monofunE [OF 2 ]
cont2monofunE [OF 3 ]
below-trans)

next
fix Y :: nat ⇒ ′a
assume chain Y
then show f (

⊔
i. Y i) (t (

⊔
i. Y i)) v (

⊔
i. f (Y i) (t (Y i)))

by (simp only: cont2contlubE [OF 1 ] ch2ch-cont [OF 1 ]
cont2contlubE [OF 2 ] ch2ch-cont [OF 2 ]
cont2contlubE [OF 3 ] ch2ch-cont [OF 3 ]
diag-lub below-refl)

qed

lemma cont-compose: cont c =⇒ cont (λx. f x) =⇒ cont (λx. c (f x))
by (rule cont-apply [OF - - cont-const])

Least upper bounds preserve continuity
lemma cont2cont-lub [simp]:

assumes chain:
∧

x. chain (λi. F i x)
and cont:

∧
i. cont (λx. F i x)

shows cont (λx.
⊔

i. F i x)
apply (rule contI2 )
apply (simp add: monofunI cont2monofunE [OF cont] lub-mono chain)

apply (simp add: cont2contlubE [OF cont])
apply (simp add: diag-lub ch2ch-cont [OF cont] chain)
done

if-then-else is continuous
lemma cont-if [simp, cont2cont]: cont f =⇒ cont g =⇒ cont (λx. if b then f x else
g x)

by (induct b) simp-all

3.5 Finite chains and flat pcpos

Monotone functions map finite chains to finite chains.
lemma monofun-finch2finch: monofun f =⇒ finite-chain Y =⇒ finite-chain (λn.
f (Y n))

by (force simp add: finite-chain-def ch2ch-monofun max-in-chain-def )
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The same holds for continuous functions.
lemma cont-finch2finch: cont f =⇒ finite-chain Y =⇒ finite-chain (λn. f (Y n))

by (rule cont2mono [THEN monofun-finch2finch])

All monotone functions with chain-finite domain are continuous.
lemma chfindom-monofun2cont: monofun f =⇒ cont f

for f :: ′a::chfin ⇒ ′b
apply (erule contI2 )
apply (frule chfin2finch)
apply (clarsimp simp add: finite-chain-def )
apply (subgoal-tac max-in-chain i (λi. f (Y i)))
apply (simp add: maxinch-is-thelub ch2ch-monofun)

apply (force simp add: max-in-chain-def )
done

All strict functions with flat domain are continuous.
lemma flatdom-strict2mono: f ⊥ = ⊥ =⇒ monofun f

for f :: ′a::flat ⇒ ′b::pcpo
apply (rule monofunI )
apply (drule ax-flat)
apply auto
done

lemma flatdom-strict2cont: f ⊥ = ⊥ =⇒ cont f
for f :: ′a::flat ⇒ ′b::pcpo
by (rule flatdom-strict2mono [THEN chfindom-monofun2cont])

All functions with discrete domain are continuous.
lemma cont-discrete-cpo [simp, cont2cont]: cont f

for f :: ′a::discrete-cpo ⇒ ′b
apply (rule contI )
apply (drule discrete-chain-const, clarify)
apply simp
done

4 Admissibility and compactness
4.1 Definitions
context cpo
begin

definition adm :: ( ′a ⇒ bool) ⇒ bool
where adm P ←→ (∀Y . chain Y −→ (∀ i. P (Y i)) −→ P (

⊔
i. Y i))

lemma admI : (
∧

Y . [[chain Y ; ∀ i. P (Y i)]] =⇒ P (
⊔

i. Y i)) =⇒ adm P
unfolding adm-def by fast
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lemma admD: adm P =⇒ chain Y =⇒ (
∧

i. P (Y i)) =⇒ P (
⊔

i. Y i)
unfolding adm-def by fast

lemma admD2 : adm (λx. ¬ P x) =⇒ chain Y =⇒ P (
⊔

i. Y i) =⇒ ∃ i. P (Y i)
unfolding adm-def by fast

lemma triv-admI : ∀ x. P x =⇒ adm P
by (rule admI ) (erule spec)

end

4.2 Admissibility on chain-finite types

For chain-finite (easy) types every formula is admissible.
lemma adm-chfin [simp]: adm P for P :: ′a::chfin ⇒ bool

by (rule admI , frule chfin, auto simp add: maxinch-is-thelub)

4.3 Admissibility of special formulae and propagation
context cpo
begin

lemma adm-const [simp]: adm (λx. t)
by (rule admI , simp)

lemma adm-conj [simp]: adm (λx. P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x ∧
Q x)

by (fast intro: admI elim: admD)

lemma adm-all [simp]: (
∧

y. adm (λx. P x y)) =⇒ adm (λx. ∀ y. P x y)
by (fast intro: admI elim: admD)

lemma adm-ball [simp]: (
∧

y. y ∈ A =⇒ adm (λx. P x y)) =⇒ adm (λx. ∀ y∈A.
P x y)

by (fast intro: admI elim: admD)

Admissibility for disjunction is hard to prove. It requires 2 lemmas.
lemma adm-disj-lemma1 :

assumes adm: adm P
assumes chain: chain Y
assumes P: ∀ i. ∃ j≥i. P (Y j)
shows P (

⊔
i. Y i)

proof −
define f where f i = (LEAST j. i ≤ j ∧ P (Y j)) for i
have chain ′: chain (λi. Y (f i))

unfolding f-def
apply (rule chainI )
apply (rule chain-mono [OF chain])
apply (rule Least-le)
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apply (rule LeastI2-ex)
apply (simp-all add: P)

done
have f1 :

∧
i. i ≤ f i and f2 :

∧
i. P (Y (f i))

using LeastI-ex [OF P [rule-format]] by (simp-all add: f-def )
have lub-eq: (

⊔
i. Y i) = (

⊔
i. Y (f i))

apply (rule below-antisym)
apply (rule lub-mono [OF chain chain ′])
apply (rule chain-mono [OF chain f1 ])

apply (rule lub-range-mono [OF - chain chain ′])
apply clarsimp
done

show P (
⊔

i. Y i)
unfolding lub-eq using adm chain ′ f2 by (rule admD)

qed

lemma adm-disj-lemma2 : ∀n::nat. P n ∨ Q n =⇒ (∀ i. ∃ j≥i. P j) ∨ (∀ i. ∃ j≥i.
Q j)

apply (erule contrapos-pp)
apply (clarsimp, rename-tac a b)
apply (rule-tac x=max a b in exI )
apply simp
done

lemma adm-disj [simp]: adm (λx. P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x ∨
Q x)

apply (rule admI )
apply (erule adm-disj-lemma2 [THEN disjE ])
apply (erule (2 ) adm-disj-lemma1 [THEN disjI1 ])

apply (erule (2 ) adm-disj-lemma1 [THEN disjI2 ])
done

lemma adm-imp [simp]: adm (λx. ¬ P x) =⇒ adm (λx. Q x) =⇒ adm (λx. P x
−→ Q x)

by (subst imp-conv-disj) (rule adm-disj)

lemma adm-iff [simp]: adm (λx. P x −→ Q x) =⇒ adm (λx. Q x −→ P x) =⇒
adm (λx. P x ←→ Q x)

by (subst iff-conv-conj-imp) (rule adm-conj)

end

admissibility and continuity
lemma adm-below [simp]: cont (λx. u x) =⇒ cont (λx. v x) =⇒ adm (λx. u x v
v x)

by (simp add: adm-def cont2contlubE lub-mono ch2ch-cont)

lemma adm-eq [simp]: cont (λx. u x) =⇒ cont (λx. v x) =⇒ adm (λx. u x = v x)
by (simp add: po-eq-conv)
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lemma adm-subst: cont (λx. t x) =⇒ adm P =⇒ adm (λx. P (t x))
by (simp add: adm-def cont2contlubE ch2ch-cont)

lemma adm-not-below [simp]: cont (λx. t x) =⇒ adm (λx. t x 6v u)
by (rule admI ) (simp add: cont2contlubE ch2ch-cont lub-below-iff )

4.4 Compactness
context cpo
begin

definition compact :: ′a ⇒ bool
where compact k = adm (λx. k 6v x)

lemma compactI : adm (λx. k 6v x) =⇒ compact k
unfolding compact-def .

lemma compactD: compact k =⇒ adm (λx. k 6v x)
unfolding compact-def .

lemma compactI2 : (
∧

Y . [[chain Y ; x v (
⊔

i. Y i)]] =⇒ ∃ i. x v Y i) =⇒ compact
x

unfolding compact-def adm-def by fast

lemma compactD2 : compact x =⇒ chain Y =⇒ x v (
⊔

i. Y i) =⇒ ∃ i. x v Y i
unfolding compact-def adm-def by fast

lemma compact-below-lub-iff : compact x =⇒ chain Y =⇒ x v (
⊔

i. Y i)←→ (∃ i.
x v Y i)

by (fast intro: compactD2 elim: below-lub)

end

lemma compact-chfin [simp]: compact x for x :: ′a::chfin
by (rule compactI [OF adm-chfin])

lemma compact-imp-max-in-chain: chain Y =⇒ compact (
⊔

i. Y i) =⇒ ∃ i. max-in-chain
i Y

apply (drule (1 ) compactD2 , simp)
apply (erule exE , rule-tac x=i in exI )
apply (rule max-in-chainI )
apply (rule below-antisym)
apply (erule (1 ) chain-mono)

apply (erule (1 ) below-trans [OF is-ub-thelub])
done

admissibility and compactness
lemma adm-compact-not-below [simp]:
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compact k =⇒ cont (λx. t x) =⇒ adm (λx. k 6v t x)
unfolding compact-def by (rule adm-subst)

lemma adm-neq-compact [simp]: compact k =⇒ cont (λx. t x) =⇒ adm (λx. t x
6= k)

by (simp add: po-eq-conv)

lemma adm-compact-neq [simp]: compact k =⇒ cont (λx. t x) =⇒ adm (λx. k 6=
t x)

by (simp add: po-eq-conv)

lemma compact-bottom [simp, intro]: compact ⊥
by (rule compactI ) simp

Any upward-closed predicate is admissible.
lemma adm-upward:

assumes P:
∧

x y. [[P x; x v y]] =⇒ P y
shows adm P
by (rule admI , drule spec, erule P, erule is-ub-thelub)

lemmas adm-lemmas =
adm-const adm-conj adm-all adm-ball adm-disj adm-imp adm-iff
adm-below adm-eq adm-not-below
adm-compact-not-below adm-compact-neq adm-neq-compact

5 Class instances for the full function space
5.1 Full function space is a partial order
instantiation fun :: (type, below) below
begin

definition below-fun-def : (v) ≡ (λf g. ∀ x. f x v g x)

instance ..
end

instance fun :: (type, po) po
proof

fix f g h :: ′a ⇒ ′b
show f v f

by (simp add: below-fun-def )
show f v g =⇒ g v f =⇒ f = g

by (simp add: below-fun-def fun-eq-iff below-antisym)
show f v g =⇒ g v h =⇒ f v h

unfolding below-fun-def by (fast elim: below-trans)
qed

lemma fun-below-iff : f v g ←→ (∀ x. f x v g x)
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by (simp add: below-fun-def )

lemma fun-belowI : (
∧

x. f x v g x) =⇒ f v g
by (simp add: below-fun-def )

lemma fun-belowD: f v g =⇒ f x v g x
by (simp add: below-fun-def )

5.2 Full function space is chain complete

Properties of chains of functions.
lemma fun-chain-iff : chain S ←→ (∀ x. chain (λi. S i x))

by (auto simp: chain-def fun-below-iff )

lemma ch2ch-fun: chain S =⇒ chain (λi. S i x)
by (simp add: chain-def below-fun-def )

lemma ch2ch-lambda: (
∧

x. chain (λi. S i x)) =⇒ chain S
by (simp add: chain-def below-fun-def )

Type ′a ⇒ ′b is chain complete
lemma is-lub-lambda: (

∧
x. range (λi. Y i x) <<| f x) =⇒ range Y <<| f

by (simp add: is-lub-def is-ub-def below-fun-def )

lemma is-lub-fun: chain S =⇒ range S <<| (λx.
⊔

i. S i x)
for S :: nat ⇒ ′a::type ⇒ ′b
apply (rule is-lub-lambda)
apply (rule cpo-lubI )
apply (erule ch2ch-fun)
done

lemma lub-fun: chain S =⇒ (
⊔

i. S i) = (λx.
⊔

i. S i x)
for S :: nat ⇒ ′a::type ⇒ ′b
by (rule is-lub-fun [THEN lub-eqI ])

instance fun :: (type, cpo) cpo
by intro-classes (rule exI , erule is-lub-fun)

instance fun :: (type, discrete-cpo) discrete-cpo
proof

fix f g :: ′a ⇒ ′b
show f v g ←→ f = g

by (simp add: fun-below-iff fun-eq-iff )
qed

5.3 Full function space is pointed
lemma minimal-fun: (λx. ⊥) v f

by (simp add: below-fun-def )
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instance fun :: (type, pcpo) pcpo
by standard (fast intro: minimal-fun)

lemma inst-fun-pcpo: ⊥ = (λx. ⊥)
by (rule minimal-fun [THEN bottomI , symmetric])

lemma app-strict [simp]: ⊥ x = ⊥
by (simp add: inst-fun-pcpo)

lemma lambda-strict: (λx. ⊥) = ⊥
by (rule bottomI , rule minimal-fun)

5.4 Propagation of monotonicity and continuity

The lub of a chain of monotone functions is monotone.
lemma adm-monofun: adm monofun

by (rule admI ) (simp add: lub-fun fun-chain-iff monofun-def lub-mono)

The lub of a chain of continuous functions is continuous.
lemma adm-cont: adm cont

by (rule admI ) (simp add: lub-fun fun-chain-iff )

Function application preserves monotonicity and continuity.
lemma mono2mono-fun: monofun f =⇒ monofun (λx. f x y)

by (simp add: monofun-def fun-below-iff )

lemma cont2cont-fun: cont f =⇒ cont (λx. f x y)
apply (rule contI2 )
apply (erule cont2mono [THEN mono2mono-fun])

apply (simp add: cont2contlubE lub-fun ch2ch-cont)
done

lemma cont-fun: cont (λf . f x)
using cont-id by (rule cont2cont-fun)

simproc-setup apply-cont (‹cont (λf . E f )›) = ‹
fn - => fn ctxt => fn lhs =>
(case Thm.term-of lhs of

Const- ‹cont - - for ‹Abs (-, -, expr)›› =>
if case strip-comb expr of (f , args) =>

f = Bound 0 andalso not (exists Term.is-dependent args)
(∗ since ‹λf . E f › is too permissive, we ensure here that the term

is of the form ‹λf . f . . .›, with ‹f › no longer appearing in ‹. . .› ∗)
then

let
val tac = Metis-Tactic.metis-tac [no-types] combs ctxt @{thms cont2cont-fun

cont-id}
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val thm =
Goal.prove-internal ctxt [] instantiate ‹lhs in cprop ‹lhs = True››
(fn - => tac 1 )

in SOME (mk-meta-eq thm) end
else NONE

| - => NONE)
›

lemma cont (λf . f x) and cont (λf . f x y) and cont (λf . f x y z)
by simp-all

Lambda abstraction preserves monotonicity and continuity. (Note (λx. λy.
f x y) = f.)
lemma mono2mono-lambda: (

∧
y. monofun (λx. f x y)) =⇒ monofun f

by (simp add: monofun-def fun-below-iff )

lemma cont2cont-lambda [simp]:
assumes f :

∧
y. cont (λx. f x y)

shows cont f
by (rule contI , rule is-lub-lambda, rule contE [OF f ])

What D.A.Schmidt calls continuity of abstraction; never used here
lemma contlub-lambda: (

∧
x. chain (λi. S i x)) =⇒ (λx.

⊔
i. S i x) = (

⊔
i. (λx.

S i x))
for S :: nat ⇒ ′a::type ⇒ ′b
by (simp add: lub-fun ch2ch-lambda)

6 The cpo of cartesian products
6.1 Unit type is a pcpo
instantiation unit :: discrete-cpo
begin

definition below-unit-def [simp]: x v (y::unit) ←→ True

instance
by standard simp

end

instance unit :: pcpo
by standard simp

6.2 Product type is a partial order
instantiation prod :: (below, below) below
begin
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definition below-prod-def : (v) ≡ λp1 p2 . (fst p1 v fst p2 ∧ snd p1 v snd p2 )

instance ..

end

instance prod :: (po, po) po
proof

fix x y z :: ′a × ′b
show x v x

by (simp add: below-prod-def )
show x v y =⇒ y v x =⇒ x = y

unfolding below-prod-def prod-eq-iff
by (fast intro: below-antisym)

show x v y =⇒ y v z =⇒ x v z
unfolding below-prod-def
by (fast intro: below-trans)

qed

6.3 Monotonicity of Pair, fst, snd
lemma prod-belowI : fst p v fst q =⇒ snd p v snd q =⇒ p v q

by (simp add: below-prod-def )

lemma Pair-below-iff [simp]: (a, b) v (c, d) ←→ a v c ∧ b v d
by (simp add: below-prod-def )

Pair (-,-) is monotone in both arguments
lemma monofun-pair1 : monofun (λx. (x, y))

by (simp add: monofun-def )

lemma monofun-pair2 : monofun (λy. (x, y))
by (simp add: monofun-def )

lemma monofun-pair : x1 v x2 =⇒ y1 v y2 =⇒ (x1 , y1 ) v (x2 , y2 )
by simp

lemma ch2ch-Pair [simp]: chain X =⇒ chain Y =⇒ chain (λi. (X i, Y i))
by (rule chainI , simp add: chainE)

fst and snd are monotone
lemma fst-monofun: x v y =⇒ fst x v fst y

by (simp add: below-prod-def )

lemma snd-monofun: x v y =⇒ snd x v snd y
by (simp add: below-prod-def )

lemma monofun-fst: monofun fst
by (simp add: monofun-def below-prod-def )
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lemma monofun-snd: monofun snd
by (simp add: monofun-def below-prod-def )

lemmas ch2ch-fst [simp] = ch2ch-monofun [OF monofun-fst]

lemmas ch2ch-snd [simp] = ch2ch-monofun [OF monofun-snd]

lemma prod-chain-cases:
assumes chain: chain Y
obtains A B
where chain A and chain B and Y = (λi. (A i, B i))

proof
from chain show chain (λi. fst (Y i))

by (rule ch2ch-fst)
from chain show chain (λi. snd (Y i))

by (rule ch2ch-snd)
show Y = (λi. (fst (Y i), snd (Y i)))

by simp
qed

6.4 Product type is a cpo
lemma is-lub-Pair : range A <<| x =⇒ range B <<| y =⇒ range (λi. (A i, B i))
<<| (x, y)

by (simp add: is-lub-def is-ub-def below-prod-def )

lemma lub-Pair : chain A =⇒ chain B =⇒ (
⊔

i. (A i, B i)) = (
⊔

i. A i,
⊔

i. B i)
for A :: nat ⇒ ′a and B :: nat ⇒ ′b
by (fast intro: lub-eqI is-lub-Pair elim: thelubE)

lemma is-lub-prod:
fixes S :: nat ⇒ ( ′a × ′b)
assumes chain S
shows range S <<| (

⊔
i. fst (S i),

⊔
i. snd (S i))

using assms by (auto elim: prod-chain-cases simp: is-lub-Pair cpo-lubI )

lemma lub-prod: chain S =⇒ (
⊔

i. S i) = (
⊔

i. fst (S i),
⊔

i. snd (S i))
for S :: nat ⇒ ′a × ′b
by (rule is-lub-prod [THEN lub-eqI ])

instance prod :: (cpo, cpo) cpo
proof

fix S :: nat ⇒ ( ′a × ′b)
assume chain S
then have range S <<| (

⊔
i. fst (S i),

⊔
i. snd (S i))

by (rule is-lub-prod)
then show ∃ x. range S <<| x ..

qed
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instance prod :: (discrete-cpo, discrete-cpo) discrete-cpo
proof

show x v y ←→ x = y for x y :: ′a × ′b
by (simp add: below-prod-def prod-eq-iff )

qed

6.5 Product type is pointed
lemma minimal-prod: (⊥, ⊥) v p

by (simp add: below-prod-def )

instance prod :: (pcpo, pcpo) pcpo
by intro-classes (fast intro: minimal-prod)

lemma inst-prod-pcpo: ⊥ = (⊥, ⊥)
by (rule minimal-prod [THEN bottomI , symmetric])

lemma Pair-bottom-iff [simp]: (x, y) = ⊥ ←→ x = ⊥ ∧ y = ⊥
by (simp add: inst-prod-pcpo)

lemma fst-strict [simp]: fst ⊥ = ⊥
unfolding inst-prod-pcpo by (rule fst-conv)

lemma snd-strict [simp]: snd ⊥ = ⊥
unfolding inst-prod-pcpo by (rule snd-conv)

lemma Pair-strict [simp]: (⊥, ⊥) = ⊥
by simp

lemma split-strict [simp]: case-prod f ⊥ = f ⊥ ⊥
by (simp add: split-def )

6.6 Continuity of Pair, fst, snd
lemma cont-pair1 : cont (λx. (x, y))

apply (rule contI )
apply (rule is-lub-Pair)
apply (erule cpo-lubI )

apply (rule is-lub-const)
done

lemma cont-pair2 : cont (λy. (x, y))
apply (rule contI )
apply (rule is-lub-Pair)
apply (rule is-lub-const)

apply (erule cpo-lubI )
done

lemma cont-fst: cont fst
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apply (rule contI )
apply (simp add: lub-prod)
apply (erule cpo-lubI [OF ch2ch-fst])
done

lemma cont-snd: cont snd
apply (rule contI )
apply (simp add: lub-prod)
apply (erule cpo-lubI [OF ch2ch-snd])
done

lemma cont2cont-Pair [simp, cont2cont]:
assumes f : cont (λx. f x)
assumes g: cont (λx. g x)
shows cont (λx. (f x, g x))
apply (rule cont-apply [OF f cont-pair1 ])
apply (rule cont-apply [OF g cont-pair2 ])
apply (rule cont-const)
done

lemmas cont2cont-fst [simp, cont2cont] = cont-compose [OF cont-fst]

lemmas cont2cont-snd [simp, cont2cont] = cont-compose [OF cont-snd]

lemma cont2cont-case-prod:
assumes f1 :

∧
a b. cont (λx. f x a b)

assumes f2 :
∧

x b. cont (λa. f x a b)
assumes f3 :

∧
x a. cont (λb. f x a b)

assumes g: cont (λx. g x)
shows cont (λx. case g x of (a, b) ⇒ f x a b)
unfolding split-def
apply (rule cont-apply [OF g])
apply (rule cont-apply [OF cont-fst f2 ])
apply (rule cont-apply [OF cont-snd f3 ])
apply (rule cont-const)

apply (rule f1 )
done

lemma prod-contI :
assumes f1 :

∧
y. cont (λx. f (x, y))

assumes f2 :
∧

x. cont (λy. f (x, y))
shows cont f

proof −
have cont (λ(x, y). f (x, y))

by (intro cont2cont-case-prod f1 f2 cont2cont)
then show cont f

by (simp only: case-prod-eta)
qed
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lemma prod-cont-iff : cont f ←→ (∀ y. cont (λx. f (x, y))) ∧ (∀ x. cont (λy. f (x,
y)))

apply safe
apply (erule cont-compose [OF - cont-pair1 ])

apply (erule cont-compose [OF - cont-pair2 ])
apply (simp only: prod-contI )
done

lemma cont2cont-case-prod ′ [simp, cont2cont]:
assumes f : cont (λp. f (fst p) (fst (snd p)) (snd (snd p)))
assumes g: cont (λx. g x)
shows cont (λx. case-prod (f x) (g x))
using assms by (simp add: cont2cont-case-prod prod-cont-iff )

The simple version (due to Joachim Breitner) is needed if either element
type of the pair is not a cpo.
lemma cont2cont-split-simple [simp, cont2cont]:

assumes
∧

a b. cont (λx. f x a b)
shows cont (λx. case p of (a, b) ⇒ f x a b)
using assms by (cases p) auto

Admissibility of predicates on product types.
lemma adm-case-prod [simp]:

assumes adm (λx. P x (fst (f x)) (snd (f x)))
shows adm (λx. case f x of (a, b) ⇒ P x a b)
unfolding case-prod-beta using assms .

6.7 Compactness and chain-finiteness
lemma fst-below-iff : fst x v y ←→ x v (y, snd x) for x :: ′a × ′b

by (simp add: below-prod-def )

lemma snd-below-iff : snd x v y ←→ x v (fst x, y) for x :: ′a × ′b
by (simp add: below-prod-def )

lemma compact-fst: compact x =⇒ compact (fst x)
by (rule compactI ) (simp add: fst-below-iff )

lemma compact-snd: compact x =⇒ compact (snd x)
by (rule compactI ) (simp add: snd-below-iff )

lemma compact-Pair : compact x =⇒ compact y =⇒ compact (x, y)
by (rule compactI ) (simp add: below-prod-def )

lemma compact-Pair-iff [simp]: compact (x, y) ←→ compact x ∧ compact y
apply (safe intro!: compact-Pair)
apply (drule compact-fst, simp)

apply (drule compact-snd, simp)
done
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instance prod :: (chfin, chfin) chfin
apply intro-classes
apply (erule compact-imp-max-in-chain)
apply (case-tac

⊔
i. Y i, simp)

done

7 Discrete cpo types
datatype ′a discr = Discr ′a::type

7.1 Discrete cpo class instance
instantiation discr :: (type) discrete-cpo
begin

definition ((v) :: ′a discr ⇒ ′a discr ⇒ bool) = (=)

instance
by standard (simp add: below-discr-def )

end

7.2 undiscr
definition undiscr :: ′a::type discr ⇒ ′a

where undiscr x = (case x of Discr y ⇒ y)

lemma undiscr-Discr [simp]: undiscr (Discr x) = x
by (simp add: undiscr-def )

lemma Discr-undiscr [simp]: Discr (undiscr y) = y
by (induct y) simp

end

8 Subtypes of pcpos
theory Cpodef

imports Cpo
keywords pcpodef cpodef :: thy-goal-defn

begin

8.1 Proving a subtype is a partial order

A subtype of a partial order is itself a partial order, if the ordering is defined
in the standard way.
theorem (in below) typedef-class-po:
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fixes Abs :: ′b::po ⇒ ′a
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
shows class.po below
apply (rule class.po.intro)
apply (unfold below)

apply (rule below-refl)
apply (fact below-trans)

apply (rule type-definition.Rep-inject [OF type, THEN iffD1 ])
apply (fact below-antisym)
done

lemmas typedef-po-class = below.typedef-class-po [THEN po.intro-of-class]

8.2 Proving a subtype is finite
lemma typedef-finite-UNIV :

fixes Abs :: ′a::type ⇒ ′b::type
assumes type: type-definition Rep Abs A
shows finite A =⇒ finite (UNIV :: ′b set)

proof −
assume finite A
then have finite (Abs ‘ A)

by (rule finite-imageI )
then show finite (UNIV :: ′b set)

by (simp only: type-definition.Abs-image [OF type])
qed

8.3 Proving a subtype is chain-finite
lemma ch2ch-Rep:

assumes below: (v) ≡ λx y. Rep x v Rep y
shows chain S =⇒ chain (λi. Rep (S i))
unfolding chain-def below .

theorem typedef-chfin:
fixes Abs :: ′a::chfin ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
shows OFCLASS( ′b, chfin-class)
apply intro-classes
apply (drule ch2ch-Rep [OF below])
apply (drule chfin)
apply (unfold max-in-chain-def )
apply (simp add: type-definition.Rep-inject [OF type])
done
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8.4 Proving a subtype is complete

A subtype of a cpo is itself a cpo if the ordering is defined in the standard
way, and the defining subset is closed with respect to limits of chains. A set
is closed if and only if membership in the set is an admissible predicate.
lemma typedef-is-lubI :

assumes below: (v) ≡ λx y. Rep x v Rep y
shows range (λi. Rep (S i)) <<| Rep x =⇒ range S <<| x
by (simp add: is-lub-def is-ub-def below)

lemma Abs-inverse-lub-Rep:
fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows chain S =⇒ Rep (Abs (
⊔

i. Rep (S i))) = (
⊔

i. Rep (S i))
apply (rule type-definition.Abs-inverse [OF type])
apply (erule admD [OF adm ch2ch-Rep [OF below]])
apply (rule type-definition.Rep [OF type])
done

theorem typedef-is-lub:
fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

assumes S : chain S
shows range S <<| Abs (

⊔
i. Rep (S i))

proof −
from S have chain (λi. Rep (S i))

by (rule ch2ch-Rep [OF below])
then have range (λi. Rep (S i)) <<| (

⊔
i. Rep (S i))

by (rule cpo-lubI )
then have range (λi. Rep (S i)) <<| Rep (Abs (

⊔
i. Rep (S i)))

by (simp only: Abs-inverse-lub-Rep [OF type below adm S ])
then show range S <<| Abs (

⊔
i. Rep (S i))

by (rule typedef-is-lubI [OF below])
qed

lemmas typedef-lub = typedef-is-lub [THEN lub-eqI ]

theorem typedef-cpo:
fixes Abs :: ′a::cpo ⇒ ′b::po
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows OFCLASS( ′b, cpo-class)
proof

fix S :: nat ⇒ ′b
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assume chain S
then have range S <<| Abs (

⊔
i. Rep (S i))

by (rule typedef-is-lub [OF type below adm])
then show ∃ x. range S <<| x ..

qed

8.4.1 Continuity of Rep and Abs

For any sub-cpo, the Rep function is continuous.
theorem typedef-cont-Rep:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows cont (λx. f x) =⇒ cont (λx. Rep (f x))
apply (erule cont-apply [OF - - cont-const])
apply (rule contI )
apply (simp only: typedef-lub [OF type below adm])
apply (simp only: Abs-inverse-lub-Rep [OF type below adm])
apply (rule cpo-lubI )
apply (erule ch2ch-Rep [OF below])
done

For a sub-cpo, we can make the Abs function continuous only if we restrict
its domain to the defining subset by composing it with another continuous
function.
theorem typedef-cont-Abs:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
fixes f :: ′c::cpo ⇒ ′a::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)
and f-in-A:

∧
x. f x ∈ A

shows cont f =⇒ cont (λx. Abs (f x))
unfolding cont-def is-lub-def is-ub-def ball-simps below
by (simp add: type-definition.Abs-inverse [OF type f-in-A])

8.5 Proving subtype elements are compact
theorem typedef-compact:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and adm: adm (λx. x ∈ A)

shows compact (Rep k) =⇒ compact k
proof (unfold compact-def )

have cont-Rep: cont Rep
by (rule typedef-cont-Rep [OF type below adm cont-id])
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assume adm (λx. Rep k 6v x)
with cont-Rep have adm (λx. Rep k 6v Rep x) by (rule adm-subst)
then show adm (λx. k 6v x) by (unfold below)

qed

8.6 Proving a subtype is pointed

A subtype of a cpo has a least element if and only if the defining subset has
a least element.
theorem typedef-pcpo-generic:

fixes Abs :: ′a::cpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and z-in-A: z ∈ A
and z-least:

∧
x. x ∈ A =⇒ z v x

shows OFCLASS( ′b, pcpo-class)
apply (intro-classes)
apply (rule-tac x=Abs z in exI , rule allI )
apply (unfold below)
apply (subst type-definition.Abs-inverse [OF type z-in-A])
apply (rule z-least [OF type-definition.Rep [OF type]])
done

As a special case, a subtype of a pcpo has a least element if the defining
subset contains ⊥.
theorem typedef-pcpo:

fixes Abs :: ′a::pcpo ⇒ ′b::cpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows OFCLASS( ′b, pcpo-class)
by (rule typedef-pcpo-generic [OF type below bottom-in-A], rule minimal)

8.6.1 Strictness of Rep and Abs

For a sub-pcpo where ⊥ is a member of the defining subset, Rep and Abs
are both strict.
theorem typedef-Abs-strict:

assumes type: type-definition Rep Abs A
and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows Abs ⊥ = ⊥
apply (rule bottomI , unfold below)
apply (simp add: type-definition.Abs-inverse [OF type bottom-in-A])
done

theorem typedef-Rep-strict:



THEORY “Cfun” 42

assumes type: type-definition Rep Abs A
and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows Rep ⊥ = ⊥
apply (rule typedef-Abs-strict [OF type below bottom-in-A, THEN subst])
apply (rule type-definition.Abs-inverse [OF type bottom-in-A])
done

theorem typedef-Abs-bottom-iff :
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows x ∈ A =⇒ (Abs x = ⊥) = (x = ⊥)
apply (rule typedef-Abs-strict [OF type below bottom-in-A, THEN subst])
apply (simp add: type-definition.Abs-inject [OF type] bottom-in-A)
done

theorem typedef-Rep-bottom-iff :
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows (Rep x = ⊥) = (x = ⊥)
apply (rule typedef-Rep-strict [OF type below bottom-in-A, THEN subst])
apply (simp add: type-definition.Rep-inject [OF type])
done

8.7 Proving a subtype is flat
theorem typedef-flat:

fixes Abs :: ′a::flat ⇒ ′b::pcpo
assumes type: type-definition Rep Abs A

and below: (v) ≡ λx y. Rep x v Rep y
and bottom-in-A: ⊥ ∈ A

shows OFCLASS( ′b, flat-class)
apply (intro-classes)
apply (unfold below)
apply (simp add: type-definition.Rep-inject [OF type, symmetric])
apply (simp add: typedef-Rep-strict [OF type below bottom-in-A])
apply (simp add: ax-flat)
done

8.8 HOLCF type definition package
ML-file ‹Tools/cpodef .ML›

end
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9 The type of continuous functions
theory Cfun

imports Cpodef
begin

9.1 Definition of continuous function type
definition cfun = {f :: ′a ⇒ ′b. cont f }

cpodef ( ′a, ′b) cfun (‹(‹notation=‹infix →››- →/ -)› [1 , 0 ] 0 ) = cfun :: ( ′a ⇒
′b) set

by (auto simp: cfun-def intro: cont-const adm-cont)

type-notation (ASCII )
cfun (infixr ‹−>› 0 )

notation (ASCII )
Rep-cfun (‹(‹notation=‹infix $››-$/-)› [999 ,1000 ] 999 )

notation
Rep-cfun (‹(‹notation=‹infix ·››-·/-)› [999 ,1000 ] 999 )

9.2 Syntax for continuous lambda abstraction
syntax -cabs :: [logic, logic] ⇒ logic

parse-translation ‹
(∗ rewrite (-cabs x t) => (Abs-cfun (%x. t)) ∗)
[Syntax-Trans.mk-binder-tr (syntax-const ‹-cabs›, const-syntax ‹Abs-cfun›)]

›

print-translation ‹
[(const-syntax ‹Abs-cfun›, fn ctxt => fn [Abs abs] =>

let val (x, t) = Syntax-Trans.atomic-abs-tr ′ ctxt abs
in Syntax.const syntax-const ‹-cabs› $ x $ t end)]

› — To avoid eta-contraction of body

Syntax for nested abstractions
syntax (ASCII )

-Lambda :: [cargs, logic] ⇒ logic (‹(‹indent=3 notation=‹binder LAM ››LAM -./
-)› [1000 , 10 ] 10 )

syntax
-Lambda :: [cargs, logic] ⇒ logic (‹(‹indent=3 notation=‹binder Λ››Λ -./ -)›

[1000 , 10 ] 10 )

syntax-consts
-Lambda ⇀↽ Abs-cfun
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parse-ast-translation ‹
(∗ rewrite (LAM x y z. t) => (-cabs x (-cabs y (-cabs z t))) ∗)
(∗ cf . Syntax.lambda-ast-tr from src/Pure/Syntax/syn-trans.ML ∗)

let
fun Lambda-ast-tr [pats, body] =

Ast.fold-ast-p syntax-const ‹-cabs›
(Ast.unfold-ast syntax-const ‹-cargs› (Ast.strip-positions pats), body)

| Lambda-ast-tr asts = raise Ast.AST (Lambda-ast-tr, asts);
in [(syntax-const ‹-Lambda›, K Lambda-ast-tr)] end

›

print-ast-translation ‹
(∗ rewrite (-cabs x (-cabs y (-cabs z t))) => (LAM x y z. t) ∗)
(∗ cf . Syntax.abs-ast-tr ′ from src/Pure/Syntax/syn-trans.ML ∗)

let
fun cabs-ast-tr ′ asts =
(case Ast.unfold-ast-p syntax-const ‹-cabs›

(Ast.Appl (Ast.Constant syntax-const ‹-cabs› :: asts)) of
([], -) => raise Ast.AST (cabs-ast-tr ′, asts)
| (xs, body) => Ast.Appl

[Ast.Constant syntax-const ‹-Lambda›,
Ast.fold-ast syntax-const ‹-cargs› xs, body]);

in [(syntax-const ‹-cabs›, K cabs-ast-tr ′)] end
›

Dummy patterns for continuous abstraction
translations
Λ -. t ⇀ CONST Abs-cfun (λ-. t)

9.3 Continuous function space is pointed
lemma bottom-cfun: ⊥ ∈ cfun

by (simp add: cfun-def inst-fun-pcpo)

instance cfun :: (cpo, discrete-cpo) discrete-cpo
by intro-classes (simp add: below-cfun-def Rep-cfun-inject)

instance cfun :: (cpo, pcpo) pcpo
by (rule typedef-pcpo [OF type-definition-cfun below-cfun-def bottom-cfun])

lemmas Rep-cfun-strict =
typedef-Rep-strict [OF type-definition-cfun below-cfun-def bottom-cfun]

lemmas Abs-cfun-strict =
typedef-Abs-strict [OF type-definition-cfun below-cfun-def bottom-cfun]

function application is strict in its first argument
lemma Rep-cfun-strict1 [simp]: ⊥·x = ⊥

by (simp add: Rep-cfun-strict)
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lemma LAM-strict [simp]: (Λ x. ⊥) = ⊥
by (simp add: inst-fun-pcpo [symmetric] Abs-cfun-strict)

for compatibility with old HOLCF-Version
lemma inst-cfun-pcpo: ⊥ = (Λ x. ⊥)

by simp

9.4 Basic properties of continuous functions

Beta-equality for continuous functions
lemma Abs-cfun-inverse2 : cont f =⇒ Rep-cfun (Abs-cfun f ) = f

by (simp add: Abs-cfun-inverse cfun-def )

lemma beta-cfun: cont f =⇒ (Λ x. f x)·u = f u
by (simp add: Abs-cfun-inverse2 )

9.4.1 Beta-reduction simproc

Given the term (Λ x. f x)·y, the procedure tries to construct the theorem (Λ
x. f x)·y ≡ f y. If this theorem cannot be completely solved by the cont2cont
rules, then the procedure returns the ordinary conditional beta-cfun rule.
The simproc does not solve any more goals that would be solved by using
beta-cfun as a simp rule. The advantage of the simproc is that it can avoid
deeply-nested calls to the simplifier that would otherwise be caused by large
continuity side conditions.
Update: The simproc now uses rule Abs-cfun-inverse2 instead of beta-cfun,
to avoid problems with eta-contraction.
simproc-setup beta-cfun-proc (Rep-cfun (Abs-cfun f )) = ‹

K (fn ctxt => fn ct =>
let

val f = Thm.dest-arg (Thm.dest-arg ct);
val [T , U ] = Thm.dest-ctyp (Thm.ctyp-of-cterm f );

val tr = Thm.instantiate ′ [SOME T , SOME U ] [SOME f ] (mk-meta-eq @{thm
Abs-cfun-inverse2});

val rules = Named-Theorems.get ctxt named-theorems ‹cont2cont›;
val tac = SOLVED ′ (REPEAT-ALL-NEW (match-tac ctxt (rev rules)));

in SOME (perhaps (SINGLE (tac 1 )) tr) end)
›

Eta-equality for continuous functions
lemma eta-cfun: (Λ x. f ·x) = f

by (rule Rep-cfun-inverse)

Extensionality for continuous functions
lemma cfun-eq-iff : f = g ←→ (∀ x. f ·x = g·x)
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by (simp add: Rep-cfun-inject [symmetric] fun-eq-iff )

lemma cfun-eqI : (
∧

x. f ·x = g·x) =⇒ f = g
by (simp add: cfun-eq-iff )

Extensionality wrt. ordering for continuous functions
lemma cfun-below-iff : f v g ←→ (∀ x. f ·x v g·x)

by (simp add: below-cfun-def fun-below-iff )

lemma cfun-belowI : (
∧

x. f ·x v g·x) =⇒ f v g
by (simp add: cfun-below-iff )

Congruence for continuous function application
lemma cfun-cong: f = g =⇒ x = y =⇒ f ·x = g·y

by simp

lemma cfun-fun-cong: f = g =⇒ f ·x = g·x
by simp

lemma cfun-arg-cong: x = y =⇒ f ·x = f ·y
by simp

9.5 Continuity of application
lemma cont-Rep-cfun1 : cont (λf . f ·x)

by (rule cont-Rep-cfun [OF cont-id, THEN cont2cont-fun])

lemma cont-Rep-cfun2 : cont (λx. f ·x)
using Rep-cfun [where x = f ] by (simp add: cfun-def )

lemmas monofun-Rep-cfun = cont-Rep-cfun [THEN cont2mono]

lemmas monofun-Rep-cfun1 = cont-Rep-cfun1 [THEN cont2mono]
lemmas monofun-Rep-cfun2 = cont-Rep-cfun2 [THEN cont2mono]

contlub, cont properties of Rep-cfun in each argument
lemma contlub-cfun-arg: chain Y =⇒ f ·(

⊔
i. Y i) = (

⊔
i. f ·(Y i))

by (rule cont-Rep-cfun2 [THEN cont2contlubE ])

lemma contlub-cfun-fun: chain F =⇒ (
⊔

i. F i)·x = (
⊔

i. F i·x)
by (rule cont-Rep-cfun1 [THEN cont2contlubE ])

monotonicity of application
lemma monofun-cfun-fun: f v g =⇒ f ·x v g·x

by (simp add: cfun-below-iff )

lemma monofun-cfun-arg: x v y =⇒ f ·x v f ·y
by (rule monofun-Rep-cfun2 [THEN monofunE ])
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lemma monofun-cfun: f v g =⇒ x v y =⇒ f ·x v g·y
by (rule below-trans [OF monofun-cfun-fun monofun-cfun-arg])

ch2ch - rules for the type ′a → ′b
lemma chain-monofun: chain Y =⇒ chain (λi. f ·(Y i))

by (erule monofun-Rep-cfun2 [THEN ch2ch-monofun])

lemma ch2ch-Rep-cfunR: chain Y =⇒ chain (λi. f ·(Y i))
by (rule monofun-Rep-cfun2 [THEN ch2ch-monofun])

lemma ch2ch-Rep-cfunL: chain F =⇒ chain (λi. (F i)·x)
by (rule monofun-Rep-cfun1 [THEN ch2ch-monofun])

lemma ch2ch-Rep-cfun [simp]: chain F =⇒ chain Y =⇒ chain (λi. (F i)·(Y i))
by (simp add: chain-def monofun-cfun)

lemma ch2ch-LAM [simp]:
(
∧

x. chain (λi. S i x)) =⇒ (
∧

i. cont (λx. S i x)) =⇒ chain (λi. Λ x. S i x)
by (simp add: chain-def cfun-below-iff )

contlub, cont properties of Rep-cfun in both arguments
lemma lub-APP: chain F =⇒ chain Y =⇒ (

⊔
i. F i·(Y i)) = (

⊔
i. F i)·(

⊔
i. Y

i)
by (simp add: contlub-cfun-fun contlub-cfun-arg diag-lub)

lemma lub-LAM :
assumes

∧
x. chain (λi. F i x)

and
∧

i. cont (λx. F i x)
shows (

⊔
i. Λ x. F i x) = (Λ x.

⊔
i. F i x)

using assms by (simp add: lub-cfun lub-fun ch2ch-lambda)

lemmas lub-distribs = lub-APP lub-LAM

strictness
lemma strictI : f ·x = ⊥ =⇒ f ·⊥ = ⊥

apply (rule bottomI )
apply (erule subst)
apply (rule minimal [THEN monofun-cfun-arg])
done

type ′a → ′b is chain complete
lemma lub-cfun: chain F =⇒ (

⊔
i. F i) = (Λ x.

⊔
i. F i·x)

by (simp add: lub-cfun lub-fun ch2ch-lambda)

9.6 Continuity simplification procedure

cont2cont lemma for Rep-cfun
lemma cont2cont-APP [simp, cont2cont]:
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assumes f : cont (λx. f x)
assumes t: cont (λx. t x)
shows cont (λx. (f x)·(t x))

proof −
from cont-Rep-cfun1 f have cont (λx. (f x)·y) for y

by (rule cont-compose)
with t cont-Rep-cfun2 show cont (λx. (f x)·(t x))

by (rule cont-apply)
qed

Two specific lemmas for the combination of LCF and HOL terms. These
lemmas are needed in theories that use types like ′a → ′b ⇒ ′c.
lemma cont-APP-app [simp]: cont f =⇒ cont g =⇒ cont (λx. ((f x)·(g x)) s)

by (rule cont2cont-APP [THEN cont2cont-fun])

lemma cont-APP-app-app [simp]: cont f =⇒ cont g =⇒ cont (λx. ((f x)·(g x)) s
t)

by (rule cont-APP-app [THEN cont2cont-fun])

cont2mono Lemma for λx. Λ y. c1 x y
lemma cont2mono-LAM :
[[
∧

x. cont (λy. f x y);
∧

y. monofun (λx. f x y)]]
=⇒ monofun (λx. Λ y. f x y)

by (simp add: monofun-def cfun-below-iff )

cont2cont Lemma for λx. Λ y. f x y

Not suitable as a cont2cont rule, because on nested lambdas it causes expo-
nential blow-up in the number of subgoals.
lemma cont2cont-LAM :

assumes f1 :
∧

x. cont (λy. f x y)
assumes f2 :

∧
y. cont (λx. f x y)

shows cont (λx. Λ y. f x y)
proof (rule cont-Abs-cfun)

from f1 show f x ∈ cfun for x
by (simp add: cfun-def )

from f2 show cont f
by (rule cont2cont-lambda)

qed

This version does work as a cont2cont rule, since it has only a single subgoal.
lemma cont2cont-LAM ′ [simp, cont2cont]:

fixes f :: ′a::cpo ⇒ ′b::cpo ⇒ ′c::cpo
assumes f : cont (λp. f (fst p) (snd p))
shows cont (λx. Λ y. f x y)
using assms by (simp add: cont2cont-LAM prod-cont-iff )

lemma cont2cont-LAM-discrete [simp, cont2cont]:
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(
∧

y:: ′a::discrete-cpo. cont (λx. f x y)) =⇒ cont (λx. Λ y. f x y)
by (simp add: cont2cont-LAM )

9.7 Miscellaneous

Monotonicity of Abs-cfun
lemma monofun-LAM : cont f =⇒ cont g =⇒ (

∧
x. f x v g x) =⇒ (Λ x. f x) v

(Λ x. g x)
by (simp add: cfun-below-iff )

some lemmata for functions with flat/chfin domain/range types
lemma chfin-Rep-cfunR: chain Y =⇒ ∀ s. ∃n. (LUB i. Y i)·s = Y n·s

for Y :: nat ⇒ ′a::cpo → ′b::chfin
apply (rule allI )
apply (subst contlub-cfun-fun)
apply assumption

apply (fast intro!: lub-eqI chfin lub-finch2 chfin2finch ch2ch-Rep-cfunL)
done

lemma adm-chfindom: adm (λ(u:: ′a::cpo → ′b::chfin). P(u·s))
by (rule adm-subst, simp, rule adm-chfin)

9.8 Continuous injection-retraction pairs

Continuous retractions are strict.
lemma retraction-strict: ∀ x. f ·(g·x) = x =⇒ f ·⊥ = ⊥

apply (rule bottomI )
apply (drule-tac x=⊥ in spec)
apply (erule subst)
apply (rule monofun-cfun-arg)
apply (rule minimal)
done

lemma injection-eq: ∀ x. f ·(g·x) = x =⇒ (g·x = g·y) = (x = y)
apply (rule iffI )
apply (drule-tac f=f in cfun-arg-cong)
apply simp

apply simp
done

lemma injection-below: ∀ x. f ·(g·x) = x =⇒ (g·x v g·y) = (x v y)
apply (rule iffI )
apply (drule-tac f=f in monofun-cfun-arg)
apply simp

apply (erule monofun-cfun-arg)
done

lemma injection-defined-rev: ∀ x. f ·(g·x) = x =⇒ g·z = ⊥ =⇒ z = ⊥
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apply (drule-tac f=f in cfun-arg-cong)
apply (simp add: retraction-strict)
done

lemma injection-defined: ∀ x. f ·(g·x) = x =⇒ z 6= ⊥ =⇒ g·z 6= ⊥
by (erule contrapos-nn, rule injection-defined-rev)

a result about functions with flat codomain
lemma flat-eqI : x v y =⇒ x 6= ⊥ =⇒ x = y

for x y :: ′a::flat
by (drule ax-flat) simp

lemma flat-codom: f ·x = c =⇒ f ·⊥ = ⊥ ∨ (∀ z. f ·z = c)
for c :: ′b::flat
apply (cases f ·x = ⊥)
apply (rule disjI1 )
apply (rule bottomI )
apply (erule-tac t=⊥ in subst)
apply (rule minimal [THEN monofun-cfun-arg])

apply clarify
apply (rule-tac a = f ·⊥ in refl [THEN box-equals])
apply (erule minimal [THEN monofun-cfun-arg, THEN flat-eqI ])

apply (erule minimal [THEN monofun-cfun-arg, THEN flat-eqI ])
done

9.9 Identity and composition
definition ID :: ′a → ′a

where ID = (Λ x. x)

definition cfcomp :: ( ′b → ′c) → ( ′a → ′b) → ′a → ′c
where oo-def : cfcomp = (Λ f g x. f ·(g·x))

abbreviation cfcomp-syn :: [ ′b → ′c, ′a → ′b] ⇒ ′a → ′c (infixr ‹oo› 100 )
where f oo g == cfcomp·f ·g

lemma ID1 [simp]: ID·x = x
by (simp add: ID-def )

lemma cfcomp1 : (f oo g) = (Λ x. f ·(g·x))
by (simp add: oo-def )

lemma cfcomp2 [simp]: (f oo g)·x = f ·(g·x)
by (simp add: cfcomp1 )

lemma cfcomp-LAM : cont g =⇒ f oo (Λ x. g x) = (Λ x. f ·(g x))
by (simp add: cfcomp1 )

lemma cfcomp-strict [simp]: ⊥ oo f = ⊥
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by (simp add: cfun-eq-iff )

Show that interpretation of (pcpo, -→-) is a category.

• The class of objects is interpretation of syntactical class pcpo.

• The class of arrows between objects ′a and ′b is interpret. of ′a → ′b.

• The identity arrow is interpretation of ID.

• The composition of f and g is interpretation of oo.

lemma ID2 [simp]: f oo ID = f
by (rule cfun-eqI , simp)

lemma ID3 [simp]: ID oo f = f
by (rule cfun-eqI ) simp

lemma assoc-oo: f oo (g oo h) = (f oo g) oo h
by (rule cfun-eqI ) simp

9.10 Strictified functions
definition seq :: ′a::pcpo → ′b::pcpo → ′b

where seq = (Λ x. if x = ⊥ then ⊥ else ID)

lemma cont2cont-if-bottom [cont2cont, simp]:
assumes f : cont (λx. f x)

and g: cont (λx. g x)
shows cont (λx. if f x = ⊥ then ⊥ else g x)

proof (rule cont-apply [OF f ])
show cont (λy. if y = ⊥ then ⊥ else g x) for x

unfolding cont-def is-lub-def is-ub-def ball-simps
by (simp add: lub-eq-bottom-iff )

show cont (λx. if y = ⊥ then ⊥ else g x) for y
by (simp add: g)

qed

lemma seq-conv-if : seq·x = (if x = ⊥ then ⊥ else ID)
by (simp add: seq-def )

lemma seq-simps [simp]:
seq·⊥ = ⊥
seq·x·⊥ = ⊥
x 6= ⊥ =⇒ seq·x = ID
by (simp-all add: seq-conv-if )

definition strictify :: ( ′a::pcpo → ′b::pcpo) → ′a → ′b
where strictify = (Λ f x. seq·x·(f ·x))
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lemma strictify-conv-if : strictify·f ·x = (if x = ⊥ then ⊥ else f ·x)
by (simp add: strictify-def )

lemma strictify1 [simp]: strictify·f ·⊥ = ⊥
by (simp add: strictify-conv-if )

lemma strictify2 [simp]: x 6= ⊥ =⇒ strictify·f ·x = f ·x
by (simp add: strictify-conv-if )

9.11 Continuity of let-bindings
lemma cont2cont-Let:

assumes f : cont (λx. f x)
assumes g1 :

∧
y. cont (λx. g x y)

assumes g2 :
∧

x. cont (λy. g x y)
shows cont (λx. let y = f x in g x y)
unfolding Let-def using f g2 g1 by (rule cont-apply)

lemma cont2cont-Let ′ [simp, cont2cont]:
assumes f : cont (λx. f x)
assumes g: cont (λp. g (fst p) (snd p))
shows cont (λx. let y = f x in g x y)
using f

proof (rule cont2cont-Let)
from g show cont (λy. g x y) for x

by (simp add: prod-cont-iff )
from g show cont (λx. g x y) for y

by (simp add: prod-cont-iff )
qed

The simple version (suggested by Joachim Breitner) is needed if the type of
the defined term is not a cpo.
lemma cont2cont-Let-simple [simp, cont2cont]:

assumes
∧

y. cont (λx. g x y)
shows cont (λx. let y = t in g x y)
unfolding Let-def using assms .

end

10 Continuous deflations and ep-pairs
theory Deflation

imports Cfun
begin

10.1 Continuous deflations
locale deflation =

fixes d :: ′a → ′a
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assumes idem:
∧

x. d·(d·x) = d·x
assumes below:

∧
x. d·x v x

begin

lemma below-ID: d v ID
by (rule cfun-belowI ) (simp add: below)

The set of fixed points is the same as the range.
lemma fixes-eq-range: {x. d·x = x} = range (λx. d·x)

by (auto simp add: eq-sym-conv idem)

lemma range-eq-fixes: range (λx. d·x) = {x. d·x = x}
by (auto simp add: eq-sym-conv idem)

The pointwise ordering on deflation functions coincides with the subset or-
dering of their sets of fixed-points.
lemma belowI :

assumes f :
∧

x. d·x = x =⇒ f ·x = x
shows d v f

proof (rule cfun-belowI )
fix x
from below have f ·(d·x) v f ·x

by (rule monofun-cfun-arg)
also from idem have f ·(d·x) = d·x

by (rule f )
finally show d·x v f ·x .

qed

lemma belowD: [[f v d; f ·x = x]] =⇒ d·x = x
proof (rule below-antisym)

from below show d·x v x .
assume f v d
then have f ·x v d·x by (rule monofun-cfun-fun)
also assume f ·x = x
finally show x v d·x .

qed

end

lemma deflation-strict: deflation d =⇒ d·⊥ = ⊥
by (rule deflation.below [THEN bottomI ])

lemma adm-deflation: adm (λd. deflation d)
by (simp add: deflation-def )

lemma deflation-ID: deflation ID
by (simp add: deflation.intro)

lemma deflation-bottom: deflation ⊥
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by (simp add: deflation.intro)

lemma deflation-below-iff : deflation p =⇒ deflation q =⇒ p v q ←→ (∀ x. p·x =
x −→ q·x = x)

apply safe
apply (simp add: deflation.belowD)

apply (simp add: deflation.belowI )
done

The composition of two deflations is equal to the lesser of the two (if they
are comparable).
lemma deflation-below-comp1 :

assumes deflation f
assumes deflation g
shows f v g =⇒ f ·(g·x) = f ·x

proof (rule below-antisym)
interpret g: deflation g by fact
from g.below show f ·(g·x) v f ·x by (rule monofun-cfun-arg)

next
interpret f : deflation f by fact
assume f v g
then have f ·x v g·x by (rule monofun-cfun-fun)
then have f ·(f ·x) v f ·(g·x) by (rule monofun-cfun-arg)
also have f ·(f ·x) = f ·x by (rule f .idem)
finally show f ·x v f ·(g·x) .

qed

lemma deflation-below-comp2 : deflation f =⇒ deflation g =⇒ f v g =⇒ g·(f ·x)
= f ·x

by (simp only: deflation.belowD deflation.idem)

10.2 Deflations with finite range
lemma finite-range-imp-finite-fixes:

assumes finite (range f )
shows finite {x. f x = x}

proof −
have {x. f x = x} ⊆ range f

by (clarify, erule subst, rule rangeI )
from this assms show finite {x. f x = x}

by (rule finite-subset)
qed

locale finite-deflation = deflation +
assumes finite-fixes: finite {x. d·x = x}

begin

lemma finite-range: finite (range (λx. d·x))
by (simp add: range-eq-fixes finite-fixes)
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lemma finite-image: finite ((λx. d·x) ‘ A)
by (rule finite-subset [OF image-mono [OF subset-UNIV ] finite-range])

lemma compact: compact (d·x)
proof (rule compactI2 )

fix Y :: nat ⇒ ′a
assume Y : chain Y
have finite-chain (λi. d·(Y i))
proof (rule finite-range-imp-finch)

from Y show chain (λi. d·(Y i)) by simp
have range (λi. d·(Y i)) ⊆ range (λx. d·x) by auto
then show finite (range (λi. d·(Y i)))

using finite-range by (rule finite-subset)
qed
then have ∃ j. (

⊔
i. d·(Y i)) = d·(Y j)

by (simp add: finite-chain-def maxinch-is-thelub Y )
then obtain j where j: (

⊔
i. d·(Y i)) = d·(Y j) ..

assume d·x v (
⊔

i. Y i)
then have d·(d·x) v d·(

⊔
i. Y i)

by (rule monofun-cfun-arg)
then have d·x v (

⊔
i. d·(Y i))

by (simp add: contlub-cfun-arg Y idem)
with j have d·x v d·(Y j) by simp
then have d·x v Y j

using below by (rule below-trans)
then show ∃ j. d·x v Y j ..

qed

end

lemma finite-deflation-intro: deflation d =⇒ finite {x. d·x = x} =⇒ finite-deflation
d

by (intro finite-deflation.intro finite-deflation-axioms.intro)

lemma finite-deflation-imp-deflation: finite-deflation d =⇒ deflation d
by (simp add: finite-deflation-def )

lemma finite-deflation-bottom: finite-deflation ⊥
by standard simp-all

10.3 Continuous embedding-projection pairs
locale ep-pair =

fixes e :: ′a → ′b and p :: ′b → ′a
assumes e-inverse [simp]:

∧
x. p·(e·x) = x

and e-p-below:
∧

y. e·(p·y) v y
begin
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lemma e-below-iff [simp]: e·x v e·y ←→ x v y
proof

assume e·x v e·y
then have p·(e·x) v p·(e·y) by (rule monofun-cfun-arg)
then show x v y by simp

next
assume x v y
then show e·x v e·y by (rule monofun-cfun-arg)

qed

lemma e-eq-iff [simp]: e·x = e·y ←→ x = y
unfolding po-eq-conv e-below-iff ..

lemma p-eq-iff : e·(p·x) = x =⇒ e·(p·y) = y =⇒ p·x = p·y ←→ x = y
by (safe, erule subst, erule subst, simp)

lemma p-inverse: (∃ x. y = e·x) ←→ e·(p·y) = y
by (auto, rule exI , erule sym)

lemma e-below-iff-below-p: e·x v y ←→ x v p·y
proof

assume e·x v y
then have p·(e·x) v p·y by (rule monofun-cfun-arg)
then show x v p·y by simp

next
assume x v p·y
then have e·x v e·(p·y) by (rule monofun-cfun-arg)
then show e·x v y using e-p-below by (rule below-trans)

qed

lemma compact-e-rev: compact (e·x) =⇒ compact x
proof −

assume compact (e·x)
then have adm (λy. e·x 6v y) by (rule compactD)
then have adm (λy. e·x 6v e·y) by (rule adm-subst [OF cont-Rep-cfun2 ])
then have adm (λy. x 6v y) by simp
then show compact x by (rule compactI )

qed

lemma compact-e:
assumes compact x
shows compact (e·x)

proof −
from assms have adm (λy. x 6v y) by (rule compactD)
then have adm (λy. x 6v p·y) by (rule adm-subst [OF cont-Rep-cfun2 ])
then have adm (λy. e·x 6v y) by (simp add: e-below-iff-below-p)
then show compact (e·x) by (rule compactI )

qed
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lemma compact-e-iff : compact (e·x) ←→ compact x
by (rule iffI [OF compact-e-rev compact-e])

Deflations from ep-pairs
lemma deflation-e-p: deflation (e oo p)

by (simp add: deflation.intro e-p-below)

lemma deflation-e-d-p:
assumes deflation d
shows deflation (e oo d oo p)

proof
interpret deflation d by fact
fix x :: ′b
show (e oo d oo p)·((e oo d oo p)·x) = (e oo d oo p)·x

by (simp add: idem)
show (e oo d oo p)·x v x

by (simp add: e-below-iff-below-p below)
qed

lemma finite-deflation-e-d-p:
assumes finite-deflation d
shows finite-deflation (e oo d oo p)

proof
interpret finite-deflation d by fact
fix x :: ′b
show (e oo d oo p)·((e oo d oo p)·x) = (e oo d oo p)·x

by (simp add: idem)
show (e oo d oo p)·x v x

by (simp add: e-below-iff-below-p below)
have finite ((λx. e·x) ‘ (λx. d·x) ‘ range (λx. p·x))

by (simp add: finite-image)
then have finite (range (λx. (e oo d oo p)·x))

by (simp add: image-image)
then show finite {x. (e oo d oo p)·x = x}

by (rule finite-range-imp-finite-fixes)
qed

lemma deflation-p-d-e:
assumes deflation d
assumes d:

∧
x. d·x v e·(p·x)

shows deflation (p oo d oo e)
proof −

interpret d: deflation d by fact
have p-d-e-below: (p oo d oo e)·x v x for x
proof −

have d·(e·x) v e·x
by (rule d.below)

then have p·(d·(e·x)) v p·(e·x)
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by (rule monofun-cfun-arg)
then show ?thesis by simp

qed
show ?thesis
proof

show (p oo d oo e)·x v x for x
by (rule p-d-e-below)

show (p oo d oo e)·((p oo d oo e)·x) = (p oo d oo e)·x for x
proof (rule below-antisym)

show (p oo d oo e)·((p oo d oo e)·x) v (p oo d oo e)·x
by (rule p-d-e-below)

have p·(d·(d·(d·(e·x)))) v p·(d·(e·(p·(d·(e·x)))))
by (intro monofun-cfun-arg d)

then have p·(d·(e·x)) v p·(d·(e·(p·(d·(e·x)))))
by (simp only: d.idem)

then show (p oo d oo e)·x v (p oo d oo e)·((p oo d oo e)·x)
by simp

qed
qed

qed

lemma finite-deflation-p-d-e:
assumes finite-deflation d
assumes d:

∧
x. d·x v e·(p·x)

shows finite-deflation (p oo d oo e)
proof −

interpret d: finite-deflation d by fact
show ?thesis
proof (rule finite-deflation-intro)

have deflation d ..
then show deflation (p oo d oo e)

using d by (rule deflation-p-d-e)
next

have finite ((λx. d·x) ‘ range (λx. e·x))
by (rule d.finite-image)

then have finite ((λx. p·x) ‘ (λx. d·x) ‘ range (λx. e·x))
by (rule finite-imageI )

then have finite (range (λx. (p oo d oo e)·x))
by (simp add: image-image)

then show finite {x. (p oo d oo e)·x = x}
by (rule finite-range-imp-finite-fixes)

qed
qed

end

10.4 Uniqueness of ep-pairs
lemma ep-pair-unique-e-lemma:
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assumes 1 : ep-pair e1 p
and 2 : ep-pair e2 p

shows e1 v e2
proof (rule cfun-belowI )

fix x
have e1 ·(p·(e2 ·x)) v e2 ·x

by (rule ep-pair .e-p-below [OF 1 ])
then show e1 ·x v e2 ·x

by (simp only: ep-pair .e-inverse [OF 2 ])
qed

lemma ep-pair-unique-e: ep-pair e1 p =⇒ ep-pair e2 p =⇒ e1 = e2
by (fast intro: below-antisym elim: ep-pair-unique-e-lemma)

lemma ep-pair-unique-p-lemma:
assumes 1 : ep-pair e p1

and 2 : ep-pair e p2
shows p1 v p2

proof (rule cfun-belowI )
fix x
have e·(p1 ·x) v x

by (rule ep-pair .e-p-below [OF 1 ])
then have p2 ·(e·(p1 ·x)) v p2 ·x

by (rule monofun-cfun-arg)
then show p1 ·x v p2 ·x

by (simp only: ep-pair .e-inverse [OF 2 ])
qed

lemma ep-pair-unique-p: ep-pair e p1 =⇒ ep-pair e p2 =⇒ p1 = p2
by (fast intro: below-antisym elim: ep-pair-unique-p-lemma)

10.5 Composing ep-pairs
lemma ep-pair-ID-ID: ep-pair ID ID

by standard simp-all

lemma ep-pair-comp:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (e2 oo e1 ) (p1 oo p2 )

proof
interpret ep1 : ep-pair e1 p1 by fact
interpret ep2 : ep-pair e2 p2 by fact
fix x y
show (p1 oo p2 )·((e2 oo e1 )·x) = x

by simp
have e1 ·(p1 ·(p2 ·y)) v p2 ·y

by (rule ep1 .e-p-below)
then have e2 ·(e1 ·(p1 ·(p2 ·y))) v e2 ·(p2 ·y)

by (rule monofun-cfun-arg)
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also have e2 ·(p2 ·y) v y
by (rule ep2 .e-p-below)

finally show (e2 oo e1 )·((p1 oo p2 )·y) v y
by simp

qed

locale pcpo-ep-pair = ep-pair e p
for e :: ′a::pcpo → ′b::pcpo
and p :: ′b::pcpo → ′a::pcpo

begin

lemma e-strict [simp]: e·⊥ = ⊥
proof −

have ⊥ v p·⊥ by (rule minimal)
then have e·⊥ v e·(p·⊥) by (rule monofun-cfun-arg)
also have e·(p·⊥) v ⊥ by (rule e-p-below)
finally show e·⊥ = ⊥ by simp

qed

lemma e-bottom-iff [simp]: e·x = ⊥ ←→ x = ⊥
by (rule e-eq-iff [where y=⊥, unfolded e-strict])

lemma e-defined: x 6= ⊥ =⇒ e·x 6= ⊥
by simp

lemma p-strict [simp]: p·⊥ = ⊥
by (rule e-inverse [where x=⊥, unfolded e-strict])

lemmas stricts = e-strict p-strict

end

end

11 The type of strict products
theory Sprod

imports Cfun
begin

11.1 Definition of strict product type
definition sprod = {p:: ′a::pcpo × ′b::pcpo. p = ⊥ ∨ (fst p 6= ⊥ ∧ snd p 6= ⊥)}

pcpodef ( ′a::pcpo, ′b::pcpo) sprod (‹(‹notation=‹infix strict product››- ⊗/ -)›
[21 ,20 ] 20 ) =

sprod :: ( ′a × ′b) set
by (simp-all add: sprod-def )
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instance sprod :: ({chfin,pcpo}, {chfin,pcpo}) chfin
by (rule typedef-chfin [OF type-definition-sprod below-sprod-def ])

type-notation (ASCII )
sprod (infixr ‹∗∗› 20 )

11.2 Definitions of constants
definition sfst :: ( ′a::pcpo ∗∗ ′b::pcpo) → ′a

where sfst = (Λ p. fst (Rep-sprod p))

definition ssnd :: ( ′a::pcpo ∗∗ ′b::pcpo) → ′b
where ssnd = (Λ p. snd (Rep-sprod p))

definition spair :: ′a::pcpo → ′b::pcpo → ( ′a ∗∗ ′b)
where spair = (Λ a b. Abs-sprod (seq·b·a, seq·a·b))

definition ssplit :: ( ′a::pcpo → ′b::pcpo → ′c::pcpo) → ( ′a ∗∗ ′b) → ′c
where ssplit = (Λ f p. seq·p·(f ·(sfst·p)·(ssnd·p)))

syntax
-stuple :: [logic, args] ⇒ logic (‹(‹indent=1 notation=‹mixfix strict tuple›› ′(:-,/

-: ′))›)
syntax-consts

-stuple ⇀↽ spair
translations
(:x, y, z:) ⇀↽ (:x, (:y, z:):)
(:x, y:) ⇀↽ CONST spair ·x·y

translations
Λ(CONST spair ·x·y). t ⇀↽ CONST ssplit·(Λ x y. t)

11.3 Case analysis
lemma spair-sprod: (seq·b·a, seq·a·b) ∈ sprod

by (simp add: sprod-def seq-conv-if )

lemma Rep-sprod-spair : Rep-sprod (:a, b:) = (seq·b·a, seq·a·b)
by (simp add: spair-def cont-Abs-sprod Abs-sprod-inverse spair-sprod)

lemmas Rep-sprod-simps =
Rep-sprod-inject [symmetric] below-sprod-def
prod-eq-iff below-prod-def
Rep-sprod-strict Rep-sprod-spair

lemma sprodE [case-names bottom spair , cases type: sprod]:
obtains p = ⊥ | x y where p = (:x, y:) and x 6= ⊥ and y 6= ⊥
using Rep-sprod [of p] by (auto simp add: sprod-def Rep-sprod-simps)

lemma sprod-induct [case-names bottom spair , induct type: sprod]:
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[[P ⊥;
∧

x y. [[x 6= ⊥; y 6= ⊥]] =⇒ P (:x, y:)]] =⇒ P x
by (cases x) simp-all

11.4 Properties of spair
lemma spair-strict1 [simp]: (:⊥, y:) = ⊥

by (simp add: Rep-sprod-simps)

lemma spair-strict2 [simp]: (:x, ⊥:) = ⊥
by (simp add: Rep-sprod-simps)

lemma spair-bottom-iff [simp]: (:x, y:) = ⊥ ←→ x = ⊥ ∨ y = ⊥
by (simp add: Rep-sprod-simps seq-conv-if )

lemma spair-below-iff : (:a, b:) v (:c, d:) ←→ a = ⊥ ∨ b = ⊥ ∨ (a v c ∧ b v d)
by (simp add: Rep-sprod-simps seq-conv-if )

lemma spair-eq-iff : (:a, b:) = (:c, d:) ←→ a = c ∧ b = d ∨ (a = ⊥ ∨ b = ⊥) ∧
(c = ⊥ ∨ d = ⊥)

by (simp add: Rep-sprod-simps seq-conv-if )

lemma spair-strict: x = ⊥ ∨ y = ⊥ =⇒ (:x, y:) = ⊥
by simp

lemma spair-strict-rev: (:x, y:) 6= ⊥ =⇒ x 6= ⊥ ∧ y 6= ⊥
by simp

lemma spair-defined: [[x 6= ⊥; y 6= ⊥]] =⇒ (:x, y:) 6= ⊥
by simp

lemma spair-defined-rev: (:x, y:) = ⊥ =⇒ x = ⊥ ∨ y = ⊥
by simp

lemma spair-below: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) v (:a, b:) ←→ x v a ∧ y v b
by (simp add: spair-below-iff )

lemma spair-eq: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) = (:a, b:) ←→ x = a ∧ y = b
by (simp add: spair-eq-iff )

lemma spair-inject: x 6= ⊥ =⇒ y 6= ⊥ =⇒ (:x, y:) = (:a, b:) =⇒ x = a ∧ y = b
by (rule spair-eq [THEN iffD1 ])

lemma inst-sprod-pcpo2 : ⊥ = (:⊥, ⊥:)
by simp

lemma sprodE2 : (
∧

x y. p = (:x, y:) =⇒ Q) =⇒ Q
by (cases p) (simp only: inst-sprod-pcpo2 , simp)
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11.5 Properties of sfst and ssnd
lemma sfst-strict [simp]: sfst·⊥ = ⊥

by (simp add: sfst-def cont-Rep-sprod Rep-sprod-strict)

lemma ssnd-strict [simp]: ssnd·⊥ = ⊥
by (simp add: ssnd-def cont-Rep-sprod Rep-sprod-strict)

lemma sfst-spair [simp]: y 6= ⊥ =⇒ sfst·(:x, y:) = x
by (simp add: sfst-def cont-Rep-sprod Rep-sprod-spair)

lemma ssnd-spair [simp]: x 6= ⊥ =⇒ ssnd·(:x, y:) = y
by (simp add: ssnd-def cont-Rep-sprod Rep-sprod-spair)

lemma sfst-bottom-iff [simp]: sfst·p = ⊥ ←→ p = ⊥
by (cases p) simp-all

lemma ssnd-bottom-iff [simp]: ssnd·p = ⊥ ←→ p = ⊥
by (cases p) simp-all

lemma sfst-defined: p 6= ⊥ =⇒ sfst·p 6= ⊥
by simp

lemma ssnd-defined: p 6= ⊥ =⇒ ssnd·p 6= ⊥
by simp

lemma spair-sfst-ssnd: (:sfst·p, ssnd·p:) = p
by (cases p) simp-all

lemma below-sprod: x v y ←→ sfst·x v sfst·y ∧ ssnd·x v ssnd·y
by (simp add: Rep-sprod-simps sfst-def ssnd-def cont-Rep-sprod)

lemma eq-sprod: x = y ←→ sfst·x = sfst·y ∧ ssnd·x = ssnd·y
by (auto simp add: po-eq-conv below-sprod)

lemma sfst-below-iff : sfst·x v y ←→ x v (:y, ssnd·x:)
by (cases x = ⊥, simp, cases y = ⊥, simp, simp add: below-sprod)

lemma ssnd-below-iff : ssnd·x v y ←→ x v (:sfst·x, y:)
by (cases x = ⊥, simp, cases y = ⊥, simp, simp add: below-sprod)

11.6 Compactness
lemma compact-sfst: compact x =⇒ compact (sfst·x)

by (rule compactI ) (simp add: sfst-below-iff )

lemma compact-ssnd: compact x =⇒ compact (ssnd·x)
by (rule compactI ) (simp add: ssnd-below-iff )

lemma compact-spair : compact x =⇒ compact y =⇒ compact (:x, y:)
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by (rule compact-sprod) (simp add: Rep-sprod-spair seq-conv-if )

lemma compact-spair-iff : compact (:x, y:) ←→ x = ⊥ ∨ y = ⊥ ∨ (compact x ∧
compact y)

apply (safe elim!: compact-spair)
apply (drule compact-sfst, simp)

apply (drule compact-ssnd, simp)
apply simp

apply simp
done

11.7 Properties of ssplit
lemma ssplit1 [simp]: ssplit·f ·⊥ = ⊥

by (simp add: ssplit-def )

lemma ssplit2 [simp]: x 6= ⊥ =⇒ y 6= ⊥ =⇒ ssplit·f ·(:x, y:) = f ·x·y
by (simp add: ssplit-def )

lemma ssplit3 [simp]: ssplit·spair ·z = z
by (cases z) simp-all

11.8 Strict product preserves flatness
instance sprod :: (flat, flat) flat
proof

fix x y :: ′a ⊗ ′b
assume x v y
then show x = ⊥ ∨ x = y

apply (induct x, simp)
apply (induct y, simp)
apply (simp add: spair-below-iff flat-below-iff )
done

qed

end

12 The type of lifted values
theory Up

imports Cfun
begin

12.1 Definition of new type for lifting
datatype ′a u (‹(‹notation=‹postfix lifting››-⊥)› [1000 ] 999 ) = Ibottom | Iup ′a

primrec Ifup :: ( ′a → ′b::pcpo) ⇒ ′a u ⇒ ′b
where
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Ifup f Ibottom = ⊥
| Ifup f (Iup x) = f ·x

12.2 Ordering on lifted cpo
instantiation u :: (cpo) below
begin

definition below-up-def :
(v) ≡
(λx y.
(case x of

Ibottom ⇒ True
| Iup a ⇒ (case y of Ibottom ⇒ False | Iup b ⇒ a v b)))

instance ..

end

lemma minimal-up [iff ]: Ibottom v z
by (simp add: below-up-def )

lemma not-Iup-below [iff ]: Iup x 6v Ibottom
by (simp add: below-up-def )

lemma Iup-below [iff ]: (Iup x v Iup y) = (x v y)
by (simp add: below-up-def )

12.3 Lifted cpo is a partial order
instance u :: (cpo) po
proof

fix x :: ′a u
show x v x

by (simp add: below-up-def split: u.split)
next

fix x y :: ′a u
assume x v y y v x
then show x = y

by (auto simp: below-up-def split: u.split-asm intro: below-antisym)
next

fix x y z :: ′a u
assume x v y y v z
then show x v z

by (auto simp: below-up-def split: u.split-asm intro: below-trans)
qed

12.4 Lifted cpo is a cpo
lemma is-lub-Iup: range S <<| x =⇒ range (λi. Iup (S i)) <<| Iup x
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by (auto simp: is-lub-def is-ub-def ball-simps below-up-def split: u.split)

lemma up-chain-lemma:
assumes Y : chain Y
obtains ∀ i. Y i = Ibottom
| A k where ∀ i. Iup (A i) = Y (i + k) and chain A and range Y <<| Iup

(
⊔

i. A i)
proof (cases ∃ k. Y k 6= Ibottom)

case True
then obtain k where k: Y k 6= Ibottom ..
define A where A i = (THE a. Iup a = Y (i + k)) for i
have Iup-A: ∀ i. Iup (A i) = Y (i + k)
proof

fix i :: nat
from Y le-add2 have Y k v Y (i + k) by (rule chain-mono)
with k have Y (i + k) 6= Ibottom by (cases Y k) auto
then show Iup (A i) = Y (i + k)

by (cases Y (i + k), simp-all add: A-def )
qed
from Y have chain-A: chain A

by (simp add: chain-def Iup-below [symmetric] Iup-A)
then have range A <<| (

⊔
i. A i)

by (rule cpo-lubI )
then have range (λi. Iup (A i)) <<| Iup (

⊔
i. A i)

by (rule is-lub-Iup)
then have range (λi. Y (i + k)) <<| Iup (

⊔
i. A i)

by (simp only: Iup-A)
then have range (λi. Y i) <<| Iup (

⊔
i. A i)

by (simp only: is-lub-range-shift [OF Y ])
with Iup-A chain-A show ?thesis ..

next
case False
then have ∀ i. Y i = Ibottom by simp
then show ?thesis ..

qed

instance u :: (cpo) cpo
proof

fix S :: nat ⇒ ′a u
assume S : chain S
then show ∃ x. range (λi. S i) <<| x
proof (rule up-chain-lemma)

assume ∀ i. S i = Ibottom
then have range (λi. S i) <<| Ibottom

by (simp add: is-lub-const)
then show ?thesis ..

next
fix A :: nat ⇒ ′a
assume range S <<| Iup (

⊔
i. A i)
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then show ?thesis ..
qed

qed

12.5 Lifted cpo is pointed
instance u :: (cpo) pcpo

by intro-classes fast

for compatibility with old HOLCF-Version
lemma inst-up-pcpo: ⊥ = Ibottom

by (rule minimal-up [THEN bottomI , symmetric])

12.6 Continuity of Iup and Ifup

continuity for Iup
lemma cont-Iup: cont Iup

apply (rule contI )
apply (rule is-lub-Iup)
apply (erule cpo-lubI )
done

continuity for Ifup
lemma cont-Ifup1 : cont (λf . Ifup f x)

by (induct x) simp-all

lemma monofun-Ifup2 : monofun (λx. Ifup f x)
apply (rule monofunI )
apply (case-tac x, simp)
apply (case-tac y, simp)
apply (simp add: monofun-cfun-arg)
done

lemma cont-Ifup2 : cont (λx. Ifup f x)
proof (rule contI2 )

fix Y
assume Y : chain Y and Y ′: chain (λi. Ifup f (Y i))
from Y show Ifup f (

⊔
i. Y i) v (

⊔
i. Ifup f (Y i))

proof (rule up-chain-lemma)
fix A and k
assume A: ∀ i. Iup (A i) = Y (i + k)
assume chain A and range Y <<| Iup (

⊔
i. A i)

then have Ifup f (
⊔

i. Y i) = (
⊔

i. Ifup f (Iup (A i)))
by (simp add: lub-eqI contlub-cfun-arg)

also have . . . = (
⊔

i. Ifup f (Y (i + k)))
by (simp add: A)

also have . . . = (
⊔

i. Ifup f (Y i))
using Y ′ by (rule lub-range-shift)
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finally show ?thesis by simp
qed simp

qed (rule monofun-Ifup2 )

12.7 Continuous versions of constants
definition up :: ′a → ′a u

where up = (Λ x. Iup x)

definition fup :: ( ′a → ′b::pcpo) → ′a u → ′b
where fup = (Λ f p. Ifup f p)

translations
case l of XCONST up·x ⇒ t ⇀↽ CONST fup·(Λ x. t)·l
case l of (XCONST up :: ′a)·x ⇒ t ⇀ CONST fup·(Λ x. t)·l
Λ(XCONST up·x). t ⇀↽ CONST fup·(Λ x. t)

continuous versions of lemmas for ′a⊥

lemma Exh-Up: z = ⊥ ∨ (∃ x. z = up·x)
by (induct z) (simp add: inst-up-pcpo, simp add: up-def cont-Iup)

lemma up-eq [simp]: (up·x = up·y) = (x = y)
by (simp add: up-def cont-Iup)

lemma up-inject: up·x = up·y =⇒ x = y
by simp

lemma up-defined [simp]: up·x 6= ⊥
by (simp add: up-def cont-Iup inst-up-pcpo)

lemma not-up-less-UU : up·x 6v ⊥
by simp

lemma up-below [simp]: up·x v up·y ←→ x v y
by (simp add: up-def cont-Iup)

lemma upE [case-names bottom up, cases type: u]: [[p = ⊥ =⇒ Q;
∧

x. p = up·x
=⇒ Q]] =⇒ Q

by (cases p) (simp add: inst-up-pcpo, simp add: up-def cont-Iup)

lemma up-induct [case-names bottom up, induct type: u]: P ⊥ =⇒ (
∧

x. P (up·x))
=⇒ P x

by (cases x) simp-all

lifting preserves chain-finiteness
lemma up-chain-cases:

assumes Y : chain Y
obtains ∀ i. Y i = ⊥
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| A k where ∀ i. up·(A i) = Y (i + k) and chain A and (
⊔

i. Y i) = up·(
⊔

i.
A i)

by (rule up-chain-lemma [OF Y ]) (simp-all add: inst-up-pcpo up-def cont-Iup
lub-eqI )

lemma compact-up: compact x =⇒ compact (up·x)
apply (rule compactI2 )
apply (erule up-chain-cases)
apply simp

apply (drule (1 ) compactD2 , simp)
apply (erule exE)
apply (drule-tac f=up and x=x in monofun-cfun-arg)
apply (simp, erule exI )
done

lemma compact-upD: compact (up·x) =⇒ compact x
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=up]], simp)

lemma compact-up-iff [simp]: compact (up·x) = compact x
by (safe elim!: compact-up compact-upD)

instance u :: (chfin) chfin
apply intro-classes
apply (erule compact-imp-max-in-chain)
apply (rule-tac p=

⊔
i. Y i in upE , simp-all)

done

properties of fup
lemma fup1 [simp]: fup·f ·⊥ = ⊥

by (simp add: fup-def cont-Ifup1 cont-Ifup2 inst-up-pcpo cont2cont-LAM )

lemma fup2 [simp]: fup·f ·(up·x) = f ·x
by (simp add: up-def fup-def cont-Iup cont-Ifup1 cont-Ifup2 cont2cont-LAM )

lemma fup3 [simp]: fup·up·x = x
by (cases x) simp-all

end

13 Lifting types of class type to flat pcpo’s
theory Lift
imports Up
begin

pcpodef ′a::type lift = UNIV :: ′a discr u set
by simp-all
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lemmas inst-lift-pcpo = Abs-lift-strict [symmetric]

definition
Def :: ′a::type ⇒ ′a lift where
Def x = Abs-lift (up·(Discr x))

13.1 Lift as a datatype
lemma lift-induct: [[P ⊥;

∧
x. P (Def x)]] =⇒ P y

apply (induct y)
apply (rule-tac p=y in upE)
apply (simp add: Abs-lift-strict)
apply (case-tac x)
apply (simp add: Def-def )
done

old-rep-datatype ⊥:: ′a::type lift Def
by (erule lift-induct) (simp-all add: Def-def Abs-lift-inject inst-lift-pcpo)

⊥ and Def
lemma not-Undef-is-Def : (x 6= ⊥) = (∃ y. x = Def y)

by (cases x) simp-all

lemma lift-definedE : [[x 6= ⊥;
∧

a. x = Def a =⇒ R]] =⇒ R
by (cases x) simp-all

For x 6= ⊥ in assumptions defined replaces x by Def a in conclusion.
method-setup defined = ‹

Scan.succeed (fn ctxt => SIMPLE-METHOD ′

(eresolve-tac ctxt @{thms lift-definedE} THEN ′ asm-simp-tac ctxt))
›

lemma DefE : Def x = ⊥ =⇒ R
by simp

lemma DefE2 : [[x = Def s; x = ⊥]] =⇒ R
by simp

lemma Def-below-Def : Def x v Def y ←→ x = y
by (simp add: below-lift-def Def-def Abs-lift-inverse)

lemma Def-below-iff [simp]: Def x v y ←→ Def x = y
by (induct y, simp, simp add: Def-below-Def )

13.2 Lift is flat
instance lift :: (type) flat
proof

fix x y :: ′a lift
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assume x v y thus x = ⊥ ∨ x = y
by (induct x) auto

qed

13.3 Continuity of case-lift
lemma case-lift-eq: case-lift ⊥ f x = fup·(Λ y. f (undiscr y))·(Rep-lift x)
apply (induct x, unfold lift.case)
apply (simp add: Rep-lift-strict)
apply (simp add: Def-def Abs-lift-inverse)
done

lemma cont2cont-case-lift [simp]:
[[
∧

y. cont (λx. f x y); cont g]] =⇒ cont (λx. case-lift ⊥ (f x) (g x))
unfolding case-lift-eq by (simp add: cont-Rep-lift)

13.4 Further operations
definition

flift1 :: ( ′a::type ⇒ ′b::pcpo) ⇒ ( ′a lift → ′b) (binder ‹FLIFT › 10 ) where
flift1 = (λf . (Λ x. case-lift ⊥ f x))

translations
Λ(XCONST Def x). t => CONST flift1 (λx. t)
Λ(CONST Def x). FLIFT y. t <= FLIFT x y. t
Λ(CONST Def x). t <= FLIFT x . t

definition
flift2 :: ( ′a::type ⇒ ′b::type) ⇒ ( ′a lift → ′b lift) where
flift2 f = (FLIFT x. Def (f x))

lemma flift1-Def [simp]: flift1 f ·(Def x) = (f x)
by (simp add: flift1-def )

lemma flift2-Def [simp]: flift2 f ·(Def x) = Def (f x)
by (simp add: flift2-def )

lemma flift1-strict [simp]: flift1 f ·⊥ = ⊥
by (simp add: flift1-def )

lemma flift2-strict [simp]: flift2 f ·⊥ = ⊥
by (simp add: flift2-def )

lemma flift2-defined [simp]: x 6= ⊥ =⇒ (flift2 f )·x 6= ⊥
by (erule lift-definedE , simp)

lemma flift2-bottom-iff [simp]: (flift2 f ·x = ⊥) = (x = ⊥)
by (cases x, simp-all)

lemma FLIFT-mono:
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(
∧

x. f x v g x) =⇒ (FLIFT x . f x) v (FLIFT x. g x)
by (rule cfun-belowI , case-tac x, simp-all)

lemma cont2cont-flift1 [simp, cont2cont]:
[[
∧

y. cont (λx. f x y)]] =⇒ cont (λx. FLIFT y. f x y)
by (simp add: flift1-def cont2cont-LAM )

end

14 The type of lifted booleans
theory Tr

imports Lift
begin

14.1 Type definition and constructors
type-synonym tr = bool lift

translations
(type) tr ↽ (type) bool lift

definition TT :: tr
where TT = Def True

definition FF :: tr
where FF = Def False

Exhaustion and Elimination for type tr
lemma Exh-tr : t = ⊥ ∨ t = TT ∨ t = FF

by (induct t) (auto simp: FF-def TT-def )

lemma trE [case-names bottom TT FF , cases type: tr ]:
[[p = ⊥ =⇒ Q; p = TT =⇒ Q; p = FF =⇒ Q]] =⇒ Q
by (induct p) (auto simp: FF-def TT-def )

lemma tr-induct [case-names bottom TT FF , induct type: tr ]:
P ⊥ =⇒ P TT =⇒ P FF =⇒ P x
by (cases x) simp-all

distinctness for type tr
lemma dist-below-tr [simp]:

TT 6v ⊥ FF 6v ⊥ TT 6v FF FF 6v TT
by (simp-all add: TT-def FF-def )

lemma dist-eq-tr [simp]: TT 6= ⊥ FF 6= ⊥ TT 6= FF ⊥ 6= TT ⊥ 6= FF FF 6= TT
by (simp-all add: TT-def FF-def )
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lemma TT-below-iff [simp]: TT v x ←→ x = TT
by (induct x) simp-all

lemma FF-below-iff [simp]: FF v x ←→ x = FF
by (induct x) simp-all

lemma not-below-TT-iff [simp]: x 6v TT ←→ x = FF
by (induct x) simp-all

lemma not-below-FF-iff [simp]: x 6v FF ←→ x = TT
by (induct x) simp-all

14.2 Case analysis
definition tr-case :: ′a::pcpo → ′a → tr → ′a

where tr-case = (Λ t e (Def b). if b then t else e)

abbreviation cifte-syn :: [tr , ′c::pcpo, ′c] ⇒ ′c (‹(‹notation=‹mixfix If expres-
sion››If (-)/ then (-)/ else (-))› [0 , 0 , 60 ] 60 )

where If b then e1 else e2 ≡ tr-case·e1 ·e2 ·b

translations
Λ (XCONST TT ). t ⇀↽ CONST tr-case·t·⊥
Λ (XCONST FF). t ⇀↽ CONST tr-case·⊥·t

lemma ifte-thms [simp]:
If ⊥ then e1 else e2 = ⊥
If FF then e1 else e2 = e2
If TT then e1 else e2 = e1
by (simp-all add: tr-case-def TT-def FF-def )

14.3 Boolean connectives
definition trand :: tr → tr → tr

where andalso-def : trand = (Λ x y. If x then y else FF)

abbreviation andalso-syn :: tr ⇒ tr ⇒ tr (‹- andalso -› [36 ,35 ] 35 )
where x andalso y ≡ trand·x·y

definition tror :: tr → tr → tr
where orelse-def : tror = (Λ x y. If x then TT else y)

abbreviation orelse-syn :: tr ⇒ tr ⇒ tr (‹- orelse -› [31 ,30 ] 30 )
where x orelse y ≡ tror ·x·y

definition neg :: tr → tr
where neg = flift2 Not

definition If2 :: tr ⇒ ′c::pcpo ⇒ ′c ⇒ ′c
where If2 Q x y = (If Q then x else y)
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tactic for tr-thms with case split
lemmas tr-defs = andalso-def orelse-def neg-def tr-case-def TT-def FF-def

lemmas about andalso, orelse, neg and if
lemma andalso-thms [simp]:
(TT andalso y) = y
(FF andalso y) = FF
(⊥ andalso y) = ⊥
(y andalso TT ) = y
(y andalso y) = y

apply (unfold andalso-def , simp-all)
apply (cases y, simp-all)

apply (cases y, simp-all)
done

lemma orelse-thms [simp]:
(TT orelse y) = TT
(FF orelse y) = y
(⊥ orelse y) = ⊥
(y orelse FF) = y
(y orelse y) = y

apply (unfold orelse-def , simp-all)
apply (cases y, simp-all)

apply (cases y, simp-all)
done

lemma neg-thms [simp]:
neg·TT = FF
neg·FF = TT
neg·⊥ = ⊥
by (simp-all add: neg-def TT-def FF-def )

split-tac for If via If2 because the constant has to be a constant
lemma split-If2 : P (If2 Q x y) ←→ ((Q = ⊥ −→ P ⊥) ∧ (Q = TT −→ P x) ∧
(Q = FF −→ P y))

by (cases Q) (simp-all add: If2-def )

ML ‹
fun split-If-tac ctxt =

simp-tac (put-simpset HOL-basic-ss ctxt addsimps [@{thm If2-def } RS sym])
THEN ′ (split-tac ctxt [@{thm split-If2}])

›

14.4 Rewriting of HOLCF operations to HOL functions
lemma andalso-or : t 6= ⊥ =⇒ (t andalso s) = FF ←→ t = FF ∨ s = FF

by (cases t) simp-all
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lemma andalso-and: t 6= ⊥ =⇒ ((t andalso s) 6= FF) ←→ t 6= FF ∧ s 6= FF
by (cases t) simp-all

lemma Def-bool1 [simp]: Def x 6= FF ←→ x
by (simp add: FF-def )

lemma Def-bool2 [simp]: Def x = FF ←→ ¬ x
by (simp add: FF-def )

lemma Def-bool3 [simp]: Def x = TT ←→ x
by (simp add: TT-def )

lemma Def-bool4 [simp]: Def x 6= TT ←→ ¬ x
by (simp add: TT-def )

lemma If-and-if : (If Def P then A else B) = (if P then A else B)
by (cases Def P) (auto simp add: TT-def [symmetric] FF-def [symmetric])

14.5 Compactness
lemma compact-TT : compact TT

by (rule compact-chfin)

lemma compact-FF : compact FF
by (rule compact-chfin)

end

15 The type of strict sums
theory Ssum

imports Tr
begin

15.1 Definition of strict sum type
definition ssum =
{p :: tr × ( ′a::pcpo × ′b::pcpo). p = ⊥ ∨
(fst p = TT ∧ fst (snd p) 6= ⊥ ∧ snd (snd p) = ⊥) ∨
(fst p = FF ∧ fst (snd p) = ⊥ ∧ snd (snd p) 6= ⊥)}

pcpodef ( ′a::pcpo, ′b::pcpo) ssum (‹(‹notation=‹infix strict sum››- ⊕/ -)› [21 ,
20 ] 20 ) =

ssum :: (tr × ′a × ′b) set
by (simp-all add: ssum-def )

instance ssum :: ({chfin,pcpo}, {chfin,pcpo}) chfin
by (rule typedef-chfin [OF type-definition-ssum below-ssum-def ])
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type-notation (ASCII )
ssum (infixr ‹++› 10 )

15.2 Definitions of constructors
definition sinl :: ′a::pcpo → ( ′a ++ ′b::pcpo)

where sinl = (Λ a. Abs-ssum (seq·a·TT , a, ⊥))

definition sinr :: ′b::pcpo → ( ′a::pcpo ++ ′b)
where sinr = (Λ b. Abs-ssum (seq·b·FF , ⊥, b))

lemma sinl-ssum: (seq·a·TT , a, ⊥) ∈ ssum
by (simp add: ssum-def seq-conv-if )

lemma sinr-ssum: (seq·b·FF , ⊥, b) ∈ ssum
by (simp add: ssum-def seq-conv-if )

lemma Rep-ssum-sinl: Rep-ssum (sinl·a) = (seq·a·TT , a, ⊥)
by (simp add: sinl-def cont-Abs-ssum Abs-ssum-inverse sinl-ssum)

lemma Rep-ssum-sinr : Rep-ssum (sinr ·b) = (seq·b·FF , ⊥, b)
by (simp add: sinr-def cont-Abs-ssum Abs-ssum-inverse sinr-ssum)

lemmas Rep-ssum-simps =
Rep-ssum-inject [symmetric] below-ssum-def
prod-eq-iff below-prod-def
Rep-ssum-strict Rep-ssum-sinl Rep-ssum-sinr

15.3 Properties of sinl and sinr

Ordering
lemma sinl-below [simp]: sinl·x v sinl·y ←→ x v y

by (simp add: Rep-ssum-simps seq-conv-if )

lemma sinr-below [simp]: sinr ·x v sinr ·y ←→ x v y
by (simp add: Rep-ssum-simps seq-conv-if )

lemma sinl-below-sinr [simp]: sinl·x v sinr ·y ←→ x = ⊥
by (simp add: Rep-ssum-simps seq-conv-if )

lemma sinr-below-sinl [simp]: sinr ·x v sinl·y ←→ x = ⊥
by (simp add: Rep-ssum-simps seq-conv-if )

Equality
lemma sinl-eq [simp]: sinl·x = sinl·y ←→ x = y

by (simp add: po-eq-conv)

lemma sinr-eq [simp]: sinr ·x = sinr ·y ←→ x = y
by (simp add: po-eq-conv)
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lemma sinl-eq-sinr [simp]: sinl·x = sinr ·y ←→ x = ⊥ ∧ y = ⊥
by (subst po-eq-conv) simp

lemma sinr-eq-sinl [simp]: sinr ·x = sinl·y ←→ x = ⊥ ∧ y = ⊥
by (subst po-eq-conv) simp

lemma sinl-inject: sinl·x = sinl·y =⇒ x = y
by (rule sinl-eq [THEN iffD1 ])

lemma sinr-inject: sinr ·x = sinr ·y =⇒ x = y
by (rule sinr-eq [THEN iffD1 ])

Strictness
lemma sinl-strict [simp]: sinl·⊥ = ⊥

by (simp add: Rep-ssum-simps)

lemma sinr-strict [simp]: sinr ·⊥ = ⊥
by (simp add: Rep-ssum-simps)

lemma sinl-bottom-iff [simp]: sinl·x = ⊥ ←→ x = ⊥
using sinl-eq [of x ⊥] by simp

lemma sinr-bottom-iff [simp]: sinr ·x = ⊥ ←→ x = ⊥
using sinr-eq [of x ⊥] by simp

lemma sinl-defined: x 6= ⊥ =⇒ sinl·x 6= ⊥
by simp

lemma sinr-defined: x 6= ⊥ =⇒ sinr ·x 6= ⊥
by simp

Compactness
lemma compact-sinl: compact x =⇒ compact (sinl·x)

by (rule compact-ssum) (simp add: Rep-ssum-sinl)

lemma compact-sinr : compact x =⇒ compact (sinr ·x)
by (rule compact-ssum) (simp add: Rep-ssum-sinr)

lemma compact-sinlD: compact (sinl·x) =⇒ compact x
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=sinl]], simp)

lemma compact-sinrD: compact (sinr ·x) =⇒ compact x
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=sinr ]], simp)

lemma compact-sinl-iff [simp]: compact (sinl·x) = compact x
by (safe elim!: compact-sinl compact-sinlD)
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lemma compact-sinr-iff [simp]: compact (sinr ·x) = compact x
by (safe elim!: compact-sinr compact-sinrD)

15.4 Case analysis
lemma ssumE [case-names bottom sinl sinr , cases type: ssum]:

obtains p = ⊥
| x where p = sinl·x and x 6= ⊥
| y where p = sinr ·y and y 6= ⊥
using Rep-ssum [of p] by (auto simp add: ssum-def Rep-ssum-simps)

lemma ssum-induct [case-names bottom sinl sinr , induct type: ssum]:
[[P ⊥;∧

x. x 6= ⊥ =⇒ P (sinl·x);∧
y. y 6= ⊥ =⇒ P (sinr ·y)]] =⇒ P x

by (cases x) simp-all

lemma ssumE2 [case-names sinl sinr ]:
[[
∧

x. p = sinl·x =⇒ Q;
∧

y. p = sinr ·y =⇒ Q]] =⇒ Q
by (cases p, simp only: sinl-strict [symmetric], simp, simp)

lemma below-sinlD: p v sinl·x =⇒ ∃ y. p = sinl·y ∧ y v x
by (cases p, rule-tac x=⊥ in exI , simp-all)

lemma below-sinrD: p v sinr ·x =⇒ ∃ y. p = sinr ·y ∧ y v x
by (cases p, rule-tac x=⊥ in exI , simp-all)

15.5 Case analysis combinator
definition sscase :: ( ′a::pcpo → ′c::pcpo) → ( ′b::pcpo → ′c) → ( ′a ++ ′b) → ′c

where sscase = (Λ f g s. (λ(t, x, y). If t then f ·x else g·y) (Rep-ssum s))

translations
case s of XCONST sinl·x ⇒ t1 | XCONST sinr ·y ⇒ t2 ⇀↽ CONST sscase·(Λ x.

t1 )·(Λ y. t2 )·s
case s of (XCONST sinl :: ′a)·x ⇒ t1 | XCONST sinr ·y ⇒ t2 ⇀ CONST

sscase·(Λ x. t1 )·(Λ y. t2 )·s

translations
Λ(XCONST sinl·x). t ⇀↽ CONST sscase·(Λ x. t)·⊥
Λ(XCONST sinr ·y). t ⇀↽ CONST sscase·⊥·(Λ y. t)

lemma beta-sscase: sscase·f ·g·s = (λ(t, x, y). If t then f ·x else g·y) (Rep-ssum s)
by (simp add: sscase-def cont-Rep-ssum)

lemma sscase1 [simp]: sscase·f ·g·⊥ = ⊥
by (simp add: beta-sscase Rep-ssum-strict)

lemma sscase2 [simp]: x 6= ⊥ =⇒ sscase·f ·g·(sinl·x) = f ·x
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by (simp add: beta-sscase Rep-ssum-sinl)

lemma sscase3 [simp]: y 6= ⊥ =⇒ sscase·f ·g·(sinr ·y) = g·y
by (simp add: beta-sscase Rep-ssum-sinr)

lemma sscase4 [simp]: sscase·sinl·sinr ·z = z
by (cases z) simp-all

15.6 Strict sum preserves flatness
instance ssum :: (flat, flat) flat

apply (intro-classes, clarify)
apply (case-tac x, simp)
apply (case-tac y, simp-all add: flat-below-iff )

apply (case-tac y, simp-all add: flat-below-iff )
done

end

16 The Strict Function Type
theory Sfun

imports Cfun
begin

pcpodef ( ′a::pcpo, ′b::pcpo) sfun (infixr ‹→!› 0 ) = {f :: ′a → ′b. f ·⊥ = ⊥}
by simp-all

type-notation (ASCII )
sfun (infixr ‹−>!› 0 )

TODO: Define nice syntax for abstraction, application.
definition sfun-abs :: ( ′a::pcpo → ′b::pcpo) → ( ′a →! ′b)

where sfun-abs = (Λ f . Abs-sfun (strictify·f ))

definition sfun-rep :: ( ′a::pcpo →! ′b::pcpo) → ′a → ′b
where sfun-rep = (Λ f . Rep-sfun f )

lemma sfun-rep-beta: sfun-rep·f = Rep-sfun f
by (simp add: sfun-rep-def cont-Rep-sfun)

lemma sfun-rep-strict1 [simp]: sfun-rep·⊥ = ⊥
unfolding sfun-rep-beta by (rule Rep-sfun-strict)

lemma sfun-rep-strict2 [simp]: sfun-rep·f ·⊥ = ⊥
unfolding sfun-rep-beta by (rule Rep-sfun [simplified])

lemma strictify-cancel: f ·⊥ = ⊥ =⇒ strictify·f = f
by (simp add: cfun-eq-iff strictify-conv-if )
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lemma sfun-abs-sfun-rep [simp]: sfun-abs·(sfun-rep·f ) = f
unfolding sfun-abs-def sfun-rep-def
apply (simp add: cont-Abs-sfun cont-Rep-sfun)
apply (simp add: Rep-sfun-inject [symmetric] Abs-sfun-inverse)
apply (simp add: cfun-eq-iff strictify-conv-if )
apply (simp add: Rep-sfun [simplified])
done

lemma sfun-rep-sfun-abs [simp]: sfun-rep·(sfun-abs·f ) = strictify·f
unfolding sfun-abs-def sfun-rep-def
apply (simp add: cont-Abs-sfun cont-Rep-sfun)
apply (simp add: Abs-sfun-inverse)
done

lemma sfun-eq-iff : f = g ←→ sfun-rep·f = sfun-rep·g
by (simp add: sfun-rep-def cont-Rep-sfun Rep-sfun-inject)

lemma sfun-below-iff : f v g ←→ sfun-rep·f v sfun-rep·g
by (simp add: sfun-rep-def cont-Rep-sfun below-sfun-def )

end

17 Map functions for various types
theory Map-Functions

imports Deflation Sprod Ssum Sfun Up
begin

17.1 Map operator for continuous function space
definition cfun-map :: ( ′b → ′a) → ( ′c → ′d) → ( ′a → ′c) → ( ′b → ′d)

where cfun-map = (Λ a b f x. b·(f ·(a·x)))

lemma cfun-map-beta [simp]: cfun-map·a·b·f ·x = b·(f ·(a·x))
by (simp add: cfun-map-def )

lemma cfun-map-ID: cfun-map·ID·ID = ID
by (simp add: cfun-eq-iff )

lemma cfun-map-map: cfun-map·f1 ·g1 ·(cfun-map·f2 ·g2 ·p) = cfun-map·(Λ x. f2 ·(f1 ·x))·(Λ
x. g1 ·(g2 ·x))·p

by (rule cfun-eqI ) simp

lemma ep-pair-cfun-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (cfun-map·p1 ·e2 ) (cfun-map·e1 ·p2 )

proof
interpret e1p1 : ep-pair e1 p1 by fact
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interpret e2p2 : ep-pair e2 p2 by fact
show cfun-map·e1 ·p2 ·(cfun-map·p1 ·e2 ·f ) = f for f

by (simp add: cfun-eq-iff )
show cfun-map·p1 ·e2 ·(cfun-map·e1 ·p2 ·g) v g for g

apply (rule cfun-belowI , simp)
apply (rule below-trans [OF e2p2 .e-p-below])
apply (rule monofun-cfun-arg)
apply (rule e1p1 .e-p-below)
done

qed

lemma deflation-cfun-map:
assumes deflation d1 and deflation d2
shows deflation (cfun-map·d1 ·d2 )

proof
interpret d1 : deflation d1 by fact
interpret d2 : deflation d2 by fact
fix f
show cfun-map·d1 ·d2 ·(cfun-map·d1 ·d2 ·f ) = cfun-map·d1 ·d2 ·f

by (simp add: cfun-eq-iff d1 .idem d2 .idem)
show cfun-map·d1 ·d2 ·f v f

apply (rule cfun-belowI , simp)
apply (rule below-trans [OF d2 .below])
apply (rule monofun-cfun-arg)
apply (rule d1 .below)
done

qed

lemma finite-range-cfun-map:
assumes a: finite (range (λx. a·x))
assumes b: finite (range (λy. b·y))
shows finite (range (λf . cfun-map·a·b·f )) (is finite (range ?h))

proof (rule finite-imageD)
let ?f = λg. range (λx. (a·x, g·x))
show finite (?f ‘ range ?h)
proof (rule finite-subset)

let ?B = Pow (range (λx. a·x) × range (λy. b·y))
show ?f ‘ range ?h ⊆ ?B

by clarsimp
show finite ?B

by (simp add: a b)
qed
show inj-on ?f (range ?h)
proof (rule inj-onI , rule cfun-eqI , clarsimp)

fix x f g
assume range (λx. (a·x, b·(f ·(a·x)))) = range (λx. (a·x, b·(g·(a·x))))
then have range (λx. (a·x, b·(f ·(a·x)))) ⊆ range (λx. (a·x, b·(g·(a·x))))

by (rule equalityD1 )
then have (a·x, b·(f ·(a·x))) ∈ range (λx. (a·x, b·(g·(a·x))))
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by (simp add: subset-eq)
then obtain y where (a·x, b·(f ·(a·x))) = (a·y, b·(g·(a·y)))

by (rule rangeE)
then show b·(f ·(a·x)) = b·(g·(a·x))

by clarsimp
qed

qed

lemma finite-deflation-cfun-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (cfun-map·d1 ·d2 )

proof (rule finite-deflation-intro)
interpret d1 : finite-deflation d1 by fact
interpret d2 : finite-deflation d2 by fact
from d1 .deflation-axioms d2 .deflation-axioms show deflation (cfun-map·d1 ·d2 )

by (rule deflation-cfun-map)
have finite (range (λf . cfun-map·d1 ·d2 ·f ))

using d1 .finite-range d2 .finite-range
by (rule finite-range-cfun-map)

then show finite {f . cfun-map·d1 ·d2 ·f = f }
by (rule finite-range-imp-finite-fixes)

qed

Finite deflations are compact elements of the function space
lemma finite-deflation-imp-compact: finite-deflation d =⇒ compact d

apply (frule finite-deflation-imp-deflation)
apply (subgoal-tac compact (cfun-map·d·d·d))
apply (simp add: cfun-map-def deflation.idem eta-cfun)

apply (rule finite-deflation.compact)
apply (simp only: finite-deflation-cfun-map)
done

17.2 Map operator for product type
definition prod-map :: ( ′a → ′b) → ( ′c → ′d) → ′a × ′c → ′b × ′d

where prod-map = (Λ f g p. (f ·(fst p), g·(snd p)))

lemma prod-map-Pair [simp]: prod-map·f ·g·(x, y) = (f ·x, g·y)
by (simp add: prod-map-def )

lemma prod-map-ID: prod-map·ID·ID = ID
by (auto simp: cfun-eq-iff )

lemma prod-map-map: prod-map·f1 ·g1 ·(prod-map·f2 ·g2 ·p) = prod-map·(Λ x. f1 ·(f2 ·x))·(Λ
x. g1 ·(g2 ·x))·p

by (induct p) simp

lemma ep-pair-prod-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
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shows ep-pair (prod-map·e1 ·e2 ) (prod-map·p1 ·p2 )
proof

interpret e1p1 : ep-pair e1 p1 by fact
interpret e2p2 : ep-pair e2 p2 by fact
show prod-map·p1 ·p2 ·(prod-map·e1 ·e2 ·x) = x for x

by (induct x) simp
show prod-map·e1 ·e2 ·(prod-map·p1 ·p2 ·y) v y for y

by (induct y) (simp add: e1p1 .e-p-below e2p2 .e-p-below)
qed

lemma deflation-prod-map:
assumes deflation d1 and deflation d2
shows deflation (prod-map·d1 ·d2 )

proof
interpret d1 : deflation d1 by fact
interpret d2 : deflation d2 by fact
fix x
show prod-map·d1 ·d2 ·(prod-map·d1 ·d2 ·x) = prod-map·d1 ·d2 ·x

by (induct x) (simp add: d1 .idem d2 .idem)
show prod-map·d1 ·d2 ·x v x

by (induct x) (simp add: d1 .below d2 .below)
qed

lemma finite-deflation-prod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (prod-map·d1 ·d2 )

proof (rule finite-deflation-intro)
interpret d1 : finite-deflation d1 by fact
interpret d2 : finite-deflation d2 by fact
from d1 .deflation-axioms d2 .deflation-axioms show deflation (prod-map·d1 ·d2 )

by (rule deflation-prod-map)
have {p. prod-map·d1 ·d2 ·p = p} ⊆ {x. d1 ·x = x} × {y. d2 ·y = y}

by auto
then show finite {p. prod-map·d1 ·d2 ·p = p}

by (rule finite-subset, simp add: d1 .finite-fixes d2 .finite-fixes)
qed

17.3 Map function for lifted cpo
definition u-map :: ( ′a → ′b) → ′a u → ′b u

where u-map = (Λ f . fup·(up oo f ))

lemma u-map-strict [simp]: u-map·f ·⊥ = ⊥
by (simp add: u-map-def )

lemma u-map-up [simp]: u-map·f ·(up·x) = up·(f ·x)
by (simp add: u-map-def )

lemma u-map-ID: u-map·ID = ID
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by (simp add: u-map-def cfun-eq-iff eta-cfun)

lemma u-map-map: u-map·f ·(u-map·g·p) = u-map·(Λ x. f ·(g·x))·p
by (induct p) simp-all

lemma u-map-oo: u-map·(f oo g) = u-map·f oo u-map·g
by (simp add: cfcomp1 u-map-map eta-cfun)

lemma ep-pair-u-map: ep-pair e p =⇒ ep-pair (u-map·e) (u-map·p)
apply standard
subgoal for x by (cases x) (simp-all add: ep-pair .e-inverse)
subgoal for y by (cases y) (simp-all add: ep-pair .e-p-below)
done

lemma deflation-u-map: deflation d =⇒ deflation (u-map·d)
apply standard
subgoal for x by (cases x) (simp-all add: deflation.idem)
subgoal for x by (cases x) (simp-all add: deflation.below)
done

lemma finite-deflation-u-map:
assumes finite-deflation d
shows finite-deflation (u-map·d)

proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (u-map·d)

by (rule deflation-u-map)
have {x. u-map·d·x = x} ⊆ insert ⊥ ((λx. up·x) ‘ {x. d·x = x})

by (rule subsetI , case-tac x, simp-all)
then show finite {x. u-map·d·x = x}

by (rule finite-subset) (simp add: d.finite-fixes)
qed

17.4 Map function for strict products
definition sprod-map :: ( ′a::pcpo → ′b::pcpo) → ( ′c::pcpo → ′d::pcpo) → ′a ⊗ ′c
→ ′b ⊗ ′d

where sprod-map = (Λ f g. ssplit·(Λ x y. (:f ·x, g·y:)))

lemma sprod-map-strict [simp]: sprod-map·a·b·⊥ = ⊥
by (simp add: sprod-map-def )

lemma sprod-map-spair [simp]: x 6= ⊥ =⇒ y 6= ⊥ =⇒ sprod-map·f ·g·(:x, y:) =
(:f ·x, g·y:)

by (simp add: sprod-map-def )

lemma sprod-map-spair ′: f ·⊥ = ⊥ =⇒ g·⊥ = ⊥ =⇒ sprod-map·f ·g·(:x, y:) = (:f ·x,
g·y:)

by (cases x = ⊥ ∨ y = ⊥) auto
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lemma sprod-map-ID: sprod-map·ID·ID = ID
by (simp add: sprod-map-def cfun-eq-iff eta-cfun)

lemma sprod-map-map:
[[f1 ·⊥ = ⊥; g1 ·⊥ = ⊥]] =⇒

sprod-map·f1 ·g1 ·(sprod-map·f2 ·g2 ·p) =
sprod-map·(Λ x. f1 ·(f2 ·x))·(Λ x. g1 ·(g2 ·x))·p

proof (induct p)
case bottom
then show ?case by simp

next
case (spair x y)
then show ?case

apply (cases f2 ·x = ⊥, simp)
apply (cases g2 ·y = ⊥, simp)
apply simp
done

qed

lemma ep-pair-sprod-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (sprod-map·e1 ·e2 ) (sprod-map·p1 ·p2 )

proof
interpret e1p1 : pcpo-ep-pair e1 p1 unfolding pcpo-ep-pair-def by fact
interpret e2p2 : pcpo-ep-pair e2 p2 unfolding pcpo-ep-pair-def by fact
show sprod-map·p1 ·p2 ·(sprod-map·e1 ·e2 ·x) = x for x

by (induct x) simp-all
show sprod-map·e1 ·e2 ·(sprod-map·p1 ·p2 ·y) v y for y
proof (induct y)

case bottom
then show ?case by simp

next
case (spair x y)
then show ?case

apply simp
apply (cases p1 ·x = ⊥, simp, cases p2 ·y = ⊥, simp)
apply (simp add: monofun-cfun e1p1 .e-p-below e2p2 .e-p-below)
done

qed
qed

lemma deflation-sprod-map:
assumes deflation d1 and deflation d2
shows deflation (sprod-map·d1 ·d2 )

proof
interpret d1 : deflation d1 by fact
interpret d2 : deflation d2 by fact
fix x
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show sprod-map·d1 ·d2 ·(sprod-map·d1 ·d2 ·x) = sprod-map·d1 ·d2 ·x
proof (induct x)

case bottom
then show ?case by simp

next
case (spair x y)
then show ?case

apply (cases d1 ·x = ⊥, simp, cases d2 ·y = ⊥, simp)
apply (simp add: d1 .idem d2 .idem)
done

qed
show sprod-map·d1 ·d2 ·x v x
proof (induct x)

case bottom
then show ?case by simp

next
case spair
then show ?case by (simp add: monofun-cfun d1 .below d2 .below)

qed
qed

lemma finite-deflation-sprod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (sprod-map·d1 ·d2 )

proof (rule finite-deflation-intro)
interpret d1 : finite-deflation d1 by fact
interpret d2 : finite-deflation d2 by fact
from d1 .deflation-axioms d2 .deflation-axioms show deflation (sprod-map·d1 ·d2 )

by (rule deflation-sprod-map)
have {x. sprod-map·d1 ·d2 ·x = x} ⊆

insert ⊥ ((λ(x, y). (:x, y:)) ‘ ({x. d1 ·x = x} × {y. d2 ·y = y}))
by (rule subsetI , case-tac x, auto simp add: spair-eq-iff )

then show finite {x. sprod-map·d1 ·d2 ·x = x}
by (rule finite-subset) (simp add: d1 .finite-fixes d2 .finite-fixes)

qed

17.5 Map function for strict sums
definition ssum-map :: ( ′a::pcpo → ′b::pcpo) → ( ′c::pcpo → ′d::pcpo) → ′a ⊕ ′c
→ ′b ⊕ ′d

where ssum-map = (Λ f g. sscase·(sinl oo f )·(sinr oo g))

lemma ssum-map-strict [simp]: ssum-map·f ·g·⊥ = ⊥
by (simp add: ssum-map-def )

lemma ssum-map-sinl [simp]: x 6= ⊥ =⇒ ssum-map·f ·g·(sinl·x) = sinl·(f ·x)
by (simp add: ssum-map-def )

lemma ssum-map-sinr [simp]: x 6= ⊥ =⇒ ssum-map·f ·g·(sinr ·x) = sinr ·(g·x)
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by (simp add: ssum-map-def )

lemma ssum-map-sinl ′: f ·⊥ = ⊥ =⇒ ssum-map·f ·g·(sinl·x) = sinl·(f ·x)
by (cases x = ⊥) simp-all

lemma ssum-map-sinr ′: g·⊥ = ⊥ =⇒ ssum-map·f ·g·(sinr ·x) = sinr ·(g·x)
by (cases x = ⊥) simp-all

lemma ssum-map-ID: ssum-map·ID·ID = ID
by (simp add: ssum-map-def cfun-eq-iff eta-cfun)

lemma ssum-map-map:
[[f1 ·⊥ = ⊥; g1 ·⊥ = ⊥]] =⇒

ssum-map·f1 ·g1 ·(ssum-map·f2 ·g2 ·p) =
ssum-map·(Λ x. f1 ·(f2 ·x))·(Λ x. g1 ·(g2 ·x))·p

proof (induct p)
case bottom
then show ?case by simp

next
case (sinl x)
then show ?case by (cases f2 ·x = ⊥) simp-all

next
case (sinr y)
then show ?case by (cases g2 ·y = ⊥) simp-all

qed

lemma ep-pair-ssum-map:
assumes ep-pair e1 p1 and ep-pair e2 p2
shows ep-pair (ssum-map·e1 ·e2 ) (ssum-map·p1 ·p2 )

proof
interpret e1p1 : pcpo-ep-pair e1 p1 unfolding pcpo-ep-pair-def by fact
interpret e2p2 : pcpo-ep-pair e2 p2 unfolding pcpo-ep-pair-def by fact
show ssum-map·p1 ·p2 ·(ssum-map·e1 ·e2 ·x) = x for x

by (induct x) simp-all
show ssum-map·e1 ·e2 ·(ssum-map·p1 ·p2 ·y) v y for y
proof (induct y)

case bottom
then show ?case by simp

next
case (sinl x)
then show ?case by (cases p1 ·x = ⊥) (simp-all add: e1p1 .e-p-below)

next
case (sinr y)
then show ?case by (cases p2 ·y = ⊥) (simp-all add: e2p2 .e-p-below)

qed
qed

lemma deflation-ssum-map:
assumes deflation d1 and deflation d2
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shows deflation (ssum-map·d1 ·d2 )
proof

interpret d1 : deflation d1 by fact
interpret d2 : deflation d2 by fact
fix x
show ssum-map·d1 ·d2 ·(ssum-map·d1 ·d2 ·x) = ssum-map·d1 ·d2 ·x
proof (induct x)

case bottom
then show ?case by simp

next
case (sinl x)
then show ?case by (cases d1 ·x = ⊥) (simp-all add: d1 .idem)

next
case (sinr y)
then show ?case by (cases d2 ·y = ⊥) (simp-all add: d2 .idem)

qed
show ssum-map·d1 ·d2 ·x v x
proof (induct x)

case bottom
then show ?case by simp

next
case (sinl x)
then show ?case by (cases d1 ·x = ⊥) (simp-all add: d1 .below)

next
case (sinr y)
then show ?case by (cases d2 ·y = ⊥) (simp-all add: d2 .below)

qed
qed

lemma finite-deflation-ssum-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (ssum-map·d1 ·d2 )

proof (rule finite-deflation-intro)
interpret d1 : finite-deflation d1 by fact
interpret d2 : finite-deflation d2 by fact
from d1 .deflation-axioms d2 .deflation-axioms show deflation (ssum-map·d1 ·d2 )

by (rule deflation-ssum-map)
have {x. ssum-map·d1 ·d2 ·x = x} ⊆

(λx. sinl·x) ‘ {x. d1 ·x = x} ∪
(λx. sinr ·x) ‘ {x. d2 ·x = x} ∪ {⊥}

by (rule subsetI , case-tac x, simp-all)
then show finite {x. ssum-map·d1 ·d2 ·x = x}

by (rule finite-subset, simp add: d1 .finite-fixes d2 .finite-fixes)
qed

17.6 Map operator for strict function space
definition sfun-map :: ( ′b::pcpo → ′a::pcpo) → ( ′c::pcpo → ′d::pcpo) → ( ′a →! ′c)
→ ( ′b →! ′d)
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where sfun-map = (Λ a b. sfun-abs oo cfun-map·a·b oo sfun-rep)

lemma sfun-map-ID: sfun-map·ID·ID = ID
by (simp add: sfun-map-def cfun-map-ID cfun-eq-iff )

lemma sfun-map-map:
assumes f2 ·⊥ = ⊥ and g2 ·⊥ = ⊥
shows sfun-map·f1 ·g1 ·(sfun-map·f2 ·g2 ·p) =

sfun-map·(Λ x. f2 ·(f1 ·x))·(Λ x. g1 ·(g2 ·x))·p
by (simp add: sfun-map-def cfun-eq-iff strictify-cancel assms cfun-map-map)

lemma ep-pair-sfun-map:
assumes 1 : ep-pair e1 p1
assumes 2 : ep-pair e2 p2
shows ep-pair (sfun-map·p1 ·e2 ) (sfun-map·e1 ·p2 )

proof
interpret e1p1 : pcpo-ep-pair e1 p1

unfolding pcpo-ep-pair-def by fact
interpret e2p2 : pcpo-ep-pair e2 p2

unfolding pcpo-ep-pair-def by fact
show sfun-map·e1 ·p2 ·(sfun-map·p1 ·e2 ·f ) = f for f

unfolding sfun-map-def
apply (simp add: sfun-eq-iff strictify-cancel)
apply (rule ep-pair .e-inverse)
apply (rule ep-pair-cfun-map [OF 1 2 ])
done

show sfun-map·p1 ·e2 ·(sfun-map·e1 ·p2 ·g) v g for g
unfolding sfun-map-def
apply (simp add: sfun-below-iff strictify-cancel)
apply (rule ep-pair .e-p-below)
apply (rule ep-pair-cfun-map [OF 1 2 ])
done

qed

lemma deflation-sfun-map:
assumes 1 : deflation d1
assumes 2 : deflation d2
shows deflation (sfun-map·d1 ·d2 )
apply (simp add: sfun-map-def )
apply (rule deflation.intro)
apply simp
apply (subst strictify-cancel)
apply (simp add: cfun-map-def deflation-strict 1 2 )

apply (simp add: cfun-map-def deflation.idem 1 2 )
apply (simp add: sfun-below-iff )
apply (subst strictify-cancel)
apply (simp add: cfun-map-def deflation-strict 1 2 )

apply (rule deflation.below)
apply (rule deflation-cfun-map [OF 1 2 ])
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done

lemma finite-deflation-sfun-map:
assumes finite-deflation d1

and finite-deflation d2
shows finite-deflation (sfun-map·d1 ·d2 )

proof (intro finite-deflation-intro)
interpret d1 : finite-deflation d1 by fact
interpret d2 : finite-deflation d2 by fact
from d1 .deflation-axioms d2 .deflation-axioms show deflation (sfun-map·d1 ·d2 )

by (rule deflation-sfun-map)
from assms have finite-deflation (cfun-map·d1 ·d2 )

by (rule finite-deflation-cfun-map)
then have finite {f . cfun-map·d1 ·d2 ·f = f }

by (rule finite-deflation.finite-fixes)
moreover have inj (λf . sfun-rep·f )

by (rule inj-onI ) (simp add: sfun-eq-iff )
ultimately have finite ((λf . sfun-rep·f ) −‘ {f . cfun-map·d1 ·d2 ·f = f })

by (rule finite-vimageI )
with ‹deflation d1 › ‹deflation d2 › show finite {f . sfun-map·d1 ·d2 ·f = f }

by (simp add: sfun-map-def sfun-eq-iff strictify-cancel deflation-strict)
qed

end

18 The cpo of cartesian products
theory Cprod

imports Cfun
begin

18.1 Continuous case function for unit type
definition unit-when :: ′a → unit → ′a

where unit-when = (Λ a -. a)

translations
Λ(). t ⇀↽ CONST unit-when·t

lemma unit-when [simp]: unit-when·a·u = a
by (simp add: unit-when-def )

18.2 Continuous version of split function
definition csplit :: ( ′a → ′b → ′c) → ( ′a × ′b) → ′c

where csplit = (Λ f p. f ·(fst p)·(snd p))

translations
Λ(CONST Pair x y). t ⇀↽ CONST csplit·(Λ x y. t)
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abbreviation cfst :: ′a × ′b → ′a
where cfst ≡ Abs-cfun fst

abbreviation csnd :: ′a × ′b → ′b
where csnd ≡ Abs-cfun snd

18.3 Convert all lemmas to the continuous versions
lemma csplit1 [simp]: csplit·f ·⊥ = f ·⊥·⊥

by (simp add: csplit-def )

lemma csplit-Pair [simp]: csplit·f ·(x, y) = f ·x·y
by (simp add: csplit-def )

end

19 Profinite and bifinite cpos
theory Bifinite

imports Map-Functions Cprod Sprod Sfun Up HOL−Library.Countable
begin

19.1 Chains of finite deflations
locale approx-chain =

fixes approx :: nat ⇒ ′a → ′a
assumes chain-approx [simp]: chain (λi. approx i)
assumes lub-approx [simp]: (

⊔
i. approx i) = ID

assumes finite-deflation-approx [simp]:
∧

i. finite-deflation (approx i)
begin

lemma deflation-approx: deflation (approx i)
using finite-deflation-approx by (rule finite-deflation-imp-deflation)

lemma approx-idem: approx i·(approx i·x) = approx i·x
using deflation-approx by (rule deflation.idem)

lemma approx-below: approx i·x v x
using deflation-approx by (rule deflation.below)

lemma finite-range-approx: finite (range (λx. approx i·x))
apply (rule finite-deflation.finite-range)
apply (rule finite-deflation-approx)
done

lemma compact-approx [simp]: compact (approx n·x)
apply (rule finite-deflation.compact)
apply (rule finite-deflation-approx)
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done

lemma compact-eq-approx: compact x =⇒ ∃ i. approx i·x = x
by (rule admD2 , simp-all)

end

19.2 Omega-profinite and bifinite domains
class bifinite = pcpo +

assumes bifinite: ∃ (a::nat ⇒ ′a → ′a). approx-chain a

class profinite = cpo +
assumes profinite: ∃ (a::nat ⇒ ′a⊥ → ′a⊥). approx-chain a

19.3 Building approx chains
lemma approx-chain-iso:

assumes a: approx-chain a
assumes [simp]:

∧
x. f ·(g·x) = x

assumes [simp]:
∧

y. g·(f ·y) = y
shows approx-chain (λi. f oo a i oo g)

proof −
have 1 : f oo g = ID by (simp add: cfun-eqI )
have 2 : ep-pair f g by (simp add: ep-pair-def )
from 1 2 show ?thesis

using a unfolding approx-chain-def
by (simp add: lub-APP ep-pair .finite-deflation-e-d-p)

qed

lemma approx-chain-u-map:
assumes approx-chain a
shows approx-chain (λi. u-map·(a i))
using assms unfolding approx-chain-def
by (simp add: lub-APP u-map-ID finite-deflation-u-map)

lemma approx-chain-sfun-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. sfun-map·(a i)·(b i))
using assms unfolding approx-chain-def
by (simp add: lub-APP sfun-map-ID finite-deflation-sfun-map)

lemma approx-chain-sprod-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. sprod-map·(a i)·(b i))
using assms unfolding approx-chain-def
by (simp add: lub-APP sprod-map-ID finite-deflation-sprod-map)

lemma approx-chain-ssum-map:
assumes approx-chain a and approx-chain b
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shows approx-chain (λi. ssum-map·(a i)·(b i))
using assms unfolding approx-chain-def
by (simp add: lub-APP ssum-map-ID finite-deflation-ssum-map)

lemma approx-chain-cfun-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. cfun-map·(a i)·(b i))
using assms unfolding approx-chain-def
by (simp add: lub-APP cfun-map-ID finite-deflation-cfun-map)

lemma approx-chain-prod-map:
assumes approx-chain a and approx-chain b
shows approx-chain (λi. prod-map·(a i)·(b i))
using assms unfolding approx-chain-def
by (simp add: lub-APP prod-map-ID finite-deflation-prod-map)

Approx chains for countable discrete types.
definition discr-approx :: nat ⇒ ′a::countable discr u → ′a discr u

where discr-approx = (λi. Λ(up·x). if to-nat (undiscr x) < i then up·x else ⊥)

lemma chain-discr-approx [simp]: chain discr-approx
unfolding discr-approx-def
by (rule chainI , simp add: monofun-cfun monofun-LAM )

lemma lub-discr-approx [simp]: (
⊔

i. discr-approx i) = ID
apply (rule cfun-eqI )
apply (simp add: contlub-cfun-fun)
apply (simp add: discr-approx-def )
subgoal for x

apply (cases x)
apply simp

apply (rule lub-eqI )
apply (rule is-lubI )
apply (rule ub-rangeI , simp)

apply (drule ub-rangeD)
apply (erule rev-below-trans)
apply simp
apply (rule lessI )
done

done

lemma inj-on-undiscr [simp]: inj-on undiscr A
using Discr-undiscr by (rule inj-on-inverseI )

lemma finite-deflation-discr-approx: finite-deflation (discr-approx i)
proof

fix x :: ′a discr u
show discr-approx i·x v x

unfolding discr-approx-def
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by (cases x, simp, simp)
show discr-approx i·(discr-approx i·x) = discr-approx i·x

unfolding discr-approx-def
by (cases x, simp, simp)

show finite {x:: ′a discr u. discr-approx i·x = x}
proof (rule finite-subset)

let ?S = insert (⊥:: ′a discr u) ((λx. up·x) ‘ undiscr −‘ to-nat −‘ {..<i})
show {x:: ′a discr u. discr-approx i·x = x} ⊆ ?S

unfolding discr-approx-def
by (rule subsetI , case-tac x, simp, simp split: if-split-asm)

show finite ?S
by (simp add: finite-vimageI )

qed
qed

lemma discr-approx: approx-chain discr-approx
using chain-discr-approx lub-discr-approx finite-deflation-discr-approx
by (rule approx-chain.intro)

19.4 Class instance proofs
instance bifinite ⊆ profinite
proof

show ∃ (a::nat ⇒ ′a⊥ → ′a⊥). approx-chain a
using bifinite [where ′a= ′a]
by (fast intro!: approx-chain-u-map)

qed

instance u :: (profinite) bifinite
by standard (rule profinite)

Types ′a → ′b and ′a⊥ →! ′b are isomorphic.
definition encode-cfun = (Λ f . sfun-abs·(fup·f ))

definition decode-cfun = (Λ g x. sfun-rep·g·(up·x))

lemma decode-encode-cfun [simp]: decode-cfun·(encode-cfun·x) = x
unfolding encode-cfun-def decode-cfun-def
by (simp add: eta-cfun)

lemma encode-decode-cfun [simp]: encode-cfun·(decode-cfun·y) = y
unfolding encode-cfun-def decode-cfun-def
apply (simp add: sfun-eq-iff strictify-cancel)
apply (rule cfun-eqI , case-tac x, simp-all)
done

instance cfun :: (profinite, bifinite) bifinite
proof

obtain a :: nat ⇒ ′a⊥ → ′a⊥ where a: approx-chain a
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using profinite ..
obtain b :: nat ⇒ ′b → ′b where b: approx-chain b

using bifinite ..
have approx-chain (λi. decode-cfun oo sfun-map·(a i)·(b i) oo encode-cfun)

using a b by (simp add: approx-chain-iso approx-chain-sfun-map)
thus ∃ (a::nat ⇒ ( ′a → ′b) → ( ′a → ′b)). approx-chain a

by − (rule exI )
qed

Types ( ′a × ′b)⊥ and ′a⊥ ⊗ ′b⊥ are isomorphic.
definition encode-prod-u = (Λ(up·(x, y)). (:up·x, up·y:))

definition decode-prod-u = (Λ(:up·x, up·y:). up·(x, y))

lemma decode-encode-prod-u [simp]: decode-prod-u·(encode-prod-u·x) = x
unfolding encode-prod-u-def decode-prod-u-def
apply (cases x)
apply simp

subgoal for y by (cases y) simp
done

lemma encode-decode-prod-u [simp]: encode-prod-u·(decode-prod-u·y) = y
unfolding encode-prod-u-def decode-prod-u-def
apply (cases y)
apply simp

subgoal for a b
apply (cases a, simp)
apply (cases b, simp, simp)
done

done

instance prod :: (profinite, profinite) profinite
proof

obtain a :: nat ⇒ ′a⊥ → ′a⊥ where a: approx-chain a
using profinite ..

obtain b :: nat ⇒ ′b⊥ → ′b⊥ where b: approx-chain b
using profinite ..

have approx-chain (λi. decode-prod-u oo sprod-map·(a i)·(b i) oo encode-prod-u)
using a b by (simp add: approx-chain-iso approx-chain-sprod-map)

thus ∃ (a::nat ⇒ ( ′a × ′b)⊥ → ( ′a × ′b)⊥). approx-chain a
by − (rule exI )

qed

instance prod :: (bifinite, bifinite) bifinite
proof

show ∃ (a::nat ⇒ ( ′a × ′b) → ( ′a × ′b)). approx-chain a
using bifinite [where ′a= ′a] and bifinite [where ′a= ′b]
by (fast intro!: approx-chain-prod-map)

qed
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instance sfun :: (bifinite, bifinite) bifinite
proof

show ∃ (a::nat ⇒ ( ′a →! ′b) → ( ′a →! ′b)). approx-chain a
using bifinite [where ′a= ′a] and bifinite [where ′a= ′b]
by (fast intro!: approx-chain-sfun-map)

qed

instance sprod :: (bifinite, bifinite) bifinite
proof

show ∃ (a::nat ⇒ ( ′a ⊗ ′b) → ( ′a ⊗ ′b)). approx-chain a
using bifinite [where ′a= ′a] and bifinite [where ′a= ′b]
by (fast intro!: approx-chain-sprod-map)

qed

instance ssum :: (bifinite, bifinite) bifinite
proof

show ∃ (a::nat ⇒ ( ′a ⊕ ′b) → ( ′a ⊕ ′b)). approx-chain a
using bifinite [where ′a= ′a] and bifinite [where ′a= ′b]
by (fast intro!: approx-chain-ssum-map)

qed

lemma approx-chain-unit: approx-chain (⊥ :: nat ⇒ unit → unit)
by (simp add: approx-chain-def cfun-eq-iff finite-deflation-bottom)

instance unit :: bifinite
by standard (fast intro!: approx-chain-unit)

instance discr :: (countable) profinite
by standard (fast intro!: discr-approx)

instance lift :: (countable) bifinite
proof

note [simp] = cont-Abs-lift cont-Rep-lift Rep-lift-inverse Abs-lift-inverse
obtain a :: nat ⇒ ( ′a discr)⊥ → ( ′a discr)⊥ where a: approx-chain a

using profinite ..
hence approx-chain (λi. (Λ y. Abs-lift y) oo a i oo (Λ x. Rep-lift x))

by (rule approx-chain-iso) simp-all
thus ∃ (a::nat ⇒ ′a lift → ′a lift). approx-chain a

by − (rule exI )
qed

end

20 Defining algebraic domains by ideal completion
theory Completion
imports Cfun
begin
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20.1 Ideals over a preorder
locale preorder =

fixes r :: ′a::type ⇒ ′a ⇒ bool (infix ‹�› 50 )
assumes r-refl: x � x
assumes r-trans: [[x � y; y � z]] =⇒ x � z

begin

definition
ideal :: ′a set ⇒ bool where
ideal A = ((∃ x. x ∈ A) ∧ (∀ x∈A. ∀ y∈A. ∃ z∈A. x � z ∧ y � z) ∧
(∀ x y. x � y −→ y ∈ A −→ x ∈ A))

lemma idealI :
assumes ∃ x. x ∈ A
assumes

∧
x y. [[x ∈ A; y ∈ A]] =⇒ ∃ z∈A. x � z ∧ y � z

assumes
∧

x y. [[x � y; y ∈ A]] =⇒ x ∈ A
shows ideal A

unfolding ideal-def using assms by fast

lemma idealD1 :
ideal A =⇒ ∃ x. x ∈ A

unfolding ideal-def by fast

lemma idealD2 :
[[ideal A; x ∈ A; y ∈ A]] =⇒ ∃ z∈A. x � z ∧ y � z

unfolding ideal-def by fast

lemma idealD3 :
[[ideal A; x � y; y ∈ A]] =⇒ x ∈ A

unfolding ideal-def by fast

lemma ideal-principal: ideal {x. x � z}
apply (rule idealI )

apply (rule exI [where x = z])
apply (fast intro: r-refl)

apply (rule bexI [where x = z], fast)
apply (fast intro: r-refl)

apply (fast intro: r-trans)
done

lemma ex-ideal: ∃A. A ∈ {A. ideal A}
by (fast intro: ideal-principal)

The set of ideals is a cpo
lemma ideal-UN :

fixes A :: nat ⇒ ′a set
assumes ideal-A:

∧
i. ideal (A i)

assumes chain-A:
∧

i j. i ≤ j =⇒ A i ⊆ A j
shows ideal (

⋃
i. A i)
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apply (rule idealI )
using idealD1 [OF ideal-A] apply fast
apply (clarify)

subgoal for i j
apply (drule subsetD [OF chain-A [OF max.cobounded1 ]])
apply (drule subsetD [OF chain-A [OF max.cobounded2 ]])
apply (drule (1 ) idealD2 [OF ideal-A])
apply blast
done

apply clarify
apply (drule (1 ) idealD3 [OF ideal-A])
apply fast
done

lemma typedef-ideal-po:
fixes Abs :: ′a set ⇒ ′b::below
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

shows OFCLASS( ′b, po-class)
apply (intro-classes, unfold below)

apply (rule subset-refl)
apply (erule (1 ) subset-trans)

apply (rule type-definition.Rep-inject [OF type, THEN iffD1 ])
apply (erule (1 ) subset-antisym)

done

lemma
fixes Abs :: ′a set ⇒ ′b::po
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

assumes S : chain S
shows typedef-ideal-lub: range S <<| Abs (

⋃
i. Rep (S i))

and typedef-ideal-rep-lub: Rep (
⊔

i. S i) = (
⋃

i. Rep (S i))
proof −

have 1 : ideal (
⋃

i. Rep (S i))
apply (rule ideal-UN )
apply (rule type-definition.Rep [OF type, unfolded mem-Collect-eq])

apply (subst below [symmetric])
apply (erule chain-mono [OF S ])
done

hence 2 : Rep (Abs (
⋃

i. Rep (S i))) = (
⋃

i. Rep (S i))
by (simp add: type-definition.Abs-inverse [OF type])

show 3 : range S <<| Abs (
⋃

i. Rep (S i))
apply (rule is-lubI )
apply (rule is-ubI )
apply (simp add: below 2 , fast)

apply (simp add: below 2 is-ub-def , fast)
done

hence 4 : (
⊔

i. S i) = Abs (
⋃

i. Rep (S i))
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by (rule lub-eqI )
show 5 : Rep (

⊔
i. S i) = (

⋃
i. Rep (S i))

by (simp add: 4 2 )
qed

lemma typedef-ideal-cpo:
fixes Abs :: ′a set ⇒ ′b::po
assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

shows OFCLASS( ′b, cpo-class)
by standard (rule exI , erule typedef-ideal-lub [OF type below])

end

interpretation below: preorder below :: ′a::po ⇒ ′a ⇒ bool
apply unfold-locales
apply (rule below-refl)
apply (erule (1 ) below-trans)
done

20.2 Lemmas about least upper bounds
lemma is-ub-thelub-ex: [[∃ u. S <<| u; x ∈ S ]] =⇒ x v lub S
apply (erule exE , drule is-lub-lub)
apply (drule is-lubD1 )
apply (erule (1 ) is-ubD)
done

lemma is-lub-thelub-ex: [[∃ u. S <<| u; S <| x]] =⇒ lub S v x
by (erule exE , drule is-lub-lub, erule is-lubD2 )

20.3 Locale for ideal completion
hide-const (open) Filter .principal

locale ideal-completion = preorder +
fixes principal :: ′a::type ⇒ ′b
fixes rep :: ′b ⇒ ′a::type set
assumes ideal-rep:

∧
x. ideal (rep x)

assumes rep-lub:
∧

Y . chain Y =⇒ rep (
⊔

i. Y i) = (
⋃

i. rep (Y i))
assumes rep-principal:

∧
a. rep (principal a) = {b. b � a}

assumes belowI :
∧

x y. rep x ⊆ rep y =⇒ x v y
assumes countable: ∃ f :: ′a ⇒ nat. inj f

begin

lemma rep-mono: x v y =⇒ rep x ⊆ rep y
apply (frule bin-chain)
apply (drule rep-lub)
apply (simp only: lub-eqI [OF is-lub-bin-chain])
apply (rule subsetI , rule UN-I [where a=0 ], simp-all)
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done

lemma below-def : x v y ←→ rep x ⊆ rep y
by (rule iffI [OF rep-mono belowI ])

lemma principal-below-iff-mem-rep: principal a v x ←→ a ∈ rep x
unfolding below-def rep-principal
by (auto intro: r-refl elim: idealD3 [OF ideal-rep])

lemma principal-below-iff [simp]: principal a v principal b ←→ a � b
by (simp add: principal-below-iff-mem-rep rep-principal)

lemma principal-eq-iff : principal a = principal b ←→ a � b ∧ b � a
unfolding po-eq-conv [where ′a= ′b] principal-below-iff ..

lemma eq-iff : x = y ←→ rep x = rep y
unfolding po-eq-conv below-def by auto

lemma principal-mono: a � b =⇒ principal a v principal b
by (simp only: principal-below-iff )

lemma ch2ch-principal [simp]:
∀ i. Y i � Y (Suc i) =⇒ chain (λi. principal (Y i))

by (simp add: chainI principal-mono)

20.3.1 Principal ideals approximate all elements
lemma compact-principal [simp]: compact (principal a)
by (rule compactI2 , simp add: principal-below-iff-mem-rep rep-lub)

Construct a chain whose lub is the same as a given ideal
lemma obtain-principal-chain:

obtains Y where ∀ i. Y i � Y (Suc i) and x = (
⊔

i. principal (Y i))
proof −

obtain count :: ′a ⇒ nat where inj: inj count
using countable ..

define enum where enum i = (THE a. count a = i) for i
have enum-count [simp]:

∧
x. enum (count x) = x

unfolding enum-def by (simp add: inj-eq [OF inj])
define a where a = (LEAST i. enum i ∈ rep x)
define b where b i = (LEAST j. enum j ∈ rep x ∧ ¬ enum j � enum i) for i
define c where c i j = (LEAST k. enum k ∈ rep x ∧ enum i � enum k ∧ enum

j � enum k) for i j
define P where P i ←→ (∃ j. enum j ∈ rep x ∧ ¬ enum j � enum i) for i
define X where X = rec-nat a (λn i. if P i then c i (b i) else i)
have X-0 : X 0 = a unfolding X-def by simp
have X-Suc:

∧
n. X (Suc n) = (if P (X n) then c (X n) (b (X n)) else X n)

unfolding X-def by simp
have a-mem: enum a ∈ rep x
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unfolding a-def
apply (rule LeastI-ex)
apply (insert ideal-rep [of x])
apply (drule idealD1 )
apply (clarify)
subgoal for a by (rule exI [where x=count a]) simp
done

have b:
∧

i. P i =⇒ enum i ∈ rep x
=⇒ enum (b i) ∈ rep x ∧ ¬ enum (b i) � enum i
unfolding P-def b-def by (erule LeastI2-ex, simp)

have c:
∧

i j. enum i ∈ rep x =⇒ enum j ∈ rep x
=⇒ enum (c i j) ∈ rep x ∧ enum i � enum (c i j) ∧ enum j � enum (c i j)
unfolding c-def
apply (drule (1 ) idealD2 [OF ideal-rep], clarify)
subgoal for . . . z by (rule LeastI2 [where a=count z], simp, simp)
done

have X-mem: enum (X n) ∈ rep x for n
proof (induct n)

case 0
then show ?case by (simp add: X-0 a-mem)

next
case (Suc n)
with b c show ?case by (auto simp: X-Suc)

qed
have X-chain:

∧
n. enum (X n) � enum (X (Suc n))

apply (clarsimp simp add: X-Suc r-refl)
apply (simp add: b c X-mem)
done

have less-b:
∧

n i. n < b i =⇒ enum n ∈ rep x =⇒ enum n � enum i
unfolding b-def by (drule not-less-Least, simp)

have X-covers: ∀ k≤n. enum k ∈ rep x −→ enum k � enum (X n) for n
proof (induct n)

case 0
then show ?case

apply (clarsimp simp add: X-0 a-def )
apply (drule Least-le [where k=0 ], simp add: r-refl)
done

next
case (Suc n)
then show ?case

apply clarsimp
apply (erule le-SucE)
apply (rule r-trans [OF - X-chain], simp)

apply (cases P (X n), simp add: X-Suc)
apply (rule linorder-cases [where x=b (X n) and y=Suc n])

apply (simp only: less-Suc-eq-le)
apply (drule spec, drule (1 ) mp, simp add: b X-mem)

apply (simp add: c X-mem)
apply (drule (1 ) less-b)
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apply (erule r-trans)
apply (simp add: b c X-mem)

apply (simp add: X-Suc)
apply (simp add: P-def )
done

qed
have 1 : ∀ i. enum (X i) � enum (X (Suc i))

by (simp add: X-chain)
have x = (

⊔
n. principal (enum (X n)))

apply (simp add: eq-iff rep-lub 1 rep-principal)
apply auto
subgoal for a

apply (subgoal-tac ∃ i. a = enum i, erule exE)
apply (rule-tac x=i in exI , simp add: X-covers)

apply (rule-tac x=count a in exI , simp)
done

subgoal
apply (erule idealD3 [OF ideal-rep])
apply (rule X-mem)
done

done
with 1 show ?thesis ..

qed

lemma principal-induct:
assumes adm: adm P
assumes P:

∧
a. P (principal a)

shows P x
apply (rule obtain-principal-chain [of x])
apply (simp add: admD [OF adm] P)
done

lemma compact-imp-principal: compact x =⇒ ∃ a. x = principal a
apply (rule obtain-principal-chain [of x])
apply (drule adm-compact-neq [OF - cont-id])
apply (subgoal-tac chain (λi. principal (Y i)))
apply (drule (2 ) admD2 , fast, simp)
done

20.4 Defining functions in terms of basis elements
definition

extension :: ( ′a::type ⇒ ′c) ⇒ ′b → ′c where
extension = (λf . (Λ x. lub (f ‘ rep x)))

lemma extension-lemma:
fixes f :: ′a::type ⇒ ′c
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

shows ∃ u. f ‘ rep x <<| u
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proof −
obtain Y where Y : ∀ i. Y i � Y (Suc i)
and x: x = (

⊔
i. principal (Y i))

by (rule obtain-principal-chain [of x])
have chain: chain (λi. f (Y i))

by (rule chainI , simp add: f-mono Y )
have rep-x: rep x = (

⋃
n. {a. a � Y n})

by (simp add: x rep-lub Y rep-principal)
have f ‘ rep x <<| (

⊔
n. f (Y n))

apply (rule is-lubI )
apply (rule ub-imageI )

subgoal for a
apply (clarsimp simp add: rep-x)
apply (drule f-mono)
apply (erule below-lub [OF chain])
done

apply (rule lub-below [OF chain])
subgoal for . . . n

apply (drule ub-imageD [where x=Y n])
apply (simp add: rep-x, fast intro: r-refl)

apply assumption
done

done
then show ?thesis ..

qed

lemma extension-beta:
fixes f :: ′a::type ⇒ ′c
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

shows extension f ·x = lub (f ‘ rep x)
unfolding extension-def
proof (rule beta-cfun)

have lub:
∧

x. ∃ u. f ‘ rep x <<| u
using f-mono by (rule extension-lemma)

show cont: cont (λx. lub (f ‘ rep x))
apply (rule contI2 )
apply (rule monofunI )
apply (rule is-lub-thelub-ex [OF lub ub-imageI ])
apply (rule is-ub-thelub-ex [OF lub imageI ])
apply (erule (1 ) subsetD [OF rep-mono])

apply (rule is-lub-thelub-ex [OF lub ub-imageI ])
apply (simp add: rep-lub, clarify)
apply (erule rev-below-trans [OF is-ub-thelub])
apply (erule is-ub-thelub-ex [OF lub imageI ])
done

qed

lemma extension-principal:
fixes f :: ′a::type ⇒ ′c
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assumes f-mono:
∧

a b. a � b =⇒ f a v f b
shows extension f ·(principal a) = f a

apply (subst extension-beta, erule f-mono)
apply (subst rep-principal)
apply (rule lub-eqI )
apply (rule is-lub-maximal)
apply (rule ub-imageI )
apply (simp add: f-mono)
apply (rule imageI )
apply (simp add: r-refl)
done

lemma extension-mono:
assumes f-mono:

∧
a b. a � b =⇒ f a v f b

assumes g-mono:
∧

a b. a � b =⇒ g a v g b
assumes below:

∧
a. f a v g a

shows extension f v extension g
apply (rule cfun-belowI )
apply (simp only: extension-beta f-mono g-mono)
apply (rule is-lub-thelub-ex)
apply (rule extension-lemma, erule f-mono)

apply (rule ub-imageI )
subgoal for x a

apply (rule below-trans [OF below])
apply (rule is-ub-thelub-ex)
apply (rule extension-lemma, erule g-mono)

apply (erule imageI )
done

done

lemma cont-extension:
assumes f-mono:

∧
a b x. a � b =⇒ f x a v f x b

assumes f-cont:
∧

a. cont (λx. f x a)
shows cont (λx. extension (λa. f x a))

apply (rule contI2 )
apply (rule monofunI )
apply (rule extension-mono, erule f-mono, erule f-mono)
apply (erule cont2monofunE [OF f-cont])

apply (rule cfun-belowI )
apply (rule principal-induct, simp)
apply (simp only: contlub-cfun-fun)
apply (simp only: extension-principal f-mono)
apply (simp add: cont2contlubE [OF f-cont])

done

end

lemma (in preorder) typedef-ideal-completion:
fixes Abs :: ′a set ⇒ ′b
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assumes type: type-definition Rep Abs {S . ideal S}
assumes below:

∧
x y. x v y ←→ Rep x ⊆ Rep y

assumes principal:
∧

a. principal a = Abs {b. b � a}
assumes countable: ∃ f :: ′a ⇒ nat. inj f
shows ideal-completion r principal Rep

proof
interpret type-definition Rep Abs {S . ideal S} by fact
fix a b :: ′a and x y :: ′b and Y :: nat ⇒ ′b
show ideal (Rep x)

using Rep [of x] by simp
show chain Y =⇒ Rep (

⊔
i. Y i) = (

⋃
i. Rep (Y i))

using type below by (rule typedef-ideal-rep-lub)
show Rep (principal a) = {b. b � a}

by (simp add: principal Abs-inverse ideal-principal)
show Rep x ⊆ Rep y =⇒ x v y

by (simp only: below)
show ∃ f :: ′a ⇒ nat. inj f

by (rule countable)
qed

end

21 A universal bifinite domain
theory Universal
imports Bifinite Completion HOL−Library.Nat-Bijection
begin

unbundle no binomial-syntax

21.1 Basis for universal domain
21.1.1 Basis datatype
type-synonym ubasis = nat

definition
node :: nat ⇒ ubasis ⇒ ubasis set ⇒ ubasis

where
node i a S = Suc (prod-encode (i, prod-encode (a, set-encode S)))

lemma node-not-0 [simp]: node i a S 6= 0
unfolding node-def by simp

lemma node-gt-0 [simp]: 0 < node i a S
unfolding node-def by simp

lemma node-inject [simp]:
[[finite S ; finite T ]]
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=⇒ node i a S = node j b T ←→ i = j ∧ a = b ∧ S = T
unfolding node-def by (simp add: prod-encode-eq set-encode-eq)

lemma node-gt0 : i < node i a S
unfolding node-def less-Suc-eq-le
by (rule le-prod-encode-1 )

lemma node-gt1 : a < node i a S
unfolding node-def less-Suc-eq-le
by (rule order-trans [OF le-prod-encode-1 le-prod-encode-2 ])

lemma nat-less-power2 : n < 2^n
by (fact less-exp)

lemma node-gt2 : [[finite S ; b ∈ S ]] =⇒ b < node i a S
unfolding node-def less-Suc-eq-le set-encode-def
apply (rule order-trans [OF - le-prod-encode-2 ])
apply (rule order-trans [OF - le-prod-encode-2 ])
apply (rule order-trans [where y=sum ((^) 2 ) {b}])
apply (simp add: nat-less-power2 [THEN order-less-imp-le])
apply (erule sum-mono2 , simp, simp)
done

lemma eq-prod-encode-pairI :
[[fst (prod-decode x) = a; snd (prod-decode x) = b]] =⇒ x = prod-encode (a, b)
by auto

lemma node-cases:
assumes 1 : x = 0 =⇒ P
assumes 2 :

∧
i a S . [[finite S ; x = node i a S ]] =⇒ P

shows P
apply (cases x)
apply (erule 1 )

apply (rule 2 )
apply (rule finite-set-decode)

apply (simp add: node-def )
apply (rule eq-prod-encode-pairI [OF refl])
apply (rule eq-prod-encode-pairI [OF refl refl])

done

lemma node-induct:
assumes 1 : P 0
assumes 2 :

∧
i a S . [[P a; finite S ; ∀ b∈S . P b]] =⇒ P (node i a S)

shows P x
apply (induct x rule: nat-less-induct)
apply (case-tac n rule: node-cases)
apply (simp add: 1 )

apply (simp add: 2 node-gt1 node-gt2 )
done
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21.1.2 Basis ordering
inductive

ubasis-le :: nat ⇒ nat ⇒ bool
where

ubasis-le-refl: ubasis-le a a
| ubasis-le-trans:

[[ubasis-le a b; ubasis-le b c]] =⇒ ubasis-le a c
| ubasis-le-lower :

finite S =⇒ ubasis-le a (node i a S)
| ubasis-le-upper :

[[finite S ; b ∈ S ; ubasis-le a b]] =⇒ ubasis-le (node i a S) b

lemma ubasis-le-minimal: ubasis-le 0 x
apply (induct x rule: node-induct)
apply (rule ubasis-le-refl)
apply (erule ubasis-le-trans)
apply (erule ubasis-le-lower)
done

interpretation udom: preorder ubasis-le
apply standard
apply (rule ubasis-le-refl)
apply (erule (1 ) ubasis-le-trans)
done

21.1.3 Generic take function
function

ubasis-until :: (ubasis ⇒ bool) ⇒ ubasis ⇒ ubasis
where

ubasis-until P 0 = 0
| finite S =⇒ ubasis-until P (node i a S) =

(if P (node i a S) then node i a S else ubasis-until P a)
apply clarify
apply (rule-tac x=b in node-cases)
apply simp-all

done

termination ubasis-until
apply (relation measure snd)
apply (rule wf-measure)
apply (simp add: node-gt1 )
done

lemma ubasis-until: P 0 =⇒ P (ubasis-until P x)
by (induct x rule: node-induct) simp-all

lemma ubasis-until ′: 0 < ubasis-until P x =⇒ P (ubasis-until P x)
by (induct x rule: node-induct) auto
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lemma ubasis-until-same: P x =⇒ ubasis-until P x = x
by (induct x rule: node-induct) simp-all

lemma ubasis-until-idem:
P 0 =⇒ ubasis-until P (ubasis-until P x) = ubasis-until P x

by (rule ubasis-until-same [OF ubasis-until])

lemma ubasis-until-0 :
∀ x. x 6= 0 −→ ¬ P x =⇒ ubasis-until P x = 0

by (induct x rule: node-induct) simp-all

lemma ubasis-until-less: ubasis-le (ubasis-until P x) x
apply (induct x rule: node-induct)
apply (simp add: ubasis-le-refl)

by (metis ubasis-le.simps ubasis-until.simps(2 ))

lemma ubasis-until-chain:
assumes PQ:

∧
x. P x =⇒ Q x

shows ubasis-le (ubasis-until P x) (ubasis-until Q x)
apply (induct x rule: node-induct)
apply (simp add: ubasis-le-refl)

by (metis assms ubasis-until.simps(2 ) ubasis-until-less)

lemma ubasis-until-mono:
assumes

∧
i a S b. [[finite S ; P (node i a S); b ∈ S ; ubasis-le a b]] =⇒ P b

shows ubasis-le a b =⇒ ubasis-le (ubasis-until P a) (ubasis-until P b)
proof (induct set: ubasis-le)

case (ubasis-le-refl a) show ?case by (rule ubasis-le.ubasis-le-refl)
next

case (ubasis-le-trans a b c) thus ?case by − (rule ubasis-le.ubasis-le-trans)
next

case (ubasis-le-lower S a i) thus ?case
by (metis ubasis-le.simps ubasis-until.simps(2 ) ubasis-until-less)

next
case (ubasis-le-upper S b a i) thus ?case

by (metis assms ubasis-le.simps ubasis-until.simps(2 ) ubasis-until-same)
qed

lemma finite-range-ubasis-until:
finite {x. P x} =⇒ finite (range (ubasis-until P))

apply (rule finite-subset [where B=insert 0 {x. P x}])
apply (clarsimp simp add: ubasis-until ′)
apply simp
done

21.2 Defining the universal domain by ideal completion
typedef udom = {S . udom.ideal S}
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by (rule udom.ex-ideal)

instantiation udom :: below
begin

definition
x v y ←→ Rep-udom x ⊆ Rep-udom y

instance ..
end

instance udom :: po
using type-definition-udom below-udom-def
by (rule udom.typedef-ideal-po)

instance udom :: cpo
using type-definition-udom below-udom-def
by (rule udom.typedef-ideal-cpo)

definition
udom-principal :: nat ⇒ udom where
udom-principal t = Abs-udom {u. ubasis-le u t}

lemma ubasis-countable: ∃ f ::ubasis ⇒ nat. inj f
by (rule exI , rule inj-on-id)

interpretation udom:
ideal-completion ubasis-le udom-principal Rep-udom

using type-definition-udom below-udom-def
using udom-principal-def ubasis-countable
by (rule udom.typedef-ideal-completion)

Universal domain is pointed
lemma udom-minimal: udom-principal 0 v x
apply (induct x rule: udom.principal-induct)
apply (simp, simp add: ubasis-le-minimal)
done

instance udom :: pcpo
by intro-classes (fast intro: udom-minimal)

lemma inst-udom-pcpo: ⊥ = udom-principal 0
by (rule udom-minimal [THEN bottomI , symmetric])

21.3 Compact bases of domains
typedef ′a compact-basis = {x:: ′a::pcpo. compact x}
by auto
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lemma Rep-compact-basis ′ [simp]: compact (Rep-compact-basis a)
by (rule Rep-compact-basis [unfolded mem-Collect-eq])

lemma Abs-compact-basis-inverse ′ [simp]:
compact x =⇒ Rep-compact-basis (Abs-compact-basis x) = x

by (rule Abs-compact-basis-inverse [unfolded mem-Collect-eq])

instantiation compact-basis :: (pcpo) below
begin

definition
compact-le-def :
(v) ≡ (λx y. Rep-compact-basis x v Rep-compact-basis y)

instance ..
end

instance compact-basis :: (pcpo) po
using type-definition-compact-basis compact-le-def
by (rule typedef-po-class)

definition
approximants :: ′a::pcpo ⇒ ′a compact-basis set where
approximants = (λx. {a. Rep-compact-basis a v x})

definition
compact-bot :: ′a::pcpo compact-basis where
compact-bot = Abs-compact-basis ⊥

lemma Rep-compact-bot [simp]: Rep-compact-basis compact-bot = ⊥
unfolding compact-bot-def by simp

lemma compact-bot-minimal [simp]: compact-bot v a
unfolding compact-le-def Rep-compact-bot by simp

21.4 Universality of udom

We use a locale to parameterize the construction over a chain of approx
functions on the type to be embedded.
locale bifinite-approx-chain =

approx-chain approx for approx :: nat ⇒ ′a::bifinite → ′a
begin

21.4.1 Choosing a maximal element from a finite set
lemma finite-has-maximal:

fixes A :: ′a compact-basis set
shows [[finite A; A 6= {}]] =⇒ ∃ x∈A. ∀ y∈A. x v y −→ x = y

proof (induct rule: finite-ne-induct)
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case (singleton x)
show ?case by simp

next
case (insert a A)
from ‹∃ x∈A. ∀ y∈A. x v y −→ x = y›
obtain x where x: x ∈ A

and x-eq:
∧

y. [[y ∈ A; x v y]] =⇒ x = y by fast
show ?case
proof (intro bexI ballI impI )

fix y
assume y ∈ insert a A and (if x v a then a else x) v y
thus (if x v a then a else x) = y

apply auto
apply (frule (1 ) below-trans)
apply (frule (1 ) x-eq)
apply (rule below-antisym, assumption)
apply simp
apply (erule (1 ) x-eq)
done

next
show (if x v a then a else x) ∈ insert a A

by (simp add: x)
qed

qed

definition
choose :: ′a compact-basis set ⇒ ′a compact-basis

where
choose A = (SOME x. x ∈ {x∈A. ∀ y∈A. x v y −→ x = y})

lemma choose-lemma:
[[finite A; A 6= {}]] =⇒ choose A ∈ {x∈A. ∀ y∈A. x v y −→ x = y}

unfolding choose-def
apply (rule someI-ex)
apply (frule (1 ) finite-has-maximal, fast)
done

lemma maximal-choose:
[[finite A; y ∈ A; choose A v y]] =⇒ choose A = y

apply (cases A = {}, simp)
apply (frule (1 ) choose-lemma, simp)
done

lemma choose-in: [[finite A; A 6= {}]] =⇒ choose A ∈ A
by (frule (1 ) choose-lemma, simp)

function
choose-pos :: ′a compact-basis set ⇒ ′a compact-basis ⇒ nat

where
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choose-pos A x =
(if finite A ∧ x ∈ A ∧ x 6= choose A

then Suc (choose-pos (A − {choose A}) x) else 0 )
by auto

termination choose-pos
apply (relation measure (card ◦ fst), simp)
apply clarsimp
apply (rule card-Diff1-less)
apply assumption
apply (erule choose-in)
apply clarsimp
done

declare choose-pos.simps [simp del]

lemma choose-pos-choose: finite A =⇒ choose-pos A (choose A) = 0
by (simp add: choose-pos.simps)

lemma inj-on-choose-pos [OF refl]:
[[card A = n; finite A]] =⇒ inj-on (choose-pos A) A

apply (induct n arbitrary: A)
apply simp

apply (case-tac A = {}, simp)
apply (frule (1 ) choose-in)
apply (rule inj-onI )
apply (drule-tac x=A − {choose A} in meta-spec, simp)
apply (simp add: choose-pos.simps)
apply (simp split: if-split-asm)
apply (erule (1 ) inj-onD, simp, simp)

done

lemma choose-pos-bounded [OF refl]:
[[card A = n; finite A; x ∈ A]] =⇒ choose-pos A x < n

apply (induct n arbitrary: A)
apply simp
apply (case-tac A = {}, simp)
apply (frule (1 ) choose-in)

apply (subst choose-pos.simps)
apply simp
done

lemma choose-pos-lessD:
[[choose-pos A x < choose-pos A y; finite A; x ∈ A; y ∈ A]] =⇒ x 6v y

apply (induct A x arbitrary: y rule: choose-pos.induct)
apply simp
apply (case-tac x = choose A)
apply simp
apply (rule notI )



THEORY “Universal” 113

apply (frule (2 ) maximal-choose)
apply simp

apply (case-tac y = choose A)
apply (simp add: choose-pos-choose)

apply (drule-tac x=y in meta-spec)
apply simp
apply (erule meta-mp)
apply (simp add: choose-pos.simps)

done

21.4.2 Compact basis take function
primrec

cb-take :: nat ⇒ ′a compact-basis ⇒ ′a compact-basis where
cb-take 0 = (λx. compact-bot)
| cb-take (Suc n) = (λa. Abs-compact-basis (approx n·(Rep-compact-basis a)))

declare cb-take.simps [simp del]

lemma cb-take-zero [simp]: cb-take 0 a = compact-bot
by (simp only: cb-take.simps)

lemma Rep-cb-take:
Rep-compact-basis (cb-take (Suc n) a) = approx n·(Rep-compact-basis a)

by (simp add: cb-take.simps(2 ))

lemmas approx-Rep-compact-basis = Rep-cb-take [symmetric]

lemma cb-take-covers: ∃n. cb-take n x = x
apply (subgoal-tac ∃n. cb-take (Suc n) x = x, fast)
apply (simp add: Rep-compact-basis-inject [symmetric])
apply (simp add: Rep-cb-take)
apply (rule compact-eq-approx)
apply (rule Rep-compact-basis ′)
done

lemma cb-take-less: cb-take n x v x
unfolding compact-le-def
by (cases n, simp, simp add: Rep-cb-take approx-below)

lemma cb-take-idem: cb-take n (cb-take n x) = cb-take n x
unfolding Rep-compact-basis-inject [symmetric]
by (cases n, simp, simp add: Rep-cb-take approx-idem)

lemma cb-take-mono: x v y =⇒ cb-take n x v cb-take n y
unfolding compact-le-def
by (cases n, simp, simp add: Rep-cb-take monofun-cfun-arg)

lemma cb-take-chain-le: m ≤ n =⇒ cb-take m x v cb-take n x
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unfolding compact-le-def
apply (cases m, simp, cases n, simp)
apply (simp add: Rep-cb-take, rule chain-mono, simp, simp)
done

lemma finite-range-cb-take: finite (range (cb-take n))
apply (cases n)
apply (subgoal-tac range (cb-take 0 ) = {compact-bot}, simp, force)
apply (rule finite-imageD [where f=Rep-compact-basis])
apply (rule finite-subset [where B=range (λx. approx (n − 1 )·x)])
apply (clarsimp simp add: Rep-cb-take)
apply (rule finite-range-approx)
apply (rule inj-onI , simp add: Rep-compact-basis-inject)
done

21.4.3 Rank of basis elements
definition

rank :: ′a compact-basis ⇒ nat
where

rank x = (LEAST n. cb-take n x = x)

lemma compact-approx-rank: cb-take (rank x) x = x
unfolding rank-def
apply (rule LeastI-ex)
apply (rule cb-take-covers)
done

lemma rank-leD: rank x ≤ n =⇒ cb-take n x = x
apply (rule below-antisym [OF cb-take-less])
apply (subst compact-approx-rank [symmetric])
apply (erule cb-take-chain-le)
done

lemma rank-leI : cb-take n x = x =⇒ rank x ≤ n
unfolding rank-def by (rule Least-le)

lemma rank-le-iff : rank x ≤ n ←→ cb-take n x = x
by (rule iffI [OF rank-leD rank-leI ])

lemma rank-compact-bot [simp]: rank compact-bot = 0
using rank-leI [of 0 compact-bot] by simp

lemma rank-eq-0-iff [simp]: rank x = 0 ←→ x = compact-bot
using rank-le-iff [of x 0 ] by auto

definition
rank-le :: ′a compact-basis ⇒ ′a compact-basis set

where
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rank-le x = {y. rank y ≤ rank x}

definition
rank-lt :: ′a compact-basis ⇒ ′a compact-basis set

where
rank-lt x = {y. rank y < rank x}

definition
rank-eq :: ′a compact-basis ⇒ ′a compact-basis set

where
rank-eq x = {y. rank y = rank x}

lemma rank-eq-cong: rank x = rank y =⇒ rank-eq x = rank-eq y
unfolding rank-eq-def by simp

lemma rank-lt-cong: rank x = rank y =⇒ rank-lt x = rank-lt y
unfolding rank-lt-def by simp

lemma rank-eq-subset: rank-eq x ⊆ rank-le x
unfolding rank-eq-def rank-le-def by auto

lemma rank-lt-subset: rank-lt x ⊆ rank-le x
unfolding rank-lt-def rank-le-def by auto

lemma finite-rank-le: finite (rank-le x)
unfolding rank-le-def
apply (rule finite-subset [where B=range (cb-take (rank x))])
apply clarify
apply (rule range-eqI )
apply (erule rank-leD [symmetric])
apply (rule finite-range-cb-take)
done

lemma finite-rank-eq: finite (rank-eq x)
by (rule finite-subset [OF rank-eq-subset finite-rank-le])

lemma finite-rank-lt: finite (rank-lt x)
by (rule finite-subset [OF rank-lt-subset finite-rank-le])

lemma rank-lt-Int-rank-eq: rank-lt x ∩ rank-eq x = {}
unfolding rank-lt-def rank-eq-def rank-le-def by auto

lemma rank-lt-Un-rank-eq: rank-lt x ∪ rank-eq x = rank-le x
unfolding rank-lt-def rank-eq-def rank-le-def by auto

21.4.4 Sequencing basis elements
definition

place :: ′a compact-basis ⇒ nat
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where
place x = card (rank-lt x) + choose-pos (rank-eq x) x

lemma place-bounded: place x < card (rank-le x)
unfolding place-def
apply (rule ord-less-eq-trans)
apply (rule add-strict-left-mono)
apply (rule choose-pos-bounded)
apply (rule finite-rank-eq)

apply (simp add: rank-eq-def )
apply (subst card-Un-disjoint [symmetric])

apply (rule finite-rank-lt)
apply (rule finite-rank-eq)

apply (rule rank-lt-Int-rank-eq)
apply (simp add: rank-lt-Un-rank-eq)

done

lemma place-ge: card (rank-lt x) ≤ place x
unfolding place-def by simp

lemma place-rank-mono:
fixes x y :: ′a compact-basis
shows rank x < rank y =⇒ place x < place y

apply (rule less-le-trans [OF place-bounded])
apply (rule order-trans [OF - place-ge])
apply (rule card-mono)
apply (rule finite-rank-lt)
apply (simp add: rank-le-def rank-lt-def subset-eq)
done

lemma place-eqD: place x = place y =⇒ x = y
apply (rule linorder-cases [where x=rank x and y=rank y])

apply (drule place-rank-mono, simp)
apply (simp add: place-def )
apply (rule inj-on-choose-pos [where A=rank-eq x, THEN inj-onD])

apply (rule finite-rank-eq)
apply (simp cong: rank-lt-cong rank-eq-cong)

apply (simp add: rank-eq-def )
apply (simp add: rank-eq-def )

apply (drule place-rank-mono, simp)
done

lemma inj-place: inj place
by (rule inj-onI , erule place-eqD)

21.4.5 Embedding and projection on basis elements
definition

sub :: ′a compact-basis ⇒ ′a compact-basis
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where
sub x = (case rank x of 0 ⇒ compact-bot | Suc k ⇒ cb-take k x)

lemma rank-sub-less: x 6= compact-bot =⇒ rank (sub x) < rank x
unfolding sub-def
apply (cases rank x, simp)
apply (simp add: less-Suc-eq-le)
apply (rule rank-leI )
apply (rule cb-take-idem)
done

lemma place-sub-less: x 6= compact-bot =⇒ place (sub x) < place x
apply (rule place-rank-mono)
apply (erule rank-sub-less)
done

lemma sub-below: sub x v x
unfolding sub-def by (cases rank x, simp-all add: cb-take-less)

lemma rank-less-imp-below-sub: [[x v y; rank x < rank y]] =⇒ x v sub y
unfolding sub-def
apply (cases rank y, simp)
apply (simp add: less-Suc-eq-le)
apply (subgoal-tac cb-take nat x v cb-take nat y)
apply (simp add: rank-leD)
apply (erule cb-take-mono)
done

function basis-emb :: ′a compact-basis ⇒ ubasis
where basis-emb x = (if x = compact-bot then 0 else

node (place x) (basis-emb (sub x))
(basis-emb ‘ {y. place y < place x ∧ x v y}))

by simp-all

termination basis-emb
by (relation measure place) (simp-all add: place-sub-less)

declare basis-emb.simps [simp del]

lemma basis-emb-compact-bot [simp]:
basis-emb compact-bot = 0
using basis-emb.simps [of compact-bot] by simp

lemma basis-emb-rec:
basis-emb x = node (place x) (basis-emb (sub x)) (basis-emb ‘ {y. place y < place

x ∧ x v y})
if x 6= compact-bot
using that basis-emb.simps [of x] by simp
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lemma basis-emb-eq-0-iff [simp]:
basis-emb x = 0 ←→ x = compact-bot
by (cases x = compact-bot) (simp-all add: basis-emb-rec)

lemma fin1 : finite {y. place y < place x ∧ x v y}
apply (subst Collect-conj-eq)
apply (rule finite-Int)
apply (rule disjI1 )
apply (subgoal-tac finite (place −‘ {n. n < place x}), simp)
apply (rule finite-vimageI [OF - inj-place])
apply (simp add: lessThan-def [symmetric])
done

lemma fin2 : finite (basis-emb ‘ {y. place y < place x ∧ x v y})
by (rule finite-imageI [OF fin1 ])

lemma rank-place-mono:
[[place x < place y; x v y]] =⇒ rank x < rank y

apply (rule linorder-cases, assumption)
apply (simp add: place-def cong: rank-lt-cong rank-eq-cong)
apply (drule choose-pos-lessD)
apply (rule finite-rank-eq)
apply (simp add: rank-eq-def )
apply (simp add: rank-eq-def )
apply simp
apply (drule place-rank-mono, simp)
done

lemma basis-emb-mono:
x v y =⇒ ubasis-le (basis-emb x) (basis-emb y)

proof (induct max (place x) (place y) arbitrary: x y rule: less-induct)
case less
show ?case proof (rule linorder-cases)

assume place x < place y
then have rank x < rank y

using ‹x v y› by (rule rank-place-mono)
with ‹place x < place y› show ?case

apply (case-tac y = compact-bot, simp)
apply (simp add: basis-emb.simps [of y])
apply (rule ubasis-le-trans [OF - ubasis-le-lower [OF fin2 ]])
apply (rule less)
apply (simp add: less-max-iff-disj)
apply (erule place-sub-less)

apply (erule rank-less-imp-below-sub [OF ‹x v y›])
done

next
assume place x = place y
hence x = y by (rule place-eqD)
thus ?case by (simp add: ubasis-le-refl)
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next
assume place x > place y
with ‹x v y› show ?case

apply (case-tac x = compact-bot, simp add: ubasis-le-minimal)
apply (simp add: basis-emb.simps [of x])
apply (rule ubasis-le-upper [OF fin2 ], simp)
apply (rule less)
apply (simp add: less-max-iff-disj)
apply (erule place-sub-less)

apply (erule rev-below-trans)
apply (rule sub-below)
done

qed
qed

lemma inj-basis-emb: inj basis-emb
proof (rule injI )

fix x y
assume basis-emb x = basis-emb y
then show x = y

by (cases x = compact-bot ∨ y = compact-bot) (auto simp add: basis-emb-rec
fin2 place-eqD)
qed

definition
basis-prj :: ubasis ⇒ ′a compact-basis

where
basis-prj x = inv basis-emb
(ubasis-until (λx. x ∈ range (basis-emb :: ′a compact-basis ⇒ ubasis)) x)

lemma basis-prj-basis-emb:
∧

x. basis-prj (basis-emb x) = x
unfolding basis-prj-def
apply (subst ubasis-until-same)
apply (rule rangeI )

apply (rule inv-f-f )
apply (rule inj-basis-emb)

done

lemma basis-prj-node:
[[finite S ; node i a S /∈ range (basis-emb :: ′a compact-basis ⇒ nat)]]
=⇒ basis-prj (node i a S) = (basis-prj a :: ′a compact-basis)

unfolding basis-prj-def by simp

lemma basis-prj-0 : basis-prj 0 = compact-bot
apply (subst basis-emb-compact-bot [symmetric])
apply (rule basis-prj-basis-emb)
done

lemma node-eq-basis-emb-iff :
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finite S =⇒ node i a S = basis-emb x ←→
x 6= compact-bot ∧ i = place x ∧ a = basis-emb (sub x) ∧

S = basis-emb ‘ {y. place y < place x ∧ x v y}
apply (cases x = compact-bot, simp)
apply (simp add: basis-emb.simps [of x])
apply (simp add: fin2 )
done

lemma basis-prj-mono: ubasis-le a b =⇒ basis-prj a v basis-prj b
proof (induct a b rule: ubasis-le.induct)

case (ubasis-le-refl a) show ?case by (rule below-refl)
next

case (ubasis-le-trans a b c) thus ?case by − (rule below-trans)
next

case (ubasis-le-lower S a i) thus ?case
apply (cases node i a S ∈ range (basis-emb :: ′a compact-basis ⇒ nat))
apply (erule rangeE , rename-tac x)
apply (simp add: basis-prj-basis-emb)
apply (simp add: node-eq-basis-emb-iff )
apply (simp add: basis-prj-basis-emb)
apply (rule sub-below)

apply (simp add: basis-prj-node)
done

next
case (ubasis-le-upper S b a i) thus ?case

apply (cases node i a S ∈ range (basis-emb :: ′a compact-basis ⇒ nat))
apply (erule rangeE , rename-tac x)
apply (simp add: basis-prj-basis-emb)
apply (clarsimp simp add: node-eq-basis-emb-iff )
apply (simp add: basis-prj-basis-emb)

apply (simp add: basis-prj-node)
done

qed

lemma basis-emb-prj-less: ubasis-le (basis-emb (basis-prj x)) x
unfolding basis-prj-def
apply (subst f-inv-into-f [where f=basis-emb])
apply (rule ubasis-until)
apply (rule range-eqI [where x=compact-bot])
apply simp

apply (rule ubasis-until-less)
done

lemma ideal-completion:
ideal-completion below Rep-compact-basis (approximants :: ′a ⇒ -)

proof
fix w :: ′a
show below.ideal (approximants w)
proof (rule below.idealI )
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have Abs-compact-basis (approx 0 ·w) ∈ approximants w
by (simp add: approximants-def approx-below)

thus ∃ x. x ∈ approximants w ..
next

fix x y :: ′a compact-basis
assume x: x ∈ approximants w and y: y ∈ approximants w
obtain i where i: approx i·(Rep-compact-basis x) = Rep-compact-basis x

using compact-eq-approx Rep-compact-basis ′ by fast
obtain j where j: approx j·(Rep-compact-basis y) = Rep-compact-basis y

using compact-eq-approx Rep-compact-basis ′ by fast
let ?z = Abs-compact-basis (approx (max i j)·w)
have ?z ∈ approximants w

by (simp add: approximants-def approx-below)
moreover from x y have x v ?z ∧ y v ?z

by (simp add: approximants-def compact-le-def )
(metis i j monofun-cfun chain-mono chain-approx max.cobounded1 max.cobounded2 )

ultimately show ∃ z ∈ approximants w. x v z ∧ y v z ..
next

fix x y :: ′a compact-basis
assume x v y y ∈ approximants w thus x ∈ approximants w

unfolding approximants-def compact-le-def
by (auto elim: below-trans)

qed
next

fix Y :: nat ⇒ ′a
assume chain Y
thus approximants (

⊔
i. Y i) = (

⋃
i. approximants (Y i))

unfolding approximants-def
by (auto simp add: compact-below-lub-iff )

next
fix a :: ′a compact-basis
show approximants (Rep-compact-basis a) = {b. b v a}

unfolding approximants-def compact-le-def ..
next

fix x y :: ′a
assume approximants x ⊆ approximants y
hence ∀ z. compact z −→ z v x −→ z v y

by (simp add: approximants-def subset-eq)
(metis Abs-compact-basis-inverse ′)

hence (
⊔

i. approx i·x) v y
by (simp add: lub-below approx-below)

thus x v y
by (simp add: lub-distribs)

next
show ∃ f :: ′a compact-basis ⇒ nat. inj f

by (rule exI , rule inj-place)
qed

end
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interpretation compact-basis:
ideal-completion below Rep-compact-basis

approximants :: ′a::bifinite ⇒ ′a compact-basis set
proof −

obtain a :: nat ⇒ ′a → ′a where approx-chain a
using bifinite ..

hence bifinite-approx-chain a
unfolding bifinite-approx-chain-def .

thus ideal-completion below Rep-compact-basis (approximants :: ′a ⇒ -)
by (rule bifinite-approx-chain.ideal-completion)

qed

21.4.6 EP-pair from any bifinite domain into udom
context bifinite-approx-chain begin

definition
udom-emb :: ′a → udom

where
udom-emb = compact-basis.extension (λx. udom-principal (basis-emb x))

definition
udom-prj :: udom → ′a

where
udom-prj = udom.extension (λx. Rep-compact-basis (basis-prj x))

lemma udom-emb-principal:
udom-emb·(Rep-compact-basis x) = udom-principal (basis-emb x)

unfolding udom-emb-def
apply (rule compact-basis.extension-principal)
apply (rule udom.principal-mono)
apply (erule basis-emb-mono)
done

lemma udom-prj-principal:
udom-prj·(udom-principal x) = Rep-compact-basis (basis-prj x)

unfolding udom-prj-def
apply (rule udom.extension-principal)
apply (rule compact-basis.principal-mono)
apply (erule basis-prj-mono)
done

lemma ep-pair-udom: ep-pair udom-emb udom-prj
apply standard
apply (rule compact-basis.principal-induct, simp)
apply (simp add: udom-emb-principal udom-prj-principal)
apply (simp add: basis-prj-basis-emb)

apply (rule udom.principal-induct, simp)
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apply (simp add: udom-emb-principal udom-prj-principal)
apply (rule basis-emb-prj-less)

done

end

abbreviation udom-emb ≡ bifinite-approx-chain.udom-emb
abbreviation udom-prj ≡ bifinite-approx-chain.udom-prj

lemmas ep-pair-udom =
bifinite-approx-chain.ep-pair-udom [unfolded bifinite-approx-chain-def ]

21.5 Chain of approx functions for type udom
definition

udom-approx :: nat ⇒ udom → udom
where

udom-approx i =
udom.extension (λx. udom-principal (ubasis-until (λy. y ≤ i) x))

lemma udom-approx-mono:
ubasis-le a b =⇒

udom-principal (ubasis-until (λy. y ≤ i) a) v
udom-principal (ubasis-until (λy. y ≤ i) b)

apply (rule udom.principal-mono)
apply (rule ubasis-until-mono)
apply (frule (2 ) order-less-le-trans [OF node-gt2 ])
apply (erule order-less-imp-le)
apply assumption
done

lemma adm-mem-finite: [[cont f ; finite S ]] =⇒ adm (λx. f x ∈ S)
by (erule adm-subst, induct set: finite, simp-all)

lemma udom-approx-principal:
udom-approx i·(udom-principal x) =

udom-principal (ubasis-until (λy. y ≤ i) x)
unfolding udom-approx-def
apply (rule udom.extension-principal)
apply (erule udom-approx-mono)
done

lemma finite-deflation-udom-approx: finite-deflation (udom-approx i)
proof

fix x show udom-approx i·(udom-approx i·x) = udom-approx i·x
by (induct x rule: udom.principal-induct, simp)

(simp add: udom-approx-principal ubasis-until-idem)
next

fix x show udom-approx i·x v x
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by (induct x rule: udom.principal-induct, simp)
(simp add: udom-approx-principal ubasis-until-less)

next
have ∗: finite (range (λx. udom-principal (ubasis-until (λy. y ≤ i) x)))

apply (subst range-composition [where f=udom-principal])
apply (simp add: finite-range-ubasis-until)
done

show finite {x. udom-approx i·x = x}
apply (rule finite-range-imp-finite-fixes)
apply (rule rev-finite-subset [OF ∗])
apply (clarsimp, rename-tac x)
apply (induct-tac x rule: udom.principal-induct)
apply (simp add: adm-mem-finite ∗)
apply (simp add: udom-approx-principal)
done

qed

interpretation udom-approx: finite-deflation udom-approx i
by (rule finite-deflation-udom-approx)

lemma chain-udom-approx [simp]: chain (λi. udom-approx i)
unfolding udom-approx-def
apply (rule chainI )
apply (rule udom.extension-mono)
apply (erule udom-approx-mono)
apply (erule udom-approx-mono)
apply (rule udom.principal-mono)
apply (rule ubasis-until-chain, simp)
done

lemma lub-udom-approx [simp]: (
⊔

i. udom-approx i) = ID
apply (rule cfun-eqI , simp add: contlub-cfun-fun)
apply (rule below-antisym)
apply (rule lub-below)
apply (simp)
apply (rule udom-approx.below)
apply (rule-tac x=x in udom.principal-induct)
apply (simp add: lub-distribs)
apply (rule-tac i=a in below-lub)
apply simp
apply (simp add: udom-approx-principal)
apply (simp add: ubasis-until-same ubasis-le-refl)
done

lemma udom-approx [simp]: approx-chain udom-approx
proof

show chain (λi. udom-approx i)
by (rule chain-udom-approx)

show (
⊔

i. udom-approx i) = ID
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by (rule lub-udom-approx)
qed

instance udom :: bifinite
by standard (fast intro: udom-approx)

hide-const (open) node

unbundle binomial-syntax

end

22 Algebraic deflations
theory Algebraic
imports Universal Map-Functions
begin

22.1 Type constructor for finite deflations
typedef ′a::bifinite fin-defl = {d:: ′a → ′a. finite-deflation d}
by (fast intro: finite-deflation-bottom)

instantiation fin-defl :: (bifinite) below
begin

definition below-fin-defl-def :
below ≡ λx y. Rep-fin-defl x v Rep-fin-defl y

instance ..
end

instance fin-defl :: (bifinite) po
using type-definition-fin-defl below-fin-defl-def
by (rule typedef-po-class)

lemma finite-deflation-Rep-fin-defl: finite-deflation (Rep-fin-defl d)
using Rep-fin-defl by simp

lemma deflation-Rep-fin-defl: deflation (Rep-fin-defl d)
using finite-deflation-Rep-fin-defl
by (rule finite-deflation-imp-deflation)

interpretation Rep-fin-defl: finite-deflation Rep-fin-defl d
by (rule finite-deflation-Rep-fin-defl)

lemma fin-defl-belowI :
(
∧

x. Rep-fin-defl a·x = x =⇒ Rep-fin-defl b·x = x) =⇒ a v b
unfolding below-fin-defl-def
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by (rule Rep-fin-defl.belowI )

lemma fin-defl-belowD:
[[a v b; Rep-fin-defl a·x = x]] =⇒ Rep-fin-defl b·x = x

unfolding below-fin-defl-def
by (rule Rep-fin-defl.belowD)

lemma fin-defl-eqI :
a = b if (

∧
x. Rep-fin-defl a·x = x ←→ Rep-fin-defl b·x = x)

proof (rule below-antisym)
show a v b by (rule fin-defl-belowI ) (simp add: that)
show b v a by (rule fin-defl-belowI ) (simp add: that)

qed

lemma Rep-fin-defl-mono: a v b =⇒ Rep-fin-defl a v Rep-fin-defl b
unfolding below-fin-defl-def .

lemma Abs-fin-defl-mono:
[[finite-deflation a; finite-deflation b; a v b]]
=⇒ Abs-fin-defl a v Abs-fin-defl b

unfolding below-fin-defl-def
by (simp add: Abs-fin-defl-inverse)

lemma (in finite-deflation) compact-belowI :
d v f if

∧
x. compact x =⇒ d·x = x =⇒ f ·x = x

by (rule belowI , rule that, erule subst, rule compact)

lemma compact-Rep-fin-defl [simp]: compact (Rep-fin-defl a)
using finite-deflation-Rep-fin-defl
by (rule finite-deflation-imp-compact)

22.2 Defining algebraic deflations by ideal completion
typedef ′a::bifinite defl = {S :: ′a fin-defl set. below.ideal S}
by (rule below.ex-ideal)

instantiation defl :: (bifinite) below
begin

definition x v y ←→ Rep-defl x ⊆ Rep-defl y

instance ..

end

instance defl :: (bifinite) po
using type-definition-defl below-defl-def
by (rule below.typedef-ideal-po)
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instance defl :: (bifinite) cpo
using type-definition-defl below-defl-def
by (rule below.typedef-ideal-cpo)

definition defl-principal :: ′a::bifinite fin-defl ⇒ ′a defl
where defl-principal t = Abs-defl {u. u v t}

lemma fin-defl-countable: ∃ f :: ′a::bifinite fin-defl ⇒ nat. inj f
proof −

obtain f :: ′a compact-basis ⇒ nat where inj-f : inj f
using compact-basis.countable ..

have ∗:
∧

d. finite (f ‘ Rep-compact-basis −‘ {x. Rep-fin-defl d·x = x})
apply (rule finite-imageI )
apply (rule finite-vimageI )
apply (rule Rep-fin-defl.finite-fixes)
apply (simp add: inj-on-def Rep-compact-basis-inject)
done

have range-eq: range Rep-compact-basis = {x. compact x}
using type-definition-compact-basis by (rule type-definition.Rep-range)

have inj (λd. set-encode
(f ‘ Rep-compact-basis −‘ {x. Rep-fin-defl d·x = x}))
apply (rule inj-onI )
apply (simp only: set-encode-eq ∗)
apply (simp only: inj-image-eq-iff inj-f )
apply (drule-tac f=image Rep-compact-basis in arg-cong)
apply (simp del: vimage-Collect-eq add: range-eq set-eq-iff )
apply (rule Rep-fin-defl-inject [THEN iffD1 ])
apply (rule below-antisym)
apply (rule Rep-fin-defl.compact-belowI , rename-tac z)
apply (drule-tac x=z in spec, simp)
apply (rule Rep-fin-defl.compact-belowI , rename-tac z)
apply (drule-tac x=z in spec, simp)
done

thus ?thesis by − (rule exI )
qed

interpretation defl: ideal-completion below defl-principal Rep-defl
using type-definition-defl below-defl-def
using defl-principal-def fin-defl-countable
by (rule below.typedef-ideal-completion)

Algebraic deflations are pointed
lemma defl-minimal: defl-principal (Abs-fin-defl ⊥) v x
proof (induct x rule: defl.principal-induct)

fix a :: ′a fin-defl
have Abs-fin-defl ⊥ v a

by (simp add: below-fin-defl-def Abs-fin-defl-inverse finite-deflation-bottom)
then show defl-principal (Abs-fin-defl ⊥) v defl-principal a

by (rule defl.principal-mono)
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qed simp

instance defl :: (bifinite) pcpo
by intro-classes (fast intro: defl-minimal)

lemma inst-defl-pcpo: ⊥ = defl-principal (Abs-fin-defl ⊥)
by (rule defl-minimal [THEN bottomI , symmetric])

22.3 Applying algebraic deflations
definition cast :: ′a::bifinite defl → ′a → ′a

where cast = defl.extension Rep-fin-defl

lemma cast-defl-principal: cast·(defl-principal a) = Rep-fin-defl a
unfolding cast-def
by (rule defl.extension-principal) (simp only: below-fin-defl-def )

lemma deflation-cast: deflation (cast·d)
apply (induct d rule: defl.principal-induct)
apply (rule adm-subst [OF - adm-deflation], simp)
apply (simp add: cast-defl-principal)
apply (rule finite-deflation-imp-deflation)
apply (rule finite-deflation-Rep-fin-defl)
done

lemma finite-deflation-cast: compact d =⇒ finite-deflation (cast·d)
apply (drule defl.compact-imp-principal)
apply clarify
apply (simp add: cast-defl-principal)
apply (rule finite-deflation-Rep-fin-defl)
done

interpretation cast: deflation cast·d
by (rule deflation-cast)

declare cast.idem [simp]

lemma compact-cast [simp]: compact (cast·d) if compact d
by (rule finite-deflation-imp-compact) (use that in ‹rule finite-deflation-cast›)

lemma cast-below-cast: cast·A v cast·B ←→ A v B
apply (induct A rule: defl.principal-induct, simp)
apply (induct B rule: defl.principal-induct, simp)
apply (simp add: cast-defl-principal below-fin-defl-def )
done

lemma compact-cast-iff : compact (cast·d) ←→ compact d
apply (rule iffI )
apply (simp only: compact-def cast-below-cast [symmetric])
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apply (erule adm-subst [OF cont-Rep-cfun2 ])
apply (erule compact-cast)
done

lemma cast-below-imp-below: cast·A v cast·B =⇒ A v B
by (simp only: cast-below-cast)

lemma cast-eq-imp-eq: cast·A = cast·B =⇒ A = B
by (simp add: below-antisym cast-below-imp-below)

lemma cast-strict1 [simp]: cast·⊥ = ⊥
apply (subst inst-defl-pcpo)
apply (subst cast-defl-principal)
apply (rule Abs-fin-defl-inverse)
apply (simp add: finite-deflation-bottom)
done

lemma cast-strict2 [simp]: cast·A·⊥ = ⊥
by (rule cast.below [THEN bottomI ])

22.4 Deflation combinators
definition

defl-fun1 e p f =
defl.extension (λa.

defl-principal (Abs-fin-defl
(e oo f ·(Rep-fin-defl a) oo p)))

definition
defl-fun2 e p f =

defl.extension (λa.
defl.extension (λb.

defl-principal (Abs-fin-defl
(e oo f ·(Rep-fin-defl a)·(Rep-fin-defl b) oo p))))

lemma cast-defl-fun1 :
assumes ep: ep-pair e p
assumes f :

∧
a. finite-deflation a =⇒ finite-deflation (f ·a)

shows cast·(defl-fun1 e p f ·A) = e oo f ·(cast·A) oo p
proof −

have 1 : finite-deflation (e oo f ·(Rep-fin-defl a) oo p) for a
proof −

have finite-deflation (f ·(Rep-fin-defl a))
using finite-deflation-Rep-fin-defl by (rule f )

with ep show ?thesis
by (rule ep-pair .finite-deflation-e-d-p)

qed
show ?thesis

by (induct A rule: defl.principal-induct, simp)
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(simp only: defl-fun1-def
defl.extension-principal
defl.extension-mono
defl.principal-mono
Abs-fin-defl-mono [OF 1 1 ]
monofun-cfun below-refl
Rep-fin-defl-mono
cast-defl-principal
Abs-fin-defl-inverse [unfolded mem-Collect-eq, OF 1 ])

qed

lemma cast-defl-fun2 :
assumes ep: ep-pair e p
assumes f :

∧
a b. finite-deflation a =⇒ finite-deflation b =⇒

finite-deflation (f ·a·b)
shows cast·(defl-fun2 e p f ·A·B) = e oo f ·(cast·A)·(cast·B) oo p

proof −
have 1 : finite-deflation (e oo f ·(Rep-fin-defl a)·(Rep-fin-defl b) oo p) for a b
proof −

have finite-deflation (f ·(Rep-fin-defl a)·(Rep-fin-defl b))
using finite-deflation-Rep-fin-defl finite-deflation-Rep-fin-defl by (rule f )

with ep show ?thesis
by (rule ep-pair .finite-deflation-e-d-p)

qed
show ?thesis

apply (induct A rule: defl.principal-induct, simp)
apply (induct B rule: defl.principal-induct, simp)
by (simp only: defl-fun2-def

defl.extension-principal
defl.extension-mono
defl.principal-mono
Abs-fin-defl-mono [OF 1 1 ]
monofun-cfun below-refl
Rep-fin-defl-mono
cast-defl-principal
Abs-fin-defl-inverse [unfolded mem-Collect-eq, OF 1 ])

qed

end

23 Representable domains
theory Representable
imports Algebraic Map-Functions HOL−Library.Countable
begin
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23.1 Class of representable domains

We define a “domain” as a pcpo that is isomorphic to some algebraic defla-
tion over the universal domain; this is equivalent to being omega-bifinite.
A predomain is a cpo that, when lifted, becomes a domain. Predomains are
represented by deflations over a lifted universal domain type.
class predomain-syn = cpo +

fixes liftemb :: ′a⊥ → udom⊥
fixes liftprj :: udom⊥ → ′a⊥
fixes liftdefl :: ′a itself ⇒ udom u defl

class predomain = predomain-syn +
assumes predomain-ep: ep-pair liftemb liftprj
assumes cast-liftdefl: cast·(liftdefl TYPE( ′a)) = liftemb oo liftprj

syntax -LIFTDEFL :: type ⇒ logic (‹(1LIFTDEFL/(1 ′(- ′)))›)
syntax-consts -LIFTDEFL ⇀↽ liftdefl
translations LIFTDEFL( ′t) ⇀↽ CONST liftdefl TYPE( ′t)

definition liftdefl-of :: udom defl → udom u defl
where liftdefl-of = defl-fun1 ID ID u-map

lemma cast-liftdefl-of : cast·(liftdefl-of ·t) = u-map·(cast·t)
by (simp add: liftdefl-of-def cast-defl-fun1 ep-pair-def finite-deflation-u-map)

class domain = predomain-syn + pcpo +
fixes emb :: ′a → udom
fixes prj :: udom → ′a
fixes defl :: ′a itself ⇒ udom defl
assumes ep-pair-emb-prj: ep-pair emb prj
assumes cast-DEFL: cast·(defl TYPE( ′a)) = emb oo prj
assumes liftemb-eq: liftemb = u-map·emb
assumes liftprj-eq: liftprj = u-map·prj
assumes liftdefl-eq: liftdefl TYPE( ′a) = liftdefl-of ·(defl TYPE( ′a))

syntax -DEFL :: type ⇒ logic (‹(1DEFL/(1 ′(- ′)))›)
syntax-consts -DEFL ⇀↽ defl
translations DEFL( ′t) ⇀↽ CONST defl TYPE( ′t)

instance domain ⊆ predomain
proof

show ep-pair liftemb (liftprj::udom⊥ → ′a⊥)
unfolding liftemb-eq liftprj-eq
by (intro ep-pair-u-map ep-pair-emb-prj)

show cast·LIFTDEFL( ′a) = liftemb oo (liftprj::udom⊥ → ′a⊥)
unfolding liftemb-eq liftprj-eq liftdefl-eq
by (simp add: cast-liftdefl-of cast-DEFL u-map-oo)

qed
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Constants liftemb and liftprj imply class predomain.
setup ‹

fold Sign.add-const-constraint
[(const-name ‹liftemb›, SOME typ ‹ ′a::predomain u → udom u›),
(const-name ‹liftprj›, SOME typ ‹udom u → ′a::predomain u›),
(const-name ‹liftdefl›, SOME typ ‹ ′a::predomain itself ⇒ udom u defl›)]

›

interpretation predomain: pcpo-ep-pair liftemb liftprj
unfolding pcpo-ep-pair-def by (rule predomain-ep)

interpretation domain: pcpo-ep-pair emb prj
unfolding pcpo-ep-pair-def by (rule ep-pair-emb-prj)

lemmas emb-inverse = domain.e-inverse
lemmas emb-prj-below = domain.e-p-below
lemmas emb-eq-iff = domain.e-eq-iff
lemmas emb-strict = domain.e-strict
lemmas prj-strict = domain.p-strict

23.2 Domains are bifinite
lemma approx-chain-ep-cast:

assumes ep: ep-pair (e:: ′a::pcpo → ′b::bifinite) (p:: ′b → ′a)
assumes cast-t: cast·t = e oo p
shows ∃ (a::nat ⇒ ′a::pcpo → ′a). approx-chain a

proof −
interpret ep-pair e p by fact
obtain Y where Y : ∀ i. Y i v Y (Suc i)
and t: t = (

⊔
i. defl-principal (Y i))

by (rule defl.obtain-principal-chain)
define approx where approx i = (p oo cast·(defl-principal (Y i)) oo e) for i
have approx-chain approx
proof (rule approx-chain.intro)

show chain (λi. approx i)
unfolding approx-def by (simp add: Y )

show (
⊔

i. approx i) = ID
unfolding approx-def
by (simp add: lub-distribs Y t [symmetric] cast-t cfun-eq-iff )

show
∧

i. finite-deflation (approx i)
unfolding approx-def
apply (rule finite-deflation-p-d-e)
apply (rule finite-deflation-cast)
apply (rule defl.compact-principal)
apply (rule below-trans [OF monofun-cfun-fun])
apply (rule is-ub-thelub, simp add: Y )
apply (simp add: lub-distribs Y t [symmetric] cast-t)
done

qed
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thus ∃ (a::nat ⇒ ′a → ′a). approx-chain a by − (rule exI )
qed

instance domain ⊆ bifinite
by standard (rule approx-chain-ep-cast [OF ep-pair-emb-prj cast-DEFL])

instance predomain ⊆ profinite
by standard (rule approx-chain-ep-cast [OF predomain-ep cast-liftdefl])

23.3 Universal domain ep-pairs
definition u-emb = udom-emb (λi. u-map·(udom-approx i))
definition u-prj = udom-prj (λi. u-map·(udom-approx i))

definition prod-emb = udom-emb (λi. prod-map·(udom-approx i)·(udom-approx
i))
definition prod-prj = udom-prj (λi. prod-map·(udom-approx i)·(udom-approx i))

definition sprod-emb = udom-emb (λi. sprod-map·(udom-approx i)·(udom-approx
i))
definition sprod-prj = udom-prj (λi. sprod-map·(udom-approx i)·(udom-approx i))

definition ssum-emb = udom-emb (λi. ssum-map·(udom-approx i)·(udom-approx
i))
definition ssum-prj = udom-prj (λi. ssum-map·(udom-approx i)·(udom-approx i))

definition sfun-emb = udom-emb (λi. sfun-map·(udom-approx i)·(udom-approx i))
definition sfun-prj = udom-prj (λi. sfun-map·(udom-approx i)·(udom-approx i))

lemma ep-pair-u: ep-pair u-emb u-prj
unfolding u-emb-def u-prj-def
by (simp add: ep-pair-udom approx-chain-u-map)

lemma ep-pair-prod: ep-pair prod-emb prod-prj
unfolding prod-emb-def prod-prj-def
by (simp add: ep-pair-udom approx-chain-prod-map)

lemma ep-pair-sprod: ep-pair sprod-emb sprod-prj
unfolding sprod-emb-def sprod-prj-def
by (simp add: ep-pair-udom approx-chain-sprod-map)

lemma ep-pair-ssum: ep-pair ssum-emb ssum-prj
unfolding ssum-emb-def ssum-prj-def
by (simp add: ep-pair-udom approx-chain-ssum-map)

lemma ep-pair-sfun: ep-pair sfun-emb sfun-prj
unfolding sfun-emb-def sfun-prj-def
by (simp add: ep-pair-udom approx-chain-sfun-map)
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23.4 Type combinators
definition u-defl :: udom defl → udom defl

where u-defl = defl-fun1 u-emb u-prj u-map

definition prod-defl :: udom defl → udom defl → udom defl
where prod-defl = defl-fun2 prod-emb prod-prj prod-map

definition sprod-defl :: udom defl → udom defl → udom defl
where sprod-defl = defl-fun2 sprod-emb sprod-prj sprod-map

definition ssum-defl :: udom defl → udom defl → udom defl
where ssum-defl = defl-fun2 ssum-emb ssum-prj ssum-map

definition sfun-defl :: udom defl → udom defl → udom defl
where sfun-defl = defl-fun2 sfun-emb sfun-prj sfun-map

lemma cast-u-defl:
cast·(u-defl·A) = u-emb oo u-map·(cast·A) oo u-prj

using ep-pair-u finite-deflation-u-map
unfolding u-defl-def by (rule cast-defl-fun1 )

lemma cast-prod-defl:
cast·(prod-defl·A·B) =

prod-emb oo prod-map·(cast·A)·(cast·B) oo prod-prj
using ep-pair-prod finite-deflation-prod-map
unfolding prod-defl-def by (rule cast-defl-fun2 )

lemma cast-sprod-defl:
cast·(sprod-defl·A·B) =

sprod-emb oo sprod-map·(cast·A)·(cast·B) oo sprod-prj
using ep-pair-sprod finite-deflation-sprod-map
unfolding sprod-defl-def by (rule cast-defl-fun2 )

lemma cast-ssum-defl:
cast·(ssum-defl·A·B) =

ssum-emb oo ssum-map·(cast·A)·(cast·B) oo ssum-prj
using ep-pair-ssum finite-deflation-ssum-map
unfolding ssum-defl-def by (rule cast-defl-fun2 )

lemma cast-sfun-defl:
cast·(sfun-defl·A·B) =

sfun-emb oo sfun-map·(cast·A)·(cast·B) oo sfun-prj
using ep-pair-sfun finite-deflation-sfun-map
unfolding sfun-defl-def by (rule cast-defl-fun2 )

Special deflation combinator for unpointed types.
definition u-liftdefl :: udom u defl → udom defl

where u-liftdefl = defl-fun1 u-emb u-prj ID
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lemma cast-u-liftdefl:
cast·(u-liftdefl·A) = u-emb oo cast·A oo u-prj

unfolding u-liftdefl-def by (simp add: cast-defl-fun1 ep-pair-u)

lemma u-liftdefl-liftdefl-of :
u-liftdefl·(liftdefl-of ·A) = u-defl·A

by (rule cast-eq-imp-eq)
(simp add: cast-u-liftdefl cast-liftdefl-of cast-u-defl)

23.5 Class instance proofs
23.5.1 Universal domain
instantiation udom :: domain
begin

definition [simp]:
emb = (ID :: udom → udom)

definition [simp]:
prj = (ID :: udom → udom)

definition
defl (t::udom itself ) = (

⊔
i. defl-principal (Abs-fin-defl (udom-approx i)))

definition
(liftemb :: udom u → udom u) = u-map·emb

definition
(liftprj :: udom u → udom u) = u-map·prj

definition
liftdefl (t::udom itself ) = liftdefl-of ·DEFL(udom)

instance proof
show ep-pair emb (prj :: udom → udom)

by (simp add: ep-pair .intro)
show cast·DEFL(udom) = emb oo (prj :: udom → udom)

unfolding defl-udom-def
apply (subst contlub-cfun-arg)
apply (rule chainI )
apply (rule defl.principal-mono)
apply (simp add: below-fin-defl-def )
apply (simp add: Abs-fin-defl-inverse finite-deflation-udom-approx)
apply (rule chainE)
apply (rule chain-udom-approx)
apply (subst cast-defl-principal)
apply (simp add: Abs-fin-defl-inverse finite-deflation-udom-approx)
done

qed (fact liftemb-udom-def liftprj-udom-def liftdefl-udom-def )+
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end

23.5.2 Lifted cpo
instantiation u :: (predomain) domain
begin

definition
emb = u-emb oo liftemb

definition
prj = liftprj oo u-prj

definition
defl (t:: ′a u itself ) = u-liftdefl·LIFTDEFL( ′a)

definition
(liftemb :: ′a u u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a u u) = u-map·prj

definition
liftdefl (t:: ′a u itself ) = liftdefl-of ·DEFL( ′a u)

instance proof
show ep-pair emb (prj :: udom → ′a u)

unfolding emb-u-def prj-u-def
by (intro ep-pair-comp ep-pair-u predomain-ep)

show cast·DEFL( ′a u) = emb oo (prj :: udom → ′a u)
unfolding emb-u-def prj-u-def defl-u-def
by (simp add: cast-u-liftdefl cast-liftdefl assoc-oo)

qed (fact liftemb-u-def liftprj-u-def liftdefl-u-def )+

end

lemma DEFL-u: DEFL( ′a::predomain u) = u-liftdefl·LIFTDEFL( ′a)
by (rule defl-u-def )

23.5.3 Strict function space
instantiation sfun :: (domain, domain) domain
begin

definition
emb = sfun-emb oo sfun-map·prj·emb

definition
prj = sfun-map·emb·prj oo sfun-prj
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definition
defl (t::( ′a →! ′b) itself ) = sfun-defl·DEFL( ′a)·DEFL( ′b)

definition
(liftemb :: ( ′a →! ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → ( ′a →! ′b) u) = u-map·prj

definition
liftdefl (t::( ′a →! ′b) itself ) = liftdefl-of ·DEFL( ′a →! ′b)

instance proof
show ep-pair emb (prj :: udom → ′a →! ′b)

unfolding emb-sfun-def prj-sfun-def
by (intro ep-pair-comp ep-pair-sfun ep-pair-sfun-map ep-pair-emb-prj)

show cast·DEFL( ′a →! ′b) = emb oo (prj :: udom → ′a →! ′b)
unfolding emb-sfun-def prj-sfun-def defl-sfun-def cast-sfun-defl
by (simp add: cast-DEFL oo-def sfun-eq-iff sfun-map-map)

qed (fact liftemb-sfun-def liftprj-sfun-def liftdefl-sfun-def )+

end

lemma DEFL-sfun:
DEFL( ′a::domain →! ′b::domain) = sfun-defl·DEFL( ′a)·DEFL( ′b)

by (rule defl-sfun-def )

23.5.4 Continuous function space
instantiation cfun :: (predomain, domain) domain
begin

definition
emb = emb oo encode-cfun

definition
prj = decode-cfun oo prj

definition
defl (t::( ′a → ′b) itself ) = DEFL( ′a u →! ′b)

definition
(liftemb :: ( ′a → ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → ( ′a → ′b) u) = u-map·prj

definition
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liftdefl (t::( ′a → ′b) itself ) = liftdefl-of ·DEFL( ′a → ′b)

instance proof
have ep-pair encode-cfun decode-cfun

by (rule ep-pair .intro, simp-all)
thus ep-pair emb (prj :: udom → ′a → ′b)

unfolding emb-cfun-def prj-cfun-def
using ep-pair-emb-prj by (rule ep-pair-comp)

show cast·DEFL( ′a → ′b) = emb oo (prj :: udom → ′a → ′b)
unfolding emb-cfun-def prj-cfun-def defl-cfun-def
by (simp add: cast-DEFL cfcomp1 )

qed (fact liftemb-cfun-def liftprj-cfun-def liftdefl-cfun-def )+

end

lemma DEFL-cfun:
DEFL( ′a::predomain → ′b::domain) = DEFL( ′a u →! ′b)

by (rule defl-cfun-def )

23.5.5 Strict product
instantiation sprod :: (domain, domain) domain
begin

definition
emb = sprod-emb oo sprod-map·emb·emb

definition
prj = sprod-map·prj·prj oo sprod-prj

definition
defl (t::( ′a ⊗ ′b) itself ) = sprod-defl·DEFL( ′a)·DEFL( ′b)

definition
(liftemb :: ( ′a ⊗ ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → ( ′a ⊗ ′b) u) = u-map·prj

definition
liftdefl (t::( ′a ⊗ ′b) itself ) = liftdefl-of ·DEFL( ′a ⊗ ′b)

instance proof
show ep-pair emb (prj :: udom → ′a ⊗ ′b)

unfolding emb-sprod-def prj-sprod-def
by (intro ep-pair-comp ep-pair-sprod ep-pair-sprod-map ep-pair-emb-prj)

show cast·DEFL( ′a ⊗ ′b) = emb oo (prj :: udom → ′a ⊗ ′b)
unfolding emb-sprod-def prj-sprod-def defl-sprod-def cast-sprod-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff sprod-map-map)
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qed (fact liftemb-sprod-def liftprj-sprod-def liftdefl-sprod-def )+

end

lemma DEFL-sprod:
DEFL( ′a::domain ⊗ ′b::domain) = sprod-defl·DEFL( ′a)·DEFL( ′b)

by (rule defl-sprod-def )

23.5.6 Cartesian product
definition prod-liftdefl :: udom u defl → udom u defl → udom u defl

where prod-liftdefl = defl-fun2 (u-map·prod-emb oo decode-prod-u)
(encode-prod-u oo u-map·prod-prj) sprod-map

lemma cast-prod-liftdefl:
cast·(prod-liftdefl·a·b) =
(u-map·prod-emb oo decode-prod-u) oo sprod-map·(cast·a)·(cast·b) oo
(encode-prod-u oo u-map·prod-prj)

unfolding prod-liftdefl-def
apply (rule cast-defl-fun2 )
apply (intro ep-pair-comp ep-pair-u-map ep-pair-prod)
apply (simp add: ep-pair .intro)
apply (erule (1 ) finite-deflation-sprod-map)
done

instantiation prod :: (predomain, predomain) predomain
begin

definition
liftemb = (u-map·prod-emb oo decode-prod-u) oo
(sprod-map·liftemb·liftemb oo encode-prod-u)

definition
liftprj = (decode-prod-u oo sprod-map·liftprj·liftprj) oo
(encode-prod-u oo u-map·prod-prj)

definition
liftdefl (t::( ′a × ′b) itself ) = prod-liftdefl·LIFTDEFL( ′a)·LIFTDEFL( ′b)

instance proof
show ep-pair liftemb (liftprj :: udom u → ( ′a × ′b) u)

unfolding liftemb-prod-def liftprj-prod-def
by (intro ep-pair-comp ep-pair-sprod-map ep-pair-u-map

ep-pair-prod predomain-ep, simp-all add: ep-pair .intro)
show cast·LIFTDEFL( ′a × ′b) = liftemb oo (liftprj :: udom u → ( ′a × ′b) u)

unfolding liftemb-prod-def liftprj-prod-def liftdefl-prod-def
by (simp add: cast-prod-liftdefl cast-liftdefl cfcomp1 sprod-map-map)

qed
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end

instantiation prod :: (domain, domain) domain
begin

definition
emb = prod-emb oo prod-map·emb·emb

definition
prj = prod-map·prj·prj oo prod-prj

definition
defl (t::( ′a × ′b) itself ) = prod-defl·DEFL( ′a)·DEFL( ′b)

instance proof
show 1 : ep-pair emb (prj :: udom → ′a × ′b)

unfolding emb-prod-def prj-prod-def
by (intro ep-pair-comp ep-pair-prod ep-pair-prod-map ep-pair-emb-prj)

show 2 : cast·DEFL( ′a × ′b) = emb oo (prj :: udom → ′a × ′b)
unfolding emb-prod-def prj-prod-def defl-prod-def cast-prod-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff prod-map-map)

show 3 : liftemb = u-map·(emb :: ′a × ′b → udom)
unfolding emb-prod-def liftemb-prod-def liftemb-eq
unfolding encode-prod-u-def decode-prod-u-def
by (rule cfun-eqI , case-tac x, simp, clarsimp)

show 4 : liftprj = u-map·(prj :: udom → ′a × ′b)
unfolding prj-prod-def liftprj-prod-def liftprj-eq
unfolding encode-prod-u-def decode-prod-u-def
apply (rule cfun-eqI , case-tac x, simp)
apply (rename-tac y, case-tac prod-prj·y, simp)
done

show 5 : LIFTDEFL( ′a × ′b) = liftdefl-of ·DEFL( ′a × ′b)
by (rule cast-eq-imp-eq)
(simp add: cast-liftdefl cast-liftdefl-of cast-DEFL 2 3 4 u-map-oo)

qed

end

lemma DEFL-prod:
DEFL( ′a::domain × ′b::domain) = prod-defl·DEFL( ′a)·DEFL( ′b)

by (rule defl-prod-def )

lemma LIFTDEFL-prod:
LIFTDEFL( ′a::predomain × ′b::predomain) =

prod-liftdefl·LIFTDEFL( ′a)·LIFTDEFL( ′b)
by (rule liftdefl-prod-def )



THEORY “Representable” 141

23.5.7 Unit type
instantiation unit :: domain
begin

definition
emb = (⊥ :: unit → udom)

definition
prj = (⊥ :: udom → unit)

definition
defl (t::unit itself ) = ⊥

definition
(liftemb :: unit u → udom u) = u-map·emb

definition
(liftprj :: udom u → unit u) = u-map·prj

definition
liftdefl (t::unit itself ) = liftdefl-of ·DEFL(unit)

instance proof
show ep-pair emb (prj :: udom → unit)

unfolding emb-unit-def prj-unit-def
by (simp add: ep-pair .intro)

show cast·DEFL(unit) = emb oo (prj :: udom → unit)
unfolding emb-unit-def prj-unit-def defl-unit-def by simp

qed (fact liftemb-unit-def liftprj-unit-def liftdefl-unit-def )+

end

23.5.8 Discrete cpo
instantiation discr :: (countable) predomain
begin

definition
(liftemb :: ′a discr u → udom u) = strictify·up oo udom-emb discr-approx

definition
(liftprj :: udom u → ′a discr u) = udom-prj discr-approx oo fup·ID

definition
liftdefl (t:: ′a discr itself ) =
(
⊔

i. defl-principal (Abs-fin-defl (liftemb oo discr-approx i oo (liftprj::udom u
→ ′a discr u))))

instance proof
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show 1 : ep-pair liftemb (liftprj :: udom u → ′a discr u)
unfolding liftemb-discr-def liftprj-discr-def
apply (intro ep-pair-comp ep-pair-udom [OF discr-approx])
apply (rule ep-pair .intro)
apply (simp add: strictify-conv-if )
apply (case-tac y, simp, simp add: strictify-conv-if )
done

show cast·LIFTDEFL( ′a discr) = liftemb oo (liftprj :: udom u → ′a discr u)
unfolding liftdefl-discr-def
apply (subst contlub-cfun-arg)
apply (rule chainI )
apply (rule defl.principal-mono)
apply (simp add: below-fin-defl-def )
apply (simp add: Abs-fin-defl-inverse

ep-pair .finite-deflation-e-d-p [OF 1 ]
approx-chain.finite-deflation-approx [OF discr-approx])

apply (intro monofun-cfun below-refl)
apply (rule chainE)
apply (rule chain-discr-approx)
apply (subst cast-defl-principal)
apply (simp add: Abs-fin-defl-inverse

ep-pair .finite-deflation-e-d-p [OF 1 ]
approx-chain.finite-deflation-approx [OF discr-approx])

apply (simp add: lub-distribs)
done

qed

end

23.5.9 Strict sum
instantiation ssum :: (domain, domain) domain
begin

definition
emb = ssum-emb oo ssum-map·emb·emb

definition
prj = ssum-map·prj·prj oo ssum-prj

definition
defl (t::( ′a ⊕ ′b) itself ) = ssum-defl·DEFL( ′a)·DEFL( ′b)

definition
(liftemb :: ( ′a ⊕ ′b) u → udom u) = u-map·emb

definition
(liftprj :: udom u → ( ′a ⊕ ′b) u) = u-map·prj



THEORY “Representable” 143

definition
liftdefl (t::( ′a ⊕ ′b) itself ) = liftdefl-of ·DEFL( ′a ⊕ ′b)

instance proof
show ep-pair emb (prj :: udom → ′a ⊕ ′b)

unfolding emb-ssum-def prj-ssum-def
by (intro ep-pair-comp ep-pair-ssum ep-pair-ssum-map ep-pair-emb-prj)

show cast·DEFL( ′a ⊕ ′b) = emb oo (prj :: udom → ′a ⊕ ′b)
unfolding emb-ssum-def prj-ssum-def defl-ssum-def cast-ssum-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff ssum-map-map)

qed (fact liftemb-ssum-def liftprj-ssum-def liftdefl-ssum-def )+

end

lemma DEFL-ssum:
DEFL( ′a::domain ⊕ ′b::domain) = ssum-defl·DEFL( ′a)·DEFL( ′b)

by (rule defl-ssum-def )

23.5.10 Lifted HOL type
instantiation lift :: (countable) domain
begin

definition
emb = emb oo (Λ x. Rep-lift x)

definition
prj = (Λ y. Abs-lift y) oo prj

definition
defl (t:: ′a lift itself ) = DEFL( ′a discr u)

definition
(liftemb :: ′a lift u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a lift u) = u-map·prj

definition
liftdefl (t:: ′a lift itself ) = liftdefl-of ·DEFL( ′a lift)

instance proof
note [simp] = cont-Rep-lift cont-Abs-lift Rep-lift-inverse Abs-lift-inverse
have ep-pair (Λ(x:: ′a lift). Rep-lift x) (Λ y. Abs-lift y)

by (simp add: ep-pair-def )
thus ep-pair emb (prj :: udom → ′a lift)

unfolding emb-lift-def prj-lift-def
using ep-pair-emb-prj by (rule ep-pair-comp)

show cast·DEFL( ′a lift) = emb oo (prj :: udom → ′a lift)
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unfolding emb-lift-def prj-lift-def defl-lift-def cast-DEFL
by (simp add: cfcomp1 )

qed (fact liftemb-lift-def liftprj-lift-def liftdefl-lift-def )+

end

end

24 The unit domain
theory One

imports Lift
begin

type-synonym one = unit lift

translations
(type) one ↽ (type) unit lift

definition ONE :: one
where ONE ≡ Def ()

Exhaustion and Elimination for type one
lemma Exh-one: t = ⊥ ∨ t = ONE

by (induct t) (simp-all add: ONE-def )

lemma oneE [case-names bottom ONE ]: [[p = ⊥ =⇒ Q; p = ONE =⇒ Q]] =⇒ Q
by (induct p) (simp-all add: ONE-def )

lemma one-induct [case-names bottom ONE ]: P ⊥ =⇒ P ONE =⇒ P x
by (cases x rule: oneE) simp-all

lemma dist-below-one [simp]: ONE 6v ⊥
by (simp add: ONE-def )

lemma below-ONE [simp]: x v ONE
by (induct x rule: one-induct) simp-all

lemma ONE-below-iff [simp]: ONE v x ←→ x = ONE
by (induct x rule: one-induct) simp-all

lemma ONE-defined [simp]: ONE 6= ⊥
by (simp add: ONE-def )

lemma one-neq-iffs [simp]:
x 6= ONE ←→ x = ⊥
ONE 6= x ←→ x = ⊥
x 6= ⊥ ←→ x = ONE
⊥ 6= x ←→ x = ONE



THEORY “Fixrec” 145

by (induct x rule: one-induct) simp-all

lemma compact-ONE : compact ONE
by (rule compact-chfin)

Case analysis function for type one
definition one-case :: ′a::pcpo → one → ′a

where one-case = (Λ a x. seq·x·a)

translations
case x of XCONST ONE ⇒ t ⇀↽ CONST one-case·t·x
case x of XCONST ONE :: ′a ⇒ t ⇀ CONST one-case·t·x
Λ (XCONST ONE). t ⇀↽ CONST one-case·t

lemma one-case1 [simp]: (case ⊥ of ONE ⇒ t) = ⊥
by (simp add: one-case-def )

lemma one-case2 [simp]: (case ONE of ONE ⇒ t) = t
by (simp add: one-case-def )

lemma one-case3 [simp]: (case x of ONE ⇒ ONE) = x
by (induct x rule: one-induct) simp-all

end

theory Fixrec
imports Cprod Sprod Ssum Up One Tr Cfun
keywords fixrec :: thy-defn
begin

25 Fixed point operator and admissibility
25.1 Iteration
primrec iterate :: nat ⇒ ( ′a → ′a) → ( ′a → ′a)

where
iterate 0 = (Λ F x. x)
| iterate (Suc n) = (Λ F x. F ·(iterate n·F ·x))

Derive inductive properties of iterate from primitive recursion
lemma iterate-0 [simp]: iterate 0 ·F ·x = x

by simp

lemma iterate-Suc [simp]: iterate (Suc n)·F ·x = F ·(iterate n·F ·x)
by simp

declare iterate.simps [simp del]
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lemma iterate-Suc2 : iterate (Suc n)·F ·x = iterate n·F ·(F ·x)
by (induct n) simp-all

lemma iterate-iterate: iterate m·F ·(iterate n·F ·x) = iterate (m + n)·F ·x
by (induct m) simp-all

The sequence of function iterations is a chain.
lemma chain-iterate [simp]: chain (λi. iterate i·F ·⊥)

by (rule chainI , unfold iterate-Suc2 , rule monofun-cfun-arg, rule minimal)

25.2 Least fixed point operator
definition fix :: ( ′a::pcpo → ′a) → ′a

where fix = (Λ F .
⊔

i. iterate i·F ·⊥)

Binder syntax for fix
abbreviation fix-syn :: ( ′a::pcpo ⇒ ′a) ⇒ ′a (binder ‹µ › 10 )

where fix-syn (λx. f x) ≡ fix·(Λ x. f x)

notation (ASCII )
fix-syn (binder ‹FIX › 10 )

Properties of fix

direct connection between fix and iteration
lemma fix-def2 : fix·F = (

⊔
i. iterate i·F ·⊥)

by (simp add: fix-def )

lemma iterate-below-fix: iterate n·f ·⊥ v fix·f
unfolding fix-def2
using chain-iterate by (rule is-ub-thelub)

Kleene’s fixed point theorems for continuous functions in pointed omega
cpo’s
lemma fix-eq: fix·F = F ·(fix·F)

apply (simp add: fix-def2 )
apply (subst lub-range-shift [of - 1 , symmetric])
apply (rule chain-iterate)

apply (subst contlub-cfun-arg)
apply (rule chain-iterate)

apply simp
done

lemma fix-least-below: F ·x v x =⇒ fix·F v x
apply (simp add: fix-def2 )
apply (rule lub-below)
apply (rule chain-iterate)

apply (induct-tac i)
apply simp
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apply simp
apply (erule rev-below-trans)
apply (erule monofun-cfun-arg)
done

lemma fix-least: F ·x = x =⇒ fix·F v x
by (rule fix-least-below) simp

lemma fix-eqI :
assumes fixed: F ·x = x

and least:
∧

z. F ·z = z =⇒ x v z
shows fix·F = x
apply (rule below-antisym)
apply (rule fix-least [OF fixed])

apply (rule least [OF fix-eq [symmetric]])
done

lemma fix-eq2 : f ≡ fix·F =⇒ f = F ·f
by (simp add: fix-eq [symmetric])

lemma fix-eq3 : f ≡ fix·F =⇒ f ·x = F ·f ·x
by (erule fix-eq2 [THEN cfun-fun-cong])

lemma fix-eq4 : f = fix·F =⇒ f = F ·f
by (erule ssubst) (rule fix-eq)

lemma fix-eq5 : f = fix·F =⇒ f ·x = F ·f ·x
by (erule fix-eq4 [THEN cfun-fun-cong])

strictness of fix
lemma fix-bottom-iff : fix·F = ⊥ ←→ F ·⊥ = ⊥

apply (rule iffI )
apply (erule subst)
apply (rule fix-eq [symmetric])

apply (erule fix-least [THEN bottomI ])
done

lemma fix-strict: F ·⊥ = ⊥ =⇒ fix·F = ⊥
by (simp add: fix-bottom-iff )

lemma fix-defined: F ·⊥ 6= ⊥ =⇒ fix·F 6= ⊥
by (simp add: fix-bottom-iff )

fix applied to identity and constant functions
lemma fix-id: (µ x. x) = ⊥

by (simp add: fix-strict)

lemma fix-const: (µ x. c) = c
by (subst fix-eq) simp
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25.3 Fixed point induction
lemma fix-ind: adm P =⇒ P ⊥ =⇒ (

∧
x. P x =⇒ P (F ·x)) =⇒ P (fix·F)

unfolding fix-def2
apply (erule admD)
apply (rule chain-iterate)

apply (rule nat-induct, simp-all)
done

lemma cont-fix-ind: cont F =⇒ adm P =⇒ P ⊥ =⇒ (
∧

x. P x =⇒ P (F x)) =⇒
P (fix·(Abs-cfun F))

by (simp add: fix-ind)

lemma def-fix-ind: [[f ≡ fix·F ; adm P; P ⊥;
∧

x. P x =⇒ P (F ·x)]] =⇒ P f
by (simp add: fix-ind)

lemma fix-ind2 :
assumes adm: adm P
assumes 0 : P ⊥ and 1 : P (F ·⊥)
assumes step:

∧
x. [[P x; P (F ·x)]] =⇒ P (F ·(F ·x))

shows P (fix·F)
unfolding fix-def2
apply (rule admD [OF adm chain-iterate])
apply (rule nat-less-induct)
apply (case-tac n)
apply (simp add: 0 )

apply (case-tac nat)
apply (simp add: 1 )

apply (frule-tac x=nat in spec)
apply (simp add: step)
done

lemma parallel-fix-ind:
assumes adm: adm (λx. P (fst x) (snd x))
assumes base: P ⊥ ⊥
assumes step:

∧
x y. P x y =⇒ P (F ·x) (G·y)

shows P (fix·F) (fix·G)
proof −

from adm have adm ′: adm (case-prod P)
unfolding split-def .

have P (iterate i·F ·⊥) (iterate i·G·⊥) for i
by (induct i) (simp add: base, simp add: step)

then have
∧

i. case-prod P (iterate i·F ·⊥, iterate i·G·⊥)
by simp

then have case-prod P (
⊔

i. (iterate i·F ·⊥, iterate i·G·⊥))
by − (rule admD [OF adm ′], simp, assumption)

then have case-prod P (
⊔

i. iterate i·F ·⊥,
⊔

i. iterate i·G·⊥)
by (simp add: lub-Pair)

then have P (
⊔

i. iterate i·F ·⊥) (
⊔

i. iterate i·G·⊥)
by simp
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then show P (fix·F) (fix·G)
by (simp add: fix-def2 )

qed

lemma cont-parallel-fix-ind:
assumes cont F and cont G
assumes adm (λx. P (fst x) (snd x))
assumes P ⊥ ⊥
assumes

∧
x y. P x y =⇒ P (F x) (G y)

shows P (fix·(Abs-cfun F)) (fix·(Abs-cfun G))
by (rule parallel-fix-ind) (simp-all add: assms)

25.4 Fixed-points on product types

Bekic’s Theorem: Simultaneous fixed points over pairs can be written in
terms of separate fixed points.
lemma fix-cprod:

fixes F :: ′a::pcpo × ′b::pcpo → ′a × ′b
shows

fix·F =
(µ x. fst (F ·(x, µ y. snd (F ·(x, y)))),
µ y. snd (F ·(µ x. fst (F ·(x, µ y. snd (F ·(x, y)))), y)))

(is fix·F = (?x, ?y))
proof (rule fix-eqI )

have ∗: fst (F ·(?x, ?y)) = ?x
by (rule trans [symmetric, OF fix-eq], simp)

have snd (F ·(?x, ?y)) = ?y
by (rule trans [symmetric, OF fix-eq], simp)

with ∗ show F ·(?x, ?y) = (?x, ?y)
by (simp add: prod-eq-iff )

next
fix z
assume F-z: F ·z = z
obtain x y where z: z = (x, y) by (rule prod.exhaust)
from F-z z have F-x: fst (F ·(x, y)) = x by simp
from F-z z have F-y: snd (F ·(x, y)) = y by simp
let ?y1 = µ y. snd (F ·(x, y))
have ?y1 v y

by (rule fix-least) (simp add: F-y)
then have fst (F ·(x, ?y1 )) v fst (F ·(x, y))

by (simp add: fst-monofun monofun-cfun)
with F-x have fst (F ·(x, ?y1 )) v x

by simp
then have ∗: ?x v x

by (simp add: fix-least-below)
then have snd (F ·(?x, y)) v snd (F ·(x, y))

by (simp add: snd-monofun monofun-cfun)
with F-y have snd (F ·(?x, y)) v y

by simp
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then have ?y v y
by (simp add: fix-least-below)

with z ∗ show (?x, ?y) v z
by simp

qed

26 Package for defining recursive functions in HOLCF
26.1 Pattern-match monad
pcpodef ′a match = UNIV ::(one ++ ′a u) set
by simp-all

definition
fail :: ′a match where
fail = Abs-match (sinl·ONE)

definition
succeed :: ′a → ′a match where
succeed = (Λ x. Abs-match (sinr ·(up·x)))

lemma matchE [case-names bottom fail succeed, cases type: match]:
[[p = ⊥ =⇒ Q; p = fail =⇒ Q;

∧
x. p = succeed·x =⇒ Q]] =⇒ Q

unfolding fail-def succeed-def
apply (cases p, rename-tac r)
apply (rule-tac p=r in ssumE , simp add: Abs-match-strict)
apply (rule-tac p=x in oneE , simp, simp)
apply (rule-tac p=y in upE , simp, simp add: cont-Abs-match)
done

lemma succeed-defined [simp]: succeed·x 6= ⊥
by (simp add: succeed-def cont-Abs-match Abs-match-bottom-iff )

lemma fail-defined [simp]: fail 6= ⊥
by (simp add: fail-def Abs-match-bottom-iff )

lemma succeed-eq [simp]: (succeed·x = succeed·y) = (x = y)
by (simp add: succeed-def cont-Abs-match Abs-match-inject)

lemma succeed-neq-fail [simp]:
succeed·x 6= fail fail 6= succeed·x

by (simp-all add: succeed-def fail-def cont-Abs-match Abs-match-inject)

26.1.1 Run operator
definition

run :: ′a match → ′a::pcpo where
run = (Λ m. sscase·⊥·(fup·ID)·(Rep-match m))

rewrite rules for run
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lemma run-strict [simp]: run·⊥ = ⊥
unfolding run-def
by (simp add: cont-Rep-match Rep-match-strict)

lemma run-fail [simp]: run·fail = ⊥
unfolding run-def fail-def
by (simp add: cont-Rep-match Abs-match-inverse)

lemma run-succeed [simp]: run·(succeed·x) = x
unfolding run-def succeed-def
by (simp add: cont-Rep-match cont-Abs-match Abs-match-inverse)

26.1.2 Monad plus operator
definition

mplus :: ′a match → ′a match → ′a match where
mplus = (Λ m1 m2 . sscase·(Λ -. m2 )·(Λ -. m1 )·(Rep-match m1 ))

abbreviation
mplus-syn :: [ ′a match, ′a match] ⇒ ′a match (infixr ‹+++› 65 ) where
m1 +++ m2 == mplus·m1 ·m2

rewrite rules for mplus
lemma mplus-strict [simp]: ⊥ +++ m = ⊥
unfolding mplus-def
by (simp add: cont-Rep-match Rep-match-strict)

lemma mplus-fail [simp]: fail +++ m = m
unfolding mplus-def fail-def
by (simp add: cont-Rep-match Abs-match-inverse)

lemma mplus-succeed [simp]: succeed·x +++ m = succeed·x
unfolding mplus-def succeed-def
by (simp add: cont-Rep-match cont-Abs-match Abs-match-inverse)

lemma mplus-fail2 [simp]: m +++ fail = m
by (cases m, simp-all)

lemma mplus-assoc: (x +++ y) +++ z = x +++ (y +++ z)
by (cases x, simp-all)

26.2 Match functions for built-in types
definition

match-bottom :: ′a::pcpo → ′c match → ′c match
where

match-bottom = (Λ x k. seq·x·fail)

definition
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match-Pair :: ′a × ′b → ( ′a → ′b → ′c match) → ′c match
where

match-Pair = (Λ x k. csplit·k·x)

definition
match-spair :: ′a::pcpo ⊗ ′b::pcpo → ( ′a → ′b → ′c match) → ′c::pcpo match

where
match-spair = (Λ x k. ssplit·k·x)

definition
match-sinl :: ′a::pcpo ⊕ ′b::pcpo → ( ′a → ′c::pcpo match) → ′c match

where
match-sinl = (Λ x k. sscase·k·(Λ b. fail)·x)

definition
match-sinr :: ′a::pcpo ⊕ ′b::pcpo → ( ′b → ′c::pcpo match) → ′c match

where
match-sinr = (Λ x k. sscase·(Λ a. fail)·k·x)

definition
match-up :: ′a u → ( ′a → ′c::pcpo match) → ′c match

where
match-up = (Λ x k. fup·k·x)

definition
match-ONE :: one → ′c::pcpo match → ′c match

where
match-ONE = (Λ ONE k. k)

definition
match-TT :: tr → ′c::pcpo match → ′c match

where
match-TT = (Λ x k. If x then k else fail)

definition
match-FF :: tr → ′c::pcpo match → ′c match

where
match-FF = (Λ x k. If x then fail else k)

lemma match-bottom-simps [simp]:
match-bottom·x·k = (if x = ⊥ then ⊥ else fail)

by (simp add: match-bottom-def )

lemma match-Pair-simps [simp]:
match-Pair ·(x, y)·k = k·x·y

by (simp-all add: match-Pair-def )

lemma match-spair-simps [simp]:
[[x 6= ⊥; y 6= ⊥]] =⇒ match-spair ·(:x, y:)·k = k·x·y
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match-spair ·⊥·k = ⊥
by (simp-all add: match-spair-def )

lemma match-sinl-simps [simp]:
x 6= ⊥ =⇒ match-sinl·(sinl·x)·k = k·x
y 6= ⊥ =⇒ match-sinl·(sinr ·y)·k = fail
match-sinl·⊥·k = ⊥

by (simp-all add: match-sinl-def )

lemma match-sinr-simps [simp]:
x 6= ⊥ =⇒ match-sinr ·(sinl·x)·k = fail
y 6= ⊥ =⇒ match-sinr ·(sinr ·y)·k = k·y
match-sinr ·⊥·k = ⊥

by (simp-all add: match-sinr-def )

lemma match-up-simps [simp]:
match-up·(up·x)·k = k·x
match-up·⊥·k = ⊥

by (simp-all add: match-up-def )

lemma match-ONE-simps [simp]:
match-ONE ·ONE ·k = k
match-ONE ·⊥·k = ⊥

by (simp-all add: match-ONE-def )

lemma match-TT-simps [simp]:
match-TT ·TT ·k = k
match-TT ·FF ·k = fail
match-TT ·⊥·k = ⊥

by (simp-all add: match-TT-def )

lemma match-FF-simps [simp]:
match-FF ·FF ·k = k
match-FF ·TT ·k = fail
match-FF ·⊥·k = ⊥

by (simp-all add: match-FF-def )

26.3 Mutual recursion

The following rules are used to prove unfolding theorems from fixed-point
definitions of mutually recursive functions.
lemma Pair-equalI : [[x ≡ fst p; y ≡ snd p]] =⇒ (x, y) ≡ p
by simp

lemma Pair-eqD1 : (x, y) = (x ′, y ′) =⇒ x = x ′

by simp

lemma Pair-eqD2 : (x, y) = (x ′, y ′) =⇒ y = y ′

by simp
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lemma def-cont-fix-eq:
[[f ≡ fix·(Abs-cfun F); cont F ]] =⇒ f = F f

by (simp, subst fix-eq, simp)

lemma def-cont-fix-ind:
[[f ≡ fix·(Abs-cfun F); cont F ; adm P; P ⊥;

∧
x. P x =⇒ P (F x)]] =⇒ P f

by (simp add: fix-ind)

lemma for proving rewrite rules
lemma ssubst-lhs: [[t = s; P s = Q]] =⇒ P t = Q
by simp

26.4 Initializing the fixrec package
ML-file ‹Tools/holcf-library.ML›
ML-file ‹Tools/fixrec.ML›

method-setup fixrec-simp = ‹
Scan.succeed (SIMPLE-METHOD ′ o Fixrec.fixrec-simp-tac)

› pattern prover for fixrec constants

setup ‹
Fixrec.add-matchers
[ (const-name ‹up›, const-name ‹match-up›),
(const-name ‹sinl›, const-name ‹match-sinl›),
(const-name ‹sinr›, const-name ‹match-sinr›),
(const-name ‹spair›, const-name ‹match-spair›),
(const-name ‹Pair›, const-name ‹match-Pair›),
(const-name ‹ONE›, const-name ‹match-ONE›),
(const-name ‹TT ›, const-name ‹match-TT ›),
(const-name ‹FF›, const-name ‹match-FF›),
(const-name ‹bottom›, const-name ‹match-bottom›) ]

›

hide-const (open) succeed fail run

end

27 Domain package
theory Domain
imports Representable Map-Functions Fixrec
keywords

lazy unsafe and
domaindef domain :: thy-defn and
domain-isomorphism :: thy-decl

begin
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27.1 Continuous isomorphisms

A locale for continuous isomorphisms
locale iso =

fixes abs :: ′a::pcpo → ′b::pcpo
fixes rep :: ′b → ′a
assumes abs-iso [simp]: rep·(abs·x) = x
assumes rep-iso [simp]: abs·(rep·y) = y

begin

lemma swap: iso rep abs
by (rule iso.intro [OF rep-iso abs-iso])

lemma abs-below: (abs·x v abs·y) = (x v y)
proof

assume abs·x v abs·y
then have rep·(abs·x) v rep·(abs·y) by (rule monofun-cfun-arg)
then show x v y by simp

next
assume x v y
then show abs·x v abs·y by (rule monofun-cfun-arg)

qed

lemma rep-below: (rep·x v rep·y) = (x v y)
by (rule iso.abs-below [OF swap])

lemma abs-eq: (abs·x = abs·y) = (x = y)
by (simp add: po-eq-conv abs-below)

lemma rep-eq: (rep·x = rep·y) = (x = y)
by (rule iso.abs-eq [OF swap])

lemma abs-strict: abs·⊥ = ⊥
proof −

have ⊥ v rep·⊥ ..
then have abs·⊥ v abs·(rep·⊥) by (rule monofun-cfun-arg)
then have abs·⊥ v ⊥ by simp
then show ?thesis by (rule bottomI )

qed

lemma rep-strict: rep·⊥ = ⊥
by (rule iso.abs-strict [OF swap])

lemma abs-defin ′: abs·x = ⊥ =⇒ x = ⊥
proof −

have x = rep·(abs·x) by simp
also assume abs·x = ⊥
also note rep-strict
finally show x = ⊥ .
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qed

lemma rep-defin ′: rep·z = ⊥ =⇒ z = ⊥
by (rule iso.abs-defin ′ [OF swap])

lemma abs-defined: z 6= ⊥ =⇒ abs·z 6= ⊥
by (erule contrapos-nn, erule abs-defin ′)

lemma rep-defined: z 6= ⊥ =⇒ rep·z 6= ⊥
by (rule iso.abs-defined [OF iso.swap]) (rule iso-axioms)

lemma abs-bottom-iff : (abs·x = ⊥) = (x = ⊥)
by (auto elim: abs-defin ′ intro: abs-strict)

lemma rep-bottom-iff : (rep·x = ⊥) = (x = ⊥)
by (rule iso.abs-bottom-iff [OF iso.swap]) (rule iso-axioms)

lemma casedist-rule: rep·x = ⊥ ∨ P =⇒ x = ⊥ ∨ P
by (simp add: rep-bottom-iff )

lemma compact-abs-rev: compact (abs·x) =⇒ compact x
proof (unfold compact-def )

assume adm (λy. abs·x 6v y)
with cont-Rep-cfun2
have adm (λy. abs·x 6v abs·y) by (rule adm-subst)
then show adm (λy. x 6v y) using abs-below by simp

qed

lemma compact-rep-rev: compact (rep·x) =⇒ compact x
by (rule iso.compact-abs-rev [OF iso.swap]) (rule iso-axioms)

lemma compact-abs: compact x =⇒ compact (abs·x)
by (rule compact-rep-rev) simp

lemma compact-rep: compact x =⇒ compact (rep·x)
by (rule iso.compact-abs [OF iso.swap]) (rule iso-axioms)

lemma iso-swap: (x = abs·y) = (rep·x = y)
proof

assume x = abs·y
then have rep·x = rep·(abs·y) by simp
then show rep·x = y by simp

next
assume rep·x = y
then have abs·(rep·x) = abs·y by simp
then show x = abs·y by simp

qed

end
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27.2 Proofs about take functions

This section contains lemmas that are used in a module that supports the
domain isomorphism package; the module contains proofs related to take
functions and the finiteness predicate.
lemma deflation-abs-rep:

fixes abs and rep and d
assumes abs-iso:

∧
x. rep·(abs·x) = x

assumes rep-iso:
∧

y. abs·(rep·y) = y
shows deflation d =⇒ deflation (abs oo d oo rep)

by (rule ep-pair .deflation-e-d-p) (simp add: ep-pair .intro assms)

lemma deflation-chain-min:
assumes chain: chain d
assumes defl:

∧
n. deflation (d n)

shows d m·(d n·x) = d (min m n)·x
proof (rule linorder-le-cases)

assume m ≤ n
with chain have d m v d n by (rule chain-mono)
then have d m·(d n·x) = d m·x

by (rule deflation-below-comp1 [OF defl defl])
moreover from ‹m ≤ n› have min m n = m by simp
ultimately show ?thesis by simp

next
assume n ≤ m
with chain have d n v d m by (rule chain-mono)
then have d m·(d n·x) = d n·x

by (rule deflation-below-comp2 [OF defl defl])
moreover from ‹n ≤ m› have min m n = n by simp
ultimately show ?thesis by simp

qed

lemma lub-ID-take-lemma:
assumes chain t and (

⊔
n. t n) = ID

assumes
∧

n. t n·x = t n·y shows x = y
proof −

have (
⊔

n. t n·x) = (
⊔

n. t n·y)
using assms(3 ) by simp

then have (
⊔

n. t n)·x = (
⊔

n. t n)·y
using assms(1 ) by (simp add: lub-distribs)

then show x = y
using assms(2 ) by simp

qed

lemma lub-ID-reach:
assumes chain t and (

⊔
n. t n) = ID

shows (
⊔

n. t n·x) = x
using assms by (simp add: lub-distribs)
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lemma lub-ID-take-induct:
assumes chain t and (

⊔
n. t n) = ID

assumes adm P and
∧

n. P (t n·x) shows P x
proof −

from ‹chain t› have chain (λn. t n·x) by simp
from ‹adm P› this ‹

∧
n. P (t n·x)› have P (

⊔
n. t n·x) by (rule admD)

with ‹chain t› ‹(
⊔

n. t n) = ID› show P x by (simp add: lub-distribs)
qed

27.3 Finiteness

Let a “decisive” function be a deflation that maps every input to either itself
or bottom. Then if a domain’s take functions are all decisive, then all values
in the domain are finite.
definition

decisive :: ( ′a::pcpo → ′a) ⇒ bool
where

decisive d ←→ (∀ x. d·x = x ∨ d·x = ⊥)

lemma decisiveI : (
∧

x. d·x = x ∨ d·x = ⊥) =⇒ decisive d
unfolding decisive-def by simp

lemma decisive-cases:
assumes decisive d obtains d·x = x | d·x = ⊥

using assms unfolding decisive-def by auto

lemma decisive-bottom: decisive ⊥
unfolding decisive-def by simp

lemma decisive-ID: decisive ID
unfolding decisive-def by simp

lemma decisive-ssum-map:
assumes f : decisive f
assumes g: decisive g
shows decisive (ssum-map·f ·g)
apply (rule decisiveI )
subgoal for s

apply (cases s, simp-all)
apply (rule-tac x=x in decisive-cases [OF f ], simp-all)

apply (rule-tac x=y in decisive-cases [OF g], simp-all)
done

done

lemma decisive-sprod-map:
assumes f : decisive f
assumes g: decisive g
shows decisive (sprod-map·f ·g)
apply (rule decisiveI )
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subgoal for s
apply (cases s, simp)
subgoal for x y

apply (rule decisive-cases [OF f , where x = x], simp-all)
apply (rule decisive-cases [OF g, where x = y], simp-all)
done

done
done

lemma decisive-abs-rep:
fixes abs rep
assumes iso: iso abs rep
assumes d: decisive d
shows decisive (abs oo d oo rep)
apply (rule decisiveI )
subgoal for s

apply (rule decisive-cases [OF d, where x=rep·s])
apply (simp add: iso.rep-iso [OF iso])

apply (simp add: iso.abs-strict [OF iso])
done

done

lemma lub-ID-finite:
assumes chain: chain d
assumes lub: (

⊔
n. d n) = ID

assumes decisive:
∧

n. decisive (d n)
shows ∃n. d n·x = x

proof −
have 1 : chain (λn. d n·x) using chain by simp
have 2 : (

⊔
n. d n·x) = x using chain lub by (rule lub-ID-reach)

have ∀n. d n·x = x ∨ d n·x = ⊥
using decisive unfolding decisive-def by simp

hence range (λn. d n·x) ⊆ {x, ⊥}
by auto

hence finite (range (λn. d n·x))
by (rule finite-subset, simp)

with 1 have finite-chain (λn. d n·x)
by (rule finite-range-imp-finch)

then have ∃n. (
⊔

n. d n·x) = d n·x
unfolding finite-chain-def by (auto simp add: maxinch-is-thelub)

with 2 show ∃n. d n·x = x by (auto elim: sym)
qed

lemma lub-ID-finite-take-induct:
assumes chain d and (

⊔
n. d n) = ID and

∧
n. decisive (d n)

shows (
∧

n. P (d n·x)) =⇒ P x
using lub-ID-finite [OF assms] by metis



THEORY “Domain” 160

27.4 Proofs about constructor functions

Lemmas for proving nchotomy rule:
lemma ex-one-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) = P ONE

by simp

lemma ex-up-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) = (∃ x. P (up·x))

by (safe, case-tac x, auto)

lemma ex-sprod-bottom-iff :
(∃ y. P y ∧ y 6= ⊥) =
(∃ x y. (P (:x, y:) ∧ x 6= ⊥) ∧ y 6= ⊥)

by (safe, case-tac y, auto)

lemma ex-sprod-up-bottom-iff :
(∃ y. P y ∧ y 6= ⊥) =
(∃ x y. P (:up·x, y:) ∧ y 6= ⊥)

by (safe, case-tac y, simp, case-tac x, auto)

lemma ex-ssum-bottom-iff :
(∃ x. P x ∧ x 6= ⊥) =
((∃ x. P (sinl·x) ∧ x 6= ⊥) ∨
(∃ x. P (sinr ·x) ∧ x 6= ⊥))

by (safe, case-tac x, auto)

lemma exh-start: p = ⊥ ∨ (∃ x. p = x ∧ x 6= ⊥)
by auto

lemmas ex-bottom-iffs =
ex-ssum-bottom-iff
ex-sprod-up-bottom-iff
ex-sprod-bottom-iff
ex-up-bottom-iff
ex-one-bottom-iff

Rules for turning nchotomy into exhaust:
lemma exh-casedist0 : [[R; R =⇒ P]] =⇒ P

by auto

lemma exh-casedist1 : ((P ∨ Q =⇒ R) =⇒ S) ≡ ([[P =⇒ R; Q =⇒ R]] =⇒ S)
by rule auto

lemma exh-casedist2 : (∃ x. P x =⇒ Q) ≡ (
∧

x. P x =⇒ Q)
by rule auto

lemma exh-casedist3 : (P ∧ Q =⇒ R) ≡ (P =⇒ Q =⇒ R)
by rule auto
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lemmas exh-casedists = exh-casedist1 exh-casedist2 exh-casedist3

Rules for proving constructor properties
lemmas con-strict-rules =

sinl-strict sinr-strict spair-strict1 spair-strict2

lemmas con-bottom-iff-rules =
sinl-bottom-iff sinr-bottom-iff spair-bottom-iff up-defined ONE-defined

lemmas con-below-iff-rules =
sinl-below sinr-below sinl-below-sinr sinr-below-sinl con-bottom-iff-rules

lemmas con-eq-iff-rules =
sinl-eq sinr-eq sinl-eq-sinr sinr-eq-sinl con-bottom-iff-rules

lemmas sel-strict-rules =
cfcomp2 sscase1 sfst-strict ssnd-strict fup1

lemma sel-app-extra-rules:
sscase·ID·⊥·(sinr ·x) = ⊥
sscase·ID·⊥·(sinl·x) = x
sscase·⊥·ID·(sinl·x) = ⊥
sscase·⊥·ID·(sinr ·x) = x
fup·ID·(up·x) = x

by (cases x = ⊥, simp, simp)+

lemmas sel-app-rules =
sel-strict-rules sel-app-extra-rules
ssnd-spair sfst-spair up-defined spair-defined

lemmas sel-bottom-iff-rules =
cfcomp2 sfst-bottom-iff ssnd-bottom-iff

lemmas take-con-rules =
ssum-map-sinl ′ ssum-map-sinr ′ sprod-map-spair ′ u-map-up
deflation-strict deflation-ID ID1 cfcomp2

27.5 ML setup
named-theorems domain-deflation theorems like deflation a ==> deflation (foo-map$a)

and domain-map-ID theorems like foo-map$ID = ID

ML-file ‹Tools/Domain/domain-take-proofs.ML›
ML-file ‹Tools/cont-consts.ML›
ML-file ‹Tools/cont-proc.ML›
simproc-setup cont (cont f ) = ‹K ContProc.cont-proc›

ML-file ‹Tools/Domain/domain-constructors.ML›
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ML-file ‹Tools/Domain/domain-induction.ML›

27.6 Representations of types
lemma emb-prj: emb·((prj·x):: ′a::domain) = cast·DEFL( ′a)·x
by (simp add: cast-DEFL)

lemma emb-prj-emb:
fixes x :: ′a::domain
assumes DEFL( ′a) v DEFL( ′b)
shows emb·(prj·(emb·x) :: ′b::domain) = emb·x

unfolding emb-prj
apply (rule cast.belowD)
apply (rule monofun-cfun-arg [OF assms])
apply (simp add: cast-DEFL)
done

lemma prj-emb-prj:
assumes DEFL( ′a::domain) v DEFL( ′b::domain)
shows prj·(emb·(prj·x :: ′b)) = (prj·x :: ′a)

apply (rule emb-eq-iff [THEN iffD1 ])
apply (simp only: emb-prj)
apply (rule deflation-below-comp1 )

apply (rule deflation-cast)
apply (rule deflation-cast)

apply (rule monofun-cfun-arg [OF assms])
done

Isomorphism lemmas used internally by the domain package:
lemma domain-abs-iso:

fixes abs and rep
assumes DEFL: DEFL( ′b::domain) = DEFL( ′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows rep·(abs·x) = x

unfolding abs-def rep-def
by (simp add: emb-prj-emb DEFL)

lemma domain-rep-iso:
fixes abs and rep
assumes DEFL: DEFL( ′b::domain) = DEFL( ′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows abs·(rep·x) = x

unfolding abs-def rep-def
by (simp add: emb-prj-emb DEFL)

27.7 Deflations as sets
definition defl-set :: ′a::bifinite defl ⇒ ′a set
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where defl-set A = {x. cast·A·x = x}

lemma adm-defl-set: adm (λx. x ∈ defl-set A)
unfolding defl-set-def by simp

lemma defl-set-bottom: ⊥ ∈ defl-set A
unfolding defl-set-def by simp

lemma defl-set-cast [simp]: cast·A·x ∈ defl-set A
unfolding defl-set-def by simp

lemma defl-set-subset-iff : defl-set A ⊆ defl-set B ←→ A v B
apply (simp add: defl-set-def subset-eq cast-below-cast [symmetric])
apply (auto simp add: cast.belowI cast.belowD)
done

27.8 Proving a subtype is representable

Temporarily relax type constraints.
setup ‹

fold Sign.add-const-constraint
[ (const-name ‹defl›, SOME typ ‹ ′a::pcpo itself ⇒ udom defl›)
, (const-name ‹emb›, SOME typ ‹ ′a::pcpo → udom›)
, (const-name ‹prj›, SOME typ ‹udom → ′a::pcpo›)
, (const-name ‹liftdefl›, SOME typ ‹ ′a::pcpo itself ⇒ udom u defl›)
, (const-name ‹liftemb›, SOME typ ‹ ′a::pcpo u → udom u›)
, (const-name ‹liftprj›, SOME typ ‹udom u → ′a::pcpo u›) ]

›

lemma typedef-domain-class:
fixes Rep :: ′a::pcpo ⇒ udom
fixes Abs :: udom ⇒ ′a::pcpo
fixes t :: udom defl
assumes type: type-definition Rep Abs (defl-set t)
assumes below: (v) ≡ λx y. Rep x v Rep y
assumes emb: emb ≡ (Λ x. Rep x)
assumes prj: prj ≡ (Λ x. Abs (cast·t·x))
assumes defl: defl ≡ (λ a:: ′a itself . t)
assumes liftemb: (liftemb :: ′a u → udom u) ≡ u-map·emb
assumes liftprj: (liftprj :: udom u → ′a u) ≡ u-map·prj
assumes liftdefl: (liftdefl :: ′a itself ⇒ -) ≡ (λt. liftdefl-of ·DEFL( ′a))
shows OFCLASS( ′a, domain-class)

proof
have emb-beta:

∧
x. emb·x = Rep x

unfolding emb
apply (rule beta-cfun)
apply (rule typedef-cont-Rep [OF type below adm-defl-set cont-id])
done

have prj-beta:
∧

y. prj·y = Abs (cast·t·y)
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unfolding prj
apply (rule beta-cfun)
apply (rule typedef-cont-Abs [OF type below adm-defl-set])
apply simp-all
done

have prj-emb:
∧

x:: ′a. prj·(emb·x) = x
using type-definition.Rep [OF type]
unfolding prj-beta emb-beta defl-set-def
by (simp add: type-definition.Rep-inverse [OF type])

have emb-prj:
∧

y. emb·(prj·y :: ′a) = cast·t·y
unfolding prj-beta emb-beta
by (simp add: type-definition.Abs-inverse [OF type])

show ep-pair (emb :: ′a → udom) prj
apply standard
apply (simp add: prj-emb)
apply (simp add: emb-prj cast.below)
done

show cast·DEFL( ′a) = emb oo (prj :: udom → ′a)
by (rule cfun-eqI , simp add: defl emb-prj)

qed (simp-all only: liftemb liftprj liftdefl)

lemma typedef-DEFL:
assumes defl ≡ (λa:: ′a::pcpo itself . t)
shows DEFL( ′a::pcpo) = t

unfolding assms ..

Restore original typing constraints.
setup ‹

fold Sign.add-const-constraint
[(const-name ‹defl›, SOME typ ‹ ′a::domain itself ⇒ udom defl›),
(const-name ‹emb›, SOME typ ‹ ′a::domain → udom›),
(const-name ‹prj›, SOME typ ‹udom → ′a::domain›),
(const-name ‹liftdefl›, SOME typ ‹ ′a::predomain itself ⇒ udom u defl›),
(const-name ‹liftemb›, SOME typ ‹ ′a::predomain u → udom u›),
(const-name ‹liftprj›, SOME typ ‹udom u → ′a::predomain u›)]

›

ML-file ‹Tools/domaindef .ML›

27.9 Isomorphic deflations
definition isodefl :: ( ′a::domain → ′a) ⇒ udom defl ⇒ bool

where isodefl d t ←→ cast·t = emb oo d oo prj

definition isodefl ′ :: ( ′a::predomain → ′a) ⇒ udom u defl ⇒ bool
where isodefl ′ d t ←→ cast·t = liftemb oo u-map·d oo liftprj

lemma isodeflI : (
∧

x. cast·t·x = emb·(d·(prj·x))) =⇒ isodefl d t
unfolding isodefl-def by (simp add: cfun-eqI )
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lemma cast-isodefl: isodefl d t =⇒ cast·t = (Λ x. emb·(d·(prj·x)))
unfolding isodefl-def by (simp add: cfun-eqI )

lemma isodefl-strict: isodefl d t =⇒ d·⊥ = ⊥
unfolding isodefl-def
by (drule cfun-fun-cong [where x=⊥], simp)

lemma isodefl-imp-deflation:
fixes d :: ′a::domain → ′a
assumes isodefl d t shows deflation d

proof
note assms [unfolded isodefl-def , simp]
fix x :: ′a
show d·(d·x) = d·x

using cast.idem [of t emb·x] by simp
show d·x v x

using cast.below [of t emb·x] by simp
qed

lemma isodefl-ID-DEFL: isodefl (ID :: ′a → ′a) DEFL( ′a::domain)
unfolding isodefl-def by (simp add: cast-DEFL)

lemma isodefl-LIFTDEFL:
isodefl ′ (ID :: ′a → ′a) LIFTDEFL( ′a::predomain)

unfolding isodefl ′-def by (simp add: cast-liftdefl u-map-ID)

lemma isodefl-DEFL-imp-ID: isodefl (d :: ′a → ′a) DEFL( ′a::domain) =⇒ d =
ID
unfolding isodefl-def
apply (simp add: cast-DEFL)
apply (simp add: cfun-eq-iff )
apply (rule allI )
apply (drule-tac x=emb·x in spec)
apply simp
done

lemma isodefl-bottom: isodefl ⊥ ⊥
unfolding isodefl-def by (simp add: cfun-eq-iff )

lemma adm-isodefl:
cont f =⇒ cont g =⇒ adm (λx. isodefl (f x) (g x))

unfolding isodefl-def by simp

lemma isodefl-lub:
assumes chain d and chain t
assumes

∧
i. isodefl (d i) (t i)

shows isodefl (
⊔

i. d i) (
⊔

i. t i)
using assms unfolding isodefl-def
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by (simp add: contlub-cfun-arg contlub-cfun-fun)

lemma isodefl-fix:
assumes

∧
d t. isodefl d t =⇒ isodefl (f ·d) (g·t)

shows isodefl (fix·f ) (fix·g)
unfolding fix-def2
apply (rule isodefl-lub, simp, simp)
apply (induct-tac i)
apply (simp add: isodefl-bottom)
apply (simp add: assms)
done

lemma isodefl-abs-rep:
fixes abs and rep and d
assumes DEFL: DEFL( ′b::domain) = DEFL( ′a::domain)
assumes abs-def : (abs :: ′a → ′b) ≡ prj oo emb
assumes rep-def : (rep :: ′b → ′a) ≡ prj oo emb
shows isodefl d t =⇒ isodefl (abs oo d oo rep) t

unfolding isodefl-def
by (simp add: cfun-eq-iff assms prj-emb-prj emb-prj-emb)

lemma isodefl ′-liftdefl-of : isodefl d t =⇒ isodefl ′ d (liftdefl-of ·t)
unfolding isodefl-def isodefl ′-def
by (simp add: cast-liftdefl-of u-map-oo liftemb-eq liftprj-eq)

lemma isodefl-sfun:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (sfun-map·d1 ·d2 ) (sfun-defl·t1 ·t2 )
apply (rule isodeflI )
apply (simp add: cast-sfun-defl cast-isodefl)
apply (simp add: emb-sfun-def prj-sfun-def )
apply (simp add: sfun-map-map isodefl-strict)
done

lemma isodefl-ssum:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (ssum-map·d1 ·d2 ) (ssum-defl·t1 ·t2 )
apply (rule isodeflI )
apply (simp add: cast-ssum-defl cast-isodefl)
apply (simp add: emb-ssum-def prj-ssum-def )
apply (simp add: ssum-map-map isodefl-strict)
done

lemma isodefl-sprod:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (sprod-map·d1 ·d2 ) (sprod-defl·t1 ·t2 )
apply (rule isodeflI )
apply (simp add: cast-sprod-defl cast-isodefl)
apply (simp add: emb-sprod-def prj-sprod-def )
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apply (simp add: sprod-map-map isodefl-strict)
done

lemma isodefl-prod:
isodefl d1 t1 =⇒ isodefl d2 t2 =⇒

isodefl (prod-map·d1 ·d2 ) (prod-defl·t1 ·t2 )
apply (rule isodeflI )
apply (simp add: cast-prod-defl cast-isodefl)
apply (simp add: emb-prod-def prj-prod-def )
apply (simp add: prod-map-map cfcomp1 )
done

lemma isodefl-u:
isodefl d t =⇒ isodefl (u-map·d) (u-defl·t)

apply (rule isodeflI )
apply (simp add: cast-u-defl cast-isodefl)
apply (simp add: emb-u-def prj-u-def liftemb-eq liftprj-eq u-map-map)
done

lemma isodefl-u-liftdefl:
isodefl ′ d t =⇒ isodefl (u-map·d) (u-liftdefl·t)

apply (rule isodeflI )
apply (simp add: cast-u-liftdefl isodefl ′-def )
apply (simp add: emb-u-def prj-u-def liftemb-eq liftprj-eq)
done

lemma encode-prod-u-map:
encode-prod-u·(u-map·(prod-map·f ·g)·(decode-prod-u·x))
= sprod-map·(u-map·f )·(u-map·g)·x

unfolding encode-prod-u-def decode-prod-u-def
apply (case-tac x, simp, rename-tac a b)
apply (case-tac a, simp, case-tac b, simp, simp)
done

lemma isodefl-prod-u:
assumes isodefl ′ d1 t1 and isodefl ′ d2 t2
shows isodefl ′ (prod-map·d1 ·d2 ) (prod-liftdefl·t1 ·t2 )

using assms unfolding isodefl ′-def
unfolding liftemb-prod-def liftprj-prod-def
by (simp add: cast-prod-liftdefl cfcomp1 encode-prod-u-map sprod-map-map)

lemma encode-cfun-map:
encode-cfun·(cfun-map·f ·g·(decode-cfun·x))
= sfun-map·(u-map·f )·g·x

unfolding encode-cfun-def decode-cfun-def
apply (simp add: sfun-eq-iff cfun-map-def sfun-map-def )
apply (rule cfun-eqI , rename-tac y, case-tac y, simp-all)
done
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lemma isodefl-cfun:
assumes isodefl (u-map·d1 ) t1 and isodefl d2 t2
shows isodefl (cfun-map·d1 ·d2 ) (sfun-defl·t1 ·t2 )

using isodefl-sfun [OF assms] unfolding isodefl-def
by (simp add: emb-cfun-def prj-cfun-def cfcomp1 encode-cfun-map)

27.10 Setting up the domain package
named-theorems domain-defl-simps theorems like DEFL( ′a t) = t-defl$DEFL( ′a)

and domain-isodefl theorems like isodefl d t ==> isodefl (foo-map$d) (foo-defl$t)

ML-file ‹Tools/Domain/domain-isomorphism.ML›
ML-file ‹Tools/Domain/domain-axioms.ML›
ML-file ‹Tools/Domain/domain.ML›

lemmas [domain-defl-simps] =
DEFL-cfun DEFL-sfun DEFL-ssum DEFL-sprod DEFL-prod DEFL-u
liftdefl-eq LIFTDEFL-prod u-liftdefl-liftdefl-of

lemmas [domain-map-ID] =
cfun-map-ID sfun-map-ID ssum-map-ID sprod-map-ID prod-map-ID u-map-ID

lemmas [domain-isodefl] =
isodefl-u isodefl-sfun isodefl-ssum isodefl-sprod
isodefl-cfun isodefl-prod isodefl-prod-u isodefl ′-liftdefl-of
isodefl-u-liftdefl

lemmas [domain-deflation] =
deflation-cfun-map deflation-sfun-map deflation-ssum-map
deflation-sprod-map deflation-prod-map deflation-u-map

setup ‹
fold Domain-Take-Proofs.add-rec-type
[(type-name ‹cfun›, [true, true]),
(type-name ‹sfun›, [true, true]),
(type-name ‹ssum›, [true, true]),
(type-name ‹sprod›, [true, true]),
(type-name ‹prod›, [true, true]),
(type-name ‹u›, [true])]

›

end

28 A compact basis for powerdomains
theory Compact-Basis
imports Universal
begin
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28.1 A compact basis for powerdomains
definition pd-basis = {S :: ′a::bifinite compact-basis set. finite S ∧ S 6= {}}

typedef ′a::bifinite pd-basis = pd-basis :: ′a compact-basis set set
proof

show {a} ∈ ?pd-basis for a
by (simp add: pd-basis-def )

qed

lemma finite-Rep-pd-basis [simp]: finite (Rep-pd-basis u)
using Rep-pd-basis [of u, unfolded pd-basis-def ] by simp

lemma Rep-pd-basis-nonempty [simp]: Rep-pd-basis u 6= {}
using Rep-pd-basis [of u, unfolded pd-basis-def ] by simp

The powerdomain basis type is countable.
lemma pd-basis-countable: ∃ f :: ′a::bifinite pd-basis ⇒ nat. inj f (is Ex ?P)
proof −

obtain g :: ′a compact-basis ⇒ nat where inj g
using compact-basis.countable ..

hence image-g-eq: g ‘ A = g ‘ B ←→ A = B for A B
by (rule inj-image-eq-iff )

have inj (λt. set-encode (g ‘ Rep-pd-basis t))
by (simp add: inj-on-def set-encode-eq image-g-eq Rep-pd-basis-inject)

thus ?thesis by (rule exI [of ?P])
qed

28.2 Unit and plus constructors
definition

PDUnit :: ′a::bifinite compact-basis ⇒ ′a pd-basis where
PDUnit = (λx. Abs-pd-basis {x})

definition
PDPlus :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ ′a pd-basis where
PDPlus t u = Abs-pd-basis (Rep-pd-basis t ∪ Rep-pd-basis u)

lemma Rep-PDUnit:
Rep-pd-basis (PDUnit x) = {x}

unfolding PDUnit-def by (rule Abs-pd-basis-inverse) (simp add: pd-basis-def )

lemma Rep-PDPlus:
Rep-pd-basis (PDPlus u v) = Rep-pd-basis u ∪ Rep-pd-basis v

unfolding PDPlus-def by (rule Abs-pd-basis-inverse) (simp add: pd-basis-def )

lemma PDUnit-inject [simp]: (PDUnit a = PDUnit b) = (a = b)
unfolding Rep-pd-basis-inject [symmetric] Rep-PDUnit by simp

lemma PDPlus-assoc: PDPlus (PDPlus t u) v = PDPlus t (PDPlus u v)
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unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-assoc)

lemma PDPlus-commute: PDPlus t u = PDPlus u t
unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-commute)

lemma PDPlus-absorb: PDPlus t t = t
unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-absorb)

lemma pd-basis-induct1 [case-names PDUnit PDPlus]:
assumes PDUnit:

∧
a. P (PDUnit a)

assumes PDPlus:
∧

a t. P t =⇒ P (PDPlus (PDUnit a) t)
shows P x

proof (induct x)
case (Abs-pd-basis y)
then have finite y and y 6= {} by (simp-all add: pd-basis-def )
then show ?case
proof (induct rule: finite-ne-induct)

case (singleton x)
show ?case by (rule PDUnit [unfolded PDUnit-def ])

next
case (insert x F)

from insert(4 ) have P (PDPlus (PDUnit x) (Abs-pd-basis F)) by (rule PDPlus)
with insert(1 ,2 ) show ?case
by (simp add: PDUnit-def PDPlus-def Abs-pd-basis-inverse [unfolded pd-basis-def ])

qed
qed

lemma pd-basis-induct [case-names PDUnit PDPlus]:
assumes PDUnit:

∧
a. P (PDUnit a)

assumes PDPlus:
∧

t u. [[P t; P u]] =⇒ P (PDPlus t u)
shows P x
by (induct x rule: pd-basis-induct1 ) (fact PDUnit, fact PDPlus [OF PDUnit])

28.3 Fold operator
definition

fold-pd ::
( ′a::bifinite compact-basis ⇒ ′b::type) ⇒ ( ′b ⇒ ′b ⇒ ′b) ⇒ ′a pd-basis ⇒ ′b

where fold-pd g f t = semilattice-set.F f (g ‘ Rep-pd-basis t)

lemma fold-pd-PDUnit:
assumes semilattice f
shows fold-pd g f (PDUnit x) = g x

proof −
from assms interpret semilattice-set f by (rule semilattice-set.intro)
show ?thesis by (simp add: fold-pd-def Rep-PDUnit)

qed

lemma fold-pd-PDPlus:



THEORY “UpperPD” 171

assumes semilattice f
shows fold-pd g f (PDPlus t u) = f (fold-pd g f t) (fold-pd g f u)

proof −
from assms interpret semilattice-set f by (rule semilattice-set.intro)
show ?thesis by (simp add: image-Un fold-pd-def Rep-PDPlus union)

qed

end

29 Upper powerdomain
theory UpperPD
imports Compact-Basis
begin

29.1 Basis preorder
definition

upper-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤]› 50 ) where
upper-le = (λu v. ∀ y∈Rep-pd-basis v. ∃ x∈Rep-pd-basis u. x v y)

lemma upper-le-refl [simp]: t ≤] t
unfolding upper-le-def by fast

lemma upper-le-trans: [[t ≤] u; u ≤] v]] =⇒ t ≤] v
unfolding upper-le-def
apply (rule ballI )
apply (drule (1 ) bspec, erule bexE)
apply (drule (1 ) bspec, erule bexE)
apply (erule rev-bexI )
apply (erule (1 ) below-trans)
done

interpretation upper-le: preorder upper-le
by (rule preorder .intro, rule upper-le-refl, rule upper-le-trans)

lemma upper-le-minimal [simp]: PDUnit compact-bot ≤] t
unfolding upper-le-def Rep-PDUnit by simp

lemma PDUnit-upper-mono: x v y =⇒ PDUnit x ≤] PDUnit y
unfolding upper-le-def Rep-PDUnit by simp

lemma PDPlus-upper-mono: [[s ≤] t; u ≤] v]] =⇒ PDPlus s u ≤] PDPlus t v
unfolding upper-le-def Rep-PDPlus by fast

lemma PDPlus-upper-le: PDPlus t u ≤] t
unfolding upper-le-def Rep-PDPlus by fast

lemma upper-le-PDUnit-PDUnit-iff [simp]:
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(PDUnit a ≤] PDUnit b) = (a v b)
unfolding upper-le-def Rep-PDUnit by fast

lemma upper-le-PDPlus-PDUnit-iff :
(PDPlus t u ≤] PDUnit a) = (t ≤] PDUnit a ∨ u ≤] PDUnit a)

unfolding upper-le-def Rep-PDPlus Rep-PDUnit by fast

lemma upper-le-PDPlus-iff : (t ≤] PDPlus u v) = (t ≤] u ∧ t ≤] v)
unfolding upper-le-def Rep-PDPlus by fast

lemma upper-le-induct [induct set: upper-le]:
assumes le: t ≤] u
assumes 1 :

∧
a b. a v b =⇒ P (PDUnit a) (PDUnit b)

assumes 2 :
∧

t u a. P t (PDUnit a) =⇒ P (PDPlus t u) (PDUnit a)
assumes 3 :

∧
t u v. [[P t u; P t v]] =⇒ P t (PDPlus u v)

shows P t u
using le

proof (induct u arbitrary: t rule: pd-basis-induct)
case (PDUnit a)
then show ?case
proof (induct t rule: pd-basis-induct)

case PDUnit
then show ?case by (simp add: 1 )

next
case (PDPlus t u)
from PDPlus(3 ) consider (t) t ≤] PDUnit a | (u) u ≤] PDUnit a

by (auto simp: upper-le-PDPlus-PDUnit-iff )
then show ?case
proof cases

case t
then have P t (PDUnit a) by (rule PDPlus(1 ))
then show ?thesis by (rule 2 )

next
case u
then have P u (PDUnit a) by (rule PDPlus(2 ))
then have P (PDPlus u t) (PDUnit a) by (rule 2 )
then show ?thesis by (simp only: PDPlus-commute)

qed
qed

next
case (PDPlus t t ′ u)
then show ?case by (simp add: upper-le-PDPlus-iff 3 )

qed

29.2 Type definition
typedef ′a::bifinite upper-pd (‹(‹notation=‹postfix upper-pd›› ′(- ′)])›) =
{S :: ′a pd-basis set. upper-le.ideal S}

by (rule upper-le.ex-ideal)
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instantiation upper-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-upper-pd x ⊆ Rep-upper-pd y

instance ..
end

instance upper-pd :: (bifinite) po
using type-definition-upper-pd below-upper-pd-def
by (rule upper-le.typedef-ideal-po)

instance upper-pd :: (bifinite) cpo
using type-definition-upper-pd below-upper-pd-def
by (rule upper-le.typedef-ideal-cpo)

definition
upper-principal :: ′a::bifinite pd-basis ⇒ ′a upper-pd where
upper-principal t = Abs-upper-pd {u. u ≤] t}

interpretation upper-pd:
ideal-completion upper-le upper-principal Rep-upper-pd

using type-definition-upper-pd below-upper-pd-def
using upper-principal-def pd-basis-countable
by (rule upper-le.typedef-ideal-completion)

Upper powerdomain is pointed
lemma upper-pd-minimal: upper-principal (PDUnit compact-bot) v ys
by (induct ys rule: upper-pd.principal-induct, simp, simp)

instance upper-pd :: (bifinite) pcpo
by intro-classes (fast intro: upper-pd-minimal)

lemma inst-upper-pd-pcpo: ⊥ = upper-principal (PDUnit compact-bot)
by (rule upper-pd-minimal [THEN bottomI , symmetric])

29.3 Monadic unit and plus
definition

upper-unit :: ′a::bifinite → ′a upper-pd where
upper-unit = compact-basis.extension (λa. upper-principal (PDUnit a))

definition
upper-plus :: ′a::bifinite upper-pd → ′a upper-pd → ′a upper-pd where
upper-plus = upper-pd.extension (λt. upper-pd.extension (λu.

upper-principal (PDPlus t u)))
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abbreviation
upper-add :: ′a::bifinite upper-pd ⇒ ′a upper-pd ⇒ ′a upper-pd
(infixl ‹∪]› 65 ) where

xs ∪] ys == upper-plus·xs·ys

syntax
-upper-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix upper-pd enumera-

tion››{-}])›)
translations
{x,xs}] == {x}] ∪] {xs}]
{x}] == CONST upper-unit·x

lemma upper-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}] = upper-principal (PDUnit a)

unfolding upper-unit-def
by (simp add: compact-basis.extension-principal PDUnit-upper-mono)

lemma upper-plus-principal [simp]:
upper-principal t ∪] upper-principal u = upper-principal (PDPlus t u)

unfolding upper-plus-def
by (simp add: upper-pd.extension-principal

upper-pd.extension-mono PDPlus-upper-mono)

interpretation upper-add: semilattice upper-add proof
fix xs ys zs :: ′a upper-pd
show (xs ∪] ys) ∪] zs = xs ∪] (ys ∪] zs)

apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (induct zs rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done

show xs ∪] ys = ys ∪] xs
apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done

show xs ∪] xs = xs
apply (induct xs rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done

qed

lemmas upper-plus-assoc = upper-add.assoc
lemmas upper-plus-commute = upper-add.commute
lemmas upper-plus-absorb = upper-add.idem
lemmas upper-plus-left-commute = upper-add.left-commute
lemmas upper-plus-left-absorb = upper-add.left-idem

Useful for simp add: upper-plus-ac
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lemmas upper-plus-ac =
upper-plus-assoc upper-plus-commute upper-plus-left-commute

Useful for simp only: upper-plus-aci
lemmas upper-plus-aci =

upper-plus-ac upper-plus-absorb upper-plus-left-absorb

lemma upper-plus-below1 : xs ∪] ys v xs
apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-upper-le)
done

lemma upper-plus-below2 : xs ∪] ys v ys
by (subst upper-plus-commute, rule upper-plus-below1 )

lemma upper-plus-greatest: [[xs v ys; xs v zs]] =⇒ xs v ys ∪] zs
apply (subst upper-plus-absorb [of xs, symmetric])
apply (erule (1 ) monofun-cfun [OF monofun-cfun-arg])
done

lemma upper-below-plus-iff [simp]:
xs v ys ∪] zs ←→ xs v ys ∧ xs v zs

apply safe
apply (erule below-trans [OF - upper-plus-below1 ])
apply (erule below-trans [OF - upper-plus-below2 ])
apply (erule (1 ) upper-plus-greatest)
done

lemma upper-plus-below-unit-iff [simp]:
xs ∪] ys v {z}] ←→ xs v {z}] ∨ ys v {z}]

apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (induct z rule: compact-basis.principal-induct, simp)
apply (simp add: upper-le-PDPlus-PDUnit-iff )
done

lemma upper-unit-below-iff [simp]: {x}] v {y}] ←→ x v y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp
done

lemmas upper-pd-below-simps =
upper-unit-below-iff
upper-below-plus-iff
upper-plus-below-unit-iff

lemma upper-unit-eq-iff [simp]: {x}] = {y}] ←→ x = y
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unfolding po-eq-conv by simp

lemma upper-unit-strict [simp]: {⊥}] = ⊥
using upper-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-upper-pd-pcpo)

lemma upper-plus-strict1 [simp]: ⊥ ∪] ys = ⊥
by (rule bottomI , rule upper-plus-below1 )

lemma upper-plus-strict2 [simp]: xs ∪] ⊥ = ⊥
by (rule bottomI , rule upper-plus-below2 )

lemma upper-unit-bottom-iff [simp]: {x}] = ⊥ ←→ x = ⊥
unfolding upper-unit-strict [symmetric] by (rule upper-unit-eq-iff )

lemma upper-plus-bottom-iff [simp]:
xs ∪] ys = ⊥ ←→ xs = ⊥ ∨ ys = ⊥

apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: inst-upper-pd-pcpo upper-pd.principal-eq-iff

upper-le-PDPlus-PDUnit-iff )
done

lemma compact-upper-unit: compact x =⇒ compact {x}]
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-upper-unit-iff [simp]: compact {x}] ←→ compact x
apply (safe elim!: compact-upper-unit)
apply (simp only: compact-def upper-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2 ])
done

lemma compact-upper-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪] ys)

by (auto dest!: upper-pd.compact-imp-principal)

29.4 Induction rules
lemma upper-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}]

assumes insert:
∧

x ys. [[P {x}]; P ys]] =⇒ P ({x}] ∪] ys)
shows P (xs:: ′a::bifinite upper-pd)

proof (induct xs rule: upper-pd.principal-induct)
have ∗: P {Rep-compact-basis a}] for a

by (rule unit)
show P (upper-principal a) for a
proof (induct a rule: pd-basis-induct1 )

case (PDUnit a)
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with ∗ show ?case
by (simp only: upper-unit-Rep-compact-basis [symmetric])

next
case (PDPlus a t)
with ∗ have P ({Rep-compact-basis a}] ∪] upper-principal t)

by (rule insert)
then show ?case

by (simp only: upper-unit-Rep-compact-basis [symmetric]
upper-plus-principal [symmetric])

qed
qed (rule P)

lemma upper-pd-induct [case-names adm upper-unit upper-plus, induct type: up-
per-pd]:

assumes P: adm P
assumes unit:

∧
x. P {x}]

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪] ys)
shows P (xs:: ′a::bifinite upper-pd)

proof (induct xs rule: upper-pd.principal-induct)
show P (upper-principal a) for a
proof (induct a rule: pd-basis-induct)

case PDUnit
then show ?case

by (simp only: upper-unit-Rep-compact-basis [symmetric] unit)
next

case PDPlus
then show ?case

by (simp only: upper-plus-principal [symmetric] plus)
qed

qed (rule P)

29.5 Monadic bind
definition

upper-bind-basis ::
′a::bifinite pd-basis ⇒ ( ′a → ′b upper-pd) → ′b::bifinite upper-pd where
upper-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪] y·f )

lemma ACI-upper-bind:
semilattice (λx y. Λ f . x·f ∪] y·f )

apply unfold-locales
apply (simp add: upper-plus-assoc)
apply (simp add: upper-plus-commute)
apply (simp add: eta-cfun)
done

lemma upper-bind-basis-simps [simp]:
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upper-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

upper-bind-basis (PDPlus t u) =
(Λ f . upper-bind-basis t·f ∪] upper-bind-basis u·f )

unfolding upper-bind-basis-def
apply −
apply (rule fold-pd-PDUnit [OF ACI-upper-bind])
apply (rule fold-pd-PDPlus [OF ACI-upper-bind])
done

lemma upper-bind-basis-mono:
t ≤] u =⇒ upper-bind-basis t v upper-bind-basis u

unfolding cfun-below-iff
apply (erule upper-le-induct, safe)
apply (simp add: monofun-cfun)
apply (simp add: below-trans [OF upper-plus-below1 ])
apply simp
done

definition
upper-bind :: ′a::bifinite upper-pd → ( ′a → ′b upper-pd) → ′b::bifinite upper-pd

where
upper-bind = upper-pd.extension upper-bind-basis

syntax
-upper-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder upper-bind››

⋃
]-∈-./ -)› [0 , 0 , 10 ] 10 )

translations⋃
]x∈xs. e == CONST upper-bind·xs·(Λ x. e)

lemma upper-bind-principal [simp]:
upper-bind·(upper-principal t) = upper-bind-basis t

unfolding upper-bind-def
apply (rule upper-pd.extension-principal)
apply (erule upper-bind-basis-mono)
done

lemma upper-bind-unit [simp]:
upper-bind·{x}]·f = f ·x

by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma upper-bind-plus [simp]:
upper-bind·(xs ∪] ys)·f = upper-bind·xs·f ∪] upper-bind·ys·f

by (induct xs rule: upper-pd.principal-induct, simp,
induct ys rule: upper-pd.principal-induct, simp, simp)

lemma upper-bind-strict [simp]: upper-bind·⊥·f = f ·⊥
unfolding upper-unit-strict [symmetric] by (rule upper-bind-unit)
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lemma upper-bind-bind:
upper-bind·(upper-bind·xs·f )·g = upper-bind·xs·(Λ x. upper-bind·(f ·x)·g)

by (induct xs, simp-all)

29.6 Map
definition

upper-map :: ( ′a::bifinite → ′b::bifinite) → ′a upper-pd → ′b upper-pd where
upper-map = (Λ f xs. upper-bind·xs·(Λ x. {f ·x}]))

lemma upper-map-unit [simp]:
upper-map·f ·{x}] = {f ·x}]

unfolding upper-map-def by simp

lemma upper-map-plus [simp]:
upper-map·f ·(xs ∪] ys) = upper-map·f ·xs ∪] upper-map·f ·ys

unfolding upper-map-def by simp

lemma upper-map-bottom [simp]: upper-map·f ·⊥ = {f ·⊥}]
unfolding upper-map-def by simp

lemma upper-map-ident: upper-map·(Λ x. x)·xs = xs
by (induct xs rule: upper-pd-induct, simp-all)

lemma upper-map-ID: upper-map·ID = ID
by (simp add: cfun-eq-iff ID-def upper-map-ident)

lemma upper-map-map:
upper-map·f ·(upper-map·g·xs) = upper-map·(Λ x. f ·(g·x))·xs

by (induct xs rule: upper-pd-induct, simp-all)

lemma upper-bind-map:
upper-bind·(upper-map·f ·xs)·g = upper-bind·xs·(Λ x. g·(f ·x))

by (simp add: upper-map-def upper-bind-bind)

lemma upper-map-bind:
upper-map·f ·(upper-bind·xs·g) = upper-bind·xs·(Λ x. upper-map·f ·(g·x))

by (simp add: upper-map-def upper-bind-bind)

lemma ep-pair-upper-map: ep-pair e p =⇒ ep-pair (upper-map·e) (upper-map·p)
apply standard
apply (induct-tac x rule: upper-pd-induct, simp-all add: ep-pair .e-inverse)
apply (induct-tac y rule: upper-pd-induct)
apply (simp-all add: ep-pair .e-p-below monofun-cfun del: upper-below-plus-iff )
done

lemma deflation-upper-map: deflation d =⇒ deflation (upper-map·d)
apply standard
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apply (induct-tac x rule: upper-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: upper-pd-induct)
apply (simp-all add: deflation.below monofun-cfun del: upper-below-plus-iff )
done

lemma finite-deflation-upper-map:
assumes finite-deflation d shows finite-deflation (upper-map·d)

proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (upper-map·d)

by (rule deflation-upper-map)
have finite (range (λx. d·x)) by (rule d.finite-range)
hence finite (Rep-compact-basis −‘ range (λx. d·x))

by (rule finite-vimageI , simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis −‘ range (λx. d·x))) by simp
hence finite (Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘ range (λx. d·x))))

by (rule finite-vimageI , simp add: inj-on-def Rep-pd-basis-inject)
hence ∗: finite (upper-principal ‘ Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘

range (λx. d·x)))) by simp
hence finite (range (λxs. upper-map·d·xs))

apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac xs rule: upper-pd.principal-induct)
apply (simp add: adm-mem-finite ∗)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: upper-unit-Rep-compact-basis [symmetric] upper-map-unit)
apply simp
apply (subgoal-tac ∃ b. d·(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imageI )
apply (rule vimageI2 )
apply (simp add: Rep-PDUnit)
apply (rule range-eqI )
apply (erule sym)
apply (rule exI )
apply (rule Abs-compact-basis-inverse [symmetric])
apply (simp add: d.compact)
apply (simp only: upper-plus-principal [symmetric] upper-map-plus)
apply clarsimp
apply (rule imageI )
apply (rule vimageI2 )
apply (simp add: Rep-PDPlus)
done

thus finite {xs. upper-map·d·xs = xs}
by (rule finite-range-imp-finite-fixes)

qed
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29.7 Upper powerdomain is bifinite
lemma approx-chain-upper-map:

assumes approx-chain a
shows approx-chain (λi. upper-map·(a i))
using assms unfolding approx-chain-def
by (simp add: lub-APP upper-map-ID finite-deflation-upper-map)

instance upper-pd :: (bifinite) bifinite
proof

show ∃ (a::nat ⇒ ′a upper-pd → ′a upper-pd). approx-chain a
using bifinite [where ′a= ′a]
by (fast intro!: approx-chain-upper-map)

qed

29.8 Join
definition

upper-join :: ′a::bifinite upper-pd upper-pd → ′a upper-pd where
upper-join = (Λ xss. upper-bind·xss·(Λ xs. xs))

lemma upper-join-unit [simp]:
upper-join·{xs}] = xs

unfolding upper-join-def by simp

lemma upper-join-plus [simp]:
upper-join·(xss ∪] yss) = upper-join·xss ∪] upper-join·yss

unfolding upper-join-def by simp

lemma upper-join-bottom [simp]: upper-join·⊥ = ⊥
unfolding upper-join-def by simp

lemma upper-join-map-unit:
upper-join·(upper-map·upper-unit·xs) = xs

by (induct xs rule: upper-pd-induct, simp-all)

lemma upper-join-map-join:
upper-join·(upper-map·upper-join·xsss) = upper-join·(upper-join·xsss)

by (induct xsss rule: upper-pd-induct, simp-all)

lemma upper-join-map-map:
upper-join·(upper-map·(upper-map·f )·xss) =
upper-map·f ·(upper-join·xss)

by (induct xss rule: upper-pd-induct, simp-all)

end
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30 Lower powerdomain
theory LowerPD
imports Compact-Basis
begin

30.1 Basis preorder
definition

lower-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤[› 50 ) where
lower-le = (λu v. ∀ x∈Rep-pd-basis u. ∃ y∈Rep-pd-basis v. x v y)

lemma lower-le-refl [simp]: t ≤[ t
unfolding lower-le-def by fast

lemma lower-le-trans: [[t ≤[ u; u ≤[ v]] =⇒ t ≤[ v
unfolding lower-le-def
apply (rule ballI )
apply (drule (1 ) bspec, erule bexE)
apply (drule (1 ) bspec, erule bexE)
apply (erule rev-bexI )
apply (erule (1 ) below-trans)
done

interpretation lower-le: preorder lower-le
by (rule preorder .intro, rule lower-le-refl, rule lower-le-trans)

lemma lower-le-minimal [simp]: PDUnit compact-bot ≤[ t
unfolding lower-le-def Rep-PDUnit
by (simp, rule Rep-pd-basis-nonempty [folded ex-in-conv])

lemma PDUnit-lower-mono: x v y =⇒ PDUnit x ≤[ PDUnit y
unfolding lower-le-def Rep-PDUnit by fast

lemma PDPlus-lower-mono: [[s ≤[ t; u ≤[ v]] =⇒ PDPlus s u ≤[ PDPlus t v
unfolding lower-le-def Rep-PDPlus by fast

lemma PDPlus-lower-le: t ≤[ PDPlus t u
unfolding lower-le-def Rep-PDPlus by fast

lemma lower-le-PDUnit-PDUnit-iff [simp]:
(PDUnit a ≤[ PDUnit b) = (a v b)

unfolding lower-le-def Rep-PDUnit by fast

lemma lower-le-PDUnit-PDPlus-iff :
(PDUnit a ≤[ PDPlus t u) = (PDUnit a ≤[ t ∨ PDUnit a ≤[ u)

unfolding lower-le-def Rep-PDPlus Rep-PDUnit by fast

lemma lower-le-PDPlus-iff : (PDPlus t u ≤[ v) = (t ≤[ v ∧ u ≤[ v)
unfolding lower-le-def Rep-PDPlus by fast
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lemma lower-le-induct [induct set: lower-le]:
assumes le: t ≤[ u
assumes 1 :

∧
a b. a v b =⇒ P (PDUnit a) (PDUnit b)

assumes 2 :
∧

t u a. P (PDUnit a) t =⇒ P (PDUnit a) (PDPlus t u)
assumes 3 :

∧
t u v. [[P t v; P u v]] =⇒ P (PDPlus t u) v

shows P t u
using le

proof (induct t arbitrary: u rule: pd-basis-induct)
case (PDUnit a)
then show ?case
proof (induct u rule: pd-basis-induct)

case PDUnit
then show ?case by (simp add: 1 )

next
case (PDPlus t u)
from PDPlus(3 ) consider (t) PDUnit a ≤[ t | (u) PDUnit a ≤[ u

by (auto simp: lower-le-PDUnit-PDPlus-iff )
then show ?case
proof cases

case t
then have P (PDUnit a) t by (rule PDPlus(1 ))
then show ?thesis by (rule 2 )

next
case u
then have P (PDUnit a) u by (rule PDPlus(2 ))
then have P (PDUnit a) (PDPlus u t) by (rule 2 )
then show ?thesis by (simp only: PDPlus-commute)

qed
qed

next
case (PDPlus t t ′)
then show ?case by (simp add: lower-le-PDPlus-iff 3 )

qed

30.2 Type definition
typedef ′a::bifinite lower-pd (‹(‹notation=‹postfix lower-pd›› ′(- ′)[)›) =
{S :: ′a pd-basis set. lower-le.ideal S}

by (rule lower-le.ex-ideal)

instantiation lower-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-lower-pd x ⊆ Rep-lower-pd y

instance ..
end
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instance lower-pd :: (bifinite) po
using type-definition-lower-pd below-lower-pd-def
by (rule lower-le.typedef-ideal-po)

instance lower-pd :: (bifinite) cpo
using type-definition-lower-pd below-lower-pd-def
by (rule lower-le.typedef-ideal-cpo)

definition
lower-principal :: ′a::bifinite pd-basis ⇒ ′a lower-pd where
lower-principal t = Abs-lower-pd {u. u ≤[ t}

interpretation lower-pd:
ideal-completion lower-le lower-principal Rep-lower-pd

using type-definition-lower-pd below-lower-pd-def
using lower-principal-def pd-basis-countable
by (rule lower-le.typedef-ideal-completion)

Lower powerdomain is pointed
lemma lower-pd-minimal: lower-principal (PDUnit compact-bot) v ys
by (induct ys rule: lower-pd.principal-induct, simp, simp)

instance lower-pd :: (bifinite) pcpo
by intro-classes (fast intro: lower-pd-minimal)

lemma inst-lower-pd-pcpo: ⊥ = lower-principal (PDUnit compact-bot)
by (rule lower-pd-minimal [THEN bottomI , symmetric])

30.3 Monadic unit and plus
definition

lower-unit :: ′a::bifinite → ′a lower-pd where
lower-unit = compact-basis.extension (λa. lower-principal (PDUnit a))

definition
lower-plus :: ′a::bifinite lower-pd → ′a lower-pd → ′a lower-pd where
lower-plus = lower-pd.extension (λt. lower-pd.extension (λu.

lower-principal (PDPlus t u)))

abbreviation
lower-add :: ′a::bifinite lower-pd ⇒ ′a lower-pd ⇒ ′a lower-pd
(infixl ‹∪[› 65 ) where

xs ∪[ ys == lower-plus·xs·ys

syntax
-lower-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix lower-pd enumera-

tion››{-}[)›)
translations
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{x,xs}[ == {x}[ ∪[ {xs}[
{x}[ == CONST lower-unit·x

lemma lower-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}[ = lower-principal (PDUnit a)

unfolding lower-unit-def
by (simp add: compact-basis.extension-principal PDUnit-lower-mono)

lemma lower-plus-principal [simp]:
lower-principal t ∪[ lower-principal u = lower-principal (PDPlus t u)

unfolding lower-plus-def
by (simp add: lower-pd.extension-principal

lower-pd.extension-mono PDPlus-lower-mono)

interpretation lower-add: semilattice lower-add proof
fix xs ys zs :: ′a::bifinite lower-pd
show (xs ∪[ ys) ∪[ zs = xs ∪[ (ys ∪[ zs)

apply (induct xs rule: lower-pd.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done

show xs ∪[ ys = ys ∪[ xs
apply (induct xs rule: lower-pd.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done

show xs ∪[ xs = xs
apply (induct xs rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done

qed

lemmas lower-plus-assoc = lower-add.assoc
lemmas lower-plus-commute = lower-add.commute
lemmas lower-plus-absorb = lower-add.idem
lemmas lower-plus-left-commute = lower-add.left-commute
lemmas lower-plus-left-absorb = lower-add.left-idem

Useful for simp add: lower-plus-ac
lemmas lower-plus-ac =

lower-plus-assoc lower-plus-commute lower-plus-left-commute

Useful for simp only: lower-plus-aci
lemmas lower-plus-aci =

lower-plus-ac lower-plus-absorb lower-plus-left-absorb

lemma lower-plus-below1 : xs v xs ∪[ ys
apply (induct xs rule: lower-pd.principal-induct, simp)
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apply (induct ys rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-lower-le)
done

lemma lower-plus-below2 : ys v xs ∪[ ys
by (subst lower-plus-commute, rule lower-plus-below1 )

lemma lower-plus-least: [[xs v zs; ys v zs]] =⇒ xs ∪[ ys v zs
apply (subst lower-plus-absorb [of zs, symmetric])
apply (erule (1 ) monofun-cfun [OF monofun-cfun-arg])
done

lemma lower-plus-below-iff [simp]:
xs ∪[ ys v zs ←→ xs v zs ∧ ys v zs

apply safe
apply (erule below-trans [OF lower-plus-below1 ])
apply (erule below-trans [OF lower-plus-below2 ])
apply (erule (1 ) lower-plus-least)
done

lemma lower-unit-below-plus-iff [simp]:
{x}[ v ys ∪[ zs ←→ {x}[ v ys ∨ {x}[ v zs

apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (simp add: lower-le-PDUnit-PDPlus-iff )
done

lemma lower-unit-below-iff [simp]: {x}[ v {y}[ ←→ x v y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp
done

lemmas lower-pd-below-simps =
lower-unit-below-iff
lower-plus-below-iff
lower-unit-below-plus-iff

lemma lower-unit-eq-iff [simp]: {x}[ = {y}[ ←→ x = y
by (simp add: po-eq-conv)

lemma lower-unit-strict [simp]: {⊥}[ = ⊥
using lower-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-lower-pd-pcpo)

lemma lower-unit-bottom-iff [simp]: {x}[ = ⊥ ←→ x = ⊥
unfolding lower-unit-strict [symmetric] by (rule lower-unit-eq-iff )
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lemma lower-plus-bottom-iff [simp]:
xs ∪[ ys = ⊥ ←→ xs = ⊥ ∧ ys = ⊥

apply safe
apply (rule bottomI , erule subst, rule lower-plus-below1 )
apply (rule bottomI , erule subst, rule lower-plus-below2 )
apply (rule lower-plus-absorb)
done

lemma lower-plus-strict1 [simp]: ⊥ ∪[ ys = ys
apply (rule below-antisym [OF - lower-plus-below2 ])
apply (simp add: lower-plus-least)
done

lemma lower-plus-strict2 [simp]: xs ∪[ ⊥ = xs
apply (rule below-antisym [OF - lower-plus-below1 ])
apply (simp add: lower-plus-least)
done

lemma compact-lower-unit: compact x =⇒ compact {x}[
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-lower-unit-iff [simp]: compact {x}[ ←→ compact x
apply (safe elim!: compact-lower-unit)
apply (simp only: compact-def lower-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2 ])
done

lemma compact-lower-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪[ ys)

by (auto dest!: lower-pd.compact-imp-principal)

30.4 Induction rules
lemma lower-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}[

assumes insert:
∧

x ys. [[P {x}[; P ys]] =⇒ P ({x}[ ∪[ ys)
shows P (xs:: ′a::bifinite lower-pd)

proof (induct xs rule: lower-pd.principal-induct)
have ∗: P {Rep-compact-basis a}[ for a

by (rule unit)
show P (lower-principal a) for a
proof (induct a rule: pd-basis-induct1 )

case PDUnit
from ∗ show ?case

by (simp only: lower-unit-Rep-compact-basis [symmetric])
next

case (PDPlus a t)
with ∗ have P ({Rep-compact-basis a}[ ∪[ lower-principal t)
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by (rule insert)
then show ?case

by (simp only: lower-unit-Rep-compact-basis [symmetric] lower-plus-principal
[symmetric])

qed
qed (rule P)

lemma lower-pd-induct [case-names adm lower-unit lower-plus, induct type: lower-pd]:
assumes P: adm P
assumes unit:

∧
x. P {x}[

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪[ ys)
shows P (xs:: ′a::bifinite lower-pd)

proof (induct xs rule: lower-pd.principal-induct)
show P (lower-principal a) for a
proof (induct a rule: pd-basis-induct)

case PDUnit
then show ?case

by (simp only: lower-unit-Rep-compact-basis [symmetric] unit)
next

case PDPlus
then show ?case

by (simp only: lower-plus-principal [symmetric] plus)
qed

qed (rule P)

30.5 Monadic bind
definition

lower-bind-basis ::
′a::bifinite pd-basis ⇒ ( ′a → ′b lower-pd) → ′b::bifinite lower-pd where
lower-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪[ y·f )

lemma ACI-lower-bind:
semilattice (λx y. Λ f . x·f ∪[ y·f )

apply unfold-locales
apply (simp add: lower-plus-assoc)
apply (simp add: lower-plus-commute)
apply (simp add: eta-cfun)
done

lemma lower-bind-basis-simps [simp]:
lower-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

lower-bind-basis (PDPlus t u) =
(Λ f . lower-bind-basis t·f ∪[ lower-bind-basis u·f )

unfolding lower-bind-basis-def
apply −



THEORY “LowerPD” 189

apply (rule fold-pd-PDUnit [OF ACI-lower-bind])
apply (rule fold-pd-PDPlus [OF ACI-lower-bind])
done

lemma lower-bind-basis-mono:
t ≤[ u =⇒ lower-bind-basis t v lower-bind-basis u

unfolding cfun-below-iff
apply (erule lower-le-induct, safe)
apply (simp add: monofun-cfun)
apply (simp add: rev-below-trans [OF lower-plus-below1 ])
apply simp
done

definition
lower-bind :: ′a::bifinite lower-pd → ( ′a → ′b lower-pd) → ′b::bifinite lower-pd

where
lower-bind = lower-pd.extension lower-bind-basis

syntax
-lower-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder lower-bind››

⋃
[-∈-./ -)› [0 , 0 , 10 ] 10 )

translations⋃
[x∈xs. e == CONST lower-bind·xs·(Λ x. e)

lemma lower-bind-principal [simp]:
lower-bind·(lower-principal t) = lower-bind-basis t

unfolding lower-bind-def
apply (rule lower-pd.extension-principal)
apply (erule lower-bind-basis-mono)
done

lemma lower-bind-unit [simp]:
lower-bind·{x}[·f = f ·x

by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma lower-bind-plus [simp]:
lower-bind·(xs ∪[ ys)·f = lower-bind·xs·f ∪[ lower-bind·ys·f

by (induct xs rule: lower-pd.principal-induct, simp,
induct ys rule: lower-pd.principal-induct, simp, simp)

lemma lower-bind-strict [simp]: lower-bind·⊥·f = f ·⊥
unfolding lower-unit-strict [symmetric] by (rule lower-bind-unit)

lemma lower-bind-bind:
lower-bind·(lower-bind·xs·f )·g = lower-bind·xs·(Λ x. lower-bind·(f ·x)·g)

by (induct xs, simp-all)
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30.6 Map
definition

lower-map :: ( ′a::bifinite → ′b::bifinite) → ′a lower-pd → ′b lower-pd where
lower-map = (Λ f xs. lower-bind·xs·(Λ x. {f ·x}[))

lemma lower-map-unit [simp]:
lower-map·f ·{x}[ = {f ·x}[

unfolding lower-map-def by simp

lemma lower-map-plus [simp]:
lower-map·f ·(xs ∪[ ys) = lower-map·f ·xs ∪[ lower-map·f ·ys

unfolding lower-map-def by simp

lemma lower-map-bottom [simp]: lower-map·f ·⊥ = {f ·⊥}[
unfolding lower-map-def by simp

lemma lower-map-ident: lower-map·(Λ x. x)·xs = xs
by (induct xs rule: lower-pd-induct, simp-all)

lemma lower-map-ID: lower-map·ID = ID
by (simp add: cfun-eq-iff ID-def lower-map-ident)

lemma lower-map-map:
lower-map·f ·(lower-map·g·xs) = lower-map·(Λ x. f ·(g·x))·xs

by (induct xs rule: lower-pd-induct, simp-all)

lemma lower-bind-map:
lower-bind·(lower-map·f ·xs)·g = lower-bind·xs·(Λ x. g·(f ·x))

by (simp add: lower-map-def lower-bind-bind)

lemma lower-map-bind:
lower-map·f ·(lower-bind·xs·g) = lower-bind·xs·(Λ x. lower-map·f ·(g·x))

by (simp add: lower-map-def lower-bind-bind)

lemma ep-pair-lower-map: ep-pair e p =⇒ ep-pair (lower-map·e) (lower-map·p)
apply standard
apply (induct-tac x rule: lower-pd-induct, simp-all add: ep-pair .e-inverse)
apply (induct-tac y rule: lower-pd-induct)
apply (simp-all add: ep-pair .e-p-below monofun-cfun del: lower-plus-below-iff )
done

lemma deflation-lower-map: deflation d =⇒ deflation (lower-map·d)
apply standard
apply (induct-tac x rule: lower-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: lower-pd-induct)
apply (simp-all add: deflation.below monofun-cfun del: lower-plus-below-iff )
done
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lemma finite-deflation-lower-map:
assumes finite-deflation d shows finite-deflation (lower-map·d)

proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (lower-map·d)

by (rule deflation-lower-map)
have finite (range (λx. d·x)) by (rule d.finite-range)
hence finite (Rep-compact-basis −‘ range (λx. d·x))

by (rule finite-vimageI , simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis −‘ range (λx. d·x))) by simp
hence finite (Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘ range (λx. d·x))))

by (rule finite-vimageI , simp add: inj-on-def Rep-pd-basis-inject)
hence ∗: finite (lower-principal ‘ Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘

range (λx. d·x)))) by simp
hence finite (range (λxs. lower-map·d·xs))

apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac xs rule: lower-pd.principal-induct)
apply (simp add: adm-mem-finite ∗)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: lower-unit-Rep-compact-basis [symmetric] lower-map-unit)
apply simp
apply (subgoal-tac ∃ b. d·(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imageI )
apply (rule vimageI2 )
apply (simp add: Rep-PDUnit)
apply (rule range-eqI )
apply (erule sym)
apply (rule exI )
apply (rule Abs-compact-basis-inverse [symmetric])
apply (simp add: d.compact)
apply (simp only: lower-plus-principal [symmetric] lower-map-plus)
apply clarsimp
apply (rule imageI )
apply (rule vimageI2 )
apply (simp add: Rep-PDPlus)
done

thus finite {xs. lower-map·d·xs = xs}
by (rule finite-range-imp-finite-fixes)

qed

30.7 Lower powerdomain is bifinite
lemma approx-chain-lower-map:

assumes approx-chain a
shows approx-chain (λi. lower-map·(a i))
using assms unfolding approx-chain-def
by (simp add: lub-APP lower-map-ID finite-deflation-lower-map)
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instance lower-pd :: (bifinite) bifinite
proof

show ∃ (a::nat ⇒ ′a lower-pd → ′a lower-pd). approx-chain a
using bifinite [where ′a= ′a]
by (fast intro!: approx-chain-lower-map)

qed

30.8 Join
definition

lower-join :: ′a::bifinite lower-pd lower-pd → ′a lower-pd where
lower-join = (Λ xss. lower-bind·xss·(Λ xs. xs))

lemma lower-join-unit [simp]:
lower-join·{xs}[ = xs

unfolding lower-join-def by simp

lemma lower-join-plus [simp]:
lower-join·(xss ∪[ yss) = lower-join·xss ∪[ lower-join·yss

unfolding lower-join-def by simp

lemma lower-join-bottom [simp]: lower-join·⊥ = ⊥
unfolding lower-join-def by simp

lemma lower-join-map-unit:
lower-join·(lower-map·lower-unit·xs) = xs

by (induct xs rule: lower-pd-induct, simp-all)

lemma lower-join-map-join:
lower-join·(lower-map·lower-join·xsss) = lower-join·(lower-join·xsss)

by (induct xsss rule: lower-pd-induct, simp-all)

lemma lower-join-map-map:
lower-join·(lower-map·(lower-map·f )·xss) =
lower-map·f ·(lower-join·xss)

by (induct xss rule: lower-pd-induct, simp-all)

end

31 Convex powerdomain
theory ConvexPD
imports UpperPD LowerPD
begin

31.1 Basis preorder
definition
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convex-le :: ′a::bifinite pd-basis ⇒ ′a pd-basis ⇒ bool (infix ‹≤\› 50 ) where
convex-le = (λu v. u ≤] v ∧ u ≤[ v)

lemma convex-le-refl [simp]: t ≤\ t
unfolding convex-le-def by (fast intro: upper-le-refl lower-le-refl)

lemma convex-le-trans: [[t ≤\ u; u ≤\ v]] =⇒ t ≤\ v
unfolding convex-le-def by (fast intro: upper-le-trans lower-le-trans)

interpretation convex-le: preorder convex-le
by (rule preorder .intro, rule convex-le-refl, rule convex-le-trans)

lemma upper-le-minimal [simp]: PDUnit compact-bot ≤\ t
unfolding convex-le-def Rep-PDUnit by simp

lemma PDUnit-convex-mono: x v y =⇒ PDUnit x ≤\ PDUnit y
unfolding convex-le-def by (fast intro: PDUnit-upper-mono PDUnit-lower-mono)

lemma PDPlus-convex-mono: [[s ≤\ t; u ≤\ v]] =⇒ PDPlus s u ≤\ PDPlus t v
unfolding convex-le-def by (fast intro: PDPlus-upper-mono PDPlus-lower-mono)

lemma convex-le-PDUnit-PDUnit-iff [simp]:
(PDUnit a ≤\ PDUnit b) = (a v b)

unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit by fast

lemma convex-le-PDUnit-lemma1 :
(PDUnit a ≤\ t) = (∀ b∈Rep-pd-basis t. a v b)

unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit
using Rep-pd-basis-nonempty [of t, folded ex-in-conv] by fast

lemma convex-le-PDUnit-PDPlus-iff [simp]:
(PDUnit a ≤\ PDPlus t u) = (PDUnit a ≤\ t ∧ PDUnit a ≤\ u)

unfolding convex-le-PDUnit-lemma1 Rep-PDPlus by fast

lemma convex-le-PDUnit-lemma2 :
(t ≤\ PDUnit b) = (∀ a∈Rep-pd-basis t. a v b)

unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit
using Rep-pd-basis-nonempty [of t, folded ex-in-conv] by fast

lemma convex-le-PDPlus-PDUnit-iff [simp]:
(PDPlus t u ≤\ PDUnit a) = (t ≤\ PDUnit a ∧ u ≤\ PDUnit a)

unfolding convex-le-PDUnit-lemma2 Rep-PDPlus by fast

lemma convex-le-PDPlus-lemma:
assumes z: PDPlus t u ≤\ z
shows ∃ v w. z = PDPlus v w ∧ t ≤\ v ∧ u ≤\ w

proof (intro exI conjI )
let ?A = {b∈Rep-pd-basis z. ∃ a∈Rep-pd-basis t. a v b}
let ?B = {b∈Rep-pd-basis z. ∃ a∈Rep-pd-basis u. a v b}
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let ?v = Abs-pd-basis ?A
let ?w = Abs-pd-basis ?B
have Rep-v: Rep-pd-basis ?v = ?A

apply (rule Abs-pd-basis-inverse)
apply (rule Rep-pd-basis-nonempty [of t, folded ex-in-conv, THEN exE ])
apply (cut-tac z, simp only: convex-le-def lower-le-def , clarify)
apply (drule-tac x=x in bspec, simp add: Rep-PDPlus, erule bexE)
apply (simp add: pd-basis-def )
apply fast
done

have Rep-w: Rep-pd-basis ?w = ?B
apply (rule Abs-pd-basis-inverse)
apply (rule Rep-pd-basis-nonempty [of u, folded ex-in-conv, THEN exE ])
apply (cut-tac z, simp only: convex-le-def lower-le-def , clarify)
apply (drule-tac x=x in bspec, simp add: Rep-PDPlus, erule bexE)
apply (simp add: pd-basis-def )
apply fast
done

show z = PDPlus ?v ?w
apply (insert z)
apply (simp add: convex-le-def , erule conjE)
apply (simp add: Rep-pd-basis-inject [symmetric] Rep-PDPlus)
apply (simp add: Rep-v Rep-w)
apply (rule equalityI )
apply (rule subsetI )
apply (simp only: upper-le-def )
apply (drule (1 ) bspec, erule bexE)
apply (simp add: Rep-PDPlus)
apply fast

apply fast
done

show t ≤\ ?v u ≤\ ?w
using z by (simp-all add: convex-le-def upper-le-def lower-le-def Rep-PDPlus

Rep-v Rep-w) fast+
qed

lemma convex-le-induct [induct set: convex-le]:
assumes le: t ≤\ u
assumes 2 :

∧
t u v. [[P t u; P u v]] =⇒ P t v

assumes 3 :
∧

a b. a v b =⇒ P (PDUnit a) (PDUnit b)
assumes 4 :

∧
t u v w. [[P t v; P u w]] =⇒ P (PDPlus t u) (PDPlus v w)

shows P t u
using le

proof (induct t arbitrary: u rule: pd-basis-induct)
case (PDUnit a)
then show ?case
proof (induct u rule: pd-basis-induct1 )

case (PDUnit b)
then show ?case by (simp add: 3 )
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next
case (PDPlus b t)
have P (PDPlus (PDUnit a) (PDUnit a)) (PDPlus (PDUnit b) t)

by (rule 4 [OF 3 ]) (use PDPlus in simp-all)
then show ?case by (simp add: PDPlus-absorb)

qed
next

case PDPlus
from PDPlus(1 ,2 ) show ?case

using convex-le-PDPlus-lemma [OF PDPlus(3 )] by (auto simp add: 4 )
qed

31.2 Type definition
typedef ′a::bifinite convex-pd (‹(‹notation=‹postfix convex-pd›› ′(- ′)\)›) =
{S :: ′a pd-basis set. convex-le.ideal S}

by (rule convex-le.ex-ideal)

instantiation convex-pd :: (bifinite) below
begin

definition
x v y ←→ Rep-convex-pd x ⊆ Rep-convex-pd y

instance ..
end

instance convex-pd :: (bifinite) po
using type-definition-convex-pd below-convex-pd-def
by (rule convex-le.typedef-ideal-po)

instance convex-pd :: (bifinite) cpo
using type-definition-convex-pd below-convex-pd-def
by (rule convex-le.typedef-ideal-cpo)

definition
convex-principal :: ′a::bifinite pd-basis ⇒ ′a convex-pd where
convex-principal t = Abs-convex-pd {u. u ≤\ t}

interpretation convex-pd:
ideal-completion convex-le convex-principal Rep-convex-pd

using type-definition-convex-pd below-convex-pd-def
using convex-principal-def pd-basis-countable
by (rule convex-le.typedef-ideal-completion)

Convex powerdomain is pointed
lemma convex-pd-minimal: convex-principal (PDUnit compact-bot) v ys
by (induct ys rule: convex-pd.principal-induct, simp, simp)
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instance convex-pd :: (bifinite) pcpo
by intro-classes (fast intro: convex-pd-minimal)

lemma inst-convex-pd-pcpo: ⊥ = convex-principal (PDUnit compact-bot)
by (rule convex-pd-minimal [THEN bottomI , symmetric])

31.3 Monadic unit and plus
definition

convex-unit :: ′a::bifinite → ′a convex-pd where
convex-unit = compact-basis.extension (λa. convex-principal (PDUnit a))

definition
convex-plus :: ′a::bifinite convex-pd → ′a convex-pd → ′a convex-pd where
convex-plus = convex-pd.extension (λt. convex-pd.extension (λu.

convex-principal (PDPlus t u)))

abbreviation
convex-add :: ′a::bifinite convex-pd ⇒ ′a convex-pd ⇒ ′a convex-pd
(infixl ‹∪\› 65 ) where

xs ∪\ ys == convex-plus·xs·ys

syntax
-convex-pd :: args ⇒ logic (‹(‹indent=1 notation=‹mixfix convex-pd enumera-

tion››{-}\)›)
translations
{x,xs}\ == {x}\ ∪\ {xs}\
{x}\ == CONST convex-unit·x

lemma convex-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}\ = convex-principal (PDUnit a)

unfolding convex-unit-def
by (simp add: compact-basis.extension-principal PDUnit-convex-mono)

lemma convex-plus-principal [simp]:
convex-principal t ∪\ convex-principal u = convex-principal (PDPlus t u)

unfolding convex-plus-def
by (simp add: convex-pd.extension-principal

convex-pd.extension-mono PDPlus-convex-mono)

interpretation convex-add: semilattice convex-add proof
fix xs ys zs :: ′a convex-pd
show (xs ∪\ ys) ∪\ zs = xs ∪\ (ys ∪\ zs)

apply (induct xs rule: convex-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (induct zs rule: convex-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done

show xs ∪\ ys = ys ∪\ xs
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apply (induct xs rule: convex-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done

show xs ∪\ xs = xs
apply (induct xs rule: convex-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done

qed

lemmas convex-plus-assoc = convex-add.assoc
lemmas convex-plus-commute = convex-add.commute
lemmas convex-plus-absorb = convex-add.idem
lemmas convex-plus-left-commute = convex-add.left-commute
lemmas convex-plus-left-absorb = convex-add.left-idem

Useful for simp add: convex-plus-ac
lemmas convex-plus-ac =

convex-plus-assoc convex-plus-commute convex-plus-left-commute

Useful for simp only: convex-plus-aci
lemmas convex-plus-aci =

convex-plus-ac convex-plus-absorb convex-plus-left-absorb

lemma convex-unit-below-plus-iff [simp]:
{x}\ v ys ∪\ zs ←→ {x}\ v ys ∧ {x}\ v zs

apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (induct zs rule: convex-pd.principal-induct, simp)
apply simp
done

lemma convex-plus-below-unit-iff [simp]:
xs ∪\ ys v {z}\ ←→ xs v {z}\ ∧ ys v {z}\

apply (induct xs rule: convex-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (induct z rule: compact-basis.principal-induct, simp)
apply simp
done

lemma convex-unit-below-iff [simp]: {x}\ v {y}\ ←→ x v y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp
done

lemma convex-unit-eq-iff [simp]: {x}\ = {y}\ ←→ x = y
unfolding po-eq-conv by simp



THEORY “ConvexPD” 198

lemma convex-unit-strict [simp]: {⊥}\ = ⊥
using convex-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-convex-pd-pcpo)

lemma convex-unit-bottom-iff [simp]: {x}\ = ⊥ ←→ x = ⊥
unfolding convex-unit-strict [symmetric] by (rule convex-unit-eq-iff )

lemma compact-convex-unit: compact x =⇒ compact {x}\
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-convex-unit-iff [simp]: compact {x}\ ←→ compact x
apply (safe elim!: compact-convex-unit)
apply (simp only: compact-def convex-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2 ])
done

lemma compact-convex-plus [simp]:
[[compact xs; compact ys]] =⇒ compact (xs ∪\ ys)

by (auto dest!: convex-pd.compact-imp-principal)

31.4 Induction rules
lemma convex-pd-induct1 :

assumes P: adm P
assumes unit:

∧
x. P {x}\

assumes insert:
∧

x ys. [[P {x}\; P ys]] =⇒ P ({x}\ ∪\ ys)
shows P (xs:: ′a::bifinite convex-pd)

proof (induct xs rule: convex-pd.principal-induct)
show P (convex-principal a) for a
proof (induct a rule: pd-basis-induct1 )

case PDUnit
show ?case by (simp only: convex-unit-Rep-compact-basis [symmetric]) (rule

unit)
next

case PDPlus
show ?case
by (simp only: convex-unit-Rep-compact-basis [symmetric] convex-plus-principal

[symmetric])
(rule insert [OF unit PDPlus])

qed
qed (rule P)

lemma convex-pd-induct [case-names adm convex-unit convex-plus, induct type:
convex-pd]:

assumes P: adm P
assumes unit:

∧
x. P {x}\

assumes plus:
∧

xs ys. [[P xs; P ys]] =⇒ P (xs ∪\ ys)
shows P (xs:: ′a::bifinite convex-pd)

proof (induct xs rule: convex-pd.principal-induct)
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show P (convex-principal a) for a
proof (induct a rule: pd-basis-induct)

case PDUnit
then show ?case by (simp only: convex-unit-Rep-compact-basis [symmetric]

unit)
next

case PDPlus
then show ?case by (simp only: convex-plus-principal [symmetric] plus)

qed
qed (rule P)

31.5 Monadic bind
definition

convex-bind-basis ::
′a::bifinite pd-basis ⇒ ( ′a → ′b convex-pd) → ′b::bifinite convex-pd where
convex-bind-basis = fold-pd
(λa. Λ f . f ·(Rep-compact-basis a))
(λx y. Λ f . x·f ∪\ y·f )

lemma ACI-convex-bind:
semilattice (λx y. Λ f . x·f ∪\ y·f )

apply unfold-locales
apply (simp add: convex-plus-assoc)
apply (simp add: convex-plus-commute)
apply (simp add: eta-cfun)
done

lemma convex-bind-basis-simps [simp]:
convex-bind-basis (PDUnit a) =
(Λ f . f ·(Rep-compact-basis a))

convex-bind-basis (PDPlus t u) =
(Λ f . convex-bind-basis t·f ∪\ convex-bind-basis u·f )

unfolding convex-bind-basis-def
apply −
apply (rule fold-pd-PDUnit [OF ACI-convex-bind])
apply (rule fold-pd-PDPlus [OF ACI-convex-bind])
done

lemma convex-bind-basis-mono:
t ≤\ u =⇒ convex-bind-basis t v convex-bind-basis u

apply (erule convex-le-induct)
apply (erule (1 ) below-trans)
apply (simp add: monofun-LAM monofun-cfun)
apply (simp add: monofun-LAM monofun-cfun)
done

definition
convex-bind :: ′a::bifinite convex-pd → ( ′a → ′b convex-pd)→ ′b::bifinite convex-pd
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where
convex-bind = convex-pd.extension convex-bind-basis

syntax
-convex-bind :: [logic, logic, logic] ⇒ logic
(‹(‹indent=3 notation=‹binder convex-bind››

⋃
\-∈-./ -)› [0 , 0 , 10 ] 10 )

translations⋃
\x∈xs. e == CONST convex-bind·xs·(Λ x. e)

lemma convex-bind-principal [simp]:
convex-bind·(convex-principal t) = convex-bind-basis t

unfolding convex-bind-def
apply (rule convex-pd.extension-principal)
apply (erule convex-bind-basis-mono)
done

lemma convex-bind-unit [simp]:
convex-bind·{x}\·f = f ·x

by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma convex-bind-plus [simp]:
convex-bind·(xs ∪\ ys)·f = convex-bind·xs·f ∪\ convex-bind·ys·f

by (induct xs rule: convex-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)

lemma convex-bind-strict [simp]: convex-bind·⊥·f = f ·⊥
unfolding convex-unit-strict [symmetric] by (rule convex-bind-unit)

lemma convex-bind-bind:
convex-bind·(convex-bind·xs·f )·g =

convex-bind·xs·(Λ x. convex-bind·(f ·x)·g)
by (induct xs, simp-all)

31.6 Map
definition

convex-map :: ( ′a::bifinite → ′b) → ′a convex-pd → ′b::bifinite convex-pd where
convex-map = (Λ f xs. convex-bind·xs·(Λ x. {f ·x}\))

lemma convex-map-unit [simp]:
convex-map·f ·{x}\ = {f ·x}\

unfolding convex-map-def by simp

lemma convex-map-plus [simp]:
convex-map·f ·(xs ∪\ ys) = convex-map·f ·xs ∪\ convex-map·f ·ys

unfolding convex-map-def by simp

lemma convex-map-bottom [simp]: convex-map·f ·⊥ = {f ·⊥}\
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unfolding convex-map-def by simp

lemma convex-map-ident: convex-map·(Λ x. x)·xs = xs
by (induct xs rule: convex-pd-induct, simp-all)

lemma convex-map-ID: convex-map·ID = ID
by (simp add: cfun-eq-iff ID-def convex-map-ident)

lemma convex-map-map:
convex-map·f ·(convex-map·g·xs) = convex-map·(Λ x. f ·(g·x))·xs

by (induct xs rule: convex-pd-induct, simp-all)

lemma convex-bind-map:
convex-bind·(convex-map·f ·xs)·g = convex-bind·xs·(Λ x. g·(f ·x))

by (simp add: convex-map-def convex-bind-bind)

lemma convex-map-bind:
convex-map·f ·(convex-bind·xs·g) = convex-bind·xs·(Λ x. convex-map·f ·(g·x))

by (simp add: convex-map-def convex-bind-bind)

lemma ep-pair-convex-map: ep-pair e p =⇒ ep-pair (convex-map·e) (convex-map·p)
apply standard
apply (induct-tac x rule: convex-pd-induct, simp-all add: ep-pair .e-inverse)
apply (induct-tac y rule: convex-pd-induct)
apply (simp-all add: ep-pair .e-p-below monofun-cfun)
done

lemma deflation-convex-map: deflation d =⇒ deflation (convex-map·d)
apply standard
apply (induct-tac x rule: convex-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: convex-pd-induct)
apply (simp-all add: deflation.below monofun-cfun)
done

lemma finite-deflation-convex-map:
assumes finite-deflation d shows finite-deflation (convex-map·d)

proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (convex-map·d)

by (rule deflation-convex-map)
have finite (range (λx. d·x)) by (rule d.finite-range)
hence finite (Rep-compact-basis −‘ range (λx. d·x))

by (rule finite-vimageI , simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis −‘ range (λx. d·x))) by simp
hence finite (Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘ range (λx. d·x))))

by (rule finite-vimageI , simp add: inj-on-def Rep-pd-basis-inject)
hence ∗: finite (convex-principal ‘ Rep-pd-basis −‘ (Pow (Rep-compact-basis −‘

range (λx. d·x)))) by simp
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hence finite (range (λxs. convex-map·d·xs))
apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac xs rule: convex-pd.principal-induct)
apply (simp add: adm-mem-finite ∗)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: convex-unit-Rep-compact-basis [symmetric] convex-map-unit)
apply simp
apply (subgoal-tac ∃ b. d·(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imageI )
apply (rule vimageI2 )
apply (simp add: Rep-PDUnit)
apply (rule range-eqI )
apply (erule sym)
apply (rule exI )
apply (rule Abs-compact-basis-inverse [symmetric])
apply (simp add: d.compact)
apply (simp only: convex-plus-principal [symmetric] convex-map-plus)
apply clarsimp
apply (rule imageI )
apply (rule vimageI2 )
apply (simp add: Rep-PDPlus)
done

thus finite {xs. convex-map·d·xs = xs}
by (rule finite-range-imp-finite-fixes)

qed

31.7 Convex powerdomain is bifinite
lemma approx-chain-convex-map:

assumes approx-chain a
shows approx-chain (λi. convex-map·(a i))
using assms unfolding approx-chain-def
by (simp add: lub-APP convex-map-ID finite-deflation-convex-map)

instance convex-pd :: (bifinite) bifinite
proof

show ∃ (a::nat ⇒ ′a convex-pd → ′a convex-pd). approx-chain a
using bifinite [where ′a= ′a]
by (fast intro!: approx-chain-convex-map)

qed

31.8 Join
definition

convex-join :: ′a::bifinite convex-pd convex-pd → ′a convex-pd where
convex-join = (Λ xss. convex-bind·xss·(Λ xs. xs))

lemma convex-join-unit [simp]:
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convex-join·{xs}\ = xs
unfolding convex-join-def by simp

lemma convex-join-plus [simp]:
convex-join·(xss ∪\ yss) = convex-join·xss ∪\ convex-join·yss

unfolding convex-join-def by simp

lemma convex-join-bottom [simp]: convex-join·⊥ = ⊥
unfolding convex-join-def by simp

lemma convex-join-map-unit:
convex-join·(convex-map·convex-unit·xs) = xs

by (induct xs rule: convex-pd-induct, simp-all)

lemma convex-join-map-join:
convex-join·(convex-map·convex-join·xsss) = convex-join·(convex-join·xsss)

by (induct xsss rule: convex-pd-induct, simp-all)

lemma convex-join-map-map:
convex-join·(convex-map·(convex-map·f )·xss) =
convex-map·f ·(convex-join·xss)

by (induct xss rule: convex-pd-induct, simp-all)

31.9 Conversions to other powerdomains

Convex to upper
lemma convex-le-imp-upper-le: t ≤\ u =⇒ t ≤] u
unfolding convex-le-def by simp

definition
convex-to-upper :: ′a::bifinite convex-pd → ′a upper-pd where
convex-to-upper = convex-pd.extension upper-principal

lemma convex-to-upper-principal [simp]:
convex-to-upper ·(convex-principal t) = upper-principal t

unfolding convex-to-upper-def
apply (rule convex-pd.extension-principal)
apply (rule upper-pd.principal-mono)
apply (erule convex-le-imp-upper-le)
done

lemma convex-to-upper-unit [simp]:
convex-to-upper ·{x}\ = {x}]

by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma convex-to-upper-plus [simp]:
convex-to-upper ·(xs ∪\ ys) = convex-to-upper ·xs ∪] convex-to-upper ·ys

by (induct xs rule: convex-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)
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lemma convex-to-upper-bind [simp]:
convex-to-upper ·(convex-bind·xs·f ) =

upper-bind·(convex-to-upper ·xs)·(convex-to-upper oo f )
by (induct xs rule: convex-pd-induct, simp, simp, simp)

lemma convex-to-upper-map [simp]:
convex-to-upper ·(convex-map·f ·xs) = upper-map·f ·(convex-to-upper ·xs)

by (simp add: convex-map-def upper-map-def cfcomp-LAM )

lemma convex-to-upper-join [simp]:
convex-to-upper ·(convex-join·xss) =

upper-bind·(convex-to-upper ·xss)·convex-to-upper
by (simp add: convex-join-def upper-join-def cfcomp-LAM eta-cfun)

Convex to lower
lemma convex-le-imp-lower-le: t ≤\ u =⇒ t ≤[ u
unfolding convex-le-def by simp

definition
convex-to-lower :: ′a::bifinite convex-pd → ′a lower-pd where
convex-to-lower = convex-pd.extension lower-principal

lemma convex-to-lower-principal [simp]:
convex-to-lower ·(convex-principal t) = lower-principal t

unfolding convex-to-lower-def
apply (rule convex-pd.extension-principal)
apply (rule lower-pd.principal-mono)
apply (erule convex-le-imp-lower-le)
done

lemma convex-to-lower-unit [simp]:
convex-to-lower ·{x}\ = {x}[

by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma convex-to-lower-plus [simp]:
convex-to-lower ·(xs ∪\ ys) = convex-to-lower ·xs ∪[ convex-to-lower ·ys

by (induct xs rule: convex-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)

lemma convex-to-lower-bind [simp]:
convex-to-lower ·(convex-bind·xs·f ) =

lower-bind·(convex-to-lower ·xs)·(convex-to-lower oo f )
by (induct xs rule: convex-pd-induct, simp, simp, simp)

lemma convex-to-lower-map [simp]:
convex-to-lower ·(convex-map·f ·xs) = lower-map·f ·(convex-to-lower ·xs)

by (simp add: convex-map-def lower-map-def cfcomp-LAM )
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lemma convex-to-lower-join [simp]:
convex-to-lower ·(convex-join·xss) =

lower-bind·(convex-to-lower ·xss)·convex-to-lower
by (simp add: convex-join-def lower-join-def cfcomp-LAM eta-cfun)

Ordering property
lemma convex-pd-below-iff :
(xs v ys) =
(convex-to-upper ·xs v convex-to-upper ·ys ∧
convex-to-lower ·xs v convex-to-lower ·ys)

apply (induct xs rule: convex-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (simp add: convex-le-def )
done

lemmas convex-plus-below-plus-iff =
convex-pd-below-iff [where xs=xs ∪\ ys and ys=zs ∪\ ws]
for xs ys zs ws

lemmas convex-pd-below-simps =
convex-unit-below-plus-iff
convex-plus-below-unit-iff
convex-plus-below-plus-iff
convex-unit-below-iff
convex-to-upper-unit
convex-to-upper-plus
convex-to-lower-unit
convex-to-lower-plus
upper-pd-below-simps
lower-pd-below-simps

end

32 Powerdomains
theory Powerdomains
imports ConvexPD Domain
begin

32.1 Universal domain embeddings
definition upper-emb = udom-emb (λi. upper-map·(udom-approx i))
definition upper-prj = udom-prj (λi. upper-map·(udom-approx i))

definition lower-emb = udom-emb (λi. lower-map·(udom-approx i))
definition lower-prj = udom-prj (λi. lower-map·(udom-approx i))

definition convex-emb = udom-emb (λi. convex-map·(udom-approx i))
definition convex-prj = udom-prj (λi. convex-map·(udom-approx i))
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lemma ep-pair-upper : ep-pair upper-emb upper-prj
unfolding upper-emb-def upper-prj-def
by (simp add: ep-pair-udom approx-chain-upper-map)

lemma ep-pair-lower : ep-pair lower-emb lower-prj
unfolding lower-emb-def lower-prj-def
by (simp add: ep-pair-udom approx-chain-lower-map)

lemma ep-pair-convex: ep-pair convex-emb convex-prj
unfolding convex-emb-def convex-prj-def
by (simp add: ep-pair-udom approx-chain-convex-map)

32.2 Deflation combinators
definition upper-defl :: udom defl → udom defl

where upper-defl = defl-fun1 upper-emb upper-prj upper-map

definition lower-defl :: udom defl → udom defl
where lower-defl = defl-fun1 lower-emb lower-prj lower-map

definition convex-defl :: udom defl → udom defl
where convex-defl = defl-fun1 convex-emb convex-prj convex-map

lemma cast-upper-defl:
cast·(upper-defl·A) = upper-emb oo upper-map·(cast·A) oo upper-prj

using ep-pair-upper finite-deflation-upper-map
unfolding upper-defl-def by (rule cast-defl-fun1 )

lemma cast-lower-defl:
cast·(lower-defl·A) = lower-emb oo lower-map·(cast·A) oo lower-prj

using ep-pair-lower finite-deflation-lower-map
unfolding lower-defl-def by (rule cast-defl-fun1 )

lemma cast-convex-defl:
cast·(convex-defl·A) = convex-emb oo convex-map·(cast·A) oo convex-prj

using ep-pair-convex finite-deflation-convex-map
unfolding convex-defl-def by (rule cast-defl-fun1 )

32.3 Domain class instances
instantiation upper-pd :: (domain) domain
begin

definition
emb = upper-emb oo upper-map·emb

definition
prj = upper-map·prj oo upper-prj
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definition
defl (t:: ′a upper-pd itself ) = upper-defl·DEFL( ′a)

definition
(liftemb :: ′a upper-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a upper-pd u) = u-map·prj

definition
liftdefl (t:: ′a upper-pd itself ) = liftdefl-of ·DEFL( ′a upper-pd)

instance proof
show ep-pair emb (prj :: udom → ′a upper-pd)

unfolding emb-upper-pd-def prj-upper-pd-def
by (intro ep-pair-comp ep-pair-upper ep-pair-upper-map ep-pair-emb-prj)

next
show cast·DEFL( ′a upper-pd) = emb oo (prj :: udom → ′a upper-pd)

unfolding emb-upper-pd-def prj-upper-pd-def defl-upper-pd-def cast-upper-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff upper-map-map)

qed (fact liftemb-upper-pd-def liftprj-upper-pd-def liftdefl-upper-pd-def )+

end

instantiation lower-pd :: (domain) domain
begin

definition
emb = lower-emb oo lower-map·emb

definition
prj = lower-map·prj oo lower-prj

definition
defl (t:: ′a lower-pd itself ) = lower-defl·DEFL( ′a)

definition
(liftemb :: ′a lower-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a lower-pd u) = u-map·prj

definition
liftdefl (t:: ′a lower-pd itself ) = liftdefl-of ·DEFL( ′a lower-pd)

instance proof
show ep-pair emb (prj :: udom → ′a lower-pd)

unfolding emb-lower-pd-def prj-lower-pd-def
by (intro ep-pair-comp ep-pair-lower ep-pair-lower-map ep-pair-emb-prj)



THEORY “Powerdomains” 208

next
show cast·DEFL( ′a lower-pd) = emb oo (prj :: udom → ′a lower-pd)

unfolding emb-lower-pd-def prj-lower-pd-def defl-lower-pd-def cast-lower-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff lower-map-map)

qed (fact liftemb-lower-pd-def liftprj-lower-pd-def liftdefl-lower-pd-def )+

end

instantiation convex-pd :: (domain) domain
begin

definition
emb = convex-emb oo convex-map·emb

definition
prj = convex-map·prj oo convex-prj

definition
defl (t:: ′a convex-pd itself ) = convex-defl·DEFL( ′a)

definition
(liftemb :: ′a convex-pd u → udom u) = u-map·emb

definition
(liftprj :: udom u → ′a convex-pd u) = u-map·prj

definition
liftdefl (t:: ′a convex-pd itself ) = liftdefl-of ·DEFL( ′a convex-pd)

instance proof
show ep-pair emb (prj :: udom → ′a convex-pd)

unfolding emb-convex-pd-def prj-convex-pd-def
by (intro ep-pair-comp ep-pair-convex ep-pair-convex-map ep-pair-emb-prj)

next
show cast·DEFL( ′a convex-pd) = emb oo (prj :: udom → ′a convex-pd)
unfolding emb-convex-pd-def prj-convex-pd-def defl-convex-pd-def cast-convex-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff convex-map-map)

qed (fact liftemb-convex-pd-def liftprj-convex-pd-def liftdefl-convex-pd-def )+

end

lemma DEFL-upper : DEFL( ′a::domain upper-pd) = upper-defl·DEFL( ′a)
by (rule defl-upper-pd-def )

lemma DEFL-lower : DEFL( ′a::domain lower-pd) = lower-defl·DEFL( ′a)
by (rule defl-lower-pd-def )

lemma DEFL-convex: DEFL( ′a::domain convex-pd) = convex-defl·DEFL( ′a)
by (rule defl-convex-pd-def )
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32.4 Isomorphic deflations
lemma isodefl-upper :

isodefl d t =⇒ isodefl (upper-map·d) (upper-defl·t)
apply (rule isodeflI )
apply (simp add: cast-upper-defl cast-isodefl)
apply (simp add: emb-upper-pd-def prj-upper-pd-def )
apply (simp add: upper-map-map)
done

lemma isodefl-lower :
isodefl d t =⇒ isodefl (lower-map·d) (lower-defl·t)

apply (rule isodeflI )
apply (simp add: cast-lower-defl cast-isodefl)
apply (simp add: emb-lower-pd-def prj-lower-pd-def )
apply (simp add: lower-map-map)
done

lemma isodefl-convex:
isodefl d t =⇒ isodefl (convex-map·d) (convex-defl·t)

apply (rule isodeflI )
apply (simp add: cast-convex-defl cast-isodefl)
apply (simp add: emb-convex-pd-def prj-convex-pd-def )
apply (simp add: convex-map-map)
done

32.5 Domain package setup for powerdomains
lemmas [domain-defl-simps] = DEFL-upper DEFL-lower DEFL-convex
lemmas [domain-map-ID] = upper-map-ID lower-map-ID convex-map-ID
lemmas [domain-isodefl] = isodefl-upper isodefl-lower isodefl-convex

lemmas [domain-deflation] =
deflation-upper-map deflation-lower-map deflation-convex-map

setup ‹
fold Domain-Take-Proofs.add-rec-type
[(type-name ‹upper-pd›, [true]),
(type-name ‹lower-pd›, [true]),
(type-name ‹convex-pd›, [true])]

›

end

theory HOLCF
imports

Main
Domain
Powerdomains
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begin

default-sort domain

end
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