File ‹Tools/int_arith.ML›

(* Author: Tobias Nipkow

A special simproc for the instantiation of the generic linear arithmetic package for int.
*)

signature INT_ARITH =
sig
  val zero_one_idom_simproc: simproc
end

structure Int_Arith : INT_ARITH =
struct

(* Update parameters of arithmetic prover *)

(* reduce contradictory =/</<= to False *)

(* Evaluation of terms of the form "m R n" where R is one of "=", "<=" or "<",
   and m and n are ground terms over rings (roughly speaking).
   That is, m and n consist only of 1s combined with "+", "-" and "*".
*)

val zero_to_of_int_zero_simproc =
  simproc_setuppassive zero_to_of_int_zero ("0::'a::ring") =
    fn _ => fn _ => fn ct =>
      let val T = Thm.ctyp_of_cterm ct in
        if Thm.typ_of T = Typeint then NONE
        else SOME instantiate'a = T in lemma "0  of_int 0" by simp
      end;

val one_to_of_int_one_simproc =
  simproc_setuppassive one_to_of_int_one ("1::'a::ring_1") =
    fn _ => fn _ => fn ct =>
      let val T = Thm.ctyp_of_cterm ct in
        if Thm.typ_of T = Typeint then NONE
        else SOME instantiate'a = T in lemma "1  of_int 1" by simp
      end;

fun check Const_Groups.one Typeint = false
  | check Const_Groups.one _ = true
  | check Const_Groups.zero _ = true
  | check Const_HOL.eq _ = true
  | check Const_times _ = true
  | check Const_uminus _ = true
  | check Const_minus _ = true
  | check Const_plus _ = true
  | check Const_less _ = true
  | check Const_less_eq _ = true
  | check (a $ b) = check a andalso check b
  | check _ = false;

val conv_ss =
  context
  |> put_simpset HOL_basic_ss
  |> fold (Simplifier.add_simp o (fn th => th RS sym))
       @{thms of_int_add of_int_mult
         of_int_diff of_int_minus of_int_less_iff
         of_int_le_iff of_int_eq_iff}
  |> Simplifier.add_proc zero_to_of_int_zero_simproc
  |> Simplifier.add_proc one_to_of_int_one_simproc
  |> simpset_of;

val zero_one_idom_simproc =
  simproc_setuppassive zero_one_idom
    ("(x::'a::ring_char_0) = y" | "(u::'b::linordered_idom) < v" | "(u::'b::linordered_idom)  v") =
    fn _ => fn ctxt => fn ct =>
      if check (Thm.term_of ct)
      then SOME (Simplifier.rewrite (put_simpset conv_ss ctxt) ct)
      else NONE

end;