[sabelle/ HOLCF — Higher-Order Logic

Computable Functions

January 18, 2026

Contents

1 Partial orders

1.1 Type class for partial orders
1.2 Upperbounds.
1.3 Least upper bounds
1.4 Countable chains o000
1.5 Finitechains

2 Classes cpo and pcpo

2.1 Complete partial orders
2.2 Pointed cposo
2.3 Chain-finite and flat cpos
2.4 Discrete cpos

3 Continuity and monotonicity

3.1 Definitions.
3.2 Equivalence of alternate definition
3.3 Collection of continuity rules
3.4 Continuity of basic functions
3.5 Finite chains and flat pcpos

4 Admissibility and compactness

4.1 Definitions
4.2 Admissibility on chain-finite types
4.3 Admissibility of special formulae and propagation
4.4 Compactness

5 Class instances for the full function space

5.1 Full function space is a partial order
5.2 Full function space is chain complete
5.3 Full function space is pointed
5.4 Propagation of monotonicity and continuity

of

6 The cpo of cartesian products
6.1 Unittypeisapcpo
6.2 Product type is a partial order L.
6.3 Monotonicity of Pair, fst, snd
6.4 Product typeisacpo
6.5 Product typeis pointed o oL,
6.6 Continuity of Pair, fst, snd
6.7 Compactness and chain-finiteness

7 Discrete cpo types
7.1 Discrete cpo class instance
7.2 wndiscr ... e

8 Subtypes of pcpos

8.1 Proving a subtype is a partial order
8.2 Proving a subtype is finite oo
8.3 Proving a subtype is chain-finite
8.4 Proving a subtype is completeo

8.4.1 Continuity of Rep and Abs
8.5 Proving subtype elements are compact
8.6 Proving a subtype is pointed 0L,

8.6.1 Strictness of Rep and Abs
8.7 Proving a subtypeisflat o000
8.8 HOLCF type definition package

9 The type of continuous functions

9.1 Definition of continuous function type
9.2 Syntax for continuous lambda abstraction
9.3 Continuous function space is pointed
9.4 Basic properties of continuous functions

9.4.1 Beta-reduction simproc
9.5 Continuity of application.
9.6 Continuity simplification procedure
9.7 Miscellaneous
9.8 Continuous injection-retraction pairs
9.9 Identity and composition
9.10 Strictified functions L.
9.11 Continuity of let-bindings

10 Continuous deflations and ep-pairs
10.1 Continuous deflations L.
10.2 Deflations with finite range
10.3 Continuous embedding-projection pairs.
10.4 Uniqueness of ep-pairs

25
25
25
26
27
28
28
30

31
31
31

31
31
32
32
33
34
34
35
35
36
36

37
37
37
38
39
39
40
41
43
43
44
45
46

10.5 Composing ep-pairso

11 The type of strict products
11.1 Definition of strict product type.
11.2 Definitions of constants
11.3 Case analysis
11.4 Properties of spair
11.5 Properties of sfst and ssnd
11.6 Compactness v v it
11.7 Properties of ssplito
11.8 Strict product preserves flatness

12 The type of lifted values
12.1 Definition of new type for lifting
12.2 Ordering on lifted cpo L.
12.3 Lifted cpo is a partial order oL
12.4 Lifted cpoisacpo
12.5 Lifted cpois pointedo oL
12.6 Continuity of ITup and Ifup
12.7 Continuous versions of constants

13 Lifting types of class type to flat pcpo’s
13.1 Lift asa datatype.
13.2 Liftisflat
13.3 Continuity of case-lift
13.4 Further operations

14 The type of lifted booleans
14.1 Type definition and constructors
14.2 Case analysis
14.3 Boolean connectives L.
14.4 Rewriting of HOLCF operations to HOL functions
14.5 Compactness v v v i

15 The type of strict sums
15.1 Definition of strict sum type
15.2 Definitions of constructors
15.3 Properties of sinl and sinr
15.4 Case analysis
15.5 Case analysis combinator,
15.6 Strict sum preserves flatness L.

16 The Strict Function Type

53

54
54
95
55
56
57
o7
58
o8

58
58
59
59
59
61
61
62

63
64
64
65
65

66
66
67
67
68
69

69
69
70
70
72
72
73

73

17 Map functions for various types
17.1 Map operator for continuous function space . . .
17.2 Map operator for product type
17.3 Map function for lifted cpo
17.4 Map function for strict products
17.5 Map function for strict sums
17.6 Map operator for strict function space

18 The cpo of cartesian products
18.1 Continuous case function for unit type
18.2 Continuous version of split function.
18.3 Convert all lemmas to the continuous versions . .

19 Profinite and bifinite cpos
19.1 Chains of finite deflations
19.2 Omega-profinite and bifinite domains
19.3 Building approx chains
19.4 Class instance proofs

20 Defining algebraic domains by ideal completion
20.1 Ideals over a preorder
20.2 Lemmas about least upper bounds
20.3 Locale for ideal completion

20.3.1 Principal ideals approximate all elements
20.4 Defining functions in terms of basis elements . .

21 A universal bifinite domain
21.1 Basis for universal domain
21.1.1 Basis datatype
21.1.2 Basis ordering
21.1.3 Generic take function

21.2 Defining the universal domain by ideal completion

21.3 Compact bases of domains
21.4 Universality of udom

21.4.1 Choosing a maximal element from a finite set

21.4.2 Compact basis take function
21.4.3 Rank of basis elements
21.4.4 Sequencing basis elements

21.4.5 Embedding and projection on basis elements
21.4.6 EP-pair from any bifinite domain into udom

21.5 Chain of approx functions for type udom

74
74
76
7
78
80
82

84
84
84
85

85
85
86
86
88

90
91
93
93
94
96

22 Algebraic deflations
22.1 Type constructor for finite deflations
22.2 Defining algebraic deflations by ideal completion
22.3 Applying algebraic deflations
22.4 Deflation combinators L L oL

23 Representable domains
23.1 Class of representable domains
23.2 Domains are bifiniteo
23.3 Universal domain ep-pairs
23.4 Type combinators,
23.5 Class instance proofs L.
23.5.1 Universal domain
23.5.2 Liftedcpo o
23.5.3 Strict function space oL
23.5.4 Continuous function space
23.5.5 Strict producto
23.5.6 Cartesian product
23.5.7 Unit typeo
23.5.8 Discretecpo.o Lo
23.5.9 Strict sum
23.5.10Lifted HOL type

24 The unit domain

25 Fixed point operator and admissibility
25.1 Tteration
25.2 Least fixed point operator
25.3 Fixed point induction oL oo
25.4 Fixed-points on product types

26 Package for defining recursive functions in HOLCF
26.1 Pattern-match monad
26.1.1 Runoperator
26.1.2 Monad plus operator
26.2 Match functions for built-in types
26.3 Mutual recursion
26.4 Initializing the fixrec package

27 Domain package
27.1 Continuous isomorphisms
27.2 Proofs about take functions
27.3 Finiteness
27.4 Proofs about constructor functions

124
125
126
127
128
129
129
130
130
131
132
133
135
135
136
137

138

139
139
140
142
143

144
144
144
145
145
147
148

27.5
27.6
27.7
27.8
279

MLsetup
Representations of types
Deflations assets
Proving a subtype is representable
Isomorphic deflations,

27.10Setting up the domain package

28 A compact basis for powerdomains

28.1
28.2
28.3

A compact basis for powerdomains
Unit and plus constructors
Fold operator

29 Upper powerdomain

29.1
29.2
29.3
294
29.5
29.6
29.7
29.8

Basis preorder. L
Type definition o
Monadic unit and plus L.
Inductionrules 0.
Monadic bind
Map . . . o
Upper powerdomain is bifinite
Join ...

30 Lower powerdomain

30.1
30.2
30.3
30.4
30.5
30.6
30.7
30.8

Basispreorder. oL
Type definition L
Monadic unit and plus
Inductionrules
Monadic bind o
Map
Lower powerdomain is bifinite
Join ...

31 Convex powerdomain

31.1
31.2
31.3
314
31.5
31.6
31.7
31.8
31.9

Basis preordero
Type definition
Monadic unit and plus
Inductionrules
Monadic bindo Lo
Map . . . o
Convex powerdomain is bifinite
Join ...
Conversions to other powerdomains

155
156
156
157
158
162

162
163
163
164

165
165
166
167
170
171
173
175
175

176
176
177
178
181
182
184
185
186

32 Powerdomains 199
32.1 Universal domain embeddings 199
32.2 Deflation combinators 200
32.3 Domain class instances 200
32.4 Isomorphic deflations oo 203

32.5 Domain package setup for powerdomains 203

[Pure]

[tHoL

[cpo| [ReADME] [IHOL-Library]

Cfun

Completion | | Cprod | | Deflation | | Sfun | | Sprod |

Map_Functions

Universal

Algebraic		Compact_Basis		
Representable		LowerPD		UpperPD
ConvexPD		Domain		

Powerdomains

HOLCF

THEORY “Cpo”

theory Cpo
imports Main
begin

1 Partial orders

declare [[typedef-overloaded))

1.1 Type class for partial orders

class below =
fixes below :: 'a = 'a = bool
begin

notation (ASCII)
below (infix << 50)

notation
below (infix <C» 50)

abbreviation not-below :: 'a = 'a = bool (infix «Z» 50)
where not-below z y = — below = y

notation (ASCII)
not-below (infix (~<<> 50)

lemma below-eq-trans: a & b — b=c=— a C ¢
by (rule subst)

lemma eg-below-trans: a = b=— bC ¢c = a C ¢
by (rule ssubst)

end

class po = below +
assumes below-refl [iff]: z C x
assumes below-trans: x Ty —= yC 2 —= 2z C 2
assumes below-antisym: t Cy—= yCz =z =y
begin

lemma eg-imp-below: © =y =z C y
by simp

lemma boz-below: a T b=—cCa=—=bC d=— cC d
by (rule below-trans [OF below-trans])

lemma po-eq-conv: zt =y+— 2z CyAyLCx

THEORY “Cpo” 10

by (fast intro!: below-antisym)

lemma rev-below-trans: yC 2 —= a2 C y = z C 2
by (rule below-trans)

lemma not-below2not-eq: x L y = x + y
by auto

end

lemmas HOLCF-trans-rules [trans] =
below-trans
below-antisym
below-eq-trans
eq-below-trans

context po
begin

1.2 Upper bounds

definition is-ub :: ‘a set = 'a = bool (infix «<|> 55)
where S <| z +— (VyeS. y C z)

lemma is-ubl: (A\z.z€ S=2C u) = S <|u
by (simp add: is-ub-def)

lemma is-ubD: [S <] u; 2 €] =z C u
by (simp add: is-ub-def)

lemma ub-imagel: (A\z. z € S = fz Cu) = (A\z. fz) ‘S <] u
unfolding is-ub-def by fast

lemma ub-imageD: [f ‘S <| u;z € 8] = fz C u
unfolding is-ub-def by fast

lemma ub-rangel: (\i. S i C z) = range S <| z
unfolding is-ub-def by fast

lemma ub-rangeD: range S <| 2 = SiC z
unfolding is-ub-def by fast

lemma is-ub-empty [simp]: {} <] u
unfolding is-ub-def by fast

lemma is-ub-insert [simp): (insert z A) <] y=(z Sy A A <] y)
unfolding is-ub-def by fast

lemma is-ub-upward: [S <|z; 2 Cy] = S <| y

THEORY “Cpo” 11

unfolding is-ub-def by (fast intro: below-trans)

1.3 Least upper bounds
definition is-lub :: ‘a set = 'a = bool (infix «<<|> 55)
where S <<|z+— S <]z A Vu. S<|lu— 2zC u)

definition lub :: ‘a set = 'a
where lub S = (THE z. S <<| 1)

end

syntax (ASCII)
-BLub :: [pttrn, 'a set, 'b] = 'b («(<indent=3 notation=<binder LUB»LUB -:-./
) (0,0, 10] 10)

syntax
-BLub :: [pttrn, 'a set, 'b] = ‘b («(<indent=3 notation=<binder | |»|]-€-./ -)»
0,0, 10] 10)

syntax-consts
-BLub = lub

translations
LUB z:A. t &= CONST lub ((M\z. t) < A)

context po
begin

abbreviation Lub (binder «| |» 10)
where | |n. t n = lub (range t)

notation (ASCII)
Lub (binder <LUB » 10)

access to some definition as inference rule

lemma is-lubD1: S <<|z = S <| z
unfolding is-lub-def by fast

lemma is-lubD2: [S <<|z; S <] u] = 2 C u
unfolding is-lub-def by fast

lemma is-lubl: [S <| z; Au. S <] u=2Cu] = S <<|z
unfolding is-lub-def by fast

lemma is-lub-below-iff: S <<| z = 2 C u +— 5 <| u
unfolding is-lub-def is-ub-def by (metis below-trans)

lubs are unique

THEORY “Cpo” 12

lemma is-lub-unique: S <<|z = S <<|y= 2=y
unfolding is-lub-def is-ub-def by (blast intro: below-antisym)
technical lemmas about lub and (<<])
lemma is-lub-lub: M <<| 2 = M <<| lub M
unfolding lub-def by (rule thel [OF - is-lub-unique])

lemma lub-eql: M <<| | = lub M =1
by (rule is-lub-unique [OF is-lub-lub])

lemma is-lub-singleton [simpl: {z} <<| z
by (simp add: is-lub-def)

lemma lub-singleton [simp]: lub {z} = =
by (rule is-lub-singleton [THEN lub-eql])

lemma is-lub-bin: C y = {z, y} <<| y
by (simp add: is-lub-def)

lemma lub-bin: 2 C y = lub {z, y} =y
by (rule is-lub-bin [THEN lub-eql])

lemma is-lub-mazimal: S <| = 2 € S = S <<| =
by (erule is-lubl, erule (1) is-ubD)

lemma lub-mazimal: S <|z =z € S = lub S ==z
by (rule is-lub-mazimal [THEN lub-eql))

1.4 Countable chains

definition chain :: (nat = 'a) = bool
where — Here we use countable chains and I prefer to code them as functions!
chain Y = (Vi. Yi T Y (Suc 1))

lemma chainl: (N\i. YiC Y (Suc i)) = chain Y
unfolding chain-def by fast

lemma chainE: chain Y = Y i C Y (Suc i)
unfolding chain-def by fast

chains are monotone functions
lemma chain-mono-less: chain ¥ —= i< j= Yi¢LC Yj

by (erule less-Suc-induct, erule chainE, erule below-trans)

lemma chain-mono: chain ¥ — i< j=— YiC Yj
by (cases i = j) (simp-all add: chain-mono-less)

lemma chain-shift: chain ¥ = chain (Ai. Y (¢ + 7))
by (rule chainl, simp, erule chainkE)

THEORY “Cpo” 13

technical lemmas about (least) upper bounds of chains

lemma is-lub-rangeD1: range S <<|z = SiC
by (rule is-lubD1 [THEN ub-rangeD))

lemma is-ub-range-shift: chain S = range (A\i. S (i + j)) <| z = range S <| z
apply (rule iffT)
apply (rule ub-rangel)
apply (rule-tac y=S (i + j) in below-trans)
apply (erule chain-mono)
apply (rule le-addl)
apply (erule ub-rangeD)
apply (rule ub-rangel)
apply (erule ub-rangeD)
done

lemma is-lub-range-shift: chain S = range (\i. S (i + j)) <<| £ = range S <<|
x
by (simp add: is-lub-def is-ub-range-shift)
the lub of a constant chain is the constant
lemma chain-const [simp]: chain (\i. ¢)

by (simp add: chainl)

lemma is-lub-const: range (Az. ¢) <<| ¢
by (blast dest: ub-rangeD intro: is-lubl ub-rangel)

lemma lub-const [simp]: (| |i. ¢) = ¢
by (rule is-lub-const [THEN lub-eql])

1.5 Finite chains

definition maz-in-chain :: nat = (nat = 'a) = bool
where — finite chains, needed for monotony of continuous functions
maz-in-chain i C +— (Vj. i <j— Ci= C})

definition finite-chain :: (nat = 'a) = bool
where finite-chain C = (chain C A (3i. maz-in-chain i C))

results about finite chains

lemma maz-in-chainl: (\j. i < j = Yi= Y j) = maz-in-chain i ¥
unfolding max-in-chain-def by fast

lemma maz-in-chainD: max-in-chain i ¥ — i < j— Yi=Y}j
unfolding maz-in-chain-def by fast

lemma finite-chainl: chain C =—> max-in-chain i C = finite-chain C
unfolding finite-chain-def by fast

THEORY “Cpo” 14

lemma finite-chainE: [finite-chain C; Ni. [chain C; maz-in-chain i C] = R]
= R
unfolding finite-chain-def by fast

lemma lub-finchi: chain C = max-in-chain i C = range C <<| C'i
apply (rule is-lubl)
apply (rule ub-rangel, rename-tac j)
apply (rule-tac =i and y=j in linorder-le-cases)
apply (drule (1) max-in-chainD, simp)
apply (erule (1) chain-mono)
apply (erule ub-rangeD)
done

lemma lub-finch2: finite-chain C = range C <<| C (LEAST i. max-in-chain i
)

apply (erule finite-chainFE)

apply (erule LeastI2 [where Q=M\i. range C <<| C i)

apply (erule (1) lub-finchl)

done

lemma finch-imp-finite-range: finite-chain Y = finite (range Y)

apply (erule finite-chainFE)

apply (rule-tac B=Y ‘ {..i} in finite-subset)
apply (rule subsetl)

apply (erule rangeE, rename-tac j)

apply (rule-tac z=i and y=j in linorder-le-cases)
apply (subgoal-tac Y j = Y i, simp)
apply (simp add: maz-in-chain-def)

apply simp

apply simp

done

lemma finite-range-has-mazx:
fixes f :: nat = 'a
and 7 :: 'a = 'a = bool
assumes mono: \ij. i <j= r (fi) (fj)
assumes finite-range: finite (range f)
shows 3k. Vi. r (fi) (fk)
proof (intro exl alll)
fix 7 :: nat
let % — LEAST k. fk = fi
let %k = Maz ((Ax. LEAST k. f k = z) ‘ range f)
have ?j < %
proof (rule Maz-ge)
show finite ((Ax. LEAST k. fk = z) ‘ range f)
using finite-range by (rule finite-imagel)
show ?j € (Az. LEAST k. fk = z) ‘ range f
by (intro imagel rangel)
qed

THEORY “Cpo”

hence 7 (f %)) (f %)
by (rule mono)
also have f 7j = f 1
by (rule Leastl, rule refl)
finally show r (f) (f %) .
qed

15

lemma finite-range-imp-finch: chain ¥ = finite (range Y) = finite-chain Y

apply (subgoal-tac k. Vi. YiC Y k)
apply (erule exE)

apply (rule finite-chainl, assumption)
apply (rule maz-in-chainl)

apply (rule below-antisym)

apply (erule (1) chain-mono)
apply (erule spec)
apply (rule finite-range-has-max)
apply (erule (1) chain-mono)
apply assumption
done

lemma bin-chain: © © y = chain (Ai. if i=0 then x else y)

by (rule chainl) simp

lemma bin-chainmaz: © T y = maz-in-chain (Suc 0) (ANi. if i=0 then z else y)

by (simp add: maz-in-chain-def)

lemma is-lub-bin-chain: * C y = range (Ai::nat. if i=0 then x else y) <<| y

apply (frule bin-chain)
apply (drule bin-chainmax)
apply (drule (1) lub-finchl)
apply simp

done

the maximal element in a chain is its lub

lemma lub-chain-mazelem: Yi=c = Vi. YiC ¢ = lub (range Y) = ¢

by (blast dest: ub-rangeD intro: lub-eql is-lubl ub-rangel)

end

2 Classes cpo and pcpo

2.1 Complete partial orders

The class cpo of chain complete partial orders

class cpo = po +
assumes cpo: chain S = Jz. range S <<| z

default-sort cpo

THEORY “Cpo” 16

context cpo
begin

in cpo’s everthing equal to THE lub has lub properties for every chain

lemma cpo-lubl: chain S = range S <<| (| |i. S i)
by (fast dest: cpo elim: is-lub-lub)

lemma thelubE: [chain S; (|]i. S i) =[] = range S <<| 1
by (blast dest: cpo intro: is-lub-lub)

Properties of the lub

lemma is-ub-thelub: chain S = Sz C (| 4. S 1)
by (blast dest: cpo intro: is-lub-lub [THEN is-lub-rangeD1])

lemma is-lub-thelub: [chain S; range S <| z] = (|Ji. S9) C «
by (blast dest: cpo intro: is-lub-lub [THEN is-lubD2])

lemma lub-below-iff: chain S = (| |i. S4) CE z +— (Vi. S C z)
by (simp add: is-lub-below-iff [OF cpo-lubl] is-ub-def)

lemma [ub-below: [chain S; N\i. SiC z] = (|]i. S C =
by (simp add: lub-below-iff)

lemma below-lub: [chain S; x C Si] = « C (|] S i)
by (erule below-trans, erule is-ub-thelub)

lemma lub-range-mono: [range X C range Y; chain Y; chain X]| = (|]i. X @)
C (s Y9

apply (erule lub-below)

apply (subgoal-tac 3j. X i = Y j)

apply clarsimp

apply (erule is-ub-thelub)

apply auto

done

lemma [ub-range-shift: chain ¥ = (| |i. Y (i + j)) = (IJi. Y 9)
apply (rule below-antisym)
apply (rule lub-range-mono)
apply fast
apply assumption
apply (erule chain-shift)
apply (rule lub-below)
apply assumption
apply (rule-tac i=i in below-lub)
apply (erule chain-shift)
apply (erule chain-mono)
apply (rule le-addl)
done

THEORY “Cpo” 17

lemma mazinch-is-thelub: chain Y = maz-in-chain i ¥ = ((| 4. Y i) = Y i)
apply (rule iffI)
apply (fast intro!: lub-eql lub-finchl)
apply (unfold maz-in-chain-def)
apply (safe intro!: below-antisym)
apply (fast elim!: chain-mono)
apply (drule sym)
apply (force elim!: is-ub-thelub)
done

the C relation between two chains is preserved by their lubs

lemma lub-mono: [chain X; chain Y; Ni. X1 C Yi] = (|]i. X) C (|]i. Y9)
by (fast elim: lub-below below-lub)

the = relation between two chains is preserved by their lubs

lemma lub-eq: (N\i. X i=Yi)= (IJi. X9) = (] Y1)
by simp

lemma ch2ch-lub:
assumes 1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (Nj. Y ij)
shows chain (\i. | |j. Y i7)
apply (rule chainl)
apply (rule lub-mono [OF 2 2])
apply (rule chainE [OF 1])
done

lemma diag-lub:
assumes I1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (Nj. Y ij)
shows (| |i. |]j. Yij) = (i Yii)
proof (rule below-antisym)
have 3: chain (\i. Y i 1)
apply (rule chainl)
apply (rule below-trans)
apply (rule chainE [OF 1])
apply (rule chainE [OF 2])
done
have /: chain (M\i. | |j. Y ij)
by (rule ch2ch-lub [OF 1 2])
show (| |4. [|4. Yij) C (e Yid)
apply (rule lub-below [OF 4])
apply (rule lub-below [OF 2])
apply (rule below-lub [OF 3])
apply (rule below-trans)
apply (rule chain-mono [OF 1 maz.cobounded1])
apply (rule chain-mono [OF 2 maz.cobounded?2))
done

Py

THEORY “Cpo”

show (| |i. Yid) C (] |]j. Yij)
apply (rule lub-mono [OF 3 4])
apply (rule is-ub-thelub [OF 2])
done
qed

lemma ez-lub:
assumes I1: Aj. chain (Mi. Y ij)
assumes 2: Ai. chain (\j. Y ij)

shows (|]7. | |j. Yij) = (Lj. Ll Yij)
by (simp add: diag-lub 1 2)

end

2.2 Pointed cpos

The class pcpo of pointed cpos

class pcpo = cpo +
assumes least: dz. Vy. 2 C y
begin

definition bottom :: 'a (<L»)
where bottom = (THE z. Vy. z C y)

lemma minimal [iff]: L C x
unfolding bottom-def
apply (rule the1l2)
apply (rule ex-ex1I)
apply (rule least)
apply (blast intro: below-antisym)

apply simp
done

end

Old "UU" syntax:
abbreviation (input) UU = bottom

Simproc to rewrite L = z to x = L.

setup <Reorient-Proc.add (fn Const- <bottom -» => true | - => false)»
simproc-setup reorient-bottom (L = x) = <K Reorient-Proc.procy

useful lemmas about L
lemma below-bottom-iff [simp]: t C L «— = L
by (simp add: po-eq-conv)

lemma eg-bottom-iff: t = L +— z C L
by simp

18

THEORY “Cpo”

lemma bottoml: x C 1 — =z = L
by (subst eg-bottom-iff)

lemma lub-eg-bottom-iff: chain ¥ = (|]i. Y i) = L +— (Vi. Yi= 1)
by (simp only: eq-bottom-iff lub-below-iff)

2.3 Chain-finite and flat cpos

further useful classes for HOLCF domains

class chfin = po +
assumes chfin: chain Y = I n. maz-in-chain n Y
begin

subclass cpo
apply standard
apply (frule chfin)
apply (blast intro: lub-finchl)
done

lemma chfin2finch: chain Y = finite-chain Y
by (simp add: chfin finite-chain-def)

end

class flat = pcpo +
assumes az-flat: tCy =z =1 Vzr=y
begin

subclass chfin
proof
fix Y
assume *: chain Y
show I n. maz-in-chain n Y
apply (unfold maz-in-chain-def)
apply (cases Vi. Yi= 1)
apply simp
apply simp
apply (erule exE)
apply (rule-tac z=i in ezl)
apply clarify
using * apply (blast dest: chain-mono ax-flat)
done
qed

lemma flat-below-iff: x CE y+—z=1LVz=y
by (safe dest!: az-flat)

lemma flat-eq: a # L = a C b= (a =)

19

THEORY “Cpo” 20

by (safe dest!: az-flat)

end

2.4 Discrete cpos

class discrete-cpo = below +
assumes discrete-cpo [simp]: x C y «— z =y
begin

subclass po
by standard simp-all

In a discrete cpo, every chain is constant

lemma discrete-chain-const:
assumes S: chain S
shows Jz. S = (Ai. z)
proof (intro exl ext)
fix 7 :: nat
from S le0 have S 0 C S i by (rule chain-mono)
then have S 0 = S i by simp
then show S i = S 0 by (rule sym)
qed

subclass chfin
proof
fix S :: nat = a
assume S: chain S
then have 3z. S = (\i.)
by (rule discrete-chain-const)
then have max-in-chain 0 S
by (auto simp: max-in-chain-def)
then show 3i. maz-in-chain i S ..
qed

end

3 Continuity and monotonicity

3.1 Definitions

definition monofun :: (‘a::po = 'b::po) = bool — monotonicity
where monofun f «+— Vzy. 2 Cy — fz C fy)

definition cont :: (‘a = 'b) = bool
where cont f = (VY. chain Y — range (Mi. f (Y i) <<| f (IUi. Y 7))

lemma contl: (AY. chain Y = range (\i. f (Y i) <<| f (|]é. Y i)) = cont f
by (simp add: cont-def)

THEORY “Cpo” 21

lemma contE: cont f = chain Y = range (Mi. f (Y i) <<| f (Ui. Y 9)
by (simp add: cont-def)

lemma monofunl: (Nzy. 2 C y = fz C fy) = monofun f
by (simp add: monofun-def)

lemma monofunk: monofun f = 2 Cy = foz C fy
by (simp add: monofun-def)

3.2 Equivalence of alternate definition

monotone functions map chains to chains

lemma ch2ch-monofun: monofun f = chain ¥ = chain (Ai. f (Y 7))
apply (rule chainl)
apply (erule monofunE)
apply (erule chainE)
done

monotone functions map upper bound to upper bounds

lemma ub2ub-monofun: monofun f = range Y <| v = range (Xi. f (Y 7)) <]
fu

apply (rule ub-rangel)

apply (erule monofunE)

apply (erule ub-rangeD)

done

a lemma about binary chains

lemma binchain-cont: cont f = x C y = range (Aiznat. f (if i = 0 then x else
y) <<|fy

apply (subgoal-tac f (|| i::nat. if i = 0 then x else y) = fy)

apply (erule subst)

apply (erule contE)

apply (erule bin-chain)

apply (rule-tac f=f in arg-cong)

apply (erule is-lub-bin-chain [THEN lub-eql])

done

continuity implies monotonicity

lemma cont2mono: cont f = monofun f
apply (rule monofunl)
apply (drule (1) binchain-cont)
apply (drule-tac i=0 in is-lub-rangeD1)
apply simp
done

lemmas cont2monofunE = cont2mono [THEN monofunFE)

THEORY “Cpo” 22

lemmas ch2ch-cont = cont2mono [THEN ch2ch-monofun)

continuity implies preservation of lubs

lemma cont2contiubE: cont f = chain ¥ = f (| |i. Y i) = (Ui f (Y 9))
apply (rule lub-eql [symmetric])
apply (erule (1) contE)
done

lemma contl2:
fixes f : 'a = b
assumes mono: monofun f
assumes below: \Y. [chain Y; chain (Ai. f (Y)] = f (Ui Yi)C (] f
(v)
shows cont f
proof (rule contl)
fix YV :: nat = 'a
assume Y: chain Y
with mono have fY: chain (Ai. f (Y ©))
by (rule ch2ch-monofun)
have (| |i. f (Y1) =f (|]i. Y9)
apply (rule below-antisym)
apply (rule lub-below [OF fY])
apply (rule monofunE [OF mono))
apply (rule is-ub-thelub [OF Y])
apply (rule below [OF Y fY])
done
with fY show range (Ai. f (Y i) <<| f (4. Y9)
by (rule thelubE)
qed

3.3 Collection of continuity rules

named-theorems cont2cont continuity intro rule

3.4 Continuity of basic functions

The identity function is continuous

lemma cont-id [simp, cont2cont]: cont (Az. x)
apply (rule contl)
apply (erule cpo-lubl)
done

constant functions are continuous

lemma cont-const [simp, cont2cont]: cont (Az. c)
using is-lub-const by (rule contl)

application of functions is continuous

lemma cont-apply:

THEORY “Cpo” 23

fixes f::'a='b='cand t:: '"a="b
assumes 1: cont (Az. t)
assumes 2: Az. cont (Ay. fz y)
assumes 3: Ay. cont (Az. fz y)
shows cont (Az. (f z) (t z))
proof (rule contI2 [OF monofunl])
fixzy:'a
assume z C y
then show fz (tz) C fy (ty)
by (auto intro: cont2monofunE [OF 1]
cont2monofunE [OF 2]
cont2monofunE [OF 3]
below-trans)
next
fix Y :: nat = ‘a
assume chain Y
then show f (| |i. Y i) (¢t (i YY) C (i f (Vi) (¢ (Y4)
by (simp only: cont2contlubE [OF 1] ch2ch-cont [OF 1]
cont2contlubE [OF 2] ch2ch-cont [OF 2]
cont2contlubE [OF 8] ch2ch-cont [OF 3]
diag-lub below-refl)
qged

lemma cont-compose: cont ¢ = cont (A\z. f x) = cont (A\z. ¢ (f z))
by (rule cont-apply [OF - - cont-const))

Least upper bounds preserve continuity

lemma cont2cont-lub [simp):
assumes chain: N\z. chain (Mi. F i z)
and cont: N\i. cont (A\z. Fix)
shows cont (Az. | |i. F i x)
apply (rule conti2)
apply (simp add: monofunl cont2monofunE [OF cont] lub-mono chain)
apply (simp add: cont2contlubE [OF cont))
apply (simp add: diag-lub ch2ch-cont [OF cont] chain)
done

if-then-else is continuous

lemma cont-if [simp, cont2cont]: cont f = cont g = cont (Ax. if b then f x else

g x)
by (induct b) simp-all

3.5 Finite chains and flat pcpos

Monotone functions map finite chains to finite chains.

lemma monofun-finch2finch: monofun f = finite-chain Y = finite-chain (An.

f(Yn))
by (force simp add: finite-chain-def ch2ch-monofun maz-in-chain-def)

THEORY “Cpo”

The same holds for continuous functions.

lemma cont-finch2finch: cont f = finite-chain ¥ = finite-chain (An. f (Y

by (rule cont2mono [THEN monofun-finch2finch])

All monotone functions with chain-finite domain are continuous.

lemma chfindom-monofun2cont: monofun f = cont f
for f :: ‘az:chfin = b
apply (erule contI2)
apply (frule chfin2finch)
apply (clarsimp simp add: finite-chain-def)
apply (subgoal-tac maz-in-chain i (Mi. f (Y ©)))
apply (simp add: mazinch-is-thelub ch2ch-monofun)
apply (force simp add: maz-in-chain-def)
done

PRy

All strict functions with flat domain are continuous.

lemma flatdom-strict2mono: f L = 1 = monofun f
for f :: 'a::flat = "b::pcpo
apply (rule monofunlI)
apply (drule az-flat)
apply auto
done

lemma flatdom-strict2cont: f L = 1 = cont f
for f :: ‘a::flat = "b::pepo
by (rule flatdom-strict2mono [THEN chfindom-monofun2cont])

All functions with discrete domain are continuous.

lemma cont-discrete-cpo [simp, cont2cont]: cont f
for f :: 'a::discrete-cpo = 'b
apply (rule contl)
apply (drule discrete-chain-const, clarify)
apply simp
done

4 Admissibility and compactness

4.1 Definitions

context cpo
begin

definition adm :: (‘a = bool) = bool
where adm P +— (VY. chain Y — (Vi. P (Y i)) — P (|]i. Y 1))

lemma admlI: (Y. [chain Y;Vi. P (Yi)] = P (|Ji. Vi) = adm P
unfolding adm-def by fast

24

n))

THEORY “Cpo” 25

lemma admD: adm P = chain Y = (A\i. P (Y i)) = P (|Ji. Y1)
unfolding adm-def by fast

lemma admD2: adm (Ax. = P z) = chain Y = P (|]i. Y i) = 3i. P (Y i)
unfolding adm-def by fast

lemma triv-adml: Vz. P x = adm P
by (rule adml) (erule spec)

end

4.2 Admissibility on chain-finite types

For chain-finite (easy) types every formula is admissible.

lemma adm-chfin [simp]: adm P for P :: 'a::chfin = bool
by (rule adml, frule chfin, auto simp add: maxinch-is-thelub)

4.3 Admissibility of special formulae and propagation

context cpo
begin

lemma adm-const [simp]: adm (Az. t)
by (rule adml, simp)

lemma adm-conj [simp]: adm (Az. P z) = adm (Az. Q z) = adm (Az. Pz A

Q)
by (fast intro: adml elim: admD)

lemma adm-all [simp]: (\y. adm (Az. Pz y)) = adm (Az. Vy. Pz y)
by (fast intro: adml elim: admD)

lemma adm-ball [simp]: (\y. y € A = adm (Az. Pz y)) = adm (Az. VyeA.
Pzy)
by (fast intro: adml elim: admD)

Admissibility for disjunction is hard to prove. It requires 2 lemmas.

lemma adm-disj-lemmal:
assumes adm: adm P
assumes chain: chain Y
assumes P: Vi. 3j>i. P (Y j)
shows P (| |i. Y1)
proof —
define f where fi = (LEAST j. i < j A P (Y}j)) for i
have chain’: chain (Mi. Y (f ©))
unfolding f-def
apply (rule chainl)
apply (rule chain-mono [OF chain))
apply (rule Least-le)

THEORY “Cpo” 26

apply (rule LeastI2-ex)
apply (simp-all add: P)
done
have f1: \i. ¢ < fiand f2: Ai. P (Y (fi))
using Leastl-ex [OF P [rule-format]] by (simp-all add: f-def)
have lub-eq: (| |i. Y i) = (] Y (f1))
apply (rule below-antisym)
apply (rule lub-mono [OF chain chain’])
apply (rule chain-mono [OF chain f1])
apply (rule lub-range-mono [OF - chain chain’])
apply clarsimp
done
show P (| |i. Y i)
unfolding lub-eq using adm chain’ f2 by (rule admD)
qed

lemma adm-disj-lemma2: Vn:nat. Pn VvV Q@ n = (Vi. 3j>i. Pj) Vv (Vi. 3j>1.
QJ)

apply (erule contrapos-pp)

apply (clarsimp, rename-tac a b)

apply (rule-tac z==maz a b in exl)

apply simp

done

lemma adm-disj [simp]: adm (Az. P £) = adm (Az. Q z) = adm (Az. Pz V
Q z)

apply (rule admlI)

apply (erule adm-disj-lemma2 [THEN disjE))

apply (erule (2) adm-disj-lemmal [THEN disjI1])

apply (erule (2) adm-disj-lemmal [THEN disjI2])

done

lemma adm-imp [simp]: adm (Ax. = P z) = adm (Az. Q) = adm (A\z. Pz
— Q)
by (subst imp-conv-disj) (rule adm-disj)

lemma adm-iff [simp]: adm (Az. Pz — Q) = adm (M\z. Q 2 — P 1) =
adm (A\z. Pz +— Q x)
by (subst iff-conv-conj-imp) (rule adm-conyj)

end

admissibility and continuity

lemma adm-below [simp]: cont (Az. u) = cont (A\z. v) = adm (Az. uz C
v T)
by (simp add: adm-def cont2contlubE lub-mono ch2ch-cont)

lemma adm-eq [simp]: cont (A\z. u £) = cont (A\z. vx) = adm (A\z. uz = v 1)
by (simp add: po-eq-conv)

THEORY “Cpo” 27

lemma adm-subst: cont (Az. t ©) = adm P = adm (Az. P (t z))
by (simp add: adm-def cont2contlubE ch2ch-cont)

lemma adm-not-below [simp]: cont (Az. t ©) = adm (Az. t z £ u)
by (rule admlI) (simp add: cont2contlubE ch2ch-cont lub-below-iff)

4.4 Compactness

context cpo
begin

definition compact :: 'a = bool
where compact k = adm (Az. k £ z)

lemma compactl: adm (\z. k £ x) = compact k
unfolding compact-def .

lemma compactD: compact k = adm (Az. k £ z)
unfolding compact-def .

lemma compactI2: (\Y. [chain Y; 2 C (|]i. Yi)] = 3i. 2 C Y i) = compact
T
unfolding compact-def adm-def by fast

lemma compactD2: compact x => chain ¥ =z C (| |i. Yi) = Fi. 2 C Y
unfolding compact-def adm-def by fast

lemma compact-below-lub-iff: compact t = chain Y = z C (| |i. Yi) +— (4.
xC Yi)
by (fast intro: compactD2 elim: below-lub)

end

lemma compact-chfin [simp]: compact x for z :: 'a::chfin
by (rule compact] [OF adm-chfin])

lemma compact-imp-maz-in-chain: chain Y => compact (| |i. Y i) = 3i. maz-in-chain
1Y

apply (drule (1) compactD2, simp)

apply (erule exE, rule-tac x=i in exl)

apply (rule max-in-chainl)

apply (rule below-antisym)

apply (erule (1) chain-mono)

apply (erule (1) below-trans [OF is-ub-thelub])

done

admissibility and compactness

lemma adm-compact-not-below [simp]:

THEORY “Cpo” 28

compact k = cont (A\z. t) = adm (A\z. k L t x)
unfolding compact-def by (rule adm-subst)

lemma adm-neqg-compact [simpl: compact k = cont (Az. t) = adm (Az. t

4 k)
by (simp add: po-eq-conv)

lemma adm-compact-neq [simp]: compact k = cont (Az. t) = adm (\z. k #
tz)
by (simp add: po-eq-conv)

lemma compact-bottom [simp, intro]: compact L
by (rule compactl) simp

Any upward-closed predicate is admissible.

lemma adm-upward:
assumes P: Az y. [Pz; 2 C y] = Py
shows adm P
by (rule adml, drule spec, erule P, erule is-ub-thelub)

lemmas adm-lemmas =
adm-const adm-conj adm-all adm-ball adm-disj adm-imp adm-iff
adm-below adm-eq adm-not-below
adm-compact-not-below adm-compact-neq adm-neg-compact

5 Class instances for the full function space

5.1 Full function space is a partial order

instantiation fun :: (type, below) below
begin

definition below-fun-def: (C) = (Afg. V. fz C g x)

instance ..
end

instance fun :: (type, po) po
proof
fix fgh:'a="b
show f C f
by (simp add: below-fun-def)
show fCyg=gCEf=[=yg
by (simp add: below-fun-def fun-eq-iff below-antisym)
show fCg= gC h=fLCh
unfolding below-fun-def by (fast elim: below-trans)
qed

lemma fun-below-iff: f C g +— (Vz. fz C g x)

THEORY “Cpo”

by (simp add: below-fun-def)

lemma fun-belowl: (Az. fr T gz) = fCyg
by (simp add: below-fun-def)

lemma fun-belowD: fC g —= fz C gx
by (simp add: below-fun-def)

5.2 Full function space is chain complete

Properties of chains of functions.

lemma fun-chain-iff: chain S <— (Vz. chain (\i. S i z))
by (auto simp: chain-def fun-below-iff)

lemma ch2ch-fun: chain S => chain (A\i. S i z)
by (simp add: chain-def below-fun-def)

lemma ch2ch-lambda: (\z. chain (Ni. S i z)) = chain S
by (simp add: chain-def below-fun-def)

Type ‘a = b is chain complete

lemma is-lub-lambda: (\z. range (Mi. Yiz) <<| fz) = range ¥ <<| f
by (simp add: is-lub-def is-ub-def below-fun-def)

lemma is-lub-fun: chain S = range S <<| (Az. | |i. S i)
for S :: nat = 'a::type = 'b
apply (rule is-lub-lambda)
apply (rule cpo-lubl)
apply (erule ch2ch-fun)
done

lemma [ub-fun: chain S = (| |i. Si) = (Az. |]i. Six)
for S :: nat = ‘a::type = b
by (rule is-lub-fun [THEN lub-eql])

instance fun :: (type, cpo) cpo
by intro-classes (rule exl, erule is-lub-fun)

instance fun :: (type, discrete-cpo) discrete-cpo
proof
fix fg:'a="b
show fEg«— f=y
by (simp add: fun-below-iff fun-eq-iff)
qed

5.3 Full function space is pointed

lemma minimal-fun: (Az. L) C f
by (simp add: below-fun-def)

29

THEORY “Cpo” 30

instance fun :: (type, pcpo) pepo
by standard (fast intro: minimal-fun)

lemma inst-fun-pcpo: L = (Az. 1)
by (rule minimal-fun [THEN bottomlI, symmetric])

lemma app-strict [simp]: L x = L
by (simp add: inst-fun-pcpo)

lemma lambda-strict: (Az. L) = L
by (rule bottoml, rule minimal-fun)

5.4 Propagation of monotonicity and continuity

The lub of a chain of monotone functions is monotone.

lemma adm-monofun: adm monofun
by (rule adml) (simp add: lub-fun fun-chain-iff monofun-def lub-mono)

The lub of a chain of continuous functions is continuous.

lemma adm-cont: adm cont
by (rule adml) (simp add: lub-fun fun-chain-iff)

Function application preserves monotonicity and continuity.

lemma mono2mono-fun: monofun f = monofun (A\z. fz y)
by (simp add: monofun-def fun-below-iff)

lemma cont2cont-fun: cont f = cont (Az. fz y)
apply (rule contlI2)
apply (erule cont2mono [THEN mono2mono-fun))
apply (simp add: cont2contlubE lub-fun ch2ch-cont)
done

lemma cont-fun: cont (Af. f z)
using cont-id by (rule cont2cont-fun)

simproc-setup apply-cont (<cont (Af. E f)») = «
fmn-=> fn ctet => fn lhs =>
(case Thm.term-of lhs of
Const- <cont - - for <Abs (-, -, expr)y =>
if case strip-comb expr of (f, args) =>
f = Bound 0 andalso not (exists Term.is-dependent args)
(x since <\f. E f» is too permissive, we ensure here that the term
is of the form <\f. f ..o, with <f> no longer appearing in <...» x)
then
let
val tac = Metis-Tactic.metis-tac [no-types| combs ctat Q{thms cont2cont-fun
cont-id}

THEORY “Cpo” 31

val thm =
Goal.prove-internal ctzt [| instantiate <lhs in cprop <lhs = Truey»
(fn - => tac 1)
in SOME (mk-meta-eq thm) end
else NONE
| - => NONE)
)

lemma cont (Af. fz) and cont (\f. fz y) and cont (Af. fz y 2)
by simp-all
Lambda abstraction preserves monotonicity and continuity. (Note (Az. Ay.
fzy)=1F)
lemma mono2mono-lambda: (A\y. monofun (A\z. f x y)) = monofun f

by (simp add: monofun-def fun-below-iff)

lemma cont2cont-lambda [simp]:
assumes f: \y. cont (\z. fz y)
shows cont f
by (rule contl, rule is-lub-lambda, rule contE [OF f])

What D.A.Schmidt calls continuity of abstraction; never used here

lemma contlub-lambda: (A\z. chain (Mi. S iz)) = (Az. | |i. Siz) = (]i (Az.
S i)

for S :: nat = 'a::type = b

by (simp add: lub-fun ch2ch-lambda)

6 The cpo of cartesian products

6.1 Unit type is a pcpo

instantiation unit :: discrete-cpo
begin

definition below-unit-def [simp]: x T (y::unit) «— True

instance
by standard simp

end

instance unit :: pcpo
by standard simp
6.2 Product type is a partial order

instantiation prod :: (below, below) below
begin

THEORY “Cpo”

32

definition below-prod-def: (E) = Apl p2. (fst pI C fst p2 A snd pl C snd p2)

instance ..
end

instance prod :: (po, po) po
proof
fixzyz:'ax'b
show z C z
by (simp add: below-prod-def)
show s Cy—=yCorx=— 2=y
unfolding below-prod-def prod-eq-iff
by (fast intro: below-antisym)
showzrz Cy— yLC 2=z C 2
unfolding below-prod-def
by (fast intro: below-trans)
qed

6.3 Monotonicity of Pair, fst, snd

lemma prod-belowl: fst p C fst ¢ = snd p C snd g = p C ¢

by (simp add: below-prod-def)

lemma Pair-below-iff [simp]: (a, b)) C (¢, d) «—aC cADLC d

by (simp add: below-prod-def)

Pair (-,-) is monotone in both arguments
lemma monofun-pairl: monofun (Az. (z, y))

by (simp add: monofun-def)

lemma monofun-pair2: monofun (\y. (z, y))
by (simp add: monofun-def)

lemma monofun-pair: z1 C 22 — yl C y2 = (1, y1) C (22, y2)

by simp

lemma ch2ch-Pair [simp]: chain X => chain Y = chain (\i. (X i, Y 1))

by (rule chainl, simp add: chainE)

fst and snd are monotone
lemma fst-monofun: t C y = fst x C fst y
by (simp add: below-prod-def)

lemma snd-monofun: © C y = snd x C snd y
by (simp add: below-prod-def)

lemma monofun-fst: monofun fst
by (simp add: monofun-def below-prod-def)

THEORY “Cpo” 33

lemma monofun-snd: monofun snd
by (simp add: monofun-def below-prod-def)

lemmas ch2ch-fst [simp] = ch2ch-monofun [OF monofun-fst]
lemmas ch2ch-snd [simp] = ch2ch-monofun [OF monofun-snd]

lemma prod-chain-cases:
assumes chain: chain Y
obtains A B
where chain A and chain B and Y = (\i. (A 4, B 1))
proof
from chain show chain (\i. fst (Y ©))
by (rule ch2ch-fst)
from chain show chain (\i. snd (Y 7))
by (rule ch2ch-snd)
show Y = (Ai. (fst (Y i), snd (Y 1)))
by simp
qed

6.4 Product type is a cpo

lemma is-lub-Pair: range A <<| * = range B <<| y = range (Ai. (4 i, B 1))
<<l (z,)
by (simp add: is-lub-def is-ub-def below-prod-def)

lemma lub-Pair: chain A = chain B = (| |i. (A 4, Bi)) = (¢ A i, |]i. Bi)
for A :: nat = 'a and B :: nat = b
by (fast intro: lub-eql is-lub-Pair elim: thelubF)

lemma is-lub-prod:
fixes S :: nat = ('a x 'b)
assumes chain S
shows range S <<| (|]i. fst (S i), |] snd (S 1))

using assms by (auto elim: prod-chain-cases simp: is-lub-Pair cpo-lubl)

lemma lub-prod: chain S = (|]i. S i) = (] fst (S i), 4. snd (S 7))
for S :: nat = 'a x 'b
by (rule is-lub-prod [THEN lub-eql))

instance prod :: (cpo, cpo) cpo
proof
fix S :: nat = (‘a x 'b)
assume chain S
then have range S <<| (| |7. fst (S 9), |]i. snd (S 7))
by (rule is-lub-prod)
then show Jz. range S <<| z ..
qed

THEORY “Cpo”

instance prod :: (discrete-cpo, discrete-cpo) discrete-cpo
proof
showz Cy«+—z=yforzy:'ax’'d
by (simp add: below-prod-def prod-eq-iff)
qed

6.5 Product type is pointed

lemma minimal-prod: (L, L) C p
by (simp add: below-prod-def)

instance prod :: (pcpo, pcpo) pepo
by intro-classes (fast intro: minimal-prod)

lemma inst-prod-pepo: L = (L, 1)
by (rule minimal-prod [THEN bottomlI, symmetric])

lemma Pair-bottom-iff [simp]: (z,y) = L+— =L Ay=1
by (simp add: inst-prod-pcpo)

lemma fst-strict [simp]: fst L = L
unfolding inst-prod-pcpo by (rule fst-conv)

lemma snd-strict [simp]: snd L = L
unfolding inst-prod-pcpo by (rule snd-conv)

lemma Pair-strict [simp]: (L, 1) = L
by simp

lemma split-strict [simpl: case-prod f L = f 1 L
by (simp add: split-def)

6.6 Continuity of Pair, fst, snd

lemma cont-pairl: cont (A\z. (z, y))
apply (rule contl)
apply (rule is-lub-Pair)
apply (erule cpo-lubl)
apply (rule is-lub-const)
done

lemma cont-pair2: cont (Ay. (z, y))
apply (rule contl)
apply (rule is-lub-Pair)
apply (rule is-lub-const)
apply (erule cpo-lubl)
done

lemma cont-fst: cont fst

34

THEORY “Cpo”

apply (rule contl)

apply (simp add: lub-prod)

apply (erule cpo-lubl [OF ch2ch-fst])
done

lemma cont-snd: cont snd
apply (rule contl)
apply (simp add: lub-prod)
apply (erule cpo-lubl [OF ch2ch-snd))
done

lemma cont2cont-Pair [simp, cont2cont]:
assumes f: cont (A\z. f)
assumes g: cont (\z. g)
shows cont (Az. (f z, g z))
apply (rule cont-apply [OF f cont-pairl])
apply (rule cont-apply [OF g cont-pair2])
apply (rule cont-const)
done

lemmas cont2cont-fst [simp, cont2cont] = cont-compose [OF cont-fst)
lemmas cont2cont-snd [simp, cont2cont] = cont-compose [OF cont-snd)

lemma cont2cont-case-prod:
assumes fI: Aa b. cont (A\z. fz ab)
assumes f2: Az b. cont (Aa. fz a b)
assumes f3: Az a. cont (\b. fz a D)
assumes g: cont (\z. g)
shows cont (Az. case g x of (a, b) = fz ab)
unfolding split-def
apply (rule cont-apply [OF g))
apply (rule cont-apply [OF cont-fst f2])
apply (rule cont-apply [OF cont-snd f3])
apply (rule cont-const)
apply (rule f1)
done

lemma prod-contl:
assumes fI1: A\y. cont (A\z. [(z, y))
assumes f2: Az. cont (Ay. f (z, y))
shows cont f
proof —
have cont (A(z, y). [(z, v))
by (intro cont2cont-case-prod f1 f2 cont2cont)
then show cont f
by (simp only: case-prod-eta)
qed

35

THEORY “Cpo” 36

lemma prod-cont-iff: cont f «— (Vy. cont (Az. [(z, y))) A (Vz. cont (\y. f (z,
y)))
apply safe
apply (erule cont-compose [OF - cont-pairl])
apply (erule cont-compose [OF - cont-pair2])
apply (simp only: prod-contl)
done

lemma cont2cont-case-prod’ [simp, cont2cont]:
assumes f: cont (Ap. f (fst p) (fst (snd p)) (snd (snd p)))
assumes g: cont (\z. g)
shows cont (Az. case-prod (f z) (g z))
using assms by (simp add: cont2cont-case-prod prod-cont-iff)

The simple version (due to Joachim Breitner) is needed if either element
type of the pair is not a cpo.

lemma cont2cont-split-simple [simp, cont2cont]:
assumes Aa b. cont (\z. fx a b)
shows cont (Az. case p of (a, b) = fzab)
using assms by (cases p) auto

Admissibility of predicates on product types.

lemma adm-case-prod [simp):
assumes adm (Az. Pz (fst (fz)) (snd (f z)))
shows adm (Az. case fz of (a, b) = Pz ab)
unfolding case-prod-beta using assms .

6.7 Compactness and chain-finiteness

lemma fst-below-iff: fst 2 C y +— z C (y, snd z) for z :: 'a x 'b
by (simp add: below-prod-def)

lemma snd-below-iff: snd t C y «— z C (fst z, y) for z :: ‘a x 'b
by (simp add: below-prod-def)

lemma compact-fst: compact ¥ = compact (fst z)
by (rule compactl) (simp add: fst-below-iff)

lemma compact-snd: compact x = compact (snd x)
by (rule compactl) (simp add: snd-below-iff)

lemma compact-Pair: compact © = compact y = compact (z, y)
by (rule compactl) (simp add: below-prod-def)

lemma compact-Pair-iff [simp]: compact (z, y) +— compact x A compact y
apply (safe intro!: compact-Pair)
apply (drule compact-fst, simp)
apply (drule compact-snd, simp)
done

THEORY “Cpodef” 37

instance prod :: (chfin, chfin) chfin
apply intro-classes
apply (erule compact-imp-maz-in-chain)
apply (case-tac | |i. Y i, simp)
done

7 Discrete cpo types
datatype ‘a discr = Discr 'a:type

7.1 Discrete cpo class instance

instantiation discr :: (type) discrete-cpo
begin

definition ((C) :: ‘a discr = 'a discr = bool) = (=)

instance
by standard (simp add: below-discr-def)

end

7.2 wundiscr
definition undiscr :: 'a::type discr = 'a

where undiscr z = (case x of Discr y = y)

lemma undiscr-Discr [simp]: undiscr (Discr x) = x
by (simp add: undiscr-def)

lemma Discr-undiscr [simp]: Discr (undiscr y) = y
by (induct y) simp

end

8 Subtypes of pcpos

theory Cpodef

imports Cpo

keywords pcpodef cpodef :: thy-goal-defn
begin

8.1 Proving a subtype is a partial order

A subtype of a partial order is itself a partial order, if the ordering is defined
in the standard way.

theorem (in below) typedef-class-po:

THEORY “Cpodef”

fixes Abs :: 'bi:po = 'a
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
shows class.po below
apply (rule class.po.intro)
apply (unfold below)
apply (rule below-refl)
apply (fact below-trans)
apply (rule type-definition. Rep-inject [OF type, THEN iffD1])
apply (fact below-antisym)
done

lemmas typedef-po-class = below.typedef-class-po [THEN po.intro-of-class)

8.2 Proving a subtype is finite

lemma typedef-finite-UNIV:
fixes Abs :: 'a::type = 'bi:type
assumes type: type-definition Rep Abs A
shows finite A = finite (UNIV :: b set)
proof —
assume finite A
then have finite (Abs ‘ A)
by (rule finite-imagel)
then show finite (UNIV :: 'b set)
by (simp only: type-definition. Abs-image [OF typel)
qed

8.3 Proving a subtype is chain-finite

lemma ch2ch-Rep:
assumes below: (C) = Az y. Rep x C Rep y
shows chain S = chain (\i. Rep (S 1))
unfolding chain-def below .

theorem typedef-chfin:

fixes Abs :: 'a::chfin = 'b::po

assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y

shows OFCLASS('b, chfin-class)

apply intro-classes

apply (drule ch2ch-Rep [OF below])

apply (drule chfin)

apply (unfold maz-in-chain-def)

apply (simp add: type-definition. Rep-inject [OF type])

done

38

THEORY “Cpodef” 39

8.4 Proving a subtype is complete

A subtype of a cpo is itself a cpo if the ordering is defined in the standard
way, and the defining subset is closed with respect to limits of chains. A set
is closed if and only if membership in the set is an admissible predicate.

lemma typedef-is-lubl:
assumes below: (C) = Az y. Rep z C Rep y
shows range (Ai. Rep (S 7)) <<| Rep x = range S <<|
by (simp add: is-lub-def is-ub-def below)

lemma Abs-inverse-lub-Rep:
fixes Abs :: 'a::cpo = 'b:po
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and adm: adm (Az. z € A)
shows chain S = Rep (Abs (|]i. Rep (S 7)) = (|4 Rep (S 1))
apply (rule type-definition. Abs-inverse [OF type])
apply (erule admD [OF adm ch2ch-Rep [OF below)])
apply (rule type-definition.Rep [OF type])
done

theorem typedef-is-lub:
fixes Abs :: 'a::cpo = 'bi:po
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (Az. x € A)
assumes S: chain S
shows range S <<| Abs (|]i. Rep (S 7))
proof —
from S have chain (\i. Rep (S 1))
by (rule ch2ch-Rep [OF below))
then have range (Ai. Rep (S 7)) <<| ([]7. Rep (S 7))
by (rule cpo-lubl)
then have range (Ai. Rep (S i)) <<| Rep (Abs (| |i. Rep (S 1)))
by (simp only: Abs-inverse-lub-Rep [OF type below adm S])
then show range S <<| Abs (| |i. Rep (S 7))
by (rule typedef-is-lubl [OF below])
qed

lemmas typedef-lub = typedef-is-lub [THEN lub-eql]

theorem typedef-cpo:
fixes Abs :: ‘a::cpo = 'bipo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and adm: adm (\z. x € A)
shows OFCLASS(’b, cpo-class)
proof
fix S :: nat = b

THEORY “Cpodef” 40

assume chain S
then have range S <<| Abs (| |i. Rep (S 7))
by (rule typedef-is-lub [OF type below adm))
then show 3z. range S <<| z ..
qed

8.4.1 Continuity of Rep and Abs

For any sub-cpo, the Rep function is continuous.

theorem typedef-cont-Rep:
fixes Abs :: 'a::cpo = 'b::cpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (Az. x € A)
shows cont (Az. fz) = cont (Az. Rep (f z))
apply (erule cont-apply [OF - - cont-const))
apply (rule contl)
apply (simp only: typedef-lub [OF type below adm])
apply (simp only: Abs-inverse-lub-Rep [OF type below adml])
apply (rule cpo-lubl)
apply (erule ch2ch-Rep [OF below))
done

For a sub-cpo, we can make the Abs function continuous only if we restrict
its domain to the defining subset by composing it with another continuous
function.

theorem typedef-cont-Abs:
fixes Abs :: 'a::cpo = 'biicpo
fixes [:: 'ciicpo = 'a::epo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and adm: adm (\z. x € A)
and f-in-A: N\z. fz € A
shows cont f = cont (Az. Abs (f z))
unfolding cont-def is-lub-def is-ub-def ball-simps below
by (simp add: type-definition. Abs-inverse [OF type f-in-A])

8.5 Proving subtype elements are compact

theorem typedef-compact:
fixes Abs :: 'a::cpo = 'bi:cpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and adm: adm (Az. z € A)
shows compact (Rep k) => compact k
proof (unfold compact-def)
have cont-Rep: cont Rep
by (rule typedef-cont-Rep [OF type below adm cont-id])

THEORY “Cpodef” 41

assume adm (Az. Rep k I z)
with cont-Rep have adm (Az. Rep k L Rep x) by (rule adm-subst)
then show adm (Az. k IZ z) by (unfold below)

qed

8.6 Proving a subtype is pointed

A subtype of a cpo has a least element if and only if the defining subset has
a least element.

theorem typedef-pcpo-generic:
fixes Abs :: ‘a::cpo = 'bicpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and z-in-A: z € A
and z-least: A\o.z € A= z2LC z
shows OFCLASS(’b, pcpo-class)
apply (intro-classes)
apply (rule-tac z=Abs z in exl, rule alll)
apply (unfold below)
apply (subst type-definition. Abs-inverse [OF type z-in-A])
apply (rule z-least [OF type-definition.Rep [OF type]])
done

As a special case, a subtype of a pcpo has a least element if the defining
subset contains L.

theorem typedef-pcpo:
fixes Abs :: 'a::pcpo = 'b:icpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep 2 C Rep y
and bottom-in-A: 1L € A
shows OFCLASS('b, pcpo-class)
by (rule typedef-pcpo-generic [OF type below bottom-in-A], rule minimal)

8.6.1 Strictness of Rep and Abs

For a sub-pcpo where | is a member of the defining subset, Rep and Abs
are both strict.

theorem typedef-Abs-strict:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep x C Rep y
and bottom-in-A: 1 € A
shows Abs | = L
apply (rule bottoml, unfold below)
apply (simp add: type-definition. Abs-inverse [OF type bottom-in-A])
done

theorem typedef-Rep-strict:

THEORY “Cfun” 42

assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1. € A
shows Rep 1 = |
apply (rule typedef-Abs-strict [OF type below bottom-in-A, THEN subst])
apply (rule type-definition. Abs-inverse [OF type bottom-in-A))
done

theorem typedef-Abs-bottom-iff:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1 € A
shows z € A = (Absz = 1) =(z = 1)
apply (rule typedef-Abs-strict [OF type below bottom-in-A, THEN subst])
apply (simp add: type-definition. Abs-inject [OF type] bottom-in-A)
done

theorem typedef- Rep-bottom-iff:
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep 2 C Rep y
and bottom-in-A: 1L € A
shows (Repz = 1) = (z = 1)
apply (rule typedef-Rep-strict [OF type below bottom-in-A, THEN subst])
apply (simp add: type-definition. Rep-inject [OF type))
done

8.7 Proving a subtype is flat

theorem typedef-flat:
fixes Abs :: 'a:flat = 'b::pcpo
assumes type: type-definition Rep Abs A
and below: (C) = Az y. Rep z C Rep y
and bottom-in-A: 1L € A
shows OFCLASS('b, flat-class)
apply (intro-classes)
apply (unfold below)
apply (simp add: type-definition. Rep-inject [OF type, symmetric])
apply (simp add: typedef-Rep-strict [OF type below bottom-in-A))
apply (simp add: az-flat)
done

8.8 HOLCEF type definition package
ML-file «Tools/cpodef.ML»

end

THEORY “Cfun” 43

9 The type of continuous functions

theory Cfun
imports Cpodef
begin

9.1 Definition of continuous function type

definition cfun = {f::’a = 'b. cont f}

cpodef (a, 'b) cfun (<(<notation=<infix —»- —/ -)» [1, 0] 0) = cfun :: ('a =
'b) set
by (auto simp: cfun-def intro: cont-const adm-cont)

type-notation (ASCII)
cfun (infixr «<—>> 0)

notation (ASCII)
Rep-cfun (<(<notation=<infix $>>-$/-)> [999,1000] 999)

notation
Rep-cfun («(<notation=<infix -»»--/-)» [999,1000] 999)

9.2 Syntax for continuous lambda abstraction

syntax -cabs :: [logic, logic] = logic

parse-translation «
(* rewrite (-cabs x t) => (Abs-cfun (%ox. t)) *)

[Syntaz- Trans.mk-binder-tr (syntax-const -cabs), const-syntax < Abs-cfun)]
)

print-translation «

[(const-syntax < Abs-cfuny, fn ctet => fn [Abs abs] =>
let val (z, t) = Syntax-Trans.atomic-abs-tr' ctxt abs
in Syntaz.const syntax-const-cabsy $ © $ ¢ end)]

» — To avoid eta-contraction of body

Syntax for nested abstractions

syntax (ASCII)
-Lambda :: [cargs, logic] = logic (<(<indent=3 notation=<binder LAM>»LAM -./
) 1000, 10] 10)

syntax
-Lambda :: [cargs, logic] = logic (<(<indent=3 notation=<binder A»A -./ -)
(1000, 10] 10)

syntax-consts
-Lambda = Abs-cfun

THEORY “Cfun” 44

parse-ast-translation ¢
(x rewrite (LAM z y z. t) => (-cabs x (-cabs y (-cabs z t))) *)
(* ¢f. Syntax.lambda-ast-tr from src/Pure/Syntaz/syn-trans. ML x)

let

fun Lambda-ast-tr [pats, body] =
Ast.fold-ast-p syntax-const (-cabs»
(Ast.unfold-ast syntax-const -cargs) (Ast.strip-positions pats), body)
| Lambda-ast-tr asts = raise Ast.AST (Lambda-ast-tr, asts);

in [(syntaz-const -Lambday, K Lambda-ast-tr)] end

)

print-ast-translation ¢
(* rewrite (-cabs © (-cabs y (-cabs z t))) => (LAM xz y 2. t))
(x ¢f. Syntax.abs-ast-tr’ from src/Pure/Syntax/syn-trans. ML x)
let
fun cabs-ast-tr' asts =
(case Ast.unfold-ast-p syntaxz-const -cabs
(Ast. Appl (Ast.Constant syntax-const<-cabs) :: asts)) of
([, -) => raise Ast.AST (cabs-ast-tr', asts)
| (zs, body) => Ast.Appl
[Ast.Constant syntax-const<-Lambdas,
Ast.fold-ast syntax-const -cargs) s, body));
in [(syntax-const -cabs), K cabs-ast-tr’)] end
)

Dummy patterns for continuous abstraction
translations

A -. t = CONST Abs-cfun (A-. t)
9.3 Continuous function space is pointed
lemma bottom-cfun: L € cfun

by (simp add: cfun-def inst-fun-pcpo)

instance cfun :: (cpo, discrete-cpo) discrete-cpo
by intro-classes (simp add: below-cfun-def Rep-cfun-inject)

instance cfun :: (cpo, pcpo) pcpo
by (rule typedef-pcpo [OF type-definition-cfun below-cfun-def bottom-cfun])

lemmas Rep-cfun-strict =
typedef-Rep-strict [OF type-definition-cfun below-cfun-def bottom-cfun)]

lemmas Abs-cfun-strict =
typedef-Abs-strict [OF type-definition-cfun below-cfun-def bottom-cfun)
function application is strict in its first argument

lemma Rep-cfun-strict! [simp]: L.z = L
by (simp add: Rep-cfun-strict)

THEORY “Cfun” 45

lemma LAM-strict [simp]: (A z. L) = L
by (simp add: inst-fun-pcpo [symmetric] Abs-cfun-strict)

for compatibility with old HOLCF-Version

lemma inst-cfun-pcpo: L = (A z. L)
by simp

9.4 Basic properties of continuous functions

Beta-equality for continuous functions

lemma Abs-cfun-inverse2: cont f = Rep-cfun (Abs-cfun f) = f
by (simp add: Abs-cfun-inverse cfun-def)

lemma beta-cfun: cont f = (A z. fz)u = fu
by (simp add: Abs-cfun-inverse2)

9.4.1 Beta-reduction simproc

Given the term (A z. f z)-y, the procedure tries to construct the theorem (A
z. fz)-y = fy. If this theorem cannot be completely solved by the cont2cont
rules, then the procedure returns the ordinary conditional beta-cfun rule.

The simproc does not solve any more goals that would be solved by using
beta-cfun as a simp rule. The advantage of the simproc is that it can avoid
deeply-nested calls to the simplifier that would otherwise be caused by large
continuity side conditions.

Update: The simproc now uses rule Abs-cfun-inverse2 instead of beta-cfun,
to avoid problems with eta-contraction.

simproc-setup beta-cfun-proc (Rep-cfun (Abs-cfun f)) = «
K (fn ctat => fn ct =>
let
val f = Thm.dest-arg (Thm.dest-arg ct);
val [T, U] = Thm.dest-ctyp (Thm.ctyp-of-cterm f);
val tr = Thm.instantiate’ [SOME T, SOME U] [SOME f] (mk-meta-eq @{thm
Abs-cfun-inverse2});
val rules = Named-Theorems.get ctxt named-theorems <cont2conty;
val tac = SOLVED' (REPEAT-ALL-NEW (match-tac ctat (rev rules)));
in SOME (perhaps (SINGLE (tac 1)) tr) end)
)

Eta-equality for continuous functions
lemma eta-cfun: (A z. f-x) = f

by (rule Rep-cfun-inverse)
Extensionality for continuous functions

lemma cfun-eq-iff: f = g +— (Vz. f-x = gx)

THEORY “Cfun”

by (simp add: Rep-cfun-inject [symmetric] fun-eq-iff)

lemma cfun-eql: (N\z. f-o = gz) = f=g

by (simp add: cfun-eq-iff)
Extensionality wrt. ordering for continuous functions
lemma cfun-below-iff: f C g +— (Vz. f-z C g-x)

by (simp add: below-cfun-def fun-below-iff)

lemma cfun-belowl: (N\z. fx CE gz) = fC g
by (simp add: cfun-below-iff)

Congruence for continuous function application

lemma cfun-cong: f = g —= z =y = f-x = gy
by simp

lemma cfun-fun-cong: f = ¢ = f-x = gz
by simp

lemma cfun-arg-cong: © = y = f-x = f-y
by simp

9.5 Continuity of application
lemma cont-Rep-cfunl: cont (Af. f-z)
by (rule cont-Rep-cfun [OF cont-id, THEN cont2cont-fun))

lemma cont-Rep-cfun2: cont (Az. f-x)
using Rep-cfun [where z = f] by (simp add: cfun-def)

lemmas monofun-Rep-cfun = cont-Rep-cfun [THEN cont2mono]

lemmas monofun-Rep-cfunl = cont-Rep-cfunl [THEN cont2mono)
lemmas monofun-Rep-cfun2 = cont-Rep-cfun2 [THEN cont2mono)

contlub, cont properties of Rep-cfun in each argument
lemma contlub-cfun-arg: chain ¥ = f-(|]i. Y i) = (¢ f-(Y 1))
by (rule cont-Rep-cfun2 [THEN cont2contlubE))

lemma contlub-cfun-fun: chain F = (| |i. F i)z = (|]i. F i-x)
by (rule cont-Rep-cfunl [THEN cont2contlubE])
monotonicity of application
lemma monofun-cfun-fun: f € ¢ = f-x C gz
by (simp add: cfun-below-iff)

lemma monofun-cfun-arg: t C y = f-x C f.y
by (rule monofun-Rep-cfun2 [THEN monofunE])

46

THEORY “Cfun” 47

lemma monofun-cfun: fC g =2 C y = f-x C gy
by (rule below-trans [OF monofun-cfun-fun monofun-cfun-arg))

ch2ch - rules for the type ‘a — 'b

lemma chain-monofun: chain Y = chain (Ai. f-(Y 7))
by (erule monofun-Rep-cfun2 [THEN ch2ch-monofun])

lemma ch2ch-Rep-cfunR: chain Y = chain (Mi. f-(Y 7))
by (rule monofun-Rep-cfun2 [THEN ch2ch-monofun))

lemma ch2ch-Rep-cfunL: chain F = chain (Ai. (F i)-z)
by (rule monofun-Rep-cfunl [THEN ch2ch-monofun))

lemma ch2ch-Rep-cfun [simp]: chain F = chain ¥ = chain (Ai. (F i)-(Y 7))
by (simp add: chain-def monofun-cfun)

lemma ch2ch-LAM [simp]:
(Az. chain (Ai. S iz)) = (\i. cont (A\x. Six)) = chain (\i. A z. S i)
by (simp add: chain-def cfun-below-iff)

contlub, cont properties of Rep-cfun in both arguments
lemma [ub-APP: chain F = chain ¥ = (|i. Fi-(Y4) =i Fi-(i YV
)

by (simp add: contlub-cfun-fun contlub-cfun-arg diag-lub)

lemma lub-LAM:
assumes Az. chain (\i. F i z)
and Ai. cont (Az. Fix)
shows (| |i. Az. Fiz)=(Az. |]i Fixz)
using assms by (simp add: lub-cfun lub-fun ch2ch-lambda)

lemmas lub-distribs = lub-APP lub-LAM

strictness

lemma strictl: ffo = 1 — f-1 = 1
apply (rule bottomlI)
apply (erule subst)
apply (rule minimal [THEN monofun-cfun-arg))
done
type ‘a — 'b is chain complete

lemma [ub-cfun: chain F = (|]i. F i) = (A z. |]i. F i)
by (simp add: lub-cfun lub-fun ch2ch-lambda)

9.6 Continuity simplification procedure

cont2cont lemma for Rep-cfun

lemma cont2cont-APP [simp, cont2cont]:

THEORY “Cfun” 48

assumes f: cont (A\z. f z)
assumes t: cont (Az. t x)
shows cont (Az. (f z)-(t x))
proof —
from cont-Rep-cfuni f have cont (Az. (f z)-y) for y
by (rule cont-compose)
with ¢ cont-Rep-cfun2 show cont (\z. (f z)-(t z))
by (rule cont-apply)
qed

Two specific lemmas for the combination of LCF and HOL terms. These
lemmas are needed in theories that use types like ‘a — b = 'c.

lemma cont-APP-app [simp]: cont f => cont g = cont (Az. ((f z)-(g x)) s)
by (rule cont2cont-APP [THEN cont2cont-fun))

lemma cont-APP-app-app [simp]: cont f = cont g = cont (Az. ((f z)-(g9 z)) s

t)
by (rule cont-APP-app [THEN cont2cont-fun))

cont2mono Lemma for A\z. A y. ¢l z gy

lemma cont2mono-LAM:
[Az. cont (Ny. [z y); Ay. monofun (Az. f z y)]
= monofun (A\x. A y. fzy)
by (simp add: monofun-def cfun-below-iff)

cont2cont Lemma for Axz. A y. fzy

Not suitable as a cont2cont rule, because on nested lambdas it causes expo-
nential blow-up in the number of subgoals.

lemma cont2cont-LAM:
assumes fI: Az. cont (Ay. fz y)
assumes f2: A\y. cont (Az. fzy)
shows cont (A\z. A y. fzy)
proof (rule cont-Abs-cfun)
from f1 show fx € cfun for x
by (simp add: cfun-def)
from f2 show cont f
by (rule cont2cont-lambda)
qed

This version does work as a cont2cont rule, since it has only a single subgoal.

lemma cont2cont-LAM’ [simp, cont2cont]:
fixes [:: 'a::cpo = 'biicpo = ciicpo
assumes f: cont (Ap. f (fst p) (snd p))
shows cont (A\z. A y. fzy)
using assms by (simp add: cont2cont-LAM prod-cont-iff)

lemma cont2cont-LAM-discrete [simp, cont2cont]:

THEORY “Cfun” 49

(Ay:'a:discrete-cpo. cont (Az. fzy)) = cont (Az. A y. fzy)
by (simp add: cont2cont-LAM)

9.7 Miscellaneous

Monotonicity of Abs-cfun

lemma monofun-LAM: cont f = cont g — (A\z. fr C gz) = (A z. fz) C
(A z. g2)
by (simp add: cfun-below-iff)

some lemmata for functions with flat/chfin domain/range types

lemma chfin-Rep-cfunR: chain Y = Vs. In. (LUBi. Yi)s= Y ns
for Y :: nat = 'a::cpo — 'b::chfin
apply (rule alll)
apply (subst contlub-cfun-fun)
apply assumption
apply (fast intro!: lub-eql chfin lub-finch2 chfin2finch ch2ch-Rep-cfunL)
done

lemma adm-chfindom: adm (A(u::’'a::cpo — 'bi:chfin). P(u-s))
by (rule adm-subst, simp, rule adm-chfin)

9.8 Continuous injection-retraction pairs

Continuous retractions are strict.

lemma retraction-strict: Vz. f-(gox) =2 = f-1 = L
apply (rule bottomI)
apply (drule-tac z=_1 in spec)
apply (erule subst)
apply (rule monofun-cfun-arg)
apply (rule minimal)
done

Py

lemma injection-eq: Vz. f-(gx) = 2 = (gox = gy) = (x = y)
apply (rule iffI)
apply (drule-tac f=f in cfun-arg-cong)
apply simp
apply simp
done

lemma injection-below: Vz. f-(g-x) = ¢ = (g-z C g-y) = (z C y)
apply (rule iffT)
apply (drule-tac f=f in monofun-cfun-arg)
apply simp
apply (erule monofun-cfun-arg)
done

lemma injection-defined-rev: V. f-(gx) =10 = gz=1 = z= 1

THEORY “Cfun”

apply (drule-tac f=f in cfun-arg-cong)
apply (simp add: retraction-strict)
done

lemma injection-defined: Vz. f-(gx) =2 —= 2 # L = gz # L
by (erule contrapos-nn, rule injection-defined-rev)

a result about functions with flat codomain

lemma flat-eql: t Cy =z # 1L —= x =y
for z y :: 'a::flat
by (drule az-flat) simp

lemma flat-codom: f-x =c= f-L =1V Vz fz=c¢)
for ¢ :: 'b::flat
apply (cases f-z = 1)
apply (rule disjl1)
apply (rule bottomI)
apply (erule-tac t=_1 in subst)
apply (rule minimal [THEN monofun-cfun-arg])
apply clarify
apply (rule-tac a = f-L in refl [THEN box-equals])
apply (erule minimal [THEN monofun-cfun-arg, THEN flat-eqI])
apply (erule minimal [THEN monofun-cfun-arg, THEN flat-eqI])
done

9.9 Identity and composition

definition ID :: ‘a — 'a
where ID = (A z. z)

definition cfcomp :: (‘b = '¢c) = (‘la = 'b) = ‘a = c
where oo-def: cfcomp = (A fg x. f-(g-1))

abbreviation cfcomp-syn :: ['b — ¢, 'a — 'b] = 'a — 'c (infixr <o0o) 100)
where f oo g == cfcomp-f-g

lemma ID1 [simp]: ID-z = x
by (simp add: ID-def)

lemma cfcompl: (f oo g) = (A z. f-(g-x))
by (simp add: oo-def)

lemma cfcomp2 [simp]: (f oo g)-z = f-(g-x)
by (simp add: cfcompl)

lemma cfcomp-LAM: cont g = foo (A z. gz) = (A z. f-(g92))
by (simp add: cfcompl)

lemma cfecomp-strict [simp]: L oo f = L

50

THEORY “Cfun” o1

by (simp add: cfun-eq-iff)

Show that interpretation of (pcpo, -—-) is a category.

e The class of objects is interpretation of syntactical class pcpo.
o The class of arrows between objects ‘a and 'b is interpret. of ‘a — 'b.
e The identity arrow is interpretation of ID.

e The composition of f and g is interpretation of oo.

lemma ID2 [simp]: f oo ID = f
by (rule cfun-eql, simp)

lemma ID3 [simp]: ID oo f = f
by (rule cfun-eql) simp

lemma assoc-00: f oo (g oo h) = (f oo g) oo h
by (rule cfun-eql) simp

9.10 Strictified functions

definition seq :: ‘a::pcpo — 'b:ipcpo — b
where seq = (A z. if z = L then L else ID)

lemma cont2cont-if-bottom [cont2cont, simp):
assumes f: cont (A\z. f)
and ¢: cont (A\z. g z)
shows cont (Az. if fz = L then L else g x)
proof (rule cont-apply [OF f])
show cont (Ay. if y = L then L else g z) for z
unfolding cont-def is-lub-def is-ub-def ball-simps
by (simp add: lub-eg-bottom-iff)
show cont (Az. if y = L then L else g z) for y
by (simp add: g)
qed

lemma seg-conv-if: seq-x = (if x = L then L else ID)
by (simp add: seq-def)

lemma seg-simps [simp]:
seq- 1L = L
seqx- L = 1
x# 1 = seq-x = ID
by (simp-all add: seq-conv-if)

definition strictify :: (‘a::pcpo — 'b::pepo) — ‘a — b
where strictify = (A f z. seq-x-(f-x))

THEORY “Deflation” 52

lemma strictify-conv-if: strictify-f-x = (if x = L then L else f-x)
by (simp add: strictify-def)

lemma strictifyl [simp]: strictify-f-L = L
by (simp add: strictify-conv-if)

lemma strictify2 [simpl: x # L = strictify-f-z = f-x
by (simp add: strictify-conv-if)

9.11 Continuity of let-bindings

lemma cont2cont-Let:
assumes f: cont (A\z. f)
assumes g1: Ay. cont (Az. g x y)
assumes ¢2: Az. cont (Ay. g z y)
shows cont (Az. let y = fzin g xy)
unfolding Let-def using f g2 g1 by (rule cont-apply)

lemma cont2cont-Let’ [simp, cont2cont]:
assumes f: cont (Az. f)
assumes g: cont (Ap. g (fst p) (snd p))
shows cont (Az. let y = fxin g x y)
using f
proof (rule cont2cont-Let)
from g show cont (Ay. g z y) for z
by (simp add: prod-cont-iff)
from g show cont (A\z. g z y) for y
by (simp add: prod-cont-iff)
qed

The simple version (suggested by Joachim Breitner) is needed if the type of
the defined term is not a cpo.

lemma cont2cont-Let-simple [simp, cont2cont]:
assumes Ay. cont (\x. g x y)
shows cont (Az. let y = tin g x y)
unfolding Let-def using assms .

end

10 Continuous deflations and ep-pairs

theory Deflation
imports Cfun
begin

10.1 Continuous deflations

locale deflation =
fixes d :: 'a — 'a

THEORY “Deflation” 53

assumes idem: Az. d-(d-z) = d-x
assumes below: A\z. d-z C ¢
begin

lemma below-ID: d T ID
by (rule cfun-belowl) (simp add: below)

The set of fixed points is the same as the range.

lemma fizes-eq-range: {z. d-x = x} = range (Az. d-x)
by (auto simp add: eq-sym-conv idem)

lemma range-eq-fizes: range (Az. d-z) = {z. d-z = z}
by (auto simp add: eq-sym-conv idem)

The pointwise ordering on deflation functions coincides with the subset or-
dering of their sets of fixed-points.

lemma belowl:
assumes f: A\z. dz =2 = fr =1
shows d C f
proof (rule cfun-belowl)
fix z
from below have f-(d-z) C f-x
by (rule monofun-cfun-arg)
also from idem have f-(d-z) = d-x
by (rule f)
finally show d-z C f-z .
qed

lemma belowD: [f C d; fx = 2] = dz ==z
proof (rule below-antisym)
from below show d-z C z .
assume f C d
then have f-z C d-z by (rule monofun-cfun-fun)
also assume f-x = x
finally show z C d-z .
qed

end

lemma deflation-strict: deflation d = d-1L = L
by (rule deflation.below [THEN bottomlI])

lemma adm-deflation: adm (Ad. deflation d)
by (simp add: deflation-def)

lemma deflation-ID: deflation 1D
by (simp add: deflation.intro)

lemma deflation-bottom: deflation 1

THEORY “Deflation” 54

by (simp add: deflation.intro)

lemma deflation-below-iff: deflation p = deflation ¢ = p C q <— (Vz. px =
T — ¢z = x)

apply safe

apply (simp add: deflation.belowD)

apply (simp add: deflation.belowl)

done

The composition of two deflations is equal to the lesser of the two (if they
are comparable).

lemma deflation-below-compl:
assumes deflation f
assumes deflation g
shows f C g = f-(¢gz) = fx
proof (rule below-antisym)
interpret g: deflation g by fact
from g.below show f-(g-z) C f-z by (rule monofun-cfun-arg)
next
interpret f: deflation f by fact
assume f C g
then have f-z C g-x by (rule monofun-cfun-fun)
then have f-(f-x) C f-(g-z) by (rule monofun-cfun-arg)
also have f-(f-z) = f-z by (rule f.idem)
finally show f-z C f-(g-z) .
qed

lemma deflation-below-comp2: deflation f = deflation ¢ = [C g = ¢-(f-x)
= fu
by (simp only: deflation.belowD deflation.idem)

10.2 Deflations with finite range

lemma finite-range-imp-finite-fixes:
assumes finite (range f)
shows finite {z. fz = z}
proof —
have {z. fz = z} C range f
by (clarify, erule subst, rule rangel)
from this assms show finite {z. fz = z}
by (rule finite-subset)
qed

locale finite-deflation = deflation +
assumes finite-fizes: finite {z. d-x = x}
begin

lemma finite-range: finite (range (Az. d-x))
by (simp add: range-eq-fizes finite-fizes)

THEORY “Deflation” 55

lemma finite-image: finite ((Az. d-z) ¢ A)
by (rule finite-subset [OF image-mono [OF subset-UNIV] finite-range)

lemma compact: compact (d-x)
proof (rule compactI2)
fix Y ::nat = a
assume Y: chain Y
have finite-chain (M\i. d-(Y 7))
proof (rule finite-range-imp-finch)
from Y show chain (M\i. d-(Y ©)) by simp
have range (\i. d-(Y 7)) C range (Az. d-z) by auto
then show finite (range (Ai. d-(Y 7)))
using finite-range by (rule finite-subset)
qed
then have 3j. (| |i. d-(Y 7)) = d-(Y j)
by (simp add: finite-chain-def maxinch-is-thelub Y')
then obtain j where j: (| |i. d-(Y i) = d-(Yj) ..

assume d-x C (| |7. Y 9)
then have d-(d-z) C d-(| |i. Y 7)

by (rule monofun-cfun-arg)
then have d-z C (| |4. d-(Y 7))

by (simp add: contlub-cfun-arg Y idem)
with j have d-2 C d-(Y j) by simp
then have d-2 C Y j

using below by (rule below-trans)
then show 3j. d-z C Yj..

qed

end

lemma finite-deflation-intro: deflation d = finite {z. d-x = ©} = finite-deflation
d
by (intro finite-deflation.intro finite-deflation-azioms.intro)

lemma finite-deflation-imp-deflation: finite-deflation d = deflation d
by (simp add: finite-deflation-def)

lemma finite-deflation-bottom: finite-deflation L
by standard simp-all

10.3 Continuous embedding-projection pairs

locale ep-pair =
fixese: 'a— band p:: 'b — 'a
assumes e-inverse [simp|: Az. p-(ex) = x
and e-p-below: Ny. e(py) E y

begin

THEORY “Deflation” 56

lemma e-below-iff [simp|: ez C ey +— zC gy
proof
assume ez C ey
then have p-(e-x) C p-(e-y) by (rule monofun-cfun-arg)
then show z C y by simp
next
assume z C y
then show ez C e-y by (rule monofun-cfun-arg)
qed

lemma e-eq-iff [simp]: ex = ey +— x =y
unfolding po-eq-conv e-below-iff ..

lemma p-eq-iff: e:(px) =2 = e(py) =y = pr=py<+— =y
by (safe, erule subst, erule subst, simp)

lemma p-inverse: (3z. y = e-x) «— e(py) =y
by (auto, rule exl, erule sym)

lemma e-below-iff-below-p: eex C y +— z C p-y
proof
assume ez C y
then have p-(e-x) C p-y by (rule monofun-cfun-arg)
then show z C p-y by simp
next
assume z L p-y
then have ez C e(p-y) by (rule monofun-cfun-arg)
then show e-z C y using e-p-below by (rule below-trans)
qed

lemma compact-e-rev: compact (e-x) => compact x
proof —
assume compact (e-x)
then have adm (\y. e-x [Z y) by (rule compactD)
then have adm (\y. e-x L e-y) by (rule adm-subst [OF cont-Rep-cfun2])
then have adm (\y. z [Z y) by simp
then show compact = by (rule compactl)
qed

lemma compact-e:
assumes compact T
shows compact (e-x)
proof —
from assms have adm (A\y. z [Z y) by (rule compactD)
then have adm (\y. z [Z p-y) by (rule adm-subst [OF cont-Rep-cfun2])
then have adm (\y. ez £ y) by (simp add: e-below-iff-below-p)
then show compact (e-z) by (rule compactl)
qed

THEORY “Deflation” 57

lemma compact-e-iff: compact (e-x) <— compact x
by (rule iffl [OF compact-e-rev compact-e])

Deflations from ep-pairs
lemma deflation-e-p: deflation (e oo p)

by (simp add: deflation.intro e-p-below)

lemma deflation-e-d-p:
assumes deflation d
shows deflation (e oo d oo p)

proof
interpret deflation d by fact
fix z:: b

show (e 0o d 0o p)-((e 0o d oo p)-z) = (e 0o d oo p)-z
by (simp add: idem)
show (e oo d oo p)-z C z
by (simp add: e-below-iff-below-p below)
qed

lemma finite-deflation-e-d-p:
assumes finite-deflation d
shows finite-deflation (e oo d oo p)

proof
interpret finite-deflation d by fact
fix z::'b

show (e oo d oo p)-((e oo d oo p)-z) = (e oo d oo p)z
by (simp add: idem)

show (e oo d oo p)z C z
by (simp add: e-below-iff-below-p below)

have finite ((\z. e-xz) ‘ (Az. d-z) ‘ range (A\z. p-x))
by (simp add: finite-image)

then have finite (range (Az. (e oo d oo p)-x))
by (simp add: image-image)

then show finite {z. (e 0o d oo p)-x = z}
by (rule finite-range-imp-finite-fizes)

qed

lemma deflation-p-d-e:
assumes deflation d
assumes d: A\z. d-z C e(p-x)
shows deflation (p oo d oo e)
proof —
interpret d: deflation d by fact
have p-d-e-below: (p oo d oo e)-x C z for z
proof —
have d-(e:z) C e-x
by (rule d.below)
then have p-(d-(e-z)) C p-(e-x)

THEORY “Deflation” 58

by (rule monofun-cfun-arg)
then show ?thesis by simp
qed
show ?thesis
proof
show (p oo d 00 €)-x C z for x
by (rule p-d-e-below)
show (p oo d 0o €)-((p oo d oo €)-x) = (p oo d oo e)-z for x
proof (rule below-antisym)
show (p oo d oo e)-((p oo d oo e)-x) C (p oo d oo e)-x
by (rule p-d-e-below)
have p-(d-(d(d-(¢-2)))) T p-(d-(e-(p-(d-(e2)))))
by (intro monofun-cfun-arg d)
then have p-(d-(e-2)) C p-(d-(e-(p-(d(e:2))))
by (simp only: d.idem)
then show (p 0o d 00 e)-x C (p oo d oo €)-((p oo d oo €)-x)
by simp
qed
qed
qed

lemma finite-deflation-p-d-e:
assumes finite-deflation d
assumes d: Az. d-z C e(p-x)
shows finite-deflation (p oo d oo e)
proof —
interpret d: finite-deflation d by fact
show ?thesis
proof (rule finite-deflation-intro)
have deflation d ..
then show deflation (p oo d oo e)
using d by (rule deflation-p-d-e)
next
have finite ((A\z. d-z) ‘ range (Az. e-x))
by (rule d.finite-image)
then have finite (\z. p-x) * (A\z. d-z) ‘ range (\z. e-x))
by (rule finite-imagel)
then have finite (range (Az. (p oo d oo €)-x))
by (simp add: image-image)
then show finite {z. (p oo d oo €)-z = z}
by (rule finite-range-imp-finite-fizes)
qed
qed

end

10.4 Uniqueness of ep-pairs

lemma ep-pair-unique-e-lemma:

THEORY “Deflation”

assumes [: ep-pair el p
and 2: ep-pair e2 p
shows el C e2
proof (rule cfun-belowl)
fix z
have el-(p-(e2-z)) C e2-z
by (rule ep-pair.e-p-below [OF 1))
then show el-z C e2-z
by (simp only: ep-pair.e-inverse [OF 2])
qed

lemma ep-pair-unique-e: ep-pair el p =—> ep-pair e2 p —> el = e2
by (fast intro: below-antisym elim: ep-pair-unique-e-lemma)

lemma ep-pair-unique-p-lemma:
assumes 1: ep-pair e pl
and 2: ep-pair e p2
shows p1 C p2
proof (rule cfun-belowl)
fix z
have e (pl-z) C z
by (rule ep-pair.e-p-below [OF 1))
then have p2-(e:(p!-z)) C p2-x
by (rule monofun-cfun-arg)
then show pi-z C p2-x
by (simp only: ep-pair.e-inverse [OF 2])
qged

lemma ep-pair-unique-p: ep-pair e p1 = ep-pair e p2 —> pl = p2
by (fast intro: below-antisym elim: ep-pair-unique-p-lemma)

10.5 Composing ep-pairs

lemma ep-pair-ID-1D: ep-pair ID ID
by standard simp-all

lemma ep-pair-comp:
assumes ep-pair el pl and ep-pair e2 p2
shows ep-pair (e2 oo el) (pl oo p2)
proof
interpret epl: ep-pair el p1 by fact
interpret ep2: ep-pair e2 p2 by fact
fix x y
show (p! oo p2)-((e2 oo el)-x) = x
by simp
have el-(p1-(p2-y)) E p2-y
by (rule epl.e-p-below)
then have e2-(el-(p1-(p2-y))) C e2-(p2-y)
by (rule monofun-cfun-arg)

99

THEORY “Sprod” 60

also have e2-(p2-y) C y
by (rule ep2.e-p-below)
finally show (e2 oo el)-((pl oo p2)-y) C y
by simp
qed

locale pcpo-ep-pair = ep-pair e p
for e :: 'a::pcpo — 'b::pepo
and p :: 'b::pcpo — 'a::pepo
begin

lemma e-strict [simp]: el = L
proof —
have L C p-1 by (rule minimal)
then have e- L C e:(p-L1) by (rule monofun-cfun-arg)
also have e:(p-L) C L by (rule e-p-below)
finally show e-1 = | by simp
qed

lemma e-bottom-iff [simp]: ex = L +— z = L
by (rule e-eq-iff [where y=_, unfolded e-strict])

lemma e-defined: v # L =— ex # L
by simp

lemma p-strict [simp]: p-L = L
by (rule e-inverse [where z=_L1, unfolded e-strict])

lemmas stricts = e-strict p-strict
end

end

11 The type of strict products

theory Sprod
imports Cfun
begin

11.1 Definition of strict product type

definition sprod = {p::’a::pcpo x "b:ipcpo. p = LV (fstp # L A sndp # 1)}
pcpodef (‘a::pepo, 'b::pepo) sprod («(snotation=<infix strict producty>- @/ -)»
[21,20] 20) =

sprod :: ('a x 'b) set
by (simp-all add: sprod-def)

THEORY “Sprod” 61

instance sprod :: ({chfin,pcpo}, {chfin,pcpo}) chfin
by (rule typedef-chfin [OF type-definition-sprod below-sprod-def])

type-notation (ASCII)
sprod (infixr ¢ 20)

11.2 Definitions of constants

definition sfst :: (‘a::pepo *x 'b:ipepo) — 'a
where sfst = (A p. fst (Rep-sprod p))

definition ssnd :: (‘a::pepo xx 'bipepo) — b
where ssnd = (A p. snd (Rep-sprod p))

definition spair :: ‘a::pcpo — 'b:ipecpo — (‘a xx 'b)
where spair = (A a b. Abs-sprod (seq-b-a, seq-a-b))

definition ssplit :: (‘a::pcpo — 'bi:pepo — 'ciipepo) — (a xx 'b) — ‘¢
where ssplit = (A [p. seq-p-(f-(sfst-p)-(ssnd-p)))

syntax
-stuple :: [logic, args] = logic («(¢<indent=1 notation=<mizfix strict tuple»)(:-,/
1))
syntax-consts
-stuple = spair
translations
Gz, y, z:) = (:z, (cy, 2:):)
(:z, y:) = CONST spair-xz-y

translations
A(CONST spair-z-y). t = CONST ssplit-(A z y. t)

11.3 Case analysis

lemma spair-sprod: (seq-b-a, seq-a-b) € sprod
by (simp add: sprod-def seq-conv-if)

lemma Rep-sprod-spair: Rep-sprod (:a, b:) = (seq-b-a, seq-a-b)
by (simp add: spair-def cont-Abs-sprod Abs-sprod-inverse spair-sprod)

lemmas Rep-sprod-simps =
Rep-sprod-inject [symmetric] below-sprod-def
prod-eq-iff below-prod-def
Rep-sprod-strict Rep-sprod-spair

lemma sprodE [case-names bottom spair, cases type: sprod):
obtains p = 1 | z y where p = (:z, y:) and = # | and y # L
using Rep-sprod [of p] by (auto simp add: sprod-def Rep-sprod-simps)

lemma sprod-induct [case-names bottom spair, induct type: sprod):

THEORY “Sprod” 62

[PLiAvy [z# Ly# L] = P (2 y)]= Pz
by (cases x) simp-all

11.4 Properties of spair
1

lemma spair-strictl [simp]: (: L, y:)
by (simp add: Rep-sprod-simps)

lemma spair-strict2 [simp): (:z, L:) = L
by (simp add: Rep-sprod-simps)

lemma spair-bottom-iff [simpl: (:z, y:) = L+— 2z =1V y=_1
by (simp add: Rep-sprod-simps seq-conv-if)

lemma spair-below-iff: (ta, b:) C (¢, d:) «—a=LVb=1LV (aCcAbLCd)
by (simp add: Rep-sprod-simps seq-conv-if)

lemma spair-eq-iff: (:a, b)) = (t¢, d:) +—a=cAb=dV(a=LVb=1)A
(c=1lvd=1)
by (simp add: Rep-sprod-simps seq-conv-if)

lemma spair-strict: t = L Vy=1 = (z,y:) = L
by simp

lemma spair-strict-rev: (x, y:) # L =z £ L Ay # L
by simp

lemma spair-defined: [x # 1; y # L] = (z, y:) # L
by simp

lemma spair-defined-rev: (iz, y:) = L =z =1Vy=_1
by simp

lemma spair-below: © # 1 = y # L = (2, y:) C (g, b)) «—2Ca Ay b
by (simp add: spair-below-iff)

lemma spair-eq: t # 1L — y# L = (z, y:) = (g, b)) «—z=aAy=1b
by (simp add: spair-eq-iff)

lemma spair-inject: t # 1L — y # 1L = (z, ;) = (o, b)) =z =aANy=D>
by (rule spair-eq [THEN 1iffD1])

lemma inst-sprod-pcpo2: L = (: L, L:)
by simp

lemma sprodE2: (Azy. p = (iz, y:) = Q) = @
by (cases p) (simp only: inst-sprod-pcpo2, simp)

THEORY “Sprod” 63

11.5 Properties of sfst and ssnd

lemma sfst-strict [simp]: sfst-L = L
by (simp add: sfst-def cont-Rep-sprod Rep-sprod-strict)

lemma ssnd-strict [simp]: ssnd-L = L
by (simp add: ssnd-def cont-Rep-sprod Rep-sprod-strict)

lemma sfst-spair [simpl: y # L = sfst-(:z, y:) = x
by (simp add: sfst-def cont-Rep-sprod Rep-sprod-spair)

lemma ssnd-spair [simp]: © # L = ssnd-(:z, y:) = y
by (simp add: ssnd-def cont-Rep-sprod Rep-sprod-spair)

lemma sfst-bottom-iff [simp]: sfstp = L +— p= 1
by (cases p) simp-all

lemma ssnd-bottom-iff [simp]: ssnd-p = L +— p= 1
by (cases p) simp-all

lemma sfst-defined: p # 1 = sfst-p # L
by simp

lemma ssnd-defined: p # 1L = ssnd-p # L
by simp

lemma spair-sfst-ssnd: (:sfst-p, ssnd-p:) = p
by (cases p) simp-all

lemma below-sprod: x = y +— sfst-x T sfst-y A\ ssnd-x E ssnd-y
by (simp add: Rep-sprod-simps sfst-def ssnd-def cont-Rep-sprod)

lemma eg-sprod: © = y «— sfst-x = sfst-y A\ ssnd-x = ssnd-y
by (auto simp add: po-eq-conv below-sprod)

lemma sfst-below-iff: sfst-x C y +— z C (:y, ssnd-x:)
by (cases x = L, simp, cases y = L, simp, simp add: below-sprod)

lemma ssnd-below-iff: ssnd-x C y +— x C (:sfst-z, y:)
by (cases x = L, simp, cases y = L, simp, simp add: below-sprod)

11.6 Compactness

lemma compact-sfst: compact ¥ = compact (sfst-z)
by (rule compactl) (simp add: sfst-below-iff)

lemma compact-ssnd: compact © = compact (ssnd-x)
by (rule compactl) (simp add: ssnd-below-iff)

lemma compact-spair: compact t = compact y = compact (:x, y:)

THEORY “Up” 64

by (rule compact-sprod) (simp add: Rep-sprod-spair seq-conv-if)

lemma compact-spair-iff: compact (:z, y:) +— = L V y = L V (compact A
compact y)
apply (safe elim!: compact-spair)
apply (drule compact-sfst, simp)
apply (drule compact-ssnd, simp)
apply simp
apply simp
done

11.7 Properties of ssplit

lemma ssplit [simp): ssplit-f-1L = L
by (simp add: ssplit-def)

lemma ssplit2 [simp): © # L = y # L = ssplit-f-(:z, y:) = f-z-y
by (simp add: ssplit-def)

lemma ssplitd [simp]: ssplit-spair-z = 2z
by (cases z) simp-all

11.8 Strict product preserves flatness

instance sprod :: (flat, flat) flat
proof
fixzy:'a®'b
assume v L y
thenshowz =1 Vaz=y
apply (induct z, simp)
apply (induct y, simp)
apply (simp add: spair-below-iff flat-below-iff)
done
qed

end

12 The type of lifted values

theory Up
imports Cfun
begin
12.1 Definition of new type for lifting
datatype ‘a u (<(<notation=<postfix lifting>>-,)> [1000] 999) = Ibottom | Iup 'a

primrec Ifup :: ('a — 'bupepo) = ‘a u = b
where

THEORY “Up” 65

Ifup f Ibottom = L
| Ifup f (Iup z) = f-z

12.2 Ordering on lifted cpo

instantiation v :: (cpo) below
begin

definition below-up-def:
©) =
Az y.
(case z of
Ibottom = True
| Tup a = (case y of Ibottom = False | Tup b = a C b)))

instance ..
end

lemma minimal-up [iff]: Ibottom C z
by (simp add: below-up-def)

lemma not-Tup-below [iff]: Tup = £ ITbottom
by (simp add: below-up-def)

lemma Tup-below [iff]: (Tup z C Tup y) = (x C y)
by (simp add: below-up-def)

12.3 Lifted cpo is a partial order

instance u :: (¢po) po
proof
fixz:'au
show z C z
by (simp add: below-up-def split: w.split)
next
fixzy:'au
assume z L yy C z
then show z = y
by (auto simp: below-up-def split: w.split-asm intro: below-antisym)
next
fixzyz:'au
assume z L yy C 2z
then show z C 2
by (auto simp: below-up-def split: w.split-asm intro: below-trans)
qed

12.4 Lifted cpo is a cpo

lemma is-lub-Tup: range S <<| = range (Ai. Tup (S 7)) <<| Tup x

THEORY “Up” 66

by (auto simp: is-lub-def is-ub-def ball-simps below-up-def split: u.split)

lemma up-chain-lemma:
assumes Y: chain Y
obtains Vi. Y ¢ = Ibottom
| A k where Vi. Iup (A i) =Y (i + k) and chain A and range Y <<| Iup
proof (cases k. Y k # Ibottom)
case True
then obtain k where k: Y k # Ibottom ..
define A where A i = (THE a. Iup a =Y (i + k)) for ¢
have Tup-A: Vi. Iup (A i) =Y (i + k)
proof
fix i :: nat
from Y le-add2 have YEC Y (i + k) by (rule chain-mono)
with £ have Y (i + k) # Ibottom by (cases Y k) auto
then show Tup (A i) =Y (i + k)
by (cases Y (i + k), simp-all add: A-def)
qed
from Y have chain-A: chain A
by (simp add: chain-def Tup-below [symmetric] Tup-A)
then have range A <<| (|]i. A 9)
by (rule cpo-lubl)
then have range (Ai. Tup (A 7)) <<| Tup (|]i. A 1)
by (rule is-lub-Iup)
then have range (A\i. Y (i + k)) <<| Tup (| |i. A i)
by (simp only: Tup-A)
then have range (Ai. Y i) <<| Tup (|]i. A 7)
by (simp only: is-lub-range-shift [OF Y])
with Tup-A chain-A show ?thesis ..
next
case Fulse
then have Vi. Y i = Ibottom by simp
then show ?thesis ..
qed

instance u :: (¢po) cpo
proof
fix S ::nat = ‘au
assume S: chain S
then show Jz. range (\i. S i) <<| =z
proof (rule up-chain-lemma)
assume Vi. S i = Ibottom
then have range (\i. S i) <<| Ibottom
by (simp add: is-lub-const)
then show ?thesis ..
next
fix A :: nat = 'a
assume range S <<| Tup (| |i. A 1)

THEORY “Up” 67

then show ?thesis ..
qed
qed

12.5 Lifted cpo is pointed

instance u :: (¢po) pepo
by intro-classes fast

for compatibility with old HOLCF-Version

lemma inst-up-pcpo: L = Ibottom
by (rule minimal-up [THEN bottomlI, symmetric])

12.6 Continuity of Tup and Ifup

continuity for Tup

lemma cont-ITup: cont Iup
apply (rule contl)
apply (rule is-lub-Tup)
apply (erule cpo-lubl)
done

continuity for Ifup

lemma cont-Ifupl: cont (Af. Ifup f x)
by (induct z) simp-all

lemma monofun-Ifup2: monofun (Az. Ifup f x)
apply (rule monofunl)
apply (case-tac z, simp)
apply (case-tac y, simp)
apply (simp add: monofun-cfun-arg)
done

lemma cont-Ifup2: cont (Az. Ifup f x)
proof (rule contl2)
fix V
assume Y: chain Y and Y': chain (Ai. Ifup f (Y Q)
from Y show Ifup f (| |i. Vi) C (] Ifup f (Y 1))
proof (rule up-chain-lemma)
fix A and k
assume A: Vi. Tup (Ai) =Y (i + k)
assume chain A and range Y <<| ITup (|]i. A7)
then have Ifup f (|]i. Y i) = (|4 Ifup f (Tup (A 7))
by (simp add: lub-eql contlub-cfun-arg)

also have ... = (|]i. Ifup f (Y (i + k)))
by (simp add: A)
also have ... = (| |i. Ifup f (Y i))

using Y’ by (rule lub-range-shift)

THEORY “Up” 68

finally show ?thesis by simp
qed simp
qed (rule monofun-Ifup2)

12.7 Continuous versions of constants

definition up :: ‘a — ‘a u
where up = (A z. Tup z)

definition fup :: (‘a — 'b::pcpo) — 'a u — b
where fup = (A f p. Ifup f p)

translations
case 1 of XCONST up-x = t = CONST fup-(A z. t)-1
case | of (XCONST up :: 'a)-x = t = CONST fup-(A . t)-1
A(XCONST up-z). t = CONST fup-(A z. t)

continuous versions of lemmas for ‘a |

lemma Fzh-Up: z = L V (2. z = up-x)
by (induct z) (simp add: inst-up-pcpo, simp add: up-def cont-Tup)

lemma up-eq [simpl: (up-z = up-y) = (z = y)
by (simp add: up-def cont-Iup)

lemma up-inject: up-x = up-y = x =y
by simp

lemma up-defined [simp]: up-z # L
by (simp add: up-def cont-Iup inst-up-pcpo)

lemma not-up-less-UU: up-x £ L
by simp

lemma up-below [simp]: up-x C upy +— 2 C y
by (simp add: up-def cont-Iup)

lemma upFE [case-names bottom up, cases type: ul: [p = L = Q; A\z. p = up-x
= Q] = @
by (cases p) (simp add: inst-up-pcpo, simp add: up-def cont-Tup)

lemma up-induct [case-names bottom up, induct type: u]: P L = (Az. P (up-z))
= Pz
by (cases x) simp-all

lifting preserves chain-finiteness

lemma up-chain-cases:
assumes Y: chain Y
obtains Vi. Y i = 1

THEORY “Lift” 69

| A k where Vi. up-(A i) =Y (i + k) and chain A and (| |i. Y i) = up-(|] 1.
A i)

by (rule up-chain-lemma [OF Y]) (simp-all add: inst-up-pcpo up-def cont-Iup
lub-eql)

lemma compact-up: compact x = compact (up-x)
apply (rule compactI2)
apply (erule up-chain-cases)
apply simp
apply (drule (1) compactD2, simp)
apply (erule exFE)
apply (drule-tac f=up and z=z in monofun-cfun-arg)
apply (simp, erule exl)
done

lemma compact-upD: compact (up-z) => compact x
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=upl|, simp)

lemma compact-up-iff [simp]: compact (up-z) = compact x
by (safe elim!: compact-up compact-upD)

instance u :: (chfin) chfin
apply intro-classes
apply (erule compact-imp-maz-in-chain)
apply (rule-tac p=||i. Y i in upE, simp-all)
done

properties of fup

lemma fup! [simp]: fup-f-L = L
by (simp add: fup-def cont-Ifupl cont-Ifup2 inst-up-pcpo cont2cont-LAM)

lemma fup2 [simp]: fup-f-(up-x) = f-x
by (simp add: up-def fup-def cont-Tup cont-Ifupl cont-Ifup2 cont2cont-LAM)

lemma fup3 [simpl: fup-up-z = x
by (cases x) simp-all

end

13 Lifting types of class type to flat pcpo’s

theory Lift
imports Up
begin

pepodef ‘a::type lift = UNIV :: 'a discr u set
by simp-all

THEORY “Lift” 70

lemmas inst-lift-pcpo = Abs-lift-strict [symmetric]

definition
Def :: 'a::type = ’a lift where
Def x = Abs-lift (up-(Discr x))

13.1 Lift as a datatype

lemma lift-induct: [P L; Az. P (Defz)] = Py
apply (induct y)

apply (rule-tac p=y in upE)

apply (simp add: Abs-lift-strict)

apply (case-tac x)

apply (simp add: Def-def)

done

old-rep-datatype _L::a::type lift Def
by (erule lift-induct) (simp-all add: Def-def Abs-lift-inject inst-lift-pcpo)

1 and Def
lemma not-Undef-is-Def: (x # L) = (3y. x = Def y)

by (cases x) simp-all

lemma lift-definedE: [z # L; Aa. 2 = Def a = R] = R
by (cases x) simp-all

For x # L in assumptions defined replaces = by Def a in conclusion.

method-setup defined = «
Scan.succeed (fn ctet => SIMPLE-METHOD'
(eresolve-tac ctzt Q{thms lift-definedE} THEN' asm-simp-tac ctzt))
)

lemma DefE: Defr = 1L — R
by simp

lemma DefE2: [x = Defs; 2 = 1] = R
by simp

lemma Def-below-Def: Def xt C Defy +— z =y
by (simp add: below-lift-def Def-def Abs-lift-inverse)

lemma Def-below-iff [simp]: Def x C y <— Defz =y
by (induct y, simp, simp add: Def-below-Def)

13.2 Lift is flat

instance lift :: (type) flat
proof
fix zy :: 'a lift

THEORY “Lift” 71

assume z C ythusz =1L Vz=y
by (induct z) auto
qed

13.3 Continuity of case-lift

lemma case-lift-eq: case-lift L fz = fup-(A y. f (undiscr y))-(Rep-lift x)
apply (induct x, unfold lift.case)

apply (simp add: Rep-lift-strict)

apply (simp add: Def-def Abs-lift-inverse)

done

lemma cont2cont-case-lift [simp]:
[Ay. cont (Az. fz y); cont g] = cont (Az. case-lift L (f z) (g z))
unfolding case-lift-eq by (simp add: cont-Rep-lift)

13.4 Further operations

definition
flift1 = (Ya::type = 'bipepo) = (‘a lift — 'b) (binder «FLIFT » 10) where
fliftl = (Af. (A z. case-lift L fx))

translations
A(XCONST Def z). t => CONST flift1 (Ax. t)
A(CONST Def x). FLIFT y. t <= FLIFT z y. t
A(CONST Def z). t <= FLIFT x. t

definition
flift2 = (Ya::type = 'butype) = (‘a lift — 'b lift) where
flift2 f = (FLIFT x. Def (f z))

lemma flift1-Def [simp]: fliftl f-(Def z) = (f z)
by (simp add: flift1-def)

lemma flift2-Def [simp]: flift2 f-(Def) = Def (f)
by (simp add: flift2-def)

lemma flift1-strict [simp]: fliftl f-1 = L
by (simp add: flift1-def)

lemma flift2-strict [simp]: flift2 f-1L = L
by (simp add: flift2-def)

lemma flift2-defined [simp]: © # L = (flift2 f)-x # L
by (erule lift-definedE, simp)

lemma flift2-bottom-iff [simp]: (flift2 f-o = L) = (z = 1)
by (cases x, simp-all)

lemma FLIFT-mono:

THEORY “Ir” 72

(Nz. fz C gz) = (FLIFT z. fz) C (FLIFT z. g)
by (rule cfun-belowl, case-tac x, simp-all)

lemma cont2cont-flift1 [simp, cont2cont]:
[Ay. cont (\z. fz y)] = cont (A\x. FLIFT y. f x y)
by (simp add: flift1-def cont2cont-LAM)

end

14 The type of lifted booleans

theory Tr
imports Lift
begin

14.1 Type definition and constructors

type-synonym tr = bool lift

translations
(type) tr — (type) bool lift

definition TT :: tr
where TT = Def True

definition FF : tr
where FF = Def False

Exhaustion and Elimination for type tr

lemma Ezh-tr:t =1V it=TT V t=FF
by (induct t) (auto simp: FF-def TT-def)

lemma irE [case-names bottom TT FF, cases type: tr]:
[p=L=Q@Q;p=TT = Q;p=FF = Q] = @
by (induct p) (auto simp: FF-def TT-def)

lemma tr-induct [case-names bottom TT FF, induct type: tr]:
Pl—=PTT— PFF = Pz
by (cases x) simp-all

distinctness for type tr

lemma dist-below-tr [simpl:
TTZ | FFZ | TT ¢ FF FF Z TT
by (simp-all add: TT-def FF-def)

lemma dist-eq-tr [simp]: TT # L FF + 1 TT #FF 1 # TT L # FFFF #+# TT
by (simp-all add: TT-def FF-def)

THEORY “Ir” 73

lemma TT-below-iff [simp]: TT C z +— z =TT
by (induct) simp-all

lemma FF-below-iff [simp]: FF C z +— © = FF
by (induct z) simp-all

lemma not-below-TT-iff [simp]: ¢ L TT +— = = FF
by (induct z) simp-all

lemma not-below-FF-iff [simp|: L FF «— x = TT
by (induct z) simp-all

14.2 Case analysis

definition tr-case :: 'a::pcpo — 'a — tr — 'a
where tr-case = (A t e (Def b). if b then t else e)

abbreviation cifte-syn :: [tr, ‘c:ipcpo, 'c] = ‘¢ («(<notation=«mizfix If expres-
sionnIf (-)/ then (-)/ else (-))» [0, 0, 60] 60)
where If b then el else e2 = tr-case-el-e2-b

translations
A (XCONST TT). t = CONST tr-case-t- L
A (XCONST FF). t = CONST tr-case-L-1

lemma ifte-thms [simp):
If 1 then el else e2 = L
If FF then el else e2 = e2
If TT then el else e2 = el
by (simp-all add: tr-case-def TT-def FF-def)

14.3 Boolean connectives

definition trand :: tr — tr — tr
where andalso-def: trand = (A z y. If z then y else FF)

abbreviation andalso-syn :: tr = tr = tr (- andalso - [36,35] 35)
where z andalso y = trand-z-y

definition tror :: tr — tr — tr
where orelse-def: tror = (A z y. If z then TT else y)

abbreviation orelse-syn :: tr = tr = tr (- orelse - [31,30] 30)
where z orelse y = tror-x-y

definition neg :: tr — tr
where neg = flift2 Not

definition If2 :: tr = ’cipcpo = 'c = 'c
where If2 Q ¢y = (If Q then z else y)

THEORY “Ir” 74

tactic for tr-thms with case split
lemmas tr-defs = andalso-def orelse-def neg-def tr-case-def TT-def FF-def

lemmas about andalso, orelse, neg and if

lemma andalso-thms [simp]:
(TT andalso y) = y
(FF andalso y) = FF
(L andalso y) = L
(y andalso TT) =y
(y andalso y) = y
apply (unfold andalso-def, simp-all)
apply (cases y, simp-all)
apply (cases y, simp-all)
done

lemma orelse-thms [simp]:
(TT orelse y) = TT
(FF orelse y) = y
(L orelse y) = L
(y orelse FF') = y
(y orelse y) = y
apply (unfold orelse-def, simp-all)
apply (cases y, simp-all)
apply (cases y, simp-all)
done

lemma neg-thms [simp]:

neg-TT = FF
neg-FF =TT
neg- L = L

by (simp-all add: neg-def TT-def FF-def)

split-tac for If via If2 because the constant has to be a constant

lemma split-If2: P (If2 Qzy) «— (@=L — P L)A(Q=TT — P2x) A
(Q = FF — Puy))
by (cases Q) (simp-all add: If2-def)

ML «
fun split-If-tac ctxt =
simp-tac (put-simpset HOL-basic-ss ctzt addsimps [Q{thm If2-def} RS sym])
THEN' (split-tac ctxt [Q{thm split-If2}])

14.4 Rewriting of HOLCF operations to HOL functions

lemma andalso-or: t # L = (t andalso s) = FF «— t = FF vV s = FF
by (cases t) simp-all

THEORY “Ssum” 75

lemma andalso-and: t # L = ((t andalso s) # FF) «— t # FF AN s # FF
by (cases t) simp-all

lemma Def-booll [simp|: Def x # FF +— x
by (simp add: FF-def)

lemma Def-bool2 [simp|: Def x = FF «— — x
by (simp add: FF-def)

lemma Def-bool3 [simp]: Def x = TT «— x
by (simp add: TT-def)

lemma Def-bool) [simp]: Defx # TT +— -z
by (simp add: TT-def)

lemma If-and-if: (If Def P then A else B) = (if P then A else B)
by (cases Def P) (auto simp add: TT-def[symmetric] FF-def[symmetric])

14.5 Compactness

lemma compact-TT: compact TT
by (rule compact-chfin)

lemma compact-FF: compact FF
by (rule compact-chfin)

end

15 The type of strict sums

theory Ssum
imports Tr
begin

15.1 Definition of strict sum type

definition ssum =
{p : tr x (Ya::pepo x 'b:pcpo). p = LV
(fstp =TT A fst (snd p) # L A snd (sndp) = L)V
(fstp = FF A fst (snd p) = L A snd (snd p) # 1)}

pcpodef (‘a::pepo, 'biipepo) ssum (<(«notation=<infix strict sumy»- &/ -)» [21,
20] 20) =

ssum :: (tr x 'a x 'b) set

by (simp-all add: ssum-def)

instance ssum :: ({chfin,pcpo}, {chfin,pcpo}) chfin
by (rule typedef-chfin [OF type-definition-ssum below-ssum-def])

THEORY “Ssum” 76

type-notation (ASCII)
ssum (infixr <++> 10)

15.2 Definitions of constructors
definition sinl :: ‘a::pcpo — (‘a ++ 'b::pcpo)
where sinl = (A a. Abs-ssum (seq-a-TT, a, 1))

definition sinr :: ‘b::pcpo — (‘a:pepo ++ 'b)
where sinr = (A b. Abs-ssum (seq-b-FF, L, b))

lemma sinl-ssum: (seq-a-TT, a, L) € ssum
by (simp add: ssum-def seq-conv-if)

lemma sinr-ssum: (seq-b-FF, 1, b) € ssum
by (simp add: ssum-def seq-conuv-if)

lemma Rep-ssum-sinl: Rep-ssum (sinl-a) = (seq-a-TT, a, L)
by (simp add: sinl-def cont-Abs-ssum Abs-ssum-inverse sinl-ssum)

lemma Rep-ssum-sinr: Rep-ssum (sinr-b) = (seq-b-FF, L, b)
by (simp add: sinr-def cont-Abs-ssum Abs-ssum-inverse sinr-ssum)

lemmas Rep-ssum-simps =
Rep-ssum-inject [symmetric] below-ssum-def
prod-eq-iff below-prod-def
Rep-ssum-strict Rep-ssum-sinl Rep-ssum-sinr

15.3 Properties of sinl and sinr

Ordering
lemma sinl-below [simp]: sinl-z T sinl-y +— z C y

by (simp add: Rep-ssum-simps seq-conv-if)

lemma sinr-below [simp]: sinr-x C sinr-y «— z C y
by (simp add: Rep-ssum-simps seq-conv-if)

lemma sinl-below-sinr [simpl: sinl-z C sinr-y +— = L
by (simp add: Rep-ssum-simps seq-conv-if)

lemma sinr-below-sinl [simp]: sinr-z T sinl-y +— x = L
by (simp add: Rep-ssum-simps seq-conv-if)

Equality

lemma sinl-eq [simp]: sinl-z = sinl-y +— z =y

by (simp add: po-eq-conv)

lemma sinr-eq [simp|: sinr-z = sinr-y +— x =y
by (simp add: po-eq-conv)

THEORY “Ssum” 7

lemma sinl-eg-sinr [simp]: sinl-x = sinry «— =1L Ay= 1
by (subst po-eq-conv) simp

lemma sinr-eg-sinl [simp]: sinr-x = sinly «— =1L ANy= 1
by (subst po-eq-conv) simp

lemma sinl-inject: sinl-x = sinl-y = z =y
by (rule sinl-eq [THEN iffD1])

lemma sinr-inject: sinr-x = sinry = =y
by (rule sinr-eq [THEN iffD1])

Strictness
lemma sinl-strict [simp]: sinl- L = L

by (simp add: Rep-ssum-simps)

lemma sinr-strict [simp]: sinr-L = L
by (simp add: Rep-ssum-simps)

lemma sinl-bottom-iff [simp]: sinl-z = L +— x = 1
using sinl-eq [of x L] by simp

lemma sinr-bottom-iff [simp]: sinr-x = L +— z = L
using sinr-eq [of x L] by simp

lemma sinl-defined: © # 1 = sinl-x # L
by simp

lemma sinr-defined: © # L = sinr-x # L
by simp

Compactness

lemma compact-sinl: compact + = compact (sinl-x)
by (rule compact-ssum) (simp add: Rep-ssum-sinl)

lemma compact-sinr: compact z = compact (sinr-r)
by (rule compact-ssum) (simp add: Rep-ssum-sinr)

lemma compact-sinlD: compact (sinl-z) = compact z
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=sinl]], simp)

lemma compact-sinrD: compact (sinr-x) = compact
unfolding compact-def
by (drule adm-subst [OF cont-Rep-cfun2 [where f=sinr]], simp)

lemma compact-sinl-iff [simp]: compact (sinl-x) = compact
by (safe elim!: compact-sinl compact-sinlD)

THEORY “Ssum” 78

lemma compact-sinr-iff [simp|: compact (sinr-z) = compact ©
by (safe elim!: compact-sinr compact-sinrD)

15.4 Case analysis

lemma ssumkE [case-names bottom sinl sinr, cases type: ssum:
obtains p = L
| z where p = sinl-z and z # L
| y where p = sinr-y and y # L
using Rep-ssum [of p| by (auto simp add: ssum-def Rep-ssum-simps)

lemma ssum-induct [case-names bottom sinl sinr, induct type: ssum]:
[P L
Nz. z # L = P (sinl-x);
Ny. y# L = P (sinry)] = Pz
by (cases x) simp-all

lemma ssumE2 [case-names sinl sinr]:

[Az. p = sinl-z = Q; N\y. p = sinry = Q] = Q
by (cases p, simp only: sinl-strict [symmetric|, simp, simp)

lemma below-sinlD: p C sinl-c = dy. p=sinly Ny C
by (cases p, rule-tac z=_ in exl, simp-all)

lemma below-sinrD: p C sinr-c = Jy. p=sinry Ay C
by (cases p, rule-tac z=_ in exl, simp-all)

15.5 Case analysis combinator

definition sscase :: (‘a::pcpo — 'ci:pepo) — ("bipepo — '¢) = (Ya ++ 'b) — ¢
where sscase = (A fgs. (A(t, z, y). If t then f-z else g-y) (Rep-ssum s))

translations

case s of XCONST sinl-x = t1 | XCONST sinr-y = t2 = CONST sscase-(A x.
t1)-(A y. t2)-s

case s of (XCONST sinl :: 'a)-x = t1 | XCONST sinr-y = t2 — CONST
sscase-(A x. t1)-(A y. 12)-s

translations
A(XCONST sinl-x). t = CONST sscase-(A x. t)-L
A(XCONST sinr-y). t = CONST sscase-L-(A y. t)

lemma beta-sscase: sscase-f-g-s = (A(t, z, y). If t then f-x else g-y) (Rep-ssum s)
by (simp add: sscase-def cont-Rep-ssum,)

lemma sscasel [simp]: sscase-f-g-L = L
by (simp add: beta-sscase Rep-ssum-strict)

lemma sscase2 [simp]: x # L = sscase-f-g-(sinl-z) = f-z

THEORY “Sfun”

by (simp add: beta-sscase Rep-ssum-sinl)

lemma sscased [simp]: y # L = sscase-f-g-(sinr-y) = g-y
by (simp add: beta-sscase Rep-ssum-sinr)

lemma sscases [simp]: sscase-sinl-sinr-z = z
by (cases z) simp-all

15.6 Strict sum preserves flatness

instance ssum :: (flat, flat) flat
apply (intro-classes, clarify)
apply (case-tac z, simp)
apply (case-tac y, simp-all add: flat-below-iff)
apply (case-tac y, simp-all add: flat-below-iff)
done

end

16 The Strict Function Type

theory Sfun
imports Cfun
begin

pcpodef (‘a::pepo, 'bipepo) sfun (infixr <—h 0) = {f = 'a —» 'b. f-L = 1}

by simp-all

type-notation (ASCII)
sfun (infixr <—>! 0)
TODO: Define nice syntax for abstraction, application.
definition sfun-abs :: ("a::pcpo — 'biipepo) — (‘a —! 'b)
where sfun-abs = (A f. Abs-sfun (strictify-f))

definition sfun-rep :: (‘a::pcpo —! 'b::pepo) — 'a — b
where sfun-rep = (A f. Rep-sfun f)

lemma sfun-rep-beta: sfun-rep-f = Rep-sfun f
by (simp add: sfun-rep-def cont-Rep-sfun)

lemma sfun-rep-strictl [simpl: sfun-rep-L = L
unfolding sfun-rep-beta by (rule Rep-sfun-strict)

lemma sfun-rep-strict2 [simp|: sfun-rep-f-L = L
unfolding sfun-rep-beta by (rule Rep-sfun [simplified])

lemma strictify-cancel: f-1 = | = strictify-f = f
by (simp add: cfun-eq-iff strictify-conv-if)

79

THEORY “Map-Functions” 80

lemma sfun-abs-sfun-rep [simpl: sfun-abs-(sfun-rep-f) = f
unfolding sfun-abs-def sfun-rep-def
apply (simp add: cont-Abs-sfun cont-Rep-sfun)
apply (simp add: Rep-sfun-inject [symmetric] Abs-sfun-inverse)
apply (simp add: cfun-eq-iff strictify-conv-if)
apply (simp add: Rep-sfun [simplified])
done

lemma sfun-rep-sfun-abs [simpl: sfun-rep-(sfun-abs-f) = strictify-f
unfolding sfun-abs-def sfun-rep-def
apply (simp add: cont-Abs-sfun cont-Rep-sfun)
apply (simp add: Abs-sfun-inverse)
done

lemma sfun-eq-iff: f = g <— sfun-rep-f = sfun-rep-g
by (simp add: sfun-rep-def cont-Rep-sfun Rep-sfun-inject)

lemma sfun-below-iff: f C g +— sfun-rep-f T sfun-rep-g
by (simp add: sfun-rep-def cont-Rep-sfun below-sfun-def)

end

17 Map functions for various types

theory Map-Functions
imports Deflation Sprod Ssum Sfun Up
begin

17.1 Map operator for continuous function space

definition cfun-map :: ('b = ‘a) = (‘¢ = 'd) = ('a = '¢) = ('b = 'd)
where cfun-map = (A a b fz. b-(f-(a-x)))

lemma cfun-map-beta [simp]: cfun-map-a-b-f-x = b-(f-(a-z))
by (simp add: cfun-map-def)

lemma cfun-map-ID: cfun-map-ID-ID = ID
by (simp add: cfun-eq-iff)

lemma cfun-map-map: cfun-map-f1-g1-(cfun-map-f2-g2-p) = cfun-map-(A z. f2-(f1-x))-(A

. g1-(92-x))-p
by (rule cfun-eql) simp

lemma ep-pair-cfun-map:

assumes ep-pair el pl and ep-pair e2 p2

shows ep-pair (cfun-map-pl-e2) (cfun-map-el-p2)
proof

interpret elpl: ep-pair el pl by fact

THEORY “Map-Functions”

interpret e2p2: ep-pair e2 p2 by fact

show cfun-map-el-p2-(cfun-map-pl-e2-f) = f for f
by (simp add: cfun-eq-iff)

show cfun-map-p1-e2-(cfun-map-el-p2-g) C g for g
apply (rule cfun-belowl, simp)
apply (rule below-trans [OF e2p2.e-p-below))
apply (rule monofun-cfun-arg)
apply (rule elpl.e-p-below)
done

qed

lemma deflation-cfun-map:
assumes deflation d1 and deflation d2
shows deflation (cfun-map-d1-d2)
proof
interpret dI: deflation d1 by fact
interpret d2: deflation d2 by fact
fix f
show cfun-map-d1-d2-(cfun-map-d1-d2-f) = cfun-map-d1-d2-f
by (simp add: cfun-eq-iff d1.idem d2.idem)
show cfun-map-d1-d2-f C f
apply (rule cfun-belowl, simp)
apply (rule below-trans [OF d2.below])
apply (rule monofun-cfun-arg)
apply (rule d1.below)
done
qged

lemma finite-range-cfun-map:
assumes a: finite (range (Az. a-x))
assumes b: finite (range (\y. b-y))
shows finite (range (A\f. cfun-map-a-b-f)) (is finite (range ?h))
proof (rule finite-imageD)
let f = Ag. range (\z. (a-z, g-x))
show finite (?f ¢ range ?h)
proof (rule finite-subset)
let B = Pow (range (Az. a-x) X range (A\y. b-y))
show ?f ‘ range ?h C 7B
by clarsimp
show finite ?B
by (simp add: a b)
qed
show inj-on ?f (range ?h)
proof (rule inj-onl, rule cfun-eql, clarsimp)
fixzfg
assume range (Az. (a-z, b-(f-(a-z)))) = range (Az. (a-z, b-(g-(a-
then have range (Az. (a-z, b-(f-(a-2)))) C range (Az. (a-z, b-(g
by (rule equalityD1)
then have (a-z, b-(f-(a-z))) € range (Az. (a-z, b-(g-(a-x))))

o

)
a-x))))

81

THEORY “Map-Functions” 82

by (simp add: subset-eq)
then obtain y where (a-z, b-(f-(a-2))) = (ay, b-(g:-(a-y)))
by (rule rangeE)
then show b-(f-(a-z)) = b-(g-(a-x))
by clarsimp
qed
qed

lemma finite-deflation-cfun-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (cfun-map-d1-d2)
proof (rule finite-deflation-intro)
interpret dI: finite-deflation d1 by fact
interpret d2: finite-deflation d2 by fact
from dI.deflation-azioms d2.deflation-azioms show deflation (cfun-map-d1-d2)
by (rule deflation-cfun-map)
have finite (range (Af. cfun-map-d1-d2-f))
using dI.finite-range d2.finite-range
by (rule finite-range-cfun-map)
then show finite {f. cfun-map-d1-d2-f = f}
by (rule finite-range-imp-finite-fizes)
qged

Finite deflations are compact elements of the function space

lemma finite-deflation-imp-compact: finite-deflation d = compact d
apply (frule finite-deflation-imp-deflation)
apply (subgoal-tac compact (cfun-map-d-d-d))
apply (simp add: cfun-map-def deflation.idem eta-cfun)
apply (rule finite-deflation.compact)
apply (simp only: finite-deflation-cfun-map)
done

17.2 Map operator for product type
definition prod-map :: ('a = 'b) = (‘¢ = 'd) = 'a x 'c = b x 'd

where prod-map = (A f g p. (f-(fst p), g-(snd p)))

lemma prod-map-Pair [simp]: prod-map-f-g-(z, y) = (f-z, g-y)
by (simp add: prod-map-def)

lemma prod-map-ID: prod-map-1D-ID = ID
by (auto simp: cfun-eq-iff)

lemma prod-map-map: prod-map-f1-g1-(prod-map-f2-92-p) = prod-map-(A z. f1-(f2-z))-(A
. g1-(g2-x))-p
by (induct p) simp

lemma ep-pair-prod-map:
assumes ep-pair el pl and ep-pair e2 p2

THEORY “Map-Functions” 83

shows ep-pair (prod-map-el-e2) (prod-map-pl-p2)
proof
interpret elpl: ep-pair el pl by fact
interpret e2p2: ep-pair e2 p2 by fact
show prod-map-p1-p2-(prod-map-el-e2-z) = z for z
by (induct) simp
show prod-map-el-e2-(prod-map-p1-p2-y) C y for y
by (induct y) (simp add: elpl.e-p-below e2p2.e-p-below)
qed

lemma deflation-prod-map:
assumes deflation d1 and deflation d2
shows deflation (prod-map-d1-d2)
proof
interpret dI: deflation d1 by fact
interpret d2: deflation d2 by fact
fix z
show prod-map-d1-d2-(prod-map-d1-d2-z) = prod-map-d1-d2-x
by (induct x) (simp add: d1.idem d2.idem)
show prod-map-di-d2-z C x
by (induct x) (simp add: d1.below d2.below)
qged

lemma finite-deflation-prod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (prod-map-d1-d2)
proof (rule finite-deflation-intro)
interpret dI: finite-deflation d1 by fact
interpret d2: finite-deflation d2 by fact
from d1.deflation-azioms d2.deflation-azioms show deflation (prod-map-d1-d2)
by (rule deflation-prod-map)
have {p. prod-map-d1-d2-p = p} C {z. dl-z = z} x {y. d2-y = y}
by auto
then show finite {p. prod-map-d1-d2-p = p}
by (rule finite-subset, simp add: d1.finite-fizes d2.finite-fizes)
qed

17.3 Map function for lifted cpo

definition u-map :: (‘a - 'b) = ‘au — 'bu
where u-map = (A f. fup-(up oo f))

lemma u-map-strict [simp|: u-map-f-L = L
by (simp add: u-map-def)

lemma u-map-up [simp]: u-map-f-(up-z) = up-(f-z)
by (simp add: u-map-def)

lemma u-map-ID: u-map-ID = ID

THEORY “Map-Functions” 84

by (simp add: u-map-def cfun-eq-iff eta-cfun)

lemma u-map-map: u-map-f-(u-map-g-p) = u-map-(A z. f-(g-z))-p
by (induct p) simp-all

lemma u-map-oo: u-map-(f oo g) = u-map-f oo u-map-g
by (simp add: cfcompl u-map-map eta-cfun)

lemma ep-pair-u-map: ep-pair e p = ep-pair (u-map-e) (u-map-p)
apply standard
subgoal for z by (cases x) (simp-all add: ep-pair.e-inverse)
subgoal for y by (cases y) (simp-all add: ep-pair.e-p-below)
done

lemma deflation-u-map: deflation d = deflation (u-map-d)
apply standard
subgoal for z by (cases x) (simp-all add: deflation.idem)
subgoal for z by (cases x) (simp-all add: deflation.below)
done

lemma finite-deflation-u-map:
assumes finite-deflation d
shows finite-deflation (u-map-d)
proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (u-map-d)
by (rule deflation-u-map)
have {z. u-map-d-z = z} C insert L ((A\z. up-z) ‘ {z. d-xz = z})
by (rule subsetl, case-tac z, simp-all)
then show finite {z. u-map-d-x = z}
by (rule finite-subset) (simp add: d.finite-fizes)
qed

17.4 Map function for strict products
definition sprod-map :: (‘a::pcpo — 'b::pepo) — (‘cipepo — 'dipepo) = a ® ¢
= 'b®'d

where sprod-map = (A f g. ssplit-(A z y. (:f-z, g-y)))

lemma sprod-map-strict [simpl: sprod-map-a-b-1 = L
by (simp add: sprod-map-def)

lemma sprod-map-spair [simp]: © # L — y # L = sprod-map-f-g-(:z, y:) =
(f, gv)
by (simp add: sprod-map-def)

lemma sprod-map-spair’. -1 = 1| = ¢g-1 = 1 = sprod-map-f-g-(:x, y:) = (:f -z,
9y:)
by (casesx = L V y = 1) auto

THEORY “Map-Functions”

lemma sprod-map-ID: sprod-map-1D-ID = ID
by (simp add: sprod-map-def cfun-eq-iff eta-cfun)

lemma sprod-map-map:
[ft-L=1;¢91-1L =1] =
sprod-map-f1-g1-(sprod-map-f2-g2-p) =
sprod-map-(A . f1-(f2-2))-(A z. g1-(g2-x))p
proof (induct p)
case bottom
then show ?Zcase by simp
next
case (spair = y)
then show Zcase
apply (cases f2-x = L, simp)
apply (cases g2-y = L, simp)
apply simp
done
qed

lemma ep-pair-sprod-map:
assumes ep-pair el pl and ep-pair e2 p2
shows ep-pair (sprod-map-el-e2) (sprod-map-pl-p2)
proof
interpret elpl: pcpo-ep-pair el pl unfolding pcpo-ep-pair-def by fact
interpret e2p2: pcpo-ep-pair e2 p2 unfolding pcpo-ep-pair-def by fact
show sprod-map-p1-p2-(sprod-map-el-e2-x) = z for x
by (induct z) simp-all
show sprod-map-el-e2-(sprod-map-p1-p2-y) C y for y
proof (induct y)
case bottom
then show ?case by simp
next
case (spair z y)
then show ?Zcase
apply simp
apply (cases pl-z = L, simp, cases p2-y = L, simp)
apply (simp add: monofun-cfun elpl.e-p-below e2p2.e-p-below)
done
qed
qed

lemma deflation-sprod-map:
assumes deflation d1 and deflation d2
shows deflation (sprod-map-d1-d2)
proof
interpret dI: deflation d1 by fact
interpret d2: deflation d2 by fact
fix z

THEORY “Map-Functions” 86

show sprod-map-d1-d2-(sprod-map-d1-d2-x) = sprod-map-d1-d2-x
proof (induct x)
case bottom
then show ?case by simp
next
case (spair z y)
then show ?case
apply (cases d1-z = L, simp, cases d2-y = L, simp)
apply (simp add: d1.idem d2.idem)
done
qed
show sprod-map-d1-d2-z C x
proof (induct x)
case bottom
then show ?case by simp
next
case spair
then show ?case by (simp add: monofun-cfun d1.below d2.below)
qed
qed

lemma finite-deflation-sprod-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (sprod-map-d1-d2)
proof (rule finite-deflation-intro)
interpret dI: finite-deflation di by fact
interpret d2: finite-deflation d2 by fact
from d1.deflation-azioms d2.deflation-axioms show deflation (sprod-map-d1-d2)
by (rule deflation-sprod-map)
have {z. sprod-map-d1-d2-x = z} C
insert L (M(z, y). Gz, v:)) ‘ ({z. dl-z = z} x {y. d2-y = y}))
by (rule subsetl, case-tac x, auto simp add: spair-eq-iff)
then show finite {z. sprod-map-d1-d2-x = x}
by (rule finite-subset) (simp add: dI.finite-fizes d2.finite-fizes)
qed

17.5 Map function for strict sums
definition ssum-map :: (‘a::pcpo — 'biipepo) — (‘ciipepo — 'diipepo) = 'a & e
—'b@'d

where ssum-map = (A f g. sscase-(sinl oo f)-(sinr oo g))

lemma ssum-map-strict [simp|: ssum-map-f-g-L = L
by (simp add: ssum-map-def)

lemma ssum-map-sinl [simp]: © # L = ssum-map-f-g-(sinl-z) = sinl-(f-z)
by (simp add: ssum-map-def)

lemma ssum-map-sinr [simpl: © # L = ssum-map-f-g-(sinr-z) = sinr-(g-x)

THEORY “Map-Functions” 87

by (simp add: ssum-map-def)

lemma ssum-map-sinl”: f-1 = 1L = ssum-map-f-g-(sinl-z) = sinl-(f-z)
by (cases x = L) simp-all

lemma ssum-map-sinr’: g-1L = 1 = ssum-map-f-g-(sinr-z) = sinr-(g-x)
by (cases x = L) simp-all

lemma ssum-map-ID: ssum-map-ID-ID = ID
by (simp add: ssum-map-def cfun-eq-iff eta-cfun)

lemma ssum-map-map:
[fl-L=1;g11=1]=
ssum-map-f1-g1-(ssum-map-f2-g2-p) =
ssum-map-(A z. f1-(f2-x))-(A x. g1-(92-2))p
proof (induct p)
case bottom
then show ?case by simp
next
case (sinl)
then show ?Zcase by (cases f2-x = 1) simp-all
next
case (sinr y)
then show ?case by (cases g2y = L) simp-all
qed

lemma ep-pair-ssum-map:
assumes ep-pair el pl and ep-pair e2 p2
shows ep-pair (ssum-map-el-e2) (ssum-map-pl-p2)
proof
interpret elpl: pcpo-ep-pair el pl unfolding pcpo-ep-pair-def by fact
interpret e2p2: pcpo-ep-pair e2 p2 unfolding pcpo-ep-pair-def by fact
show ssum-map-p1-p2-(ssum-map-el-e2-z) = z for =
by (induct z) simp-all
show ssum-map-el-e2-(ssum-map-p1-p2-y) C y for y
proof (induct y)
case bottom
then show Zcase by simp
next
case (sinl z)
then show Zcase by (cases pl-z = L) (simp-all add: elpl.e-p-below)
next
case (sinr y)
then show ?case by (cases p2-y = L) (simp-all add: e2p2.e-p-below)
qed
qed

lemma deflation-ssum-map:
assumes deflation d1 and deflation d2

THEORY “Map-Functions” 88

shows deflation (ssum-map-d1-d2)
proof
interpret dI: deflation d1 by fact
interpret d2: deflation d2 by fact
fix z
show ssum-map-d1-d2-(ssum-map-d1-d2-z) = ssum-map-d1-d2-z
proof (induct x)
case bottom
then show ?case by simp
next
case (sinl x)
then show ?case by (cases d1-z = 1) (simp-all add: d1.idem)
next
case (sinr y)
then show Zcase by (cases d2-y = L) (simp-all add: d2.idem)
qged
show ssum-map-d1-d2-z C x
proof (induct x)
case bottom
then show ?case by simp
next
case (sinl)
then show ?case by (cases d1-x = 1) (simp-all add: d1.below)
next
case (sinr y)
then show ?case by (cases d2-y = L) (simp-all add: d2.below)
qed
qed

lemma finite-deflation-ssum-map:
assumes finite-deflation d1 and finite-deflation d2
shows finite-deflation (ssum-map-d1-d2)
proof (rule finite-deflation-intro)
interpret dI: finite-deflation d1 by fact
interpret d2: finite-deflation d2 by fact
from d1.deflation-axioms d2.deflation-axioms show deflation (ssum-map-d1-d2)
by (rule deflation-ssum-map)
have {z. ssum-map-d1-d2-x = ¢} C
(Az. sinl-z) ‘{z. dl-x =z} U
(Az. sinr-z) ‘{z. d2-x = 2} U {L}
by (rule subsetl, case-tac z, simp-all)
then show finite {z. ssum-map-d1-d2-x = z}
by (rule finite-subset, simp add: d1.finite-fixes d2.finite-fixes)
qed

17.6 Map operator for strict function space

definition sfun-map :: ('b::pcpo — 'a::pepo) — (‘ci:pepo — 'd::pepo) — (‘a —! 'c)
= ('b=!'d)

THEORY “Map-Functions”

where sfun-map = (A a b. sfun-abs oo cfun-map-a-b oo sfun-rep)

lemma sfun-map-ID: sfun-map-ID-ID = ID
by (simp add: sfun-map-def cfun-map-ID cfun-eq-iff)

lemma sfun-map-map:
assumes f2-1 = 1 and ¢2-1 = |
shows sfun-map-f1-g1-(sfun-map-f2-92-p) =
sfun-map-(A z. f2-(f1-x))-(A z. g1-(92-x))-p
by (simp add: sfun-map-def cfun-eq-iff strictify-cancel assms cfun-map-map)

lemma ep-pair-sfun-map:
assumes 1: ep-pair el pl
assumes 2: ep-pair e2 p2
shows ep-pair (sfun-map-p1-e2) (sfun-map-el-p2)
proof
interpret elpl: pcpo-ep-pair el pl
unfolding pcpo-ep-pair-def by fact
interpret e2p2: pcpo-ep-pair e2 p2
unfolding pcpo-ep-pair-def by fact
show sfun-map-el-p2-(sfun-map-p1-e2-f) = f for f
unfolding sfun-map-def
apply (simp add: sfun-eq-iff strictify-cancel)
apply (rule ep-pair.e-inverse)
apply (rule ep-pair-cfun-map [OF 1 2])
done
show sfun-map-p1-e2-(sfun-map-el-p2-g) C g for g
unfolding sfun-map-def
apply (simp add: sfun-below-iff strictify-cancel)
apply (rule ep-pair.e-p-below)
apply (rule ep-pair-cfun-map [OF 1 2])
done
qed

lemma deflation-sfun-map:
assumes 1: deflation d1
assumes 2: deflation d2
shows deflation (sfun-map-d1-d2)
apply (simp add: sfun-map-def)
apply (rule deflation.intro)
apply simp
apply (subst strictify-cancel)
apply (simp add: cfun-map-def deflation-strict 1 2)
apply (simp add: cfun-map-def deflation.idem 1 2)
apply (simp add: sfun-below-iff)
apply (subst strictify-cancel)
apply (simp add: cfun-map-def deflation-strict 1 2)
apply (rule deflation.below)
apply (rule deflation-cfun-map [OF 1 2])

89

THEORY “Cprod” 90

done

lemma finite-deflation-sfun-map:
assumes finite-deflation d1
and finite-deflation d2
shows finite-deflation (sfun-map-d1-d2)
proof (intro finite-deflation-intro)
interpret dI: finite-deflation d1 by fact
interpret d2: finite-deflation d2 by fact
from dI.deflation-azioms d2.deflation-azioms show deflation (sfun-map-d1-d2)
by (rule deflation-sfun-map)
from assms have finite-deflation (cfun-map-d1-d2)
by (rule finite-deflation-cfun-map)
then have finite {f. cfun-map-d1-d2-f = f}
by (rule finite-deflation.finite-fizes)
moreover have inj (Af. sfun-rep-f)
by (rule inj-onl) (simp add: sfun-eq-iff)
ultimately have finite ((\f. sfun-rep-f) —*{f. cfun-map-d1-d2-f = f})
by (rule finite-vimagel)
with «deflation d1» «deflation d2> show finite {f. sfun-map-d1-d2-f = f}
by (simp add: sfun-map-def sfun-eq-iff strictify-cancel deflation-strict)
qed

end

18 The cpo of cartesian products

theory Cprod
imports Cfun
begin
18.1 Continuous case function for unit type
definition unit-when :: 'a — unit — ’a

where unit-when = (A a -. a)

translations
A(). t = CONST unit-when-t

lemma unit-when [simpl: unit-when-a-u = a

by (simp add: unit-when-def)
18.2 Continuous version of split function
definition csplit :: (‘a — b — '¢c) = ('a x 'b) = 'c

where csplit = (A fp. f-(fst p)-(snd p))

translations
A(CONST Pair z y). t = CONST csplit-(A z y. t)

THEORY “Bifinite” 91

abbreviation cfst :: ‘a x 'b — 'a
where cfst = Abs-cfun fst

abbreviation csnd :: ‘a x b — b
where csnd = Abs-cfun snd

18.3 Convert all lemmas to the continuous versions

lemma csplitl [simp]: csplit-f-1 = f- 1.1
by (simp add: csplit-def)

lemma csplit-Pair [simp]: csplit-f-(z, y) = f-z-y
by (simp add: csplit-def)

end

19 Profinite and bifinite cpos

theory Bifinite
imports Map-Functions Cprod Sprod Sfun Up HOL— Library.Countable
begin

19.1 Chains of finite deflations

locale approx-chain =

fixes approz :: nat = 'a = a

assumes chain-approx [simp|: chain (\i. approx i)

assumes lub-approzx [simp]: (| |i. approx i) = ID

assumes finite-deflation-approx [simp]: \i. finite-deflation (approz i)
begin

lemma deflation-approx: deflation (approx i)
using finite-deflation-approx by (rule finite-deflation-imp-deflation)

lemma approz-idem: approz i-(approz i-x) = approz i-x
using deflation-approx by (rule deflation.idem)

lemma approz-below: approx i-x C x
using deflation-approx by (rule deflation.below)

lemma finite-range-approx: finite (range (Ax. approx i-x))
apply (rule finite-deflation.finite-range)

apply (rule finite-deflation-approz)

done

lemma compact-approx [simp]: compact (approz n-z)
apply (rule finite-deflation.compact)
apply (rule finite-deflation-approx)

THEORY “Bifinite”

done

lemma compact-eq-approx: compact © = Ji. approx i-x = &
by (rule admD2, simp-all)

end

19.2 Omega-profinite and bifinite domains

class bifinite = pcpo +
assumes bifinite: 3 (a::nat = 'a — 'a). approz-chain a

class profinite = cpo +
assumes profinite: 3 (a::nat = 'a; — 'ay). approz-chain a

19.3 Building approx chains

lemma approz-chain-iso:
assumes a: approz-chain a
assumes [simp]: Az. f-(gz) = x
assumes [simp]: A\y. g-(f'y) = y
shows approx-chain (M\i. f oo a i 0o g)
proof —
have I: f oo g = ID by (simp add: cfun-eql)
have 2: ep-pair f g by (simp add: ep-pair-def)
from 1 2 show ?thesis
using a unfolding approx-chain-def
by (simp add: lub-APP ep-pair.finite-deflation-e-d-p)
qed

lemma approz-chain-u-map:
assumes approx-chain a
shows approz-chain (\i. u-map-(a 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP u-map-ID finite-deflation-u-map)

lemma approz-chain-sfun-map:
assumes approx-chain a and approx-chain b
shows approz-chain (\i. sfun-map-(a 7)-(b 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP sfun-map-ID finite-deflation-sfun-map)

lemma approz-chain-sprod-map:
assumes approx-chain a and approx-chain b
shows approz-chain (\i. sprod-map-(a i)-(b 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP sprod-map-ID finite-deflation-sprod-map)

lemma approzx-chain-ssum-map:
assumes approx-chain a and approx-chain b

92

THEORY “Bifinite” 93

shows approz-chain (Ai. ssum-map-(a 7)-(b 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP ssum-map-ID finite-deflation-ssum-map)

lemma approz-chain-cfun-map:
assumes approz-chain a and approx-chain b
shows approx-chain (M\i. cfun-map-(a 7)-(b 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP cfun-map-ID finite-deflation-cfun-map)

lemma approz-chain-prod-map:
assumes approz-chain a and approx-chain b
shows approz-chain (\i. prod-map-(a ©)-(b 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP prod-map-ID finite-deflation-prod-map)

Approx chains for countable discrete types.

definition discr-approx :: nat = ’a::countable discr v — 'a discr u
where discr-approx = (Ni. A(up-z). if to-nat (undiscr) < i then up-x else L)

lemma chain-discr-approx [simpl: chain discr-approx
unfolding discr-approz-def
by (rule chainl, simp add: monofun-cfun monofun-LAM)

lemma lub-discr-approx [simp|: (|]i. discr-approx i) = ID
apply (rule cfun-eql)
apply (simp add: contlub-cfun-fun)
apply (simp add: discr-approx-def)
subgoal for z
apply (cases x)
apply simp
apply (rule lub-eql)
apply (rule is-lubl)
apply (rule ub-rangel, simp)
apply (drule ub-rangeD)
apply (erule rev-below-trans)
apply simp
apply (rule lessI)
done
done

lemma inj-on-undiscr [simp): inj-on undiscr A
using Discr-undiscr by (rule inj-on-inversel)

lemma finite-deflation-discr-approx: finite-deflation (discr-approz 7)
proof
fix z :: ‘a discr u
show discr-approx i-x C x
unfolding discr-approx-def

THEORY “Bifinite”

by (cases x, simp, simp)

show discr-approz i-(discr-approx i-x) = discr-approz i-x
unfolding discr-approx-def
by (cases x, simp, simp)

show finite {z::'a discr u. discr-approx i-x = x}

proof (rule finite-subset)

let 2S = insert (L:a discr u) ((Az. up-z) < undiscr —* to-nat —* {..<i})

show {z::'a discr u. discr-approx i-x = z} C 25
unfolding discr-approxz-def
by (rule subsetl, case-tac x, simp, simp split: if-split-asm)
show finite 25
by (simp add: finite-vimagel)
qed
qed

lemma discr-approx: approx-chain discr-approx
using chain-discr-approz lub-discr-approx finite-deflation-discr-approx
by (rule approz-chain.intro)

19.4 Class instance proofs

instance bifinite C profinite
proof
show I (a:nat = 'ay — 'a)). approx-chain a
using bifinite [where ‘a="a]
by (fast intro!: approz-chain-u-map)
qed

instance u :: (profinite) bifinite
by standard (rule profinite)

Types ‘a — 'b and ’a; —! 'b are isomorphic.
definition encode-cfun = (A f. sfun-abs-(fup-f))

definition decode-cfun = (A g z. sfun-rep-g-(up-x))

lemma decode-encode-cfun [simpl: decode-cfun-(encode-cfun-z) = x
unfolding encode-cfun-def decode-cfun-def
by (simp add: eta-cfun)

lemma encode-decode-cfun [simp]: encode-cfun-(decode-cfun-y) = y
unfolding encode-cfun-def decode-cfun-def

apply (simp add: sfun-eq-iff strictify-cancel)

apply (rule cfun-eql, case-tac x, simp-all)

done

instance cfun :: (profinite, bifinite) bifinite
proof
obtain a :: nat = ‘ay — 'a, where a: approz-chain a

94

THEORY “Bifinite” 95

using profinite ..

obtain b :: nat = 'b — 'b where b: approx-chain b
using bifinite ..

have approz-chain (Mi. decode-cfun oo sfun-map-(a i)-(b ©) oo encode-cfun)
using a b by (simp add: approz-chain-iso approz-chain-sfun-map)

thus 3 (a:nat = (Ya — 'b) — (Ya — 'b)). approz-chain a
by — (rule exI)

qed

Types (‘a x 'b); and ‘a; ® b, are isomorphic.

definition encode-prod-u = (A(up-(z, y)). Gup-z, up-y:))
definition decode-prod-u = (A(:up-z, up-y:). up-(x, y))

lemma decode-encode-prod-u [simp]: decode-prod-u-(encode-prod-u-x) = x
unfolding encode-prod-u-def decode-prod-u-def
apply (cases z)
apply simp
subgoal for y by (cases y) simp
done

lemma encode-decode-prod-u [simp): encode-prod-u-(decode-prod-u-y) = y
unfolding encode-prod-u-def decode-prod-u-def
apply (cases y)
apply simp
subgoal for a b
apply (cases a, simp)
apply (cases b, simp, simp)
done
done

instance prod :: (profinite, profinite) profinite
proof
obtain a :: nat = 'a; — 'a; where a: approz-chain a
using profinite ..
obtain b :: nat = ‘b, — ‘b, where b: approz-chain b
using profinite ..
have approz-chain (\i. decode-prod-u oo sprod-map-(a i)-(b ©) oo encode-prod-u)
using a b by (simp add: approz-chain-iso approz-chain-sprod-map)
thus 3 (a:nat = (Ya x 'b)L — ('a x 'b)1). approz-chain a
by — (rule exI)
qed

instance prod :: (bifinite, bifinite) bifinite
proof
show J(a:nat = (‘a x 'b) = (‘a x 'b)). approz-chain a
using bifinite [where ‘a=’a] and bifinite [where 'a="0]
by (fast intro!: approz-chain-prod-map)
qed

THEORY “Completion” 96

instance sfun :: (bifinite, bifinite) bifinite
proof
show 3 (a:nat = (‘a =! 'b) = (‘a =! 'b)). approz-chain a
using bifinite [where ‘a="a] and bifinite [where 'a="b]
by (fast intro!: approz-chain-sfun-map)
qed

instance sprod :: (bifinite, bifinite) bifinite
proof
show J(a:nat = ('a ® 'b) = (‘a ® 'b)). approx-chain a
using bifinite [where ‘a='a] and bifinite [where ‘a="0]
by (fast intro!: approz-chain-sprod-map)
qed

instance ssum :: (bifinite, bifinite) bifinite
proof
show 3 (a:nat = ('a @ 'b) — (‘a ® 'b)). approz-chain a
using bifinite [where ‘a=’a] and bifinite [where 'a="b]
by (fast introl: approz-chain-ssum-map)
qed

lemma approx-chain-unit: approz-chain (L :: nat = unit — unit)
by (simp add: approz-chain-def cfun-eq-iff finite-deflation-bottom)

instance unit :: bifinite
by standard (fast introl: approx-chain-unit)

instance discr :: (countable) profinite
by standard (fast intro!: discr-approz)

instance lift :: (countable) bifinite
proof
note [simp] = cont-Abs-lift cont-Rep-lift Rep-lift-inverse Abs-lift-inverse
obtain a :: nat = ('a discr), — ('a discr), where a: approz-chain a
using profinite ..
hence approx-chain (Ni. (A y. Abs-lift y) oo a i oo (A z. Rep-lift x))
by (rule approz-chain-iso) simp-all
thus 3 (a:nat = 'a lift — 'a lift). approz-chain a
by — (rule exI)
qed

end

20 Defining algebraic domains by ideal completion

theory Completion
imports Cfun
begin

THEORY “Completion”

20.1 Ideals over a preorder

locale preorder =
fixes r :: ‘a::type = a
assumes r-refl: © X x
assumes r-trans: [z =
begin

= bool (infix «=» 50)

Y,y 2 2] =2z

definition
ideal :: 'a set = bool where
ideal A= ((Fz. z € A) AN (Va€A. VyeA. F2€A. 2 S 2 Ny < 2) A
Vzy. z23y—yeAd— xe)

lemma ideall:
assumes Jz.z € A
assumes Az y. [t € A;ye A] = Fz€d. 2 <2 Ny =<z
assumes Az y. [x < y;y € Al =z€ A
shows ideal A
unfolding ideal-def using assms by fast

lemma idealD1:
ideal A = Jzx. z € A
unfolding ideal-def by fast

lemma idealD2:
[ideal A; x € Ay y€ A] = Fz2€A. 2 22Ny 32
unfolding ideal-def by fast

lemma idealDS5:
[ideal A; 2 < y; y € Al =z € A
unfolding ideal-def by fast

lemma ideal-principal: ideal {z. z < z}
apply (rule ideall)
apply (rule exI [where z = z])
apply (fast intro: r-refl)
apply (rule bexl [where z = z], fast)
apply (fast intro: r-refl)
apply (fast intro: r-trans)
done

lemma ez-ideal: 3A. A € {A. ideal A}
by (fast intro: ideal-principal)

The set of ideals is a cpo

lemma ideal-UN:
fixes A :: nat = 'a set
assumes ideal-A: Ni. ideal (A)
assumes chain-A: N\ij. i <j= AiCAj
shows ideal (|Ji. A @)

97

THEORY “Completion” 98

apply (rule ideall)

using idealD1 [OF ideal-A] apply fast

apply (clarify)

subgoal for i j
apply (drule subsetD [OF chain-A [OF max.cobounded!]])
apply (drule subsetD [OF chain-A [OF max.cobounded2]])
apply (drule (1) idealD2 [OF ideal-A)
apply blast
done

apply clarify

apply (drule (1) idealD3 [OF ideal-A))

apply fast

done

lemma typedef-ideal-po:
fixes Abs :: 'a set = 'b::below
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Az y. t C y «— Rep z C Rep y
shows OFCLASS('b, po-class)
apply (intro-classes, unfold below)
apply (rule subset-refl)
apply (erule (1) subset-trans)
apply (rule type-definition. Rep-inject [OF type, THEN iffD1])
apply (erule (1) subset-antisym)
done

lemma
fixes Abs :: 'a set = 'b::po
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Az y. t Ty «— Repax C Rep y
assumes S: chain S
shows typedef-ideal-lub: range S <<| Abs (|Ji. Rep (S 7))
and typedef-ideal-rep-lub: Rep (|]i. S i) = (U4 Rep (S 1))
proof —
have 1: ideal (|Ji. Rep (S 1))
apply (rule ideal-UN)
apply (rule type-definition.Rep [OF type, unfolded mem-Collect-eq))
apply (subst below [symmetric])
apply (erule chain-mono [OF S])
done
hence 2: Rep (Abs (Ji. Rep (S 1)) = (Ui. Rep (S i)
by (simp add: type-definition. Abs-inverse [OF type])
show 3: range S <<| Abs (Ji. Rep (S 1))
apply (rule is-lubl)
apply (rule is-ubl)
apply (simp add: below 2, fast)
apply (simp add: below 2 is-ub-def, fast)
done
hence 4: (|]i. S i) = Abs (. Rep (S 7))

THEORY “Completion”

by (rule lub-eqI)
show 5: Rep (| |i. Si) = (Ui Rep (S 1))
by (simp add: 4 2)
qed

lemma typedef-ideal-cpo:
fixes Abs :: 'a set = 'b::po
assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Axy. t Ty «— Repx C Rep y
shows OFCLASS('b, cpo-class)
by standard (rule exI, erule typedef-ideal-lub [OF type below))

end

interpretation below: preorder below :: 'a::po = 'a = bool
apply unfold-locales

apply (rule below-refl)

apply (erule (1) below-trans)

done

20.2 Lemmas about least upper bounds

lemma is-ub-thelub-ex: [Fu. S <<| u; z € S] = z C lub S
apply (erule exE, drule is-lub-lub)

apply (drule is-lubD1)

apply (erule (1) is-ubD)

done

lemma is-lub-thelub-ex: [Fu. § <<] u; S <| 2] = lub SC z
by (erule exE, drule is-lub-lub, erule is-lubD2)

20.3 Locale for ideal completion

hide-const (open) Filter.principal

locale ideal-completion = preorder +
fixes principal :: 'a::type = b
fixes rep :: 'b = 'a::type set
assumes ideal-rep: \z. ideal (rep z)
assumes rep-lub: AY. chain Y = rep (|]i. Y i) = (Ui rep (Y 7))
assumes rep-principal: Na. rep (principal a) = {b. b < a}
assumes belowl: Nz y. repx Crepy = zC gy
assumes countable: 3f::'a = nat. inj f
begin

lemma rep-mono: t &y = rep x C 1ep y

apply (frule bin-chain)

apply (drule rep-lub)

apply (simp only: lub-eql [OF is-lub-bin-chain])

apply (rule subsetl, rule UN-I [where a=0], simp-all)

99

THEORY “Completion” 100

done

lemma below-def: © C y «— repz C rep y
by (rule iffI [OF rep-mono belowl])

lemma principal-below-iff-mem-rep: principal a & x <— a € 1ep x
unfolding below-def rep-principal
by (auto intro: r-refl elim: idealD3 [OF ideal-rep])

lemma principal-below-iff [simp]: principal a T principal b +— a < b
by (simp add: principal-below-iff-mem-rep rep-principal)

lemma principal-eq-iff: principal a = principal b +— a < b AN b < a
unfolding po-eg-conv [where 'a='b] principal-below-iff ..

lemma eg-iff: c =y +— repx =rep y
unfolding po-eq-conv below-def by auto

lemma principal-mono: a = b = principal a T principal b
by (simp only: principal-below-iff)

lemma ch2ch-principal [simp]:
Vi. Yi=<Y (Suci) = chain (Ai. principal (Y 7))
by (simp add: chainl principal-mono)

20.3.1 Principal ideals approximate all elements

lemma compact-principal [simp]: compact (principal a)
by (rule compactl2, simp add: principal-below-iff-mem-rep rep-lub)

Construct a chain whose lub is the same as a given ideal

lemma obtain-principal-chain:
obtains Y where Vi. Vi < Y (Suc i) and z = (|| . principal (Y 7))
proof —
obtain count :: 'a = nat where inj: inj count
using countable ..
define enum where enum ¢ = (THE a. count a = i) for 4
have enum-count [simpl: A\z. enum (count z) = x
unfolding enum-def by (simp add: inj-eq [OF inj))
define a where a = (LEAST i. enum i € rep x)
define b where b i = (LEAST j. enum j € rep x A — enum j < enum i) for i
define ¢ where ¢ i j = (LEAST k. enum k € rep © A enum { < enum k A enum
j = enum k) for i j
define P where P i «+— (3j. enum j € rep © A = enum j =< enum i) for {
define X where X = rec-nat a (An i. if P i then c i (b4) else i)
have X-0: X 0 = a unfolding X-def by simp
have X-Suc: An. X (Suc n) = (if P (X n) then ¢ (X n) (b (X n)) else X n)
unfolding X-def by simp
have a-mem: enum a € rep x

THEORY “Completion” 101

unfolding a-def
apply (rule Leastl-ex)
apply (insert ideal-rep [of x])
apply (drule idealD1)
apply (clarify)
subgoal for a by (rule ex] [where x=count a]) simp
done
have b: \i. Pi = enum i € rep x
= enum (b i) € rep z A = enum (b i) < enum @
unfolding P-def b-def by (erule LeastI2-ex, simp)
have c¢: A\ij. enum i € rep x = enum j € rep x
= enum (cij) € rep x A enum i < enum (c @ j) A enum j < enum (c 7 j)
unfolding c-def
apply (drule (1) idealD2 [OF ideal-rep), clarify)
subgoal for ... z by (rule LeastI2 [where a=count z|, simp, simp)
done
have X-mem: enum (X n) € rep z for n
proof (induct n)
case 0
then show ?Zcase by (simp add: X-0 a-mem)
next
case (Suc n)
with b ¢ show ?case by (auto simp: X-Suc)
qed
have X-chain: An. enum (X n) < enum (X (Suc n))
apply (clarsimp simp add: X-Suc r-refl)
apply (simp add: b ¢ X-mem)
done
have less-b: Ani. n < bi = enum n € rep t = enum n = enum i
unfolding b-def by (drule not-less-Least, simp)
have X-covers: Vk<n. enum k € rep x — enum k < enum (X n) for n
proof (induct n)
case (
then show ?case
apply (clarsimp simp add: X-0 a-def)
apply (drule Least-le [where k=0], simp add: r-refl)
done
next
case (Suc n)
then show ?case
apply clarsimp
apply (erule le-SucE)
apply (rule r-trans [OF - X-chain], simp)
apply (cases P (X n), simp add: X-Suc)
apply (rule linorder-cases [where z=»b (X n) and y==Suc n])
apply (simp only: less-Suc-eg-le)
apply (drule spec, drule (1) mp, simp add: b X-mem)
apply (simp add: ¢ X-mem)
apply (drule (1) less-b)

THEORY “Completion” 102

apply (erule r-trans)
apply (simp add: b ¢ X-mem)
apply (simp add: X-Suc)
apply (simp add: P-def)
done
qed
have 1: Vi. enum (X i) < enum (X (Suc 7))
by (simp add: X-chain)
have z = (| | n. principal (enum (X n)))
apply (simp add: eq-iff rep-lub 1 rep-principal)
apply auto
subgoal for a
apply (subgoal-tac 3i. a = enum i, erule exE)
apply (rule-tac z=i in ezl, simp add: X-covers)
apply (rule-tac x=count a in exl, simp)
done
subgoal
apply (erule idealD3 [OF ideal-rep])
apply (rule X-mem)
done
done
with 7 show ?%thesis ..
qed

lemma principal-induct:
assumes adm: adm P
assumes P: Aa. P (principal a)
shows P x
apply (rule obtain-principal-chain [of z])
apply (simp add: admD [OF adm] P)
done

lemma compact-imp-principal: compact x = Ja. x = principal a
apply (rule obtain-principal-chain [of z])

apply (drule adm-compact-neq [OF - cont-id))

apply (subgoal-tac chain (Xi. principal (Y 7)))

apply (drule (2) admD2, fast, simp)

done

20.4 Defining functions in terms of basis elements

definition
extension :: (‘a:type = '¢) = 'b — 'c where
extension = (Af. (A z. b (f “ rep z)))

lemma extension-lemma:
fixes f :: 'a:type = 'c
assumes f-mono: Nab.a b= faC fb
shows Ju. f ‘rep z <<| u

THEORY “Completion” 103

proof —
obtain Y where Y:Vi. Y i <Y (Suci)
and z: ¢ = (| |i. principal (Y 7))
by (rule obtain-principal-chain [of z])
have chain: chain (Ai. f (Y 7))
by (rule chainl, simp add: f-mono Y)
have rep-z: rep x = (Un. {a. a 2 Y n})
by (simp add: x rep-lub Y rep-principal)
have f ‘rep z <<| (n. f (Y n))
apply (rule is-lubl)
apply (rule ub-imagel)
subgoal for a
apply (clarsimp simp add: rep-z)
apply (drule f-mono)
apply (erule below-lub [OF chain))

done
apply (rule lub-below [OF chain))
subgoal for ... n

apply (drule ub-imageD [where z=Y n])
apply (simp add: rep-z, fast intro: r-refl)
apply assumption
done
done
then show ?thesis ..
qed

lemma extension-beta:
fixes f :: 'a:type = 'c
assumes f-mono: Nab.a b= faC fb
shows extension f-x = lub (f ‘ rep z)
unfolding extension-def
proof (rule beta-cfun)
have lub: Az. Ju. f ‘rep xz <<| u
using f-mono by (rule extension-lemma)
show cont: cont (Az. lub (f ‘ rep z))
apply (rule contI2)
apply (rule monofunl)
apply (rule is-lub-thelub-ex [OF lub ub-imagel))
apply (rule is-ub-thelub-ex [OF lub imagell)
apply (erule (1) subsetD [OF rep-mono)
apply (rule is-lub-thelub-ex [OF lub ub-imagell)
apply (simp add: rep-lub, clarify)
apply (erule rev-below-trans [OF is-ub-thelub])
apply (erule is-ub-thelub-ex [OF lub imagel])
done
qed

Py

lemma extension-principal:
fixes [:: 'a:type = 'c

THEORY “Completion” 104

assumes f-mono: Nab.a b= faC fb
shows extension f-(principal a) = f a
apply (subst extension-beta, erule f~mono)
apply (subst rep-principal)
apply (rule lub-eqI)
apply (rule is-lub-mazimal)
apply (rule ub-imagel)
apply (simp add: f~mono)
apply (rule imagel)
apply (simp add: r-refl)
done

lemma extension-mono:
assumes f-mono: Nab.a < b= faC fb
assumes g-mono: Aab.a b= ga Ll gb
assumes below: Aa. faC ga
shows extension f T extension g
apply (rule cfun-belowl)
apply (simp only: extension-beta f-mono g-mono)
apply (rule is-lub-thelub-ex)
apply (rule extension-lemma, erule f-mono)
apply (rule ub-imagel)
subgoal for z a
apply (rule below-trans [OF below))
apply (rule is-ub-thelub-ex)
apply (rule extension-lemma, erule g-mono)
apply (erule imagel)
done
done

lemma cont-extension:
assumes f-mono: Aabz.a <b= fzal fab
assumes f-cont: Na. cont (Az. fz a)
shows cont (A\z. extension (Aa. f z a))
apply (rule conti2)
apply (rule monofunl)
apply (rule extension-mono, erule f-mono, erule f-mono)
apply (erule cont2monofunE [OF f-cont])
apply (rule cfun-belowl)
apply (rule principal-induct, simp)
apply (simp only: contlub-cfun-fun)
apply (simp only: extension-principal f-mono)
apply (simp add: cont2contlubE [OF f-cont])
done

end

lemma (in preorder) typedef-ideal-completion:
fixes Abs :: 'a set = 'b

THEORY “Universal” 105

assumes type: type-definition Rep Abs {S. ideal S}
assumes below: Az y. t C y «— Rep z C Rep y
assumes principal: Aa. principal a = Abs {b. b < a}
assumes countable: 3 f::'a = nat. inj f
shows ideal-completion r principal Rep
proof
interpret type-definition Rep Abs {S. ideal S} by fact
fixab:'acandzy:: 'band Y :: nat = 'b
show ideal (Rep x)
using Rep [of z] by simp
show chain Y = Rep (| |i. Y i) = (Ji. Rep (Y 7))
using type below by (rule typedef-ideal-rep-lub)
show Rep (principal a) = {b. b = a}
by (simp add: principal Abs-inverse ideal-principal)
show Rep x C Repy = z C y
by (simp only: below)
show 3f::'a = nat. inj f
by (rule countable)
qed

end

21 A universal bifinite domain

theory Universal
imports Bifinite Completion HOL— Library. Nat-Bijection
begin

unbundle no binomial-syntax

21.1 Basis for universal domain

21.1.1 Basis datatype

type-synonym ubasis = nat

definition
node :: nat = ubasis = ubasis set = ubasis
where

node i a S = Suc (prod-encode (i, prod-encode (a, set-encode S)))

lemma node-not-0 [simp]: node i a S # 0
unfolding node-def by simp

lemma node-gt-0 [simp]: 0 < node i a S
unfolding node-def by simp

lemma node-inject [simp]:
[finite S; finite T

THEORY “Universal” 106

= nodeiaS=nodejbT —i=jANa=bNS=T
unfolding node-def by (simp add: prod-encode-eq set-encode-eq)

lemma node-gt0: i < node i a S
unfolding node-def less-Suc-eg-le
by (rule le-prod-encode-1)

lemma node-gt1: a < node i a S
unfolding node-def less-Suc-eg-le
by (rule order-trans [OF le-prod-encode-1 le-prod-encode-2])

lemma nat-less-power2: n < 27n
by (fact less-exp)

lemma node-gt2: [finite S; b € S] = b < nodeia S
unfolding node-def less-Suc-eg-le set-encode-def

apply (rule order-trans [OF - le-prod-encode-2])

apply (rule order-trans [OF - le-prod-encode-2))

apply (rule order-trans [where y=sum ((7) 2) {b}])

apply (simp add: nat-less-power2 [THEN order-less-imp-le])
apply (erule sum-mono2, simp, simp)

done

lemma eg-prod-encode-pairl:
[fst (prod-decode x) = a; snd (prod-decode z) = b] = = = prod-encode (a, b)
by auto

lemma node-cases:
assumes [:z =0 = P
assumes 2: A\ia S. [finite S; x = node i a S] = P
shows P
apply (cases x)
apply (erule 1)
apply (rule 2)
apply (rule finite-set-decode)
apply (simp add: node-def)
apply (rule eg-prod-encode-pairl [OF refl])
apply (rule eg-prod-encode-pairl [OF refl refl])
done

lemma node-induct:
assumes 1: P 0
assumes 2: Ai a S. [P q; finite S; YbeS. P b] = P (node i a S)
shows P x
apply (induct x rule: nat-less-induct)
apply (case-tac n rule: node-cases)
apply (simp add: 1)
apply (simp add: 2 node-gt1 node-gt2)
done

THEORY “Universal” 107

21.1.2 Basis ordering

inductive
ubasis-le :: nat = nat = bool
where
ubasis-le-refl: ubasis-le a a
| ubasis-le-trans:
[ubasis-le a b; ubasis-le b ¢] = ubasis-le a ¢
| ubasis-le-lower:
finite S = ubasis-le a (node i a S)
| ubasis-le-upper:
[finite S; b € S; ubasis-le a b] = ubasis-le (node i a S) b

lemma ubasis-le-minimal: ubasis-le 0 x
apply (induct x rule: node-induct)
apply (rule ubasis-le-refl)

apply (erule ubasis-le-trans)

apply (erule ubasis-le-lower)

done

interpretation udom: preorder ubasis-le
apply standard

apply (rule ubasis-le-refl)

apply (erule (1) ubasis-le-trans)

done

21.1.3 Generic take function

function
ubasis-until :: (ubasis = bool) = ubasis = ubasis
where
ubasis-until P 0 = 0
| finite S = ubasis-until P (node i a S) =
(if P (node i a S) then node i a S else ubasis-until P a)
apply clarify
apply (rule-tac z=b in node-cases)
apply simp-all
done

termination ubasis-until
apply (relation measure snd)
apply (rule wf-measure)
apply (simp add: node-gt1)
done

lemma ubasis-until: P 0 = P (ubasis-until P x)
by (induct z rule: node-induct) simp-all

lemma ubasis-until: 0 < ubasis-until P x = P (ubasis-until P x)
by (induct © rule: node-induct) auto

THEORY “Universal” 108

lemma ubasis-until-same: P x —> ubasis-until P x = x
by (induct = rule: node-induct) simp-all

lemma ubasis-until-idem:
P 0 = ubasis-until P (ubasis-until P x) = ubasis-until P x
by (rule ubasis-until-same [OF ubasis-until])

lemma ubasis-until-0:
Vz.z# 0 — - Px = ubasis-until Pz = 0
by (induct z rule: node-induct) simp-all

lemma ubasis-until-less: ubasis-le (ubasis-until P x) x
apply (induct x rule: node-induct)
apply (simp add: ubasis-le-refl)

by (metis ubasis-le.simps ubasis-until.simps(2))

lemma ubasis-until-chain:

assumes PQ: A\z. Pz = Qz

shows ubasis-le (ubasis-until P x) (ubasis-until Q x)
apply (induct x rule: node-induct)
apply (simp add: ubasis-le-refl)

by (metis assms ubasis-until.simps(2) ubasis-until-less)

lemma ubasis-until-mono:
assumes A7 a S b. [finite S; P (nodeia S); b € S; ubasis-le a b = P b
shows ubasis-le a b = ubasis-le (ubasis-until P a) (ubasis-until P b)
proof (induct set: ubasis-le)
case (ubasis-le-refl a) show Zcase by (rule ubasis-le.ubasis-le-refl)
next
case (ubasis-le-trans a b ¢) thus Zcase by — (rule ubasis-le.ubasis-le-trans)
next
case (ubasis-le-lower S a 7) thus ?case
by (metis ubasis-le.simps ubasis-until.simps(2) ubasis-until-less)
next
case (ubasis-le-upper S b a i) thus ?case
by (metis assms ubasis-le.simps ubasis-until.simps(2) ubasis-until-same)
qged

lemma finite-range-ubasis-until:

finite {z. P z} = finite (range (ubasis-until P))
apply (rule finite-subset [where B=insert 0 {z. P z}])
apply (clarsimp simp add: ubasis-until”)
apply simp
done

21.2 Defining the universal domain by ideal completion

typedef udom = {S. udom.ideal S}

THEORY “Universal” 109

by (rule udom.ex-ideal)

instantiation udom :: below
begin

definition
x C y <— Rep-udom x C Rep-udom y

instance ..
end

instance udom :: po
using type-definition-udom below-udom-def
by (rule udom.typedef-ideal-po)

instance udom :: cpo
using type-definition-udom below-udom-def
by (rule udom.typedef-ideal-cpo)

definition
udom-principal :: nat = udom where
udom-principal t = Abs-udom {u. ubasis-le u t}

lemma ubasis-countable: 3 f::ubasis = nat. inj f
by (rule exl, rule inj-on-id)

interpretation udom:
ideal-completion ubasis-le udom-principal Rep-udom
using type-definition-udom below-udom-def
using udom-principal-def ubasis-countable
by (rule udom.typedef-ideal-completion)

Universal domain is pointed

lemma udom-minimal: udom-principal 0 C x
apply (induct x rule: udom.principal-induct)
apply (simp, simp add: ubasis-le-minimal)
done

instance udom :: pcpo
by intro-classes (fast intro: udom-minimal)

lemma inst-udom-pcpo: L = udom-principal 0
by (rule udom-minimal [THEN bottomI, symmetric])

21.3 Compact bases of domains

typedef ‘a compact-basis = {x::’a::pepo. compact x}
by auto

THEORY “Universal” 110

lemma Rep-compact-basis’ [simpl: compact (Rep-compact-basis a)
by (rule Rep-compact-basis [unfolded mem-Collect-eq])

lemma Abs-compact-basis-inverse’ [simp]:
compact © => Rep-compact-basis (Abs-compact-basis) = x
by (rule Abs-compact-basis-inverse [unfolded mem-Collect-eq])

instantiation compact-basis :: (pcpo) below
begin

definition
compact-le-def:
(E) = (Az y. Rep-compact-basis x T Rep-compact-basis y)

instance ..
end

instance compact-basis :: (pcpo) po
using type-definition-compact-basis compact-le-def
by (rule typedef-po-class)

definition
approzimants :: 'a::pcpo = 'a compact-basis set where
approzimants = (Az. {a. Rep-compact-basis a T z})

definition
compact-bot :: 'a::pcpo compact-basis where
compact-bot = Abs-compact-basis L

lemma Rep-compact-bot [simp]: Rep-compact-basis compact-bot = L
unfolding compact-bot-def by simp

lemma compact-bot-minimal [simpl: compact-bot C a
unfolding compact-le-def Rep-compact-bot by simp

21.4 Universality of udom

We use a locale to parameterize the construction over a chain of approx
functions on the type to be embedded.

locale bifinite-approz-chain =
approz-chain approz for approx :: nat = 'a::bifinite — 'a
begin

21.4.1 Choosing a maximal element from a finite set

lemma finite-has-mazimal:

fixes A :: 'a compact-basis set

shows [finite A; A # {}] = Jz€A. VycAd. 2 Cy —z =1y
proof (induct rule: finite-ne-induct)

THEORY “Universal” 111

case (singleton x)
show ?case by simp
next
case (insert a A)
from «(Jz€A. VycA. 2 Cy — z =
obtain z where z: z € A
and z-eq: Ay. [y € A; 2 C y] = = = y by fast
show Zcase
proof (intro bexl balll impl)
fix y
assume y € insert a A and (if x C a then a else x) C y
thus (if z C a then a else) = y
apply auto
apply (frule (1) below-trans)
apply (frule (1) z-eq)
apply (rule below-antisym, assumption)
apply simp
apply (erule (1) z-eq)
done
next
show (if C a then a else x) € insert a A
by (simp add: x)
qed
qed

definition
choose :: 'a compact-basis set = 'a compact-basis
where
choose A = (SOME z. ¢ € {z€cA. VycA. 2 C y — z = y})

lemma choose-lemma:
[finite A; A # {}] = choose A € {z€A.VycA. 2z Cy — z = y}
unfolding choose-def
apply (rule somel-ex)
apply (frule (1) finite-has-maximal, fast)
done

lemma mazimal-choose:
[finite A; y € A; choose A C y] = choose A =y
apply (cases A = {}, simp)
apply (frule (1) choose-lemma, simp)
done

lemma choose-in: [finite A; A # {}] = choose A € A
by (frule (1) choose-lemma, simp)

function
choose-pos :: 'a compact-basis set = 'a compact-basis = nat
where

THEORY “Universal” 112

choose-pos A © =
(if finite ANz € ANz # choose A
then Suc (choose-pos (A — {choose A}) z) else 0)
by auto

termination choose-pos

apply (relation measure (card o fst), simp)
apply clarsimp

apply (rule card-Diff1-less)

apply assumption

apply (erule choose-in)

apply clarsimp

done

declare choose-pos.simps [simp del]

lemma choose-pos-choose: finite A => choose-pos A (choose A) = 0
by (simp add: choose-pos.simps)

lemma inj-on-choose-pos [OF refl]:
[card A = n; finite A] = inj-on (choose-pos A) A
apply (induct n arbitrary: A)
apply simp
apply (case-tac A = {}, simp)
apply (frule (1) choose-in)
apply (rule inj-onl)
apply (drule-tac z=A — {choose A} in meta-spec, simp)
apply (simp add: choose-pos.simps)
apply (simp split: if-split-asm)
apply (erule (1) inj-onD, simp, simp)
done

lemma choose-pos-bounded [OF refl]:
[card A = n; finite A; x € A] = choose-pos A © < n
apply (induct n arbitrary: A)
apply simp
apply (case-tac A = {}, simp)
apply (frule (1) choose-in)
apply (subst choose-pos.simps)
apply simp
done

lemma choose-pos-lessD:
[choose-pos A x < choose-pos A y; finite A; x € A,y € Al = 2z L y
apply (induct A x arbitrary: y rule: choose-pos.induct)
apply simp
apply (case-tac x = choose A)
apply simp
apply (rule notl)

THEORY “Universal” 113

apply (frule (2) mazimal-choose)
apply simp
apply (case-tac y = choose A)
apply (simp add: choose-pos-choose)
apply (drule-tac z=y in meta-spec)
apply simp
apply (erule meta-mp)
apply (simp add: choose-pos.simps)
done

21.4.2 Compact basis take function

primrec
cb-take :: nat = 'a compact-basis = 'a compact-basis where
cb-take 0 = (A\z. compact-bot)
| cb-take (Suc n) = (Aa. Abs-compact-basis (approx n-(Rep-compact-basis a)))

declare cb-take.simps [simp del]

lemma cb-take-zero [simp]: cb-take 0 a = compact-bot
by (simp only: cb-take.simps)

lemma Rep-cb-take:
Rep-compact-basis (cb-take (Suc n) a) = approx n-(Rep-compact-basis a)
by (simp add: cb-take.simps(2))

lemmas approz-Rep-compact-basis = Rep-cb-take [symmetric)

lemma cb-take-covers: In. cb-take n v = x

apply (subgoal-tac In. cb-take (Suc n) © = x, fast)
apply (simp add: Rep-compact-basis-inject [symmetric])
apply (simp add: Rep-cb-take)

apply (rule compact-eg-approzx)

apply (rule Rep-compact-basis’)

done

lemma cb-take-less: cb-take n z C z
unfolding compact-le-def
by (cases n, simp, simp add: Rep-cb-take approx-below)

lemma cb-take-idem: cb-take n (cb-take n x) = cb-take n x
unfolding Rep-compact-basis-inject [symmetric]
by (cases n, simp, simp add: Rep-cb-take approz-idem)

lemma cb-take-mono: © C y = cb-take n © T cb-take n y
unfolding compact-le-def

by (cases n, simp, simp add: Rep-cb-take monofun-cfun-arg)

lemma cb-take-chain-le: m < n —> cb-take m z C cb-take n z

THEORY “Universal” 114

unfolding compact-le-def

apply (cases m, simp, cases n, simp)

apply (simp add: Rep-cb-take, rule chain-mono, simp, simp)
done

lemma finite-range-cb-take: finite (range (cb-take n))

apply (cases n)

apply (subgoal-tac range (cb-take 0) = {compact-bot}, simp, force)
apply (rule finite-imageD [where f=Rep-compact-basis))

apply (rule finite-subset [where B=range (Az. approz (n — 1)-z)])
apply (clarsimp simp add: Rep-cb-take)

apply (rule finite-range-approx)

apply (rule inj-onl, simp add: Rep-compact-basis-inject)

done

21.4.3 Rank of basis elements

definition
rank :: 'a compact-basis = nat
where

rank © = (LEAST n. cb-take n z = x)

lemma compact-approz-rank: cb-take (rank x) z = x
unfolding rank-def

apply (rule Leastl-ex)

apply (rule cb-take-covers)

done

lemma rank-leD: rank v < n — cb-take n x = =
apply (rule below-antisym [OF cb-take-less])
apply (subst compact-approz-rank [symmetric])
apply (erule cb-take-chain-le)

done

lemma rank-lel: cb-take n v = z =— rank z < n
unfolding rank-def by (rule Least-le)

lemma rank-le-iff: rank v < n <— cb-take n z =z
by (rule iffl [OF rank-leD rank-lel])

lemma rank-compact-bot [simpl: rank compact-bot = 0
using rank-lel [of 0 compact-bot] by simp

lemma rank-eq-0-iff [simp]: rank © = 0 <— x = compact-bot
using rank-le-iff [of = 0] by auto

definition
rank-le :: 'a compact-basis = 'a compact-basis set
where

THEORY “Universal” 115

rank-le = {y. rank y < rank x}

definition

rank-lt :: 'a compact-basis = 'a compact-basis set
where

rank-lt x = {y. rank y < rank z}

definition

rank-eq :: 'a compact-basis = 'a compact-basis set
where

rank-eq © = {y. rank y = rank x}

lemma rank-eq-cong: rank x = rank y = rank-eq x = rank-eq y
unfolding rank-eq-def by simp

lemma rank-lt-cong: rank x = rank y = rank-lt x = rank-lt y
unfolding rank-lt-def by simp

lemma rank-eg-subset: rank-eq x C rank-le x
unfolding rank-eq-def rank-le-def by auto

lemma rank-lt-subset: rank-lt x C rank-le x
unfolding rank-lt-def rank-le-def by auto

lemma finite-rank-le: finite (rank-le x)

unfolding rank-le-def

apply (rule finite-subset [where B=range (cb-take (rank z))])
apply clarify

apply (rule range-eql)

apply (erule rank-leD [symmetric])

apply (rule finite-range-cb-take)

done

lemma finite-rank-eq: finite (rank-eq x)
by (rule finite-subset [OF rank-eq-subset finite-rank-le])

lemma finite-rank-lt: finite (rank-lt x)
by (rule finite-subset [OF rank-lt-subset finite-rank-le])

lemma rank-it-Int-rank-eq: rank-lt x N rank-eq x = {}
unfolding rank-lt-def rank-eq-def rank-le-def by auto

lemma rank-lt-Un-rank-eq: rank-lt x U rank-eq x = rank-le x
unfolding rank-lt-def rank-eq-def rank-le-def by auto
21.4.4 Sequencing basis elements

definition
place :: 'a compact-basis = nat

THEORY “Universal” 116

where
place x = card (rank-It x) + choose-pos (rank-eq) x

lemma place-bounded: place © < card (rank-le x)
unfolding place-def
apply (rule ord-less-eg-trans)

apply (rule add-strict-left-mono)

apply (rule choose-pos-bounded)

apply (rule finite-rank-eq)

apply (simp add: rank-eq-def)
apply (subst card-Un-disjoint [symmetric])

apply (rule finite-rank-It)

apply (rule finite-rank-eq)

apply (rule rank-lt-Int-rank-eq)
apply (simp add: rank-lt-Un-rank-eq)
done

lemma place-ge: card (rank-lt) < place
unfolding place-def by simp

lemma place-rank-mono:

fixes = y :: 'a compact-basis

shows rank © < rank y = place x < place y
apply (rule less-le-trans [OF place-bounded))
apply (rule order-trans [OF - place-ge])
apply (rule card-mono)
apply (rule finite-rank-lt)
apply (simp add: rank-le-def rank-lt-def subset-eq)
done

lemma place-eqD: place x = place y = x =y
apply (rule linorder-cases [where r=rank and y=rank y))
apply (drule place-rank-mono, simp)
apply (simp add: place-def)
apply (rule inj-on-choose-pos [where A=rank-eq x, THEN inj-onD])
apply (rule finite-rank-eq)
apply (simp cong: rank-lt-cong rank-eg-cong)
apply (simp add: rank-eq-def)
apply (simp add: rank-eq-def)
apply (drule place-rank-mono, simp)
done

lemma inj-place: inj place
by (rule inj-onl, erule place-eqD)
21.4.5 Embedding and projection on basis elements

definition
sub :: 'a compact-basis = 'a compact-basis

THEORY “Universal” 117

where
sub x = (case rank x of 0 = compact-bot | Suc k = cb-take k x)

lemma rank-sub-less: © # compact-bot => rank (sub z) < rank
unfolding sub-def

apply (cases rank x, simp)

apply (simp add: less-Suc-eg-le)

apply (rule rank-lel)

apply (rule cb-take-idem)

done

lemma place-sub-less: © # compact-bot = place (sub x) < place x
apply (rule place-rank-mono)

apply (erule rank-sub-less)

done

lemma sub-below: sub z C
unfolding sub-def by (cases rank z, simp-all add: cb-take-less)

lemma rank-less-imp-below-sub: [z T y; rank © < rank y] = = C sub y
unfolding sub-def

apply (cases rank y, simp)

apply (simp add: less-Suc-eg-le)

apply (subgoal-tac cb-take nat x T cb-take nat y)

apply (simp add: rank-leD)

apply (erule cb-take-mono)

done

function basis-emb :: 'a compact-basis = ubasis
where basis-emb © = (if x = compact-bot then 0 else
node (place x) (basis-emb (sub x))
(basis-emb ‘ {y. place y < place z A z C y}))
by simp-all

termination basis-emb
by (relation measure place) (simp-all add: place-sub-less)

declare basis-emb.simps [simp del]

lemma basis-emb-compact-bot [simp]:
basis-emb compact-bot = 0
using basis-emb.simps [of compact-bot] by simp

lemma basis-emb-rec:

basis-emb © = node (place z) (basis-emb (sub x)) (basis-emb ‘ {y. place y < place
AT C o))

if © # compact-bot

using that basis-emb.simps [of z] by simp

THEORY “Universal”

lemma basis-emb-eq-0-iff [simp]:
basis-emb v = 0 <— x = compact-bot
by (cases x = compact-bot) (simp-all add: basis-emb-rec)

lemma finl: finite {y. place y < place © A z C y}

apply (subst Collect-conj-eq)

apply (rule finite-Int)

apply (rule disjl1)

apply (subgoal-tac finite (place —* {n. n < place z}), simp)
apply (rule finite-vimagel [OF - inj-place))

apply (simp add: lessThan-def [symmetric])

done

lemma fin2: finite (basis-emb ‘ {y. place y < place x N z C y})
by (rule finite-imagel [OF finl])

lemma rank-place-mono:
[place z < place y; z C y] = rank z < rank y
apply (rule linorder-cases, assumption)
apply (simp add: place-def cong: rank-lt-cong rank-eq-cong)
apply (drule choose-pos-lessD)
apply (rule finite-rank-eq)
apply (simp add: rank-eq-def)
apply (simp add: rank-eq-def)
apply simp
apply (drule place-rank-mono, simp)
done

lemma basis-emb-mono:
z C y = ubasis-le (basis-emb) (basis-emb y)

proof (induct maz (place x) (place y) arbitrary: © y rule: less-induct)

case less
show ?case proof (rule linorder-cases)
assume place z < place y
then have rank z < rank y
using <z C y» by (rule rank-place-mono)
with «place © < place y» show Zcase
apply (case-tac y = compact-bot, simp)
apply (simp add: basis-emb.simps [of y])
apply (rule ubasis-le-trans [OF - ubasis-le-lower [OF fin2]])
apply (rule less)
apply (simp add: less-maz-iff-disj)
apply (erule place-sub-less)
apply (erule rank-less-imp-below-sub [OF «x T])
done
next
assume place x = place y
hence = = y by (rule place-eqD)
thus ?case by (simp add: ubasis-le-refl)

118

THEORY “Universal” 119

next
assume place © > place y
with <z C gy show Zcase
apply (case-tac x = compact-bot, simp add: ubasis-le-minimal)
apply (simp add: basis-emb.simps [of x])
apply (rule ubasis-le-upper [OF fin2], simp)
apply (rule less)
apply (simp add: less-maz-iff-disj)
apply (erule place-sub-less)
apply (erule rev-below-trans)
apply (rule sub-below)
done
qed
qed

lemma inj-basis-emb: inj basis-emb
proof (rule injI)

fix x y

assume basis-emb x = basis-emb y

then show z = y

by (cases & = compact-bot V y = compact-bot) (auto simp add: basis-emb-rec

fin2 place-eqD)
qed

definition
basis-prj :: ubasis = 'a compact-basis
where
basis-prj x = inv basis-emb
(ubasis-until (A\z. = € range (basis-emb :: 'a compact-basis = ubasis)) x)

lemma basis-prj-basis-emb: \z. basis-prj (basis-emb z) = x
unfolding basis-prj-def
apply (subst ubasis-until-same)
apply (rule rangel)
apply (rule inv-f-f)
apply (rule inj-basis-emb)
done

lemma basis-prj-node:
[finite S; node i a S ¢ range (basis-emb :: 'a compact-basis = nat)]
= basis-prj (node i a S) = (basis-prj a :: 'a compact-basis)
unfolding basis-prj-def by simp

lemma basis-prj-0: basis-prj 0 = compact-bot
apply (subst basis-emb-compact-bot [symmetric])
apply (rule basis-prj-basis-emb)

done

lemma node-eq-basis-emb-iff:

THEORY “Universal” 120

finite S = node i a S = basis-emb <—
x # compact-bot A i = place x N\ a = basis-emb (sub x) A
S = basis-emb ‘{y. place y < place z N z C y}
apply (cases © = compact-bot, simp)
apply (simp add: basis-emb.simps [of x])
apply (simp add: fin2)
done

lemma basis-prj-mono: ubasis-le a b = basis-prj a = basis-prj b
proof (induct a b rule: ubasis-le.induct)
case (ubasis-le-refl a) show Zcase by (rule below-refl)
next
case (ubasis-le-trans a b ¢) thus Zcase by — (rule below-trans)
next
case (ubasis-le-lower S a i) thus ?case
apply (cases node i a S € range (basis-emb :: 'a compact-basis = nat))
apply (erule rangeE, rename-tac x)
apply (simp add: basis-prj-basis-emb)
apply (simp add: node-eq-basis-emb-iff)
apply (simp add: basis-prj-basis-emb)
apply (rule sub-below)
apply (simp add: basis-prj-node)
done
next
case (ubasis-le-upper S b a i) thus ?case
apply (cases node i a S € range (basis-emb :: 'a compact-basis = nat))
apply (erule rangeE, rename-tac x)
apply (simp add: basis-prj-basis-emb)
apply (clarsimp simp add: node-eq-basis-emb-iff)
apply (simp add: basis-prj-basis-emb)
apply (simp add: basis-prj-node)
done
qed

lemma basis-emb-prj-less: ubasis-le (basis-emb (basis-prj ©))
unfolding basis-prj-def
apply (subst f-inv-into-f [where f=basis-embl)
apply (rule ubasis-until)
apply (rule range-eql [where x=compact-bot])
apply simp
apply (rule ubasis-until-less)
done

lemma ideal-completion:
ideal-completion below Rep-compact-basis (approzimants :: 'a = -)
proof
fix w: 'a
show below.ideal (approximants w)
proof (rule below.ideall)

THEORY “Universal” 121

have Abs-compact-basis (approx 0-w) € approzimants w
by (simp add: approzimants-def approz-below)
thus Jz. € approzimants w ..
next
fix Ty :: 'a compact-basis
assume z: © € approximants w and y: y € approximants w
obtain i where i: approz i-(Rep-compact-basis ©) = Rep-compact-basis
using compact-eg-approx Rep-compact-basis’ by fast
obtain j where j: approz j-(Rep-compact-basis y) = Rep-compact-basis y
using compact-eq-approx Rep-compact-basis’ by fast
let 22 = Abs-compact-basis (approzx (maz i j)-w)
have ?z € approximants w
by (simp add: approzimants-def approz-below)
moreover from z y have x C 22 A y C 22
by (simp add: approzimants-def compact-le-def)
(metis i j monofun-cfun chain-mono chain-approx maz.coboundedl mazx.cobounded?)
ultimately show 3z € approzimants w. t C z A y C z ..
next
fix Ty :: 'a compact-basis
assume z C y y € approrimants w thus z € approximants w
unfolding approximants-def compact-le-def
by (auto elim: below-trans)
qed
next
fix YV :: nat = 'a
assume chain Y
thus approzimants (| |i. Y i) = (U4. approzimants (Y 7))
unfolding approximants-def
by (auto simp add: compact-below-lub-iff)
next
fix a :: 'a compact-basis
show approzimants (Rep-compact-basis a) = {b. b C a}
unfolding approximants-def compact-le-def ..
next
fixzy:'a
assume approrimants © C approrimants y
hence Vz. compact z — z2Cx — 2z C gy
by (simp add: approzimants-def subset-eq)
(metis Abs-compact-basis-inverse’)
hence (| |i. approz i-z) C y
by (simp add: lub-below approz-below)
thus z C y
by (simp add: lub-distribs)
next
show 3f::’a compact-basis = nat. inj f
by (rule exl, rule inj-place)
qed

end

THEORY “Universal” 122

interpretation compact-basis:
ideal-completion below Rep-compact-basis
approximants :: 'a::bifinite = 'a compact-basis set
proof —
obtain a :: nat = 'a — 'a where approz-chain a
using bifinite ..
hence bifinite-approz-chain a
unfolding bifinite-approz-chain-def .
thus ideal-completion below Rep-compact-basis (approzimants :: 'a = -)
by (rule bifinite-approz-chain.ideal-completion)
qed

21.4.6 EP-pair from any bifinite domain into udom

context bifinite-approx-chain begin

definition
udom-emb :: 'a — udom
where
udom-emb = compact-basis.extension (Ax. udom-principal (basis-emb r))

definition
udom-prj :: udom — 'a
where
udom-prj = udom.extension (Ax. Rep-compact-basis (basis-prj x))

lemma udom-emb-principal:
udom-emb-(Rep-compact-basis) = udom-principal (basis-emb x)
unfolding udom-emb-def
apply (rule compact-basis.extension-principal)
apply (rule udom.principal-mono)
apply (erule basis-emb-mono)
done

lemma udom-prj-principal:
udom-prj-(udom-principal) = Rep-compact-basis (basis-prj x)
unfolding udom-prj-def
apply (rule udom.extension-principal)
apply (rule compact-basis.principal-mono)
apply (erule basis-prj-mono)
done

lemma ep-pair-udom: ep-pair udom-emb udom-prj

apply standard
apply (rule compact-basis.principal-induct, simp)
apply (simp add: udom-emb-principal udom-prj-principal)
apply (simp add: basis-prj-basis-emb)

apply (rule udom.principal-induct, simp)

THEORY “Universal” 123

apply (simp add: udom-emb-principal udom-prj-principal)
apply (rule basis-emb-prj-less)
done

end

abbreviation udom-emb = bifinite-approz-chain.udom-emb
abbreviation udom-prj = bifinite-approx-chain.udom-prj

lemmas ep-pair-udom =
bifinite-approz-chain.ep-pair-udom [unfolded bifinite-approx-chain-def]

21.5 Chain of approx functions for type udom

definition
udom-approz :: nat = udom — udom
where
udom-approxr © =
udom.extension (Az. udom-principal (ubasis-until (Ay. y < i) x))

lemma udom-approx-mono:
ubasis-le a b =
udom-principal (ubasis-until (Ay. y < i) a) C
udom-principal (ubasis-until (Ay. y < i) b)
apply (rule udom.principal-mono)
apply (rule ubasis-until-mono)
apply (frule (2) order-less-le-trans [OF node-gt2])
apply (erule order-less-imp-le)
apply assumption
done

lemma adm-mem-finite: [cont f; finite S| = adm (Az. fz € S)
by (erule adm-subst, induct set: finite, simp-all)

lemma udom-approx-principal:
udom-approx i-(udom-principal x) =
udom-principal (ubasis-until (Ay. y < @) x)
unfolding udom-approz-def
apply (rule udom.extension-principal)
apply (erule udom-approz-mono)
done

lemma finite-deflation-udom-approx: finite-deflation (udom-approx)
proof
fix « show udom-approz i-(udom-approz i-x) = udom-approx i-z
by (induct z rule: udom.principal-induct, simp)
(simp add: udom-approx-principal ubasis-until-idem)
next
fix z show udom-approzx i-x C x

THEORY “Universal” 124

by (induct z rule: udom.principal-induct, simp)
(simp add: udom-approx-principal ubasis-until-less)
next
have «: finite (range (Az. udom-principal (ubasis-until (Ay. y < i) z)))
apply (subst range-composition [where f=udom-principal])
apply (simp add: finite-range-ubasis-until)
done
show finite {z. udom-approz i-x = z}
apply (rule finite-range-imp-finite-fizes)
apply (rule rev-finite-subset [OF x])
apply (clarsimp, rename-tac x)
apply (induct-tac x rule: udom.principal-induct)
apply (simp add: adm-mem-finite x)
apply (simp add: udom-approz-principal)
done
qed

interpretation udom-approz: finite-deflation udom-approx i
by (rule finite-deflation-udom-approz)

lemma chain-udom-approz [simp]: chain (Ai. udom-approx 7)
unfolding udom-approz-def

apply (rule chainl)

apply (rule udom.extension-mono)

apply (erule udom-approz-mono)

apply (erule udom-approxz-mono)

apply (rule udom.principal-mono)

apply (rule ubasis-until-chain, simp)

done

lemma lub-udom-approz [simp]: (| |i. udom-approzx i) = ID
apply (rule cfun-eql, simp add: contlub-cfun-fun)
apply (rule below-antisym)

apply (rule lub-below)

apply (simp)

apply (rule udom-approz.below)

apply (rule-tac z=x in udom.principal-induct)
apply (simp add: lub-distribs)

apply (rule-tac i=a in below-lub)

apply simp

apply (simp add: udom-approz-principal)

apply (simp add: ubasis-until-same ubasis-le-refl)
done

lemma udom-approzx [simp]: approz-chain udom-approx
proof
show chain (\i. udom-approx 7)
by (rule chain-udom-appror)
show (| |i. udom-approzx i) = ID

THEORY “Algebraic” 125

by (rule lub-udom-approzx)
qed

instance udom :: bifinite
by standard (fast intro: udom-approz)

hide-const (open) node
unbundle binomial-syntax

end

22 Algebraic deflations

theory Algebraic
imports Universal Map-Functions
begin

22.1 Type constructor for finite deflations

typedef ‘a:bifinite fin-defl = {d::’a — 'a. finite-deflation d}
by (fast intro: finite-deflation-bottom)

instantiation fin-defl :: (bifinite) below
begin

definition below-fin-defi-def:
below = Az y. Rep-fin-defl x © Rep-fin-defl y

instance ..
end

instance fin-defl :: (bifinite) po
using type-definition-fin-defl below-fin-defi-def
by (rule typedef-po-class)

lemma finite-deflation-Rep-fin-defl: finite-deflation (Rep-fin-defl d)
using Rep-fin-defl by simp

lemma deflation-Rep-fin-defl: deflation (Rep-fin-defl d)
using finite-deflation-Rep-fin-defl
by (rule finite-deflation-imp-deflation)

interpretation Rep-fin-defl: finite-deflation Rep-fin-defl d
by (rule finite-deflation-Rep-fin-defl)

lemma fin-defi-belowl:
(Az. Rep-fin-defl a-x = x = Rep-fin-defl bx = z) = a C b
unfolding below-fin-defl-def

THEORY “Algebraic” 126

by (rule Rep-fin-defl.belowl)

lemma fin-defl-belowD:

[a C b; Rep-fin-defl a-x = z] = Rep-fin-defl b-x = z
unfolding below-fin-defi-def
by (rule Rep-fin-defl.belowD)

lemma fin-defl-eql:

a = b if (Az. Rep-fin-defl a-x = x +— Rep-fin-defl b-x = z)
proof (rule below-antisym)

show a C b by (rule fin-defl-belowl) (simp add: that)

show b C a by (rule fin-defl-belowl) (simp add: that)
qed

lemma Rep-fin-defl-mono: a & b = Rep-fin-defl a = Rep-fin-defl b
unfolding below-fin-defi-def .

lemma Abs-fin-defl-mono:
[finite-deflation a; finite-deflation b; a T b]
= Abs-fin-defl a © Abs-fin-defl b
unfolding below-fin-defi-def
by (simp add: Abs-fin-defl-inverse)

lemma (in finite-deflation) compact-belowl:
dC fif Az. compact 1 = dz =2 = fax =1z
by (rule belowl, rule that, erule subst, rule compact)

lemma compact-Rep-fin-defl [simp]: compact (Rep-fin-defl a)

using finite-deflation-Rep-fin-defl
by (rule finite-deflation-imp-compact)

22.2 Defining algebraic deflations by ideal completion

typedef ‘a:bifinite defl = {S::'a fin-defl set. below.ideal S}
by (rule below.ez-ideal)

instantiation defl :: (bifinite) below
begin

definition z C y «— Rep-defl x C Rep-defl y
instance ..

end

instance defl :: (bifinite) po

using type-definition-defl below-defl-def
by (rule below.typedef-ideal-po)

THEORY “Algebraic” 127

instance defl :: (bifinite) cpo
using type-definition-defl below-defl-def
by (rule below.typedef-ideal-cpo)

definition defl-principal :: 'a::bifinite fin-defl = 'a defl
where defl-principal t = Abs-defl {u. u C t}

lemma fin-defl-countable: 3 f::'a::bifinite fin-defl = nat. inj f
proof —
obtain f :: ‘a compact-basis = nat where inj-f: inj f
using compact-basis.countable ..
have x: A\d. finite (f ¢ Rep-compact-basis —* {z. Rep-fin-defl d-x = x})
apply (rule finite-imagel)
apply (rule finite-vimagel)
apply (rule Rep-fin-defl.finite-fizes)
apply (simp add: inj-on-def Rep-compact-basis-inject)
done
have range-eq: range Rep-compact-basis = {x. compact z}
using type-definition-compact-basis by (rule type-definition. Rep-range)
have inj (Ad. set-encode
(f ¢ Rep-compact-basis —‘ {x. Rep-fin-defl d-x = z}))
apply (rule inj-onl)
apply (simp only: set-encode-eq *)
apply (simp only: inj-image-eq-iff inj-f)
apply (drule-tac f=image Rep-compact-basis in arg-cong)
apply (simp del: vimage-Collect-eq add: range-eq set-eq-iff)
apply (rule Rep-fin-defl-inject [THEN 4ffD1])
apply (rule below-antisym)
apply (rule Rep-fin-defl.compact-belowl, rename-tac z)
apply (drule-tac z=z in spec, simp)
apply (rule Rep-fin-defl.compact-belowl, rename-tac z)
apply (drule-tac z=2 in spec, simp)
done
thus ?thesis by — (rule exl)
qed

Py

interpretation defi: ideal-completion below defi-principal Rep-defl
using type-definition-defl below-defi-def

using defil-principal-def fin-defi-countable

by (rule below.typedef-ideal-completion)

Algebraic deflations are pointed

lemma defl-minimal: defl-principal (Abs-fin-defl L) C z
proof (induct x rule: defl.principal-induct)
fix a :: 'a fin-defl
have Abs-fin-defl 1. C a
by (simp add: below-fin-defl-def Abs-fin-defl-inverse finite-deflation-bottom)
then show defl-principal (Abs-fin-defl 1) C defl-principal a
by (rule defl.principal-mono)

THEORY “Algebraic”

qed simp

instance defl :: (bifinite) pcpo
by intro-classes (fast intro: defl-minimal)

lemma inst-defl-pcpo: L = defl-principal (Abs-fin-defl 1)
by (rule defl-minimal [THEN bottomlI, symmetric])

22.3 Applying algebraic deflations

definition cast :: 'a::bifinite defl — 'a — 'a
where cast = defl.extension Rep-fin-defl

lemma cast-defl-principal: cast-(defl-principal a) = Rep-fin-defl a
unfolding cast-def
by (rule defl.extension-principal) (simp only: below-fin-defl-def)

lemma deflation-cast: deflation (cast-d)

apply (induct d rule: defl.principal-induct)

apply (rule adm-subst [OF - adm-deflation], simp)
apply (simp add: cast-defl-principal)

apply (rule finite-deflation-imp-deflation)

apply (rule finite-deflation-Rep-fin-defl)

done

lemma finite-deflation-cast: compact d = finite-deflation (cast-d)
apply (drule defl.compact-imp-principal)
apply clarify
apply (simp add: cast-defl-principal)
apply (rule finite-deflation-Rep-fin-defl)
done

interpretation cast: deflation cast-d
by (rule deflation-cast)

declare cast.idem [simp]

lemma compact-cast [simp]: compact (cast-d) if compact d

128

by (rule finite-deflation-imp-compact) (use that in <rule finite-deflation-casty)

lemma cast-below-cast: cast-A T cast-B +—— A C B
apply (induct A rule: defl.principal-induct, simp)
apply (induct B rule: defl.principal-induct, simp)
apply (simp add: cast-defl-principal below-fin-defl-def)
done

lemma compact-cast-iff: compact (cast-d) +— compact d

apply (rule iffI)
apply (simp only: compact-def cast-below-cast [symmetric])

THEORY “Algebraic”

apply (erule adm-subst [OF cont-Rep-cfun2])
apply (erule compact-cast)
done

lemma cast-below-imp-below: cast-A C cast-B =— A C B
by (simp only: cast-below-cast)

lemma cast-eq-imp-eq: cast-A = cast-B — A = B
by (simp add: below-antisym cast-below-imp-below)

lemma cast-strict! [simp]: cast-L = L1
apply (subst inst-defl-pcpo)

apply (subst cast-defl-principal)

apply (rule Abs-fin-defl-inverse)

apply (simp add: finite-deflation-bottom)
done

lemma cast-strict2 [simp]: cast-A-L = L
by (rule cast.below [THEN bottoml])

22.4 Deflation combinators

definition
defl-funl ep f =
defl.extension (\a.
defl-principal (Abs-fin-defl
(¢ 00 f-(Rep-fin-defl. a) 00 p)))

definition
defl-fun2 ep f =
defl.extension (\a.
defl.extension (\b.
defl-principal (Abs-fin-defl
(¢ 00 f-(Rep-fin-defl a)-(Rep-fin-defl b) 00 p)))

lemma cast-defl-funi:
assumes ep: ep-pair e p
assumes f: Aa. finite-deflation a = finite-deflation (f-a)
shows cast-(defl-funl e p f-A) = e oo f-(cast-A) oo p
proof —
have 1: finite-deflation (e oo f-(Rep-fin-defl a) oo p) for a
proof —
have finite-deflation (f-(Rep-fin-defl a))
using finite-deflation-Rep-fin-defl by (rule f)
with ep show ?thesis
by (rule ep-pair.finite-deflation-e-d-p)
qed
show ?thesis
by (induct A rule: defl.principal-induct, simp)

129

THEORY “Representable” 130

(simp only: defl-funi-def
defl.extension-principal
defl.extension-mono
defl.principal-mono
Abs-fin-defl-mono [OF 1 1]
monofun-cfun below-refl
Rep-fin-defl-mono
cast-defl-principal
Abs-fin-defl-inverse [unfolded mem-Collect-eq, OF 1])
qed

lemma cast-defl-fun2:
assumes ep: ep-pair e p
assumes f: A\a b. finite-deflation a = finite-deflation b —>
finite-deflation (f-a-b)
shows cast-(defl-fun2 e p f-A-B) = € oo f-(cast-A)-(cast-B) oo p
proof —
have 1: finite-deflation (e oo f-(Rep-fin-defl a)-(Rep-fin-defl b) oo p) for a b
proof —
have finite-deflation (f-(Rep-fin-defl a)-(Rep-fin-defi b))
using finite-deflation-Rep-fin-defl finite-deflation-Rep-fin-defl by (rule f)
with ep show ?thesis
by (rule ep-pair.finite-deflation-e-d-p)
qed
show ?thesis
apply (induct A rule: defl.principal-induct, simp)
apply (induct B rule: defl.principal-induct, simp)
by (simp only: defl-fun2-def
defl.extension-principal
defl.extension-mono
defl.principal-mono
Abs-fin-defl-mono [OF 1 1]
monofun-cfun below-refl
Rep-fin-defl-mono
cast-defl-principal
Abs-fin-defl-inverse [unfolded mem-Collect-eq, OF 1])
qed

end

23 Representable domains

theory Representable
imports Algebraic Map-Functions HOL— Library. Countable
begin

THEORY “Representable” 131

23.1 Class of representable domains

We define a “domain” as a pcpo that is isomorphic to some algebraic defla-
tion over the universal domain; this is equivalent to being omega-bifinite.

A predomain is a cpo that, when lifted, becomes a domain. Predomains are
represented by deflations over a lifted universal domain type.

class predomain-syn = cpo +
fixes liftemb :: 'a; — udom
fixes liftprj :: udom, — 'a)
fixes liftdefl :: 'a itself = udom u defl

class predomain = predomain-syn +
assumes predomain-ep: ep-pair liftemb liftprj
assumes cast-liftdefl: cast-(liftdefl TYPE('a)) = liftemb oo liftprj

syntax -LIFTDEFL :: type = logic (<«(1LIFTDEFL/(1'(-"))))
syntax-consts -LIFTDEFL <= liftdefl
translations LIFTDEFL('t) = CONST liftdefil TYPE('t)

definition liftdefl-of :: udom defl — udom u defl
where liftdefl-of = defi-funi ID ID u-map

lemma cast-liftdefl-of: cast-(liftdefl-of -t) = u-map-(cast-t)
by (simp add: liftdefl-of-def cast-defl-funl ep-pair-def finite-deflation-u-map)

class domain = predomain-syn + pcpo +
fixes emb :: 'a — udom
fixes prj :: udom — 'a
fixes defl :: 'a itself = udom defl
assumes ep-pair-emb-prj: ep-pair emb prj
assumes cast-DEFL: cast-(defl TYPE('a)) = emb oo prj
assumes liftemb-eq: liftemb = u-map-emb
assumes liftprj-eq: liftprj = u-map-prj
assumes liftdefl-eq: liftdefl TYPE('a) = liftdefl-of -(defl TYPE('a))

syntax -DEFL :: type = logic (<(1DEFL/(1'(-"))»)
syntax-consts -DEFL = defl
translations DEFL('t) = CONST defl TYPE('t)

instance domain C predomain
proof
show ep-pair liftemb (liftprj:udom, — 'a])
unfolding liftemb-eq liftprj-eq
by (intro ep-pair-u-map ep-pair-emb-prj)
show cast-LIFTDEFL('a) = liftemb oo (liftprj::udom, — 'a))
unfolding liftemb-eq liftprj-eq liftdefl-eq
by (simp add: cast-liftdefl-of cast-DEFL u-map-00)
qed

THEORY “Representable” 132

Constants liftemb and liftprj imply class predomain.

setup ¢«
fold Sign.add-const-constraint
[(const-name <liftemby, SOME typ <'a::predomain v — udom uy),
(const-name <liftprj>, SOME typ <udom u — 'a:predomain w)),
(const-name <liftdefly, SOME typ <'a::predomain itself = udom u defl))]

interpretation predomain: pcpo-ep-pair liftemb liftprj
unfolding pcpo-ep-pair-def by (rule predomain-ep)

interpretation domain: pcpo-ep-pair emb prj
unfolding pcpo-ep-pair-def by (rule ep-pair-emb-pry)

lemmas emb-inverse = domain.e-inverse
lemmas emb-prj-below = domain.e-p-below
lemmas emb-eq-iff = domain.e-eq-iff
lemmas emb-strict = domain.e-strict
lemmas prj-strict = domain.p-strict

23.2 Domains are bifinite

lemma approz-chain-ep-cast:
assumes ep: ep-pair (e:'a::pepo — 'b::bifinite) (p::'b — 'a)
assumes cast-t: cast-t = e 0o p
shows 3 (a::nat = 'a::pcpo — 'a). approz-chain a
proof —
interpret ep-pair e p by fact
obtain Y where Y:Vi. YiC Y (Suc i)
and ¢: t = (| 4. defl-principal (Y 7))
by (rule defl.obtain-principal-chain)
define approz where approz i = (p oo cast-(defl-principal (Y 7)) oo e) for i
have approx-chain approx
proof (rule approz-chain.intro)
show chain (\i. approz 7)
unfolding approz-def by (simp add: Y)
show (| |i. approz i) = ID
unfolding approx-def
by (simp add: lub-distribs Y t [symmetric] cast-t cfun-eq-iff)
show Ai. finite-deflation (approx 7)
unfolding approx-def
apply (rule finite-deflation-p-d-e)
apply (rule finite-deflation-cast)
apply (rule defl.compact-principal)
apply (rule below-trans [OF monofun-cfun-fun))
apply (rule is-ub-thelub, simp add: Y)
apply (simp add: lub-distribs Y t [symmetric] cast-t)
done
qed

THEORY “Representable” 133

thus 3 (a:nat = 'a — 'a). approx-chain a by — (rule exl)
qed

instance domain C bifinite
by standard (rule approz-chain-ep-cast [OF ep-pair-emb-prj cast-DEFL])

instance predomain C profinite
by standard (rule approz-chain-ep-cast [OF predomain-ep cast-liftdefl])

23.3 Universal domain ep-pairs

definition u-emb = udom-emb (A\i. u-map-(udom-approx 7))
definition u-prj = udom-prj (Ai. u-map-(udom-approzx 1))

definition prod-emb = udom-emb (\i. prod-map-(udom-approzx i)-(udom-approz
i)

definition prod-prj = udom-prj (\i. prod-map-(udom-approz i)-(udom-approz 1))

definition sprod-emb = udom-emb (\i. sprod-map-(udom-approx i)-(udom-approx
7))

definition sprod-prj = udom-prj (X\i. sprod-map-(udom-approz i)-(udom-approx 7))

definition ssum-emb = udom-emb (Ai. ssum-map-(udom-approx i)-(udom-approx
i)

definition ssum-prj = udom-prj (\i. ssum-map-(udom-approx i)-(udom-approz 7))

definition sfun-emb = udom-emb (Ai. sfun-map-(udom-approz i)-(udom-approx 7))
definition sfun-prj = udom-prj (A\i. sfun-map-(udom-approz i)-(udom-approz i))

lemma ep-pair-u: ep-pair u-emb u-prj
unfolding u-emb-def u-prj-def
by (simp add: ep-pair-udom approz-chain-u-map)

lemma ep-pair-prod: ep-pair prod-emb prod-prj
unfolding prod-emb-def prod-prj-def
by (simp add: ep-pair-udom approz-chain-prod-map)

lemma ep-pair-sprod: ep-pair sprod-emb sprod-prj
unfolding sprod-emb-def sprod-prj-def
by (simp add: ep-pair-udom approx-chain-sprod-map)

lemma ep-pair-ssum: ep-pair ssum-emb ssum-prj
unfolding ssum-emb-def ssum-prj-def
by (simp add: ep-pair-udom approz-chain-ssum-map)

lemma ep-pair-sfun: ep-pair sfun-emb sfun-prj
unfolding sfun-emb-def sfun-prj-def
by (simp add: ep-pair-udom approz-chain-sfun-map)

THEORY “Representable” 134

23.4 Type combinators

definition u-defl :: udom defl — udom defl
where u-defl = defi-funl u-emb u-prj u-map

definition prod-defl :: udom defl — udom defl — udom defl
where prod-defl = defi-fun2 prod-emb prod-prj prod-map

definition sprod-defl :: udom defl — udom defl — udom defl
where sprod-defl = defl-fun?2 sprod-emb sprod-prj sprod-map

definition ssum-defi :: udom defl — udom defl — udom defl
where ssum-defl = defl-fun2 ssum-emb ssum-prj ssum-map

definition sfun-defl :: udom defl — udom defl — udom defl
where sfun-defl = defi-fun2 sfun-emb sfun-prj sfun-map

lemma cast-u-defl:

cast-(u-defl-A) = u-emb oo u-map-(cast-A) oo u-prj
using ep-pair-u finite-deflation-u-map
unfolding u-defl-def by (rule cast-defl-funl)

lemma cast-prod-defi:
cast-(prod-defl-A-B) =
prod-emb oo prod-map-(cast-A)-(cast-B) oo prod-prj
using ep-pair-prod finite-deflation-prod-map
unfolding prod-defi-def by (rule cast-defl-fun2)

lemma cast-sprod-defl:
cast-(sprod-defl-A-B) =
sprod-emb oo sprod-map-(cast-A)-(cast-B) oo sprod-prj
using ep-pair-sprod finite-deflation-sprod-map
unfolding sprod-defl-def by (rule cast-defl-fun2)

lemma cast-ssum-defi:
cast-(ssum-defl-A-B) =
ssum-emb oo ssum-map-(cast-A)-(cast-B) oo ssum-prj
using ep-pair-ssum finite-deflation-ssum-map
unfolding ssum-defl-def by (rule cast-defl-fun2)

lemma cast-sfun-defi:
cast-(sfun-defl-A-B) =
sfun-emb oo sfun-map-(cast-A)-(cast-B) oo sfun-prj
using ep-pair-sfun finite-deflation-sfun-map
unfolding sfun-defl-def by (rule cast-defl-fun2)

Special deflation combinator for unpointed types.

definition u-liftdefl :: udom u defl — udom defi
where u-liftdefl = defl-funl u-emb u-prj ID

THEORY “Representable” 135

lemma cast-u-liftdefi:
cast-(u-liftdefl-A) = u-emb oo cast-A oo u-prj
unfolding u-liftdefl-def by (simp add: cast-defl-funl ep-pair-u)

lemma u-liftdefi-liftdefi-of:
u-liftdefl-(liftdefl-of -A) = u-defl-A
by (rule cast-eq-imp-eq)
(simp add: cast-u-liftdefl cast-liftdefl-of cast-u-defl)

23.5 Class instance proofs

23.5.1 TUniversal domain

instantiation udom :: domain
begin

definition [simp]:
emb = (ID :: udom — udom)

definition [simp]:
prj = (ID :: udom — udom)

definition
defl (t::udom itself) = (|| 4. defl-principal (Abs-fin-defl (udom-approz i)))

definition
(liftemb :: udom u — udom u) = u-map-emb

definition
(liftpry :: udom u — udom u) = u-map-prj

definition
liftdefl (t::udom itself) = liftdefl-of - DEFL(udom)

instance proof
show ep-pair emb (prj :: udom — udom)
by (simp add: ep-pair.intro)
show cast- DEFL(udom) = emb oo (prj :: udom — udom)
unfolding defl-udom-def
apply (subst contlub-cfun-arg)
apply (rule chainl)
apply (rule defl.principal-mono)
apply (simp add: below-fin-defi-def)
apply (simp add: Abs-fin-defl-inverse finite-deflation-udom-approx)
apply (rule chainFE)
apply (rule chain-udom-approzx)
apply (subst cast-defl-principal)
apply (simp add: Abs-fin-defl-inverse finite-deflation-udom-approx)
done
qed (fact liftemb-udom-def liftprj-udom-def liftdefl-udom-def)+

Py

THEORY “Representable” 136

end

23.5.2 Lifted cpo

instantiation v :: (predomain) domain
begin

definition
emb = u-emb oo liftemb

definition
prj = liftprj oo u-prj

definition
defl (t::'a u itself) = u-liftdefl. LIFTDEFL('a)

definition
(liftemb :: 'a w u = udom u) = u-map-emb

definition
(liftpry :: udom v — 'a u u) = u-map-prj

definition
liftdefl (t::'a w itself) = liftdefl-of -DEFL('a u)

instance proof
show ep-pair emb (prj :: udom — 'a u)
unfolding emb-u-def prj-u-def
by (intro ep-pair-comp ep-pair-u predomain-ep)
show cast-DEFL('a u) = emb oo (prj :: udom — 'a u)
unfolding emb-u-def prj-u-def defl-u-def
by (simp add: cast-u-liftdefl cast-liftdefl assoc-00)
qed (fact liftemb-u-def liftprj-u-def liftdefl-u-def)+

end

lemma DEFL-u: DEFL('a::predomain u) = u-liftdefl- LIFTDEFL('a)
by (rule defl-u-def)

23.5.3 Strict function space

instantiation sfun :: (domain, domain) domain

begin

definition
emb = sfun-emb oo sfun-map-prj-emb

definition
prj = sfun-map-emb-prj oo sfun-prj

THEORY “Representable” 137

definition
defl (t::("a —=! 'b) itself) = sfun-defl- DEFL(’a)-DEFL(’D)

definition
(liftemb :: ("a —! 'b) w — udom u) = u-map-emb

definition
(liftprj = udom u — ('a —=! 'b) u) = u-map-prj

definition
liftdefl (t::("a —! 'b) itself) = liftdefl-of -DEFL('a —! 'b)

instance proof
show ep-pair emb (prj :: udom — 'a —! ')
unfolding emb-sfun-def prj-sfun-def
by (intro ep-pair-comp ep-pair-sfun ep-pair-sfun-map ep-pair-emb-pryj)
show cast-DEFL('a —! 'b) = emb oo (prj :: udom — 'a —! 'b)
unfolding emb-sfun-def prj-sfun-def defi-sfun-def cast-sfun-defl
by (simp add: cast-DEFL oo-def sfun-eg-iff sfun-map-map)
qed (fact liftemb-sfun-def liftprj-sfun-def liftdefl-sfun-def)+

end

lemma DEFL-sfun:
DEFL('a::domain —! 'b::domain) = sfun-defl- DEFL(’a)- DEFL('D)
by (rule defl-sfun-def)
23.5.4 Continuous function space
instantiation cfun :: (predomain, domain) domain

begin

definition
emb = emb oo encode-cfun

definition
prj = decode-cfun oo prj

definition
defl (t::("a — 'b) itself) = DEFL('a u —! 'b)

definition
(liftemb :: ('"a — 'b) u — udom u) = u-map-emb

definition
(liftprj = udom u — ('a — 'b) u) = u-map-prj

definition

THEORY “Representable” 138

liftdefl (t::("a — 'b) itself) = liftdefl-of-DEFL('a — 'b)

instance proof
have ep-pair encode-cfun decode-cfun
by (rule ep-pair.intro, simp-all)
thus ep-pair emb (prj :: udom — 'a — 'b)
unfolding emb-cfun-def prj-cfun-def
using ep-pair-emb-prj by (rule ep-pair-comp)
show cast-DEFL('a — 'b) = emb oo (prj :: udom — 'a — 'b)
unfolding emb-cfun-def prj-cfun-def defi-cfun-def
by (simp add: cast-DEFL cfcompl)
qed (fact liftemb-cfun-def liftpri-cfun-def liftdefl-cfun-def)+

end

lemma DEFL-cfun:
DEFL('a::predomain — 'b::domain) = DEFL('a u —! 'b)
by (rule defl-cfun-def)

23.5.5 Strict product

instantiation sprod :: (domain, domain) domain
begin

definition
emb = sprod-emb oo sprod-map-emb-emb

definition
prj = sprod-map-prj-prj oo sprod-prj

definition
defl (t::("a @ 'b) itself) = sprod-defl- DEFL('a)- DEFL('b)

definition
(liftemd :: ('a ® 'b) u — udom u) = u-map-emb

definition
(liftprj = udom u — ('a ® 'b) u) = u-map-prj

definition
liftdefl (t::("a ® 'b) itself) = liftdefl-of -DEFL('a ® 'b)

instance proof
show ep-pair emb (prj :: udom — 'a @ 'b)
unfolding emb-sprod-def prj-sprod-def
by (intro ep-pair-comp ep-pair-sprod ep-pair-sprod-map ep-pair-emb-pry)
show cast-DEFL('a ® 'b) = emb oo (prj :: udom — 'a ® 'b)
unfolding emb-sprod-def prj-sprod-def defi-sprod-def cast-sprod-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff sprod-map-map)

THEORY “Representable” 139

qed (fact liftemb-sprod-def liftprj-sprod-def liftdefl-sprod-def)+
end

lemma DEFL-sprod:
DEFL('a::domain ® 'b::domain) = sprod-defl- DEFL('a)- DEFL('b)
by (rule defl-sprod-def)

23.5.6 Cartesian product

definition prod-liftdefl :: udom u defl — udom u defl — udom u defl
where prod-liftdefl = defl-fun2 (u-map-prod-emb oo decode-prod-u)
(encode-prod-u oo u-map-prod-prj) sprod-map

lemma cast-prod-liftdefi:

cast-(prod-liftdefl-a-b) =

(u-map-prod-emb oo decode-prod-u) oo sprod-map-(cast-a)-(cast-b) oo
(encode-prod-u oo u-map-prod-pry)

unfolding prod-liftdefi-def
apply (rule cast-defl-fun2)
apply (intro ep-pair-comp ep-pair-u-map ep-pair-prod)
apply (simp add: ep-pair.intro)
apply (erule (1) finite-deflation-sprod-map)
done

instantiation prod :: (predomain, predomain) predomain
begin

definition
liftemb = (u-map-prod-emb oo decode-prod-u) oo
(sprod-map-liftemb-liftemb oo encode-prod-u)

definition
liftprj = (decode-prod-u oo sprod-map-liftprj-liftprj) oo
(encode-prod-u oo u-map-prod-pry)

definition
liftdefl (t::("a x 'b) itself) = prod-liftdefl. LIFTDEFL(’a)- LIFTDEFL('b)

instance proof
show ep-pair liftemb (liftpr :: udom v — (Ya x 'b) u)
unfolding liftemb-prod-def liftprj-prod-def
by (intro ep-pair-comp ep-pair-sprod-map ep-pair-u-map
ep-pair-prod predomain-ep, simp-all add: ep-pair.intro)
show cast-LIFTDEFL('a x 'b) = liftemb oo (liftprj :: udom v — ('a x 'b) u)
unfolding liftemb-prod-def liftprj-prod-def liftdefi-prod-def
by (simp add: cast-prod-liftdefl cast-liftdefl cfcompl sprod-map-map)
qged

THEORY “Representable” 140

end

instantiation prod :: (domain, domain) domain
begin

definition
emb = prod-emb oo prod-map-emb-emb

definition
prj = prod-map-prj-prj oo prod-prj

definition
defl (t::("a x 'b) itself) = prod-defl- DEFL('a)-DEFL('b)

instance proof
show 1: ep-pair emb (prj :: udom — 'a X 'b)
unfolding emb-prod-def prj-prod-def
by (intro ep-pair-comp ep-pair-prod ep-pair-prod-map ep-pair-emb-pryj)
show 2: cast-DEFL('a x 'b) = emb oo (prj :: udom — 'a x 'b)
unfolding emb-prod-def prj-prod-def defi-prod-def cast-prod-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff prod-map-map)
show 3: liftemb = u-map-(embd :: 'a x 'b — udom)
unfolding emb-prod-def liftemb-prod-def liftemb-eq
unfolding encode-prod-u-def decode-prod-u-def
by (rule cfun-eql, case-tac x, simp, clarsimp)
show /: liftprj = u-map-(prj :: udom — 'a x 'b)
unfolding prj-prod-def liftprj-prod-def liftprj-eq
unfolding encode-prod-u-def decode-prod-u-def
apply (rule cfun-eql, case-tac z, simp)
apply (rename-tac y, case-tac prod-prj-y, simp)
done
show 5: LIFTDEFL('a x 'b) = liftdefl-of-DEFL('a x 'b)
by (rule cast-eq-imp-eq)
(simp add: cast-liftdefl cast-liftdefl-of cast-DEFL 2 3 4 u-map-00)
qed

end

lemma DEFL-prod:
DEFL(’a::domain x 'b::domain) = prod-defl- DEFL('a)- DEFL('b)
by (rule defl-prod-def)

lemma LIFTDEFL-prod:
LIFTDEFL('a::predomain x 'b::predomain) =
prod-liftdefl: LIFTDEFL('a)- LIFTDEFL('b)
by (rule liftdefl-prod-def)

THEORY “Representable” 141

23.5.7 Unit type

instantiation unit :: domain
begin

definition
emb = (L :: unit — udom)

definition
prj = (L :: udom — unit)

definition
defl (t::unit itself) = L

definition
(liftemb :: unit uw — udom u) = u-map-emb

definition
(liftprj :: udom u — unit u) = u-map-prj

definition
liftdefl (t::unit itself) = liftdefl-of - DEFL(unit)

instance proof
show ep-pair emb (prj :: udom — unit)
unfolding emb-unit-def prj-unit-def
by (simp add: ep-pair.intro)
show cast-DEFL(unit) = emb oo (prj :: udom — unit)
unfolding emb-unit-def prj-unit-def defl-unit-def by simp
qed (fact liftemb-unit-def liftprj-unit-def liftdefl-unit-def)+

end

23.5.8 Discrete cpo

instantiation discr :: (countable) predomain
begin

definition
(liftemb :: 'a discr v — udom u) = strictify-up oo udom-emb discr-approx

definition
(liftpry =2 udom u — 'a discr w) = udom-prj discr-approz oo fup-ID

definition
liftdefl (t::'a discr itself) =
(L|%. defl-principal (Abs-fin-defl (liftemb oo discr-approz i oo (liftprj::udom u
— 'a discr u))))

instance proof

THEORY “Representable” 142

show 1: ep-pair liftemb (liftprj :: udom v — 'a discr u)

unfolding liftemb-discr-def liftprj-discr-def

apply (intro ep-pair-comp ep-pair-udom [OF discr-approx))

apply (rule ep-pair.intro)

apply (simp add: strictify-conv-if)

apply (case-tac y, simp, simp add: strictify-conv-if)

done

show cast-LIFTDEFL('a discr) = liftemb oo (liftprj :: udom v — 'a discr u)

unfolding liftdefi-discr-def

apply (subst contlub-cfun-arg)

apply (rule chainl)

apply (rule defl.principal-mono)

apply (simp add: below-fin-defl-def)

apply (simp add: Abs-fin-defl-inverse
ep-pair. finite-deflation-e-d-p [OF 1]
approz-chain. finite-deflation-approx [OF discr-approz])

apply (intro monofun-cfun below-refl)

apply (rule chainFE)

apply (rule chain-discr-approz)

apply (subst cast-defl-principal)

apply (simp add: Abs-fin-defl-inverse
ep-pair.finite-deflation-e-d-p [OF 1]
approx-chain.finite-deflation-approz [OF discr-approz])

apply (simp add: lub-distribs)

done

qged

end

23.5.9 Strict sum

instantiation ssum :: (domain, domain) domain
begin

definition
emb = ssum-emb oo ssum-map-emb-emb

definition
prj = SSum-map-prj-prj 00 Ssum-prj

definition
defl (t::("a @ 'b) itself) = ssum-defl- DEFL('a)-DEFL(’b)

definition
(liftemb :: ('a & 'b) v — udom u) = u-map-emb

definition
(liftpry :: udom v — ('a ® 'b) u) = u-map-prj

THEORY “Representable” 143

definition
liftdefl (t::("a @ 'b) itself) = liftdefl-of-DEFL('a & 'b)

instance proof
show ep-pair emb (prj :: udom — 'a @ 'b)
unfolding emb-ssum-def prj-ssum-def
by (intro ep-pair-comp ep-pair-ssum ep-pair-ssum-map ep-pair-emb-prj)
show cast-DEFL('a & 'b) = emb oo (prj :: udom — 'a & 'b)
unfolding emb-ssum-def prj-ssum-def defi-ssum-def cast-ssum-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff ssum-map-map)
qed (fact liftemb-ssum-def liftprj-ssum-def liftdefl-ssum-def)+

end

lemma DEFL-ssum:
DEFL('a::domain & 'b::domain) = ssum-defl- DEFL('a)-DEFL('b)
by (rule defl-ssum-def)

23.5.10 Lifted HOL type

instantiation lift :: (countable) domain
begin

definition
emb = emb oo (A z. Rep-lift)

definition
prj = (A y. Abs-lift y) oo prj

definition
defl (t::'a lift itself) = DEFL('a discr u)

definition
(liftembd :: 'a lift w — udom u) = u-map-emb

definition
(liftpry :: udom u — 'a lift u) = u-map-prj

definition
liftdefl (t::'a lift itself) = liftdefl-of - DEFL('a lift)

instance proof
note [simp] = cont-Rep-lift cont-Abs-lift Rep-lift-inverse Abs-lift-inverse
have ep-pair (A(z::'a lift). Rep-lift x) (A y. Abs-lift y)
by (simp add: ep-pair-def)
thus ep-pair emb (prj :: udom — 'a lift)
unfolding emb-lift-def prj-lift-def
using ep-pair-emb-prj by (rule ep-pair-comp)
show cast-DEFL('a lift) = emb oo (prj :: udom — 'a lift)

THEORY “One” 144

unfolding emb-lift-def prj-lift-def defl-lift-def cast-DEFL
by (simp add: cfcompl)
qed (fact liftemb-lift-def liftpri-lift-def liftdefl-lift-def)+

end

end

24 The unit domain

theory One
imports Lift
begin

type-synonym one = unit lift

translations
(type) one ~— (type) unit lift

definition ONF :: one
where ONE = Def ()

Exhaustion and Elimination for type one

lemma Ezh-one: t = L V t = ONE
by (induct t) (simp-all add: ONE-def)

lemma oneFE [case-names bottom ONE|: [p= 1 = Q; p= ONE = Q] = @
by (induct p) (simp-all add: ONE-def)

lemma one-induct [case-names bottom ONE]: P L =— P ONE = Pz
by (cases x rule: oneE) simp-all

lemma dist-below-one [simp]: ONE [Z L
by (simp add: ONE-def)

lemma below-ONE [simp]: ¢ T ONE
by (induct z rule: one-induct) simp-all

lemma ONE-below-iff [simp]: ONE C z +— © = ONE
by (induct x rule: one-induct) simp-all

lemma ONE-defined [simp]: ONE # 1
by (simp add: ONE-def)

lemma one-neq-iffs [simp]:
x# ONE +— z = 1
ONE #z+—z=1
x# L +— = ONE
1l #x+— 2= ONE

THEORY “Fixrec” 145

by (induct z rule: one-induct) simp-all

lemma compact-ONE: compact ONE
by (rule compact-chfin)

Case analysis function for type one

definition one-case :: 'a::pcpo — one — 'a
where one-case = (A a z. seq-z-a)

translations
case x of XCONST ONE = t = CONST one-case-t-x
case of XCONST ONE :: 'a = t — CONST one-case-t-x
A (XCONST ONE). t = CONST one-case-t

lemma one-casel [simp]: (case L of ONE = t) = L
by (simp add: one-case-def)

lemma one-case2 [simpl: (case ONE of ONE = t) =t
by (simp add: one-case-def)

lemma one-case3 [simp]: (case x of ONE = ONE) = z
by (induct z rule: one-induct) simp-all

end

theory Fizrec

imports Cprod Sprod Ssum Up One Tr Cfun
keywords fizrec :: thy-defn

begin

25 Fixed point operator and admissibility

25.1 Iteration

primrec iterate :: nat = (‘a — 'a) = (‘a — 'a)
where

iterate 0 = (A F z. x)

| iterate (Suc n) = (A F z. F-(iterate n-F-z))

Derive inductive properties of iterate from primitive recursion

lemma iterate-0 [simp]: iterate 0-F-x = x
by simp

lemma iterate-Suc [simp]: iterate (Suc n)-F-x = F-(iterate n-F-x)
by simp

declare iterate.simps [simp del]

THEORY “Fixrec” 146

lemma iterate-Suc2: iterate (Suc n)-F-x = iterate n-F-(F-x)
by (induct n) simp-all

lemma iterate-iterate: iterate m-F-(iterate n-F-x) = iterate (m + n)-F-z
by (induct m) simp-all

The sequence of function iterations is a chain.

lemma chain-iterate [simpl: chain (\i. iterate i-F-1)
by (rule chainl, unfold iterate-Suc2, rule monofun-cfun-arg, rule minimal)

25.2 Least fixed point operator

definition fiz :: (‘a::pcpo — 'a) = 'a
where fix = (A F. | |i. iterate i-F- L)

Binder syntax for fiz

abbreviation fiz-syn :: (‘a:pepo = ‘a) = ‘a (binder «u » 10)
where fiz-syn (A\z. f z) = fiz-(A 2. f z)

notation (ASCII)
fiz-syn (binder <FIX » 10)

Properties of fix

direct connection between fix and iteration

lemma fiz-def2: fiz-F = (| |i. iterate i-F-1)
by (simp add: fiz-def)

lemma iterate-below-fix: iterate n-f-L T fix-f
unfolding fiz-def2
using chain-iterate by (rule is-ub-thelub)

Kleene’s fixed point theorems for continuous functions in pointed omega
cpo’s
lemma fiz-eq: fix-F = F-(fiz-F)

apply (simp add: fiz-def2)

apply (subst lub-range-shift [of - 1, symmetric])

apply (rule chain-iterate)

apply (subst contlub-cfun-arg)

apply (rule chain-iterate)

apply simp

done

lemma fiz-least-below: F-x C v = fiz-F C x
apply (simp add: fiz-def2)
apply (rule lub-below)
apply (rule chain-iterate)
apply (induct-tac)
apply simp

THEORY “Fixrec” 147

apply simp

apply (erule rev-below-trans)
apply (erule monofun-cfun-arg)
done

lemma fiz-least: F'o = ¢ — fis-F C x
by (rule fiz-least-below) simp

lemma fiz-eql:
assumes fized: F-x = x
and least: Nz. F-z =2 =z C 2
shows fix-F' = x
apply (rule below-antisym)
apply (rule fiz-least [OF fized])
apply (rule least [OF fiz-eq [symmetric]])
done

lemma fiz-eq2: f = fix-F — f = F-f
by (simp add: fiz-eq [symmetric])

lemma fiz-eq3: f = fir-F = f-x = F-fx
by (erule fix-eq2 [THEN cfun-fun-cong])

lemma fiz-eq): f = fix: FF = f = F-f
by (erule ssubst) (rule fiz-eq)

lemma fiz-eq5: f = fir-F = f-x = F-fx
by (erule fix-eq) [THEN cfun-fun-cong])

strictness of fix

lemma fiz-bottom-iff: fix- ¥ = L +— F-1 = 1
apply (rule iffI)
apply (erule subst)
apply (rule fiz-eq [symmetric])
apply (erule fiz-least [THEN bottomlI])
done

lemma fiz-strict: F-1 = 1| = fiz-F = L
by (simp add: fiz-bottom-iff)

lemma fiz-defined: F-1 # | = fix-F # L

by (simp add: fix-bottom-iff)
fix applied to identity and constant functions
lemma fiz-id: (p z. z) = L

by (simp add: fiz-strict)

lemma fiz-const: (u x. ¢) = ¢
by (subst fiz-eq) simp

THEORY “Fixrec” 148

25.3 Fixed point induction

lemma fiz-ind: adm P —= P | — (A\z. P2z = P (F-z)) = P (fiz-F)
unfolding fiz-def2
apply (erule admD)
apply (rule chain-iterate)
apply (rule nat-induct, simp-all)
done

lemma cont-fiz-ind: cont F — adm P — P L — (Az. Pz — P (F2)) =
P (fiz-(Abs-cfun F))
by (simp add: fix-ind)

lemma def-fiz-ind: [f = fiz-F; adm P; P L; Ao. Px = P (F-2)] = P f
by (simp add: fiz-ind)

lemma fiz-ind2:
assumes adm: adm P
assumes 0: P | and 1: P (F-1)
assumes step: A\z. [P z; P (F-z)] = P (F-(F-z))
shows P (fiz-F)
unfolding fiz-def2
apply (rule admD [OF adm chain-iterate])
apply (rule nat-less-induct)
apply (case-tac n)
apply (simp add: 0)
apply (case-tac nat)
apply (simp add: 1)
apply (frule-tac z=nat in spec)
apply (simp add: step)
done

lemma parallel-fiz-ind:
assumes adm: adm (Az. P (fst) (snd z))
assumes base: P L |
assumes step: Az y. Pxy = P (F-z) (G-y)
shows P (fiz-F) (fiz-G)
proof —
from adm have adm’: adm (case-prod P)
unfolding split-def .
have P (iterate i-F-1) (iterate i-G-1) for
by (induct ©) (simp add: base, simp add: step)
then have Ai. case-prod P (iterate i-F- L, iterate i-G-1)
by simp
then have case-prod P (|]i. (iterate i-F-L, iterate i-G-1))
by — (rule admD [OF adm’), simp, assumption)
then have case-prod P (| |i. iterate i-F-L, | |i. iterate i-G-1)
by (simp add: lub-Pair)
then have P (| |i. iterate i-F-L1) (|]i. iterate i-G-L1)
by simp

THEORY “Fixrec” 149

then show P (fiz-F) (fiz-G)
by (simp add: fix-def2)
qed

lemma cont-parallel-fiz-ind:
assumes cont F' and cont G
assumes adm (Az. P (fst z) (snd x))
assumes P | |
assumes Az y. Pzy = P (Fz) (Gy)
shows P (fiz-(Abs-cfun F)) (fix-(Abs-cfun G))
by (rule parallel-fix-ind) (simp-all add: assms)

25.4 Fixed-points on product types

Bekic’s Theorem: Simultaneous fixed points over pairs can be written in
terms of separate fixed points.

lemma fiz-cprod:
fixes F :: 'a::pcpo x 'bipecpo — 'a x b
shows
fix-F =
(1 z. fst (F-(z, p y. snd (F(z, y)))),
oy snd (F-(p o fst (F-(z, py. snd (F-(z, y)))), y)))
(is fix-F = (%z, ?y))
proof (rule fiz-eql)
have «: fst (F-(%z, ?y)) = %z
by (rule trans [symmetric, OF fiz-eq|, simp)
have snd (F-(%z, ?y)) = %y
by (rule trans [symmetric, OF fiz-eq], simp)
with * show F-(%z, %y) = (%z, %y)
by (simp add: prod-eq-iff)
next
fix z
assume F-z: F-z = 2
obtain z y where z: z = (z, y) by (rule prod.ezhaust)
from F-z z have F-z: fst (F-(z, y)) = = by simp
from F-z z have F-y: snd (F-(z, y)) = y by simp
let 2y1 = py. snd (F-(z, y))
have 7y1 C y
by (rule fiz-least) (simp add: F-y)
then have fst (F-(z, ?y1)) C fst (F-(z, y))
by (simp add: fst-monofun monofun-cfun)
with F-z have fst (F-(z, ?y1)) C x
by simp
then have x: %2 C 2
by (simp add: fiz-least-below)
then have snd (F-(%z, y)) C snd (F-(z, y))
by (simp add: snd-monofun monofun-cfun)
with F-y have snd (F-(%z, y)) C y
by simp

THEORY “Fixrec” 150

then have 2y C y
by (simp add: fiz-least-below)
with z x show (%z, %y) C 2
by simp
qed

26 Package for defining recursive functions in HOLCF

26.1 Pattern-match monad

pcpodef ‘a match = UNIV::(one ++ 'a u) set
by simp-all

definition
fail :: 'a match where
fail = Abs-match (sinl-ONE)

definition
succeed 1 'a — 'a match where
succeed = (A x. Abs-match (sinr-(up-x)))

lemma matchE [case-names bottom fail succeed, cases type: match):
[p=1L= @;p=fail = Q; \z. p = succeed-x = Q] = @

unfolding fail-def succeed-def

apply (cases p, rename-tac r)

apply (rule-tac p=r in ssumkE, simp add: Abs-match-strict)

apply (rule-tac p=z in oneE, simp, simp)

apply (rule-tac p=y in upE, simp, simp add: cont-Abs-match)

done

lemma succeed-defined [simp]: succeed-x # L
by (simp add: succeed-def cont-Abs-match Abs-match-bottom-iff)

lemma fail-defined [simpl: fail # L
by (simp add: fail-def Abs-match-bottom-iff)

lemma succeed-eq [simp]: (succeed-z = succeed-y) = (x = y)
by (simp add: succeed-def cont-Abs-match Abs-match-inject)

lemma succeed-neg-fail [simp):
succeed-x # fail fail # succeed-x
by (simp-all add: succeed-def fail-def cont-Abs-match Abs-match-inject)

26.1.1 Run operator

definition
run :: 'a match — 'a::pcpo where
run = (A m. sscase- L-(fup-ID)-(Rep-match m))

rewrite rules for run

THEORY “Fixrec” 151

lemma run-strict [simpl: run-L = L
unfolding run-def
by (simp add: cont-Rep-match Rep-match-strict)

lemma run-fail [simpl]: run-fail = L
unfolding run-def fail-def
by (simp add: cont-Rep-match Abs-match-inverse)

lemma run-succeed [simpl: run-(succeed-z) = x
unfolding run-def succeed-def
by (simp add: cont-Rep-match cont-Abs-match Abs-match-inverse)

26.1.2 Monad plus operator

definition
mplus :: 'a match — 'a match — 'a match where
mplus = (A m1 m2. sscase-(A -. m2)-(A -. m1)-(Rep-match m1))

abbreviation
mplus-syn :: ['a match, 'a match] = 'a match (infixr <+++> 65) where
ml +++ m2 == mplus-m1-m2

rewrite rules for mplus

lemma mplus-strict [simp]: L +++ m = L
unfolding mplus-def
by (simp add: cont-Rep-match Rep-match-strict)

lemma mplus-fail [simpl: fail +++ m = m
unfolding mplus-def fail-def
by (simp add: cont-Rep-match Abs-match-inverse)

lemma mplus-succeed [simp): succeed-z +++ m = succeed-x
unfolding mplus-def succeed-def
by (simp add: cont-Rep-match cont-Abs-match Abs-match-inverse)

lemma mplus-fail2 [simp]: m +++ fail = m
by (cases m, simp-all)

lemma mplus-assoc: (z +++ y) +++ 2z = z +++ (y +++ 2)
by (cases x, simp-all)

26.2 Match functions for built-in types

definition

match-bottom :: 'a::pcpo — 'c match — 'c match
where

match-bottom = (A x k. seq-x-fail)

definition

THEORY “Fixrec” 152

match-Pair - 'a X 'b — ('la = 'b — ‘¢ match) — "¢ match
where
match-Pair = (A z k. csplit-k-x)

definition

match-spair :: 'a:pepo ® 'bipepo — (‘a — 'b — ‘¢ match) — 'c:pepo match
where

match-spair = (A z k. ssplit-k-x)

definition

match-sinl :: 'a::pepo @ 'bipepo — (‘a — 'e:ipepo match) — ‘¢ match
where

match-sinl = (A z k. sscase-k-(A b. fail)-x)

definition

match-sinr 2 'a:pepo & 'bipepo — (b — 'ci:pepo match) — ¢ match
where

match-sinr = (A x k. sscase-(A a. fail)-k-x)

definition

match-up :: 'a u — ('a — 'ciipepo match) — ¢ match
where

match-up = (A z k. fup-k-x)

definition

match-ONE :: one — 'c::pcpo match — ‘¢ match
where

match-ONE = (A ONE k. k)

definition

match-TT :: tr — 'c::pcpo match — 'c match
where

match-TT = (A z k. If z then k else fail)

definition

match-FF :: tr — 'c::pcpo match — 'c match
where

match-FF = (A z k. If z then fail else k)

lemma match-bottom-simps [simp]:
match-bottom-z-k = (if = L then L else fail)
by (simp add: match-bottom-def)

lemma match-Pair-simps [simpl:
match-Pair-(z, y)-k = k-x-y
by (simp-all add: match-Pair-def)

lemma match-spair-simps [simpl:
[x # L; y # L] = match-spair-(:z, y:)-k = k-z-y

THEORY “Fixrec” 153

match-spair-L-k = L
by (simp-all add: match-spair-def)

lemma match-sinl-simps [simp]:
x # 1 = match-sinl-(sinl-x)-k = k-x
y # L = match-sinl-(sinr-y)-k = fail
match-sinl- L-k = 1

by (simp-all add: match-sinl-def)

lemma match-sinr-simps [simpl:
x # 1 = match-sinr-(sinl-x)-k = fail
y # L = match-sinr-(sinr-y)-k = k-y
match-sinr- L-k = 1

by (simp-all add: match-sinr-def)

lemma match-up-simps [simp]:
match-up-(up-z)-k = k-x
match-up- L-k = 1

by (simp-all add: match-up-def)

lemma match-ONE-simps [simp]:
match-ONE-ONE-k = k
match-ONE- 1L -k = |

by (simp-all add: match-ONE-def)

lemma match-TT-simps [simp]:
match-TT-TT-k = k
match-TT-FF-k = fail
match-TT-1L-k = 1

by (simp-all add: match-TT-def)

lemma match-FF-simps [simp]:
match-FF-FF-k = k
match-FF-TT-k = fail
match-FF-1-k = |

by (simp-all add: match-FF-def)

26.3 Mutual recursion

The following rules are used to prove unfolding theorems from fixed-point
definitions of mutually recursive functions.

lemma Pair-equall: [z = fst p; y = snd p] = (z, y) = p
by simp
lemma Pair-eqD1: (z, y) = (z/, y') = z =2’
by simp
lemma Pair-eqD2: (z, y) = (2, y') = y =1y’
by simp

THEORY “Domain” 154

lemma def-cont-fiz-eq:
[f = fiz-(Abs-cfun F); cont F] = f = F f
by (simp, subst fix-eq, simp)

lemma def-cont-fiz-ind:
If = fix-(Abs-cfun F); cont F; adm P; P L; NAe. Pz — P (Fz)] = P f
by (simp add: fiz-ind)

lemma for proving rewrite rules

lemma ssubst-lhs: [t =s; Ps= Q] = Pt=Q
by simp

26.4 Initializing the fixrec package

ML-file < Tools/holcf-library. ML»
ML-file < Tools/ fixrec. ML»

method-setup fixrec-simp = «
Scan.succeed (SIMPLE-METHOD' o Fizrec.fixrec-simp-tac)
y pattern prover for fizrec constants

setup <«

Fizrec.add-matchers

[(const-name <up), const-name <match-up),

const-name <sinly, const-name <match-sinly),
const-name <sinry, const-name <match-sinry),
const-name <spair), const-name <match-spair»),
const-name < Pair), const-name <match-Pair»),
const-name <ONE>, const-name (match-ONE»),
const-name<TT», const-name ¢match-TT)),
const-name <FF», const-name <match-FF)),
const-name <bottom», const-name (match-bottom)) |

(
(
(
(
(
(
(
(

)
hide-const (open) succeed fail run

end

27 Domain package

theory Domain
imports Representable Map-Functions Fizrec
keywords
lazy unsafe and
domaindef domain :: thy-defn and
domain-isomorphism :: thy-decl
begin

THEORY “Domain” 155

27.1 Continuous isomorphisms

A locale for continuous isomorphisms

locale iso =
fixes abs :: 'a::pcpo — 'b::pcpo
fixes rep :: 'b — 'a
assumes abs-iso [simp]: rep-(abs-x) = x
assumes rep-iso [simp|: abs-(rep-y) = y
begin

lemma swap: iso rep abs
by (rule iso.intro [OF rep-iso abs-iso])

lemma abs-below: (abs-z C abs-y) = (z C y)
proof
assume abs-x T abs-y
then have rep-(abs-z) C rep-(abs-y) by (rule monofun-cfun-arg)
then show z C y by simp
next
assume z C y
then show abs-z C abs-y by (rule monofun-cfun-arg)
qed

lemma rep-below: (rep-z C rep-y) = (x C y)
by (rule iso.abs-below [OF swap))

lemma abs-eq: (abs-x = abs-y) = (z = y)
by (simp add: po-eq-conv abs-below)

lemma rep-eq: (rep-x = rep-y) = (z = y)
by (rule iso.abs-eq [OF swap])

lemma abs-strict: abs- L = L
proof —
have | C rep-L ..
then have abs- L C abs-(rep-L) by (rule monofun-cfun-arg)
then have abs- L T | by simp
then show ?thesis by (rule bottoml)
qed

lemma rep-strict: rep- L = 1
by (rule iso.abs-strict [OF swap))

lemma abs-defin’: absx = L = z = L
proof —

have z = rep-(abs-z) by simp

also assume abs-x = L

also note rep-strict

finally show z = | .

THEORY “Domain”

156
qed

lemma rep-defin”: repz = L = 2z = 1

by (rule iso.abs-defin’ [OF swap])

lemma abs-defined: z # 1 = abs-z # L

by (erule contrapos-nn, erule abs-defin’)

lemma rep-defined: z # 1 = rep-z # L
by (rule iso.abs-defined [OF iso.swap)) (rule iso-azioms)

lemma abs-bottom-iff: (abs-x = L) = (z = 1)
by (auto elim: abs-defin’ intro: abs-strict)

lemma rep-bottom-iff: (rep-x = L) =

by (rule iso.abs-bottom-iff [OF iso.swap]) (rule iso-axioms)

lemma casedist-rule: repx = L VP =—z=1VP
by (simp add: rep-bottom-iff)

lemma compact-abs-rev: compact (abs-x) = compact x
proof (unfold compact-def)

assume adm (Ay. abs-z L y)

with cont-Rep-cfun?

have adm (\y. abs-z L abs-y) by (rule adm-subst)
then show adm (\y. z [Z y) using abs-below by simp
qged

lemma compact-rep-rev: compact (rep-r) = compact x
by (rule iso.compact-abs-rev [OF iso.swap]) (rule iso-axioms)

lemma compact-abs: compact t => compact (abs-x)
by (rule compact-rep-rev) simp

lemma compact-rep: compact © = compact (rep-x)
by (rule iso.compact-abs [OF iso.swap]) (rule iso-axioms)

lemma iso-swap: (z = abs-y) = (rep-xz = y)
proof

assume zr = abs-y
then have rep-x

then show rep-z =
next

rep-(abs-y) by simp
y by simp
assume rep-x = y

then have abs-(rep-z) = abs-y by simp
then show x = abs-y by simp
qed

end

THEORY “Domain” 157

27.2 Proofs about take functions

This section contains lemmas that are used in a module that supports the
domain isomorphism package; the module contains proofs related to take
functions and the finiteness predicate.

lemma deflation-abs-rep:
fixes abs and rep and d
assumes abs-iso: \z. rep-(abs-z) = x
assumes rep-iso: N\y. abs-(rep-y) = y
shows deflation d = deflation (abs oo d oo rep)
by (rule ep-pair.deflation-e-d-p) (simp add: ep-pair.intro assms)

lemma deflation-chain-min:
assumes chain: chain d
assumes defl: A\n. deflation (d n)
shows d m-(d n-z) = d (min m n)-x
proof (rule linorder-le-cases)
assume m < n
with chain have d m C d n by (rule chain-mono)
then have d m-(d n-x) = d m-x
by (rule deflation-below-comp1 [OF defl defl])
moreover from (m < n» have min m n = m by simp
ultimately show ?thesis by simp
next
assume n < m
with chain have d n C d m by (rule chain-mono)
then have d m-(d n-x) = d n-x
by (rule deflation-below-comp2 [OF defl defl])
moreover from (n < my have min m n = n by simp
ultimately show %thesis by simp
qed

lemma lub-ID-take-lemma:
assumes chain t and (| |n. t n) = ID
assumes An. t n-z = t n-y shows z = y
proof —
have (| |n. t nz) = (| n. t n-y)
using assms(3) by simp
then have (| [n. t n)-z = (| |n. t n)y
using assms(1) by (simp add: lub-distribs)
then show z =y
using assms(2) by simp
qed

lemma lub-ID-reach:
assumes chain t and (| |n. t n) = ID
shows (| [n. t n-z) = x

using assms by (simp add: lub-distribs)

THEORY “Domain” 158

lemma lub-ID-take-induct:
assumes chain t and (| |n. t n) = ID
assumes adm P and An. P (¢t n-z) shows P z
proof —
from <chain t> have chain (An. t n-x) by simp
from <adm P> this <An. P (t n-z)> have P (| |n. t n-z) by (rule admD)
with <chain t» <(| | n. t n) = ID> show P z by (simp add: lub-distribs)
qed

27.3 Finiteness

Let a “decisive” function be a deflation that maps every input to either itself
or bottom. Then if a domain’s take functions are all decisive, then all values
in the domain are finite.

definition

decisive :: ('az:pcpo — 'a) = bool
where

decisive d +— (Vz. d-z =z V dz = 1)

lemma decisivel: (Nz. d-x =z V d-x = L) = decisive d
unfolding decisive-def by simp

lemma decisive-cases:
assumes decisive d obtains d-x =z | d-z = L
using assms unfolding decisive-def by auto

lemma decisive-bottom: decisive L
unfolding decisive-def by simp

lemma decisive-1D: decisive 1D
unfolding decisive-def by simp

lemma decisive-ssum-map:

assumes f: decisive f

assumes ¢: decisive g

shows decisive (ssum-map-f-g)

apply (rule decisivel)

subgoal for s
apply (cases s, simp-all)
apply (rule-tac x=x in decisive-cases [OF f], simp-all)
apply (rule-tac =y in decisive-cases [OF g|, simp-all)
done

done

lemma decisive-sprod-map:
assumes f: decisive f
assumes g: decisive g
shows decisive (sprod-map-f-g)
apply (rule decisivel)

THEORY “Domain”

subgoal for s
apply (cases s, simp)
subgoal for z y
apply (rule decisive-cases [OF f, where x = z], simp-all)
apply (rule decisive-cases [OF g, where z = y|, simp-all)
done
done
done

lemma decisive-abs-rep:

fixes abs rep

assumes iso: iso abs rep

assumes d: decisive d

shows decisive (abs oo d oo rep)

apply (rule decisivel)

subgoal for s
apply (rule decisive-cases [OF d, where z=rep-s])
apply (simp add: iso.rep-iso [OF iso])
apply (simp add: iso.abs-strict [OF iso])
done

done

lemma [ub-ID-finite:
assumes chain: chain d
assumes lub: (| |n. d n) = ID
assumes decisive: A\n. decisive (d n)
shows In. dnz =2
proof —
have 1: chain (An. d n-z) using chain by simp
have 2: (| |n. d n-z) = x using chain lub by (rule lub-ID-reach)
have Vn.dnz=zVdnz=_1
using decisive unfolding decisive-def by simp
hence range (An. d n-z) C {z, 1}
by auto
hence finite (range (An. d n-z))
by (rule finite-subset, simp)
with 1 have finite-chain (An. d n-x)
by (rule finite-range-imp-finch)
then have In. (| |n. d n-z) = dnx
unfolding finite-chain-def by (auto simp add: mazinch-is-thelub)
with 2 show 3n. d n-z = z by (auto elim: sym)
qed

lemma [ub-ID-finite-take-induct:
assumes chain d and (| |n. d n) = ID and An. decisive (d n)
shows (An. P (d nz)) = Pz

using lub-ID-finite [OF assms] by metis

159

THEORY “Domain” 160

27.4 Proofs about constructor functions

Lemmas for proving nchotomy rule:

lemma ex-one-bottom-iff:
(3z. Pz Nz # 1)=P ONE
by simp

lemma ex-up-bottom-iff:
FBz. Pz ANz #1)= 3z P (upx))
by (safe, case-tac x, auto)

lemma ex-sprod-bottom-iff:

(Fy. PyAy#1)=

Fzy. (P (z,y) AN # L) Ay # 1)
by (safe, case-tac y, auto)

lemma ex-sprod-up-bottom-iff:
(Fy. PyAy#1)=
(Fzy. P (upz, y:) Ny # 1)
by (safe, case-tac y, simp, case-tac x, auto)

lemma ex-ssum-bottom-iff:
Fz. Pz ANz #1)=

(Fz. P (sinlz) Nz # L)V
(Fz. P (sinr-z) Az # 1))

by (safe, case-tac x, auto)

lemma exh-start: p= LV 3z.p=xz Az # 1)
by auto

lemmas ex-bottom-iffs =
ex-ssum-bottom-iff
ex-sprod-up-bottom-iff
ez-sprod-bottom-iff
ex-up-bottom-iff
ex-one-bottom-iff

Rules for turning nchotomy into exhaust:
lemma ezh-casedist0: [R; R = P] = P
by auto

lemma exh-casedist!: (PV Q@ = R) = S) = ([P = R; Q = R] = 9)
by rule auto

lemma ezh-casedist?2: (3z. Pz = Q) = (A\z. Pz = Q)
by rule auto

lemma exh-casedist3: (P N Q@ = R) = (P = @ = R)
by rule auto

THEORY “Domain”

161

lemmas ezh-casedists = exh-casedist]l exh-casedist? exh-casedist3

Rules for proving constructor properties

lemmas con-strict-rules =
sinl-strict sinr-strict spair-strictl spair-strict2

lemmas con-bottom-iff-rules =

sinl-bottom-iff sinr-bottom-iff spair-bottom-iff up-defined ONE-defined

lemmas con-below-iff-rules =

sinl-below sinr-below sinl-below-sinr sinr-below-sinl con-bottom-iff-rules

lemmas con-eq-iff-rules =
sinl-eq sinr-eq sinl-eq-sinr sinr-eq-sinl con-bottom-iff-rules

lemmas sel-strict-rules =
cfcomp?2 sscasel sfst-strict ssnd-strict fupl

lemma sel-app-extra-rules:
sscase-ID- 1 -(sinr-z) = L
sscase-ID- 1 -(sinl-z) = x
sscase- L-ID-(sinl-z) = L
sscase: L -ID- (smr x) =
Jup-ID-(up-z) =

by (cases x = L, simp, simp)+

lemmas sel-app-rules =
sel-strict-rules sel-app-extra-rules
ssnd-spair sfst-spair up-defined spair-defined

lemmas sel-bottom-iff-rules =
cfcomp?2 sfst-bottom-iff ssnd-bottom-iff

lemmas take-con-rules =

ssum-map-sinl’ ssum-map-sinr’ sprod-map-spair’ u-map-up
deflation-strict deflation-ID ID1 cfcomp2

27.5 ML setup

named-theorems domain-deflation theorems like deflation a ==

and domain-map-ID theorems like foo-map$ID = ID

ML-file < Tools/ Domain/domain-take-proofs. ML»
ML-file ¢ Tools/cont-consts. ML)

ML-file «Tools/cont-proc. ML»

simproc-setup cont (cont f) = <K ContProc.cont-procs

ML-file < Tools/ Domain/domain-constructors. ML»

> deflation (foo-map$a)

THEORY “Domain” 162

ML-file < Tools/ Domain/domain-induction. ML)

27.6 Representations of types

lemma emb-prj: emb-((prj-x)::'a::domain) = cast-DEFL('a)-x
by (simp add: cast-DEFL)

lemma emb-prj-emb:

fixes z :: ‘a::domain

assumes DEFL(’a) C DEFL(’D)

shows emb-(prj-(emb-x) :: 'b::domain) = emb-x
unfolding emb-prj
apply (rule cast.belowD)
apply (rule monofun-cfun-arg [OF assms])
apply (simp add: cast-DEFL)
done

lemma prj-emb-prj:
assumes DEFL('a::domain) C DEFL(’b::domain)
shows prj-(emb-(prj-z :: 'b)) = (prj-z :: 'a)
apply (rule emb-eq-iff |[THEN iffD1])
apply (simp only: emb-prj)
apply (rule deflation-below-comp1)
apply (rule deflation-cast)
apply (rule deflation-cast)
apply (rule monofun-cfun-arg [OF assms])
done

Isomorphism lemmas used internally by the domain package:

lemma domain-abs-iso:
fixes abs and rep
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: '‘a — 'b) = prj oo emb
assumes rep-def: (rep :: 'b — ‘a) = prj oo emb
shows rep-(abs-z) = z

unfolding abs-def rep-def

by (simp add: emb-prj-emb DEFL)

lemma domain-rep-iso:
fixes abs and rep
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: 'a — 'b) = prj oo emb
assumes rep-def: (rep :: 'b — 'a) = prj oo emb
shows abs-(rep-z) = z

unfolding abs-def rep-def

by (simp add: emb-prj-emb DEFL)

27.7 Deflations as sets
definition defl-set :: 'a::bifinite defl = 'a set

THEORY “Domain” 163

where defl-set A = {z. cast-A-x = x}

lemma adm-defi-set: adm (A\z. © € defl-set A)
unfolding defi-set-def by simp

lemma defl-set-bottom: L € defl-set A
unfolding defi-set-def by simp

lemma defl-set-cast [simp]: cast-A-z € defl-set A
unfolding defi-set-def by simp

lemma defl-set-subset-iff: defl-set A C defl-set B<+— AC B
apply (simp add: defl-set-def subset-eq cast-below-cast [symmetric))
apply (auto simp add: cast.belowl cast.belowD)

done

27.8 Proving a subtype is representable

Temporarily relax type constraints.

setup <«
fold Sign.add-const-constraint
[(const-name «defly, SOME typ <'a::pcpo itself = udom defly)
, (const-name <emby, SOME typ <'a::pcpo — udomy)
, (const-name <prj>, SOME typ <udom — 'a::pcpoy)
, (const-name liftdefly, SOME typ <'a::pcpo itself = udom u defly)
, (const-name (liftemby, SOME typ <'a::pcpo u — udom u»)
, (const-name liftprj>, SOME typ <udom u — 'a::pcpo w)) |
)

lemma typedef-domain-class:
fixes Rep :: 'a::pcpo = udom
fixes Abs :: udom = 'a::pcpo
fixes t :: udom defi
assumes type: type-definition Rep Abs (defl-set t)
assumes below: (C) = Az y. Rep z C Rep y
assumes emb: emb = (A z. Rep z)
assumes prj: prj = (A z. Abs (cast-t-z))
assumes defl: defl = (\ a::'a itself. t)
assumes liftemb: (liftemb :: 'a v — udom u) = u-map-emb
assumes liftpry: (liftprj :: udom v — 'a u) = u-map-prj
assumes liftdefl: (liftdefl :: 'a itself = -) = (At. liftdefl-of-DEFL('a))
shows OFCLASS('a, domain-class)
proof
have emb-beta: A\z. emb-x = Rep z
unfolding emb
apply (rule beta-cfun)
apply (rule typedef-cont-Rep [OF type below adm-defl-set cont-id))
done
have prj-beta: Ny. prj-y = Abs (cast-t-y)

THEORY “Domain” 164

unfolding prj
apply (rule beta-cfun)
apply (rule typedef-cont-Abs [OF type below adm-defl-set])
apply simp-all
done
have prj-emb: Az::'a. prj-(emb-x) = z
using type-definition.Rep [OF type]
unfolding prj-beta emb-beta defl-set-def
by (simp add: type-definition. Rep-inverse [OF type])
have emb-prj: A\y. emb-(prj-y :: 'a) = cast-t-y
unfolding prj-beta emb-beta
by (simp add: type-definition. Abs-inverse [OF typel)
show ep-pair (emb :: '‘a — udom) prj
apply standard
apply (simp add: prj-emb)
apply (simp add: emb-prj cast.below)
done
show cast-DEFL('a) = emb oo (prj :: udom — 'a)
by (rule cfun-eql, simp add: defl emb-pry)
qed (simp-all only: liftemb liftprj liftdefl)

lemma typedef-DEFL:
assumes defl = (Aa::'a::pepo itself. t)
shows DEFL('a::pcpo) = t
unfolding assms ..

Restore original typing constraints.

setup <«
fold Sign.add-const-constraint
[(const-name «defly, SOME typ <'a::domain itself = udom defly),
(const-name <emby, SOME typ <'a::domain — udomy),
(const-name <prjy, SOME typ <udom — 'a::domain)),
(const-name «liftdefly, SOME typ <'a::predomain itself = udom u defly),
(const-name <liftemby, SOME typ 'a::predomain v — udom w)),
(const-name liftprjy, SOME typ <udom u — 'a::predomain uy))
)

ML-file «Tools/domaindef.ML»

27.9 Isomorphic deflations
definition isodefl :: (‘a::domain — 'a) = udom defl = bool
where isodefl d t «+— cast-t = emb oo d oo prj

definition isodefl’ :: ('a::predomain — 'a) = udom u defl = bool
where isodefl’ d t +— cast-t = liftemb oo u-map-d oo liftprj

lemma isodefill: (Axz. cast-t-x = emb-(d-(prj-x))) = isodefl d t
unfolding isodefl-def by (simp add: cfun-eqI)

THEORY “Domain” 165

lemma cast-isodefl: isodefl d t = cast-t = (A z. emb-(d-(prj-x)))
unfolding isodefl-def by (simp add: cfun-eql)

lemma isodefi-strict: isodefl d t = d-1 = 1
unfolding isodefi-def
by (drule cfun-fun-cong [where z=_1], simp)

lemma isodefl-imp-deflation:
fixes d :: 'a::domain — 'a
assumes isodefl d t shows deflation d

proof
note assms [unfolded isodefl-def, simp]
fix z:: 'a

show d-(d-z) = d-x
using cast.idem [of t emb-z] by simp
show d-z C z
using cast.below [of t emb-x] by simp
qed

lemma isodefl-ID-DEFL: isodefl (ID :: 'a — 'a) DEFL('a::domain)
unfolding isodefl-def by (simp add: cast-DEFL)

lemma isodefl-LIFTDEFL:
isodefl’ (ID :: 'a — 'a) LIFTDEFL('a::predomain)
unfolding isodefl’-def by (simp add: cast-liftdefl u-map-ID)

lemma isodefl-DEFL-imp-ID: isodefl (d :: ‘a — 'a) DEFL('a::domain) = d =
ID

unfolding isodefi-def

apply (simp add: cast-DEFL)

apply (simp add: cfun-eq-iff)

apply (rule alll)

apply (drule-tac z=emb-z in spec)

apply simp

done

lemma isodefi-bottom: isodefl L 1
unfolding isodefl-def by (simp add: cfun-eq-iff)

lemma adm-isodefi:
cont f = cont g = adm (Az. isodefl (f x) (g))
unfolding isodefl-def by simp

lemma isodefl-lub:
assumes chain d and chain t
assumes Ai. isodefl (d i) (t 1)
shows isodefl (| |4. d i) (|]7. ¢ 7)

using assms unfolding isodefi-def

THEORY “Domain” 166

by (simp add: contlub-cfun-arg contlub-cfun-fun)

lemma isodefl-fiz:
assumes Ad t. isodefl d t = isodefl (f-d) (g-t)
shows isodefl (fix-f) (fiz-g)

unfolding fix-def2

apply (rule isodefl-lub, simp, simp)

apply (induct-tac)

apply (simp add: isodefl-bottom)

apply (simp add: assms)

done

lemma isodefl-abs-rep:
fixes abs and rep and d
assumes DEFL: DEFL('b::domain) = DEFL('a::domain)
assumes abs-def: (abs :: ‘a — 'b) = prj oo emb
assumes rep-def: (rep :: 'b — 'a) = prj oo emb
shows isodefl d t = isodefl (abs oo d oo rep) t
unfolding isodefi-def
by (simp add: cfun-eq-iff assms prj-emb-prj emb-prj-emb)

lemma isodefl’-liftdefl-of : isodefl d t = isodefl’ d (liftdefl-of-t)
unfolding isodefl-def isodefl’-def
by (simp add: cast-liftdefi-of u-map-oo liftemb-eq liftprj-eq)

lemma isodefi-sfun:
isodefl d1 t1 = isodefl d2 t2 —

isodefl (sfun-map-d1-d2) (sfun-defl-t1-t2)
apply (rule isodefil)
apply (simp add: cast-sfun-defl cast-isodefl)
apply (simp add: emb-sfun-def prj-sfun-def)
apply (simp add: sfun-map-map isodefl-strict)
done

lemma isodefl-ssum:

isodefl d1 t1 = isodefl d2 t2 —

isodefl (ssum-map-d1-d2) (ssum-defl-t1-t2)

apply (rule isodefil)
apply (simp add: cast-ssum-defl cast-isodefl)
apply (simp add: emb-ssum-def prj-ssum-def)
apply (simp add: ssum-map-map isodefl-strict)
done

lemma isodefi-sprod:
isodefl d1 t1 = isodefl d2 12 —
isodefl (sprod-map-d1-d2) (sprod-defl-t1-t2)
apply (rule isodefil)
apply (simp add: cast-sprod-defl cast-isodefl)
apply (simp add: emb-sprod-def prj-sprod-def)

THEORY “Domain” 167

apply (simp add: sprod-map-map isodefl-strict)
done

lemma isodefl-prod:
isodefl d1 t1 = isodefl d2 t2 —

isodefl (prod-map-d1-d2) (prod-defl-t1-t2)
apply (rule isodefil)
apply (simp add: cast-prod-defl cast-isodefl)
apply (simp add: emb-prod-def prj-prod-def)
apply (simp add: prod-map-map cfcompl)
done

lemma isodefl-u:
isodefl d t = isodefl (u-map-d) (u-defi-t)
apply (rule isodefil)
apply (simp add: cast-u-defl cast-isodefl)
apply (simp add: emb-u-def prj-u-def liftemb-eq liftpri-eq u-map-map)
done

lemma isodefl-u-liftdefi:
isodefl’ d t = isodefl (u-map-d) (u-liftdefi-t)
apply (rule isodefil)
apply (simp add: cast-u-liftdefl isodefl’-def)
apply (simp add: emb-u-def prj-u-def liftemb-eq liftpri-eq)
done

lemma encode-prod-u-map:
encode-prod-u-(u-map-(prod-map-f-g)-(decode-prod-u-x))
= sprod-map-(u-map-f)-(u-map-g)-x
unfolding encode-prod-u-def decode-prod-u-def
apply (case-tac x, simp, rename-tac a b)
apply (case-tac a, simp, case-tac b, simp, simp)
done

lemma isodefl-prod-u:
assumes isodefl’ d1 t1 and isodefl’ d2 t2
shows isodefl’ (prod-map-d1-d2) (prod-liftdefi-t1-t2)
using assms unfolding isodefl’-def
unfolding liftemb-prod-def liftprj-prod-def
by (simp add: cast-prod-liftdefl cfcompl encode-prod-u-map sprod-map-map)

lemma encode-cfun-map:
encode-cfun-(cfun-map-f-g-(decode-cfun-r))
= sfun-map-(u-map-f)-g-x
unfolding encode-cfun-def decode-cfun-def
apply (simp add: sfun-eq-iff cfun-map-def sfun-map-def)
apply (rule cfun-eql, rename-tac y, case-tac y, simp-all)
done

THEORY “Compact-Basis” 168

lemma isodefi-cfun:
assumes isodefl (u-map-d1) t1 and isodefl d2 2
shows isodefl (cfun-map-d1-d2) (sfun-defl-11-12)
using isodefl-sfun [OF assms] unfolding isodefl-def
by (simp add: emb-cfun-def prj-cfun-def cfecompl encode-cfun-map)

27.10 Setting up the domain package

named-theorems domain-defl-simps theorems like DEFL('a t) = t-deflSDEFL(’a)
and domain-isodefl theorems like isodefl d t ==> isodefl (foo-map$d) (foo-defi$t)

ML-file < Tools/ Domain/domain-isomorphism.ML»
ML-file < Tools/ Domain/domain-azioms.ML»
ML-file < Tools/ Domain/domain. ML>

lemmas [domain-defl-simps] =
DEFL-cfun DEFL-sfun DEFL-ssum DEFL-sprod DEFL-prod DEFL-u
liftdefl-eq LIFTDEFL-prod u-liftdefi-liftdefi-of

lemmas [domain-map-ID] =
cfun-map-ID sfun-map-ID ssum-map-ID sprod-map-ID prod-map-ID u-map-ID

lemmas [domain-isodefl] =
isodefl-u isodefl-sfun isodefl-ssum isodefi-sprod
isodefl-cfun isodefl-prod isodefl-prod-u isodefl’-liftdefl-of
isodefi-u-liftdefl

lemmas [domain-deflation] =
deflation-cfun-map deflation-sfun-map deflation-ssum-map
deflation-sprod-map deflation-prod-map deflation-u-map

setup <«
fold Domain-Take-Proofs.add-rec-type

[(type-name (cfuny, [true, true]),
(type-name <sfuny, [true, true]),
(type-name <ssumy, [true, true]),

(type-name <sprody, [true, truel),

(type-name <prod>, [true, truel),

(type-name <uy, [true])]

>

end

28 A compact basis for powerdomains

theory Compact-Basis
imports Universal
begin

THEORY “Compact-Basis”

28.1 A compact basis for powerdomains

definition pd-basis = {S::’a::bifinite compact-basis set. finite S N S # {}}

typedef ‘a::bifinite pd-basis = pd-basis :: 'a compact-basis set set
proof
show {a} € ?pd-basis for a
by (simp add: pd-basis-def)
qed

lemma finite-Rep-pd-basis [simp]: finite (Rep-pd-basis u)
using Rep-pd-basis [of u, unfolded pd-basis-def] by simp

lemma Rep-pd-basis-nonempty [simp]: Rep-pd-basis u # {}
using Rep-pd-basis [of u, unfolded pd-basis-def] by simp

The powerdomain basis type is countable.

lemma pd-basis-countable: 3 f::'a::bifinite pd-basis = nat. inj f (is Ex ¢P)
proof —
obtain ¢ :: 'a compact-basis = nat where inj g
using compact-basis.countable ..
hence image-g-eq: g *A=9g ‘B<+— A= Bfor A B
by (rule inj-image-eq-iff)
have inj (At. set-encode (g ‘ Rep-pd-basis t))
by (simp add: inj-on-def set-encode-eq image-g-eq Rep-pd-basis-inject)
thus ?thesis by (rule exl [of 7P))
qed

28.2 Unit and plus constructors

definition
PDUnit :: 'a::bifinite compact-basis = 'a pd-basis where
PDUnit = (Az. Abs-pd-basis {z})

definition
PDPlus :: 'a::bifinite pd-basis = 'a pd-basis = 'a pd-basis where
PDPlus t u = Abs-pd-basis (Rep-pd-basis t U Rep-pd-basis u)

lemma Rep-PDUnit:
Rep-pd-basis (PDUnit ©) = {z}

169

unfolding PDUnit-def by (rule Abs-pd-basis-inverse) (simp add: pd-basis-def)

lemma Rep-PDPlus:
Rep-pd-basis (PDPlus u v) = Rep-pd-basis u U Rep-pd-basis v

unfolding PDPlus-def by (rule Abs-pd-basis-inverse) (simp add: pd-basis-def)

lemma PDUnit-inject [simp]: (PDUnit a = PDUnit b) = (a = b)
unfolding Rep-pd-basis-inject [symmetric] Rep-PDUnit by simp

lemma PDPlus-assoc: PDPlus (PDPlus t u) v = PDPlus t (PDPlus u v)

THEORY “Compact-Basis” 170

unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-assoc)

lemma PDPlus-commute: PDPlus t w = PDPlus u t
unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-commute)

lemma PDPlus-absorb: PDPlus tt =t
unfolding Rep-pd-basis-inject [symmetric] Rep-PDPlus by (rule Un-absorb)

lemma pd-basis-induct! [case-names PDUnit PDPlus:
assumes PDUnit: Na. P (PDUnit a)
assumes PDPlus: Aa t. Pt = P (PDPlus (PDUnit a) t)
shows P z
proof (induct x)
case (Abs-pd-basis y)
then have finite y and y # {} by (simp-all add: pd-basis-def)
then show Zcase
proof (induct rule: finite-ne-induct)
case (singleton z)
show Zcase by (rule PDUnit [unfolded PDUnit-def])
next
case (insert z F)
from insert(4) have P (PDPlus (PDUnit x) (Abs-pd-basis F)) by (rule PDPlus)
with insert(1,2) show ?case
by (simp add: PDUnit-def PDPlus-def Abs-pd-basis-inverse [unfolded pd-basis-def])
qed
qged

lemma pd-basis-induct [case-names PDUnit PDPlus]:
assumes PDUnit: Na. P (PDUnit a)
assumes PDPlus: At u. [P t; P u] = P (PDPlus t u)
shows P z
by (induct x rule: pd-basis-inductl) (fact PDUnit, fact PDPlus [OF PDUnit])

28.3 Fold operator

definition
fold-pd ::
("a::bifinite compact-basis = 'b::type) = ('b = 'b = 'b) = 'a pd-basis = b
where fold-pd g f t = semilattice-set.F' f (g * Rep-pd-basis t)

lemma fold-pd-PDUnit:
assumes semilattice f
shows fold-pd g f (PDUnit z) = g x
proof —
from assms interpret semilattice-set f by (rule semilattice-set.intro)
show ?thesis by (simp add: fold-pd-def Rep-PDUnit)
qed

lemma fold-pd-PDPlus:

THEORY “UpperPD” 171

assumes semilattice f

shows fold-pd g f (PDPlus t u) = f (fold-pd g f t) (fold-pd g f)
proof —

from assms interpret semilattice-set f by (rule semilattice-set.intro)

show ?thesis by (simp add: image-Un fold-pd-def Rep-PDPlus union)
qed

end

29 Upper powerdomain

theory UpperPD
imports Compact-Basis
begin

29.1 Basis preorder

definition
upper-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix <<y 50) where
upper-le = (Au v. V y€ Rep-pd-basis v. 3 x€ Rep-pd-basis u. C y)

lemma upper-le-refl [simp]: t <f ¢
unfolding upper-le-def by fast

lemma upper-le-trans: [t < u; u <f v] =t <f v
unfolding upper-le-def

apply (rule balll)

apply (drule (1) bspec, erule bezE)

apply (drule (1) bspec, erule bezE)

apply (erule rev-bexl)

apply (erule (1) below-trans)

done

interpretation upper-le: preorder upper-le
by (rule preorder.intro, rule upper-le-refl, rule upper-le-trans)

lemma upper-le-minimal [simp]: PDUnit compact-bot <t t
unfolding upper-le-def Rep-PDUnit by simp

lemma PDUnit-upper-mono: ¢ C y = PDUnit x <§ PDUnit y
unfolding upper-le-def Rep-PDUnit by simp

lemma PDPlus-upper-mono: [s <# t; v <§ v] = PDPlus s u <§ PDPlus t v
unfolding upper-le-def Rep-PDPlus by fast

lemma PDPlus-upper-le: PDPlus t uw <f t
unfolding upper-le-def Rep-PDPlus by fast

lemma upper-le-PD Unit-PD Unit-iff [simp]:

THEORY “UpperPD”

(PDUnit a < PDUnit b) = (a C b)
unfolding upper-le-def Rep-PDUnit by fast

lemma upper-le-PDPlus-PD Unit-iff :
(PDPlus t w <t PDUnit a) = (t <§ PDUnit a V u <f PDUnit a)
unfolding upper-le-def Rep-PDPlus Rep-PDUnit by fast

lemma upper-le-PDPlus-iff: (t <t PDPlus uv) = (t <t u At <§ v)
unfolding upper-le-def Rep-PDPlus by fast

lemma upper-le-induct [induct set: upper-le]:
assumes le: t <f u
assumes I: Aa b. a T b = P (PDUnit a) (PDUnit b)
assumes 2: At v a. Pt (PDUnit a) = P (PDPlus t u) (PDUnit a)
assumes 3: At uwv. [Ptu; Ptv] = Pt (PDPlus u v)
shows Pt u
using le
proof (induct u arbitrary: t rule: pd-basis-induct)
case (PDUnit a)
then show ?case
proof (induct t rule: pd-basis-induct)
case PDUnit
then show ?case by (simp add: 1)
next
case (PDPlus t u)
from PDPlus(3) consider (t) ¢t <t PDUnit a | (u) u <§ PDUnit a
by (auto simp: upper-le-PDPlus-PD Unit-iff)
then show ?case
proof cases
case t
then have P ¢ (PDUnit a) by (rule PDPlus(1))
then show ?thesis by (rule 2)
next
case u
then have P u (PDUnit a) by (rule PDPlus(2))
then have P (PDPlus u t) (PDUnit a) by (rule 2)
then show ?thesis by (simp only: PDPlus-commute)
qed
qed
next
case (PDPlus t t’ u)
then show ?Zcase by (simp add: upper-le-PDPlus-iff 3)
qed

29.2 Type definition

typedef ‘a::bifinite upper-pd (<(<notation=<postfix upper-pds»'(-"))») =
{S::’a pd-basis set. upper-le.ideal S}
by (rule upper-le.ezx-ideal)

172

THEORY “UpperPD” 173

instantiation upper-pd :: (bifinite) below
begin

definition
x C y «— Rep-upper-pd x C Rep-upper-pd y

instance ..
end

instance upper-pd :: (bifinite) po
using type-definition-upper-pd below-upper-pd-def
by (rule upper-le.typedef-ideal-po)

instance upper-pd :: (bifinite) cpo
using type-definition-upper-pd below-upper-pd-def
by (rule upper-le.typedef-ideal-cpo)

definition
upper-principal :: 'a::bifinite pd-basis = 'a upper-pd where
upper-principal t = Abs-upper-pd {u. v <f§ t}

interpretation upper-pd:

ideal-completion upper-le upper-principal Rep-upper-pd
using type-definition-upper-pd below-upper-pd-def
using upper-principal-def pd-basis-countable
by (rule upper-le.typedef-ideal-completion)

Upper powerdomain is pointed

lemma upper-pd-minimal: upper-principal (PDUnit compact-bot) T ys
by (induct ys rule: upper-pd.principal-induct, simp, simp)

instance upper-pd :: (bifinite) pcpo
by intro-classes (fast intro: upper-pd-minimal)

lemma inst-upper-pd-pcpo: L = upper-principal (PDUnit compact-bot)
by (rule upper-pd-minimal [THEN bottomlI, symmetric))

29.3 Monadic unit and plus

definition
upper-unit :: 'a:bifinite — ’a upper-pd where
upper-unit = compact-basis.extension (Aa. upper-principal (PDUnit a))

definition
upper-plus :: 'a::bifinite upper-pd — 'a upper-pd — 'a upper-pd where
upper-plus = upper-pd.extension (A\t. upper-pd.extension (Au.
upper-principal (PDPlus t u)))

THEORY “UpperPD” 174

abbreviation
upper-add :: 'a::bifinite upper-pd = 'a upper-pd = 'a upper-pd
(infix]l Uty 65) where
xs U ys == upper-plus-xs-ys

syntax

-upper-pd :: args = logic («(<indent=1 notation=«mizfix upper-pd enumera-
tion»{-H)»)
translations

(w25}t == {a}t Uf {as}t

{z}f == CONST upper-unit-z

lemma upper-unit-Rep-compact-basis [simp):
{ Rep-compact-basis a}t = upper-principal (PDUnit a)
unfolding upper-unit-def
by (simp add: compact-basis.extension-principal PD Unit-upper-mono)

lemma upper-plus-principal [simp):
upper-principal t U upper-principal v = upper-principal (PDPlus t u)
unfolding upper-plus-def
by (simp add: upper-pd.extension-principal
upper-pd.extension-mono PDPlus-upper-mono)

interpretation upper-add: semilattice upper-add proof
fix zs ys zs :: 'a upper-pd
show (zs Ut ys) Uf zs = xs Ut (ys U 2s)
apply (induct zs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (induct zs rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done
show xs Uf ys = ys Ut s
apply (induct s rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done
show zs Uf zs = xs
apply (induct zs rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done
qed

lemmas upper-plus-assoc = upper-add.assoc

lemmas upper-plus-commute = upper-add.commute
lemmas upper-plus-absorb = upper-add.idem

lemmas upper-plus-left-commute = upper-add.left-commute
lemmas upper-plus-left-absorb = upper-add.left-idem

Useful for simp add: upper-plus-ac

THEORY “UpperPD”

lemmas upper-plus-ac =
upper-plus-assoc upper-plus-commute upper-plus-left-commute

Useful for simp only: upper-plus-aci

lemmas upper-plus-aci =
upper-plus-ac upper-plus-absorb upper-plus-left-absorb

lemma upper-plus-below!: xs Uf ys C zs

apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: PDPlus-upper-le)

done

lemma upper-plus-below2: zs Ut ys C ys
by (subst upper-plus-commute, rule upper-plus-belowl)

lemma upper-plus-greatest: [xs T ys; xs C zs] = s T ys Uf zs

apply (subst upper-plus-absorb [of xs, symmetric])
apply (erule (1) monofun-cfun [OF monofun-cfun-arg])
done

lemma upper-below-plus-iff [simp]:

s E ys U zs «— 2zs C ys A zs C zs
apply safe
apply (erule below-trans [OF - upper-plus-belowl])
apply (erule below-trans [OF - upper-plus-below2])
apply (erule (1) upper-plus-greatest)
done

lemma upper-plus-below-unit-iff [simp]:

zs Ul ys C {2z} «— as C {z}t V ys C {z}4
apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (induct z rule: compact-basis.principal-induct, simp)
apply (simp add: upper-le-PDPlus-PD Unit-iff)
done

lemma upper-unit-below-iff [simp]: {z}f C {yH +— 2 C y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp

done

lemmas upper-pd-below-simps =
upper-unit-below-iff
upper-below-plus-iff
upper-plus-below-unit-iff

lemma upper-unit-eq-iff [simp]: {a} = {yH +— 2=y

175

THEORY “UpperPD” 176

unfolding po-eq-conv by simp

lemma upper-unit-strict [simp]: {L}f = L
using upper-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-upper-pd-pcpo)

lemma upper-plus-strict! [simp]: L Uf ys = L
by (rule bottomlI, rule upper-plus-belowl)

lemma upper-plus-strict2 [simp]: zs Uf L = L
by (rule bottomlI, rule upper-plus-below2)

lemma upper-unit-bottom-iff [simp]: {z}f = L «— z = L
unfolding upper-unit-strict [symmetric] by (rule upper-unit-eq-iff)

lemma upper-plus-bottom-iff [simp]:
zsUfys=L+—azs=1LVy=_1
apply (induct xs rule: upper-pd.principal-induct, simp)
apply (induct ys rule: upper-pd.principal-induct, simp)
apply (simp add: inst-upper-pd-pcpo upper-pd.principal-eq-iff
upper-le-PDPlus-PD Unit-iff)
done

lemma compact-upper-unit: compact & = compact {z}
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-upper-unit-iff [simp]: compact {z}f «— compact ©
apply (safe elim!: compact-upper-unit)

apply (simp only: compact-def upper-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2])

done

lemma compact-upper-plus [simp]:
[compact xs; compact ys] = compact (xs Uf ys)
by (auto dest!: upper-pd.compact-imp-principal)

29.4 Induction rules

lemma upper-pd-induct1:
assumes P: adm P
assumes unit: Az. P {z}
assumes insert: Az ys. [P {z}t; P ys] = P ({z}t Ut ys)
shows P (zs::'a::bifinite upper-pd)
proof (induct zs rule: upper-pd.principal-induct)
have x: P {Rep-compact-basis a}f for a
by (rule unit)
show P (upper-principal) for a
proof (induct a rule: pd-basis-induct1)
case (PDUnit a)

THEORY “UpperPD” 177

with x show ?case
by (simp only: upper-unit-Rep-compact-basis [symmetric])
next
case (PDPlus a t)
with x have P ({Rep-compact-basis a}t Ut upper-principal t)
by (rule insert)
then show ?case
by (simp only: upper-unit-Rep-compact-basis [symmetric]
upper-plus-principal [symmetric])
qged
qed (rule P)

lemma upper-pd-induct [case-names adm upper-unit upper-plus, induct type: up-
per-pd]:
assumes P: adm P
assumes unit: Nz. P {z}4
assumes plus: Axs ys. [P xs; P ys] = P (xs Uf ys)
shows P (zs::'a::bifinite upper-pd)
proof (induct xs rule: upper-pd.principal-induct)
show P (upper-principal o) for a
proof (induct a rule: pd-basis-induct)
case PDUnit
then show ?case
by (simp only: upper-unit-Rep-compact-basis [symmetric] unit)
next
case PDPlus
then show ?case
by (simp only: upper-plus-principal [symmetric] plus)
qed
qed (rule P)

29.5 Monadic bind

definition
upper-bind-basis ::
‘a::bifinite pd-basis = ('a — 'b upper-pd) — 'b::bifinite upper-pd where
upper-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
Az y. A f.af U yf)

lemma ACI-upper-bind:

semilattice Az y. A f. z-f Ut y-f)
apply unfold-locales
apply (simp add: upper-plus-assoc)
apply (simp add: upper-plus-commute)
apply (simp add: eta-cfun)
done

lemma upper-bind-basis-simps [simp]:

THEORY “UpperPD” 178

upper-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
upper-bind-basis (PDPlus t u) =
(A f. upper-bind-basis t-f Uf upper-bind-basis u-f)
unfolding upper-bind-basis-def
apply —
apply (rule fold-pd-PDUnit [OF ACI-upper-bind])
apply (rule fold-pd-PDPlus [OF ACI-upper-bind))
done

lemma upper-bind-basis-mono:
t <# u = upper-bind-basis t = upper-bind-basis u
unfolding cfun-below-iff
apply (erule upper-le-induct, safe)
apply (simp add: monofun-cfun)
apply (simp add: below-trans [OF upper-plus-belowl])
apply simp
done

definition

upper-bind :: 'a::bifinite upper-pd — ('a — 'b upper-pd) — 'b::bifinite upper-pd
where

upper-bind = upper-pd.extension upper-bind-basis

syntax
-upper-bind :: [logic, logic, logic] = logic
(<(<indent=3 notation=<binder upper-bind»»\Jt-€-./ -)» [0, 0, 10] 10)

translations
Utzexs. e == CONST upper-bind-zs-(A z. e)

lemma upper-bind-principal [simp]:
upper-bind-(upper-principal t) = upper-bind-basis t

unfolding upper-bind-def

apply (rule upper-pd.extension-principal)

apply (erule upper-bind-basis-mono)

done

lemma upper-bind-unit [simpl:

upper-bind-{z}-f = f-x
by (induct z rule: compact-basis.principal-induct, simp, simp)

lemma upper-bind-plus [simp]:
upper-bind-(zs Ut ys)-f = upper-bind-zs-f Uf upper-bind-ys-f
by (induct zs rule: upper-pd.principal-induct, simp,
induct ys rule: upper-pd.principal-induct, simp, simp)

lemma upper-bind-strict [simp]: upper-bind-L-f = f-L
unfolding upper-unit-strict [symmetric] by (rule upper-bind-unit)

THEORY “UpperPD” 179

lemma upper-bind-bind:
upper-bind-(upper-bind-xs-f)-g = upper-bind-zs-(A z. upper-bind-(f-x)-g)
by (induct zs, simp-all)

29.6 Map

definition
upper-map :: ('a:bifinite — 'b::bifinite) — 'a upper-pd — 'b upper-pd where
upper-map = (A f zs. upper-bind-zs-(A z. {f-z}1))

lemma upper-map-unit [simpl:

upper-map-f-{z}t = {f-z}
unfolding upper-map-def by simp

lemma upper-map-plus [simp):
upper-map-f-(xs U ys) = upper-map-f-zs Uf upper-map-f-ys
unfolding upper-map-def by simp

lemma upper-map-bottom [simp]: upper-map-f-L = {f- L}
unfolding upper-map-def by simp

lemma upper-map-ident: upper-map-(A x. z)-1s = x5
by (induct xzs rule: upper-pd-induct, simp-all)

lemma upper-map-ID: upper-map-1D = ID
by (simp add: cfun-eq-iff ID-def upper-map-ident)

lemma upper-map-map:
upper-map-f-(upper-map-g-xs) = upper-map-(A z. f-(g-x))-zs
by (induct zs rule: upper-pd-induct, simp-all)

lemma upper-bind-map:
upper-bind-(upper-map-f-xs)-g = upper-bind-xs-(A z. g-(f-x))
by (simp add: upper-map-def upper-bind-bind)

lemma upper-map-bind:
upper-map-f-(upper-bind-zs-g) = upper-bind-zs-(A z. upper-map-f-(g-x))
by (simp add: upper-map-def upper-bind-bind)

lemma ep-pair-upper-map: ep-pair e p => ep-pair (upper-map-e) (upper-map-p)
apply standard

apply (induct-tac x rule: upper-pd-induct, simp-all add: ep-pair.e-inverse)
apply (induct-tac y rule: upper-pd-induct)

apply (simp-all add: ep-pair.e-p-below monofun-cfun del: upper-below-plus-iff)
done

lemma deflation-upper-map: deflation d = deflation (upper-map-d)
apply standard

THEORY “UpperPD” 180

apply (induct-tac x rule: upper-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: upper-pd-induct)

apply (simp-all add: deflation.below monofun-cfun del: upper-below-plus-iff)
done

lemma finite-deflation-upper-map:
assumes finite-deflation d shows finite-deflation (upper-map-d)
proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-azioms show deflation (upper-map-d)
by (rule deflation-upper-map)
have finite (range (Az. d-x)) by (rule d.finite-range)
hence finite (Rep-compact-basis —* range (A\z. d-z))
by (rule finite-vimagel, simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis —* range (A\z. d-x))) by simp
hence finite (Rep-pd-basis —‘ (Pow (Rep-compact-basis —* range (Az. d-z))))
by (rule finite-vimagel, simp add: inj-on-def Rep-pd-basis-inject)
hence *: finite (upper-principal ¢ Rep-pd-basis —‘ (Pow (Rep-compact-basis —°
range (Az. d-x)))) by simp
hence finite (range (Axs. upper-map-d-xs))
apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac xs rule: upper-pd.principal-induct)
apply (simp add: adm-mem-finite *)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: upper-unit-Rep-compact-basis [symmetric] upper-map-unit)
apply simp
apply (subgoal-tac 3b. d-(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDUnit)
apply (rule range-eql)
apply (erule sym)
apply (rule exl)
apply (rule Abs-compact-basis-inverse [symmetric))
apply (simp add: d.compact)
apply (simp only: upper-plus-principal [symmetric] upper-map-plus)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDPlus)
done
thus finite {zs. upper-map-d-zs = zs}
by (rule finite-range-imp-finite-fizes)
qed

THEORY “LowerPD” 181

29.7 Upper powerdomain is bifinite

lemma approz-chain-upper-map:
assumes approz-chain a
shows approz-chain (A\i. upper-map-(a 1))
using assms unfolding approz-chain-def
by (simp add: lub-APP upper-map-1D finite-deflation-upper-map)

instance upper-pd :: (bifinite) bifinite
proof
show 3 (a:nat = 'a upper-pd — 'a upper-pd). approz-chain a
using bifinite [where ‘a='a]
by (fast intro!: approz-chain-upper-map)

qed
29.8 Join
definition

upper-join :: 'a::bifinite upper-pd upper-pd — 'a upper-pd where
upper-join = (A xss. upper-bind-zss-(A xs. xs))

lemma upper-join-unit [simp]:
upper-join-{xs}f = xs
unfolding upper-join-def by simp

lemma upper-join-plus [simp]:
upper-join-(xss U yss) = upper-join-zss U upper-join-yss
unfolding upper-join-def by simp

lemma upper-join-bottom [simpl: upper-join- L = L
unfolding upper-join-def by simp

lemma upper-join-map-unit:
upper-join-(upper-map-upper-unit-s) = s
by (induct zs rule: upper-pd-induct, simp-all)

lemma upper-join-map-join:
upper-join-(upper-map-upper-join-xsss) = upper-join-(upper-join-sss)
by (induct xzsss rule: upper-pd-induct, simp-all)

lemma upper-join-map-map:
upper-join-(upper-map-(upper-map-f)-xss) =
upper-map-f-(upper-join-xss)

by (induct zss rule: upper-pd-induct, simp-all)

end

THEORY “LowerPD” 182

30 Lower powerdomain

theory LowerPD
imports Compact-Basis
begin

30.1 Basis preorder

definition
lower-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix «<b» 50) where
lower-le = (Au v. V z€ Rep-pd-basis u. 3 y€ Rep-pd-basis v. C y)

lemma lower-le-refl [simp]: t <b t
unfolding lower-le-def by fast

lemma lower-le-trans: [t <b u; u <b v] =t <b v
unfolding lower-le-def

apply (rule balll)

apply (drule (1) bspec, erule bezE)

apply (drule (1) bspec, erule bezE)

apply (erule rev-bexl)

apply (erule (1) below-trans)

done

interpretation lower-le: preorder lower-le
by (rule preorder.intro, rule lower-le-refl, rule lower-le-trans)

lemma lower-le-minimal [simp]: PDUnit compact-bot <b t
unfolding lower-le-def Rep-PDUnit
by (simp, rule Rep-pd-basis-nonempty [folded ex-in-conuv])

lemma PDUnit-lower-mono: x C y => PDUnit z <b PDUnit y
unfolding lower-le-def Rep-PDUnit by fast

lemma PDPlus-lower-mono: [s <b t; u <b v] = PDPlus s u <b PDPlus t v
unfolding lower-le-def Rep-PDPlus by fast

lemma PDPlus-lower-le: t <b PDPlus t u
unfolding lower-le-def Rep-PDPlus by fast

lemma lower-le-PD Unit-PD Unit-iff [simp]:
(PDUnit a <b PDUnit b) = (a C b)
unfolding lower-le-def Rep-PDUnit by fast

lemma lower-le-PD Unit-PDPlus-iff:
(PDUnit a <b PDPlus t u) = (PDUnit a <b ¢t V PDUnit a <b u)
unfolding lower-le-def Rep-PDPlus Rep-PDUnit by fast

lemma lower-le-PDPlus-iff: (PDPlus t u <b v) = (t <b v A u <b v)
unfolding lower-le-def Rep-PDPlus by fast

THEORY “LowerPD” 183

lemma lower-le-induct [induct set: lower-le]:
assumes le: t <b u
assumes I: Aa b. a CT b = P (PDUnit a) (PDUnit b)
assumes 2: At u a. P (PDUnit a) t = P (PDUnit a) (PDPlus t u)
assumes 3: At uv. [Ptv; Puv] = P (PDPlustu) v
shows Pt u
using le
proof (induct t arbitrary: u rule: pd-basis-induct)
case (PDUnit a)
then show Zcase
proof (induct u rule: pd-basis-induct)
case PDUnit
then show ?case by (simp add: 1)
next
case (PDPlus t u)
from PDPlus(3) consider (t) PDUnit a <b t | (u) PDUnit a <b u
by (auto simp: lower-le-PD Unit-PDPlus-iff)
then show ?case
proof cases
case {
then have P (PDUnit a) t by (rule PDPlus(1))
then show ?thesis by (rule 2)
next
case u
then have P (PDUnit a) u by (rule PDPlus(2))
then have P (PDUnit a) (PDPlus u t) by (rule 2)
then show %thesis by (simp only: PDPlus-commute)
qed
qed
next
case (PDPlus t t')
then show ?case by (simp add: lower-le-PDPlus-iff 3)
qed

30.2 Type definition

typedef ‘a:bifinite lower-pd (<(<notation=<postfix lower-pd»'(-\b)») =
{S::’a pd-basis set. lower-le.ideal S}
by (rule lower-le.ex-ideal)

instantiation lower-pd :: (bifinite) below
begin

definition
z C y «— Rep-lower-pd x C Rep-lower-pd y

instance ..
end

THEORY “LowerPD” 184

instance lower-pd :: (bifinite) po
using type-definition-lower-pd below-lower-pd-def
by (rule lower-le.typedef-ideal-po)

instance lower-pd :: (bifinite) cpo
using type-definition-lower-pd below-lower-pd-def
by (rule lower-le.typedef-ideal-cpo)

definition
lower-principal :: 'a::bifinite pd-basis = 'a lower-pd where
lower-principal t = Abs-lower-pd {u. v <b t}

interpretation lower-pd:

ideal-completion lower-le lower-principal Rep-lower-pd
using type-definition-lower-pd below-lower-pd-def
using lower-principal-def pd-basis-countable
by (rule lower-le.typedef-ideal-completion)

Lower powerdomain is pointed

lemma lower-pd-minimal: lower-principal (PDUnit compact-bot) T ys
by (induct ys rule: lower-pd.principal-induct, simp, simp)

instance lower-pd :: (bifinite) pcpo
by intro-classes (fast intro: lower-pd-minimal)

lemma inst-lower-pd-pcpo: L = lower-principal (PDUnit compact-bot)
by (rule lower-pd-minimal [THEN bottomlI, symmetric])

30.3 Monadic unit and plus

definition
lower-unit :: 'a::bifinite — ’a lower-pd where
lower-unit = compact-basis.extension (Aa. lower-principal (PDUnit a))

definition
lower-plus :: 'a::bifinite lower-pd — 'a lower-pd — 'a lower-pd where
lower-plus = lower-pd.extension (At. lower-pd.extension (Au.
lower-principal (PDPlus t w)))

abbreviation
lower-add :: 'a::bifinite lower-pd = 'a lower-pd = 'a lower-pd
(infix] «Ub» 65) where
xs Ub ys == lower-plus-zs-ys

syntax
-lower-pd :: args = logic (<(<indent=1 notation=<mizfix lower-pd enumera-
tion» {-}b)»)

translations

THEORY “LowerPD” 185

{z,zs}b == {z}b Ub {zs}b
{z}b == CONST lower-unit-z

lemma lower-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}b = lower-principal (PDUnit a)
unfolding lower-unit-def
by (simp add: compact-basis.extension-principal PD Unit-lower-mono)

lemma lower-plus-principal [simp]:
lower-principal t Ub lower-principal w = lower-principal (PDPlus t u)
unfolding lower-plus-def
by (simp add: lower-pd.extension-principal
lower-pd.extension-mono PDPlus-lower-mono)

interpretation lower-add: semilattice lower-add proof
fix zs ys zs :: 'a::bifinite lower-pd
show (zs Ub ys) Ub zs = xs Ub (ys Ub zs)
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done
show zs Ub ys = ys Ub xs
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done
show zs Ub zs = zs
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done
qed

lemmas lower-plus-assoc = lower-add.assoc

lemmas lower-plus-commute = lower-add.commute
lemmas lower-plus-absorb = lower-add.idem

lemmas lower-plus-left-commute = lower-add.left-commute
lemmas lower-plus-left-absorb = lower-add.left-idem

Useful for simp add: lower-plus-ac

lemmas lower-plus-ac =
lower-plus-assoc lower-plus-commute lower-plus-left-commute

Useful for simp only: lower-plus-aci
lemmas lower-plus-aci =

lower-plus-ac lower-plus-absorb lower-plus-left-absorb

lemma lower-plus-belowl: xs C xs Ub ys
apply (induct xs rule: lower-pd.principal-induct, simp)

THEORY “LowerPD”

apply (induct ys rule: lower-pd.principal-induct, simp)
apply (simp add: PDPlus-lower-le)
done

lemma lower-plus-below2: ys C xs Ub ys
by (subst lower-plus-commute, rule lower-plus-belowl)

lemma lower-plus-least: [zs T zs; ys C zs] = zs b ys C zs
apply (subst lower-plus-absorb [of zs, symmetric))

apply (erule (1) monofun-cfun [OF monofun-cfun-arg))
done

lemma lower-plus-below-iff [simp]:

s Ub ys C 28 +— 28 C 28 A\ ys C zs
apply safe
apply (erule below-trans [OF lower-plus-below1])
apply (erule below-trans [OF lower-plus-below?2])
apply (erule (1) lower-plus-least)
done

lemma lower-unit-below-plus-iff [simp):

{z}b C ys Ub 25 «+— {z}b C ys V {z}b C 2s
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct ys rule: lower-pd.principal-induct, simp)
apply (induct zs rule: lower-pd.principal-induct, simp)
apply (simp add: lower-le-PD Unit-PDPlus-iff)
done

lemma lower-unit-below-iff [simp]: {z}b C {y}p +— 2z C y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp

done

lemmas lower-pd-below-simps =
lower-unit-below-iff
lower-plus-below-iff
lower-unit-below-plus-iff

lemma lower-unit-eq-iff [simp]: {z}b = {y}p +— z =y
by (simp add: po-eq-conv)

lemma lower-unit-strict [simp]: {L}b = L
using lower-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-lower-pd-pcpo)

lemma lower-unit-bottom-iff [simpl: {z}b = L +— x = L
unfolding lower-unit-strict [symmetric] by (rule lower-unit-eq-iff)

186

THEORY “LowerPD” 187

lemma lower-plus-bottom-iff [simp]:
zsUbys=1L+—>azs=1LAys= 1L

apply safe

apply (rule bottomlI, erule subst, rule lower-plus-belowl)

apply (rule bottomI, erule subst, rule lower-plus-below?2)

apply (rule lower-plus-absorb)

done

lemma lower-plus-strict] [simp]: L Ub ys = ys
apply (rule below-antisym [OF - lower-plus-below?2])
apply (simp add: lower-plus-least)

done

lemma lower-plus-strict2 [simp]: xs Ub L = zs
apply (rule below-antisym [OF - lower-plus-belowl])
apply (simp add: lower-plus-least)

done

lemma compact-lower-unit: compact © = compact {x}b
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-lower-unit-iff [simpl: compact {x}b +— compact =
apply (safe elim!: compact-lower-unit)

apply (simp only: compact-def lower-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2])

done

lemma compact-lower-plus [simp):
[compact zs; compact ys] = compact (xs Ub ys)
by (auto dest!: lower-pd.compact-imp-principal)

30.4 Induction rules

lemma lower-pd-induct1:
assumes P: adm P
assumes unit: Nz. P {z}b
assumes insert: Az ys. [P {z}b; P ys] = P ({z}b Wb ys)
shows P (zs::'a:bifinite lower-pd)
proof (induct zs rule: lower-pd.principal-induct)
have x: P {Rep-compact-basis a}b for a
by (rule unit)
show P (lower-principal a) for a
proof (induct a rule: pd-basis-induct1)
case PDUnit
from x show ?case
by (simp only: lower-unit-Rep-compact-basis [symmetric])
next
case (PDPlus a t)
with * have P ({ Rep-compact-basis a}b Ub lower-principal t)

THEORY “LowerPD” 188

by (rule insert)
then show ?case
by (simp only: lower-unit-Rep-compact-basis [symmetric] lower-plus-principal
[symmetric])
qed
qed (rule P)

lemma lower-pd-induct [case-names adm lower-unit lower-plus, induct type: lower-pd):
assumes P: adm P
assumes unit: Nz. P {z}b
assumes plus: Axs ys. [P xs; P ys] = P (xs Ub ys)
shows P (zs::'a::bifinite lower-pd)
proof (induct xs rule: lower-pd.principal-induct)
show P (lower-principal a) for a
proof (induct a rule: pd-basis-induct)
case PDUnit
then show ?case
by (simp only: lower-unit-Rep-compact-basis [symmetric] unit)
next
case PDPlus
then show ?case
by (simp only: lower-plus-principal [symmetric] plus)
qed
qed (rule P)

30.5 Monadic bind

definition
lower-bind-basis ::
‘a::bifinite pd-basis = ('a — 'b lower-pd) — 'b::bifinite lower-pd where
lower-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
Az y. Af.ozf U yf)

lemma ACI-lower-bind:

semilattice Az y. A f. z-f Ub y-f)
apply unfold-locales
apply (simp add: lower-plus-assoc)
apply (simp add: lower-plus-commute)
apply (simp add: eta-cfun)
done

lemma lower-bind-basis-simps [simp]:
lower-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
lower-bind-basis (PDPlus t u) =
(A f. lower-bind-basis t-f Ub lower-bind-basis u-f)
unfolding lower-bind-basis-def
apply —

THEORY “LowerPD” 189

apply (rule fold-pd-PDUnit [OF ACI-lower-bind])
apply (rule fold-pd-PDPlus [OF ACI-lower-bind)])
done

lemma lower-bind-basis-mono:
t <b u = lower-bind-basis t T lower-bind-basis u
unfolding cfun-below-iff
apply (erule lower-le-induct, safe)
apply (simp add: monofun-cfun)
apply (simp add: rev-below-trans [OF lower-plus-below1])
apply simp
done

definition

lower-bind :: 'a::bifinite lower-pd — (‘a — 'b lower-pd) — 'b::bifinite lower-pd
where

lower-bind = lower-pd.extension lower-bind-basis

syntax
-lower-bind :: [logic, logic, logic] = logic
(¢(¢indent=3 notation=<binder lower-bind»|Jb-€-./ -)» [0, 0, 10] 10)

translations
Ubzexs. e == CONST lower-bind-zs-(A . €)

lemma lower-bind-principal [simpl:
lower-bind-(lower-principal t) = lower-bind-basis t

unfolding lower-bind-def

apply (rule lower-pd.extension-principal)

apply (erule lower-bind-basis-mono)

done

lemma lower-bind-unit [simpl:
lower-bind-{z}b-f = f-x
by (induct = rule: compact-basis.principal-induct, simp, simp)

lemma lower-bind-plus [simp]:
lower-bind-(zs Ub ys)-f = lower-bind-zs-f Ub lower-bind-ys-f
by (induct zs rule: lower-pd.principal-induct, simp,
induct ys rule: lower-pd.principal-induct, simp, simp)

lemma lower-bind-strict [simp]: lower-bind-L-f = f-1
unfolding lower-unit-strict [symmetric] by (rule lower-bind-unit)

lemma lower-bind-bind:
lower-bind-(lower-bind-zs-f)-g = lower-bind-xs-(A z. lower-bind-(f-x)-g)
by (induct xs, simp-all)

THEORY “LowerPD” 190

30.6 Map

definition
lower-map :: ('a::bifinite — 'bi:bifinite) — 'a lower-pd — 'b lower-pd where
lower-map = (A f zs. lower-bind-xzs-(A z. {f-z}b))

lemma lower-map-unit [simpl:

lower-map-f-{z}b = {f-z}b
unfolding lower-map-def by simp

lemma lower-map-plus [simp]:
lower-map-f-(xs Wb ys) = lower-map-f-zs Ub lower-map-f-ys
unfolding lower-map-def by simp

lemma lower-map-bottom [simp]: lower-map-f-1L = {f-L}b
unfolding lower-map-def by simp

lemma lower-map-ident: lower-map-(A z. x)-xs = xs
by (induct zs rule: lower-pd-induct, simp-all)

lemma lower-map-ID: lower-map-ID = ID
by (simp add: cfun-eq-iff ID-def lower-map-ident)

lemma lower-map-map:
lower-map-f-(lower-map-g-zs) = lower-map-(A . f-(g-x))-zs
by (induct zs rule: lower-pd-induct, simp-all)

lemma lower-bind-map:
lower-bind-(lower-map-f-xs)-g = lower-bind-zs-(A z. g-(f-x))
by (simp add: lower-map-def lower-bind-bind)

lemma lower-map-bind:
lower-map-f-(lower-bind-zs-g) = lower-bind-zs-(A z. lower-map-f-(g-x))
by (simp add: lower-map-def lower-bind-bind)

lemma ep-pair-lower-map: ep-pair e p => ep-pair (lower-map-e) (lower-map-p)
apply standard

apply (induct-tac x rule: lower-pd-induct, simp-all add: ep-pair.e-inverse)
apply (induct-tac y rule: lower-pd-induct)

apply (simp-all add: ep-pair.e-p-below monofun-cfun del: lower-plus-below-iff)
done

lemma deflation-lower-map: deflation d = deflation (lower-map-d)
apply standard

apply (induct-tac x rule: lower-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: lower-pd-induct)

apply (simp-all add: deflation.below monofun-cfun del: lower-plus-below-iff)
done

THEORY “LowerPD” 191

lemma finite-deflation-lower-map:
assumes finite-deflation d shows finite-deflation (lower-map-d)
proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-axioms show deflation (lower-map-d)
by (rule deflation-lower-map)
have finite (range (Az. d-x)) by (rule d.finite-range)
hence finite (Rep-compact-basis —* range (Az. d-z))
by (rule finite-vimagel, simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis —* range (Az. d-x))) by simp
hence finite (Rep-pd-basis —* (Pow (Rep-compact-basis —* range (Az. d-x))))
by (rule finite-vimagel, simp add: inj-on-def Rep-pd-basis-inject)
hence x*: finite (lower-principal ‘ Rep-pd-basis —‘ (Pow (Rep-compact-basis —
range (Az. d-z)))) by simp
hence finite (range (Axs. lower-map-d-xs))
apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac xs rule: lower-pd.principal-induct)
apply (simp add: adm-mem-finite x)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: lower-unit-Rep-compact-basis [symmetric] lower-map-unit)
apply simp
apply (subgoal-tac 3b. d-(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDUnit)
apply (rule range-eql)
apply (erule sym)
(
(
(

¢

apply (rule exl)
apply (rule Abs-compact-basis-inverse [symmetric))
apply (simp add: d.compact)
apply (simp only: lower-plus-principal [symmetric] lower-map-plus)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDPlus)
done

thus finite {zs. lower-map-d-zs = xs}
by (rule finite-range-imp-finite-fizes)

qed

30.7 Lower powerdomain is bifinite

lemma approz-chain-lower-map:
assumes approz-chain a
shows approx-chain (M\i. lower-map-(a 7))
using assms unfolding approz-chain-def
by (simp add: lub-APP lower-map-ID finite-deflation-lower-map)

THEORY “ConvexPD” 192

instance lower-pd :: (bifinite) bifinite
proof
show 3 (a:nat = 'a lower-pd — 'a lower-pd). approz-chain a
using bifinite [where ‘a="a]
by (fast intro!: approz-chain-lower-map)

qed
30.8 Join
definition

lower-join :: 'a::bifinite lower-pd lower-pd — 'a lower-pd where
lower-join = (A xss. lower-bind-zss-(A zs. xs))

lemma lower-join-unit [simp):
lower-join-{xs}b = s
unfolding lower-join-def by simp

lemma lower-join-plus [simp]:
lower-join-(xss Ub yss) = lower-join-zss Ub lower-join-yss
unfolding lower-join-def by simp

lemma lower-join-bottom [simp]: lower-join- L = L
unfolding lower-join-def by simp

lemma lower-join-map-unit:
lower-join-(lower-map-lower-unit-zs) = xs
by (induct zs rule: lower-pd-induct, simp-all)

lemma lower-join-map-join:
lower-join-(lower-map-lower-join-zsss) = lower-join-(lower-join-zsss)
by (induct zsss rule: lower-pd-induct, simp-all)

lemma lower-join-map-map:
lower-join-(lower-map-(lower-map-f)-zss) =
lower-map-f-(lower-join-zss)

by (induct xzss rule: lower-pd-induct, simp-all)

end

31 Convex powerdomain

theory ConvexzPD

imports UpperPD LowerPD
begin

31.1 Basis preorder

definition

THEORY “ConvexPD” 193

convex-le :: 'a::bifinite pd-basis = 'a pd-basis = bool (infix «<fpp 50) where
convez-le = (Auv. u <f v A u <b v)

lemma convez-le-refl [simp]: t <h t
unfolding convez-le-def by (fast intro: upper-le-refl lower-le-refl)

lemma convez-le-trans: [t <f u; u <hv] =t <po
unfolding convez-le-def by (fast intro: upper-le-trans lower-le-trans)

interpretation convez-le: preorder convez-le
by (rule preorder.intro, rule convez-le-refl, rule convex-le-trans)

lemma upper-le-minimal [simp]: PDUnit compact-bot <f t
unfolding convex-le-def Rep-PDUnit by simp

lemma PDUnit-convex-mono: © C y = PDUnit x <t PDUnit y
unfolding convez-le-def by (fast intro: PDUnit-upper-mono PDUnit-lower-mono)

lemma PDPlus-convex-mono: s <b t; u <b v] = PDPlus s u < PDPlus t v
unfolding convex-le-def by (fast intro: PDPlus-upper-mono PDPlus-lower-mono)

lemma convez-le-PDUnit-PD Unit-iff [simp]:
(PDUnit a <ij PDUnit b) = (a C b)
unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit by fast

lemma convez-le-PDUnit-lemmal:

(PDUnit a <fj t) = (V b€ Rep-pd-basis t. a T b)
unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit
using Rep-pd-basis-nonempty [of t, folded ex-in-conv| by fast

lemma convez-le-PDUnit-PDPlus-iff [simp]:
(PDUnit a <hj PDPlus t u) = (PDUnit a < t A PDUnit a <hj u)
unfolding convex-le-PD Unit-lemmal Rep-PDPlus by fast

lemma convez-le-PD Unit-lemma?2:

(t <t PDUnit b) = (VY a€Rep-pd-basis t. a T b)
unfolding convex-le-def upper-le-def lower-le-def Rep-PDUnit
using Rep-pd-basis-nonempty [of t, folded ex-in-conv] by fast

lemma convez-le-PDPlus-PDUnit-iff [simp]:
(PDPlus t u <t PDUnit a) = (t < PDUnit a A\ u <t PDUnit a)
unfolding convex-le-PD Unit-lemma2 Rep-PDPlus by fast

lemma convez-le-PDPlus-lemma:
assumes z: PDPlus t u <f z
shows v w. 2 = PDPlusvw At <gv A u<hw
proof (intro exI conjI)
let ?A = {b€Rep-pd-basis z. I a€ Rep-pd-basis t. a T b}
let B = {beRep-pd-basis z. I a€ Rep-pd-basis u. a C b}

THEORY “ConvexPD” 194

let 2v = Abs-pd-basis ?A

let 7w = Abs-pd-basis ?B

have Rep-v: Rep-pd-basis v = ?A
apply (rule Abs-pd-basis-inverse)
apply (rule Rep-pd-basis-nonempty [of t, folded ex-in-conv, THEN ezE])
apply (cut-tac z, simp only: convex-le-def lower-le-def, clarify)
apply (drule-tac z=xz in bspec, simp add: Rep-PDPlus, erule bezE)
apply (simp add: pd-basis-def)
apply fast
done

have Rep-w: Rep-pd-basis fw = ¢B
apply (rule Abs-pd-basis-inverse)
apply (rule Rep-pd-basis-nonempty [of u, folded ex-in-conv, THEN ezE])
apply (cut-tac z, simp only: convez-le-def lower-le-def, clarify)
apply (drule-tac x=x in bspec, simp add: Rep-PDPlus, erule bexE)
apply (simp add: pd-basis-def)
apply fast
done

show z = PDPlus ?v ?w
apply (insert z)
apply (simp add: convez-le-def, erule conjE)
apply (simp add: Rep-pd-basis-inject [symmetric] Rep-PDPlus)
apply (simp add: Rep-v Rep-w)
apply (rule equalityl)
apply (rule subsetl)
apply (simp only: upper-le-def)
apply (drule (1) bspec, erule bexFE)
apply (simp add: Rep-PDPlus)
apply fast
apply fast
done

show ¢t <ij 2v u <f %w
using 2z by (simp-all add: convex-le-def upper-le-def lower-le-def Rep-PDPlus

Rep-v Rep-w) fast+
qed

Py

lemma convez-le-induct [induct set: convez-le]:
assumes le: t <f u
assumes 2: Atuwv. [Ptu; Puv] = Ptwo
assumes 3: Aa b. a T b = P (PDUnit a) (PDUnit b)
assumes 4: At w v w. [Ptv; Puw] = P (PDPlus t u) (PDPlus v w)
shows Pt u
using le
proof (induct t arbitrary: u rule: pd-basis-induct)
case (PDUnit a)
then show ?case
proof (induct u rule: pd-basis-inductl)
case (PDUnit b)
then show Zcase by (simp add: 3)

THEORY “ConvexPD”

next
case (PDPlus b t)
have P (PDPlus (PDUnit a) (PDUnit a)) (PDPlus (PDUnit b) t)
by (rule 4 [OF 3]) (use PDPlus in simp-all)
then show Zcase by (simp add: PDPlus-absorb)
qed
next
case PDPlus
from PDPlus(1,2) show Zcase
using convez-le-PDPlus-lemma [OF PDPlus(3)] by (auto simp add: 4)
qged

31.2 Type definition

typedef ‘a::bifinite conver-pd («(<notation=<postfix convex-pd»'(-)h)») =
{S::'a pd-basis set. convex-le.ideal S}
by (rule convex-le.ex-ideal)

instantiation convez-pd :: (bifinite) below
begin

definition
x C y «— Rep-convex-pd r C Rep-convex-pd y

instance ..
end

instance convex-pd :: (bifinite) po
using type-definition-conver-pd below-convezr-pd-def
by (rule convez-le.typedef-ideal-po)

instance convez-pd :: (bifinite) cpo
using type-definition-convez-pd below-convezr-pd-def
by (rule convez-le.typedef-ideal-cpo)

definition
convex-principal :: 'a::bifinite pd-basis = 'a convex-pd where
convez-principal t = Abs-convez-pd {u. u <fj t}

interpretation convex-pd:
ideal-completion convez-le convex-principal Rep-convex-pd
using type-definition-convez-pd below-convexr-pd-def
using convez-principal-def pd-basis-countable
by (rule convez-le.typedef-ideal-completion)

Convex powerdomain is pointed

lemma convez-pd-minimal: convez-principal (PDUnit compact-bot) C ys
by (induct ys rule: convez-pd.principal-induct, simp, simp)

195

THEORY “ConvexPD” 196

instance convez-pd :: (bifinite) pcpo
by intro-classes (fast intro: convex-pd-minimal)

lemma inst-convex-pd-pcpo: L = convez-principal (PDUnit compact-bot)
by (rule convex-pd-minimal [THEN bottoml, symmetric])

31.3 Monadic unit and plus

definition
convex-unit :: 'a::bifinite — 'a convex-pd where
convezr-unit = compact-basis.extension (Aa. convezr-principal (PDUnit a))

definition
convez-plus :: 'a::bifinite conver-pd — 'a conver-pd — 'a convezr-pd where
convex-plus = convez-pd.extension (At. conver-pd.extension (Au.
convez-principal (PDPlus t u)))

abbreviation
convezr-add :: 'a::bifinite convex-pd = 'a convez-pd = 'a convez-pd
(infix] U 65) where
xs Uy ys == convez-plus-zs-ys

syntax

-conver-pd :: args = logic (<(<indent=1 notation=<mixfix convex-pd enumera-
tion»{-}h)»)
translations

{z,2s}y == {2} Uy {as}l

{z}f == CONST convez-unit-z

lemma convez-unit-Rep-compact-basis [simp]:
{Rep-compact-basis a}h = convex-principal (PDUnit a)
unfolding convex-unit-def
by (simp add: compact-basis.extension-principal PD Unit-convez-mono)

lemma convez-plus-principal [simp]:
convez-principal t U convex-principal u = convex-principal (PDPlus t u)
unfolding convex-plus-def
by (simp add: convez-pd.extension-principal
convez-pd.extension-mono PDPlus-convez-mono)

interpretation convez-add: semilattice convez-add proof

fix zs ys zs :: 'a convex-pd

show (zs U ys) Ul zs = xs U (ys Uf 2s)
apply (induct xs rule: convezr-pd.principal-induct, simp)
apply (induct ys rule: convez-pd.principal-induct, simp)
apply (induct zs rule: convez-pd.principal-induct, simp)
apply (simp add: PDPlus-assoc)
done

show zs Uf ys = ys Ug zs

THEORY “ConvexPD” 197

apply (induct zs rule: convex-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (simp add: PDPlus-commute)
done
show zs U zs = xs
apply (induct zs rule: convex-pd.principal-induct, simp)
apply (simp add: PDPlus-absorb)
done
qed

lemmas convez-plus-assoc = convex-add.assoc

lemmas convez-plus-commute = convex-add.commute
lemmas convez-plus-absorb = convex-add.idem

lemmas convex-plus-left-commute = convez-add.left-commute
lemmas convex-plus-left-absorb = convez-add.left-idem

Useful for simp add: convezr-plus-ac

lemmas convez-plus-ac =
convez-plus-assoc convex-plus-commute convez-plus-left-commute

Useful for simp only: convex-plus-aci

lemmas convez-plus-aci =
convez-plus-ac convexr-plus-absorb convexr-plus-left-absorb

lemma convez-unit-below-plus-iff [simp]:

{z}0 E ys Ug zs «— {z}t E ys A {z}§ E 25
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (induct zs rule: convez-pd.principal-induct, simp)
apply simp
done

lemma convez-plus-below-unit-iff [simp]:

os U ys E {2t «— s C {2} A ys C {2}f
apply (induct zs rule: convez-pd.principal-induct, simp)
apply (induct ys rule: conver-pd.principal-induct, simp)
apply (induct z rule: compact-basis.principal-induct, simp)
apply simp
done

lemma convez-unit-below-iff [simp]: {z}h C {y}h+— z C y
apply (induct x rule: compact-basis.principal-induct, simp)
apply (induct y rule: compact-basis.principal-induct, simp)
apply simp

done

lemma convez-unit-eq-iff [simpl: {z}t = {yh+— z =y
unfolding po-eq-conv by simp

THEORY “ConvexPD” 198

lemma convez-unit-strict [simp]: {L}f = L
using convez-unit-Rep-compact-basis [of compact-bot]
by (simp add: inst-convez-pd-pcpo)

lemma convez-unit-bottom-iff [simp]: {z}h = L +— =1
unfolding convez-unit-strict [symmetric] by (rule conver-unit-eq-iff)

lemma compact-convex-unit: compact t = compact {z}f
by (auto dest!: compact-basis.compact-imp-principal)

lemma compact-convex-unit-iff [simp]: compact {x}l «— compact ©
apply (safe elim!: compact-convez-unit)

apply (simp only: compact-def convex-unit-below-iff [symmetric])
apply (erule adm-subst [OF cont-Rep-cfun2])

done

lemma compact-convex-plus [simp]:
[compact xs; compact ys] = compact (xs Ul ys)
by (auto dest!: convez-pd.compact-imp-principal)

31.4 Induction rules

lemma conver-pd-induct1:
assumes P: adm P
assumes unit: A\z. P {z}f
assumes insert: Az ys. [P {z}t; P ys] = P ({z}§ Uh ys)
shows P (zs::'a::bifinite convez-pd)
proof (induct zs rule: convex-pd.principal-induct)
show P (convez-principal a) for a
proof (induct a rule: pd-basis-induct1)
case PDUnit
show ?Zcase by (simp only: convexr-unit-Rep-compact-basis [symmetric]) (rule
unit)
next
case PDPlus
show ?case
by (simp only: convex-unit-Rep-compact-basis [symmetric] convex-plus-principal
[symmetric])
(rule insert [OF unit PDPlus])
qged
qed (rule P)

lemma convex-pd-induct [case-names adm convez-unit convex-plus, induct type:
convez-pd):

assumes P: adm P

assumes unit: Az. P {z}f

assumes plus: Axs ys. [P xs; P ys] = P (ws U ys)

shows P (zs::'a::bifinite convez-pd)
proof (induct xs rule: convez-pd.principal-induct)

THEORY “ConvexPD” 199

show P (convez-principal a) for a
proof (induct a rule: pd-basis-induct)
case PDUnit
then show ?case by (simp only: convex-unit-Rep-compact-basis [symmetric]
unit)
next
case PDPlus
then show ?case by (simp only: convez-plus-principal [symmetric] plus)
qed
qed (rule P)

31.5 Monadic bind

definition
convez-bind-basis ::
'a::bifinite pd-basis = (‘a — 'b convez-pd) — 'b::bifinite convez-pd where
convez-bind-basis = fold-pd
(Aa. A f. f-(Rep-compact-basis a))
(Azy. A f.af Ugyf)

lemma ACI-convez-bind:

semilattice Az y. A f. z-f Up y-f)
apply unfold-locales
apply (simp add: conver-plus-assoc)
apply (simp add: convez-plus-commute)
apply (simp add: eta-cfun)
done

lemma convez-bind-basis-simps [simp]:
convex-bind-basis (PDUnit a) =
(A f. f-(Rep-compact-basis a))
convez-bind-basis (PDPlus t u) =
(A f. convex-bind-basis t-f U convez-bind-basis u-f)
unfolding convex-bind-basis-def
apply —
apply (rule fold-pd-PDUnit [OF ACI-convez-bind))
apply (rule fold-pd-PDPlus [OF ACI-convez-bind))
done

lemma convex-bind-basis-mono:

t <t u = convex-bind-basis t T convex-bind-basis u
apply (erule convez-le-induct)
apply (erule (1) below-trans)
apply (simp add: monofun-LAM monofun-cfun)
apply (simp add: monofun-LAM monofun-cfun)
done

definition
convez-bind :: 'a::bifinite conver-pd — (‘a — 'b convex-pd) — 'b::bifinite conver-pd

THEORY “ConvexPD” 200

where
convez-bind = convex-pd.extension convex-bind-basis

syntax
-convex-bind :: [logic, logic, logic] = logic
(«(<indent=3 notation=<binder convex-bind»\Jy-€-./ -)» [0, 0, 10] 10)

translations
Uhzexs. e == CONST convez-bind-zs-(A z. e)

lemma convez-bind-principal [simp]:
convex-bind-(convez-principal t) = convex-bind-basis t

unfolding convex-bind-def

apply (rule convex-pd.extension-principal)

apply (erule convex-bind-basis-mono)

done

lemma convez-bind-unit [simp]:
convez-bind-{z}g-f = f-x
by (induct z rule: compact-basis.principal-induct, simp, simp)

lemma convez-bind-plus [simp]:
convez-bind-(zs U ys)-f = convez-bind-zs-f U convez-bind-ys-f
by (induct zs rule: convex-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)

lemma convez-bind-strict [simp]: convez-bind-L-f = f-L
unfolding convez-unit-strict [symmetric] by (rule convezr-bind-unit)

lemma convez-bind-bind:
convez-bind-(convex-bind-xs-f)-g =
convex-bind-zs-(A z. conver-bind-(f-x)-g)
by (induct zs, simp-all)

31.6 Map

definition
convez-map :: ('a::bifinite — 'b) — 'a conver-pd — 'b::bifinite conver-pd where
conver-map = (A f xs. convex-bind-xzs-(A z. {f-z}t))

lemma convez-map-unit [simp]:

convez-map-f-{z}h = {f-z}t

unfolding convex-map-def by simp
lemma conver-map-plus [simp):
convex-map-f-(zs U ys) = convex-map-f-xs Uy conver-map-f-ys

unfolding convex-map-def by simp

lemma convez-map-bottom [simp]: convex-map-f-L = {f- L}t

THEORY “ConvexPD” 201

unfolding convex-map-def by simp

lemma convez-map-ident: convez-map-(A z. T)-15 = T8
by (induct zs rule: convex-pd-induct, simp-all)

lemma convex-map-ID: conver-map-ID = ID
by (simp add: cfun-eq-iff ID-def convex-map-ident)

lemma convex-map-map:
conver-map-f-(convex-map-g-xs) = conver-map-(A z. f-(g-x))-xs
by (induct zs rule: convex-pd-induct, simp-all)

lemma convez-bind-map:
convez-bind-(convez-map-f-xs)-g = convez-bind-zs-(A z. g-(f-x))
by (simp add: convex-map-def conver-bind-bind)

lemma convez-map-bind:
convez-map-f-(convex-bind-zs-g) = convex-bind-zs-(A x. conver-map-f-(g-z))
by (simp add: convez-map-def convez-bind-bind)

lemma ep-pair-convex-map: ep-pair e p = ep-pair (convex-map-e) (convex-map-p)
apply standard

apply (induct-tac x rule: convez-pd-induct, simp-all add: ep-pair.e-inverse)
apply (induct-tac y rule: convez-pd-induct)

apply (simp-all add: ep-pair.e-p-below monofun-cfun)

done

lemma deflation-convez-map: deflation d = deflation (conver-map-d)
apply standard

apply (induct-tac x rule: convez-pd-induct, simp-all add: deflation.idem)
apply (induct-tac x rule: convez-pd-induct)

apply (simp-all add: deflation.below monofun-cfun)

done

lemma finite-deflation-convex-map:
assumes finite-deflation d shows finite-deflation (conver-map-d)
proof (rule finite-deflation-intro)
interpret d: finite-deflation d by fact
from d.deflation-azioms show deflation (convex-map-d)
by (rule deflation-convez-map)
have finite (range (A\z. d-x)) by (rule d.finite-range)
hence finite (Rep-compact-basis —* range (Az. d-x))
by (rule finite-vimagel, simp add: inj-on-def Rep-compact-basis-inject)
hence finite (Pow (Rep-compact-basis —* range (Az. d-x))) by simp
hence finite (Rep-pd-basis —‘ (Pow (Rep-compact-basis —* range (Az. d-x))))
by (rule finite-vimagel, simp add: inj-on-def Rep-pd-basis-inject)
hence *: finite (convex-principal ¢ Rep-pd-basis —* (Pow (Rep-compact-basis —
range (Az. d-x)))) by simp

¢

THEORY “ConvexPD” 202

hence finite (range (Axs. convez-map-d-xs))
apply (rule rev-finite-subset)
apply clarsimp
apply (induct-tac zs rule: convex-pd.principal-induct)
apply (simp add: adm-mem-finite x)
apply (rename-tac t, induct-tac t rule: pd-basis-induct)
apply (simp only: conver-unit-Rep-compact-basis [symmetric] convex-map-unit)
apply simp
apply (subgoal-tac 3b. d-(Rep-compact-basis a) = Rep-compact-basis b)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDUnit)
apply (rule range-eql)
apply (erule sym)
apply (rule exl)
apply (rule Abs-compact-basis-inverse [symmetric])
apply (simp add: d.compact)
apply (simp only: convex-plus-principal [symmetric] conver-map-plus)
apply clarsimp
apply (rule imagel)
apply (rule vimagel2)
apply (simp add: Rep-PDPlus)
done
thus finite {zs. convezr-map-d-xs = xs}
by (rule finite-range-imp-finite-fizes)
qged

31.7 Convex powerdomain is bifinite

lemma approz-chain-conver-map:
assumes approz-chain a
shows approz-chain (M\i. conver-map-(a 1))
using assms unfolding approz-chain-def
by (simp add: lub-APP convex-map-ID finite-deflation-conver-map)

instance convez-pd :: (bifinite) bifinite
proof
show 3 (a:nat = 'a convex-pd — 'a conver-pd). approz-chain a
using bifinite [where ‘a='a]
by (fast intro!: approz-chain-convex-map)

qed
31.8 Join
definition

convez-join :: 'a::bifinite convez-pd conver-pd — 'a conver-pd where
convez-join = (A zss. convex-bind-zss-(A zs. xs))

lemma convez-join-unit [simp]:

THEORY “ConvexPD”

convex-join-{zs}ty = xs
unfolding convex-join-def by simp

lemma convez-join-plus [simp]:
convez-join-(xss U yss) = convex-join-zss U convex-join-yss
unfolding convex-join-def by simp

lemma convez-join-bottom [simp]: convez-join-L = L
unfolding convex-join-def by simp

lemma convex-join-map-unit:
convex-join-(convex-map- conver-unit-xs) = s

by (induct zs rule: convex-pd-induct, simp-all)

lemma convez-join-map-join:

convex-join-(convex-map- conver-join-1sss) = conver-join-(conver-join-rsss)

by (induct xzsss rule: convezr-pd-induct, simp-all)

lemma convez-join-map-map:
convez-join-(conver-map-(convex-map-f)-xss) =
convex-map-f-(convex-join-xss)

by (induct zss rule: convezr-pd-induct, simp-all)

31.9 Conversions to other powerdomains

Convex to upper

lemma convez-le-imp-upper-le: t <t u = t <f u
unfolding convex-le-def by simp

definition
convez-to-upper :: 'a::bifinite conver-pd — 'a upper-pd where
convez-to-upper = convex-pd.extension upper-principal

lemma convez-to-upper-principal [simp):
convez-to-upper-(convez-principal t) = upper-principal t

unfolding convex-to-upper-def

apply (rule convex-pd.extension-principal)

apply (rule upper-pd.principal-mono)

apply (erule convez-le-imp-upper-le)

done

lemma convez-to-upper-unit [simp):
convex-to-upper-{z}t = {z}t

by (induct z rule: compact-basis.principal-induct, simp, simp)

lemma convez-to-upper-plus [simp]:

convex-to-upper-(xs U ys) = convex-to-upper-zs Uf convex-to-upper-ys

by (induct zs rule: convex-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)

203

THEORY “ConvexPD” 204

lemma convez-to-upper-bind [simp]:
convez-to-upper-(convez-bind-zs-f) =
upper-bind-(convez-to-upper-xs)-(convez-to-upper oo f)
by (induct zs rule: convez-pd-induct, simp, simp, simp)

lemma convez-to-upper-map [simpl:
convez-to-upper-(convex-map-f-xs) = upper-map-f-(convex-to-upper-s)
by (simp add: convex-map-def upper-map-def cfcomp-LAM)

lemma convez-to-upper-join [simp]:
convex-to-upper-(convez-join-rss) =
upper-bind-(convez-to-upper-xss)- convex-to-upper
by (simp add: convex-join-def upper-join-def cfcomp-LAM eta-cfun)

Convex to lower

lemma convez-le-imp-lower-le: t <j v = t <b u
unfolding convezx-le-def by simp

definition
convez-to-lower :: 'a::bifinite conver-pd — 'a lower-pd where
convex-to-lower = convex-pd.extension lower-principal

lemma convez-to-lower-principal [simp]:
convez-to-lower-(convex-principal t) = lower-principal t

unfolding convex-to-lower-def

apply (rule convex-pd.extension-principal)

apply (rule lower-pd.principal-mono)

apply (erule convez-le-imp-lower-le)

done

lemma convez-to-lower-unit [simp):
convez-to-lower-{z}f = {z}b
by (induct x rule: compact-basis.principal-induct, simp, simp)

lemma convez-to-lower-plus [simpl:
convez-to-lower-(zs U ys) = convex-to-lower-zs Ub convez-to-lower-ys
by (induct s rule: convez-pd.principal-induct, simp,
induct ys rule: convex-pd.principal-induct, simp, simp)

lemma convez-to-lower-bind [simpl:
convez-to-lower-(convex-bind-zs-f) =
lower-bind-(convez-to-lower-xs)-(convex-to-lower oo f)
by (induct xzs rule: convez-pd-induct, simp, simp, simp)

lemma convez-to-lower-map [simp):
convez-to-lower-(convex-map-f-xs) = lower-map-f-(convez-to-lower-xs)
by (simp add: convez-map-def lower-map-def cfcomp-LAM)

THEORY “Powerdomains” 205

lemma convez-to-lower-join [simp]:
convez-to-lower-(convex-join-xss) =
lower-bind-(convez-to-lower-zss)- convex-to-lower
by (simp add: convex-join-def lower-join-def cfcomp-LAM eta-cfun)

Ordering property

lemma convex-pd-below-iff:
(zs T ys) =
(convez-to-upper-xs T convex-to-upper-ys A
convez-to-lower-zs T conve:r—to—lower-ys)
apply (induct xs rule: convez-pd.principal-induct, simp)
apply (induct ys rule: convex-pd.principal-induct, simp)
apply (simp add: convez-le-def)
done

lemmas convez-plus-below-plus-iff =
convez-pd-below-iff [where zs=zs U ys and ys=zs Uj ws]
for zs ys zs ws

lemmas convez-pd-below-simps =
convez-unit-below-plus-iff
convez-plus-below-unit-iff
convez-plus-below-plus-iff
convez-unit-below-iff
convez-to-upper-unit
convez-to-upper-plus
convez-to-lower-unit
convez-to-lower-plus
upper-pd-below-simps
lower-pd-below-simps

end

32 Powerdomains

theory Powerdomains
imports ConvexPD Domain
begin

32.1 Universal domain embeddings
definition upper-emb = udom-emb (\i. upper-map-(udom-approz 7))

definition upper-prj = udom-prj (A\i. upper-map-(udom-approz 1))

definition lower-emb = udom-emb (\i. lower-map-(udom-approz i))
definition lower-prj = udom-prj (X\i. lower-map-(udom-approx 7))

definition convez-emb = udom-emb (Ai. convex-map-(udom-approx i))
definition convex-prj = udom-prj (Ai. convex-map-(udom-approz 7))

THEORY “Powerdomains”

lemma ep-pair-upper: ep-pair upper-emb upper-prj
unfolding upper-emb-def upper-prj-def
by (simp add: ep-pair-udom approx-chain-upper-map)

lemma ep-pair-lower: ep-pair lower-emb lower-prj
unfolding lower-emb-def lower-prj-def
by (simp add: ep-pair-udom approx-chain-lower-map)

lemma ep-pair-convez: ep-pair convex-emb conver-prj
unfolding convex-emb-def convez-prj-def
by (simp add: ep-pair-udom approx-chain-conver-map)

32.2 Deflation combinators

definition upper-defi :: udom defl — udom defi
where upper-defl = defi-funl upper-emb upper-prj upper-map

definition lower-defl :: udom defl — udom defl
where lower-defl = defl-funl lower-emb lower-prj lower-map

definition convez-defl :: udom defl — udom defl
where convez-defl = defi-funl convex-emb convezr-prj convexr-map

lemma cast-upper-defi:

cast-(upper-defl-A) = upper-emb oo upper-map-(cast-A) oo upper-prj
using ep-pair-upper finite-deflation-upper-map
unfolding upper-defl-def by (rule cast-defl-funl)

lemma cast-lower-defi:

cast-(lower-defl- A) = lower-emb oo lower-map-(cast-A) oo lower-prj
using ep-pair-lower finite-deflation-lower-map
unfolding lower-defl-def by (rule cast-defl-funl)

lemma cast-convex-defi:

cast-(convez-defl-A) = convex-emb oo convex-map-(cast-A) oo conver-prj

using ep-pair-convez finite-deflation-convex-map
unfolding convez-defi-def by (rule cast-defl-funl)
32.3 Domain class instances
instantiation upper-pd :: (domain) domain

begin

definition
emb = upper-emb oo upper-map-emb

definition
pPrj = upper-map-prj 00 upper-prj

206

THEORY “Powerdomains” 207

definition
defl (t::'a upper-pd itself) = upper-defl- DEFL(’a)

definition
(liftemb :: 'a upper-pd v — udom u) = u-map-emb

definition
(liftprj :: udom u — 'a upper-pd u) = u-map-prj

definition
liftdefl (t::'a upper-pd itself) = liftdefl-of - DEFL('a upper-pd)

instance proof
show ep-pair emb (prj :: udom — 'a upper-pd)
unfolding emb-upper-pd-def prj-upper-pd-def
by (intro ep-pair-comp ep-pair-upper ep-pair-upper-map ep-pair-emb-pry)
next
show cast-DEFL('a upper-pd) = emb oo (prj :: udom — 'a upper-pd)
unfolding emb-upper-pd-def prj-upper-pd-def defl-upper-pd-def cast-upper-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff upper-map-map)
qed (fact liftemb-upper-pd-def liftprj-upper-pd-def liftdefl-upper-pd-def)+

end

instantiation lower-pd :: (domain) domain
begin

definition
emb = lower-emb oo lower-map-emb

definition
prj = lower-map-prj oo lower-prj

definition
defl (t::'a lower-pd itself) = lower-defl- DEFL(’a)

definition
(liftemb :: 'a lower-pd u — udom u) = u-map-emb

definition
(liftprj :: udom u — 'a lower-pd u) = u-map-prj

definition
liftdefl (t::'a lower-pd itself) = liftdefl-of - DEFL('a lower-pd)

instance proof
show ep-pair emb (prj :: udom — 'a lower-pd)
unfolding emb-lower-pd-def prj-lower-pd-def
by (intro ep-pair-comp ep-pair-lower ep-pair-lower-map ep-pair-emb-pry)

THEORY “Powerdomains” 208

next
show cast-DEFL('a lower-pd) = emb oo (prj :: udom — 'a lower-pd)
unfolding emb-lower-pd-def prj-lower-pd-def defl-lower-pd-def cast-lower-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff lower-map-map)
qed (fact liftemb-lower-pd-def liftpri-lower-pd-def liftdefl-lower-pd-def)+

end

instantiation convez-pd :: (domain) domain
begin

definition
emb = convex-emb oo convex-map-emb

definition
Prj = convexr-map-prj 00 CONvVer-prj

definition
defl (t::'a convex-pd itself) = convex-defl- DEFL('a)

definition
(liftemb :: 'a conver-pd v — udom u) = u-map-emb

definition
(liftprj = udom u — 'a conver-pd u) = u-map-prj

definition
liftdefl (t::'a convex-pd itself) = liftdefl-of -DEFL(’a convex-pd)

instance proof
show ep-pair emb (prj :: udom — 'a convezr-pd)
unfolding emb-convex-pd-def prj-convex-pd-def
by (intro ep-pair-comp ep-pair-conver ep-pair-conver-map ep-pair-emb-pry)
next
show cast-DEFL('a convez-pd) = emb oo (prj :: udom — 'a convex-pd)
unfolding emb-convez-pd-def prj-convex-pd-def defl-convezr-pd-def cast-convex-defl
by (simp add: cast-DEFL oo-def cfun-eq-iff convez-map-map)
qed (fact liftemb-convez-pd-def liftprj-convex-pd-def liftdefl-convex-pd-def)+

end

lemma DEFL-upper: DEFL('a::domain upper-pd) = upper-defl- DEFL('a)
by (rule defl-upper-pd-def)

lemma DEFL-lower: DEFL(’a::domain lower-pd) = lower-defl- DEFL('a)
by (rule defl-lower-pd-def)

lemma DEFL-convex: DEFL(’a::domain conver-pd) = convez-defl- DEFL('a)
by (rule defl-convez-pd-def)

THEORY “HOLCF” 209

32.4 Isomorphic deflations

lemma isodefl-upper:

isodefl d t = isodefl (upper-map-d) (upper-defi-t)
apply (rule isodefil)
apply (simp add: cast-upper-defl cast-isodefl)
apply (simp add: emb-upper-pd-def prj-upper-pd-def)
apply (simp add: upper-map-map)
done

lemma isodefi-lower:

isodefl d t = isodefl (lower-map-d) (lower-defi-t)
apply (rule isodefil)
apply (simp add: cast-lower-defl cast-isodefl)
apply (simp add: emb-lower-pd-def prj-lower-pd-def)
apply (simp add: lower-map-map)
done

lemma isodefl-convez:

isodefl d t = isodefl (convex-map-d) (convez-defi-t)
apply (rule isodefil)
apply (simp add: cast-convex-defl cast-isodefl)
apply (simp add: emb-convez-pd-def prj-convex-pd-def)
apply (simp add: convez-map-map)
done

32.5 Domain package setup for powerdomains

lemmas [domain-defl-simps] = DEFL-upper DEFL-lower DEFL-convex
lemmas [domain-map-ID] = upper-map-ID lower-map-ID convex-map-ID
lemmas [domain-isodefl] = isodefl-upper isodefl-lower isodefl-convex

lemmas [domain-deflation] =
deflation-upper-map deflation-lower-map deflation-conver-map

setup <«
fold Domain-Take-Proofs.add-rec-type
[(type-name <upper-pd», [true]),
(type-name <lower-pdy, [true]),
(type-name conver-pdy, [true])]

end

theory HOLCF
imports
Main
Domain
Powerdomains

THEORY “HOLCF” 210

begin
default-sort domain

end

	Partial orders
	Type class for partial orders
	Upper bounds
	Least upper bounds
	Countable chains
	Finite chains

	Classes cpo and pcpo
	Complete partial orders
	Pointed cpos
	Chain-finite and flat cpos
	Discrete cpos

	Continuity and monotonicity
	Definitions
	Equivalence of alternate definition
	Collection of continuity rules
	Continuity of basic functions
	Finite chains and flat pcpos

	Admissibility and compactness
	Definitions
	Admissibility on chain-finite types
	Admissibility of special formulae and propagation
	Compactness

	Class instances for the full function space
	Full function space is a partial order
	Full function space is chain complete
	Full function space is pointed
	Propagation of monotonicity and continuity

	The cpo of cartesian products
	Unit type is a pcpo
	Product type is a partial order
	Monotonicity of Pair, fst, snd
	Product type is a cpo
	Product type is pointed
	Continuity of Pair, fst, snd
	Compactness and chain-finiteness

	Discrete cpo types
	Discrete cpo class instance
	undiscr

	Subtypes of pcpos
	Proving a subtype is a partial order
	Proving a subtype is finite
	Proving a subtype is chain-finite
	Proving a subtype is complete
	Continuity of Rep and Abs

	Proving subtype elements are compact
	Proving a subtype is pointed
	Strictness of Rep and Abs

	Proving a subtype is flat
	HOLCF type definition package

	The type of continuous functions
	Definition of continuous function type
	Syntax for continuous lambda abstraction
	Continuous function space is pointed
	Basic properties of continuous functions
	Beta-reduction simproc

	Continuity of application
	Continuity simplification procedure
	Miscellaneous
	Continuous injection-retraction pairs
	Identity and composition
	Strictified functions
	Continuity of let-bindings

	Continuous deflations and ep-pairs
	Continuous deflations
	Deflations with finite range
	Continuous embedding-projection pairs
	Uniqueness of ep-pairs
	Composing ep-pairs

	The type of strict products
	Definition of strict product type
	Definitions of constants
	Case analysis
	Properties of spair
	Properties of sfst and ssnd
	Compactness
	Properties of ssplit
	Strict product preserves flatness

	The type of lifted values
	Definition of new type for lifting
	Ordering on lifted cpo
	Lifted cpo is a partial order
	Lifted cpo is a cpo
	Lifted cpo is pointed
	Continuity of Iup and Ifup
	Continuous versions of constants

	Lifting types of class type to flat pcpo's
	Lift as a datatype
	Lift is flat
	Continuity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 case-lift
	Further operations

	The type of lifted booleans
	Type definition and constructors
	Case analysis
	Boolean connectives
	Rewriting of HOLCF operations to HOL functions
	Compactness

	The type of strict sums
	Definition of strict sum type
	Definitions of constructors
	Properties of sinl and sinr
	Case analysis
	Case analysis combinator
	Strict sum preserves flatness

	The Strict Function Type
	Map functions for various types
	Map operator for continuous function space
	Map operator for product type
	Map function for lifted cpo
	Map function for strict products
	Map function for strict sums
	Map operator for strict function space

	The cpo of cartesian products
	Continuous case function for unit type
	Continuous version of split function
	Convert all lemmas to the continuous versions

	Profinite and bifinite cpos
	Chains of finite deflations
	Omega-profinite and bifinite domains
	Building approx chains
	Class instance proofs

	Defining algebraic domains by ideal completion
	Ideals over a preorder
	Lemmas about least upper bounds
	Locale for ideal completion
	Principal ideals approximate all elements

	Defining functions in terms of basis elements

	A universal bifinite domain
	Basis for universal domain
	Basis datatype
	Basis ordering
	Generic take function

	Defining the universal domain by ideal completion
	Compact bases of domains
	Universality of udom
	Choosing a maximal element from a finite set
	Compact basis take function
	Rank of basis elements
	Sequencing basis elements
	Embedding and projection on basis elements
	EP-pair from any bifinite domain into udom

	Chain of approx functions for type udom

	Algebraic deflations
	Type constructor for finite deflations
	Defining algebraic deflations by ideal completion
	Applying algebraic deflations
	Deflation combinators

	Representable domains
	Class of representable domains
	Domains are bifinite
	Universal domain ep-pairs
	Type combinators
	Class instance proofs
	Universal domain
	Lifted cpo
	Strict function space
	Continuous function space
	Strict product
	Cartesian product
	Unit type
	Discrete cpo
	Strict sum
	Lifted HOL type

	The unit domain
	Fixed point operator and admissibility
	Iteration
	Least fixed point operator
	Fixed point induction
	Fixed-points on product types

	Package for defining recursive functions in HOLCF
	Pattern-match monad
	Run operator
	Monad plus operator

	Match functions for built-in types
	Mutual recursion
	Initializing the fixrec package

	Domain package
	Continuous isomorphisms
	Proofs about take functions
	Finiteness
	Proofs about constructor functions
	ML setup
	Representations of types
	Deflations as sets
	Proving a subtype is representable
	Isomorphic deflations
	Setting up the domain package

	A compact basis for powerdomains
	A compact basis for powerdomains
	Unit and plus constructors
	Fold operator

	Upper powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Upper powerdomain is bifinite
	Join

	Lower powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Lower powerdomain is bifinite
	Join

	Convex powerdomain
	Basis preorder
	Type definition
	Monadic unit and plus
	Induction rules
	Monadic bind
	Map
	Convex powerdomain is bifinite
	Join
	Conversions to other powerdomains

	Powerdomains
	Universal domain embeddings
	Deflation combinators
	Domain class instances
	Isomorphic deflations
	Domain package setup for powerdomains

