File ‹Tools/Predicate_Compile/predicate_compile_compilations.ML›

(*  Title:      HOL/Tools/Predicate_Compile/predicate_compile_compilations.ML
    Author:     Lukas Bulwahn, TU Muenchen

Structures for different compilations of the predicate compiler.
*)

structure Predicate_Comp_Funs =  (* FIXME proper signature *)
struct

fun mk_monadT T = Type (type_namePredicate.pred, [T])

fun dest_monadT (Type (type_namePredicate.pred, [T])) = T
  | dest_monadT T = raise TYPE ("dest_monadT", [T], [])

fun mk_empty T = Const (const_nameOrderings.bot, mk_monadT T)

fun mk_single t =
  let val T = fastype_of t
  in Const(const_namePredicate.single, T --> mk_monadT T) $ t end

fun mk_bind (x, f) =
  let val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_namePredicate.bind, fastype_of x --> T --> U) $ x $ f
  end

val mk_plus = HOLogic.mk_binop const_namesup

fun mk_if cond = Const (const_namePredicate.if_pred,
  HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond

fun mk_iterate_upto T (f, from, to) =
  list_comb (Const (const_namePredicate.iterate_upto,
      [typnatural --> T, typnatural, typnatural] ---> mk_monadT T),
    [f, from, to])

fun mk_not t =
  let
    val T = mk_monadT HOLogic.unitT
  in Const (const_namePredicate.not_pred, T --> T) $ t end

fun mk_Enum f =
  let val T as Type ("fun", [T', _]) = fastype_of f
  in
    Const (const_namePredicate.Pred, T --> mk_monadT T') $ f    
  end;

fun mk_Eval (f, x) =
  let
    val T = dest_monadT (fastype_of f)
  in
    Const (const_namePredicate.eval, mk_monadT T --> T --> HOLogic.boolT) $ f $ x
  end

fun dest_Eval (Const (const_namePredicate.eval, _) $ f $ x) = (f, x)

fun mk_map T1 T2 tf tp = Const (const_namePredicate.map,
  (T1 --> T2) --> mk_monadT T1 --> mk_monadT T2) $ tf $ tp

val compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty,
    mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}

end


structure CPS_Comp_Funs =  (* FIXME proper signature *)
struct

fun mk_monadT T =
  (T --> typCode_Evaluation.term list option) --> typCode_Evaluation.term list option

fun dest_monadT
      (Type ("fun", [Type ("fun", [T, typterm list option]), typterm list option])) = T
  | dest_monadT T = raise TYPE ("dest_monadT", [T], []);

fun mk_empty T = Const (const_nameQuickcheck_Exhaustive.cps_empty, mk_monadT T)

fun mk_single t =
  let val T = fastype_of t
  in Const(const_nameQuickcheck_Exhaustive.cps_single, T --> mk_monadT T) $ t end

fun mk_bind (x, f) =
  let val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameQuickcheck_Exhaustive.cps_bind, fastype_of x --> T --> U) $ x $ f
  end

val mk_plus = HOLogic.mk_binop const_nameQuickcheck_Exhaustive.cps_plus

fun mk_if cond = Const (const_nameQuickcheck_Exhaustive.cps_if,
  HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond

fun mk_iterate_upto _ _ = error "not implemented yet"

fun mk_not t =
  let
    val T = mk_monadT HOLogic.unitT
  in Const (const_nameQuickcheck_Exhaustive.cps_not, T --> T) $ t end

fun mk_Enum _ = error "not implemented"

fun mk_Eval _ = error "not implemented"

fun dest_Eval _ = error "not implemented"

fun mk_map _ _ _ _ = error "not implemented"

val compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty,
    mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map};

end


structure Pos_Bounded_CPS_Comp_Funs =  (* FIXME proper signature *)
struct

val resultT = typ(bool * Code_Evaluation.term list) option
fun mk_monadT T = (T --> resultT) --> typnatural --> resultT

fun dest_monadT (Type ("fun", [Type ("fun", [T, typ(bool * term list) option]),
  typnatural => (bool * term list) option])) = T
  | dest_monadT T = raise TYPE ("dest_monadT", [T], [])

fun mk_empty T = Const (const_nameQuickcheck_Exhaustive.pos_bound_cps_empty, mk_monadT T)

fun mk_single t =
  let val T = fastype_of t
  in Const(const_nameQuickcheck_Exhaustive.pos_bound_cps_single, T --> mk_monadT T) $ t end

fun mk_bind (x, f) =
  let val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameQuickcheck_Exhaustive.pos_bound_cps_bind, fastype_of x --> T --> U) $ x $ f
  end;

val mk_plus = HOLogic.mk_binop const_nameQuickcheck_Exhaustive.pos_bound_cps_plus

fun mk_if cond =
  Const (const_nameQuickcheck_Exhaustive.pos_bound_cps_if,
    HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond

fun mk_iterate_upto _ _ = error "not implemented yet"

fun mk_not t =
  let
    val nT = typ(unit Quickcheck_Exhaustive.unknown =>
      Code_Evaluation.term list Quickcheck_Exhaustive.three_valued) => natural =>
      Code_Evaluation.term list Quickcheck_Exhaustive.three_valued
    val T = mk_monadT HOLogic.unitT
  in Const (const_nameQuickcheck_Exhaustive.pos_bound_cps_not, nT --> T) $ t end

fun mk_Enum _ = error "not implemented"

fun mk_Eval _ = error "not implemented"

fun dest_Eval _ = error "not implemented"

fun mk_map _ _ _ _ = error "not implemented"

val compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty,
    mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map};

end


structure Neg_Bounded_CPS_Comp_Funs =  (* FIXME proper signature *)
struct

fun mk_monadT T =
  (Type (type_nameQuickcheck_Exhaustive.unknown, [T])
    --> typCode_Evaluation.term list Quickcheck_Exhaustive.three_valued)
    --> typnatural => Code_Evaluation.term list Quickcheck_Exhaustive.three_valued

fun dest_monadT
    (Type ("fun", [Type ("fun", [Type (type_nameQuickcheck_Exhaustive.unknown, [T]),
      typterm list Quickcheck_Exhaustive.three_valued]),
      typnatural => term list Quickcheck_Exhaustive.three_valued])) = T
  | dest_monadT T = raise TYPE ("dest_monadT", [T], []);

fun mk_empty T = Const (const_nameQuickcheck_Exhaustive.neg_bound_cps_empty, mk_monadT T)

fun mk_single t =
  let val T = fastype_of t
  in Const(const_nameQuickcheck_Exhaustive.neg_bound_cps_single, T --> mk_monadT T) $ t end

fun mk_bind (x, f) =
  let val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameQuickcheck_Exhaustive.neg_bound_cps_bind, fastype_of x --> T --> U) $ x $ f
  end;

val mk_plus = HOLogic.mk_binop const_nameQuickcheck_Exhaustive.neg_bound_cps_plus

fun mk_if cond = Const (const_nameQuickcheck_Exhaustive.neg_bound_cps_if,
  HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond

fun mk_iterate_upto _ _ = error "not implemented"

fun mk_not t =
  let
    val T = mk_monadT HOLogic.unitT
    val pT = typ(unit => (bool * Code_Evaluation.term list) option)
      --> typnatural => (bool * Code_Evaluation.term list) option
  in Const (const_nameQuickcheck_Exhaustive.neg_bound_cps_not, pT --> T) $ t end

fun mk_Enum _ = error "not implemented"

fun mk_Eval _ = error "not implemented"

fun dest_Eval _ = error "not implemented"

fun mk_map _ _ _ _  = error "not implemented"

val compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty,
    mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map};

end;


structure RandomPredCompFuns =  (* FIXME proper signature *)
struct

fun mk_randompredT T =
  typRandom.seed --> HOLogic.mk_prodT (Predicate_Comp_Funs.mk_monadT T, typRandom.seed)

fun dest_randompredT (Type ("fun", [typRandom.seed, Type (type_nameProduct_Type.prod,
  [Type (type_namePredicate.pred, [T]), typRandom.seed])])) = T
  | dest_randompredT T = raise TYPE ("dest_randompredT", [T], [])

fun mk_empty T = Const(const_nameRandom_Pred.empty, mk_randompredT T)

fun mk_single t =
  let               
    val T = fastype_of t
  in
    Const (const_nameRandom_Pred.single, T --> mk_randompredT T) $ t
  end

fun mk_bind (x, f) =
  let
    val T as (Type ("fun", [_, U])) = fastype_of f
  in
    Const (const_nameRandom_Pred.bind, fastype_of x --> T --> U) $ x $ f
  end

val mk_plus = HOLogic.mk_binop const_nameRandom_Pred.union

fun mk_if cond = Const (const_nameRandom_Pred.if_randompred,
  HOLogic.boolT --> mk_randompredT HOLogic.unitT) $ cond;

fun mk_iterate_upto T (f, from, to) =
  list_comb (Const (const_nameRandom_Pred.iterate_upto,
      [typnatural --> T, typnatural, typnatural] ---> mk_randompredT T),
    [f, from, to])

fun mk_not t =
  let
    val T = mk_randompredT HOLogic.unitT
  in Const (const_nameRandom_Pred.not_randompred, T --> T) $ t end

fun mk_map T1 T2 tf tp = Const (const_nameRandom_Pred.map,
  (T1 --> T2) --> mk_randompredT T1 --> mk_randompredT T2) $ tf $ tp

val compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_randompredT, dest_monadT = dest_randompredT,
    mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map};

end


structure DSequence_CompFuns =  (* FIXME proper signature *)
struct

fun mk_dseqT T = Type ("fun", [typnatural, Type ("fun", [typbool,
  Type (type_nameOption.option, [Type  (type_nameLazy_Sequence.lazy_sequence, [T])])])])

fun dest_dseqT (Type ("fun", [typnatural, Type ("fun", [typbool,
  Type (type_nameOption.option, [Type (type_nameLazy_Sequence.lazy_sequence, [T])])])])) = T
  | dest_dseqT T = raise TYPE ("dest_dseqT", [T], []);

fun mk_empty T = Const (const_nameLimited_Sequence.empty, mk_dseqT T);

fun mk_single t =
  let val T = fastype_of t
  in Const(const_nameLimited_Sequence.single, T --> mk_dseqT T) $ t end;

fun mk_bind (x, f) =
  let val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameLimited_Sequence.bind, fastype_of x --> T --> U) $ x $ f
  end;

val mk_plus = HOLogic.mk_binop const_nameLimited_Sequence.union;

fun mk_if cond = Const (const_nameLimited_Sequence.if_seq,
  HOLogic.boolT --> mk_dseqT HOLogic.unitT) $ cond;

fun mk_iterate_upto _ _ = raise Fail "No iterate_upto compilation"

fun mk_not t = let val T = mk_dseqT HOLogic.unitT
  in Const (const_nameLimited_Sequence.not_seq, T --> T) $ t end

fun mk_map T1 T2 tf tp = Const (const_nameLimited_Sequence.map,
  (T1 --> T2) --> mk_dseqT T1 --> mk_dseqT T2) $ tf $ tp

val compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_dseqT, dest_monadT = dest_dseqT,
    mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}

end;


structure New_Pos_DSequence_CompFuns =  (* FIXME proper signature *)
struct

fun mk_pos_dseqT T =
  typnatural --> Type (type_nameLazy_Sequence.lazy_sequence, [T])

fun dest_pos_dseqT
      (Type ("fun", [typnatural, Type (type_nameLazy_Sequence.lazy_sequence, [T])])) = T
  | dest_pos_dseqT T = raise TYPE ("dest_pos_dseqT", [T], [])

fun mk_empty T = Const (const_nameLimited_Sequence.pos_empty, mk_pos_dseqT T)

fun mk_single t =
  let
    val T = fastype_of t
  in Const(const_nameLimited_Sequence.pos_single, T --> mk_pos_dseqT T) $ t end

fun mk_bind (x, f) =
  let
    val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameLimited_Sequence.pos_bind, fastype_of x --> T --> U) $ x $ f
  end
  
fun mk_decr_bind (x, f) =
  let
    val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameLimited_Sequence.pos_decr_bind, fastype_of x --> T --> U) $ x $ f
  end

val mk_plus = HOLogic.mk_binop const_nameLimited_Sequence.pos_union

fun mk_if cond =
  Const (const_nameLimited_Sequence.pos_if_seq,
    HOLogic.boolT --> mk_pos_dseqT HOLogic.unitT) $ cond

fun mk_iterate_upto _ _ = raise Fail "No iterate_upto compilation"

fun mk_not t =
  let
    val pT = mk_pos_dseqT HOLogic.unitT
    val nT =
      typnatural --> Type (type_nameLazy_Sequence.lazy_sequence,
        [Type (type_nameOption.option, [typunit])])
  in Const (const_nameLimited_Sequence.pos_not_seq, nT --> pT) $ t end

fun mk_map T1 T2 tf tp =
  Const (const_nameLimited_Sequence.pos_map,
    (T1 --> T2) --> mk_pos_dseqT T1 --> mk_pos_dseqT T2) $ tf $ tp

val depth_limited_compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_pos_dseqT, dest_monadT = dest_pos_dseqT,
    mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}

val depth_unlimited_compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_pos_dseqT, dest_monadT = dest_pos_dseqT,
    mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}

end


structure New_Neg_DSequence_CompFuns =  (* FIXME proper signature *)
struct

fun mk_neg_dseqT T = typnatural -->
  Type (type_nameLazy_Sequence.lazy_sequence, [Type (type_nameOption.option, [T])])

fun dest_neg_dseqT
    (Type ("fun", [typnatural,
      Type (type_nameLazy_Sequence.lazy_sequence, [Type (type_nameOption.option, [T])])])) =
      T
  | dest_neg_dseqT T = raise TYPE ("dest_neg_dseqT", [T], [])

fun mk_empty T = Const (const_nameLimited_Sequence.neg_empty, mk_neg_dseqT T)

fun mk_single t =
  let
    val T = fastype_of t
  in Const(const_nameLimited_Sequence.neg_single, T --> mk_neg_dseqT T) $ t end

fun mk_bind (x, f) =
  let
    val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameLimited_Sequence.neg_bind, fastype_of x --> T --> U) $ x $ f
  end
  
fun mk_decr_bind (x, f) =
  let
    val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameLimited_Sequence.neg_decr_bind, fastype_of x --> T --> U) $ x $ f
  end

val mk_plus = HOLogic.mk_binop const_nameLimited_Sequence.neg_union

fun mk_if cond =
  Const (const_nameLimited_Sequence.neg_if_seq,
    HOLogic.boolT --> mk_neg_dseqT HOLogic.unitT) $ cond

fun mk_iterate_upto _ _ = raise Fail "No iterate_upto compilation"

fun mk_not t =
  let
    val nT = mk_neg_dseqT HOLogic.unitT
    val pT =
      typnatural --> Type (type_nameLazy_Sequence.lazy_sequence,
        [typunit])
  in Const (const_nameLimited_Sequence.neg_not_seq, pT --> nT) $ t end

fun mk_map T1 T2 tf tp =
  Const (const_nameLimited_Sequence.neg_map,
    (T1 --> T2) --> mk_neg_dseqT T1 --> mk_neg_dseqT T2) $ tf $ tp

val depth_limited_compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_neg_dseqT, dest_monadT = dest_neg_dseqT,
    mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}

val depth_unlimited_compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_neg_dseqT, dest_monadT = dest_neg_dseqT,
    mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}

end


structure New_Pos_Random_Sequence_CompFuns =  (* FIXME proper signature *)
struct

fun mk_pos_random_dseqT T =
  typnatural --> typnatural --> typRandom.seed -->
    typnatural --> Type (type_nameLazy_Sequence.lazy_sequence, [T])

fun dest_pos_random_dseqT
    (Type ("fun", [typnatural, Type ("fun", [typnatural,
      Type ("fun", [typRandom.seed, Type ("fun", [typnatural,
      Type (type_nameLazy_Sequence.lazy_sequence, [T])])])])])) = T
  | dest_pos_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], [])

fun mk_empty T = Const (const_nameRandom_Sequence.pos_empty, mk_pos_random_dseqT T)

fun mk_single t =
  let
    val T = fastype_of t
  in Const(const_nameRandom_Sequence.pos_single, T --> mk_pos_random_dseqT T) $ t end

fun mk_bind (x, f) =
  let
    val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameRandom_Sequence.pos_bind, fastype_of x --> T --> U) $ x $ f
  end

fun mk_decr_bind (x, f) =
  let
    val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameRandom_Sequence.pos_decr_bind, fastype_of x --> T --> U) $ x $ f
  end

val mk_plus = HOLogic.mk_binop const_nameRandom_Sequence.pos_union;

fun mk_if cond = Const (const_nameRandom_Sequence.pos_if_random_dseq,
  HOLogic.boolT --> mk_pos_random_dseqT HOLogic.unitT) $ cond;

fun mk_iterate_upto T (f, from, to) =
  list_comb (Const (const_nameRandom_Sequence.pos_iterate_upto,
      [typnatural --> T, typnatural, typnatural]
        ---> mk_pos_random_dseqT T),
    [f, from, to])

fun mk_not t =
  let
    val pT = mk_pos_random_dseqT HOLogic.unitT
    val nT = typnatural --> typnatural --> typRandom.seed -->
      typnatural --> Type (type_nameLazy_Sequence.lazy_sequence,
        [Type (type_nameOption.option, [typunit])])

  in Const (const_nameRandom_Sequence.pos_not_random_dseq, nT --> pT) $ t end

fun mk_map T1 T2 tf tp =
  Const (const_nameRandom_Sequence.pos_map,
    (T1 --> T2) --> mk_pos_random_dseqT T1 --> mk_pos_random_dseqT T2) $ tf $ tp

val depth_limited_compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_pos_random_dseqT, dest_monadT = dest_pos_random_dseqT,
    mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}

val depth_unlimited_compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_pos_random_dseqT, dest_monadT = dest_pos_random_dseqT,
    mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}

end;


structure New_Neg_Random_Sequence_CompFuns =  (* FIXME proper signature *)
struct

fun mk_neg_random_dseqT T =
  typnatural --> typnatural --> typRandom.seed -->
    typnatural --> 
    Type (type_nameLazy_Sequence.lazy_sequence, [Type (type_nameOption.option, [T])])

fun dest_neg_random_dseqT
    (Type ("fun", [typnatural, Type ("fun", [typnatural,
      Type ("fun", [typRandom.seed, Type ("fun", [typnatural,
        Type (type_nameLazy_Sequence.lazy_sequence,
          [Type (type_nameOption.option, [T])])])])])])) = T
  | dest_neg_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], [])

fun mk_empty T = Const (const_nameRandom_Sequence.neg_empty, mk_neg_random_dseqT T)

fun mk_single t =
  let
    val T = fastype_of t
  in Const(const_nameRandom_Sequence.neg_single, T --> mk_neg_random_dseqT T) $ t end

fun mk_bind (x, f) =
  let
    val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameRandom_Sequence.neg_bind, fastype_of x --> T --> U) $ x $ f
  end

fun mk_decr_bind (x, f) =
  let
    val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameRandom_Sequence.neg_decr_bind, fastype_of x --> T --> U) $ x $ f
  end

val mk_plus = HOLogic.mk_binop const_nameRandom_Sequence.neg_union

fun mk_if cond =
  Const (const_nameRandom_Sequence.neg_if_random_dseq,
    HOLogic.boolT --> mk_neg_random_dseqT HOLogic.unitT) $ cond

fun mk_iterate_upto T (f, from, to) =
  list_comb (Const (const_nameRandom_Sequence.neg_iterate_upto,
      [typnatural --> T, typnatural, typnatural]
        ---> mk_neg_random_dseqT T),
    [f, from, to])

fun mk_not t =
  let
    val nT = mk_neg_random_dseqT HOLogic.unitT
    val pT = typnatural --> typnatural --> typRandom.seed -->
    typnatural --> Type (type_nameLazy_Sequence.lazy_sequence, [typunit])
  in Const (const_nameRandom_Sequence.neg_not_random_dseq, pT --> nT) $ t end

fun mk_map T1 T2 tf tp =
  Const (const_nameRandom_Sequence.neg_map,
    (T1 --> T2) --> mk_neg_random_dseqT T1 --> mk_neg_random_dseqT T2) $ tf $ tp

val depth_limited_compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_neg_random_dseqT, dest_monadT = dest_neg_random_dseqT,
    mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}

val depth_unlimited_compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_neg_random_dseqT, dest_monadT = dest_neg_random_dseqT,
    mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}

end


structure Random_Sequence_CompFuns =  (* FIXME proper signature *)
struct

fun mk_random_dseqT T =
  typnatural --> typnatural --> typRandom.seed -->
    HOLogic.mk_prodT (DSequence_CompFuns.mk_dseqT T, typRandom.seed)

fun dest_random_dseqT
    (Type ("fun", [typnatural, Type ("fun", [typnatural,
      Type ("fun", [typRandom.seed,
      Type (type_nameProduct_Type.prod, [T, typRandom.seed])])])])) =
      DSequence_CompFuns.dest_dseqT T
  | dest_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], [])

fun mk_empty T = Const (const_nameRandom_Sequence.empty, mk_random_dseqT T)

fun mk_single t =
  let
    val T = fastype_of t
  in Const(const_nameRandom_Sequence.single, T --> mk_random_dseqT T) $ t end

fun mk_bind (x, f) =
  let
    val T as Type ("fun", [_, U]) = fastype_of f
  in
    Const (const_nameRandom_Sequence.bind, fastype_of x --> T --> U) $ x $ f
  end

val mk_plus = HOLogic.mk_binop const_nameRandom_Sequence.union

fun mk_if cond =
  Const (const_nameRandom_Sequence.if_random_dseq,
    HOLogic.boolT --> mk_random_dseqT HOLogic.unitT) $ cond

fun mk_iterate_upto _ _ = raise Fail "No iterate_upto compilation"

fun mk_not t =
  let
    val T = mk_random_dseqT HOLogic.unitT
  in Const (const_nameRandom_Sequence.not_random_dseq, T --> T) $ t end

fun mk_map T1 T2 tf tp = Const (const_nameRandom_Sequence.map,
  (T1 --> T2) --> mk_random_dseqT T1 --> mk_random_dseqT T2) $ tf $ tp

val compfuns =
  Predicate_Compile_Aux.CompilationFuns
    {mk_monadT = mk_random_dseqT, dest_monadT = dest_random_dseqT,
    mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
    mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}

end