File ‹Tools/Domain/domain_take_proofs.ML›
signature DOMAIN_TAKE_PROOFS =
sig
type iso_info =
{
absT : typ,
repT : typ,
abs_const : term,
rep_const : term,
abs_inverse : thm,
rep_inverse : thm
}
type take_info =
{
take_consts : term list,
take_defs : thm list,
chain_take_thms : thm list,
take_0_thms : thm list,
take_Suc_thms : thm list,
deflation_take_thms : thm list,
take_strict_thms : thm list,
finite_consts : term list,
finite_defs : thm list
}
type take_induct_info =
{
take_consts : term list,
take_defs : thm list,
chain_take_thms : thm list,
take_0_thms : thm list,
take_Suc_thms : thm list,
deflation_take_thms : thm list,
take_strict_thms : thm list,
finite_consts : term list,
finite_defs : thm list,
lub_take_thms : thm list,
reach_thms : thm list,
take_lemma_thms : thm list,
is_finite : bool,
take_induct_thms : thm list
}
val define_take_functions :
(binding * iso_info) list -> theory -> take_info * theory
val add_lub_take_theorems :
(binding * iso_info) list -> take_info -> thm list ->
theory -> take_induct_info * theory
val map_of_typ :
theory -> (typ * term) list -> typ -> term
val add_rec_type : (string * bool list) -> theory -> theory
val get_rec_tab : theory -> (bool list) Symtab.table
val add_deflation_thm : thm -> theory -> theory
val get_deflation_thms : theory -> thm list
val map_ID_add : attribute
val get_map_ID_thms : theory -> thm list
end
structure Domain_Take_Proofs : DOMAIN_TAKE_PROOFS =
struct
type iso_info =
{
absT : typ,
repT : typ,
abs_const : term,
rep_const : term,
abs_inverse : thm,
rep_inverse : thm
}
type take_info =
{ take_consts : term list,
take_defs : thm list,
chain_take_thms : thm list,
take_0_thms : thm list,
take_Suc_thms : thm list,
deflation_take_thms : thm list,
take_strict_thms : thm list,
finite_consts : term list,
finite_defs : thm list
}
type take_induct_info =
{
take_consts : term list,
take_defs : thm list,
chain_take_thms : thm list,
take_0_thms : thm list,
take_Suc_thms : thm list,
deflation_take_thms : thm list,
take_strict_thms : thm list,
finite_consts : term list,
finite_defs : thm list,
lub_take_thms : thm list,
reach_thms : thm list,
take_lemma_thms : thm list,
is_finite : bool,
take_induct_thms : thm list
}
val beta_ss =
simpset_of (put_simpset HOL_basic_ss \<^context>
addsimps @{thms simp_thms} addsimprocs [\<^simproc>‹beta_cfun_proc›])
structure Rec_Data = Theory_Data
(
type T = (bool list) Symtab.table
val empty = Symtab.empty
fun merge data = Symtab.merge (K true) data
)
fun add_rec_type (tname, bs) =
Rec_Data.map (Symtab.insert (K true) (tname, bs))
fun add_deflation_thm thm =
Context.theory_map (Named_Theorems.add_thm \<^named_theorems>‹domain_deflation› thm)
val get_rec_tab = Rec_Data.get
fun get_deflation_thms thy =
rev (Named_Theorems.get (Proof_Context.init_global thy) \<^named_theorems>‹domain_deflation›)
val map_ID_add = Named_Theorems.add \<^named_theorems>‹domain_map_ID›
fun get_map_ID_thms thy =
rev (Named_Theorems.get (Proof_Context.init_global thy) \<^named_theorems>‹domain_map_ID›)
open HOLCF_Library
infixr 6 ->>
infix -->>
infix 9 `
fun mk_deflation t =
let val T = #1 (dest_cfunT (Term.fastype_of t))
in \<^Const>‹deflation T for t› end
fun mk_eqs (t, u) = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u))
fun deflation_abs_rep (info : iso_info) : thm =
let
val abs_iso = #abs_inverse info
val rep_iso = #rep_inverse info
val thm = @{thm deflation_abs_rep} OF [abs_iso, rep_iso]
in
Drule.zero_var_indexes thm
end
fun map_of_typ (thy : theory) (sub : (typ * term) list) (T : typ) : term =
let
val thms = get_map_ID_thms thy
val rules = map (Thm.concl_of #> HOLogic.dest_Trueprop #> HOLogic.dest_eq) thms
val rules' = map (apfst mk_ID) sub @ map swap rules
in
mk_ID T
|> Pattern.rewrite_term thy rules' []
|> Pattern.rewrite_term thy rules []
end
fun add_qualified_def name (dbind, eqn) =
Global_Theory.add_def (Binding.qualify_name true dbind name, eqn)
fun add_qualified_thm name (dbind, thm) =
yield_singleton Global_Theory.add_thms
((Binding.qualify_name true dbind name, thm), [])
fun add_qualified_simp_thm name (dbind, thm) =
yield_singleton Global_Theory.add_thms
((Binding.qualify_name true dbind name, thm), [Simplifier.simp_add])
fun define_take_functions
(spec : (binding * iso_info) list)
(thy : theory) =
let
val dbinds = map fst spec
val iso_infos = map snd spec
val dom_eqns = map (fn x => (#absT x, #repT x)) iso_infos
val rep_abs_consts = map (fn x => (#rep_const x, #abs_const x)) iso_infos
fun mk_projs [] _ = []
| mk_projs (x::[]) t = [(x, t)]
| mk_projs (x::xs) t = (x, mk_fst t) :: mk_projs xs (mk_snd t)
fun mk_cfcomp2 ((rep_const, abs_const), f) =
mk_cfcomp (abs_const, mk_cfcomp (f, rep_const))
val newTs : typ list = map fst dom_eqns
val copy_arg_type = mk_tupleT (map (fn T => T ->> T) newTs)
val copy_arg = Free ("f", copy_arg_type)
val copy_args = map snd (mk_projs dbinds copy_arg)
fun one_copy_rhs (rep_abs, (_, rhsT)) =
let
val body = map_of_typ thy (newTs ~~ copy_args) rhsT
in
mk_cfcomp2 (rep_abs, body)
end
val take_functional =
big_lambda copy_arg
(mk_tuple (map one_copy_rhs (rep_abs_consts ~~ dom_eqns)))
val take_rhss =
let
val n = Free ("n", \<^Type>‹nat›)
val rhs = mk_iterate (n, take_functional)
in
map (lambda n o snd) (mk_projs dbinds rhs)
end
fun define_take_const ((dbind, take_rhs), (lhsT, _)) thy =
let
val take_type = \<^Type>‹nat› --> lhsT ->> lhsT
val take_bind = Binding.suffix_name "_take" dbind
val (take_const, thy) =
Sign.declare_const_global ((take_bind, take_type), NoSyn) thy
val take_eqn = Logic.mk_equals (take_const, take_rhs)
val (take_def_thm, thy) =
add_qualified_def "take_def" (dbind, take_eqn) thy
in ((take_const, take_def_thm), thy) end
val ((take_consts, take_defs), thy) = thy
|> fold_map define_take_const (dbinds ~~ take_rhss ~~ dom_eqns)
|>> ListPair.unzip
fun prove_chain_take (take_const, dbind) thy =
let
val goal = mk_trp (mk_chain take_const)
val rules = take_defs @ @{thms chain_iterate ch2ch_fst ch2ch_snd}
fun tac ctxt = simp_tac (put_simpset HOL_basic_ss ctxt addsimps rules) 1
val thm = Goal.prove_global thy [] [] goal (tac o #context)
in
add_qualified_simp_thm "chain_take" (dbind, thm) thy
end
val (chain_take_thms, thy) =
fold_map prove_chain_take (take_consts ~~ dbinds) thy
fun prove_take_0 ((take_const, dbind), (lhsT, _)) thy =
let
val lhs = take_const $ \<^term>‹0::nat›
val goal = mk_eqs (lhs, mk_bottom (lhsT ->> lhsT))
val rules = take_defs @ @{thms iterate_0 fst_strict snd_strict}
fun tac ctxt = simp_tac (put_simpset HOL_basic_ss ctxt addsimps rules) 1
val take_0_thm = Goal.prove_global thy [] [] goal (tac o #context)
in
add_qualified_simp_thm "take_0" (dbind, take_0_thm) thy
end
val (take_0_thms, thy) =
fold_map prove_take_0 (take_consts ~~ dbinds ~~ dom_eqns) thy
val n = Free ("n", \<^Type>‹nat›)
val take_is = map (fn t => t $ n) take_consts
fun prove_take_Suc
(((take_const, rep_abs), dbind), (_, rhsT)) thy =
let
val lhs = take_const $ (\<^term>‹Suc› $ n)
val body = map_of_typ thy (newTs ~~ take_is) rhsT
val rhs = mk_cfcomp2 (rep_abs, body)
val goal = mk_eqs (lhs, rhs)
val simps = @{thms iterate_Suc fst_conv snd_conv}
val rules = take_defs @ simps
fun tac ctxt = simp_tac (put_simpset beta_ss ctxt addsimps rules) 1
val take_Suc_thm = Goal.prove_global thy [] [] goal (tac o #context)
in
add_qualified_thm "take_Suc" (dbind, take_Suc_thm) thy
end
val (take_Suc_thms, thy) =
fold_map prove_take_Suc
(take_consts ~~ rep_abs_consts ~~ dbinds ~~ dom_eqns) thy
val deflation_abs_rep_thms = map deflation_abs_rep iso_infos
val deflation_take_thm =
let
val n = Free ("n", \<^Type>‹nat›)
fun mk_goal take_const = mk_deflation (take_const $ n)
val goal = mk_trp (foldr1 mk_conj (map mk_goal take_consts))
val bottom_rules =
take_0_thms @ @{thms deflation_bottom simp_thms}
val deflation_rules =
@{thms conjI deflation_ID}
@ deflation_abs_rep_thms
@ get_deflation_thms thy
in
Goal.prove_global thy [] [] goal (fn {context = ctxt, ...} =>
EVERY
[resolve_tac ctxt @{thms nat.induct} 1,
simp_tac (put_simpset HOL_basic_ss ctxt addsimps bottom_rules) 1,
asm_simp_tac (put_simpset HOL_basic_ss ctxt addsimps take_Suc_thms) 1,
REPEAT (eresolve_tac ctxt @{thms conjE} 1
ORELSE resolve_tac ctxt deflation_rules 1
ORELSE assume_tac ctxt 1)])
end
fun conjuncts [] _ = []
| conjuncts (n::[]) thm = [(n, thm)]
| conjuncts (n::ns) thm = let
val thmL = thm RS @{thm conjunct1}
val thmR = thm RS @{thm conjunct2}
in (n, thmL):: conjuncts ns thmR end
val (deflation_take_thms, thy) =
fold_map (add_qualified_thm "deflation_take")
(map (apsnd Drule.zero_var_indexes)
(conjuncts dbinds deflation_take_thm)) thy
fun prove_take_strict (deflation_take, dbind) thy =
let
val take_strict_thm =
Drule.zero_var_indexes
(@{thm deflation_strict} OF [deflation_take])
in
add_qualified_simp_thm "take_strict" (dbind, take_strict_thm) thy
end
val (take_strict_thms, thy) =
fold_map prove_take_strict
(deflation_take_thms ~~ dbinds) thy
fun prove_take_take ((chain_take, deflation_take), dbind) thy =
let
val take_take_thm =
Drule.zero_var_indexes
(@{thm deflation_chain_min} OF [chain_take, deflation_take])
in
add_qualified_thm "take_take" (dbind, take_take_thm) thy
end
val (_, thy) =
fold_map prove_take_take
(chain_take_thms ~~ deflation_take_thms ~~ dbinds) thy
fun prove_take_below (deflation_take, dbind) thy =
let
val take_below_thm =
Drule.zero_var_indexes
(@{thm deflation.below} OF [deflation_take])
in
add_qualified_thm "take_below" (dbind, take_below_thm) thy
end
val (_, thy) =
fold_map prove_take_below
(deflation_take_thms ~~ dbinds) thy
fun define_finite_const ((dbind, take_const), (lhsT, _)) thy =
let
val finite_type = lhsT --> \<^Type>‹bool›
val finite_bind = Binding.suffix_name "_finite" dbind
val (finite_const, thy) =
Sign.declare_const_global ((finite_bind, finite_type), NoSyn) thy
val x = Free ("x", lhsT)
val n = Free ("n", \<^Type>‹nat›)
val finite_rhs =
lambda x (HOLogic.exists_const \<^Type>‹nat› $
(lambda n (mk_eq (mk_capply (take_const $ n, x), x))))
val finite_eqn = Logic.mk_equals (finite_const, finite_rhs)
val (finite_def_thm, thy) =
add_qualified_def "finite_def" (dbind, finite_eqn) thy
in ((finite_const, finite_def_thm), thy) end
val ((finite_consts, finite_defs), thy) = thy
|> fold_map define_finite_const (dbinds ~~ take_consts ~~ dom_eqns)
|>> ListPair.unzip
val result =
{
take_consts = take_consts,
take_defs = take_defs,
chain_take_thms = chain_take_thms,
take_0_thms = take_0_thms,
take_Suc_thms = take_Suc_thms,
deflation_take_thms = deflation_take_thms,
take_strict_thms = take_strict_thms,
finite_consts = finite_consts,
finite_defs = finite_defs
}
in
(result, thy)
end
fun prove_finite_take_induct
(spec : (binding * iso_info) list)
(take_info : take_info)
(lub_take_thms : thm list)
(thy : theory) =
let
val dbinds = map fst spec
val iso_infos = map snd spec
val absTs = map #absT iso_infos
val {take_consts, ...} = take_info
val {chain_take_thms, take_0_thms, take_Suc_thms, ...} = take_info
val {finite_consts, finite_defs, ...} = take_info
val decisive_lemma =
let
fun iso_locale (info : iso_info) =
@{thm iso.intro} OF [#abs_inverse info, #rep_inverse info]
val iso_locale_thms = map iso_locale iso_infos
val decisive_abs_rep_thms =
map (fn x => @{thm decisive_abs_rep} OF [x]) iso_locale_thms
val n = Free ("n", \<^typ>‹nat›)
fun mk_decisive t =
let val T = #1 (dest_cfunT (fastype_of t))
in \<^Const>‹decisive T for t› end
fun f take_const = mk_decisive (take_const $ n)
val goal = mk_trp (foldr1 mk_conj (map f take_consts))
val rules0 = @{thm decisive_bottom} :: take_0_thms
val rules1 =
take_Suc_thms @ decisive_abs_rep_thms
@ @{thms decisive_ID decisive_ssum_map decisive_sprod_map}
fun tac ctxt = EVERY [
resolve_tac ctxt @{thms nat.induct} 1,
simp_tac (put_simpset HOL_ss ctxt addsimps rules0) 1,
asm_simp_tac (put_simpset HOL_ss ctxt addsimps rules1) 1]
in Goal.prove_global thy [] [] goal (tac o #context) end
fun conjuncts 1 thm = [thm]
| conjuncts n thm = let
val thmL = thm RS @{thm conjunct1}
val thmR = thm RS @{thm conjunct2}
in thmL :: conjuncts (n-1) thmR end
val decisive_thms = conjuncts (length spec) decisive_lemma
fun prove_finite_thm (absT, finite_const) =
let
val goal = mk_trp (finite_const $ Free ("x", absT))
fun tac ctxt =
EVERY [
rewrite_goals_tac ctxt finite_defs,
resolve_tac ctxt @{thms lub_ID_finite} 1,
resolve_tac ctxt chain_take_thms 1,
resolve_tac ctxt lub_take_thms 1,
resolve_tac ctxt decisive_thms 1]
in
Goal.prove_global thy [] [] goal (tac o #context)
end
val finite_thms =
map prove_finite_thm (absTs ~~ finite_consts)
fun prove_take_induct ((ch_take, lub_take), decisive) =
Drule.export_without_context
(@{thm lub_ID_finite_take_induct} OF [ch_take, lub_take, decisive])
val take_induct_thms =
map prove_take_induct
(chain_take_thms ~~ lub_take_thms ~~ decisive_thms)
val thy = thy
|> fold (snd oo add_qualified_thm "finite")
(dbinds ~~ finite_thms)
|> fold (snd oo add_qualified_thm "take_induct")
(dbinds ~~ take_induct_thms)
in
((finite_thms, take_induct_thms), thy)
end
fun add_lub_take_theorems
(spec : (binding * iso_info) list)
(take_info : take_info)
(lub_take_thms : thm list)
(thy : theory) =
let
val dbinds = map fst spec
val iso_infos = map snd spec
val absTs = map #absT iso_infos
val repTs = map #repT iso_infos
val {chain_take_thms, ...} = take_info
fun prove_take_lemma ((chain_take, lub_take), dbind) thy =
let
val take_lemma =
Drule.export_without_context
(@{thm lub_ID_take_lemma} OF [chain_take, lub_take])
in
add_qualified_thm "take_lemma" (dbind, take_lemma) thy
end
val (take_lemma_thms, thy) =
fold_map prove_take_lemma
(chain_take_thms ~~ lub_take_thms ~~ dbinds) thy
fun prove_reach_lemma ((chain_take, lub_take), dbind) thy =
let
val thm =
Drule.export_without_context
(@{thm lub_ID_reach} OF [chain_take, lub_take])
in
add_qualified_thm "reach" (dbind, thm) thy
end
val (reach_thms, thy) =
fold_map prove_reach_lemma
(chain_take_thms ~~ lub_take_thms ~~ dbinds) thy
local
val types = [\<^type_name>‹ssum›, \<^type_name>‹sprod›]
fun finite d T = if member (op =) absTs T then d else finite' d T
and finite' d (Type (c, Ts)) =
let val d' = d andalso member (op =) types c
in forall (finite d') Ts end
| finite' _ _ = true
in
val is_finite = forall (finite true) repTs
end
val ((_, take_induct_thms), thy) =
if is_finite
then
let
val ((finites, take_inducts), thy) =
prove_finite_take_induct spec take_info lub_take_thms thy
in
((SOME finites, take_inducts), thy)
end
else
let
fun prove_take_induct (chain_take, lub_take) =
Drule.export_without_context
(@{thm lub_ID_take_induct} OF [chain_take, lub_take])
val take_inducts =
map prove_take_induct (chain_take_thms ~~ lub_take_thms)
val thy = fold (snd oo add_qualified_thm "take_induct")
(dbinds ~~ take_inducts) thy
in
((NONE, take_inducts), thy)
end
val result =
{
take_consts = #take_consts take_info,
take_defs = #take_defs take_info,
chain_take_thms = #chain_take_thms take_info,
take_0_thms = #take_0_thms take_info,
take_Suc_thms = #take_Suc_thms take_info,
deflation_take_thms = #deflation_take_thms take_info,
take_strict_thms = #take_strict_thms take_info,
finite_consts = #finite_consts take_info,
finite_defs = #finite_defs take_info,
lub_take_thms = lub_take_thms,
reach_thms = reach_thms,
take_lemma_thms = take_lemma_thms,
is_finite = is_finite,
take_induct_thms = take_induct_thms
}
in
(result, thy)
end
end