ZF

Steven Obua

January 18, 2026

theory HOLZF
imports Main
begin

typedecl ZF

axiomatization
Empty :: ZF and
FElem :: ZF = ZF = bool and
Sum :: ZF = ZF and
Power :: ZF = ZF and
Repl :: ZF = (ZF = ZF) = ZF and
Inf :: ZF

definition Upair :: ZF = ZF = ZF where
Upair a b == Repl (Power (Power Empty)) (% z. if x = Empty then a else b)

definition Singleton:: ZF = ZF where
Singleton x == Upair x x

definition union :: ZF = ZF = ZF where
union A B == Sum (Upair A B)

definition SucNat:: ZF = ZF where
SucNat © == union x (Singleton x)

definition subset :: ZF = ZF = bool where
subset A B=Vz. Elem x A — Elem z B

axiomatization where
Empty: Not (Elem x Empty) and
Ezt: (x = y) = (V2. Elem z © = Elem z y) and
Sum: Elem z (Sum z) = (3y. Elem z y A Elem y z) and
Power: Elem y (Power z) = (subset y z) and
Repl: Elem b (Repl A f) = (3a. Elem a A A b= fa) and
Regularity: A # Empty — (3z. Elem ¢ A N (Vy. Elem y £ — Not (Elem y

A))) and
Infinity: Elem Empty Inf A (Vz. Elem x Inf — Elem (SucNat z) Inf)

definition Sep :: ZF = (ZF = bool) = ZF where
Sep A p == (if (Vx. Elem x A — Not (p z)) then Empty else
(let z= (¢ z. Elemz A & p z) in
let f = Az. (if p x then z else z) in Repl A f))

thm Power|unfolded subset-def]

theorem Sep: Elem b (Sep A p) = (Elem b A A\ p b)
(proof)

lemma subset-empty: subset Empty A

(proof)

theorem Upair: Elem z (Upair a b) = (x = a V z = b)
{proof)

lemma Singleton: Elem x (Singleton y) = (z = y)
(proof)

definition Opair :: ZF = ZF = ZF where
Opair a b == Upair (Upair a a) (Upair a b)

lemma Upair-singleton: (Upair a a = Upair ¢ d) = (a = ¢ & a = d)
(proof)

lemma Upair-fsteq: (Upair a b = Upair a c) = (a=b& a=c¢) | (b = ¢))
{proof)

lemma Upair-comm: Upair a b = Upair b a

{proof)

theorem Opair: (Opair a b = Opair c d) = (a = c & b= d)
{proof)

definition Replacement :: ZF = (ZF = ZF option) = ZF where
Replacement A f == Repl (Sep A (% a. f a # None)) (the o f)

theorem Replacement: Elem y (Replacement A f) = (3x. Elem z A A fz = Some

y)
(proof)

definition Fst :: ZF = ZF where
Fst ¢ == SOME z. 3y. ¢ = Opair z y

definition Snd :: ZF = ZF where
Snd ¢ == SOME y. 3z. ¢ = Opair x y

theorem Fst: Fst (Opairx y) =z
{proof)

theorem Snd: Snd (Opair x y) =y
(proof)

definition isOpair :: ZF = bool where
1sOpair ¢q == 3z y. ¢ = Opair ¢y

lemma isOpair: isOpair (Opair z y) = True
(proof)

lemma FstSnd: isOpair ¥ = Opair (Fst z) (Snd z) = =
{proof)

definition CartProd :: ZF = ZF = ZF where
CartProd A B == Sum(Repl A (% a. Repl B (% b. Opair a b)))

lemma CartProd: Elem x (CartProd A B) = (3a b. Elem a A A Elem b B A x =
(Opair a b))
{proof)

definition explode :: ZF = ZF set where
explode z == { z. Elem z z }

lemma explode-Empty: (explode x = {}) = (z = Empty)
(proof)

lemma explode-Elem: (z € explode X) = (Elem z X)
{proof)

lemma FElem-explode-in: | Elem a A; explode A C B] = a € B
(proof)

lemma explode-CartProd-eq: explode (CartProd a b) = (% (=,y). Opair z y) *
((explode a) x (explode b))
(proof)

lemma explode-Repl-eq: explode (Repl A f) = image f (explode A)
(proof)

definition Domain :: ZF = ZF where
Domain f == Replacement f (% p. if isOpair p then Some (Fst p) else None)

definition Range :: ZF = ZF where
Range f == Replacement f (% p. if isOpair p then Some (Snd p) else None)

theorem Domain: Elem x (Domain f) = (3y. Elem (Opair z y) f)

{proof)

theorem Range: Elem y (Range f) = (3z. Elem (Opair z y) f)
(proof)

theorem union: Elem z (union A B) = (Elem z A | Elem z B)
(proof)

definition Field :: ZF = ZF where
Field A == union (Domain A) (Range A)

definition app :: ZF = ZF => ZF (infixl ") 90) — function application where
f & == (THE y. Elem (Opair z y) f)

definition isFun :: ZF = bool where
isFun f == (Vx yI y2. Elem (Opair z y1) f & Elem (Opair z y2) [— yl =
y2)

definition Lambda :: ZF = (ZF = ZF) = ZF where
Lambda A f == Repl A (% z. Opair z (f z))

lemma Lambda-app: Elem v A => (Lambda A f)'z = fx
(proof)

lemma isFun-Lambda: isFun (Lambda A f)
(proof)

lemma domain-Lambda: Domain (Lambda A f) = A
{proof)

lemma Lambda-ext: (Lambda s f = Lambda t g) = (s =t A (Vz. Elemz s — f
T =g 1))
(proof)

definition PFun :: ZF = ZF = ZF where
PFun A B == Sep (Power (CartProd A B)) isFun

definition Fun :: ZF = ZF = ZF where
Fun A B == Sep (PFun A B) (A f. Domain f = A)

lemma Fun-Range: Elem f (Fun U V) = subset (Range f) V
(proof)

lemma Elem-Elem-PFun: Elem F (PFun U V) = Elem p F = isOpair p &
Elem (Fst p) U & Elem (Snd p) V

{proof)

lemma Fun-implies-PFun[simp]: Elem f (Fun U V) = Elem f (PFun U V)
(proof)

lemma Elem-Elem-Fun: Elem F (Fun U V) = Elem p F = isOpair p & Elem
(F'st p) U & Elem (Snd p) V

{proof)

lemma PFun-inj: Elem F (PFun U V) = Elem ¢ F = Elem y F = Fstx =
Fst y=— Sndz = Snd y

{proof)

lemma Fun-total: [Elem F (Fun U V); Elem a U] = Jz. Elem (Opair a z) F
(proof)

lemma unique-fun-value: [isFun f; Elem x (Domain f)] = 3ly. Elem (Opair x

y) f
(proof)

lemma fun-value-in-range: [isFun f; Elem z (Domain f)] = Elem (f z) (Range

f)
(proof)

lemma fun-range-witness: [isFun f; Elem y (Range f)] = 3. Elem z (Domain
N&fa=y
(proof)

lemma FElem-Fun-Lambda: Elem F (Fun U V) = 3f. F = Lambda U f
{proof)

lemma Elem-Lambda-Fun: Elem (Lambda A f) (Fun UV) = (A= U A (Vz. Elem
x A — Elem (fz) V))

{(proof)

definition is-Elem-of :: (ZF x ZF) set where
is-Elem-of == { (a,b) | a b. Elem a b }

lemma cond-wf-Elem:

assumes hyps:Vz. (Vy. Elem yx — Elem y U — P y) — Elem 2 U — P
z Elem a U

shows P a

(proof)

lemma cond2-wf-FElem:
assumes
special-P: 3U. Y x. Not(Elem v U) — (P z)
and P-induct: Vz. (Vy. Elemyx — Py) — Px
shows
Pa

(proof)

primrec nat2Nat :: nat = ZF where
nat2Nat-0[intro): nat2Nat 0 = Empty
| nat2Nat-Suclintro]: nat2Nat (Suc n) = SucNat (nat2Nat n)

definition Nat2nat :: ZF = nat where
Nat2nat == inv nat2Nat

lemma FElem-nat2Nat-inf[intro]: Elem (nat2Nat n) Inf
{proof)

definition Nat :: ZF
where Nat == Sep Inf (AN. In. nat2Nat n = N)

lemma FElem-nat2Nat-Nat[intro): Elem (nat2Nat n) Nat
{proof)

lemma Elem-Empty-Nat: Elem Empty Nat
(proof)

lemma FElem-SucNat-Nat: Elem N Nat = Elem (SucNat N) Nat
{proof)

lemma no-infinite- Elem-down-chain:
Not (3f. isFun f A Domain f = Nat A (VN. Elem N Nat — Elem (f(SucNat

N)) (f"N)))
(proof)

lemma Upair-nonEmpty: Upair a b # Empty
(proof)

lemma Singleton-nonEmpty: Singleton © # Empty
(proof)

lemma notsym-Elem: Not(Elem a b & Elem b a)
(proof)

lemma irreflexiv-Elem: Not(Elem a a)
(proof)

lemma antisym-Elem: Elem a b = Not (Elem b a)
(proof)

primrec Natlnterval :: nat = nat = ZF where
NatInterval n 0 = Singleton (nat2Nat n)
| NatInterval n (Suc m) = union (NatInterval n m) (Singleton (nat2Nat (n+m+1)))

lemma n-Elem-NatInterval[rule-format]: ¥ q. ¢ < m — FElem (nat2Nat (n+q))
(NatInterval n m)

{proof)

lemma NatInterval-not-Empty: NatInterval n m # Empty
(proof)

lemma increasing-nat2Nat|[rule-format]: 0 < n — Elem (nat2Nat (n — 1))
(nat2Nat n)

{proof)

lemma represent-NatInterval[rule-format]: Elem x (NatInterval n m) — (Ju. n
<uAu<ntm A nat2Nat u = x)

{proof)

lemma inj-nat2Nat: inj nat2Nat

(proof)

lemma Nat2nat-nat2Nat][simp]: Nat2nat (nat2Nat n) = n
{proof)

lemma nat2Nat-Nat2nat[simp]: Elem n Nat = nat2Nat (Nat2nat n) = n
{proof)

lemma Nat2nat-SucNat: Elem N Nat => Nat2nat (SucNat N) = Suc (Nat2nat
N)
{proof)

lemma FElem-Opair-exists: z. Elem x z & Elem y z & Elem z (Opair z y)
(proof)

lemma UNIV-is-not-in-ZF: UNIV # explode R
(proof)

definition SpecialR :: (ZF % ZF) set where
SpecialR = { (z, y) . * # Empty A y = Empty}

lemma wf SpecialR
(proof)

definition Ezt :: (‘a x 'b) set = 'b = 'a set where
ExtRy={z.(z,y) €R}

lemma Ezxt-Elem: Ext is-Elem-of = explode
(proof)

lemma FEzt SpecialR Empty # explode z
(proof)

definition implode :: ZF set = ZF where
implode == inv explode

lemma inj-explode: inj explode
(proof)

lemma implode-explode[simp]: implode (explode z) = x
(proof)

definition regular :: (ZF = ZF) set = bool where
reqgular R ==V A. A # Empty — (3z. Elem 2 A N (Vy. (y,) € R — Not
(Elem y A)))

definition set-like :: (ZF x ZF) set = bool where
set-like R ==Vy. Ext R y € range explode

definition wfzf :: (ZF * ZF) set = bool where
wfzf R == reqular R A set-like R

lemma regular-Elem: regular is-Elem-of
(proof)

lemma set-like-Elem: set-like is-Elem-of
(proof)

lemma wfzf-is-Elem-of: wfzf is-Elem-of
(proof)

definition SegSum :: (nat = ZF) = ZF where
SeqSum f == Sum (Repl Nat (f o Nat2nat))

lemma SeqSum: Elem z (SeqSum f) = (3 n. Elem z (f n))
{proof)

definition FErt-ZF :: (ZF % ZF) set = ZF = ZF where
Exzt-ZF R s == implode (Ext R s)

lemma FElem-implode: A € range explode = Elem z (implode A) = (z € A)
{proof)

lemma FElem-Ext-ZF: set-like R —> Elem © (Ext-ZF R s) = ((z,s) € R)
(proof)

primrec Ext-ZF-n :: (ZF « ZF) set = ZF = nat = ZF where
Ext-ZF-n R s 0 = Ext-ZF R s

| Bxt-ZF-n R s (Suc n) = Sum (Repl (Ext-ZF-n R s n) (Fxt-ZF R))

definition Ext-ZF-hull :: (ZF x ZF) set = ZF = ZF where

Ext-ZF-hull R s == SeqSum (Ext-ZF-n R s)

lemma FElem-Ext-ZF-hull:
assumes set-like-R: set-like R
shows Elem z (Ext-ZF-hull R S) = (3 n. Elem x (Ext-ZF-n R S n))

{proof)

lemma Elem-FElem-FExt-ZF-hull:
assumes set-like-R: set-like R
and z-hull: Elem x (Ext-ZF-hull R S)
and y-R-z: (y,) € R
shows FElem y (Ext-ZF-hull R S)
(proof)

lemma wfzf-minimal:
assumes hyps: wizf R C # {}
shows dz. 2z € C A Vy. (y,2) e R— y ¢ C)

(proof)

lemma wfzf-implies-wf: wfzf R = wf R

(proof)

lemma wf-is-FElem-of: wf is-FElem-of
(proof)

lemma in-Ext-RTrans-implies- Elem-Ext-ZF-hull:
set-like R = 1 € (Ext (RT) s) = Elem z (Ext-ZF-hull R s)

{proof)

lemma implodeable- Ext-trancl: set-like R = set-like (R™)

(proof)

lemma FElem-Ext-ZF-hull-implies-in-Ext- RTrans[rule-format]:
set-like R = YV z. Elem z (Ext-ZF-n R s n) — z € (Ext (RT1) s)
{proof)

lemma set-like R = Ext-ZF (R") s = Ext-ZF-hull R s
(proof)

lemma wf-implies-reqular: wf R = regular R
(proof)

lemma wf-eq-wfzf: (wf R A set-like R) = wfzf R
(proof)

lemma wfzf-trancl: wfizf R = wfzf (RT)

(proof)

lemma FEzt-subset-mono: R C S = FExt Ry C Ext Sy

{proof)

lemma set-like-subset: set-like R =— S C R = set-like S
(proof)

lemma wfzf-subset: wfzf S = R C S = wfzf R
(proof)

end

theory Zet
imports HOLZF
begin

definition zet = {A :: ‘a set | A fz. injron fA N f A C explode z}

typedef ‘a zet = zet :: 'a set set
(proof)

definition zin :: ‘a = ’a zet = bool where
zin ¥ A == z € (Rep-zet A)

lemma zet-ext-eq: (A = B) = (Vz. zinx A = zin z B)
{proof)

definition zimage :: ('a = 'b) = 'a zet = 'b zet where
zimage f A == Abs-zet (image f (Rep-zet A))

lemma zet-def’: zet = {A :: ‘a set | A fz. injron f AN f* A= explode z}
(proof)

lemma image-zet-rep: A € zet = Iz . g * A = explode z
{proof)

lemma zet-image-mem:
assumes Azet: A € zet
shows g ‘ A € zet

(proof)

lemma Rep-zimage-eq: Rep-zet (zimage f A) = image f (Rep-zet A)
(proof)

lemma zimage-iff: zin y (zimage f A) = 3z. zinz ANy = fz)
(proof)

definition zimplode :: ZF zet = ZF where
zimplode A == implode (Rep-zet A)

10

definition zexplode :: ZF = ZF zet where
zexplode z == Abs-zet (explode z)

lemma Rep-zet-eq-explode: 3 z. Rep-zet A = explode z
(proof)

lemma zexplode-zimplode: zexplode (zimplode A) = A
(proof)

lemma explode-mem-zet: explode z € zet
(proof)

lemma zimplode-zexplode: zimplode (zexplode z) = z
(proof)

lemma zin-zexplode-eq: zin x (zexplode A) = Elem x A

(proof)

lemma comp-zimage-eq: zimage g (zimage f A) = zimage (g o f) A

{proof)

definition zunion :: ‘a zet = 'a zet = ’a zet where
zunion a b = Abs-zet ((Rep-zet a) U (Rep-zet b))

definition zsubset :: 'a zet = 'a zet = bool where
zsubset a b=Vzx. zinxa — zinx b

lemma explode-union: explode (union a b) = (explode a) U (explode b)
{proof)

lemma Rep-zet-zunion: Rep-zet (zunion a b) = (Rep-zet a) U (Rep-zet b)

(proof)

lemma zunion: zin © (zunion a b) = ((zin z a) V (zin © b))
{proof)

lemma zimage-zexplode-eq: zimage f (zexplode z) = zexplode (Repl z f)
(proof)

lemma range-explode-eq-zet: range explode = zet
(proof)

lemma FElem-zimplode: (Elem x (zimplode z)) = (zin x 2)
(proof)

definition zempty :: 'a zet where
zempty = Abs-zet {}

lemma zempty[simp]: = (zin x zempty)

11

{proof)

lemma zimage-zempty[simpl: zimage [zempty = zempty
(proof)

lemma zunion-zempty-left[simp|: zunion zempty a = a
(proof)

lemma zunion-zempty-right[simpl: zunion a zempty = a
(proof)

lemma zimage-id[simp|: zimage id A = A
(proof)

lemma zimage-cong[fundef-congl: [M = N; 1 2. zinz N = fr =gz] =
zimage f M = zimage g N
(proof)

end

theory LProd
imports HOL— Library. Multiset
begin

inductive-set
lprod :: (a * 'a) set = ('a list x 'a list) set
for R :: (‘a * 'a) set
where
Iprod-single[intro!]: (a, b) € R = ([a], [b]) € lprod R
| Iprod-list[introl]: (ahQat, bhQbt) € Iprod R = (a,b) € RV a = b = (ahQa#at,
bh@Qb#bt) € lprod R

lemma (as,bs) € Iprod R = length as = length bs
(proof)

lemma (as, bs) € lprod R = 1 < length as N 1 < length bs
(proof)

lemma Ilprod-subset-elem: (as, bs) € Ilprod S = S C R = (as, bs) € Iprod R
{proof)

lemma Iprod-subset: S C R = Iprod S C Iprod R
(proof)

lemma Ilprod-implies-mult: (as, bs) € Ilprod R = trans R = (mset as, mset bs)
€ mult R

(proof)

12

lemma wf-lprod[simp,intro]:
assumes wf-R: wf R
shows wf (Iprod R)

(proof)

definition gprod-2-2 :: ('a x 'a) set = (('a * 'a) * (a * 'a)) set where
gprod-2-2 R = { ((a,b), (¢,d)) . (a=c A (byd) € R)V (b=4d A (a,c) € R) }

definition gprod-2-1 :: (‘a * 'a) set = (('a * 'a) * (Ya * 'a)) set where
gprod-2-1 R = { ((a,b), (¢,d)) . (a =d A (bye) € R) V (b=cA (a,d) € R) }

lemma Iprod-2-3: (a, b) € R = ([a, c], [b, ¢]) € Iprod R
{proof)

lemma Ilprod-2-4: (a, b)) € R = ([¢, al, [¢, b]) € lprod R
(proof)

lemma Iprod-2-1: (a, b) € R = ([c, al, [b, ¢]) € Iprod R
{proof)

lemma lprod-2-2: (a, b) € R = ([a, c], [¢c, b]) € Iprod R
{proof)

lemma [simp, introl:
assumes wfR: wf R shows wf (gprod-2-1 R)
(proof)

lemma [simp, intro]:
assumes wfR: wf R shows wf (gprod-2-2 R)
(proof)

lemma lprod-3-1: assumes (z’, z) € R shows ([y, 2, z], [z, y, 2]) € lprod R

{proof)

lemma Iprod-5-2: assumes (z,2) € R shows ([z/, z, y|, [z,y,2]) € lprod R
{proof)

lemma lprod-3-3: assumes zr: (zr, x) € R shows ([zr, y, 2], [z, y, 2]) € Iprod R
(proof)

lemma lprod-3-4: assumes yr: (yr, y) € R shows ([z, yr, 2], [z, y, 2]) € lprod R
(proof)

lemma Iprod-3-5: assumes zr: (zr, z) € R shows ([z, y, 2r], [z, y, 2]) € lprod R
(proof)

lemma Iprod-5-6: assumes y" (y/, y) € R shows ([z, 2, y'], [z, y, 2]) € lprod R
{proof)

13

lemma Iprod-3-7: assumes z": (z',z) € R shows ([z, 2/, y], [z, y, 2]) € lprod R
{proof)

definition perm :: (‘a = ‘a) = 'a set = bool where
perm fA=injon fANf A=A

lemma ((as,bs) € lprod R) =

(3 f. perm f {0 ..< (length as)} A

(V j. j < length as — ((nth as j, nth bs (fj)) € RV (nth as j = nth bs (f j))))
A

(3 4. i < length as A (nth as i, nth bs (fi)) € R))
(proof)

lemma trans R = (ahQa#at, bhQb#0bt) € lprod R = (b, a) € RV a = b =
(ah@at, bhQDL) € Iprod R

(proof)

end

theory MainZF
imports Zet LProd
begin

end

theory Games
imports MainZF
begin

definition fixgames :: ZF set = ZF set where
fixgames A = { Opair I r | lr. explode | C A & explode r C A}

definition games-Iifp :: ZF set where
games-lfp = Ilfp fizgames

definition games-gfp :: ZF set where
games-gfp = gfp fizgames

lemma mono-fizgames: mono (fizgames)
(proof)

lemma games-lfp-unfold: games-lfp = firgames games-Ifp
(proof)

lemma games-gfp-unfold: games-gfp = fixrgames games-gfp
(proof)

14

lemma games-lfp-nonempty: Opair Empty Empty € games-lfp
(proof)

definition left-option :: ZF = ZF = bool where
left-option g opt = (Elem opt (Fst g))

definition right-option :: ZF = ZF = bool where
right-option g opt = (Elem opt (Snd g))

definition is-option-of :: (ZF * ZF) set where
is-option-of = { (opt, g) | opt g. g € games-gfp A (left-option g opt V' right-option
g opt) }

lemma games-Ilfp-subset-gfp: games-lfp C games-gfp
{proof)

lemma games-option-stable:
assumes fizgames: games = firgames games
and ¢: g € games
and opt: left-option g opt V right-option g opt
shows opt € games

(proof)

lemma option2elem: (opt,g) € is-option-of =—> 3 w v. Elem opt u A Elem u v A
Elem v g

(proof)

lemma is-option-of-subset-is-Elem-of: is-option-of C (is-Elem-of*)
(proof)

lemma wfzf-is-option-of: wfzf is-option-of

(proof)

lemma games-gfp-imp-lfp: g € games-gfp — g € games-ifp
(proof)

theorem games-lfp-eq-gfp: games-lfp = games-gfp
(proof)

theorem unique-games: (g = fizgames g) = (g = games-lfp)

(proof)

lemma games-Ifp-option-stable:
assumes ¢g: g € games-Ifp
and opt: left-option g opt V right-option g opt
shows opt € games-Ifp

(proof)

lemma is-option-of-imp-games:

15

assumes hyp: (opt, g) € is-option-of
shows opt € games-lfp A g € games-Ifp
(proof)

lemma games-Ilfp-represent: © € games-lifp = 3 I r. x = Opair l r
(proof)

definition game = games-Ifp

typedef game = game
(proof)

definition left-options :: game = game zet where
left-options g = zimage Abs-game (zexplode (Fst (Rep-game g)))

definition right-options :: game = game zet where
right-options g = zimage Abs-game (zexplode (Snd (Rep-game g)))

definition options :: game = game zet where
options g = zunion (left-options g) (right-options g)

definition Game :: game zet = game zet = game where
Game L R = Abs-game (Opair (zimplode (zimage Rep-game L)) (zimplode (zimage
Rep-game R)))

lemma Repl-Rep-game-Abs-game: ¥ e. Elem e z — e € games-lfp = Repl z
(Rep-game o Abs-game) = z
(proof)

lemma game-split: g = Game (left-options g) (right-options g)
{proof)

lemma Opair-in-games-Ifp:
assumes [: explode | C games-lfp
and r: explode v C games-Ifp
shows Opair I r € games-ifp

(proof)

lemma left-options[simp): left-options (Game I 1) =1
(proof)

lemma right-options[simp]: right-options (Game lr) = r
{proof)

lemma Game-ext: (Game l1 1 = Game 12 12) = ((I1 =12) A (r1 = 12))
{proof)

definition option-of :: (game x game) set where
option-of = image (A (option, g). (Abs-game option, Abs-game g)) is-option-of

16

lemma option-to-is-option-of: ((option, g) € option-of) = ((Rep-game option,
Rep-game g) € is-option-of)
(proof)

lemma wf-is-option-of: wf is-option-of
(proof)

lemma wf-option-of [simp, intro|: wf option-of

{(proof)

lemma right-option-is-option[simp, intro|: zin x (right-options g) = zin x (options
9)
(proof)

lemma left-option-is-option[simp, intro|: zin x (left-options g) = zin z (options
9)
(proof)

lemma zin-options[simp, introl: zin z (options g) = (z, g) € option-of
{proof)

function
neg-game :: game = game
where
[simp del]: neg-game g = Game (zimage neg-game (right-options g)) (zimage
neg-game (left-options g))
(proof)

termination (proof)

lemma neg-game (neg-game g) = g
(proof)

function
ge-game :: (game x game) = bool
where
[simp del]: ge-game (G, H) = (V z. if zin z (right-options G) then (
if zin x (left-options H) then — (ge-game (H, x) V (ge-game
(e, O)))

else = (ge-game (H, x)))
else (if zin z (left-options H) then — (ge-game (z, G)) else
True))
(proof)

termination (proof)
lemma ge-game-eq: ge-game (G, H) = (V z. (zin z (right-options G) — -

ge-game (H, x)) A (zin x (left-options H) — — ge-game (z, G)))
(proof)

17

lemma ge-game-leftright-refi[rule-format]:

Y y. (zin y (right-options) — — ge-game (x, y)) A (zin y (left-options x) —
- (ge-game (y, 7)) A ge-game (z, x)
(proof)

lemma ge-game-refl: ge-game (z,z) (proof)

lemma V y. (zin y (right-options) — — ge-game (z, y)) A (zin y (left-options
z) — - (ge-game (y, z))) A ge-game (x, x)

{(proof)

definition eq-game :: game = game = bool where
eq-game G H = ge-game (G, H) N ge-game (H, G)

lemma eg-game-sym: (eg-game G H) = (eq-game H G)
(proof)

lemma eg-game-refl: eq-game G G
(proof)

lemma induct-game: (Az. Vy. (y, z) € lprod option-of — Py —=— Pz) = Pa
(proof)

lemma ge-game-trans:
assumes ge-game (z, y) ge-game (y, 2)
shows ge-game (z, z)

(proof)

lemma eg-game-trans: eq-game a b =—> eq-game b ¢ => eq-game a ¢
(proof)

definition zero-game :: game
where zero-game = Game zempty zempty

function
plus-game :: game = game = game
where
[simp del]: plus-game G H = Game (zunion (zimage (A g. plus-game g H)
(left-options G))
(zimage (A h. plus-game G h) (left-options H)))
(zunion (zimage (X g. plus-game g H) (right-options G))
(zimage (A h. plus-game G h) (right-options H)))
(proof)

termination (proof)

lemma plus-game-comm: plus-game G H = plus-game H G

{(proof)

lemma game-ext-eq: (G = H) = (left-options G = left-options H A right-options

18

G = right-options H)
(proof)

lemma left-zero-game[simpl: left-options (zero-game) = zempty
(proof)

lemma right-zero-game[simp|: right-options (zero-game) = zempty
(proof)

lemma plus-game-zero-right[simp]: plus-game G zero-game = G

(proof)

lemma plus-game-zero-left: plus-game zero-game G = G
(proof)

lemma left-imp-options[simp]: zin opt (left-options g) = zin opt (options g)
(proof)

lemma right-imp-options[simp|: zin opt (right-options g) = zin opt (options g)
(proof)

lemma left-options-plus:

left-options (plus-game u v) = zunion (zimage (Ag. plus-game g v) (left-options
u)) (zimage (Ah. plus-game u h) (left-options v))
(proof)

lemma right-options-plus:

right-options (plus-game u v) = zunion (zimage (Ag. plus-game g v) (right-options
u)) (zimage (Ah. plus-game u h) (right-options v))

(proof)

lemma left-options-neg: left-options (neg-game u) = zimage neg-game (right-options
u)
(proof)

lemma right-options-neg: right-options (neg-game u) = zimage neg-game (left-options
u)

{proof)

lemma plus-game-assoc: plus-game (plus-game F G) H = plus-game F (plus-game
G H)

(proof)

lemma neg-plus-game: neg-game (plus-game G H) = plus-game (neg-game Q)
(neg-game H)

{proof)

lemma eg-game-plus-inverse: eg-game (plus-game z (neg-game x)) zero-game

(proof)

19

lemma ge-plus-game-left: ge-game (y,z) = ge-game (plus-game z y, plus-game x
2)
(proof)

lemma ge-plus-game-right: ge-game (y,z) = ge-game(plus-game y z, plus-game z
x)
(proof)

lemma ge-neg-game: ge-game (neg-game x, neg-game y) = ge-game (y, x)

(proof)

definition eg-game-rel :: (game * game) set where
eq-game-rel = { (p, q) . eg-game p q }

definition Pg = UNIV //eq-game-rel

typedef Pg = Pg
(proof)

lemma equiv-eq-game[simp]: equiv UNIV eq-game-rel

(proof)

instantiation Pg :: {ord, zero, plus, minus, uminus}
begin

definition
Pg-zero-def: 0 = Abs-Pg (eg-game-rel ““ {zero-game})

definition
Pg-le-def: G < H +— (3 g h. g € Rep-Pg G A h € Rep-Pg H A ge-game (h, g))

definition
Pg-less-def: G < H +— G < H AN G # (H::Pyg)

definition
Pg-minus-def: — G = the-elem (|J g € Rep-Pg G. { Abs-Pg (eq-game-rel *‘ {neg-game
9}

definition
Pg-plus-def: G + H = the-elem ((Jg € Rep-Pg G. |Jh € Rep-Pg H. {Abs-Pg
(eq-game-rel ““ {plus-game g h})})

definition
Pg-diff-def: G — H = G + (— (H::Pyg))

instance (proof)

end

20

lemma Rep-Abs-eq-Pg[simp|: Rep-Pg (Abs-Pg (eq-game-rel ““ {g})) = eq-game-rel

“{g}
(proof)

lemma char-Pg-le[simp]: (Abs-Pg (eg-game-rel “ {g}) < Abs-Pg (eq-game-rel *
{h})) = (ge-game (h, g))
(proof)

lemma char-Pg-eq[simp]: (Abs-Pg (eq-game-rel ““ {g}) = Abs-Pg (eq-game-rel
{h})) = (eq-game g h)
(proof)

lemma char-Pg-plus[simp]: Abs-Pg (eq-game-rel ““ {g}) + Abs-Pg (eq-game-rel
{h}) = Abs-Pg (eq-game-rel *“ {plus-game g h})
(proof)

lemma char-Pg-minus[simp|: — Abs-Pg (eq-game-rel ““ {g}) = Abs-Pg (eq-game-rel
““{neg-game g})
(proof)

lemma eq-Abs-Pg[rule-format, cases type: Pgl: (V g¢. z = Abs-Pg (eg-game-rel “
{9})) — P) — P
(proof)

instance Pg :: ordered-ab-group-add

(proof)

end

21

