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theory HOLZF
imports Main
begin

typedecl ZF

axiomatization
Empty :: ZF and
Elem :: ZF ⇒ ZF ⇒ bool and
Sum :: ZF ⇒ ZF and
Power :: ZF ⇒ ZF and
Repl :: ZF ⇒ (ZF ⇒ ZF) ⇒ ZF and
Inf :: ZF

definition Upair :: ZF ⇒ ZF ⇒ ZF where
Upair a b == Repl (Power (Power Empty)) (% x. if x = Empty then a else b)

definition Singleton:: ZF ⇒ ZF where
Singleton x == Upair x x

definition union :: ZF ⇒ ZF ⇒ ZF where
union A B == Sum (Upair A B)

definition SucNat:: ZF ⇒ ZF where
SucNat x == union x (Singleton x)

definition subset :: ZF ⇒ ZF ⇒ bool where
subset A B ≡ ∀ x. Elem x A −→ Elem x B

axiomatization where
Empty: Not (Elem x Empty) and
Ext: (x = y) = (∀ z. Elem z x = Elem z y) and
Sum: Elem z (Sum x) = (∃ y. Elem z y ∧ Elem y x) and
Power : Elem y (Power x) = (subset y x) and
Repl: Elem b (Repl A f ) = (∃ a. Elem a A ∧ b = f a) and
Regularity: A 6= Empty −→ (∃ x. Elem x A ∧ (∀ y. Elem y x −→ Not (Elem y
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A))) and
Infinity: Elem Empty Inf ∧ (∀ x. Elem x Inf −→ Elem (SucNat x) Inf )

definition Sep :: ZF ⇒ (ZF ⇒ bool) ⇒ ZF where
Sep A p == (if (∀ x. Elem x A −→ Not (p x)) then Empty else
(let z = (ε x. Elem x A & p x) in
let f = λx. (if p x then x else z) in Repl A f ))

thm Power [unfolded subset-def ]

theorem Sep: Elem b (Sep A p) = (Elem b A ∧ p b)
〈proof 〉

lemma subset-empty: subset Empty A
〈proof 〉

theorem Upair : Elem x (Upair a b) = (x = a ∨ x = b)
〈proof 〉

lemma Singleton: Elem x (Singleton y) = (x = y)
〈proof 〉

definition Opair :: ZF ⇒ ZF ⇒ ZF where
Opair a b == Upair (Upair a a) (Upair a b)

lemma Upair-singleton: (Upair a a = Upair c d) = (a = c & a = d)
〈proof 〉

lemma Upair-fsteq: (Upair a b = Upair a c) = ((a = b & a = c) | (b = c))
〈proof 〉

lemma Upair-comm: Upair a b = Upair b a
〈proof 〉

theorem Opair : (Opair a b = Opair c d) = (a = c & b = d)
〈proof 〉

definition Replacement :: ZF ⇒ (ZF ⇒ ZF option) ⇒ ZF where
Replacement A f == Repl (Sep A (% a. f a 6= None)) (the o f )

theorem Replacement: Elem y (Replacement A f ) = (∃ x. Elem x A ∧ f x = Some
y)
〈proof 〉

definition Fst :: ZF ⇒ ZF where
Fst q == SOME x. ∃ y. q = Opair x y

definition Snd :: ZF ⇒ ZF where
Snd q == SOME y. ∃ x. q = Opair x y
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theorem Fst: Fst (Opair x y) = x
〈proof 〉

theorem Snd: Snd (Opair x y) = y
〈proof 〉

definition isOpair :: ZF ⇒ bool where
isOpair q == ∃ x y. q = Opair x y

lemma isOpair : isOpair (Opair x y) = True
〈proof 〉

lemma FstSnd: isOpair x =⇒ Opair (Fst x) (Snd x) = x
〈proof 〉

definition CartProd :: ZF ⇒ ZF ⇒ ZF where
CartProd A B == Sum(Repl A (% a. Repl B (% b. Opair a b)))

lemma CartProd: Elem x (CartProd A B) = (∃ a b. Elem a A ∧ Elem b B ∧ x =
(Opair a b))
〈proof 〉

definition explode :: ZF ⇒ ZF set where
explode z == { x. Elem x z }

lemma explode-Empty: (explode x = {}) = (x = Empty)
〈proof 〉

lemma explode-Elem: (x ∈ explode X) = (Elem x X)
〈proof 〉

lemma Elem-explode-in: [[ Elem a A; explode A ⊆ B]] =⇒ a ∈ B
〈proof 〉

lemma explode-CartProd-eq: explode (CartProd a b) = (% (x,y). Opair x y) ‘
((explode a) × (explode b))
〈proof 〉

lemma explode-Repl-eq: explode (Repl A f ) = image f (explode A)
〈proof 〉

definition Domain :: ZF ⇒ ZF where
Domain f == Replacement f (% p. if isOpair p then Some (Fst p) else None)

definition Range :: ZF ⇒ ZF where
Range f == Replacement f (% p. if isOpair p then Some (Snd p) else None)

theorem Domain: Elem x (Domain f ) = (∃ y. Elem (Opair x y) f )
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〈proof 〉

theorem Range: Elem y (Range f ) = (∃ x. Elem (Opair x y) f )
〈proof 〉

theorem union: Elem x (union A B) = (Elem x A | Elem x B)
〈proof 〉

definition Field :: ZF ⇒ ZF where
Field A == union (Domain A) (Range A)

definition app :: ZF ⇒ ZF => ZF (infixl ‹´› 90 ) — function application where
f ´ x == (THE y. Elem (Opair x y) f )

definition isFun :: ZF ⇒ bool where
isFun f == (∀ x y1 y2 . Elem (Opair x y1 ) f & Elem (Opair x y2 ) f −→ y1 =

y2 )

definition Lambda :: ZF ⇒ (ZF ⇒ ZF) ⇒ ZF where
Lambda A f == Repl A (% x. Opair x (f x))

lemma Lambda-app: Elem x A =⇒ (Lambda A f )´x = f x
〈proof 〉

lemma isFun-Lambda: isFun (Lambda A f )
〈proof 〉

lemma domain-Lambda: Domain (Lambda A f ) = A
〈proof 〉

lemma Lambda-ext: (Lambda s f = Lambda t g) = (s = t ∧ (∀ x. Elem x s −→ f
x = g x))
〈proof 〉

definition PFun :: ZF ⇒ ZF ⇒ ZF where
PFun A B == Sep (Power (CartProd A B)) isFun

definition Fun :: ZF ⇒ ZF ⇒ ZF where
Fun A B == Sep (PFun A B) (λ f . Domain f = A)

lemma Fun-Range: Elem f (Fun U V ) =⇒ subset (Range f ) V
〈proof 〉

lemma Elem-Elem-PFun: Elem F (PFun U V ) =⇒ Elem p F =⇒ isOpair p &
Elem (Fst p) U & Elem (Snd p) V
〈proof 〉

lemma Fun-implies-PFun[simp]: Elem f (Fun U V ) =⇒ Elem f (PFun U V )
〈proof 〉
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lemma Elem-Elem-Fun: Elem F (Fun U V ) =⇒ Elem p F =⇒ isOpair p & Elem
(Fst p) U & Elem (Snd p) V
〈proof 〉

lemma PFun-inj: Elem F (PFun U V ) =⇒ Elem x F =⇒ Elem y F =⇒ Fst x =
Fst y =⇒ Snd x = Snd y
〈proof 〉

lemma Fun-total: [[Elem F (Fun U V ); Elem a U ]] =⇒ ∃ x. Elem (Opair a x) F
〈proof 〉

lemma unique-fun-value: [[isFun f ; Elem x (Domain f )]] =⇒ ∃ !y. Elem (Opair x
y) f
〈proof 〉

lemma fun-value-in-range: [[isFun f ; Elem x (Domain f )]] =⇒ Elem (f ´x) (Range
f )
〈proof 〉

lemma fun-range-witness: [[isFun f ; Elem y (Range f )]] =⇒ ∃ x. Elem x (Domain
f ) & f ´x = y
〈proof 〉

lemma Elem-Fun-Lambda: Elem F (Fun U V ) =⇒ ∃ f . F = Lambda U f
〈proof 〉

lemma Elem-Lambda-Fun: Elem (Lambda A f ) (Fun U V ) = (A = U ∧ (∀ x. Elem
x A −→ Elem (f x) V ))
〈proof 〉

definition is-Elem-of :: (ZF ∗ ZF) set where
is-Elem-of == { (a,b) | a b. Elem a b }

lemma cond-wf-Elem:
assumes hyps:∀ x. (∀ y. Elem y x −→ Elem y U −→ P y) −→ Elem x U −→ P

x Elem a U
shows P a
〈proof 〉

lemma cond2-wf-Elem:
assumes

special-P: ∃U . ∀ x. Not(Elem x U ) −→ (P x)
and P-induct: ∀ x. (∀ y. Elem y x −→ P y) −→ P x

shows
P a

〈proof 〉

5



primrec nat2Nat :: nat ⇒ ZF where
nat2Nat-0 [intro]: nat2Nat 0 = Empty
| nat2Nat-Suc[intro]: nat2Nat (Suc n) = SucNat (nat2Nat n)

definition Nat2nat :: ZF ⇒ nat where
Nat2nat == inv nat2Nat

lemma Elem-nat2Nat-inf [intro]: Elem (nat2Nat n) Inf
〈proof 〉

definition Nat :: ZF
where Nat == Sep Inf (λN . ∃n. nat2Nat n = N )

lemma Elem-nat2Nat-Nat[intro]: Elem (nat2Nat n) Nat
〈proof 〉

lemma Elem-Empty-Nat: Elem Empty Nat
〈proof 〉

lemma Elem-SucNat-Nat: Elem N Nat =⇒ Elem (SucNat N ) Nat
〈proof 〉

lemma no-infinite-Elem-down-chain:
Not (∃ f . isFun f ∧ Domain f = Nat ∧ (∀N . Elem N Nat −→ Elem (f ´(SucNat

N )) (f ´N )))
〈proof 〉

lemma Upair-nonEmpty: Upair a b 6= Empty
〈proof 〉

lemma Singleton-nonEmpty: Singleton x 6= Empty
〈proof 〉

lemma notsym-Elem: Not(Elem a b & Elem b a)
〈proof 〉

lemma irreflexiv-Elem: Not(Elem a a)
〈proof 〉

lemma antisym-Elem: Elem a b =⇒ Not (Elem b a)
〈proof 〉

primrec NatInterval :: nat ⇒ nat ⇒ ZF where
NatInterval n 0 = Singleton (nat2Nat n)
| NatInterval n (Suc m) = union (NatInterval n m) (Singleton (nat2Nat (n+m+1 )))

lemma n-Elem-NatInterval[rule-format]: ∀ q. q ≤ m −→ Elem (nat2Nat (n+q))
(NatInterval n m)
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〈proof 〉

lemma NatInterval-not-Empty: NatInterval n m 6= Empty
〈proof 〉

lemma increasing-nat2Nat[rule-format]: 0 < n −→ Elem (nat2Nat (n − 1 ))
(nat2Nat n)
〈proof 〉

lemma represent-NatInterval[rule-format]: Elem x (NatInterval n m) −→ (∃ u. n
≤ u ∧ u ≤ n+m ∧ nat2Nat u = x)
〈proof 〉

lemma inj-nat2Nat: inj nat2Nat
〈proof 〉

lemma Nat2nat-nat2Nat[simp]: Nat2nat (nat2Nat n) = n
〈proof 〉

lemma nat2Nat-Nat2nat[simp]: Elem n Nat =⇒ nat2Nat (Nat2nat n) = n
〈proof 〉

lemma Nat2nat-SucNat: Elem N Nat =⇒ Nat2nat (SucNat N ) = Suc (Nat2nat
N )
〈proof 〉

lemma Elem-Opair-exists: ∃ z. Elem x z & Elem y z & Elem z (Opair x y)
〈proof 〉

lemma UNIV-is-not-in-ZF : UNIV 6= explode R
〈proof 〉

definition SpecialR :: (ZF ∗ ZF) set where
SpecialR ≡ { (x, y) . x 6= Empty ∧ y = Empty}

lemma wf SpecialR
〈proof 〉

definition Ext :: ( ′a ∗ ′b) set ⇒ ′b ⇒ ′a set where
Ext R y ≡ { x . (x, y) ∈ R }

lemma Ext-Elem: Ext is-Elem-of = explode
〈proof 〉

lemma Ext SpecialR Empty 6= explode z
〈proof 〉
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definition implode :: ZF set ⇒ ZF where
implode == inv explode

lemma inj-explode: inj explode
〈proof 〉

lemma implode-explode[simp]: implode (explode x) = x
〈proof 〉

definition regular :: (ZF ∗ ZF) set ⇒ bool where
regular R == ∀A. A 6= Empty −→ (∃ x. Elem x A ∧ (∀ y. (y, x) ∈ R −→ Not

(Elem y A)))

definition set-like :: (ZF ∗ ZF) set ⇒ bool where
set-like R == ∀ y. Ext R y ∈ range explode

definition wfzf :: (ZF ∗ ZF) set ⇒ bool where
wfzf R == regular R ∧ set-like R

lemma regular-Elem: regular is-Elem-of
〈proof 〉

lemma set-like-Elem: set-like is-Elem-of
〈proof 〉

lemma wfzf-is-Elem-of : wfzf is-Elem-of
〈proof 〉

definition SeqSum :: (nat ⇒ ZF) ⇒ ZF where
SeqSum f == Sum (Repl Nat (f o Nat2nat))

lemma SeqSum: Elem x (SeqSum f ) = (∃n. Elem x (f n))
〈proof 〉

definition Ext-ZF :: (ZF ∗ ZF) set ⇒ ZF ⇒ ZF where
Ext-ZF R s == implode (Ext R s)

lemma Elem-implode: A ∈ range explode =⇒ Elem x (implode A) = (x ∈ A)
〈proof 〉

lemma Elem-Ext-ZF : set-like R =⇒ Elem x (Ext-ZF R s) = ((x,s) ∈ R)
〈proof 〉

primrec Ext-ZF-n :: (ZF ∗ ZF) set ⇒ ZF ⇒ nat ⇒ ZF where
Ext-ZF-n R s 0 = Ext-ZF R s
| Ext-ZF-n R s (Suc n) = Sum (Repl (Ext-ZF-n R s n) (Ext-ZF R))

definition Ext-ZF-hull :: (ZF ∗ ZF) set ⇒ ZF ⇒ ZF where
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Ext-ZF-hull R s == SeqSum (Ext-ZF-n R s)

lemma Elem-Ext-ZF-hull:
assumes set-like-R: set-like R
shows Elem x (Ext-ZF-hull R S) = (∃n. Elem x (Ext-ZF-n R S n))
〈proof 〉

lemma Elem-Elem-Ext-ZF-hull:
assumes set-like-R: set-like R

and x-hull: Elem x (Ext-ZF-hull R S)
and y-R-x: (y, x) ∈ R

shows Elem y (Ext-ZF-hull R S)
〈proof 〉

lemma wfzf-minimal:
assumes hyps: wfzf R C 6= {}
shows ∃ x. x ∈ C ∧ (∀ y. (y, x) ∈ R −→ y /∈ C )
〈proof 〉

lemma wfzf-implies-wf : wfzf R =⇒ wf R
〈proof 〉

lemma wf-is-Elem-of : wf is-Elem-of
〈proof 〉

lemma in-Ext-RTrans-implies-Elem-Ext-ZF-hull:
set-like R =⇒ x ∈ (Ext (R+) s) =⇒ Elem x (Ext-ZF-hull R s)
〈proof 〉

lemma implodeable-Ext-trancl: set-like R =⇒ set-like (R+)
〈proof 〉

lemma Elem-Ext-ZF-hull-implies-in-Ext-RTrans[rule-format]:
set-like R =⇒ ∀ x. Elem x (Ext-ZF-n R s n) −→ x ∈ (Ext (R+) s)
〈proof 〉

lemma set-like R =⇒ Ext-ZF (R+) s = Ext-ZF-hull R s
〈proof 〉

lemma wf-implies-regular : wf R =⇒ regular R
〈proof 〉

lemma wf-eq-wfzf : (wf R ∧ set-like R) = wfzf R
〈proof 〉

lemma wfzf-trancl: wfzf R =⇒ wfzf (R+)
〈proof 〉

lemma Ext-subset-mono: R ⊆ S =⇒ Ext R y ⊆ Ext S y
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〈proof 〉

lemma set-like-subset: set-like R =⇒ S ⊆ R =⇒ set-like S
〈proof 〉

lemma wfzf-subset: wfzf S =⇒ R ⊆ S =⇒ wfzf R
〈proof 〉

end

theory Zet
imports HOLZF
begin

definition zet = {A :: ′a set | A f z. inj-on f A ∧ f ‘ A ⊆ explode z}

typedef ′a zet = zet :: ′a set set
〈proof 〉

definition zin :: ′a ⇒ ′a zet ⇒ bool where
zin x A == x ∈ (Rep-zet A)

lemma zet-ext-eq: (A = B) = (∀ x. zin x A = zin x B)
〈proof 〉

definition zimage :: ( ′a ⇒ ′b) ⇒ ′a zet ⇒ ′b zet where
zimage f A == Abs-zet (image f (Rep-zet A))

lemma zet-def ′: zet = {A :: ′a set | A f z. inj-on f A ∧ f ‘ A = explode z}
〈proof 〉

lemma image-zet-rep: A ∈ zet =⇒ ∃ z . g ‘ A = explode z
〈proof 〉

lemma zet-image-mem:
assumes Azet: A ∈ zet
shows g ‘ A ∈ zet
〈proof 〉

lemma Rep-zimage-eq: Rep-zet (zimage f A) = image f (Rep-zet A)
〈proof 〉

lemma zimage-iff : zin y (zimage f A) = (∃ x. zin x A ∧ y = f x)
〈proof 〉

definition zimplode :: ZF zet ⇒ ZF where
zimplode A == implode (Rep-zet A)
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definition zexplode :: ZF ⇒ ZF zet where
zexplode z == Abs-zet (explode z)

lemma Rep-zet-eq-explode: ∃ z. Rep-zet A = explode z
〈proof 〉

lemma zexplode-zimplode: zexplode (zimplode A) = A
〈proof 〉

lemma explode-mem-zet: explode z ∈ zet
〈proof 〉

lemma zimplode-zexplode: zimplode (zexplode z) = z
〈proof 〉

lemma zin-zexplode-eq: zin x (zexplode A) = Elem x A
〈proof 〉

lemma comp-zimage-eq: zimage g (zimage f A) = zimage (g o f ) A
〈proof 〉

definition zunion :: ′a zet ⇒ ′a zet ⇒ ′a zet where
zunion a b ≡ Abs-zet ((Rep-zet a) ∪ (Rep-zet b))

definition zsubset :: ′a zet ⇒ ′a zet ⇒ bool where
zsubset a b ≡ ∀ x. zin x a −→ zin x b

lemma explode-union: explode (union a b) = (explode a) ∪ (explode b)
〈proof 〉

lemma Rep-zet-zunion: Rep-zet (zunion a b) = (Rep-zet a) ∪ (Rep-zet b)
〈proof 〉

lemma zunion: zin x (zunion a b) = ((zin x a) ∨ (zin x b))
〈proof 〉

lemma zimage-zexplode-eq: zimage f (zexplode z) = zexplode (Repl z f )
〈proof 〉

lemma range-explode-eq-zet: range explode = zet
〈proof 〉

lemma Elem-zimplode: (Elem x (zimplode z)) = (zin x z)
〈proof 〉

definition zempty :: ′a zet where
zempty ≡ Abs-zet {}

lemma zempty[simp]: ¬ (zin x zempty)

11



〈proof 〉

lemma zimage-zempty[simp]: zimage f zempty = zempty
〈proof 〉

lemma zunion-zempty-left[simp]: zunion zempty a = a
〈proof 〉

lemma zunion-zempty-right[simp]: zunion a zempty = a
〈proof 〉

lemma zimage-id[simp]: zimage id A = A
〈proof 〉

lemma zimage-cong[fundef-cong]: [[ M = N ; !! x. zin x N =⇒ f x = g x ]] =⇒
zimage f M = zimage g N
〈proof 〉

end

theory LProd
imports HOL−Library.Multiset
begin

inductive-set
lprod :: ( ′a ∗ ′a) set ⇒ ( ′a list ∗ ′a list) set
for R :: ( ′a ∗ ′a) set

where
lprod-single[intro!]: (a, b) ∈ R =⇒ ([a], [b]) ∈ lprod R
| lprod-list[intro!]: (ah@at, bh@bt) ∈ lprod R =⇒ (a,b) ∈ R ∨ a = b =⇒ (ah@a#at,
bh@b#bt) ∈ lprod R

lemma (as,bs) ∈ lprod R =⇒ length as = length bs
〈proof 〉

lemma (as, bs) ∈ lprod R =⇒ 1 ≤ length as ∧ 1 ≤ length bs
〈proof 〉

lemma lprod-subset-elem: (as, bs) ∈ lprod S =⇒ S ⊆ R =⇒ (as, bs) ∈ lprod R
〈proof 〉

lemma lprod-subset: S ⊆ R =⇒ lprod S ⊆ lprod R
〈proof 〉

lemma lprod-implies-mult: (as, bs) ∈ lprod R =⇒ trans R =⇒ (mset as, mset bs)
∈ mult R
〈proof 〉
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lemma wf-lprod[simp,intro]:
assumes wf-R: wf R
shows wf (lprod R)
〈proof 〉

definition gprod-2-2 :: ( ′a ∗ ′a) set ⇒ (( ′a ∗ ′a) ∗ ( ′a ∗ ′a)) set where
gprod-2-2 R ≡ { ((a,b), (c,d)) . (a = c ∧ (b,d) ∈ R) ∨ (b = d ∧ (a,c) ∈ R) }

definition gprod-2-1 :: ( ′a ∗ ′a) set ⇒ (( ′a ∗ ′a) ∗ ( ′a ∗ ′a)) set where
gprod-2-1 R ≡ { ((a,b), (c,d)) . (a = d ∧ (b,c) ∈ R) ∨ (b = c ∧ (a,d) ∈ R) }

lemma lprod-2-3 : (a, b) ∈ R =⇒ ([a, c], [b, c]) ∈ lprod R
〈proof 〉

lemma lprod-2-4 : (a, b) ∈ R =⇒ ([c, a], [c, b]) ∈ lprod R
〈proof 〉

lemma lprod-2-1 : (a, b) ∈ R =⇒ ([c, a], [b, c]) ∈ lprod R
〈proof 〉

lemma lprod-2-2 : (a, b) ∈ R =⇒ ([a, c], [c, b]) ∈ lprod R
〈proof 〉

lemma [simp, intro]:
assumes wfR: wf R shows wf (gprod-2-1 R)
〈proof 〉

lemma [simp, intro]:
assumes wfR: wf R shows wf (gprod-2-2 R)
〈proof 〉

lemma lprod-3-1 : assumes (x ′, x) ∈ R shows ([y, z, x ′], [x, y, z]) ∈ lprod R
〈proof 〉

lemma lprod-3-2 : assumes (z ′,z) ∈ R shows ([z ′, x, y], [x,y,z]) ∈ lprod R
〈proof 〉

lemma lprod-3-3 : assumes xr : (xr , x) ∈ R shows ([xr , y, z], [x, y, z]) ∈ lprod R
〈proof 〉

lemma lprod-3-4 : assumes yr : (yr , y) ∈ R shows ([x, yr , z], [x, y, z]) ∈ lprod R
〈proof 〉

lemma lprod-3-5 : assumes zr : (zr , z) ∈ R shows ([x, y, zr ], [x, y, z]) ∈ lprod R
〈proof 〉

lemma lprod-3-6 : assumes y ′: (y ′, y) ∈ R shows ([x, z, y ′], [x, y, z]) ∈ lprod R
〈proof 〉
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lemma lprod-3-7 : assumes z ′: (z ′,z) ∈ R shows ([x, z ′, y], [x, y, z]) ∈ lprod R
〈proof 〉

definition perm :: ( ′a ⇒ ′a) ⇒ ′a set ⇒ bool where
perm f A ≡ inj-on f A ∧ f ‘ A = A

lemma ((as,bs) ∈ lprod R) =
(∃ f . perm f {0 ..< (length as)} ∧
(∀ j. j < length as −→ ((nth as j, nth bs (f j)) ∈ R ∨ (nth as j = nth bs (f j))))
∧
(∃ i. i < length as ∧ (nth as i, nth bs (f i)) ∈ R))
〈proof 〉

lemma trans R =⇒ (ah@a#at, bh@b#bt) ∈ lprod R =⇒ (b, a) ∈ R ∨ a = b =⇒
(ah@at, bh@bt) ∈ lprod R
〈proof 〉

end

theory MainZF
imports Zet LProd
begin

end

theory Games
imports MainZF
begin

definition fixgames :: ZF set ⇒ ZF set where
fixgames A ≡ { Opair l r | l r . explode l ⊆ A & explode r ⊆ A}

definition games-lfp :: ZF set where
games-lfp ≡ lfp fixgames

definition games-gfp :: ZF set where
games-gfp ≡ gfp fixgames

lemma mono-fixgames: mono (fixgames)
〈proof 〉

lemma games-lfp-unfold: games-lfp = fixgames games-lfp
〈proof 〉

lemma games-gfp-unfold: games-gfp = fixgames games-gfp
〈proof 〉
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lemma games-lfp-nonempty: Opair Empty Empty ∈ games-lfp
〈proof 〉

definition left-option :: ZF ⇒ ZF ⇒ bool where
left-option g opt ≡ (Elem opt (Fst g))

definition right-option :: ZF ⇒ ZF ⇒ bool where
right-option g opt ≡ (Elem opt (Snd g))

definition is-option-of :: (ZF ∗ ZF) set where
is-option-of ≡ { (opt, g) | opt g. g ∈ games-gfp ∧ (left-option g opt ∨ right-option

g opt) }

lemma games-lfp-subset-gfp: games-lfp ⊆ games-gfp
〈proof 〉

lemma games-option-stable:
assumes fixgames: games = fixgames games
and g: g ∈ games
and opt: left-option g opt ∨ right-option g opt
shows opt ∈ games
〈proof 〉

lemma option2elem: (opt,g) ∈ is-option-of =⇒ ∃ u v. Elem opt u ∧ Elem u v ∧
Elem v g
〈proof 〉

lemma is-option-of-subset-is-Elem-of : is-option-of ⊆ (is-Elem-of +)
〈proof 〉

lemma wfzf-is-option-of : wfzf is-option-of
〈proof 〉

lemma games-gfp-imp-lfp: g ∈ games-gfp −→ g ∈ games-lfp
〈proof 〉

theorem games-lfp-eq-gfp: games-lfp = games-gfp
〈proof 〉

theorem unique-games: (g = fixgames g) = (g = games-lfp)
〈proof 〉

lemma games-lfp-option-stable:
assumes g: g ∈ games-lfp
and opt: left-option g opt ∨ right-option g opt
shows opt ∈ games-lfp
〈proof 〉

lemma is-option-of-imp-games:
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assumes hyp: (opt, g) ∈ is-option-of
shows opt ∈ games-lfp ∧ g ∈ games-lfp
〈proof 〉

lemma games-lfp-represent: x ∈ games-lfp =⇒ ∃ l r . x = Opair l r
〈proof 〉

definition game = games-lfp

typedef game = game
〈proof 〉

definition left-options :: game ⇒ game zet where
left-options g ≡ zimage Abs-game (zexplode (Fst (Rep-game g)))

definition right-options :: game ⇒ game zet where
right-options g ≡ zimage Abs-game (zexplode (Snd (Rep-game g)))

definition options :: game ⇒ game zet where
options g ≡ zunion (left-options g) (right-options g)

definition Game :: game zet ⇒ game zet ⇒ game where
Game L R ≡ Abs-game (Opair (zimplode (zimage Rep-game L)) (zimplode (zimage

Rep-game R)))

lemma Repl-Rep-game-Abs-game: ∀ e. Elem e z −→ e ∈ games-lfp =⇒ Repl z
(Rep-game o Abs-game) = z
〈proof 〉

lemma game-split: g = Game (left-options g) (right-options g)
〈proof 〉

lemma Opair-in-games-lfp:
assumes l: explode l ⊆ games-lfp
and r : explode r ⊆ games-lfp
shows Opair l r ∈ games-lfp
〈proof 〉

lemma left-options[simp]: left-options (Game l r) = l
〈proof 〉

lemma right-options[simp]: right-options (Game l r) = r
〈proof 〉

lemma Game-ext: (Game l1 r1 = Game l2 r2 ) = ((l1 = l2 ) ∧ (r1 = r2 ))
〈proof 〉

definition option-of :: (game ∗ game) set where
option-of ≡ image (λ (option, g). (Abs-game option, Abs-game g)) is-option-of
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lemma option-to-is-option-of : ((option, g) ∈ option-of ) = ((Rep-game option,
Rep-game g) ∈ is-option-of )
〈proof 〉

lemma wf-is-option-of : wf is-option-of
〈proof 〉

lemma wf-option-of [simp, intro]: wf option-of
〈proof 〉

lemma right-option-is-option[simp, intro]: zin x (right-options g) =⇒ zin x (options
g)
〈proof 〉

lemma left-option-is-option[simp, intro]: zin x (left-options g) =⇒ zin x (options
g)
〈proof 〉

lemma zin-options[simp, intro]: zin x (options g) =⇒ (x, g) ∈ option-of
〈proof 〉

function
neg-game :: game ⇒ game

where
[simp del]: neg-game g = Game (zimage neg-game (right-options g)) (zimage

neg-game (left-options g))
〈proof 〉
termination 〈proof 〉

lemma neg-game (neg-game g) = g
〈proof 〉

function
ge-game :: (game ∗ game) ⇒ bool

where
[simp del]: ge-game (G, H ) = (∀ x. if zin x (right-options G) then (

if zin x (left-options H ) then ¬ (ge-game (H , x) ∨ (ge-game
(x, G)))

else ¬ (ge-game (H , x)))
else (if zin x (left-options H ) then ¬ (ge-game (x, G)) else

True))
〈proof 〉
termination 〈proof 〉

lemma ge-game-eq: ge-game (G, H ) = (∀ x. (zin x (right-options G) −→ ¬
ge-game (H , x)) ∧ (zin x (left-options H ) −→ ¬ ge-game (x, G)))
〈proof 〉
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lemma ge-game-leftright-refl[rule-format]:
∀ y. (zin y (right-options x) −→ ¬ ge-game (x, y)) ∧ (zin y (left-options x) −→
¬ (ge-game (y, x))) ∧ ge-game (x, x)
〈proof 〉

lemma ge-game-refl: ge-game (x,x) 〈proof 〉

lemma ∀ y. (zin y (right-options x) −→ ¬ ge-game (x, y)) ∧ (zin y (left-options
x) −→ ¬ (ge-game (y, x))) ∧ ge-game (x, x)
〈proof 〉

definition eq-game :: game ⇒ game ⇒ bool where
eq-game G H ≡ ge-game (G, H ) ∧ ge-game (H , G)

lemma eq-game-sym: (eq-game G H ) = (eq-game H G)
〈proof 〉

lemma eq-game-refl: eq-game G G
〈proof 〉

lemma induct-game: (
∧

x. ∀ y. (y, x) ∈ lprod option-of −→ P y =⇒ P x) =⇒ P a
〈proof 〉

lemma ge-game-trans:
assumes ge-game (x, y) ge-game (y, z)
shows ge-game (x, z)
〈proof 〉

lemma eq-game-trans: eq-game a b =⇒ eq-game b c =⇒ eq-game a c
〈proof 〉

definition zero-game :: game
where zero-game ≡ Game zempty zempty

function
plus-game :: game ⇒ game ⇒ game

where
[simp del]: plus-game G H = Game (zunion (zimage (λ g. plus-game g H )

(left-options G))
(zimage (λ h. plus-game G h) (left-options H )))

(zunion (zimage (λ g. plus-game g H ) (right-options G))
(zimage (λ h. plus-game G h) (right-options H )))

〈proof 〉
termination 〈proof 〉

lemma plus-game-comm: plus-game G H = plus-game H G
〈proof 〉

lemma game-ext-eq: (G = H ) = (left-options G = left-options H ∧ right-options
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G = right-options H )
〈proof 〉

lemma left-zero-game[simp]: left-options (zero-game) = zempty
〈proof 〉

lemma right-zero-game[simp]: right-options (zero-game) = zempty
〈proof 〉

lemma plus-game-zero-right[simp]: plus-game G zero-game = G
〈proof 〉

lemma plus-game-zero-left: plus-game zero-game G = G
〈proof 〉

lemma left-imp-options[simp]: zin opt (left-options g) =⇒ zin opt (options g)
〈proof 〉

lemma right-imp-options[simp]: zin opt (right-options g) =⇒ zin opt (options g)
〈proof 〉

lemma left-options-plus:
left-options (plus-game u v) = zunion (zimage (λg. plus-game g v) (left-options

u)) (zimage (λh. plus-game u h) (left-options v))
〈proof 〉

lemma right-options-plus:
right-options (plus-game u v) = zunion (zimage (λg. plus-game g v) (right-options

u)) (zimage (λh. plus-game u h) (right-options v))
〈proof 〉

lemma left-options-neg: left-options (neg-game u) = zimage neg-game (right-options
u)
〈proof 〉

lemma right-options-neg: right-options (neg-game u) = zimage neg-game (left-options
u)
〈proof 〉

lemma plus-game-assoc: plus-game (plus-game F G) H = plus-game F (plus-game
G H )
〈proof 〉

lemma neg-plus-game: neg-game (plus-game G H ) = plus-game (neg-game G)
(neg-game H )
〈proof 〉

lemma eq-game-plus-inverse: eq-game (plus-game x (neg-game x)) zero-game
〈proof 〉
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lemma ge-plus-game-left: ge-game (y,z) = ge-game (plus-game x y, plus-game x
z)
〈proof 〉

lemma ge-plus-game-right: ge-game (y,z) = ge-game(plus-game y x, plus-game z
x)
〈proof 〉

lemma ge-neg-game: ge-game (neg-game x, neg-game y) = ge-game (y, x)
〈proof 〉

definition eq-game-rel :: (game ∗ game) set where
eq-game-rel ≡ { (p, q) . eq-game p q }

definition Pg = UNIV //eq-game-rel

typedef Pg = Pg
〈proof 〉

lemma equiv-eq-game[simp]: equiv UNIV eq-game-rel
〈proof 〉

instantiation Pg :: {ord, zero, plus, minus, uminus}
begin

definition
Pg-zero-def : 0 = Abs-Pg (eq-game-rel ‘‘ {zero-game})

definition
Pg-le-def : G ≤ H ←→ (∃ g h. g ∈ Rep-Pg G ∧ h ∈ Rep-Pg H ∧ ge-game (h, g))

definition
Pg-less-def : G < H ←→ G ≤ H ∧ G 6= (H ::Pg)

definition
Pg-minus-def : − G = the-elem (

⋃
g ∈ Rep-Pg G. {Abs-Pg (eq-game-rel ‘‘ {neg-game

g})})

definition
Pg-plus-def : G + H = the-elem (

⋃
g ∈ Rep-Pg G.

⋃
h ∈ Rep-Pg H . {Abs-Pg

(eq-game-rel ‘‘ {plus-game g h})})

definition
Pg-diff-def : G − H = G + (− (H ::Pg))

instance 〈proof 〉

end

20



lemma Rep-Abs-eq-Pg[simp]: Rep-Pg (Abs-Pg (eq-game-rel ‘‘ {g})) = eq-game-rel
‘‘ {g}
〈proof 〉

lemma char-Pg-le[simp]: (Abs-Pg (eq-game-rel ‘‘ {g}) ≤ Abs-Pg (eq-game-rel ‘‘
{h})) = (ge-game (h, g))
〈proof 〉

lemma char-Pg-eq[simp]: (Abs-Pg (eq-game-rel ‘‘ {g}) = Abs-Pg (eq-game-rel ‘‘
{h})) = (eq-game g h)
〈proof 〉

lemma char-Pg-plus[simp]: Abs-Pg (eq-game-rel ‘‘ {g}) + Abs-Pg (eq-game-rel ‘‘
{h}) = Abs-Pg (eq-game-rel ‘‘ {plus-game g h})
〈proof 〉

lemma char-Pg-minus[simp]: − Abs-Pg (eq-game-rel ‘‘ {g}) = Abs-Pg (eq-game-rel
‘‘ {neg-game g})
〈proof 〉

lemma eq-Abs-Pg[rule-format, cases type: Pg]: (∀ g. z = Abs-Pg (eq-game-rel ‘‘
{g}) −→ P) −→ P
〈proof 〉

instance Pg :: ordered-ab-group-add
〈proof 〉

end
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