
IMP in HOLCF

Tobias Nipkow and Robert Sandner

January 18, 2026

Contents
1 Denotational Semantics of Commands in HOLCF 1

1.1 Definition . 1
1.2 Equivalence of Denotational Semantics in HOLCF and Evaluation Se-

mantics in HOL . 1

2 Correctness of Hoare by Fixpoint Reasoning 2

1 Denotational Semantics of Commands in HOLCF
theory Denotational imports HOLCF "HOL-IMP.Big_Step" begin

1.1 Definition
definition

dlift :: "((’a::type) discr -> ’b::pcpo) => (’a lift -> ’b)" where
"dlift f = (LAM x. case x of UU ⇒ UU | Def y ⇒ f ·(Discr y))"

primrec D :: "com ⇒ state discr → state lift"
where

"D(SKIP) = (LAM s. Def(undiscr s))"
| "D(X ::= a) = (LAM s. Def((undiscr s)(X := aval a (undiscr s))))"
| "D(c0 ;; c1) = (dlift(D c1) oo (D c0))"
| "D(IF b THEN c1 ELSE c2) =

(LAM s. if bval b (undiscr s) then (D c1)·s else (D c2)·s)"
| "D(WHILE b DO c) =

fix ·(LAM w s. if bval b (undiscr s) then (dlift w)·((D c)·s)
else Def(undiscr s))"

1.2 Equivalence of Denotational Semantics in HOLCF and Evaluation
Semantics in HOL

lemma dlift_Def [simp]: "dlift f ·(Def x) = f ·(Discr x)"
by (simp add: dlift_def)

1

lemma cont_dlift [iff]: "cont (%f. dlift f)"
by (simp add: dlift_def)

lemma dlift_is_Def [simp]:
"(dlift f ·l = Def y) = (∃ x. l = Def x ∧ f ·(Discr x) = Def y)"

by (simp add: dlift_def split: lift.split)

lemma eval_implies_D: "(c,s) ⇒ t =⇒ D c ·(Discr s) = (Def t)"
apply (induct rule: big_step_induct)

apply (auto)
apply (subst fix_eq)
apply simp

apply (subst fix_eq)
apply simp
done

lemma D_implies_eval: "∀ s t. D c ·(Discr s) = (Def t) −→ (c,s) ⇒ t"
apply (induct c)

apply fastforce
apply fastforce

apply force
apply (simp (no_asm))
apply force

apply (simp (no_asm))
apply (rule fix_ind)

apply (fast intro!: adm_lemmas adm_chfindom ax_flat)
apply (simp (no_asm))

apply (simp (no_asm))
apply force
done

theorem D_is_eval: "(D c ·(Discr s) = (Def t)) = ((c,s) ⇒ t)"
by (fast elim!: D_implies_eval [rule_format] eval_implies_D)

end

2 Correctness of Hoare by Fixpoint Reasoning
theory HoareEx imports Denotational begin

An example from the HOLCF paper by Müller, Nipkow, Oheimb, Slotosch [1]. It demon-
strates fixpoint reasoning by showing the correctness of the Hoare rule for while-loops.
type_synonym assn = "state ⇒ bool"

definition
hoare_valid :: "[assn, com, assn] ⇒ bool" (‹|= {(1_)}/ (_)/ {(1_)}› 50) where
"|= {P} c {Q} = (∀ s t. P s ∧ D c ·(Discr s) = Def t −→ Q t)"

lemma WHILE_rule_sound:

2

"|= {A} c {A} =⇒ |= {A} WHILE b DO c {λs. A s ∧ ¬ bval b s}"
apply (unfold hoare_valid_def)
apply (simp (no_asm))
apply (rule fix_ind)

apply (simp (no_asm)) — simplifier with enhanced adm -tactic
apply (simp (no_asm))

apply (simp (no_asm))
apply blast
done

end

References

[1] O. Müller, T. Nipkow, D. v. Oheimb, and O. Slotosch. HOLCF = HOL + LCF. J.
Functional Programming, 9:191–223, 1999.

3

	Denotational Semantics of Commands in HOLCF
	Definition
	Equivalence of Denotational Semantics in HOLCF and Evaluation Semantics in HOL

	Correctness of Hoare by Fixpoint Reasoning

