File ‹Tools/record.ML›
signature RECORD =
sig
val type_abbr: bool Config.T
val type_as_fields: bool Config.T
val timing: bool Config.T
type info =
{args: (string * sort) list,
parent: (typ list * string) option,
fields: (string * typ) list,
extension: (string * typ list),
ext_induct: thm, ext_inject: thm, ext_surjective: thm, ext_split: thm, ext_def: thm,
select_convs: thm list, update_convs: thm list, select_defs: thm list, update_defs: thm list,
fold_congs: thm list, unfold_congs: thm list, splits: thm list, defs: thm list,
surjective: thm, equality: thm, induct_scheme: thm, induct: thm, cases_scheme: thm,
cases: thm, simps: thm list, iffs: thm list}
val get_info: theory -> string -> info option
val the_info: theory -> string -> info
val get_hierarchy: theory -> (string * typ list) -> (string * ((string * sort) * typ) list) list
val add_record: {overloaded: bool} -> (string * sort) list * binding ->
(typ list * string) option -> (binding * typ * mixfix) list -> theory -> theory
val last_extT: typ -> (string * typ list) option
val dest_recTs: typ -> (string * typ list) list
val get_extT_fields: theory -> typ -> (string * typ) list * (string * typ)
val get_recT_fields: theory -> typ -> (string * typ) list * (string * typ)
val get_parent: theory -> string -> (typ list * string) option
val get_extension: theory -> string -> (string * typ list) option
val get_extinjects: theory -> thm list
val get_simpset: theory -> simpset
val simproc: simproc
val eq_simproc: simproc
val upd_simproc: simproc
val split_simproc: (term -> int) -> simproc
val ex_sel_eq_simproc: simproc
val split_tac: Proof.context -> int -> tactic
val split_simp_tac: Proof.context -> thm list -> (term -> int) -> int -> tactic
val split_wrapper: string * (Proof.context -> wrapper)
val pretty_recT: Proof.context -> typ -> Pretty.T
val string_of_record: Proof.context -> string -> string
val codegen: bool Config.T
val sort_updates: bool Config.T
val updateN: string
val ext_typeN: string
val extN: string
end;
signature ISO_TUPLE_SUPPORT =
sig
val add_iso_tuple_type: {overloaded: bool} -> binding * (string * sort) list ->
typ * typ -> theory -> (term * term) * theory
val mk_cons_tuple: term * term -> term
val dest_cons_tuple: term -> term * term
val iso_tuple_intros_tac: Proof.context -> int -> tactic
end;
structure Iso_Tuple_Support: ISO_TUPLE_SUPPORT =
struct
val isoN = "_Tuple_Iso";
val iso_tuple_intro = @{thm isomorphic_tuple_intro};
val iso_tuple_intros = Tactic.build_net @{thms isomorphic_tuple.intros};
val tuple_iso_tuple = (\<^const_name>‹Record.tuple_iso_tuple›, @{thm tuple_iso_tuple});
structure Iso_Tuple_Thms = Theory_Data
(
type T = thm Symtab.table;
val empty = Symtab.make [tuple_iso_tuple];
fun merge data = Symtab.merge Thm.eq_thm_prop data;
);
fun get_typedef_info tyco vs
(({rep_type, Abs_name, ...}, {Rep_inject, Abs_inverse, ... }) : Typedef.info) thy =
let
val exists_thm =
UNIV_I
|> Thm.instantiate' [SOME (Thm.global_ctyp_of thy (Logic.varifyT_global rep_type))] [];
val proj_constr = Abs_inverse OF [exists_thm];
val absT = Type (tyco, map TFree vs);
in
thy
|> pair (tyco, ((Rep_inject, proj_constr), Const (Abs_name, rep_type --> absT), absT))
end
fun do_typedef overloaded raw_tyco repT raw_vs thy =
let
val ctxt = Proof_Context.init_global thy |> Variable.declare_typ repT;
val vs = map (Proof_Context.check_tfree ctxt) raw_vs;
in
thy
|> Named_Target.theory_map_result (apsnd o Typedef.transform_info)
(Typedef.add_typedef overloaded (raw_tyco, vs, NoSyn)
(HOLogic.mk_UNIV repT) NONE (fn ctxt' => resolve_tac ctxt' [UNIV_witness] 1))
|-> (fn (tyco, info) => get_typedef_info tyco vs info)
end;
fun mk_cons_tuple (t, u) =
let val (A, B) = apply2 fastype_of (t, u)
in \<^Const>‹iso_tuple_cons \<^Type>‹prod A B› A B for \<^Const>‹tuple_iso_tuple A B› t u› end;
fun dest_cons_tuple \<^Const_>‹iso_tuple_cons _ _ _ for ‹Const _› t u› = (t, u)
| dest_cons_tuple t = raise TERM ("dest_cons_tuple", [t]);
fun add_iso_tuple_type overloaded (b, alphas) (leftT, rightT) thy =
let
val repT = HOLogic.mk_prodT (leftT, rightT);
val ((_, ((rep_inject, abs_inverse), absC, absT)), typ_thy) =
thy
|> do_typedef overloaded b repT alphas
||> Sign.add_path (Binding.name_of b);
val typ_ctxt = Proof_Context.init_global typ_thy;
val intro_inst =
rep_inject RS
infer_instantiate typ_ctxt
[(("abst", 0), Thm.cterm_of typ_ctxt absC)] iso_tuple_intro;
val (_, body) = Logic.dest_equals (List.last (Thm.prems_of intro_inst));
val isomT = fastype_of body;
val isom_binding = Binding.suffix_name isoN b;
val isom_name = Sign.full_name typ_thy isom_binding;
val isom = Const (isom_name, isomT);
val (isom_def, cdef_thy) =
typ_thy
|> Sign.declare_const_global ((isom_binding, isomT), NoSyn) |> snd
|> Global_Theory.add_def
(Binding.concealed (Thm.def_binding isom_binding), Logic.mk_equals (isom, body))
val iso_tuple = isom_def RS (abs_inverse RS (rep_inject RS iso_tuple_intro));
val cons = \<^Const>‹iso_tuple_cons absT leftT rightT›;
val thm_thy =
cdef_thy
|> Iso_Tuple_Thms.map (Symtab.insert Thm.eq_thm_prop (isom_name, iso_tuple))
|> Sign.restore_naming thy
in
((isom, cons $ isom), thm_thy)
end;
fun iso_tuple_intros_tac ctxt =
resolve_from_net_tac ctxt iso_tuple_intros THEN'
CSUBGOAL (fn (cgoal, i) =>
let
val goal = Thm.term_of cgoal;
val isthms = Iso_Tuple_Thms.get (Proof_Context.theory_of ctxt);
fun err s t = raise TERM ("iso_tuple_intros_tac: " ^ s, [t]);
val goal' = Envir.beta_eta_contract goal;
val is =
(case goal' of
\<^Const_>‹Trueprop for \<^Const>‹isomorphic_tuple _ _ _ for ‹Const is››› => is
| _ => err "unexpected goal format" goal');
val isthm =
(case Symtab.lookup isthms (#1 is) of
SOME isthm => isthm
| NONE => err "no thm found for constant" (Const is));
in resolve_tac ctxt [isthm] i end);
end;
structure Record: RECORD =
struct
val surject_assistI = @{thm iso_tuple_surjective_proof_assistI};
val surject_assist_idE = @{thm iso_tuple_surjective_proof_assist_idE};
val updacc_accessor_eqE = @{thm update_accessor_accessor_eqE};
val updacc_updator_eqE = @{thm update_accessor_updator_eqE};
val updacc_eq_idI = @{thm iso_tuple_update_accessor_eq_assist_idI};
val updacc_eq_triv = @{thm iso_tuple_update_accessor_eq_assist_triv};
val updacc_foldE = @{thm update_accessor_congruence_foldE};
val updacc_unfoldE = @{thm update_accessor_congruence_unfoldE};
val updacc_noopE = @{thm update_accessor_noopE};
val updacc_noop_compE = @{thm update_accessor_noop_compE};
val updacc_cong_idI = @{thm update_accessor_cong_assist_idI};
val updacc_cong_triv = @{thm update_accessor_cong_assist_triv};
val updacc_cong_from_eq = @{thm iso_tuple_update_accessor_cong_from_eq};
val codegen = Attrib.setup_config_bool \<^binding>‹record_codegen› (K true);
val sort_updates = Attrib.setup_config_bool \<^binding>‹record_sort_updates› (K false);
val rN = "r";
val wN = "w";
val moreN = "more";
val schemeN = "_scheme";
val ext_typeN = "_ext";
val inner_typeN = "_inner";
val extN ="_ext";
val updateN = "_update";
val makeN = "make";
val fields_selN = "fields";
val extendN = "extend";
val truncateN = "truncate";
fun varifyT idx = map_type_tfree (fn (a, S) => TVar ((a, idx), S));
val timing = Attrib.setup_config_bool \<^binding>‹record_timing› (K false);
fun timeit_msg ctxt s x = if Config.get ctxt timing then (warning s; timeit x) else x ();
fun timing_msg ctxt s = if Config.get ctxt timing then warning s else ();
val Trueprop = HOLogic.mk_Trueprop;
infix 0 :== ===;
infixr 0 ==>;
val op :== = Misc_Legacy.mk_defpair;
val op === = Trueprop o HOLogic.mk_eq;
val op ==> = Logic.mk_implies;
fun mk_ext (name, T) ts =
let val Ts = map fastype_of ts
in list_comb (Const (suffix extN name, Ts ---> T), ts) end;
fun mk_selC sT (c, T) = (c, sT --> T);
fun mk_sel s (c, T) =
let val sT = fastype_of s
in Const (mk_selC sT (c, T)) $ s end;
fun mk_updC sfx sT (c, T) = (suffix sfx c, (T --> T) --> sT --> sT);
fun mk_upd' sfx c v sT =
let val vT = domain_type (fastype_of v);
in Const (mk_updC sfx sT (c, vT)) $ v end;
fun mk_upd sfx c v s = mk_upd' sfx c v (fastype_of s) $ s;
fun dest_recT (typ as Type (c_ext_type, Ts as (_ :: _))) =
(case try (unsuffix ext_typeN) c_ext_type of
NONE => raise TYPE ("Record.dest_recT", [typ], [])
| SOME c => ((c, Ts), List.last Ts))
| dest_recT typ = raise TYPE ("Record.dest_recT", [typ], []);
val is_recT = can dest_recT;
fun dest_recTs T =
let val ((c, Ts), U) = dest_recT T
in (c, Ts) :: dest_recTs U
end handle TYPE _ => [];
fun last_extT T =
let val ((c, Ts), U) = dest_recT T in
(case last_extT U of
NONE => SOME (c, Ts)
| SOME l => SOME l)
end handle TYPE _ => NONE;
fun rec_id i T =
let
val rTs = dest_recTs T;
val rTs' = if i < 0 then rTs else take i rTs;
in implode (map #1 rTs') end;
type info =
{args: (string * sort) list,
parent: (typ list * string) option,
fields: (string * typ) list,
extension: (string * typ list),
ext_induct: thm,
ext_inject: thm,
ext_surjective: thm,
ext_split: thm,
ext_def: thm,
select_convs: thm list,
update_convs: thm list,
select_defs: thm list,
update_defs: thm list,
fold_congs: thm list,
unfold_congs: thm list,
splits: thm list,
defs: thm list,
surjective: thm,
equality: thm,
induct_scheme: thm,
induct: thm,
cases_scheme: thm,
cases: thm,
simps: thm list,
iffs: thm list};
fun make_info args parent fields extension
ext_induct ext_inject ext_surjective ext_split ext_def
select_convs update_convs select_defs update_defs fold_congs unfold_congs splits defs
surjective equality induct_scheme induct cases_scheme cases
simps iffs : info =
{args = args, parent = parent, fields = fields, extension = extension,
ext_induct = ext_induct, ext_inject = ext_inject, ext_surjective = ext_surjective,
ext_split = ext_split, ext_def = ext_def, select_convs = select_convs,
update_convs = update_convs, select_defs = select_defs, update_defs = update_defs,
fold_congs = fold_congs, unfold_congs = unfold_congs, splits = splits, defs = defs,
surjective = surjective, equality = equality, induct_scheme = induct_scheme,
induct = induct, cases_scheme = cases_scheme, cases = cases, simps = simps, iffs = iffs};
type parent_info =
{name: string,
fields: (string * typ) list,
extension: (string * typ list),
induct_scheme: thm,
ext_def: thm};
fun make_parent_info name fields extension ext_def induct_scheme : parent_info =
{name = name, fields = fields, extension = extension,
ext_def = ext_def, induct_scheme = induct_scheme};
type data =
{records: info Symtab.table,
sel_upd:
{selectors: (int * bool) Symtab.table,
updates: string Symtab.table,
simpset: simpset,
defset: simpset},
equalities: thm Symtab.table,
extinjects: thm list,
extsplit: thm Symtab.table,
splits: (thm * thm * thm * thm) Symtab.table,
extfields: (string * typ) list Symtab.table,
fieldext: (string * typ list) Symtab.table};
fun make_data
records sel_upd equalities extinjects extsplit splits extfields fieldext =
{records = records, sel_upd = sel_upd,
equalities = equalities, extinjects=extinjects, extsplit = extsplit, splits = splits,
extfields = extfields, fieldext = fieldext }: data;
structure Data = Theory_Data
(
type T = data;
val empty =
make_data Symtab.empty
{selectors = Symtab.empty, updates = Symtab.empty,
simpset = HOL_basic_ss, defset = HOL_basic_ss}
Symtab.empty [] Symtab.empty Symtab.empty Symtab.empty Symtab.empty;
fun merge
({records = recs1,
sel_upd = {selectors = sels1, updates = upds1, simpset = ss1, defset = ds1},
equalities = equalities1,
extinjects = extinjects1,
extsplit = extsplit1,
splits = splits1,
extfields = extfields1,
fieldext = fieldext1},
{records = recs2,
sel_upd = {selectors = sels2, updates = upds2, simpset = ss2, defset = ds2},
equalities = equalities2,
extinjects = extinjects2,
extsplit = extsplit2,
splits = splits2,
extfields = extfields2,
fieldext = fieldext2}) =
make_data
(Symtab.merge (K true) (recs1, recs2))
{selectors = Symtab.merge (K true) (sels1, sels2),
updates = Symtab.merge (K true) (upds1, upds2),
simpset = Simplifier.merge_ss (ss1, ss2),
defset = Simplifier.merge_ss (ds1, ds2)}
(Symtab.merge Thm.eq_thm_prop (equalities1, equalities2))
(Thm.merge_thms (extinjects1, extinjects2))
(Symtab.merge Thm.eq_thm_prop (extsplit1, extsplit2))
(Symtab.merge (fn ((a, b, c, d), (w, x, y, z)) =>
Thm.eq_thm (a, w) andalso Thm.eq_thm (b, x) andalso
Thm.eq_thm (c, y) andalso Thm.eq_thm (d, z)) (splits1, splits2))
(Symtab.merge (K true) (extfields1, extfields2))
(Symtab.merge (K true) (fieldext1, fieldext2));
);
val get_info = Symtab.lookup o #records o Data.get;
fun the_info thy name =
(case get_info thy name of
SOME info => info
| NONE => error ("Unknown record type " ^ quote name));
fun put_record name info =
Data.map (fn {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =>
make_data (Symtab.update (name, info) records)
sel_upd equalities extinjects extsplit splits extfields fieldext);
val get_sel_upd = #sel_upd o Data.get;
val is_selector = Symtab.defined o #selectors o get_sel_upd;
val get_updates = Symtab.lookup o #updates o get_sel_upd;
val get_simpset = #simpset o get_sel_upd;
val get_sel_upd_defs = #defset o get_sel_upd;
fun get_update_details u thy =
let val sel_upd = get_sel_upd thy in
(case Symtab.lookup (#updates sel_upd) u of
SOME s =>
let val SOME (dep, ismore) = Symtab.lookup (#selectors sel_upd) s
in SOME (s, dep, ismore) end
| NONE => NONE)
end;
fun put_sel_upd names more depth simps defs thy =
let
val ctxt0 = Proof_Context.init_global thy;
val all = names @ [more];
val sels = map (rpair (depth, false)) names @ [(more, (depth, true))];
val upds = map (suffix updateN) all ~~ all;
val {records, sel_upd = {selectors, updates, simpset, defset},
equalities, extinjects, extsplit, splits, extfields, fieldext} = Data.get thy;
val data =
make_data records
{selectors = fold Symtab.update_new sels selectors,
updates = fold Symtab.update_new upds updates,
simpset = simpset_map ctxt0 (fn ctxt => ctxt addsimps simps) simpset,
defset = simpset_map ctxt0 (fn ctxt => ctxt addsimps defs) defset}
equalities extinjects extsplit splits extfields fieldext;
in Data.put data thy end;
fun add_equalities name thm =
Data.map (fn {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =>
make_data records sel_upd
(Symtab.update_new (name, thm) equalities) extinjects extsplit splits extfields fieldext);
val get_equalities = Symtab.lookup o #equalities o Data.get;
fun add_extinjects thm =
Data.map (fn {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =>
make_data records sel_upd equalities (insert Thm.eq_thm_prop thm extinjects)
extsplit splits extfields fieldext);
val get_extinjects = rev o #extinjects o Data.get;
fun add_extsplit name thm =
Data.map (fn {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =>
make_data records sel_upd equalities extinjects
(Symtab.update_new (name, thm) extsplit) splits extfields fieldext);
fun add_splits name thmP =
Data.map (fn {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =>
make_data records sel_upd equalities extinjects extsplit
(Symtab.update_new (name, thmP) splits) extfields fieldext);
val get_splits = Symtab.lookup o #splits o Data.get;
val get_parent = (Option.join o Option.map #parent) oo (Symtab.lookup o #records o Data.get);
val get_extension = Option.map #extension oo (Symtab.lookup o #records o Data.get);
fun add_extfields name fields =
Data.map (fn {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =>
make_data records sel_upd equalities extinjects extsplit splits
(Symtab.update_new (name, fields) extfields) fieldext);
val get_extfields = Symtab.lookup o #extfields o Data.get;
fun get_extT_fields thy T =
let
val ((name, Ts), moreT) = dest_recT T;
val recname =
let val (nm :: _ :: rst) = rev (Long_Name.explode name)
in Long_Name.implode (rev (nm :: rst)) end;
val varifyT = varifyT (maxidx_of_typs (moreT :: Ts) + 1);
val {records, extfields, ...} = Data.get thy;
val (fields, (more, _)) = split_last (Symtab.lookup_list extfields name);
val args = map varifyT (snd (#extension (the (Symtab.lookup records recname))));
val subst = fold (Sign.typ_match thy) (#1 (split_last args) ~~ #1 (split_last Ts)) Vartab.empty;
val fields' = map (apsnd (Envir.norm_type subst o varifyT)) fields;
in (fields', (more, moreT)) end;
fun get_recT_fields thy T =
let
val (root_fields, (root_more, root_moreT)) = get_extT_fields thy T;
val (rest_fields, rest_more) =
if is_recT root_moreT then get_recT_fields thy root_moreT
else ([], (root_more, root_moreT));
in (root_fields @ rest_fields, rest_more) end;
fun add_fieldext extname_types fields =
Data.map (fn {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =>
let
val fieldext' =
fold (fn field => Symtab.update_new (field, extname_types)) fields fieldext;
in make_data records sel_upd equalities extinjects extsplit splits extfields fieldext' end);
val get_fieldext = Symtab.lookup o #fieldext o Data.get;
local
fun add_parents _ NONE = I
| add_parents thy (SOME (types, name)) =
let
fun err msg = error (msg ^ " parent record " ^ quote name);
val {args, parent, ...} =
(case get_info thy name of SOME info => info | NONE => err "Unknown");
val _ = if length types <> length args then err "Bad number of arguments for" else ();
fun bad_inst ((x, S), T) =
if Sign.of_sort thy (T, S) then NONE else SOME x
val bads = map_filter bad_inst (args ~~ types);
val _ = null bads orelse err ("Ill-sorted instantiation of " ^ commas bads ^ " in");
val inst = args ~~ types;
val subst = Term.map_type_tfree (the o AList.lookup (op =) inst);
val parent' = Option.map (apfst (map subst)) parent;
in cons (name, inst) #> add_parents thy parent' end;
in
fun get_hierarchy thy (name, types) = add_parents thy (SOME (types, name)) [];
fun get_parent_info thy parent =
add_parents thy parent [] |> map (fn (name, inst) =>
let
val subst = Term.map_type_tfree (the o AList.lookup (op =) inst);
val {fields, extension, induct_scheme, ext_def, ...} = the_info thy name;
val fields' = map (apsnd subst) fields;
val extension' = apsnd (map subst) extension;
in make_parent_info name fields' extension' ext_def induct_scheme end);
end;
local
fun split_args (field :: fields) ((name, arg) :: fargs) =
if can (unsuffix name) field then
let val (args, rest) = split_args fields fargs
in (arg :: args, rest) end
else raise Fail ("expecting field " ^ quote field ^ " but got " ^ quote name)
| split_args [] (fargs as (_ :: _)) = ([], fargs)
| split_args (_ :: _) [] = raise Fail "expecting more fields"
| split_args _ _ = ([], []);
fun field_type_tr ((Const (\<^syntax_const>‹_field_type›, _) $ Const (name, _) $ arg)) =
(name, arg)
| field_type_tr t = raise TERM ("field_type_tr", [t]);
fun field_types_tr (Const (\<^syntax_const>‹_field_types›, _) $ t $ u) =
field_type_tr t :: field_types_tr u
| field_types_tr t = [field_type_tr t];
fun record_field_types_tr more ctxt t =
let
val thy = Proof_Context.theory_of ctxt;
fun err msg = raise TERM ("Error in record-type input: " ^ msg, [t]);
fun mk_ext (fargs as (name, _) :: _) =
(case get_fieldext thy (Proof_Context.intern_const ctxt name) of
SOME (ext, alphas) =>
(case get_extfields thy ext of
SOME fields =>
let
val (fields', _) = split_last fields;
val types = map snd fields';
val (args, rest) = split_args (map fst fields') fargs
handle Fail msg => err msg;
val argtypes = Syntax.check_typs ctxt (map Syntax_Phases.decode_typ args);
val varifyT = varifyT (fold Term.maxidx_typ argtypes ~1 + 1);
val vartypes = map varifyT types;
val subst = Type.raw_matches (vartypes, argtypes) Vartab.empty
handle Type.TYPE_MATCH => err "type is no proper record (extension)";
val alphas' =
map (Syntax_Phases.term_of_typ ctxt o Envir.norm_type subst o varifyT)
(#1 (split_last alphas));
val more' = mk_ext rest;
in
list_comb
(Syntax.const (Lexicon.mark_type (suffix ext_typeN ext)), alphas' @ [more'])
end
| NONE => err ("no fields defined for " ^ quote ext))
| NONE => err (quote name ^ " is no proper field"))
| mk_ext [] = more;
in
mk_ext (field_types_tr t)
end;
fun record_type_tr ctxt [t] = record_field_types_tr (Syntax.const \<^type_syntax>‹unit›) ctxt t
| record_type_tr _ ts = raise TERM ("record_type_tr", ts);
fun record_type_scheme_tr ctxt [t, more] = record_field_types_tr more ctxt t
| record_type_scheme_tr _ ts = raise TERM ("record_type_scheme_tr", ts);
fun field_tr ((Const (\<^syntax_const>‹_field›, _) $ Const (name, _) $ arg)) = (name, arg)
| field_tr t = raise TERM ("field_tr", [t]);
fun fields_tr (Const (\<^syntax_const>‹_fields›, _) $ t $ u) = field_tr t :: fields_tr u
| fields_tr t = [field_tr t];
fun record_fields_tr more ctxt t =
let
val thy = Proof_Context.theory_of ctxt;
fun err msg = raise TERM ("Error in record input: " ^ msg, [t]);
fun mk_ext (fargs as (name, _) :: _) =
(case get_fieldext thy (Proof_Context.intern_const ctxt name) of
SOME (ext, _) =>
(case get_extfields thy ext of
SOME fields =>
let
val (args, rest) = split_args (map fst (fst (split_last fields))) fargs
handle Fail msg => err msg;
val more' = mk_ext rest;
in list_comb (Syntax.const (Lexicon.mark_const (ext ^ extN)), args @ [more']) end
| NONE => err ("no fields defined for " ^ quote ext))
| NONE => err (quote name ^ " is no proper field"))
| mk_ext [] = more;
in mk_ext (fields_tr t) end;
fun record_tr ctxt [t] = record_fields_tr (Syntax.const \<^const_syntax>‹Unity›) ctxt t
| record_tr _ ts = raise TERM ("record_tr", ts);
fun record_scheme_tr ctxt [t, more] = record_fields_tr more ctxt t
| record_scheme_tr _ ts = raise TERM ("record_scheme_tr", ts);
fun field_update_tr (Const (\<^syntax_const>‹_field_update›, _) $ Const (name, _) $ arg) =
Syntax.const (suffix updateN name) $ Abs (Name.uu_, dummyT, arg)
| field_update_tr t = raise TERM ("field_update_tr", [t]);
fun field_updates_tr (Const (\<^syntax_const>‹_field_updates›, _) $ t $ u) =
field_update_tr t :: field_updates_tr u
| field_updates_tr t = [field_update_tr t];
fun record_update_tr [t, u] = fold (curry op $) (field_updates_tr u) t
| record_update_tr ts = raise TERM ("record_update_tr", ts);
in
val _ =
Theory.setup
(Sign.parse_translation
[(\<^syntax_const>‹_record_update›, K record_update_tr),
(\<^syntax_const>‹_record›, record_tr),
(\<^syntax_const>‹_record_scheme›, record_scheme_tr),
(\<^syntax_const>‹_record_type›, record_type_tr),
(\<^syntax_const>‹_record_type_scheme›, record_type_scheme_tr)]);
end;
val type_abbr = Attrib.setup_config_bool \<^binding>‹record_type_abbr› (K true);
val type_as_fields = Attrib.setup_config_bool \<^binding>‹record_type_as_fields› (K true);
local
fun field_type_tr' (c, t) = Syntax.const \<^syntax_const>‹_field_type› $ Syntax.const c $ t;
fun field_types_tr' (t, u) = Syntax.const \<^syntax_const>‹_field_types› $ t $ u;
fun record_type_tr' ctxt t =
let
val thy = Proof_Context.theory_of ctxt;
val T = Syntax_Phases.decode_typ t;
val varifyT = varifyT (Term.maxidx_of_typ T + 1);
fun strip_fields T =
(case T of
Type (ext, args as _ :: _) =>
(case try (unsuffix ext_typeN) ext of
SOME ext' =>
(case get_extfields thy ext' of
SOME (fields as (x, _) :: _) =>
(case get_fieldext thy x of
SOME (_, alphas) =>
(let
val (f :: fs, _) = split_last fields;
val fields' =
apfst (Proof_Context.extern_const ctxt) f ::
map (apfst Long_Name.base_name) fs;
val (args', more) = split_last args;
val alphavars = map varifyT (#1 (split_last alphas));
val subst = Type.raw_matches (alphavars, args') Vartab.empty;
val fields'' = (map o apsnd) (Envir.norm_type subst o varifyT) fields';
in fields'' @ strip_fields more end
handle Type.TYPE_MATCH => [("", T)])
| _ => [("", T)])
| _ => [("", T)])
| _ => [("", T)])
| _ => [("", T)]);
val (fields, (_, moreT)) = split_last (strip_fields T);
val _ = null fields andalso raise Match;
val u =
foldr1 field_types_tr'
(map (field_type_tr' o apsnd (Syntax_Phases.term_of_typ ctxt)) fields);
in
if not (Config.get ctxt type_as_fields) orelse null fields then raise Match
else if moreT = HOLogic.unitT then Syntax.const \<^syntax_const>‹_record_type› $ u
else
Syntax.const \<^syntax_const>‹_record_type_scheme› $ u $
Syntax_Phases.term_of_typ ctxt moreT
end;
fun record_type_abbr_tr' abbr alphas zeta last_ext schemeT ctxt tm =
let
val T = Syntax_Phases.decode_typ tm;
val varifyT = varifyT (maxidx_of_typ T + 1);
fun mk_type_abbr subst name args =
let val abbrT = Type (name, map (varifyT o TFree) args)
in Syntax_Phases.term_of_typ ctxt (Envir.norm_type subst abbrT) end;
fun match rT T = Type.raw_match (varifyT rT, T) Vartab.empty;
in
if Config.get ctxt type_abbr then
(case last_extT T of
SOME (name, _) =>
if name = last_ext then
let val subst = match schemeT T in
if HOLogic.is_unitT (Envir.norm_type subst (varifyT (TFree zeta)))
then mk_type_abbr subst abbr alphas
else mk_type_abbr subst (suffix schemeN abbr) (alphas @ [zeta])
end handle Type.TYPE_MATCH => record_type_tr' ctxt tm
else raise Match
| _ => raise Match)
else record_type_tr' ctxt tm
end;
in
fun record_ext_type_tr' name =
let
val ext_type_name = Lexicon.mark_type (suffix ext_typeN name);
fun tr' ctxt ts =
record_type_tr' ctxt (list_comb (Syntax.const ext_type_name, ts));
in (ext_type_name, tr') end;
fun record_ext_type_abbr_tr' abbr alphas zeta last_ext schemeT name =
let
val ext_type_name = Lexicon.mark_type (suffix ext_typeN name);
fun tr' ctxt ts =
record_type_abbr_tr' abbr alphas zeta last_ext schemeT ctxt
(list_comb (Syntax.const ext_type_name, ts));
in (ext_type_name, tr') end;
end;
local
fun field_tr' (c, t) = Syntax.const \<^syntax_const>‹_field› $ Syntax.const c $ t;
fun fields_tr' (t, u) = Syntax.const \<^syntax_const>‹_fields› $ t $ u;
fun record_tr' ctxt t =
let
val thy = Proof_Context.theory_of ctxt;
fun strip_fields t =
(case strip_comb t of
(Const (ext, _), args as (_ :: _)) =>
(case try (Lexicon.unmark_const o unsuffix extN) ext of
SOME ext' =>
(case get_extfields thy ext' of
SOME fields =>
(let
val (f :: fs, _) = split_last (map fst fields);
val fields' = Proof_Context.extern_const ctxt f :: map Long_Name.base_name fs;
val (args', more) = split_last args;
in (fields' ~~ args') @ strip_fields more end
handle ListPair.UnequalLengths => [("", t)])
| NONE => [("", t)])
| NONE => [("", t)])
| _ => [("", t)]);
val (fields, (_, more)) = split_last (strip_fields t);
val _ = null fields andalso raise Match;
val u = foldr1 fields_tr' (map field_tr' fields);
in
(case more of
Const (\<^const_syntax>‹Unity›, _) => Syntax.const \<^syntax_const>‹_record› $ u
| _ => Syntax.const \<^syntax_const>‹_record_scheme› $ u $ more)
end;
in
fun record_ext_tr' name =
let
val ext_name = Lexicon.mark_const (name ^ extN);
fun tr' ctxt ts = record_tr' ctxt (list_comb (Syntax.const ext_name, ts));
in (ext_name, tr') end;
end;
local
fun dest_update ctxt c =
(case try Lexicon.unmark_const c of
SOME d => try (unsuffix updateN) (Proof_Context.extern_const ctxt d)
| NONE => NONE);
fun field_updates_tr' ctxt (tm as Const (c, _) $ k $ u) =
(case dest_update ctxt c of
SOME name =>
(case try Syntax_Trans.const_abs_tr' k of
SOME t =>
apfst (cons (Syntax.const \<^syntax_const>‹_field_update› $ Syntax.free name $ t))
(field_updates_tr' ctxt u)
| NONE => ([], tm))
| NONE => ([], tm))
| field_updates_tr' _ tm = ([], tm);
fun record_update_tr' ctxt tm =
(case field_updates_tr' ctxt tm of
([], _) => raise Match
| (ts, u) =>
Syntax.const \<^syntax_const>‹_record_update› $ u $
foldr1 (fn (v, w) => Syntax.const \<^syntax_const>‹_field_updates› $ v $ w) (rev ts));
in
fun field_update_tr' name =
let
val update_name = Lexicon.mark_const (name ^ updateN);
fun tr' ctxt [t, u] = record_update_tr' ctxt (Syntax.const update_name $ t $ u)
| tr' _ _ = raise Match;
in (update_name, tr') end;
end;
fun is_sel_upd_pair thy (Const (s, _)) (Const (u, t')) =
(case get_updates thy u of
SOME u_name => u_name = s
| NONE => raise TERM ("is_sel_upd_pair: not update", [Const (u, t')]));
fun mk_comp_id f =
let val T = range_type (fastype_of f)
in HOLogic.mk_comp (\<^Const>‹id T›, f) end;
fun get_upd_funs (upd $ _ $ t) = upd :: get_upd_funs t
| get_upd_funs _ = [];
fun get_accupd_simps ctxt term defset =
let
val thy = Proof_Context.theory_of ctxt;
val (acc, [body]) = strip_comb term;
val upd_funs = sort_distinct Term_Ord.fast_term_ord (get_upd_funs body);
fun get_simp upd =
let
val T = domain_type (fastype_of upd);
val lhs = HOLogic.mk_comp (acc, upd $ Free ("f", T));
val rhs =
if is_sel_upd_pair thy acc upd
then HOLogic.mk_comp (Free ("f", T), acc)
else mk_comp_id acc;
val prop = lhs === rhs;
val othm =
Goal.prove ctxt [] [] prop
(fn {context = ctxt', ...} =>
simp_tac (put_simpset defset ctxt') 1 THEN
REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac ctxt' 1) THEN
TRY (simp_tac (put_simpset HOL_ss ctxt' addsimps @{thms id_apply id_o o_id}) 1));
val dest =
if is_sel_upd_pair thy acc upd
then @{thm o_eq_dest}
else @{thm o_eq_id_dest};
in Drule.export_without_context (othm RS dest) end;
in map get_simp upd_funs end;
fun get_updupd_simp ctxt defset u u' comp =
let
val f = Free ("f", domain_type (fastype_of u));
val f' = Free ("f'", domain_type (fastype_of u'));
val lhs = HOLogic.mk_comp (u $ f, u' $ f');
val rhs =
if comp
then u $ HOLogic.mk_comp (f, f')
else HOLogic.mk_comp (u' $ f', u $ f);
val prop = lhs === rhs;
val othm =
Goal.prove ctxt [] [] prop
(fn {context = ctxt', ...} =>
simp_tac (put_simpset defset ctxt') 1 THEN
REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac ctxt' 1) THEN
TRY (simp_tac (put_simpset HOL_ss ctxt' addsimps @{thms id_apply}) 1));
val dest = if comp then @{thm o_eq_dest_lhs} else @{thm o_eq_dest};
in Drule.export_without_context (othm RS dest) end;
fun gen_get_updupd_simps ctxt upd_funs defset =
let
val cname = fst o dest_Const;
fun getswap u u' = get_updupd_simp ctxt defset u u' (cname u = cname u');
fun build_swaps_to_eq _ [] swaps = swaps
| build_swaps_to_eq upd (u :: us) swaps =
let
val key = (cname u, cname upd);
val newswaps =
if Symreltab.defined swaps key then swaps
else Symreltab.insert (K true) (key, getswap u upd) swaps;
in
if cname u = cname upd then newswaps
else build_swaps_to_eq upd us newswaps
end;
fun swaps_needed [] _ _ swaps = map snd (Symreltab.dest swaps)
| swaps_needed (u :: us) prev seen swaps =
if Symtab.defined seen (cname u)
then swaps_needed us prev seen (build_swaps_to_eq u prev swaps)
else swaps_needed us (u :: prev) (Symtab.insert (K true) (cname u, ()) seen) swaps;
in swaps_needed upd_funs [] Symtab.empty Symreltab.empty end;
fun get_updupd_simps ctxt term defset = gen_get_updupd_simps ctxt (get_upd_funs term) defset;
fun prove_unfold_defs thy upd_funs ex_simps ex_simprs prop =
let
val ctxt = Proof_Context.init_global thy;
val defset = get_sel_upd_defs thy;
val prop' = Envir.beta_eta_contract prop;
val (lhs, _) = Logic.dest_equals (Logic.strip_assums_concl prop');
val (_, args) = strip_comb lhs;
val simps =
if null upd_funs then
(if length args = 1 then get_accupd_simps else get_updupd_simps) ctxt lhs defset
else gen_get_updupd_simps ctxt upd_funs defset
in
Goal.prove ctxt [] [] prop'
(fn {context = ctxt', ...} =>
simp_tac (put_simpset HOL_basic_ss ctxt' addsimps (simps @ @{thms K_record_comp})) 1 THEN
TRY (simp_tac (put_simpset HOL_basic_ss ctxt' addsimps ex_simps addsimprocs ex_simprs) 1))
end;
local
fun eq (s1: string) (s2: string) = (s1 = s2);
fun has_field extfields f T =
exists (fn (eN, _) => exists (eq f o fst) (Symtab.lookup_list extfields eN)) (dest_recTs T);
fun K_skeleton n (T as Type (_, [_, kT])) (b as Bound i) (Abs (x, xT, t)) =
if null (loose_bnos t) then ((n, kT), (Abs (x, xT, Bound (i + 1)))) else ((n, T), b)
| K_skeleton n T b _ = ((n, T), b);
in
fun select_update_proc ctxt ct =
let
val thy = Proof_Context.theory_of ctxt;
val t = Thm.term_of ct;
in
(case t of
(sel as Const (s, Type (_, [_, rangeS]))) $
((upd as Const (u, Type (_, [_, Type (_, [rT, _])]))) $ k $ r) =>
if is_selector thy s andalso is_some (get_updates thy u) then
let
val {sel_upd = {updates, ...}, extfields, ...} = Data.get thy;
fun mk_eq_terms ((upd as Const (u, Type(_, [kT, _]))) $ k $ r) =
(case Symtab.lookup updates u of
NONE => NONE
| SOME u_name =>
if u_name = s then
(case mk_eq_terms r of
NONE =>
let
val rv = ("r", rT);
val rb = Bound 0;
val (kv, kb) = K_skeleton "k" kT (Bound 1) k;
in SOME (upd $ kb $ rb, kb $ (sel $ rb), [kv, rv]) end
| SOME (trm, trm', vars) =>
let
val (kv, kb) = K_skeleton "k" kT (Bound (length vars)) k;
in SOME (upd $ kb $ trm, kb $ trm', kv :: vars) end)
else if has_field extfields u_name rangeS orelse
has_field extfields s (domain_type kT) then NONE
else
(case mk_eq_terms r of
SOME (trm, trm', vars) =>
let val (kv, kb) = K_skeleton "k" kT (Bound (length vars)) k
in SOME (upd $ kb $ trm, trm', kv :: vars) end
| NONE =>
let
val rv = ("r", rT);
val rb = Bound 0;
val (kv, kb) = K_skeleton "k" kT (Bound 1) k;
in SOME (upd $ kb $ rb, sel $ rb, [kv, rv]) end))
| mk_eq_terms _ = NONE;
in
(case mk_eq_terms (upd $ k $ r) of
SOME (trm, trm', vars) =>
SOME
(prove_unfold_defs thy [] [] []
(Logic.list_all (vars, Logic.mk_equals (sel $ trm, trm'))))
| NONE => NONE)
end
else NONE
| _ => NONE)
end;
val simproc = \<^simproc_setup>‹select_update ("x::'a::{}") = ‹K select_update_proc››
fun get_upd_acc_cong_thm upd acc thy ss =
let
val ctxt = Proof_Context.init_global thy;
val prop =
infer_instantiate ctxt
[(("upd", 0), Thm.cterm_of ctxt upd), (("ac", 0), Thm.cterm_of ctxt acc)]
updacc_cong_triv
|> Thm.concl_of;
in
Goal.prove ctxt [] [] prop
(fn {context = ctxt', ...} =>
simp_tac (put_simpset ss ctxt') 1 THEN
REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac ctxt' 1) THEN
TRY (resolve_tac ctxt' [updacc_cong_idI] 1))
end;
fun sorted ord [] = true
| sorted ord [x] = true
| sorted ord (x::y::xs) =
(case ord (x, y) of
LESS => sorted ord (y::xs)
| EQUAL => sorted ord (y::xs)
| GREATER => false)
fun insert_unique ord x [] = [x]
| insert_unique ord x (y::ys) =
(case ord (x, y) of
LESS => (x::y::ys)
| EQUAL => (x::ys)
| GREATER => y :: insert_unique ord x ys)
fun insert_unique_hd ord (x::xs) = x :: insert_unique ord x xs
| insert_unique_hd ord xs = xs
fun upd_proc ctxt ct =
let
val thy = Proof_Context.theory_of ctxt;
val t = Thm.term_of ct;
fun include_depth (dep, true) (min, max) =
if min <= dep
then SOME (min, if dep <= max orelse max = ~1 then dep else max)
else NONE
| include_depth (dep, false) (min, max) =
if dep <= max orelse max = ~1
then SOME (if min <= dep then dep else min, max)
else NONE;
fun getupdseq (term as (upd as Const (u, _)) $ f $ tm) min max =
(case get_update_details u thy of
SOME (s, dep, ismore) =>
(case include_depth (dep, ismore) (min, max) of
SOME (min', max') =>
let val (us, bs, _) = getupdseq tm min' max'
in ((upd, s, f) :: us, bs, fastype_of term) end
| NONE => ([], term, HOLogic.unitT))
| NONE => ([], term, HOLogic.unitT))
| getupdseq term _ _ = ([], term, HOLogic.unitT);
val (upds, base, baseT) = getupdseq t 0 ~1;
val orig_upds = map_index (fn (i, (x, y, z)) => (x, y, z, i)) upds
val upd_ord = rev_order o fast_string_ord o apply2 #2
val (upds, commuted) =
if not (null orig_upds) andalso Config.get ctxt sort_updates andalso not (sorted upd_ord orig_upds) then
(sort upd_ord orig_upds, true)
else
(orig_upds, false)
fun is_upd_noop s (Abs (n, T, Const (s', T') $ tm')) tm =
if s = s' andalso null (loose_bnos tm')
andalso subst_bound (HOLogic.unit, tm') = tm
then (true, Abs (n, T, Const (s', T') $ Bound 1))
else (false, HOLogic.unit)
| is_upd_noop _ _ _ = (false, HOLogic.unit);
fun get_noop_simps (upd as Const _) (Abs (_, _, (acc as Const _) $ _)) =
let
val ss = get_sel_upd_defs thy;
val uathm = get_upd_acc_cong_thm upd acc thy ss;
in
[Drule.export_without_context (uathm RS updacc_noopE),
Drule.export_without_context (uathm RS updacc_noop_compE)]
end;
fun add_upd (f as Abs _) _ = [f]
| add_upd f fs = (f :: fs);
fun mk_updterm ((upd as Const (u, T), s, f, i) :: upds) above term =
let
val (lhs_upds, rhs, vars, dups, simp, noops) =
mk_updterm upds (Symtab.update (u, ()) above) term;
val (fvar, skelf) =
K_skeleton (Long_Name.base_name s) (domain_type T) (Bound (length vars)) f;
val (isnoop, skelf') = is_upd_noop s f term;
val funT = domain_type T;
fun mk_comp_local (f, f') =
Const (\<^const_name>‹Fun.comp›, funT --> funT --> funT) $ f $ f';
in
if isnoop then
((upd $ skelf', i)::lhs_upds, rhs, vars,
Symtab.update (u, []) dups, true,
if Symtab.defined noops u then noops
else Symtab.update (u, get_noop_simps upd skelf') noops)
else if Symtab.defined above u then
((upd $ skelf, i)::lhs_upds, rhs, fvar :: vars,
Symtab.map_default (u, []) (add_upd skelf) dups,
true, noops)
else
(case Symtab.lookup dups u of
SOME fs =>
((upd $ skelf, i)::lhs_upds,
upd $ foldr1 mk_comp_local (add_upd skelf fs) $ rhs,
fvar :: vars, dups, true, noops)
| NONE => ((upd $ skelf, i)::lhs_upds, upd $ skelf $ rhs, fvar :: vars, dups, simp, noops))
end
| mk_updterm [] _ _ =
([], Bound 0, [("r", baseT)], Symtab.empty, false, Symtab.empty)
| mk_updterm us _ _ = raise TERM ("mk_updterm match", map (fn (x, _, _, _) => x) us);
val (lhs_upds, rhs, vars, _, simp, noops) = mk_updterm upds Symtab.empty base;
val orig_order_lhs_upds = lhs_upds |> sort (rev_order o int_ord o apply2 snd)
val lhs = Bound 0 |> fold (fn (upd, _) => fn s => upd $ s) orig_order_lhs_upds
val upd_funs = (if commuted then insert_unique_hd upd_ord orig_upds else orig_upds) |> map #1
val noops' = maps snd (Symtab.dest noops);
in
if simp orelse commuted then
SOME
(prove_unfold_defs thy upd_funs noops' [simproc]
(Logic.list_all (vars, Logic.mk_equals (lhs, rhs))))
else NONE
end;
val upd_simproc = \<^simproc_setup>‹update ("x::'a::{}") = ‹K upd_proc››
end;
fun eq_proc ctxt ct =
(case Thm.term_of ct of
\<^Const_>‹HOL.eq T for _ _› =>
(case rec_id ~1 T of
"" => NONE
| name =>
(case get_equalities (Proof_Context.theory_of ctxt) name of
NONE => NONE
| SOME thm => SOME (thm RS @{thm Eq_TrueI})))
| _ => NONE);
val eq_simproc = \<^simproc_setup>‹eq ("r = s") = ‹K eq_proc››;
fun split_simproc P =
Simplifier.make_simproc \<^context>
{name = "record_split",
lhss = [\<^term>‹x::'a::{}›],
proc = fn _ => fn ctxt => fn ct =>
(case Thm.term_of ct of
Const (quantifier, Type (_, [Type (_, [T, _]), _])) $ _ =>
if quantifier = \<^const_name>‹Pure.all› orelse
quantifier = \<^const_name>‹All› orelse
quantifier = \<^const_name>‹Ex›
then
(case rec_id ~1 T of
"" => NONE
| _ =>
let val split = P (Thm.term_of ct) in
if split <> 0 then
(case get_splits (Proof_Context.theory_of ctxt) (rec_id split T) of
NONE => NONE
| SOME (all_thm, All_thm, Ex_thm, _) =>
SOME
(case quantifier of
\<^const_name>‹Pure.all› => all_thm
| \<^const_name>‹All› => All_thm RS @{thm eq_reflection}
| \<^const_name>‹Ex› => Ex_thm RS @{thm eq_reflection}
| _ => raise Fail "split_simproc"))
else NONE
end)
else NONE
| _ => NONE),
identifier = []};
fun ex_sel_eq_proc ctxt ct =
let
val thy = Proof_Context.theory_of ctxt;
val t = Thm.term_of ct;
fun mkeq (lr, T, (sel, Tsel), x) i =
if is_selector thy sel then
let
val x' =
if not (Term.is_dependent x)
then Free ("x" ^ string_of_int i, range_type Tsel)
else raise TERM ("", [x]);
val sel' = Const (sel, Tsel) $ Bound 0;
val (l, r) = if lr then (sel', x') else (x', sel');
in \<^Const>‹HOL.eq T for l r› end
else raise TERM ("", [Const (sel, Tsel)]);
fun dest_sel_eq (\<^Const_>‹HOL.eq T› $ (Const (sel, Tsel) $ Bound 0) $ X) =
(true, T, (sel, Tsel), X)
| dest_sel_eq (\<^Const_>‹HOL.eq T› $ X $ (Const (sel, Tsel) $ Bound 0)) =
(false, T, (sel, Tsel), X)
| dest_sel_eq _ = raise TERM ("", []);
in
(case t of
\<^Const_>‹Ex T for ‹Abs (s, _, t)›› =>
(let
val eq = mkeq (dest_sel_eq t) 0;
val prop =
Logic.list_all ([("r", T)],
Logic.mk_equals (\<^Const>‹Ex T for ‹Abs (s, T, eq)››, \<^Const>‹True›));
in
SOME (Goal.prove_sorry_global thy [] [] prop
(fn {context = ctxt', ...} =>
simp_tac (put_simpset (get_simpset thy) ctxt'
addsimps @{thms simp_thms} addsimprocs [split_simproc (K ~1)]) 1))
end handle TERM _ => NONE)
| _ => NONE)
end;
val ex_sel_eq_simproc = \<^simproc_setup>‹passive ex_sel_eq ("Ex t") = ‹K ex_sel_eq_proc››;
fun split_simp_tac ctxt thms P = CSUBGOAL (fn (cgoal, i) =>
let
val thy = Proof_Context.theory_of ctxt;
val goal = Thm.term_of cgoal;
val frees = filter (is_recT o #2) (Term.add_frees goal []);
val has_rec = exists_Const
(fn (s, Type (_, [Type (_, [T, _]), _])) =>
(s = \<^const_name>‹Pure.all› orelse s = \<^const_name>‹All› orelse s = \<^const_name>‹Ex›)
andalso is_recT T
| _ => false);
fun mk_split_free_tac free induct_thm i =
let
val _ $ (_ $ Var (r, _)) = Thm.concl_of induct_thm;
val thm = infer_instantiate ctxt [(r, Thm.cterm_of ctxt free)] induct_thm;
in
simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms induct_atomize}) i THEN
resolve_tac ctxt [thm] i THEN
simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms induct_rulify}) i
end;
val split_frees_tacs =
frees |> map_filter (fn (x, T) =>
(case rec_id ~1 T of
"" => NONE
| _ =>
let
val free = Free (x, T);
val split = P free;
in
if split <> 0 then
(case get_splits thy (rec_id split T) of
NONE => NONE
| SOME (_, _, _, induct_thm) =>
SOME (mk_split_free_tac free induct_thm i))
else NONE
end));
val simprocs = if has_rec goal then [split_simproc P] else [];
val thms' = @{thms o_apply K_record_comp} @ thms;
in
EVERY split_frees_tacs THEN
full_simp_tac (put_simpset (get_simpset thy) ctxt addsimps thms' addsimprocs simprocs) i
end);
fun split_tac ctxt = CSUBGOAL (fn (cgoal, i) =>
let
val goal = Thm.term_of cgoal;
val has_rec = exists_Const
(fn (s, Type (_, [Type (_, [T, _]), _])) =>
(s = \<^const_name>‹Pure.all› orelse s = \<^const_name>‹All›) andalso is_recT T
| _ => false);
fun is_all (Const (\<^const_name>‹Pure.all›, _) $ _) = ~1
| is_all (Const (\<^const_name>‹All›, _) $ _) = ~1
| is_all _ = 0;
in
if has_rec goal then
full_simp_tac (put_simpset HOL_basic_ss ctxt addsimprocs [split_simproc is_all]) i
else no_tac
end);
val split_name = "record_split_tac";
val split_wrapper = (split_name, fn ctxt => fn tac => split_tac ctxt ORELSE' tac);
val case_names_fields = Rule_Cases.case_names ["fields"];
fun induct_type_global name = [case_names_fields, Induct.induct_type name];
fun cases_type_global name = [case_names_fields, Induct.cases_type name];
fun try_param_tac ctxt s rule = CSUBGOAL (fn (cgoal, i) =>
let
val g = Thm.term_of cgoal;
val params = Logic.strip_params g;
val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl g);
val rule' = Thm.lift_rule cgoal rule;
val (P, ys) = strip_comb (HOLogic.dest_Trueprop (Logic.strip_assums_concl (Thm.prop_of rule')));
val (x, ca) =
(case rev (drop (length params) ys) of
[] => (head_of (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop
(hd (rev (Logic.strip_assums_hyp (hd (Thm.prems_of rule')))))))), true)
| [x] => (head_of x, false));
val rule'' =
infer_instantiate ctxt
(map (apsnd (Thm.cterm_of ctxt))
(case rev params of
[] =>
(case AList.lookup (op =) (Term.add_frees g []) s of
NONE => error "try_param_tac: no such variable"
| SOME T =>
[(#1 (dest_Var P), if ca then concl else lambda (Free (s, T)) concl),
(#1 (dest_Var x), Free (s, T))])
| (_, T) :: _ =>
[(#1 (dest_Var P),
fold_rev Term.abs params
(if ca then concl else incr_boundvars 1 (Abs (s, T, concl)))),
(#1 (dest_Var x), fold_rev Term.abs params (Bound 0))])) rule';
in compose_tac ctxt (false, rule'', Thm.nprems_of rule) i end);
fun extension_definition overloaded name fields alphas zeta moreT more vars thy =
let
val ctxt = Proof_Context.init_global thy;
val base_name = Long_Name.base_name name;
val fieldTs = map snd fields;
val fields_moreTs = fieldTs @ [moreT];
val alphas_zeta = alphas @ [zeta];
val ext_binding = Binding.name (suffix extN base_name);
val ext_name = suffix extN name;
val ext_tyco = suffix ext_typeN name;
val extT = Type (ext_tyco, map TFree alphas_zeta);
val ext_type = fields_moreTs ---> extT;
val mktreeV = Balanced_Tree.make Iso_Tuple_Support.mk_cons_tuple;
fun mk_iso_tuple (left, right) (thy, i) =
let
val suff = if i = 0 then ext_typeN else inner_typeN ^ string_of_int i;
val ((_, cons), thy') = thy
|> Iso_Tuple_Support.add_iso_tuple_type overloaded
(Binding.suffix_name suff (Binding.name base_name), alphas_zeta)
(fastype_of left, fastype_of right);
in
(cons $ left $ right, (thy', i + 1))
end;
fun mk_even_iso_tuple [arg] = pair arg
| mk_even_iso_tuple args = mk_iso_tuple (Iso_Tuple_Support.dest_cons_tuple (mktreeV args));
fun build_meta_tree_type i thy vars more =
let val len = length vars in
if len < 1 then raise TYPE ("meta_tree_type args too short", [], vars)
else if len > 16 then
let
fun group16 [] = []
| group16 xs = take 16 xs :: group16 (drop 16 xs);
val vars' = group16 vars;
val (composites, (thy', i')) = fold_map mk_even_iso_tuple vars' (thy, i);
in
build_meta_tree_type i' thy' composites more
end
else
let val (term, (thy', _)) = mk_iso_tuple (mktreeV vars, more) (thy, 0)
in (term, thy') end
end;
val _ = timing_msg ctxt "record extension preparing definitions";
val (ext_body, typ_thy) = timeit_msg ctxt "record extension nested type def:" (fn () =>
build_meta_tree_type 1 thy vars more);
fun mk_ext args = list_comb (Const (ext_name, ext_type), args);
val ext_spec = Logic.mk_equals (mk_ext (vars @ [more]), ext_body);
val (ext_def, defs_thy) = timeit_msg ctxt "record extension constructor def:" (fn () =>
typ_thy
|> Sign.declare_const_global ((ext_binding, ext_type), NoSyn) |> snd
|> Global_Theory.add_def (Thm.def_binding ext_binding, ext_spec));
val defs_ctxt = Proof_Context.init_global defs_thy;
val _ = timing_msg ctxt "record extension preparing propositions";
val vars_more = vars @ [more];
val variants = map (fn Free (x, _) => x) vars_more;
val ext = mk_ext vars_more;
val s = Free (rN, extT);
val P = Free (singleton (Name.variant_list variants) "P", extT --> HOLogic.boolT);
val inject_prop =
let val vars_more' = map (fn (Free (x, T)) => Free (x ^ "'", T)) vars_more in
HOLogic.mk_conj (HOLogic.eq_const extT $
mk_ext vars_more $ mk_ext vars_more', \<^term>‹True›)
===
foldr1 HOLogic.mk_conj
(map HOLogic.mk_eq (vars_more ~~ vars_more') @ [\<^term>‹True›])
end;
val induct_prop = (fold_rev Logic.all vars_more (Trueprop (P $ ext)), Trueprop (P $ s));
val split_meta_prop =
let val P = Free (singleton (Name.variant_list variants) "P", extT --> propT)
in Logic.mk_equals (Logic.all s (P $ s), fold_rev Logic.all vars_more (P $ ext)) end;
val inject = timeit_msg ctxt "record extension inject proof:" (fn () =>
simplify (put_simpset HOL_ss defs_ctxt)
(Goal.prove_sorry_global defs_thy [] [] inject_prop
(fn {context = ctxt', ...} =>
simp_tac (put_simpset HOL_basic_ss ctxt' addsimps [ext_def]) 1 THEN
REPEAT_DETERM
(resolve_tac ctxt' @{thms refl_conj_eq} 1 ORELSE
Iso_Tuple_Support.iso_tuple_intros_tac ctxt' 1 ORELSE
resolve_tac ctxt' [refl] 1))));
val surject = timeit_msg ctxt "record extension surjective proof:" (fn () =>
let
val start =
infer_instantiate defs_ctxt [(("y", 0), Thm.cterm_of defs_ctxt ext)] surject_assist_idE;
val tactic1 =
simp_tac (put_simpset HOL_basic_ss defs_ctxt addsimps [ext_def]) 1 THEN
REPEAT_ALL_NEW (Iso_Tuple_Support.iso_tuple_intros_tac defs_ctxt) 1;
val tactic2 =
REPEAT (resolve_tac defs_ctxt [surject_assistI] 1 THEN resolve_tac defs_ctxt [refl] 1);
val [halfway] = Seq.list_of (tactic1 start);
val [surject] = Seq.list_of (tactic2 (Drule.export_without_context halfway));
in
surject
end);
val split_meta = timeit_msg ctxt "record extension split_meta proof:" (fn () =>
Goal.prove_sorry_global defs_thy [] [] split_meta_prop
(fn {context = ctxt', ...} =>
EVERY1
[resolve_tac ctxt' @{thms equal_intr_rule},
Goal.norm_hhf_tac ctxt',
eresolve_tac ctxt' @{thms meta_allE}, assume_tac ctxt',
resolve_tac ctxt' [@{thm prop_subst} OF [surject]],
REPEAT o eresolve_tac ctxt' @{thms meta_allE}, assume_tac ctxt']));
val induct = timeit_msg ctxt "record extension induct proof:" (fn () =>
let val (assm, concl) = induct_prop in
Goal.prove_sorry_global defs_thy [] [assm] concl
(fn {context = ctxt', prems, ...} =>
cut_tac (split_meta RS Drule.equal_elim_rule2) 1 THEN
resolve_tac ctxt' prems 2 THEN
asm_simp_tac (put_simpset HOL_ss ctxt') 1)
end);
val ([(_, [induct']), (_, [inject']), (_, [surjective']), (_, [split_meta'])], thm_thy) =
defs_thy
|> Global_Theory.note_thmss ""
[((Binding.name "ext_induct", []), [([induct], [])]),
((Binding.name "ext_inject", []), [([inject], [])]),
((Binding.name "ext_surjective", []), [([surject], [])]),
((Binding.name "ext_split", []), [([split_meta], [])])];
in
(((ext_name, ext_type), (ext_tyco, alphas_zeta),
extT, induct', inject', surjective', split_meta', ext_def), thm_thy)
end;
fun chunks [] [] = []
| chunks [] xs = [xs]
| chunks (l :: ls) xs = take l xs :: chunks ls (drop l xs);
fun chop_last [] = error "chop_last: list should not be empty"
| chop_last [x] = ([], x)
| chop_last (x :: xs) = let val (tl, l) = chop_last xs in (x :: tl, l) end;
fun subst_last _ [] = error "subst_last: list should not be empty"
| subst_last s [_] = [s]
| subst_last s (x :: xs) = x :: subst_last s xs;
fun mk_recordT extT =
fold_rev (fn (parent, Ts) => fn T => Type (parent, subst_last T Ts)) extT;
fun mk_random_eq tyco vs extN Ts =
let
val size = \<^term>‹i::natural›;
fun termifyT T = HOLogic.mk_prodT (T, \<^typ>‹unit ⇒ term›);
val T = Type (tyco, map TFree vs);
val Tm = termifyT T;
val params = Name.invent_names Name.context "x" Ts;
val lhs = HOLogic.mk_random T size;
val tc = HOLogic.mk_return Tm \<^typ>‹Random.seed›
(HOLogic.mk_valtermify_app extN params T);
val rhs =
HOLogic.mk_ST
(map (fn (v, T') =>
((HOLogic.mk_random T' size, \<^typ>‹Random.seed›), SOME (v, termifyT T'))) params)
tc \<^typ>‹Random.seed› (SOME Tm, \<^typ>‹Random.seed›);
in
(lhs, rhs)
end
fun mk_full_exhaustive_eq tyco vs extN Ts =
let
val size = \<^term>‹i::natural›;
fun termifyT T = HOLogic.mk_prodT (T, \<^typ>‹unit ⇒ term›);
val T = Type (tyco, map TFree vs);
val test_function = Free ("f", termifyT T --> \<^typ>‹(bool × term list) option›);
val params = Name.invent_names Name.context "x" Ts;
fun mk_full_exhaustive U = \<^Const>‹full_exhaustive_class.full_exhaustive U›;
val lhs = mk_full_exhaustive T $ test_function $ size;
val tc = test_function $ (HOLogic.mk_valtermify_app extN params T);
val rhs = fold_rev (fn (v, U) => fn cont =>
mk_full_exhaustive U $ (lambda (Free (v, termifyT U)) cont) $ size) params tc;
in
(lhs, rhs)
end;
fun instantiate_sort_record (sort, mk_eq) tyco vs extN Ts thy =
let
val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (mk_eq tyco vs extN Ts));
in
thy
|> Class.instantiation ([tyco], vs, sort)
|> `(fn lthy => Syntax.check_term lthy eq)
|-> (fn eq => Specification.definition NONE [] [] ((Binding.concealed Binding.empty, []), eq))
|> snd
|> Class.prove_instantiation_exit (fn ctxt => Class.intro_classes_tac ctxt [])
end;
fun ensure_sort_record (sort, mk_eq) ext_tyco vs extN Ts thy =
let
val algebra = Sign.classes_of thy;
val has_inst = Sorts.has_instance algebra ext_tyco sort;
in
if has_inst then thy
else
(case Quickcheck_Common.perhaps_constrain thy (map (rpair sort) Ts) vs of
SOME constrain =>
instantiate_sort_record (sort, mk_eq) ext_tyco (map constrain vs) extN
((map o map_atyps) (fn TFree v => TFree (constrain v)) Ts) thy
| NONE => thy)
end;
fun add_code ext_tyco vs extT ext simps inject thy =
if Config.get_global thy codegen then
let
val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (\<^Const>‹HOL.equal extT›, \<^Const>‹HOL.eq extT›));
fun tac ctxt eq_def =
Class.intro_classes_tac ctxt []
THEN rewrite_goals_tac ctxt [Simpdata.mk_eq eq_def]
THEN ALLGOALS (resolve_tac ctxt @{thms refl});
fun mk_eq ctxt eq_def =
rewrite_rule ctxt
[Axclass.unoverload ctxt (Thm.symmetric (Simpdata.mk_eq eq_def))] inject;
fun mk_eq_refl ctxt =
\<^instantiate>‹'a = ‹Thm.ctyp_of ctxt (Logic.varifyT_global extT)› in
lemma (schematic) ‹equal_class.equal x x ⟷ True› by (rule equal_refl)›
|> Axclass.unoverload ctxt;
val ensure_random_record = ensure_sort_record (\<^sort>‹random›, mk_random_eq);
val ensure_exhaustive_record =
ensure_sort_record (\<^sort>‹full_exhaustive›, mk_full_exhaustive_eq);
fun add_code eq_def thy =
let
val ctxt = Proof_Context.init_global thy;
in
thy
|> Code.declare_default_eqns_global [(mk_eq ctxt eq_def, true), (mk_eq_refl ctxt, false)]
end;
in
thy
|> Code.declare_datatype_global [ext]
|> Code.declare_default_eqns_global (map (rpair true) simps)
|> Class.instantiation ([ext_tyco], vs, [HOLogic.class_equal])
|> `(fn lthy => Syntax.check_term lthy eq)
|-> (fn eq => Specification.definition NONE [] [] (Binding.empty_atts, eq))
|-> (fn (_, (_, eq_def)) =>
Class.prove_instantiation_exit_result Morphism.thm tac eq_def)
|-> add_code
|> ensure_random_record ext_tyco vs (fst ext) (binder_types (snd ext))
|> ensure_exhaustive_record ext_tyco vs (fst ext) (binder_types (snd ext))
end
else thy;
fun add_ctr_sugar ctr exhaust inject sel_thms =
Ctr_Sugar.default_register_ctr_sugar_global (K true)
{kind = Ctr_Sugar.Record, T = body_type (fastype_of ctr), ctrs = [ctr], casex = Term.dummy,
discs = [], selss = [], exhaust = exhaust, nchotomy = Drule.dummy_thm, injects = [inject],
distincts = [], case_thms = [], case_cong = Drule.dummy_thm, case_cong_weak = Drule.dummy_thm,
case_distribs = [], split = Drule.dummy_thm, split_asm = Drule.dummy_thm, disc_defs = [],
disc_thmss = [], discIs = [], disc_eq_cases = [], sel_defs = [], sel_thmss = [sel_thms],
distinct_discsss = [], exhaust_discs = [], exhaust_sels = [], collapses = [], expands = [],
split_sels = [], split_sel_asms = [], case_eq_ifs = []};
fun lhs_of_equation \<^Const_>‹Pure.eq _ for t _› = t
| lhs_of_equation \<^Const_>‹Trueprop for \<^Const_>‹HOL.eq _ for t _›› = t;
fun add_spec_rule rule =
let val head = head_of (lhs_of_equation (Thm.prop_of rule))
in Spec_Rules.add_global Binding.empty Spec_Rules.equational [head] [rule] end;
fun definition overloaded (alphas, binding) parent (parents: parent_info list) raw_fields thy0 =
let
val ctxt0 = Proof_Context.init_global thy0;
val prefix = Binding.name_of binding;
val name = Sign.full_name thy0 binding;
val full = Sign.full_name_path thy0 prefix;
val bfields = map (fn (x, T, _) => (x, T)) raw_fields;
val field_syntax = map #3 raw_fields;
val parent_fields = maps #fields parents;
val parent_chunks = map (length o #fields) parents;
val parent_names = map fst parent_fields;
val parent_types = map snd parent_fields;
val parent_fields_len = length parent_fields;
val parent_variants =
Name.variant_list [moreN, rN, rN ^ "'", wN] (map Long_Name.base_name parent_names);
val parent_vars = map2 (curry Free) parent_variants parent_types;
val parent_len = length parents;
val fields = map (apfst full) bfields;
val names = map fst fields;
val types = map snd fields;
val alphas_fields = fold Term.add_tfreesT types [];
val alphas_ext = inter (op =) alphas_fields alphas;
val len = length fields;
val variants =
Name.variant_list (moreN :: rN :: (rN ^ "'") :: wN :: parent_variants)
(map (Binding.name_of o fst) bfields);
val vars = map2 (curry Free) variants types;
val named_vars = names ~~ vars;
val idxms = 0 upto len;
val all_fields = parent_fields @ fields;
val all_types = parent_types @ types;
val all_variants = parent_variants @ variants;
val all_vars = parent_vars @ vars;
val all_named_vars = (parent_names ~~ parent_vars) @ named_vars;
val zeta = (singleton (Name.variant_list (map #1 alphas)) "'z", \<^sort>‹type›);
val moreT = TFree zeta;
val more = Free (moreN, moreT);
val full_moreN = full (Binding.name moreN);
val bfields_more = bfields @ [(Binding.name moreN, moreT)];
val fields_more = fields @ [(full_moreN, moreT)];
val named_vars_more = named_vars @ [(full_moreN, more)];
val all_vars_more = all_vars @ [more];
val all_named_vars_more = all_named_vars @ [(full_moreN, more)];
val extension_name = full binding;
val ((ext, (ext_tyco, vs),
extT, ext_induct, ext_inject, ext_surjective, ext_split, ext_def), ext_thy) =
thy0
|> Sign.qualified_path false binding
|> extension_definition overloaded extension_name fields alphas_ext zeta moreT more vars;
val ext_ctxt = Proof_Context.init_global ext_thy;
val _ = timing_msg ext_ctxt "record preparing definitions";
val Type extension_scheme = extT;
val extension_name = unsuffix ext_typeN (fst extension_scheme);
val extension = let val (n, Ts) = extension_scheme in (n, subst_last HOLogic.unitT Ts) end;
val extension_names = map (unsuffix ext_typeN o fst o #extension) parents @ [extension_name];
val extension_id = implode extension_names;
fun rec_schemeT n = mk_recordT (map #extension (drop n parents)) extT;
val rec_schemeT0 = rec_schemeT 0;
fun recT n =
let val (c, Ts) = extension in
mk_recordT (map #extension (drop n parents))
(Type (c, subst_last HOLogic.unitT Ts))
end;
val recT0 = recT 0;
fun mk_rec args n =
let
val (args', more) = chop_last args;
fun mk_ext' ((name, T), args) more = mk_ext (name, T) (args @ [more]);
fun build Ts =
fold_rev mk_ext' (drop n ((extension_names ~~ Ts) ~~ chunks parent_chunks args')) more;
in
if more = HOLogic.unit
then build (map_range recT (parent_len + 1))
else build (map_range rec_schemeT (parent_len + 1))
end;
val r_rec0 = mk_rec all_vars_more 0;
val r_rec_unit0 = mk_rec (all_vars @ [HOLogic.unit]) 0;
fun r n = Free (rN, rec_schemeT n);
val r0 = r 0;
fun r_unit n = Free (rN, recT n);
val r_unit0 = r_unit 0;
val record_ext_type_abbr_tr's =
let
val trname = hd extension_names;
val last_ext = unsuffix ext_typeN (fst extension);
in [record_ext_type_abbr_tr' name alphas zeta last_ext rec_schemeT0 trname] end;
val record_ext_type_tr's =
let
val trnames = if parent_len > 0 then [extension_name] else [];
in map record_ext_type_tr' trnames end;
val print_translation =
map field_update_tr' (full_moreN :: names) @ [record_ext_tr' extension_name] @
record_ext_type_tr's @ record_ext_type_abbr_tr's;
val sel_decls = map (mk_selC rec_schemeT0 o apfst Binding.name_of) bfields_more;
val upd_decls = map (mk_updC updateN rec_schemeT0 o apfst Binding.name_of) bfields_more;
val make_decl = (makeN, all_types ---> recT0);
val fields_decl = (fields_selN, types ---> Type extension);
val extend_decl = (extendN, recT0 --> moreT --> rec_schemeT0);
val truncate_decl = (truncateN, rec_schemeT0 --> recT0);
val ext_defs = ext_def :: map #ext_def parents;
val (accessor_thms, updator_thms, upd_acc_cong_assists) =
timeit_msg ext_ctxt "record getting tree access/updates:" (fn () =>
let
val r_rec0_Vars =
let
fun to_Var (Free (c, T)) = Var ((c, 1), T);
in mk_rec (map to_Var all_vars_more) 0 end;
val init_thm =
infer_instantiate ext_ctxt
[(("v", 0), Thm.cterm_of ext_ctxt r_rec0),
(("v'", 0), Thm.cterm_of ext_ctxt r_rec0_Vars)]
updacc_eq_triv;
val terminal =
resolve_tac ext_ctxt [updacc_eq_idI] 1 THEN resolve_tac ext_ctxt [refl] 1;
val tactic =
simp_tac (put_simpset HOL_basic_ss ext_ctxt addsimps ext_defs) 1 THEN
REPEAT (Iso_Tuple_Support.iso_tuple_intros_tac ext_ctxt 1 ORELSE terminal);
val updaccs = Seq.list_of (tactic init_thm);
in
(updaccs RL [updacc_accessor_eqE],
updaccs RL [updacc_updator_eqE],
updaccs RL [updacc_cong_from_eq])
end);
fun lastN xs = drop parent_fields_len xs;
fun mk_sel_spec ((c, T), thm) =
let
val (acc $ arg, _) =
HOLogic.dest_eq (HOLogic.dest_Trueprop (Envir.beta_eta_contract (Thm.concl_of thm)));
val _ =
if arg aconv r_rec0 then ()
else raise TERM ("mk_sel_spec: different arg", [arg]);
in
Const (mk_selC rec_schemeT0 (c, T)) :== acc
end;
val sel_specs = map mk_sel_spec (fields_more ~~ lastN accessor_thms);
fun mk_upd_spec ((c, T), thm) =
let
val (upd $ _ $ arg, _) =
HOLogic.dest_eq (HOLogic.dest_Trueprop (Envir.beta_eta_contract (Thm.concl_of thm)));
val _ =
if arg aconv r_rec0 then ()
else raise TERM ("mk_sel_spec: different arg", [arg]);
in Const (mk_updC updateN rec_schemeT0 (c, T)) :== upd end;
val upd_specs = map mk_upd_spec (fields_more ~~ lastN updator_thms);
val make_spec =
list_comb (Const (full (Binding.name makeN), all_types ---> recT0), all_vars) :==
mk_rec (all_vars @ [HOLogic.unit]) 0;
val fields_spec =
list_comb (Const (full (Binding.name fields_selN), types ---> Type extension), vars) :==
mk_rec (all_vars @ [HOLogic.unit]) parent_len;
val extend_spec =
Const (full (Binding.name extendN), recT0 --> moreT --> rec_schemeT0) $ r_unit0 $ more :==
mk_rec ((map (mk_sel r_unit0) all_fields) @ [more]) 0;
val truncate_spec =
Const (full (Binding.name truncateN), rec_schemeT0 --> recT0) $ r0 :==
mk_rec ((map (mk_sel r0) all_fields) @ [HOLogic.unit]) 0;
val (((sel_defs, upd_defs), derived_defs), defs_thy) =
timeit_msg ext_ctxt "record trfuns/tyabbrs/selectors/updates/make/fields/extend/truncate defs:"
(fn () =>
ext_thy
|> Sign.print_translation print_translation
|> Sign.restore_naming thy0
|> Typedecl.abbrev_global (binding, map #1 alphas, NoSyn) recT0 |> snd
|> Typedecl.abbrev_global
(Binding.suffix_name schemeN binding, map #1 (alphas @ [zeta]), NoSyn) rec_schemeT0
|> snd
|> Sign.qualified_path false binding
|> fold (fn ((x, T), mx) => snd o Sign.declare_const_global ((Binding.name x, T), mx))
(sel_decls ~~ (field_syntax @ [NoSyn]))
|> fold (fn (x, T) => snd o Sign.declare_const_global ((Binding.name x, T), NoSyn))
(upd_decls @ [make_decl, fields_decl, extend_decl, truncate_decl])
|> fold_map (Global_Theory.add_def o apfst (Binding.concealed o Binding.name)) sel_specs
||>> fold_map (Global_Theory.add_def o apfst (Binding.concealed o Binding.name)) upd_specs
||>> fold_map (Global_Theory.add_def o apfst (Binding.concealed o Binding.name))
[make_spec, fields_spec, extend_spec, truncate_spec]);
val defs_ctxt = Proof_Context.init_global defs_thy;
val _ = timing_msg defs_ctxt "record preparing propositions";
val P = Free (singleton (Name.variant_list all_variants) "P", rec_schemeT0 --> HOLogic.boolT);
val C = Free (singleton (Name.variant_list all_variants) "C", HOLogic.boolT);
val P_unit = Free (singleton (Name.variant_list all_variants) "P", recT0 --> HOLogic.boolT);
val sel_conv_props =
map (fn (c, x as Free (_, T)) => mk_sel r_rec0 (c, T) === x) named_vars_more;
fun mk_upd_prop i (c, T) =
let
val x' =
Free (singleton (Name.variant_list all_variants) (Long_Name.base_name c ^ "'"), T --> T);
val n = parent_fields_len + i;
val args' = nth_map n (K (x' $ nth all_vars_more n)) all_vars_more;
in mk_upd updateN c x' r_rec0 === mk_rec args' 0 end;
val upd_conv_props = map2 mk_upd_prop idxms fields_more;
val induct_scheme_prop =
fold_rev Logic.all all_vars_more (Trueprop (P $ r_rec0)) ==> Trueprop (P $ r0);
val induct_prop =
(fold_rev Logic.all all_vars (Trueprop (P_unit $ r_rec_unit0)), Trueprop (P_unit $ r_unit0));
val surjective_prop =
let val args = map (fn (c, Free (_, T)) => mk_sel r0 (c, T)) all_named_vars_more
in r0 === mk_rec args 0 end;
val cases_scheme_prop =
(fold_rev Logic.all all_vars_more ((r0 === r_rec0) ==> Trueprop C), Trueprop C);
val cases_prop =
fold_rev Logic.all all_vars ((r_unit0 === r_rec_unit0) ==> Trueprop C) ==> Trueprop C;
val split_meta_prop =
let
val P = Free (singleton (Name.variant_list all_variants) "P", rec_schemeT0 --> propT);
in
Logic.mk_equals (Logic.all r0 (P $ r0), fold_rev Logic.all all_vars_more (P $ r_rec0))
end;
val split_object_prop =
let val ALL = fold_rev (fn (v, T) => fn t => HOLogic.mk_all (v, T, t))
in ALL [dest_Free r0] (P $ r0) === ALL (map dest_Free all_vars_more) (P $ r_rec0) end;
val split_ex_prop =
let val EX = fold_rev (fn (v, T) => fn t => HOLogic.mk_exists (v, T, t))
in EX [dest_Free r0] (P $ r0) === EX (map dest_Free all_vars_more) (P $ r_rec0) end;
val equality_prop =
let
val s' = Free (rN ^ "'", rec_schemeT0);
fun mk_sel_eq (c, Free (_, T)) = mk_sel r0 (c, T) === mk_sel s' (c, T);
val seleqs = map mk_sel_eq all_named_vars_more;
in Logic.all r0 (Logic.all s' (Logic.list_implies (seleqs, r0 === s'))) end;
val record_ss = get_simpset defs_thy;
val sel_upd_ss =
simpset_of
(put_simpset record_ss defs_ctxt
addsimps (sel_defs @ accessor_thms @ upd_defs @ updator_thms));
val (sel_convs, upd_convs) =
timeit_msg defs_ctxt "record sel_convs/upd_convs proof:" (fn () =>
grouped 10 Par_List.map (fn prop =>
Goal.prove_sorry_global defs_thy [] [] prop
(fn {context = ctxt', ...} =>
ALLGOALS (asm_full_simp_tac (put_simpset sel_upd_ss ctxt'))))
(sel_conv_props @ upd_conv_props))
|> chop (length sel_conv_props);
val (fold_congs, unfold_congs) = timeit_msg defs_ctxt "record upd fold/unfold congs:" (fn () =>
let
val symdefs = map Thm.symmetric (sel_defs @ upd_defs);
val fold_ctxt = put_simpset HOL_basic_ss defs_ctxt addsimps symdefs;
val ua_congs = map (Drule.export_without_context o simplify fold_ctxt) upd_acc_cong_assists;
in (ua_congs RL [updacc_foldE], ua_congs RL [updacc_unfoldE]) end);
val parent_induct = Option.map #induct_scheme (try List.last parents);
val induct_scheme = timeit_msg defs_ctxt "record induct_scheme proof:" (fn () =>
Goal.prove_sorry_global defs_thy [] [] induct_scheme_prop
(fn {context = ctxt', ...} =>
EVERY
[case parent_induct of NONE => all_tac | SOME ind => try_param_tac ctxt' rN ind 1,
try_param_tac ctxt' rN ext_induct 1,
asm_simp_tac (put_simpset HOL_basic_ss ctxt') 1]));
val induct = timeit_msg defs_ctxt "record induct proof:" (fn () =>
Goal.prove_sorry_global defs_thy [] [#1 induct_prop] (#2 induct_prop)
(fn {context = ctxt', prems, ...} =>
try_param_tac ctxt' rN induct_scheme 1
THEN try_param_tac ctxt' "more" @{thm unit.induct} 1
THEN resolve_tac ctxt' prems 1));
val surjective = timeit_msg defs_ctxt "record surjective proof:" (fn () =>
Goal.prove_sorry_global defs_thy [] [] surjective_prop
(fn {context = ctxt', ...} =>
EVERY
[resolve_tac ctxt' [surject_assist_idE] 1,
simp_tac (put_simpset HOL_basic_ss ctxt' addsimps ext_defs) 1,
REPEAT
(Iso_Tuple_Support.iso_tuple_intros_tac ctxt' 1 ORELSE
(resolve_tac ctxt' [surject_assistI] 1 THEN
simp_tac (put_simpset (get_sel_upd_defs defs_thy) ctxt'
addsimps (sel_defs @ @{thms o_assoc id_apply id_o o_id})) 1))]));
val cases_scheme = timeit_msg defs_ctxt "record cases_scheme proof:" (fn () =>
Goal.prove_sorry_global defs_thy [] [#1 cases_scheme_prop] (#2 cases_scheme_prop)
(fn {context = ctxt', prems, ...} =>
resolve_tac ctxt' prems 1 THEN
resolve_tac ctxt' [surjective] 1));
val cases = timeit_msg defs_ctxt "record cases proof:" (fn () =>
Goal.prove_sorry_global defs_thy [] [] cases_prop
(fn {context = ctxt', ...} =>
try_param_tac ctxt' rN cases_scheme 1 THEN
ALLGOALS (asm_full_simp_tac
(put_simpset HOL_basic_ss ctxt' addsimps @{thms unit_all_eq1}))));
val split_meta = timeit_msg defs_ctxt "record split_meta proof:" (fn () =>
Goal.prove_sorry_global defs_thy [] [] split_meta_prop
(fn {context = ctxt', ...} =>
EVERY1
[resolve_tac ctxt' @{thms equal_intr_rule}, Goal.norm_hhf_tac ctxt',
eresolve_tac ctxt' @{thms meta_allE}, assume_tac ctxt',
resolve_tac ctxt' [@{thm prop_subst} OF [surjective]],
REPEAT o eresolve_tac ctxt' @{thms meta_allE}, assume_tac ctxt']));
val split_object = timeit_msg defs_ctxt "record split_object proof:" (fn () =>
Goal.prove_sorry_global defs_thy [] [] split_object_prop
(fn {context = ctxt', ...} =>
resolve_tac ctxt' [@{lemma "Trueprop A ≡ Trueprop B ⟹ A = B" by (rule iffI) unfold}] 1 THEN
rewrite_goals_tac ctxt' @{thms atomize_all [symmetric]} THEN
resolve_tac ctxt' [split_meta] 1));
val split_ex = timeit_msg defs_ctxt "record split_ex proof:" (fn () =>
Goal.prove_sorry_global defs_thy [] [] split_ex_prop
(fn {context = ctxt', ...} =>
simp_tac
(put_simpset HOL_basic_ss ctxt' addsimps
(@{lemma "∃x. P x ≡ ¬ (∀x. ¬ P x)" by simp} ::
@{thms not_not Not_eq_iff})) 1 THEN
resolve_tac ctxt' [split_object] 1));
val equality = timeit_msg defs_ctxt "record equality proof:" (fn () =>
Goal.prove_sorry_global defs_thy [] [] equality_prop
(fn {context = ctxt', ...} =>
asm_full_simp_tac (put_simpset record_ss ctxt' addsimps (split_meta :: sel_convs)) 1));
val ([(_, sel_convs'), (_, upd_convs'), (_, sel_defs'), (_, upd_defs'),
(_, fold_congs'), (_, unfold_congs'),
(_, splits' as [split_meta', split_object', split_ex']), (_, derived_defs'),
(_, [surjective']), (_, [equality']), (_, [induct_scheme']), (_, [induct']),
(_, [cases_scheme']), (_, [cases'])], thms_thy) = defs_thy
|> Code.declare_default_eqns_global (map (rpair true) derived_defs)
|> Global_Theory.note_thmss ""
[((Binding.name "select_convs", []), [(sel_convs, [])]),
((Binding.name "update_convs", []), [(upd_convs, [])]),
((Binding.name "select_defs", []), [(sel_defs, [])]),
((Binding.name "update_defs", []), [(upd_defs, [])]),
((Binding.name "fold_congs", []), [(fold_congs, [])]),
((Binding.name "unfold_congs", []), [(unfold_congs, [])]),
((Binding.name "splits", []), [([split_meta, split_object, split_ex], [])]),
((Binding.name "defs", []), [(derived_defs, [])]),
((Binding.name "surjective", []), [([surjective], [])]),
((Binding.name "equality", []), [([equality], [])]),
((Binding.name "induct_scheme", induct_type_global (suffix schemeN name)),
[([induct_scheme], [])]),
((Binding.name "induct", induct_type_global name), [([induct], [])]),
((Binding.name "cases_scheme", cases_type_global (suffix schemeN name)),
[([cases_scheme], [])]),
((Binding.name "cases", cases_type_global name), [([cases], [])])];
val sel_upd_simps = sel_convs' @ upd_convs';
val sel_upd_defs = sel_defs' @ upd_defs';
val depth = parent_len + 1;
val ([(_, simps'), (_, iffs')], thms_thy') = thms_thy
|> Global_Theory.note_thmss ""
[((Binding.name "simps", [Simplifier.simp_add]), [(sel_upd_simps, [])]),
((Binding.name "iffs", [iff_add]), [([ext_inject], [])])];
val info =
make_info alphas parent fields extension
ext_induct ext_inject ext_surjective ext_split ext_def
sel_convs' upd_convs' sel_defs' upd_defs' fold_congs' unfold_congs' splits' derived_defs'
surjective' equality' induct_scheme' induct' cases_scheme' cases' simps' iffs';
val final_thy =
thms_thy'
|> put_record name info
|> put_sel_upd names full_moreN depth sel_upd_simps sel_upd_defs
|> add_equalities extension_id equality'
|> add_extinjects ext_inject
|> add_extsplit extension_name ext_split
|> add_splits extension_id (split_meta', split_object', split_ex', induct_scheme')
|> add_extfields extension_name (fields @ [(full_moreN, moreT)])
|> add_fieldext (extension_name, snd extension) names
|> add_code ext_tyco vs extT ext simps' ext_inject
|> add_ctr_sugar (Const ext) cases_scheme' ext_inject sel_convs'
|> fold add_spec_rule (sel_convs' @ upd_convs' @ derived_defs')
|> Sign.restore_naming thy0;
in final_thy end;
local
fun read_parent NONE ctxt = (NONE, ctxt)
| read_parent (SOME raw_T) ctxt =
(case Proof_Context.read_typ_abbrev ctxt raw_T of
Type (name, Ts) => (SOME (Ts, name), fold Variable.declare_typ Ts ctxt)
| T => error ("Bad parent record specification: " ^ Syntax.string_of_typ ctxt T));
fun read_fields raw_fields ctxt =
let
val Ts = Syntax.read_typs ctxt (map (fn (_, raw_T, _) => raw_T) raw_fields);
val fields = map2 (fn (x, _, mx) => fn T => (x, T, mx)) raw_fields Ts;
val ctxt' = fold Variable.declare_typ Ts ctxt;
in (fields, ctxt') end;
in
fun add_record overloaded (params, binding) raw_parent raw_fields thy =
let
val ctxt = Proof_Context.init_global thy;
fun cert_typ T = Type.no_tvars (Proof_Context.cert_typ ctxt T)
handle TYPE (msg, _, _) => error msg;
val parent = Option.map (apfst (map cert_typ)) raw_parent
handle ERROR msg =>
cat_error msg ("The error(s) above occurred in parent record specification");
val parent_args = (case parent of SOME (Ts, _) => Ts | NONE => []);
val parents = get_parent_info thy parent;
val bfields =
raw_fields |> map (fn (x, raw_T, mx) => (x, cert_typ raw_T, mx)
handle ERROR msg =>
cat_error msg ("The error(s) above occurred in record field " ^ Binding.print x));
val name = Sign.full_name thy binding;
val err_dup_record =
if is_none (get_info thy name) then []
else ["Duplicate definition of record " ^ quote name];
val spec_frees = fold Term.add_tfreesT (parent_args @ map #2 bfields) [];
val err_extra_frees =
(case subtract (op =) params spec_frees of
[] => []
| extras => ["Extra free type variable(s) " ^
commas (map (Syntax.string_of_typ ctxt o TFree) extras)]);
val err_no_fields = if null bfields then ["No fields present"] else [];
val err_dup_fields =
(case duplicates Binding.eq_name (map #1 bfields) of
[] => []
| dups => ["Duplicate field(s) " ^ commas (map Binding.print dups)]);
val err_bad_fields =
if forall (not_equal moreN o Binding.name_of o #1) bfields then []
else ["Illegal field name " ^ quote moreN];
val errs =
err_dup_record @ err_extra_frees @ err_no_fields @ err_dup_fields @ err_bad_fields;
val _ = if null errs then () else error (cat_lines errs);
in
thy |> definition overloaded (params, binding) parent parents bfields
end
handle ERROR msg => cat_error msg ("Failed to define record " ^ Binding.print binding);
fun add_record_cmd overloaded (raw_params, binding) raw_parent raw_fields thy =
let
val ctxt = Proof_Context.init_global thy;
val params = map (apsnd (Typedecl.read_constraint ctxt)) raw_params;
val ctxt1 = fold (Variable.declare_typ o TFree) params ctxt;
val (parent, ctxt2) = read_parent raw_parent ctxt1;
val (fields, ctxt3) = read_fields raw_fields ctxt2;
val params' = map (Proof_Context.check_tfree ctxt3) params;
in thy |> add_record overloaded (params', binding) parent fields end;
end;
local
fun the_parent_recT (Type (parent, [Type (_, [unit as Type (_,[])])])) = Type (parent, [unit])
| the_parent_recT (Type (extT, [T])) = Type (extT, [the_parent_recT T])
| the_parent_recT T = raise TYPE ("Not a unit record scheme with parent: ", [T], [])
in
fun pretty_recT ctxt typ =
let
val thy = Proof_Context.theory_of ctxt
val (fs, (_, moreT)) = get_recT_fields thy typ
val _ = if moreT = HOLogic.unitT then () else raise TYPE ("Not a unit record scheme: ", [typ], [])
val parent = if length (dest_recTs typ) >= 2 then SOME (the_parent_recT typ) else NONE
val pfs = case parent of SOME p => fst (get_recT_fields thy p) | NONE => []
val fs' = drop (length pfs) fs
fun pretty_field (name, typ) = Pretty.block [
Syntax.pretty_term ctxt (Const (name, typ)),
Pretty.brk 1,
Pretty.str "::",
Pretty.brk 1,
Syntax.pretty_typ ctxt typ
]
in
Pretty.block (Library.separate (Pretty.brk 1)
([Pretty.keyword1 "record", Syntax.pretty_typ ctxt typ, Pretty.str "="] @
(case parent of
SOME p => [Syntax.pretty_typ ctxt p, Pretty.str "+"]
| NONE => [])) @
Pretty.fbrk ::
Pretty.fbreaks (map pretty_field fs'))
end
end
fun string_of_record ctxt s =
let
val T = Syntax.read_typ ctxt s
in
Pretty.string_of (pretty_recT ctxt T)
handle TYPE _ => error ("Unknown record: " ^ Syntax.string_of_typ ctxt T)
end
val print_record =
let
fun print_item string_of (modes, arg) = Toplevel.keep (fn state =>
Print_Mode.with_modes modes (fn () => Output.writeln (string_of state arg)) ());
in print_item (string_of_record o Toplevel.context_of) end
val _ =
Outer_Syntax.command \<^command_keyword>‹record› "define extensible record"
(Parse_Spec.overloaded -- (Parse.type_args_constrained -- Parse.binding) --
(\<^keyword>‹=› |-- Scan.option (Parse.typ --| \<^keyword>‹+›) --
Scan.repeat1 Parse.const_binding)
>> (fn ((overloaded, x), (y, z)) =>
Toplevel.theory (add_record_cmd {overloaded = overloaded} x y z)));
val opt_modes =
Scan.optional (\<^keyword>‹(› |-- Parse.!!! (Scan.repeat1 Parse.name --| \<^keyword>‹)›)) []
val _ =
Outer_Syntax.command \<^command_keyword>‹print_record› "print record definiton"
(opt_modes -- Parse.typ >> print_record);
end