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theory HOLZF
imports Main
begin

typedecl ZF

axiomatization
Empty :: ZF and
Elem :: ZF ⇒ ZF ⇒ bool and
Sum :: ZF ⇒ ZF and
Power :: ZF ⇒ ZF and
Repl :: ZF ⇒ (ZF ⇒ ZF) ⇒ ZF and
Inf :: ZF

definition Upair :: ZF ⇒ ZF ⇒ ZF where
Upair a b == Repl (Power (Power Empty)) (% x. if x = Empty then a else b)

definition Singleton:: ZF ⇒ ZF where
Singleton x == Upair x x

definition union :: ZF ⇒ ZF ⇒ ZF where
union A B == Sum (Upair A B)

definition SucNat:: ZF ⇒ ZF where
SucNat x == union x (Singleton x)

definition subset :: ZF ⇒ ZF ⇒ bool where
subset A B ≡ ∀ x. Elem x A −→ Elem x B

axiomatization where
Empty: Not (Elem x Empty) and
Ext: (x = y) = (∀ z. Elem z x = Elem z y) and
Sum: Elem z (Sum x) = (∃ y. Elem z y ∧ Elem y x) and
Power : Elem y (Power x) = (subset y x) and
Repl: Elem b (Repl A f ) = (∃ a. Elem a A ∧ b = f a) and
Regularity: A 6= Empty −→ (∃ x. Elem x A ∧ (∀ y. Elem y x −→ Not (Elem y
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A))) and
Infinity: Elem Empty Inf ∧ (∀ x. Elem x Inf −→ Elem (SucNat x) Inf )

definition Sep :: ZF ⇒ (ZF ⇒ bool) ⇒ ZF where
Sep A p == (if (∀ x. Elem x A −→ Not (p x)) then Empty else
(let z = (ε x. Elem x A & p x) in
let f = λx. (if p x then x else z) in Repl A f ))

thm Power [unfolded subset-def ]

theorem Sep: Elem b (Sep A p) = (Elem b A ∧ p b)
apply (auto simp add: Sep-def Empty)
apply (auto simp add: Let-def Repl)
apply (rule someI2 , auto)+
done

lemma subset-empty: subset Empty A
by (simp add: subset-def Empty)

theorem Upair : Elem x (Upair a b) = (x = a ∨ x = b)
apply (auto simp add: Upair-def Repl)
apply (rule exI [where x=Empty])
apply (simp add: Power subset-empty)
apply (rule exI [where x=Power Empty])
apply (auto)
apply (auto simp add: Ext Power subset-def Empty)
apply (drule spec[where x=Empty], simp add: Empty)+
done

lemma Singleton: Elem x (Singleton y) = (x = y)
by (simp add: Singleton-def Upair)

definition Opair :: ZF ⇒ ZF ⇒ ZF where
Opair a b == Upair (Upair a a) (Upair a b)

lemma Upair-singleton: (Upair a a = Upair c d) = (a = c & a = d)
by (auto simp add: Ext[where x=Upair a a] Upair)

lemma Upair-fsteq: (Upair a b = Upair a c) = ((a = b & a = c) | (b = c))
by (auto simp add: Ext[where x=Upair a b] Upair)

lemma Upair-comm: Upair a b = Upair b a
by (auto simp add: Ext Upair)

theorem Opair : (Opair a b = Opair c d) = (a = c & b = d)
proof −

have fst: (Opair a b = Opair c d) =⇒ a = c
apply (simp add: Opair-def )
apply (simp add: Ext[where x=Upair (Upair a a) (Upair a b)])
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apply (drule spec[where x=Upair a a])
apply (auto simp add: Upair Upair-singleton)
done

show ?thesis
apply (auto)
apply (erule fst)
apply (frule fst)
apply (auto simp add: Opair-def Upair-fsteq)
done

qed

definition Replacement :: ZF ⇒ (ZF ⇒ ZF option) ⇒ ZF where
Replacement A f == Repl (Sep A (% a. f a 6= None)) (the o f )

theorem Replacement: Elem y (Replacement A f ) = (∃ x. Elem x A ∧ f x = Some
y)

by (auto simp add: Replacement-def Repl Sep)

definition Fst :: ZF ⇒ ZF where
Fst q == SOME x. ∃ y. q = Opair x y

definition Snd :: ZF ⇒ ZF where
Snd q == SOME y. ∃ x. q = Opair x y

theorem Fst: Fst (Opair x y) = x
apply (simp add: Fst-def )
apply (rule someI2 )
apply (simp-all add: Opair)
done

theorem Snd: Snd (Opair x y) = y
apply (simp add: Snd-def )
apply (rule someI2 )
apply (simp-all add: Opair)
done

definition isOpair :: ZF ⇒ bool where
isOpair q == ∃ x y. q = Opair x y

lemma isOpair : isOpair (Opair x y) = True
by (auto simp add: isOpair-def )

lemma FstSnd: isOpair x =⇒ Opair (Fst x) (Snd x) = x
by (auto simp add: isOpair-def Fst Snd)

definition CartProd :: ZF ⇒ ZF ⇒ ZF where
CartProd A B == Sum(Repl A (% a. Repl B (% b. Opair a b)))

lemma CartProd: Elem x (CartProd A B) = (∃ a b. Elem a A ∧ Elem b B ∧ x =
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(Opair a b))
apply (auto simp add: CartProd-def Sum Repl)
apply (rule-tac x=Repl B (Opair a) in exI )
apply (auto simp add: Repl)
done

definition explode :: ZF ⇒ ZF set where
explode z == { x. Elem x z }

lemma explode-Empty: (explode x = {}) = (x = Empty)
by (auto simp add: explode-def Ext Empty)

lemma explode-Elem: (x ∈ explode X) = (Elem x X)
by (simp add: explode-def )

lemma Elem-explode-in: [[ Elem a A; explode A ⊆ B]] =⇒ a ∈ B
by (auto simp add: explode-def )

lemma explode-CartProd-eq: explode (CartProd a b) = (% (x,y). Opair x y) ‘
((explode a) × (explode b))

by (simp add: explode-def set-eq-iff CartProd image-def )

lemma explode-Repl-eq: explode (Repl A f ) = image f (explode A)
by (simp add: explode-def Repl image-def )

definition Domain :: ZF ⇒ ZF where
Domain f == Replacement f (% p. if isOpair p then Some (Fst p) else None)

definition Range :: ZF ⇒ ZF where
Range f == Replacement f (% p. if isOpair p then Some (Snd p) else None)

theorem Domain: Elem x (Domain f ) = (∃ y. Elem (Opair x y) f )
apply (auto simp add: Domain-def Replacement)
apply (rule-tac x=Snd xa in exI )
apply (simp add: FstSnd)
apply (rule-tac x=Opair x y in exI )
apply (simp add: isOpair Fst)
done

theorem Range: Elem y (Range f ) = (∃ x. Elem (Opair x y) f )
apply (auto simp add: Range-def Replacement)
apply (rule-tac x=Fst x in exI )
apply (simp add: FstSnd)
apply (rule-tac x=Opair x y in exI )
apply (simp add: isOpair Snd)
done

theorem union: Elem x (union A B) = (Elem x A | Elem x B)
by (auto simp add: union-def Sum Upair)
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definition Field :: ZF ⇒ ZF where
Field A == union (Domain A) (Range A)

definition app :: ZF ⇒ ZF => ZF (infixl ‹´› 90 ) — function application where
f ´ x == (THE y. Elem (Opair x y) f )

definition isFun :: ZF ⇒ bool where
isFun f == (∀ x y1 y2 . Elem (Opair x y1 ) f & Elem (Opair x y2 ) f −→ y1 =

y2 )

definition Lambda :: ZF ⇒ (ZF ⇒ ZF) ⇒ ZF where
Lambda A f == Repl A (% x. Opair x (f x))

lemma Lambda-app: Elem x A =⇒ (Lambda A f )´x = f x
by (simp add: app-def Lambda-def Repl Opair)

lemma isFun-Lambda: isFun (Lambda A f )
by (auto simp add: isFun-def Lambda-def Repl Opair)

lemma domain-Lambda: Domain (Lambda A f ) = A
apply (auto simp add: Domain-def )
apply (subst Ext)
apply (auto simp add: Replacement)
apply (simp add: Lambda-def Repl)
apply (auto simp add: Fst)
apply (simp add: Lambda-def Repl)
apply (rule-tac x=Opair z (f z) in exI )
apply (auto simp add: Fst isOpair-def )
done

lemma Lambda-ext: (Lambda s f = Lambda t g) = (s = t ∧ (∀ x. Elem x s −→ f
x = g x))
proof −

have Lambda s f = Lambda t g =⇒ s = t
apply (subst domain-Lambda[where A = s and f = f , symmetric])
apply (subst domain-Lambda[where A = t and f = g, symmetric])
apply auto
done

then show ?thesis
apply auto
apply (subst Lambda-app[where f=f , symmetric], simp)
apply (subst Lambda-app[where f=g, symmetric], simp)
apply auto
apply (auto simp add: Lambda-def Repl Ext)
apply (auto simp add: Ext[symmetric])
done

qed
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definition PFun :: ZF ⇒ ZF ⇒ ZF where
PFun A B == Sep (Power (CartProd A B)) isFun

definition Fun :: ZF ⇒ ZF ⇒ ZF where
Fun A B == Sep (PFun A B) (λ f . Domain f = A)

lemma Fun-Range: Elem f (Fun U V ) =⇒ subset (Range f ) V
apply (simp add: Fun-def Sep PFun-def Power subset-def CartProd)
apply (auto simp add: Domain Range)
apply (erule-tac x=Opair xa x in allE)
apply (auto simp add: Opair)
done

lemma Elem-Elem-PFun: Elem F (PFun U V ) =⇒ Elem p F =⇒ isOpair p &
Elem (Fst p) U & Elem (Snd p) V

apply (simp add: PFun-def Sep Power subset-def , clarify)
apply (erule-tac x=p in allE)
apply (auto simp add: CartProd isOpair Fst Snd)
done

lemma Fun-implies-PFun[simp]: Elem f (Fun U V ) =⇒ Elem f (PFun U V )
by (simp add: Fun-def Sep)

lemma Elem-Elem-Fun: Elem F (Fun U V ) =⇒ Elem p F =⇒ isOpair p & Elem
(Fst p) U & Elem (Snd p) V

by (auto simp add: Elem-Elem-PFun dest: Fun-implies-PFun)

lemma PFun-inj: Elem F (PFun U V ) =⇒ Elem x F =⇒ Elem y F =⇒ Fst x =
Fst y =⇒ Snd x = Snd y

apply (frule Elem-Elem-PFun[where p=x], simp)
apply (frule Elem-Elem-PFun[where p=y], simp)
apply (subgoal-tac isFun F)
apply (simp add: isFun-def isOpair-def )
apply (auto simp add: Fst Snd)
apply (auto simp add: PFun-def Sep)
done

lemma Fun-total: [[Elem F (Fun U V ); Elem a U ]] =⇒ ∃ x. Elem (Opair a x) F
using [[simp-depth-limit = 2 ]]
by (auto simp add: Fun-def Sep Domain)

lemma unique-fun-value: [[isFun f ; Elem x (Domain f )]] =⇒ ∃ !y. Elem (Opair x
y) f

by (auto simp add: Domain isFun-def )

lemma fun-value-in-range: [[isFun f ; Elem x (Domain f )]] =⇒ Elem (f ´x) (Range
f )

apply (auto simp add: Range)
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apply (drule unique-fun-value)
apply simp
apply (simp add: app-def )
apply (rule exI [where x=x])
apply (auto simp add: the-equality)
done

lemma fun-range-witness: [[isFun f ; Elem y (Range f )]] =⇒ ∃ x. Elem x (Domain
f ) & f ´x = y

apply (auto simp add: Range)
apply (rule-tac x=x in exI )
apply (auto simp add: app-def the-equality isFun-def Domain)
done

lemma Elem-Fun-Lambda: Elem F (Fun U V ) =⇒ ∃ f . F = Lambda U f
apply (rule exI [where x= % x. (THE y. Elem (Opair x y) F)])
apply (simp add: Ext Lambda-def Repl Domain)
apply (simp add: Ext[symmetric])
apply auto
apply (frule Elem-Elem-Fun)
apply auto
apply (rule-tac x=Fst z in exI )
apply (simp add: isOpair-def )
apply (auto simp add: Fst Snd Opair)
apply (rule the1I2 )
apply auto
apply (drule Fun-implies-PFun)
apply (drule-tac x=Opair x ya and y=Opair x yb in PFun-inj)
apply (auto simp add: Fst Snd)
apply (drule Fun-implies-PFun)
apply (drule-tac x=Opair x y and y=Opair x ya in PFun-inj)
apply (auto simp add: Fst Snd)
apply (rule the1I2 )
apply (auto simp add: Fun-total)
apply (drule Fun-implies-PFun)
apply (drule-tac x=Opair a x and y=Opair a y in PFun-inj)
apply (auto simp add: Fst Snd)
done

lemma Elem-Lambda-Fun: Elem (Lambda A f ) (Fun U V ) = (A = U ∧ (∀ x. Elem
x A −→ Elem (f x) V ))
proof −

have Elem (Lambda A f ) (Fun U V ) =⇒ A = U
by (simp add: Fun-def Sep domain-Lambda)

then show ?thesis
apply auto
apply (drule Fun-Range)
apply (subgoal-tac f x = ((Lambda U f ) ´ x))
prefer 2
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apply (simp add: Lambda-app)
apply simp
apply (subgoal-tac Elem (Lambda U f ´ x) (Range (Lambda U f )))
apply (simp add: subset-def )
apply (rule fun-value-in-range)
apply (simp-all add: isFun-Lambda domain-Lambda)
apply (simp add: Fun-def Sep PFun-def Power domain-Lambda isFun-Lambda)
apply (auto simp add: subset-def CartProd)
apply (rule-tac x=Fst x in exI )
apply (auto simp add: Lambda-def Repl Fst)
done

qed

definition is-Elem-of :: (ZF ∗ ZF) set where
is-Elem-of == { (a,b) | a b. Elem a b }

lemma cond-wf-Elem:
assumes hyps:∀ x. (∀ y. Elem y x −→ Elem y U −→ P y) −→ Elem x U −→ P

x Elem a U
shows P a

proof −
{

fix P
fix U
fix a
assume P-induct: (∀ x. (∀ y. Elem y x −→ Elem y U −→ P y) −→ (Elem x U

−→ P x))
assume a-in-U : Elem a U
have P a

proof −
term P
term Sep
let ?Z = Sep U (Not o P)
have ?Z = Empty −→ P a by (simp add: Ext Sep Empty a-in-U )
moreover have ?Z 6= Empty −→ False

proof
assume not-empty: ?Z 6= Empty

note thereis-x = Regularity[where A=?Z , simplified not-empty, simplified]
then obtain x where x-def : Elem x ?Z ∧ (∀ y. Elem y x −→ Not (Elem

y ?Z )) ..
then have x-induct:∀ y. Elem y x −→ Elem y U −→ P y by (simp add:

Sep)
have Elem x U −→ P x

by (rule impE [OF spec[OF P-induct, where x=x], OF x-induct],
assumption)

moreover have Elem x U & Not(P x)
apply (insert x-def )
apply (simp add: Sep)
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done
ultimately show False by auto

qed
ultimately show P a by auto

qed
}
with hyps show ?thesis by blast

qed

lemma cond2-wf-Elem:
assumes

special-P: ∃U . ∀ x. Not(Elem x U ) −→ (P x)
and P-induct: ∀ x. (∀ y. Elem y x −→ P y) −→ P x

shows
P a

proof −
have ∃U Q. P = (λ x. (Elem x U −→ Q x))
proof −

from special-P obtain U where U : ∀ x. Not(Elem x U ) −→ (P x) ..
show ?thesis

apply (rule-tac exI [where x=U ])
apply (rule exI [where x=P])
apply (rule ext)
apply (auto simp add: U )
done

qed
then obtain U where ∃Q. P = (λ x. (Elem x U −→ Q x)) ..
then obtain Q where UQ: P = (λ x. (Elem x U −→ Q x)) ..
show ?thesis

apply (auto simp add: UQ)
apply (rule cond-wf-Elem)
apply (rule P-induct[simplified UQ])
apply simp
done

qed

primrec nat2Nat :: nat ⇒ ZF where
nat2Nat-0 [intro]: nat2Nat 0 = Empty
| nat2Nat-Suc[intro]: nat2Nat (Suc n) = SucNat (nat2Nat n)

definition Nat2nat :: ZF ⇒ nat where
Nat2nat == inv nat2Nat

lemma Elem-nat2Nat-inf [intro]: Elem (nat2Nat n) Inf
apply (induct n)
apply (simp-all add: Infinity)
done

definition Nat :: ZF
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where Nat == Sep Inf (λN . ∃n. nat2Nat n = N )

lemma Elem-nat2Nat-Nat[intro]: Elem (nat2Nat n) Nat
by (auto simp add: Nat-def Sep)

lemma Elem-Empty-Nat: Elem Empty Nat
by (auto simp add: Nat-def Sep Infinity)

lemma Elem-SucNat-Nat: Elem N Nat =⇒ Elem (SucNat N ) Nat
by (auto simp add: Nat-def Sep Infinity)

lemma no-infinite-Elem-down-chain:
Not (∃ f . isFun f ∧ Domain f = Nat ∧ (∀N . Elem N Nat −→ Elem (f ´(SucNat

N )) (f ´N )))
proof −

{
fix f

assume f : isFun f ∧ Domain f = Nat ∧ (∀N . Elem N Nat −→ Elem (f ´(SucNat
N )) (f ´N ))

let ?r = Range f
have ?r 6= Empty

apply (auto simp add: Ext Empty)
apply (rule exI [where x=f ´Empty])
apply (rule fun-value-in-range)
apply (auto simp add: f Elem-Empty-Nat)
done

then have ∃ x. Elem x ?r ∧ (∀ y. Elem y x −→ Not(Elem y ?r))
by (simp add: Regularity)

then obtain x where x: Elem x ?r ∧ (∀ y. Elem y x −→ Not(Elem y ?r)) ..
then have ∃N . Elem N (Domain f ) & f ´N = x

apply (rule-tac fun-range-witness)
apply (simp-all add: f )
done

then have ∃N . Elem N Nat & f ´N = x
by (simp add: f )

then obtain N where N : Elem N Nat & f ´N = x ..
from N have N ′: Elem N Nat by auto
let ?y = f ´(SucNat N )
have Elem-y-r : Elem ?y ?r

by (simp-all add: f Elem-SucNat-Nat N fun-value-in-range)
have Elem ?y (f ´N ) by (auto simp add: f N ′)
then have Elem ?y x by (simp add: N )
with x have Not (Elem ?y ?r) by auto
with Elem-y-r have False by auto

}
then show ?thesis by auto

qed

lemma Upair-nonEmpty: Upair a b 6= Empty
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by (auto simp add: Ext Empty Upair)

lemma Singleton-nonEmpty: Singleton x 6= Empty
by (auto simp add: Singleton-def Upair-nonEmpty)

lemma notsym-Elem: Not(Elem a b & Elem b a)
proof −

{
fix a b
assume ab: Elem a b
assume ba: Elem b a
let ?Z = Upair a b
have ?Z 6= Empty by (simp add: Upair-nonEmpty)
then have ∃ x. Elem x ?Z ∧ (∀ y. Elem y x −→ Not(Elem y ?Z ))

by (simp add: Regularity)
then obtain x where x:Elem x ?Z ∧ (∀ y. Elem y x −→ Not(Elem y ?Z )) ..
then have x = a ∨ x = b by (simp add: Upair)
moreover have x = a −→ Not (Elem b ?Z )

by (auto simp add: x ba)
moreover have x = b −→ Not (Elem a ?Z )

by (auto simp add: x ab)
ultimately have False

by (auto simp add: Upair)
}
then show ?thesis by auto

qed

lemma irreflexiv-Elem: Not(Elem a a)
by (simp add: notsym-Elem[of a a, simplified])

lemma antisym-Elem: Elem a b =⇒ Not (Elem b a)
apply (insert notsym-Elem[of a b])
apply auto
done

primrec NatInterval :: nat ⇒ nat ⇒ ZF where
NatInterval n 0 = Singleton (nat2Nat n)
| NatInterval n (Suc m) = union (NatInterval n m) (Singleton (nat2Nat (n+m+1 )))

lemma n-Elem-NatInterval[rule-format]: ∀ q. q ≤ m −→ Elem (nat2Nat (n+q))
(NatInterval n m)

apply (induct m)
apply (auto simp add: Singleton union)
apply (case-tac q <= m)
apply auto
apply (subgoal-tac q = Suc m)
apply auto
done
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lemma NatInterval-not-Empty: NatInterval n m 6= Empty
by (auto intro: n-Elem-NatInterval[where q = 0 , simplified] simp add: Empty

Ext)

lemma increasing-nat2Nat[rule-format]: 0 < n −→ Elem (nat2Nat (n − 1 ))
(nat2Nat n)

apply (case-tac ∃m. n = Suc m)
apply (auto simp add: SucNat-def union Singleton)
apply (drule spec[where x=n − 1 ])
apply arith
done

lemma represent-NatInterval[rule-format]: Elem x (NatInterval n m) −→ (∃ u. n
≤ u ∧ u ≤ n+m ∧ nat2Nat u = x)

apply (induct m)
apply (auto simp add: Singleton union)
apply (rule-tac x=Suc (n+m) in exI )
apply auto
done

lemma inj-nat2Nat: inj nat2Nat
proof −

{
fix n m :: nat
assume nm: nat2Nat n = nat2Nat (n+m)
assume mg0 : 0 < m
let ?Z = NatInterval n m
have ?Z 6= Empty by (simp add: NatInterval-not-Empty)
then have ∃ x. (Elem x ?Z ) ∧ (∀ y. Elem y x −→ Not (Elem y ?Z ))

by (auto simp add: Regularity)
then obtain x where x:Elem x ?Z ∧ (∀ y. Elem y x −→ Not (Elem y ?Z )) ..
then have ∃ u. n ≤ u & u ≤ n+m & nat2Nat u = x

by (simp add: represent-NatInterval)
then obtain u where u: n ≤ u & u ≤ n+m ∧ nat2Nat u = x ..
have n < u −→ False
proof

assume n-less-u: n < u
let ?y = nat2Nat (u − 1 )
have Elem ?y (nat2Nat u)

apply (rule increasing-nat2Nat)
apply (insert n-less-u)
apply arith
done

with u have Elem ?y x by auto
with x have Not (Elem ?y ?Z ) by auto
moreover have Elem ?y ?Z

apply (insert n-Elem-NatInterval[where q = u − n − 1 and n=n and
m=m])

apply (insert n-less-u)
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apply (insert u)
apply auto
done

ultimately show False by auto
qed
moreover have u = n −→ False
proof

assume u = n
with u have nat2Nat n = x by auto
then have nm-eq-x: nat2Nat (n+m) = x by (simp add: nm)
let ?y = nat2Nat (n+m − 1 )
have Elem ?y (nat2Nat (n+m))

apply (rule increasing-nat2Nat)
apply (insert mg0 )
apply arith
done

with nm-eq-x have Elem ?y x by auto
with x have Not (Elem ?y ?Z ) by auto
moreover have Elem ?y ?Z
apply (insert n-Elem-NatInterval[where q = m − 1 and n=n and m=m])
apply (insert mg0 )
apply auto
done

ultimately show False by auto
qed
ultimately have False using u by arith

}
note lemma-nat2Nat = this
have th:

∧
x y. ¬ (x < y ∧ (∀ (m::nat). y 6= x + m)) by presburger

have th ′:
∧

x y. ¬ (x 6= y ∧ (¬ x < y) ∧ (∀ (m::nat). x 6= y + m)) by presburger
show ?thesis

apply (auto simp add: inj-on-def )
apply (case-tac x = y)
apply auto
apply (case-tac x < y)
apply (case-tac ∃m. y = x + m & 0 < m)
apply (auto intro: lemma-nat2Nat)
apply (case-tac y < x)
apply (case-tac ∃m. x = y + m & 0 < m)
apply simp
apply simp
using th apply blast
apply (case-tac ∃m. x = y + m)
apply (auto intro: lemma-nat2Nat)
apply (drule sym)
using lemma-nat2Nat apply blast
using th ′ apply blast
done

qed

13



lemma Nat2nat-nat2Nat[simp]: Nat2nat (nat2Nat n) = n
by (simp add: Nat2nat-def inv-f-f [OF inj-nat2Nat])

lemma nat2Nat-Nat2nat[simp]: Elem n Nat =⇒ nat2Nat (Nat2nat n) = n
apply (simp add: Nat2nat-def )
apply (rule-tac f-inv-into-f )
apply (auto simp add: image-def Nat-def Sep)
done

lemma Nat2nat-SucNat: Elem N Nat =⇒ Nat2nat (SucNat N ) = Suc (Nat2nat
N )

apply (auto simp add: Nat-def Sep Nat2nat-def )
apply (auto simp add: inv-f-f [OF inj-nat2Nat])
apply (simp only: nat2Nat.simps[symmetric])
apply (simp only: inv-f-f [OF inj-nat2Nat])
done

lemma Elem-Opair-exists: ∃ z. Elem x z & Elem y z & Elem z (Opair x y)
apply (rule exI [where x=Upair x y])
by (simp add: Upair Opair-def )

lemma UNIV-is-not-in-ZF : UNIV 6= explode R
proof

let ?Russell = { x. Not(Elem x x) }
have ?Russell = UNIV by (simp add: irreflexiv-Elem)
moreover assume UNIV = explode R
ultimately have russell: ?Russell = explode R by simp
then show False
proof(cases Elem R R)

case True
then show ?thesis

by (insert irreflexiv-Elem, auto)
next

case False
then have R ∈ ?Russell by auto
then have Elem R R by (simp add: russell explode-def )
with False show ?thesis by auto

qed
qed

definition SpecialR :: (ZF ∗ ZF) set where
SpecialR ≡ { (x, y) . x 6= Empty ∧ y = Empty}

lemma wf SpecialR
apply (subst wf-def )
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apply (auto simp add: SpecialR-def )
done

definition Ext :: ( ′a ∗ ′b) set ⇒ ′b ⇒ ′a set where
Ext R y ≡ { x . (x, y) ∈ R }

lemma Ext-Elem: Ext is-Elem-of = explode
by (auto simp add: Ext-def is-Elem-of-def explode-def )

lemma Ext SpecialR Empty 6= explode z
proof

have Ext SpecialR Empty = UNIV − {Empty}
by (auto simp add: Ext-def SpecialR-def )

moreover assume Ext SpecialR Empty = explode z
ultimately have UNIV = explode(union z (Singleton Empty))

by (auto simp add: explode-def union Singleton)
then show False by (simp add: UNIV-is-not-in-ZF)

qed

definition implode :: ZF set ⇒ ZF where
implode == inv explode

lemma inj-explode: inj explode
by (auto simp add: inj-on-def explode-def Ext)

lemma implode-explode[simp]: implode (explode x) = x
by (simp add: implode-def inj-explode)

definition regular :: (ZF ∗ ZF) set ⇒ bool where
regular R == ∀A. A 6= Empty −→ (∃ x. Elem x A ∧ (∀ y. (y, x) ∈ R −→ Not

(Elem y A)))

definition set-like :: (ZF ∗ ZF) set ⇒ bool where
set-like R == ∀ y. Ext R y ∈ range explode

definition wfzf :: (ZF ∗ ZF) set ⇒ bool where
wfzf R == regular R ∧ set-like R

lemma regular-Elem: regular is-Elem-of
by (simp add: regular-def is-Elem-of-def Regularity)

lemma set-like-Elem: set-like is-Elem-of
by (auto simp add: set-like-def image-def Ext-Elem)

lemma wfzf-is-Elem-of : wfzf is-Elem-of
by (auto simp add: wfzf-def regular-Elem set-like-Elem)

definition SeqSum :: (nat ⇒ ZF) ⇒ ZF where
SeqSum f == Sum (Repl Nat (f o Nat2nat))

15



lemma SeqSum: Elem x (SeqSum f ) = (∃n. Elem x (f n))
apply (auto simp add: SeqSum-def Sum Repl)
apply (rule-tac x = f n in exI )
apply auto
done

definition Ext-ZF :: (ZF ∗ ZF) set ⇒ ZF ⇒ ZF where
Ext-ZF R s == implode (Ext R s)

lemma Elem-implode: A ∈ range explode =⇒ Elem x (implode A) = (x ∈ A)
apply (auto)
apply (simp-all add: explode-def )
done

lemma Elem-Ext-ZF : set-like R =⇒ Elem x (Ext-ZF R s) = ((x,s) ∈ R)
apply (simp add: Ext-ZF-def )
apply (subst Elem-implode)
apply (simp add: set-like-def )
apply (simp add: Ext-def )
done

primrec Ext-ZF-n :: (ZF ∗ ZF) set ⇒ ZF ⇒ nat ⇒ ZF where
Ext-ZF-n R s 0 = Ext-ZF R s
| Ext-ZF-n R s (Suc n) = Sum (Repl (Ext-ZF-n R s n) (Ext-ZF R))

definition Ext-ZF-hull :: (ZF ∗ ZF) set ⇒ ZF ⇒ ZF where
Ext-ZF-hull R s == SeqSum (Ext-ZF-n R s)

lemma Elem-Ext-ZF-hull:
assumes set-like-R: set-like R
shows Elem x (Ext-ZF-hull R S) = (∃n. Elem x (Ext-ZF-n R S n))
by (simp add: Ext-ZF-hull-def SeqSum)

lemma Elem-Elem-Ext-ZF-hull:
assumes set-like-R: set-like R

and x-hull: Elem x (Ext-ZF-hull R S)
and y-R-x: (y, x) ∈ R

shows Elem y (Ext-ZF-hull R S)
proof −

from Elem-Ext-ZF-hull[OF set-like-R] x-hull
have ∃n. Elem x (Ext-ZF-n R S n) by auto
then obtain n where n:Elem x (Ext-ZF-n R S n) ..
with y-R-x have Elem y (Ext-ZF-n R S (Suc n))

apply (auto simp add: Repl Sum)
apply (rule-tac x=Ext-ZF R x in exI )
apply (auto simp add: Elem-Ext-ZF [OF set-like-R])
done

with Elem-Ext-ZF-hull[OF set-like-R, where x=y] show ?thesis
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by (auto simp del: Ext-ZF-n.simps)
qed

lemma wfzf-minimal:
assumes hyps: wfzf R C 6= {}
shows ∃ x. x ∈ C ∧ (∀ y. (y, x) ∈ R −→ y /∈ C )

proof −
from hyps have ∃S . S ∈ C by auto
then obtain S where S :S ∈ C by auto
let ?T = Sep (Ext-ZF-hull R S) (λ s. s ∈ C )
from hyps have set-like-R: set-like R by (simp add: wfzf-def )
show ?thesis
proof (cases ?T = Empty)

case True
then have ∀ z. ¬ (Elem z (Sep (Ext-ZF R S) (λ s. s ∈ C )))

apply (auto simp add: Ext Empty Sep Ext-ZF-hull-def SeqSum)
apply (erule-tac x=z in allE , auto)
apply (erule-tac x=0 in allE , auto)
done

then show ?thesis
apply (rule-tac exI [where x=S ])
apply (auto simp add: Sep Empty S)
apply (erule-tac x=y in allE)
apply (simp add: set-like-R Elem-Ext-ZF)
done

next
case False
from hyps have regular-R: regular R by (simp add: wfzf-def )
from

regular-R[simplified regular-def , rule-format, OF False, simplified Sep]
Elem-Elem-Ext-ZF-hull[OF set-like-R]

show ?thesis by blast
qed

qed

lemma wfzf-implies-wf : wfzf R =⇒ wf R
proof (subst wf-def , rule allI )

assume wfzf : wfzf R
fix P :: ZF ⇒ bool
let ?C = {x. P x}
{

assume induct: (∀ x. (∀ y. (y, x) ∈ R −→ P y) −→ P x)
let ?C = {x. ¬ (P x)}
have ?C = {}
proof (rule ccontr)

assume C : ?C 6= {}
from

wfzf-minimal[OF wfzf C ]
obtain x where x: x ∈ ?C ∧ (∀ y. (y, x) ∈ R −→ y /∈ ?C ) ..
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then have P x
apply (rule-tac induct[rule-format])
apply auto
done

with x show False by auto
qed
then have ∀ x. P x by auto

}
then show (∀ x. (∀ y. (y, x) ∈ R −→ P y) −→ P x) −→ (∀ x. P x) by blast

qed

lemma wf-is-Elem-of : wf is-Elem-of
by (auto simp add: wfzf-is-Elem-of wfzf-implies-wf )

lemma in-Ext-RTrans-implies-Elem-Ext-ZF-hull:
set-like R =⇒ x ∈ (Ext (R+) s) =⇒ Elem x (Ext-ZF-hull R s)
apply (simp add: Ext-def Elem-Ext-ZF-hull)
apply (erule converse-trancl-induct[where r=R])
apply (rule exI [where x=0 ])
apply (simp add: Elem-Ext-ZF)
apply auto
apply (rule-tac x=Suc n in exI )
apply (simp add: Sum Repl)
apply (rule-tac x=Ext-ZF R z in exI )
apply (auto simp add: Elem-Ext-ZF)
done

lemma implodeable-Ext-trancl: set-like R =⇒ set-like (R+)
apply (subst set-like-def )
apply (auto simp add: image-def )
apply (rule-tac x=Sep (Ext-ZF-hull R y) (λ z. z ∈ (Ext (R+) y)) in exI )
apply (auto simp add: explode-def Sep set-eqI

in-Ext-RTrans-implies-Elem-Ext-ZF-hull)
done

lemma Elem-Ext-ZF-hull-implies-in-Ext-RTrans[rule-format]:
set-like R =⇒ ∀ x. Elem x (Ext-ZF-n R s n) −→ x ∈ (Ext (R+) s)
apply (induct-tac n)
apply (auto simp add: Elem-Ext-ZF Ext-def Sum Repl)
done

lemma set-like R =⇒ Ext-ZF (R+) s = Ext-ZF-hull R s
apply (frule implodeable-Ext-trancl)
apply (auto simp add: Ext)
apply (erule in-Ext-RTrans-implies-Elem-Ext-ZF-hull)
apply (simp add: Elem-Ext-ZF Ext-def )
apply (auto simp add: Elem-Ext-ZF Elem-Ext-ZF-hull)
apply (erule Elem-Ext-ZF-hull-implies-in-Ext-RTrans[simplified Ext-def , simpli-

fied], assumption)
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done

lemma wf-implies-regular : wf R =⇒ regular R
proof (simp add: regular-def , rule allI )

assume wf : wf R
fix A
show A 6= Empty −→ (∃ x. Elem x A ∧ (∀ y. (y, x) ∈ R −→ ¬ Elem y A))
proof

assume A: A 6= Empty
then have ∃ x. x ∈ explode A

by (auto simp add: explode-def Ext Empty)
then obtain x where x:x ∈ explode A ..
from iffD1 [OF wf-eq-minimal wf , rule-format, where Q=explode A, OF x]
obtain z where z ∈ explode A ∧ (∀ y. (y, z) ∈ R −→ y /∈ explode A) by auto

then show ∃ x. Elem x A ∧ (∀ y. (y, x) ∈ R −→ ¬ Elem y A)
apply (rule-tac exI [where x = z])
apply (simp add: explode-def )
done

qed
qed

lemma wf-eq-wfzf : (wf R ∧ set-like R) = wfzf R
apply (auto simp add: wfzf-implies-wf )
apply (auto simp add: wfzf-def wf-implies-regular)
done

lemma wfzf-trancl: wfzf R =⇒ wfzf (R+)
by (auto simp add: wf-eq-wfzf [symmetric] implodeable-Ext-trancl wf-trancl)

lemma Ext-subset-mono: R ⊆ S =⇒ Ext R y ⊆ Ext S y
by (auto simp add: Ext-def )

lemma set-like-subset: set-like R =⇒ S ⊆ R =⇒ set-like S
apply (auto simp add: set-like-def )
apply (erule-tac x=y in allE)
apply (drule-tac y=y in Ext-subset-mono)
apply (auto simp add: image-def )
apply (rule-tac x=Sep x (% z. z ∈ (Ext S y)) in exI )
apply (auto simp add: explode-def Sep)
done

lemma wfzf-subset: wfzf S =⇒ R ⊆ S =⇒ wfzf R
by (auto intro: set-like-subset wf-subset simp add: wf-eq-wfzf [symmetric])

end

theory Zet
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imports HOLZF
begin

definition zet = {A :: ′a set | A f z. inj-on f A ∧ f ‘ A ⊆ explode z}

typedef ′a zet = zet :: ′a set set
unfolding zet-def by blast

definition zin :: ′a ⇒ ′a zet ⇒ bool where
zin x A == x ∈ (Rep-zet A)

lemma zet-ext-eq: (A = B) = (∀ x. zin x A = zin x B)
by (auto simp add: Rep-zet-inject[symmetric] zin-def )

definition zimage :: ( ′a ⇒ ′b) ⇒ ′a zet ⇒ ′b zet where
zimage f A == Abs-zet (image f (Rep-zet A))

lemma zet-def ′: zet = {A :: ′a set | A f z. inj-on f A ∧ f ‘ A = explode z}
apply (rule set-eqI )
apply (auto simp add: zet-def )
apply (rule-tac x=f in exI )
apply auto
apply (rule-tac x=Sep z (λ y. y ∈ (f ‘ x)) in exI )
apply (auto simp add: explode-def Sep)
done

lemma image-zet-rep: A ∈ zet =⇒ ∃ z . g ‘ A = explode z
apply (auto simp add: zet-def ′)
apply (rule-tac x=Repl z (g o (inv-into A f )) in exI )
apply (simp add: explode-Repl-eq)
apply (subgoal-tac explode z = f ‘ A)
apply (simp-all add: image-image cong: image-cong-simp)
done

lemma zet-image-mem:
assumes Azet: A ∈ zet
shows g ‘ A ∈ zet

proof −
from Azet have ∃ (f :: - ⇒ ZF). inj-on f A

by (auto simp add: zet-def ′)
then obtain f where injf : inj-on (f :: - ⇒ ZF) A

by auto
let ?w = f o (inv-into A g)
have subset: (inv-into A g) ‘ (g ‘ A) ⊆ A

by (auto simp add: inv-into-into)
have inj-on (inv-into A g) (g ‘ A) by (simp add: inj-on-inv-into)
then have injw: inj-on ?w (g ‘ A)

apply (rule comp-inj-on)
apply (rule inj-on-subset[where A=A])
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apply (auto simp add: subset injf )
done

show ?thesis
apply (simp add: zet-def ′ image-comp)
apply (rule exI [where x=?w])
apply (simp add: injw image-zet-rep Azet)
done

qed

lemma Rep-zimage-eq: Rep-zet (zimage f A) = image f (Rep-zet A)
apply (simp add: zimage-def )
apply (subst Abs-zet-inverse)
apply (simp-all add: Rep-zet zet-image-mem)
done

lemma zimage-iff : zin y (zimage f A) = (∃ x. zin x A ∧ y = f x)
by (auto simp add: zin-def Rep-zimage-eq)

definition zimplode :: ZF zet ⇒ ZF where
zimplode A == implode (Rep-zet A)

definition zexplode :: ZF ⇒ ZF zet where
zexplode z == Abs-zet (explode z)

lemma Rep-zet-eq-explode: ∃ z. Rep-zet A = explode z
by (rule image-zet-rep[where g=λ x. x,OF Rep-zet, simplified])

lemma zexplode-zimplode: zexplode (zimplode A) = A
apply (simp add: zimplode-def zexplode-def )
apply (simp add: implode-def )
apply (subst f-inv-into-f [where y=Rep-zet A])
apply (auto simp add: Rep-zet-inverse Rep-zet-eq-explode image-def )
done

lemma explode-mem-zet: explode z ∈ zet
apply (simp add: zet-def ′)
apply (rule-tac x=% x. x in exI )
apply (auto simp add: inj-on-def )
done

lemma zimplode-zexplode: zimplode (zexplode z) = z
apply (simp add: zimplode-def zexplode-def )
apply (subst Abs-zet-inverse)
apply (auto simp add: explode-mem-zet)
done

lemma zin-zexplode-eq: zin x (zexplode A) = Elem x A
apply (simp add: zin-def zexplode-def )
apply (subst Abs-zet-inverse)
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apply (simp-all add: explode-Elem explode-mem-zet)
done

lemma comp-zimage-eq: zimage g (zimage f A) = zimage (g o f ) A
apply (simp add: zimage-def )
apply (subst Abs-zet-inverse)
apply (simp-all add: image-comp zet-image-mem Rep-zet)
done

definition zunion :: ′a zet ⇒ ′a zet ⇒ ′a zet where
zunion a b ≡ Abs-zet ((Rep-zet a) ∪ (Rep-zet b))

definition zsubset :: ′a zet ⇒ ′a zet ⇒ bool where
zsubset a b ≡ ∀ x. zin x a −→ zin x b

lemma explode-union: explode (union a b) = (explode a) ∪ (explode b)
apply (rule set-eqI )
apply (simp add: explode-def union)
done

lemma Rep-zet-zunion: Rep-zet (zunion a b) = (Rep-zet a) ∪ (Rep-zet b)
proof −

from Rep-zet[of a] have ∃ f z. inj-on f (Rep-zet a) ∧ f ‘ (Rep-zet a) = explode z
by (auto simp add: zet-def ′)

then obtain fa za where a:inj-on fa (Rep-zet a) ∧ fa ‘ (Rep-zet a) = explode za
by blast

from a have fa: inj-on fa (Rep-zet a) by blast
from a have za: fa ‘ (Rep-zet a) = explode za by blast
from Rep-zet[of b] have ∃ f z. inj-on f (Rep-zet b) ∧ f ‘ (Rep-zet b) = explode z

by (auto simp add: zet-def ′)
then obtain fb zb where b:inj-on fb (Rep-zet b) ∧ fb ‘ (Rep-zet b) = explode zb

by blast
from b have fb: inj-on fb (Rep-zet b) by blast
from b have zb: fb ‘ (Rep-zet b) = explode zb by blast
let ?f = (λ x. if x ∈ (Rep-zet a) then Opair (fa x) (Empty) else Opair (fb x)

(Singleton Empty))
let ?z = CartProd (union za zb) (Upair Empty (Singleton Empty))
have se: Singleton Empty 6= Empty

apply (auto simp add: Ext Singleton)
apply (rule exI [where x=Empty])
apply (simp add: Empty)
done

show ?thesis
apply (simp add: zunion-def )
apply (subst Abs-zet-inverse)
apply (auto simp add: zet-def )
apply (rule exI [where x = ?f ])
apply (rule conjI )

apply (auto simp add: inj-on-def Opair inj-onD[OF fa] inj-onD[OF fb] se
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se[symmetric])
apply (rule exI [where x = ?z])
apply (insert za zb)
apply (auto simp add: explode-def CartProd union Upair Opair)
done

qed

lemma zunion: zin x (zunion a b) = ((zin x a) ∨ (zin x b))
by (auto simp add: zin-def Rep-zet-zunion)

lemma zimage-zexplode-eq: zimage f (zexplode z) = zexplode (Repl z f )
by (simp add: zet-ext-eq zin-zexplode-eq Repl zimage-iff )

lemma range-explode-eq-zet: range explode = zet
apply (rule set-eqI )
apply (auto simp add: explode-mem-zet)
apply (drule image-zet-rep)
apply (simp add: image-def )
apply auto
apply (rule-tac x=z in exI )
apply auto
done

lemma Elem-zimplode: (Elem x (zimplode z)) = (zin x z)
apply (simp add: zimplode-def )
apply (subst Elem-implode)
apply (simp-all add: zin-def Rep-zet range-explode-eq-zet)
done

definition zempty :: ′a zet where
zempty ≡ Abs-zet {}

lemma zempty[simp]: ¬ (zin x zempty)
by (auto simp add: zin-def zempty-def Abs-zet-inverse zet-def )

lemma zimage-zempty[simp]: zimage f zempty = zempty
by (auto simp add: zet-ext-eq zimage-iff )

lemma zunion-zempty-left[simp]: zunion zempty a = a
by (simp add: zet-ext-eq zunion)

lemma zunion-zempty-right[simp]: zunion a zempty = a
by (simp add: zet-ext-eq zunion)

lemma zimage-id[simp]: zimage id A = A
by (simp add: zet-ext-eq zimage-iff )

lemma zimage-cong[fundef-cong]: [[ M = N ; !! x. zin x N =⇒ f x = g x ]] =⇒
zimage f M = zimage g N
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by (auto simp add: zet-ext-eq zimage-iff )

end

theory LProd
imports HOL−Library.Multiset
begin

inductive-set
lprod :: ( ′a ∗ ′a) set ⇒ ( ′a list ∗ ′a list) set
for R :: ( ′a ∗ ′a) set

where
lprod-single[intro!]: (a, b) ∈ R =⇒ ([a], [b]) ∈ lprod R
| lprod-list[intro!]: (ah@at, bh@bt) ∈ lprod R =⇒ (a,b) ∈ R ∨ a = b =⇒ (ah@a#at,
bh@b#bt) ∈ lprod R

lemma (as,bs) ∈ lprod R =⇒ length as = length bs
apply (induct as bs rule: lprod.induct)
apply auto
done

lemma (as, bs) ∈ lprod R =⇒ 1 ≤ length as ∧ 1 ≤ length bs
apply (induct as bs rule: lprod.induct)
apply auto
done

lemma lprod-subset-elem: (as, bs) ∈ lprod S =⇒ S ⊆ R =⇒ (as, bs) ∈ lprod R
apply (induct as bs rule: lprod.induct)
apply (auto)
done

lemma lprod-subset: S ⊆ R =⇒ lprod S ⊆ lprod R
by (auto intro: lprod-subset-elem)

lemma lprod-implies-mult: (as, bs) ∈ lprod R =⇒ trans R =⇒ (mset as, mset bs)
∈ mult R
proof (induct as bs rule: lprod.induct)

case (lprod-single a b)
note step = one-step-implies-mult[

where r=R and I={#} and K={#a#} and J={#b#}, simplified]
show ?case by (auto intro: lprod-single step)

next
case (lprod-list ah at bh bt a b)
then have transR: trans R by auto
have as: mset (ah @ a # at) = mset (ah @ at) + {#a#} (is - = ?ma + -)

by (simp add: algebra-simps)
have bs: mset (bh @ b # bt) = mset (bh @ bt) + {#b#} (is - = ?mb + -)

by (simp add: algebra-simps)
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from lprod-list have (?ma, ?mb) ∈ mult R
by auto

with mult-implies-one-step[OF transR] have
∃ I J K . ?mb = I + J ∧ ?ma = I + K ∧ J 6= {#} ∧ (∀ k∈set-mset K .

∃ j∈set-mset J . (k, j) ∈ R)
by blast

then obtain I J K where
decomposed: ?mb = I + J ∧ ?ma = I + K ∧ J 6= {#} ∧ (∀ k∈set-mset K .

∃ j∈set-mset J . (k, j) ∈ R)
by blast

show ?case
proof (cases a = b)

case True
have ((I + {#b#}) + K , (I + {#b#}) + J ) ∈ mult R

apply (rule one-step-implies-mult)
apply (auto simp add: decomposed)
done

then show ?thesis
apply (simp only: as bs)
apply (simp only: decomposed True)
apply (simp add: algebra-simps)
done

next
case False
from False lprod-list have False: (a, b) ∈ R by blast
have (I + (K + {#a#}), I + (J + {#b#})) ∈ mult R

apply (rule one-step-implies-mult)
apply (auto simp add: False decomposed)
done

then show ?thesis
apply (simp only: as bs)
apply (simp only: decomposed)
apply (simp add: algebra-simps)
done

qed
qed

lemma wf-lprod[simp,intro]:
assumes wf-R: wf R
shows wf (lprod R)

proof −
have subset: lprod (R+) ⊆ inv-image (mult (R+)) mset

by (auto simp add: lprod-implies-mult trans-trancl)
note lprodtrancl = wf-subset[OF wf-inv-image[where r=mult (R+) and f=mset,

OF wf-mult[OF wf-trancl[OF wf-R]]], OF subset]
note lprod = wf-subset[OF lprodtrancl, where p=lprod R, OF lprod-subset, sim-

plified]
show ?thesis by (auto intro: lprod)
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qed

definition gprod-2-2 :: ( ′a ∗ ′a) set ⇒ (( ′a ∗ ′a) ∗ ( ′a ∗ ′a)) set where
gprod-2-2 R ≡ { ((a,b), (c,d)) . (a = c ∧ (b,d) ∈ R) ∨ (b = d ∧ (a,c) ∈ R) }

definition gprod-2-1 :: ( ′a ∗ ′a) set ⇒ (( ′a ∗ ′a) ∗ ( ′a ∗ ′a)) set where
gprod-2-1 R ≡ { ((a,b), (c,d)) . (a = d ∧ (b,c) ∈ R) ∨ (b = c ∧ (a,d) ∈ R) }

lemma lprod-2-3 : (a, b) ∈ R =⇒ ([a, c], [b, c]) ∈ lprod R
by (auto intro: lprod-list[where a=c and b=c and

ah = [a] and at = [] and bh=[b] and bt=[], simplified])

lemma lprod-2-4 : (a, b) ∈ R =⇒ ([c, a], [c, b]) ∈ lprod R
by (auto intro: lprod-list[where a=c and b=c and

ah = [] and at = [a] and bh=[] and bt=[b], simplified])

lemma lprod-2-1 : (a, b) ∈ R =⇒ ([c, a], [b, c]) ∈ lprod R
by (auto intro: lprod-list[where a=c and b=c and

ah = [] and at = [a] and bh=[b] and bt=[], simplified])

lemma lprod-2-2 : (a, b) ∈ R =⇒ ([a, c], [c, b]) ∈ lprod R
by (auto intro: lprod-list[where a=c and b=c and

ah = [a] and at = [] and bh=[] and bt=[b], simplified])

lemma [simp, intro]:
assumes wfR: wf R shows wf (gprod-2-1 R)

proof −
have gprod-2-1 R ⊆ inv-image (lprod R) (λ (a,b). [a,b])

by (auto simp add: gprod-2-1-def lprod-2-1 lprod-2-2 )
with wfR show ?thesis

by (rule-tac wf-subset, auto)
qed

lemma [simp, intro]:
assumes wfR: wf R shows wf (gprod-2-2 R)

proof −
have gprod-2-2 R ⊆ inv-image (lprod R) (λ (a,b). [a,b])

by (auto simp add: gprod-2-2-def lprod-2-3 lprod-2-4 )
with wfR show ?thesis

by (rule-tac wf-subset, auto)
qed

lemma lprod-3-1 : assumes (x ′, x) ∈ R shows ([y, z, x ′], [x, y, z]) ∈ lprod R
apply (rule lprod-list[where a=y and b=y and ah=[] and at=[z,x ′] and bh=[x]

and bt=[z], simplified])
apply (auto simp add: lprod-2-1 assms)
done

lemma lprod-3-2 : assumes (z ′,z) ∈ R shows ([z ′, x, y], [x,y,z]) ∈ lprod R
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apply (rule lprod-list[where a=y and b=y and ah=[z ′,x] and at=[] and bh=[x]
and bt=[z], simplified])

apply (auto simp add: lprod-2-2 assms)
done

lemma lprod-3-3 : assumes xr : (xr , x) ∈ R shows ([xr , y, z], [x, y, z]) ∈ lprod R
apply (rule lprod-list[where a=y and b=y and ah=[xr ] and at=[z] and bh=[x]

and bt=[z], simplified])
apply (simp add: xr lprod-2-3 )
done

lemma lprod-3-4 : assumes yr : (yr , y) ∈ R shows ([x, yr , z], [x, y, z]) ∈ lprod R
apply (rule lprod-list[where a=x and b=x and ah=[] and at=[yr ,z] and bh=[]

and bt=[y,z], simplified])
apply (simp add: yr lprod-2-3 )
done

lemma lprod-3-5 : assumes zr : (zr , z) ∈ R shows ([x, y, zr ], [x, y, z]) ∈ lprod R
apply (rule lprod-list[where a=x and b=x and ah=[] and at=[y,zr ] and bh=[]

and bt=[y,z], simplified])
apply (simp add: zr lprod-2-4 )
done

lemma lprod-3-6 : assumes y ′: (y ′, y) ∈ R shows ([x, z, y ′], [x, y, z]) ∈ lprod R
apply (rule lprod-list[where a=z and b=z and ah=[x] and at=[y ′] and bh=[x,y]

and bt=[], simplified])
apply (simp add: y ′ lprod-2-4 )
done

lemma lprod-3-7 : assumes z ′: (z ′,z) ∈ R shows ([x, z ′, y], [x, y, z]) ∈ lprod R
apply (rule lprod-list[where a=y and b=y and ah=[x, z ′] and at=[] and bh=[x]

and bt=[z], simplified])
apply (simp add: z ′ lprod-2-4 )
done

definition perm :: ( ′a ⇒ ′a) ⇒ ′a set ⇒ bool where
perm f A ≡ inj-on f A ∧ f ‘ A = A

lemma ((as,bs) ∈ lprod R) =
(∃ f . perm f {0 ..< (length as)} ∧
(∀ j. j < length as −→ ((nth as j, nth bs (f j)) ∈ R ∨ (nth as j = nth bs (f j))))
∧
(∃ i. i < length as ∧ (nth as i, nth bs (f i)) ∈ R))

oops

lemma trans R =⇒ (ah@a#at, bh@b#bt) ∈ lprod R =⇒ (b, a) ∈ R ∨ a = b =⇒
(ah@at, bh@bt) ∈ lprod R
oops
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end

theory MainZF
imports Zet LProd
begin

end

theory Games
imports MainZF
begin

definition fixgames :: ZF set ⇒ ZF set where
fixgames A ≡ { Opair l r | l r . explode l ⊆ A & explode r ⊆ A}

definition games-lfp :: ZF set where
games-lfp ≡ lfp fixgames

definition games-gfp :: ZF set where
games-gfp ≡ gfp fixgames

lemma mono-fixgames: mono (fixgames)
apply (auto simp add: mono-def fixgames-def )
apply (rule-tac x=l in exI )
apply (rule-tac x=r in exI )
apply auto
done

lemma games-lfp-unfold: games-lfp = fixgames games-lfp
by (auto simp add: def-lfp-unfold games-lfp-def mono-fixgames)

lemma games-gfp-unfold: games-gfp = fixgames games-gfp
by (auto simp add: def-gfp-unfold games-gfp-def mono-fixgames)

lemma games-lfp-nonempty: Opair Empty Empty ∈ games-lfp
proof −

have fixgames {} ⊆ games-lfp
apply (subst games-lfp-unfold)
apply (simp add: mono-fixgames[simplified mono-def , rule-format])
done

moreover have fixgames {} = {Opair Empty Empty}
by (simp add: fixgames-def explode-Empty)

finally show ?thesis
by auto

qed

definition left-option :: ZF ⇒ ZF ⇒ bool where
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left-option g opt ≡ (Elem opt (Fst g))

definition right-option :: ZF ⇒ ZF ⇒ bool where
right-option g opt ≡ (Elem opt (Snd g))

definition is-option-of :: (ZF ∗ ZF) set where
is-option-of ≡ { (opt, g) | opt g. g ∈ games-gfp ∧ (left-option g opt ∨ right-option

g opt) }

lemma games-lfp-subset-gfp: games-lfp ⊆ games-gfp
proof −

have games-lfp ⊆ fixgames games-lfp
by (simp add: games-lfp-unfold[symmetric])

then show ?thesis
by (simp add: games-gfp-def gfp-upperbound)

qed

lemma games-option-stable:
assumes fixgames: games = fixgames games
and g: g ∈ games
and opt: left-option g opt ∨ right-option g opt
shows opt ∈ games

proof −
from g fixgames have g ∈ fixgames games by auto
then have ∃ l r . g = Opair l r ∧ explode l ⊆ games ∧ explode r ⊆ games

by (simp add: fixgames-def )
then obtain l where ∃ r . g = Opair l r ∧ explode l ⊆ games ∧ explode r ⊆

games ..
then obtain r where lr : g = Opair l r ∧ explode l ⊆ games ∧ explode r ⊆

games ..
with opt show ?thesis

by (auto intro: Elem-explode-in simp add: left-option-def right-option-def Fst
Snd)
qed

lemma option2elem: (opt,g) ∈ is-option-of =⇒ ∃ u v. Elem opt u ∧ Elem u v ∧
Elem v g

apply (simp add: is-option-of-def )
apply (subgoal-tac (g ∈ games-gfp) = (g ∈ (fixgames games-gfp)))
prefer 2
apply (simp add: games-gfp-unfold[symmetric])
apply (auto simp add: fixgames-def left-option-def right-option-def Fst Snd)
apply (rule-tac x=l in exI , insert Elem-Opair-exists, blast)
apply (rule-tac x=r in exI , insert Elem-Opair-exists, blast)
done

lemma is-option-of-subset-is-Elem-of : is-option-of ⊆ (is-Elem-of +)
proof −

{
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fix opt
fix g
assume (opt, g) ∈ is-option-of
then have ∃ u v. (opt, u) ∈ (is-Elem-of +) ∧ (u,v) ∈ (is-Elem-of +) ∧ (v,g) ∈

(is-Elem-of +)
apply −
apply (drule option2elem)
apply (auto simp add: r-into-trancl ′ is-Elem-of-def )
done

then have (opt, g) ∈ (is-Elem-of +)
by (blast intro: trancl-into-rtrancl trancl-rtrancl-trancl)

}
then show ?thesis by auto

qed

lemma wfzf-is-option-of : wfzf is-option-of
proof −

have wfzf (is-Elem-of +) by (simp add: wfzf-trancl wfzf-is-Elem-of )
then show ?thesis

apply (rule wfzf-subset)
apply (rule is-option-of-subset-is-Elem-of )
done

qed

lemma games-gfp-imp-lfp: g ∈ games-gfp −→ g ∈ games-lfp
proof −

have unfold-gfp:
∧

x. x ∈ games-gfp =⇒ x ∈ (fixgames games-gfp)
by (simp add: games-gfp-unfold[symmetric])

have unfold-lfp:
∧

x. (x ∈ games-lfp) = (x ∈ (fixgames games-lfp))
by (simp add: games-lfp-unfold[symmetric])

show ?thesis
apply (rule wf-induct[OF wfzf-implies-wf [OF wfzf-is-option-of ]])
apply (auto simp add: is-option-of-def )
apply (drule-tac unfold-gfp)
apply (simp add: fixgames-def )
apply (auto simp add: left-option-def Fst right-option-def Snd)
apply (subgoal-tac explode l ⊆ games-lfp)
apply (subgoal-tac explode r ⊆ games-lfp)
apply (subst unfold-lfp)
apply (auto simp add: fixgames-def )
apply (simp-all add: explode-Elem Elem-explode-in)
done

qed

theorem games-lfp-eq-gfp: games-lfp = games-gfp
apply (auto simp add: games-gfp-imp-lfp)
apply (insert games-lfp-subset-gfp)
apply auto
done
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theorem unique-games: (g = fixgames g) = (g = games-lfp)
proof −

{
fix g
assume g: g = fixgames g
from g have fixgames g ⊆ g by auto
then have l:games-lfp ⊆ g

by (simp add: games-lfp-def lfp-lowerbound)
from g have g ⊆ fixgames g by auto
then have u:g ⊆ games-gfp

by (simp add: games-gfp-def gfp-upperbound)
from l u games-lfp-eq-gfp[symmetric] have g = games-lfp

by auto
}
note games = this
show ?thesis

apply (rule iffI )
apply (erule games)
apply (simp add: games-lfp-unfold[symmetric])
done

qed

lemma games-lfp-option-stable:
assumes g: g ∈ games-lfp
and opt: left-option g opt ∨ right-option g opt
shows opt ∈ games-lfp
apply (rule games-option-stable[where g=g])
apply (simp add: games-lfp-unfold[symmetric])
apply (simp-all add: assms)
done

lemma is-option-of-imp-games:
assumes hyp: (opt, g) ∈ is-option-of
shows opt ∈ games-lfp ∧ g ∈ games-lfp

proof −
from hyp have g-game: g ∈ games-lfp

by (simp add: is-option-of-def games-lfp-eq-gfp)
from hyp have left-option g opt ∨ right-option g opt

by (auto simp add: is-option-of-def )
with g-game games-lfp-option-stable[OF g-game, OF this] show ?thesis

by auto
qed

lemma games-lfp-represent: x ∈ games-lfp =⇒ ∃ l r . x = Opair l r
apply (rule exI [where x=Fst x])
apply (rule exI [where x=Snd x])
apply (subgoal-tac x ∈ (fixgames games-lfp))
apply (simp add: fixgames-def )
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apply (auto simp add: Fst Snd)
apply (simp add: games-lfp-unfold[symmetric])
done

definition game = games-lfp

typedef game = game
unfolding game-def by (blast intro: games-lfp-nonempty)

definition left-options :: game ⇒ game zet where
left-options g ≡ zimage Abs-game (zexplode (Fst (Rep-game g)))

definition right-options :: game ⇒ game zet where
right-options g ≡ zimage Abs-game (zexplode (Snd (Rep-game g)))

definition options :: game ⇒ game zet where
options g ≡ zunion (left-options g) (right-options g)

definition Game :: game zet ⇒ game zet ⇒ game where
Game L R ≡ Abs-game (Opair (zimplode (zimage Rep-game L)) (zimplode (zimage

Rep-game R)))

lemma Repl-Rep-game-Abs-game: ∀ e. Elem e z −→ e ∈ games-lfp =⇒ Repl z
(Rep-game o Abs-game) = z

apply (subst Ext)
apply (simp add: Repl)
apply auto
apply (subst Abs-game-inverse, simp-all add: game-def )
apply (rule-tac x=za in exI )
apply (subst Abs-game-inverse, simp-all add: game-def )
done

lemma game-split: g = Game (left-options g) (right-options g)
proof −

have ∃ l r . Rep-game g = Opair l r
apply (insert Rep-game[of g])
apply (simp add: game-def games-lfp-represent)
done

then obtain l r where lr : Rep-game g = Opair l r by auto
have partizan-g: Rep-game g ∈ games-lfp

apply (insert Rep-game[of g])
apply (simp add: game-def )
done

have ∀ e. Elem e l −→ left-option (Rep-game g) e
by (simp add: lr left-option-def Fst)

then have partizan-l: ∀ e. Elem e l −→ e ∈ games-lfp
apply auto
apply (rule games-lfp-option-stable[where g=Rep-game g, OF partizan-g])
apply auto
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done
have ∀ e. Elem e r −→ right-option (Rep-game g) e

by (simp add: lr right-option-def Snd)
then have partizan-r : ∀ e. Elem e r −→ e ∈ games-lfp

apply auto
apply (rule games-lfp-option-stable[where g=Rep-game g, OF partizan-g])
apply auto
done

let ?L = zimage (Abs-game) (zexplode l)
let ?R = zimage (Abs-game) (zexplode r)
have L:?L = left-options g

by (simp add: left-options-def lr Fst)
have R:?R = right-options g

by (simp add: right-options-def lr Snd)
have g = Game ?L ?R

apply (simp add: Game-def Rep-game-inject[symmetric] comp-zimage-eq zim-
age-zexplode-eq zimplode-zexplode)

apply (simp add: Repl-Rep-game-Abs-game partizan-l partizan-r)
apply (subst Abs-game-inverse)
apply (simp-all add: lr [symmetric] Rep-game)
done

then show ?thesis
by (simp add: L R)

qed

lemma Opair-in-games-lfp:
assumes l: explode l ⊆ games-lfp
and r : explode r ⊆ games-lfp
shows Opair l r ∈ games-lfp

proof −
note f = unique-games[of games-lfp, simplified]
show ?thesis

apply (subst f )
apply (simp add: fixgames-def )
apply (rule exI [where x=l])
apply (rule exI [where x=r ])
apply (auto simp add: l r)
done

qed

lemma left-options[simp]: left-options (Game l r) = l
apply (simp add: left-options-def Game-def )
apply (subst Abs-game-inverse)
apply (simp add: game-def )
apply (rule Opair-in-games-lfp)
apply (auto simp add: explode-Elem Elem-zimplode zimage-iff Rep-game[simplified

game-def ])
apply (simp add: Fst zexplode-zimplode comp-zimage-eq)
apply (simp add: zet-ext-eq zimage-iff Rep-game-inverse)
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done

lemma right-options[simp]: right-options (Game l r) = r
apply (simp add: right-options-def Game-def )
apply (subst Abs-game-inverse)
apply (simp add: game-def )
apply (rule Opair-in-games-lfp)
apply (auto simp add: explode-Elem Elem-zimplode zimage-iff Rep-game[simplified

game-def ])
apply (simp add: Snd zexplode-zimplode comp-zimage-eq)
apply (simp add: zet-ext-eq zimage-iff Rep-game-inverse)
done

lemma Game-ext: (Game l1 r1 = Game l2 r2 ) = ((l1 = l2 ) ∧ (r1 = r2 ))
apply auto
apply (subst left-options[where l=l1 and r=r1 ,symmetric])
apply (subst left-options[where l=l2 and r=r2 ,symmetric])
apply simp
apply (subst right-options[where l=l1 and r=r1 ,symmetric])
apply (subst right-options[where l=l2 and r=r2 ,symmetric])
apply simp
done

definition option-of :: (game ∗ game) set where
option-of ≡ image (λ (option, g). (Abs-game option, Abs-game g)) is-option-of

lemma option-to-is-option-of : ((option, g) ∈ option-of ) = ((Rep-game option,
Rep-game g) ∈ is-option-of )

apply (auto simp add: option-of-def )
apply (subst Abs-game-inverse)
apply (simp add: is-option-of-imp-games game-def )
apply (subst Abs-game-inverse)
apply (simp add: is-option-of-imp-games game-def )
apply simp
apply (auto simp add: Bex-def image-def )
apply (rule exI [where x=Rep-game option])
apply (rule exI [where x=Rep-game g])
apply (simp add: Rep-game-inverse)
done

lemma wf-is-option-of : wf is-option-of
apply (rule wfzf-implies-wf )
apply (simp add: wfzf-is-option-of )
done

lemma wf-option-of [simp, intro]: wf option-of
proof −

have option-of : option-of = inv-image is-option-of Rep-game
apply (rule set-eqI )
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apply (case-tac x)
by (simp add: option-to-is-option-of )

show ?thesis
apply (simp add: option-of )
apply (auto intro: wf-is-option-of )
done

qed

lemma right-option-is-option[simp, intro]: zin x (right-options g) =⇒ zin x (options
g)

by (simp add: options-def zunion)

lemma left-option-is-option[simp, intro]: zin x (left-options g) =⇒ zin x (options
g)

by (simp add: options-def zunion)

lemma zin-options[simp, intro]: zin x (options g) =⇒ (x, g) ∈ option-of
apply (simp add: options-def zunion left-options-def right-options-def option-of-def

image-def is-option-of-def zimage-iff zin-zexplode-eq)
apply (cases g)
apply (cases x)
apply (auto simp add: Abs-game-inverse games-lfp-eq-gfp[symmetric] game-def

right-option-def [symmetric] left-option-def [symmetric])
done

function
neg-game :: game ⇒ game

where
[simp del]: neg-game g = Game (zimage neg-game (right-options g)) (zimage

neg-game (left-options g))
by auto
termination by (relation option-of ) auto

lemma neg-game (neg-game g) = g
apply (induct g rule: neg-game.induct)
apply (subst neg-game.simps)+
apply (simp add: comp-zimage-eq)
apply (subgoal-tac zimage (neg-game o neg-game) (left-options g) = left-options

g)
apply (subgoal-tac zimage (neg-game o neg-game) (right-options g) = right-options

g)
apply (auto simp add: game-split[symmetric])
apply (auto simp add: zet-ext-eq zimage-iff )
done

function
ge-game :: (game ∗ game) ⇒ bool

where
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[simp del]: ge-game (G, H ) = (∀ x. if zin x (right-options G) then (
if zin x (left-options H ) then ¬ (ge-game (H , x) ∨ (ge-game

(x, G)))
else ¬ (ge-game (H , x)))

else (if zin x (left-options H ) then ¬ (ge-game (x, G)) else
True))
by auto
termination by (relation (gprod-2-1 option-of ))
(simp, auto simp: gprod-2-1-def )

lemma ge-game-eq: ge-game (G, H ) = (∀ x. (zin x (right-options G) −→ ¬
ge-game (H , x)) ∧ (zin x (left-options H ) −→ ¬ ge-game (x, G)))

apply (subst ge-game.simps[where G=G and H=H ])
apply (auto)
done

lemma ge-game-leftright-refl[rule-format]:
∀ y. (zin y (right-options x) −→ ¬ ge-game (x, y)) ∧ (zin y (left-options x) −→
¬ (ge-game (y, x))) ∧ ge-game (x, x)
proof (induct x rule: wf-induct[OF wf-option-of ])

case (1 g)
{

fix y
assume y: zin y (right-options g)
have ¬ ge-game (g, y)
proof −

have (y, g) ∈ option-of by (auto intro: y)
with 1 have ge-game (y, y) by auto
with y show ?thesis by (subst ge-game-eq, auto)

qed
}
note right = this
{

fix y
assume y: zin y (left-options g)
have ¬ ge-game (y, g)
proof −

have (y, g) ∈ option-of by (auto intro: y)
with 1 have ge-game (y, y) by auto
with y show ?thesis by (subst ge-game-eq, auto)

qed
}
note left = this
from left right show ?case

by (auto, subst ge-game-eq, auto)
qed

lemma ge-game-refl: ge-game (x,x) by (simp add: ge-game-leftright-refl)
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lemma ∀ y. (zin y (right-options x) −→ ¬ ge-game (x, y)) ∧ (zin y (left-options
x) −→ ¬ (ge-game (y, x))) ∧ ge-game (x, x)
proof (induct x rule: wf-induct[OF wf-option-of ])

case (1 g)
show ?case
proof (auto, goal-cases)

{case prems: (1 y)
from prems have (y, g) ∈ option-of by (auto)
with 1 have ge-game (y, y) by auto
with prems have ¬ ge-game (g, y)

by (subst ge-game-eq, auto)
with prems show ?case by auto}

note right = this
{case prems: (2 y)

from prems have (y, g) ∈ option-of by (auto)
with 1 have ge-game (y, y) by auto
with prems have ¬ ge-game (y, g)

by (subst ge-game-eq, auto)
with prems show ?case by auto}

note left = this
{case 3

from left right show ?case
by (subst ge-game-eq, auto)

}
qed

qed

definition eq-game :: game ⇒ game ⇒ bool where
eq-game G H ≡ ge-game (G, H ) ∧ ge-game (H , G)

lemma eq-game-sym: (eq-game G H ) = (eq-game H G)
by (auto simp add: eq-game-def )

lemma eq-game-refl: eq-game G G
by (simp add: ge-game-refl eq-game-def )

lemma induct-game: (
∧

x. ∀ y. (y, x) ∈ lprod option-of −→ P y =⇒ P x) =⇒ P a
by (erule wf-induct[OF wf-lprod[OF wf-option-of ]])

lemma ge-game-trans:
assumes ge-game (x, y) ge-game (y, z)
shows ge-game (x, z)

proof −
{

fix a
have ∀ x y z. a = [x,y,z] −→ ge-game (x,y) −→ ge-game (y,z) −→ ge-game

(x, z)
proof (induct a rule: induct-game)

case (1 a)
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show ?case
proof ((rule allI | rule impI )+, goal-cases)

case prems: (1 x y z)
show ?case
proof −

{ fix xr
assume xr :zin xr (right-options x)
assume a: ge-game (z, xr)
have ge-game (y, xr)

apply (rule 1 [rule-format, where y=[y,z,xr ]])
apply (auto intro: xr lprod-3-1 simp add: prems a)
done

moreover from xr have ¬ ge-game (y, xr)
by (simp add: prems(2 )[simplified ge-game-eq[of x y], rule-format, of

xr , simplified xr ])
ultimately have False by auto

}
note xr = this
{ fix zl

assume zl:zin zl (left-options z)
assume a: ge-game (zl, x)
have ge-game (zl, y)

apply (rule 1 [rule-format, where y=[zl,x,y]])
apply (auto intro: zl lprod-3-2 simp add: prems a)
done

moreover from zl have ¬ ge-game (zl, y)
by (simp add: prems(3 )[simplified ge-game-eq[of y z ], rule-format, of

zl, simplified zl])
ultimately have False by auto

}
note zl = this
show ?thesis

by (auto simp add: ge-game-eq[of x z] intro: xr zl)
qed

qed
qed

}
note trans = this[of [x, y, z], simplified, rule-format]
with assms show ?thesis by blast

qed

lemma eq-game-trans: eq-game a b =⇒ eq-game b c =⇒ eq-game a c
by (auto simp add: eq-game-def intro: ge-game-trans)

definition zero-game :: game
where zero-game ≡ Game zempty zempty

function
plus-game :: game ⇒ game ⇒ game
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where
[simp del]: plus-game G H = Game (zunion (zimage (λ g. plus-game g H )

(left-options G))
(zimage (λ h. plus-game G h) (left-options H )))

(zunion (zimage (λ g. plus-game g H ) (right-options G))
(zimage (λ h. plus-game G h) (right-options H )))

by auto
termination by (relation gprod-2-2 option-of )
(simp, auto simp: gprod-2-2-def )

lemma plus-game-comm: plus-game G H = plus-game H G
proof (induct G H rule: plus-game.induct)

case (1 G H )
show ?case

by (auto simp add:
plus-game.simps[where G=G and H=H ]
plus-game.simps[where G=H and H=G]
Game-ext zet-ext-eq zunion zimage-iff 1 )

qed

lemma game-ext-eq: (G = H ) = (left-options G = left-options H ∧ right-options
G = right-options H )
proof −

have (G = H ) = (Game (left-options G) (right-options G) = Game (left-options
H ) (right-options H ))

by (simp add: game-split[symmetric])
then show ?thesis by auto

qed

lemma left-zero-game[simp]: left-options (zero-game) = zempty
by (simp add: zero-game-def )

lemma right-zero-game[simp]: right-options (zero-game) = zempty
by (simp add: zero-game-def )

lemma plus-game-zero-right[simp]: plus-game G zero-game = G
proof −

have H = zero-game −→ plus-game G H = G for G H
proof (induct G H rule: plus-game.induct, rule impI , goal-cases)

case prems: (1 G H )
note induct-hyp = this[simplified prems, simplified] and this
show ?case

apply (simp only: plus-game.simps[where G=G and H=H ])
apply (simp add: game-ext-eq prems)
apply (auto simp add:

zimage-cong [where f = λ g. plus-game g zero-game and g = id]
induct-hyp)

done
qed
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then show ?thesis by auto
qed

lemma plus-game-zero-left: plus-game zero-game G = G
by (simp add: plus-game-comm)

lemma left-imp-options[simp]: zin opt (left-options g) =⇒ zin opt (options g)
by (simp add: options-def zunion)

lemma right-imp-options[simp]: zin opt (right-options g) =⇒ zin opt (options g)
by (simp add: options-def zunion)

lemma left-options-plus:
left-options (plus-game u v) = zunion (zimage (λg. plus-game g v) (left-options

u)) (zimage (λh. plus-game u h) (left-options v))
by (subst plus-game.simps, simp)

lemma right-options-plus:
right-options (plus-game u v) = zunion (zimage (λg. plus-game g v) (right-options

u)) (zimage (λh. plus-game u h) (right-options v))
by (subst plus-game.simps, simp)

lemma left-options-neg: left-options (neg-game u) = zimage neg-game (right-options
u)

by (subst neg-game.simps, simp)

lemma right-options-neg: right-options (neg-game u) = zimage neg-game (left-options
u)

by (subst neg-game.simps, simp)

lemma plus-game-assoc: plus-game (plus-game F G) H = plus-game F (plus-game
G H )
proof −

have ∀F G H . a = [F , G, H ] −→ plus-game (plus-game F G) H = plus-game F
(plus-game G H ) for a

proof (induct a rule: induct-game, (rule impI | rule allI )+, goal-cases)
case prems: (1 x F G H )
let ?L = plus-game (plus-game F G) H
let ?R = plus-game F (plus-game G H )
note options-plus = left-options-plus right-options-plus
{

fix opt
note hyp = prems(1 )[simplified prems(2 ), rule-format]

have F : zin opt (options F) =⇒ plus-game (plus-game opt G) H = plus-game
opt (plus-game G H )

by (blast intro: hyp lprod-3-3 )
have G: zin opt (options G) =⇒ plus-game (plus-game F opt) H = plus-game

F (plus-game opt H )
by (blast intro: hyp lprod-3-4 )
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have H : zin opt (options H ) =⇒ plus-game (plus-game F G) opt = plus-game
F (plus-game G opt)

by (blast intro: hyp lprod-3-5 )
note F and G and H

}
note induct-hyp = this
have left-options ?L = left-options ?R ∧ right-options ?L = right-options ?R

by (auto simp add:
plus-game.simps[where G=plus-game F G and H=H ]
plus-game.simps[where G=F and H=plus-game G H ]
zet-ext-eq zunion zimage-iff options-plus
induct-hyp left-imp-options right-imp-options)

then show ?case
by (simp add: game-ext-eq)

qed
then show ?thesis by auto

qed

lemma neg-plus-game: neg-game (plus-game G H ) = plus-game (neg-game G)
(neg-game H )
proof (induct G H rule: plus-game.induct)

case (1 G H )
note opt-ops =

left-options-plus right-options-plus
left-options-neg right-options-neg

show ?case
by (auto simp add: opt-ops

neg-game.simps[of plus-game G H ]
plus-game.simps[of neg-game G neg-game H ]
Game-ext zet-ext-eq zunion zimage-iff 1 )

qed

lemma eq-game-plus-inverse: eq-game (plus-game x (neg-game x)) zero-game
proof (induct x rule: wf-induct[OF wf-option-of ], goal-cases)

case prems: (1 x)
then have ihyp: eq-game (plus-game y (neg-game y)) zero-game if zin y (options

x) for y
using that by (auto simp add: prems)

have case1 : ¬ (ge-game (zero-game, plus-game y (neg-game x)))
if y: zin y (right-options x) for y
apply (subst ge-game.simps, simp)
apply (rule exI [where x=plus-game y (neg-game y)])
apply (auto simp add: ihyp[of y, simplified y right-imp-options eq-game-def ])
apply (auto simp add: left-options-plus left-options-neg zunion zimage-iff intro:

y)
done

have case2 : ¬ (ge-game (zero-game, plus-game x (neg-game y)))
if y: zin y (left-options x) for y
apply (subst ge-game.simps, simp)
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apply (rule exI [where x=plus-game y (neg-game y)])
apply (auto simp add: ihyp[of y, simplified y left-imp-options eq-game-def ])
apply (auto simp add: left-options-plus zunion zimage-iff intro: y)
done

have case3 : ¬ (ge-game (plus-game y (neg-game x), zero-game))
if y: zin y (left-options x) for y
apply (subst ge-game.simps, simp)
apply (rule exI [where x=plus-game y (neg-game y)])
apply (auto simp add: ihyp[of y, simplified y left-imp-options eq-game-def ])
apply (auto simp add: right-options-plus right-options-neg zunion zimage-iff

intro: y)
done

have case4 : ¬ (ge-game (plus-game x (neg-game y), zero-game))
if y: zin y (right-options x) for y
apply (subst ge-game.simps, simp)
apply (rule exI [where x=plus-game y (neg-game y)])
apply (auto simp add: ihyp[of y, simplified y right-imp-options eq-game-def ])
apply (auto simp add: right-options-plus zunion zimage-iff intro: y)
done

show ?case
apply (simp add: eq-game-def )
apply (simp add: ge-game.simps[of plus-game x (neg-game x) zero-game])
apply (simp add: ge-game.simps[of zero-game plus-game x (neg-game x)])

apply (simp add: right-options-plus left-options-plus right-options-neg left-options-neg
zunion zimage-iff )

apply (auto simp add: case1 case2 case3 case4 )
done

qed

lemma ge-plus-game-left: ge-game (y,z) = ge-game (plus-game x y, plus-game x
z)
proof −

have ∀ x y z. a = [x,y,z] −→ ge-game (y,z) = ge-game (plus-game x y, plus-game
x z) for a

proof (induct a rule: induct-game, (rule impI | rule allI )+, goal-cases)
case prems: (1 a x y z)
note induct-hyp = prems(1 )[rule-format, simplified prems(2 )]
{

assume hyp: ge-game(plus-game x y, plus-game x z)
have ge-game (y, z)
proof −

{ fix yr
assume yr : zin yr (right-options y)
from hyp have ¬ (ge-game (plus-game x z, plus-game x yr))

by (auto simp add: ge-game-eq[of plus-game x y plus-game x z]
right-options-plus zunion zimage-iff intro: yr)

then have ¬ (ge-game (z, yr))
apply (subst induct-hyp[where y=[x, z, yr ], of x z yr ])
apply (simp-all add: yr lprod-3-6 )
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done
}
note yr = this
{ fix zl

assume zl: zin zl (left-options z)
from hyp have ¬ (ge-game (plus-game x zl, plus-game x y))

by (auto simp add: ge-game-eq[of plus-game x y plus-game x z]
left-options-plus zunion zimage-iff intro: zl)

then have ¬ (ge-game (zl, y))
apply (subst prems(1 )[rule-format, where y=[x, zl, y], of x zl y])
apply (simp-all add: prems(2 ) zl lprod-3-7 )
done

}
note zl = this
show ge-game (y, z)

apply (subst ge-game-eq)
apply (auto simp add: yr zl)
done

qed
}
note right-imp-left = this
{

assume yz: ge-game (y, z)
{

fix x ′

assume x ′: zin x ′ (right-options x)
assume hyp: ge-game (plus-game x z, plus-game x ′ y)
then have n: ¬ (ge-game (plus-game x ′ y, plus-game x ′ z))

by (auto simp add: ge-game-eq[of plus-game x z plus-game x ′ y]
right-options-plus zunion zimage-iff intro: x ′)

have t: ge-game (plus-game x ′ y, plus-game x ′ z)
apply (subst induct-hyp[symmetric])
apply (auto intro: lprod-3-3 x ′ yz)
done

from n t have False by blast
}
note case1 = this
{

fix x ′

assume x ′: zin x ′ (left-options x)
assume hyp: ge-game (plus-game x ′ z, plus-game x y)
then have n: ¬ (ge-game (plus-game x ′ y, plus-game x ′ z))

by (auto simp add: ge-game-eq[of plus-game x ′ z plus-game x y]
left-options-plus zunion zimage-iff intro: x ′)

have t: ge-game (plus-game x ′ y, plus-game x ′ z)
apply (subst induct-hyp[symmetric])
apply (auto intro: lprod-3-3 x ′ yz)
done

from n t have False by blast
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}
note case3 = this
{

fix y ′

assume y ′: zin y ′ (right-options y)
assume hyp: ge-game (plus-game x z, plus-game x y ′)
then have ge-game(z, y ′)

apply (subst induct-hyp[of [x, z, y ′] x z y ′])
apply (auto simp add: hyp lprod-3-6 y ′)
done

with yz have ge-game (y, y ′)
by (blast intro: ge-game-trans)

with y ′ have False by (auto simp add: ge-game-leftright-refl)
}
note case2 = this
{

fix z ′

assume z ′: zin z ′ (left-options z)
assume hyp: ge-game (plus-game x z ′, plus-game x y)
then have ge-game(z ′, y)

apply (subst induct-hyp[of [x, z ′, y] x z ′ y])
apply (auto simp add: hyp lprod-3-7 z ′)
done

with yz have ge-game (z ′, z)
by (blast intro: ge-game-trans)

with z ′ have False by (auto simp add: ge-game-leftright-refl)
}
note case4 = this
have ge-game(plus-game x y, plus-game x z)

apply (subst ge-game-eq)
apply (auto simp add: right-options-plus left-options-plus zunion zimage-iff )
apply (auto intro: case1 case2 case3 case4 )
done

}
note left-imp-right = this
show ?case by (auto intro: right-imp-left left-imp-right)

qed
from this[of [x, y, z]] show ?thesis by blast

qed

lemma ge-plus-game-right: ge-game (y,z) = ge-game(plus-game y x, plus-game z
x)

by (simp add: ge-plus-game-left plus-game-comm)

lemma ge-neg-game: ge-game (neg-game x, neg-game y) = ge-game (y, x)
proof −

have ∀ x y. a = [x, y] −→ ge-game (neg-game x, neg-game y) = ge-game (y, x)
for a

proof (induct a rule: induct-game, (rule impI | rule allI )+, goal-cases)

44



case prems: (1 a x y)
note ihyp = prems(1 )[rule-format, simplified prems(2 )]
{ fix xl

assume xl: zin xl (left-options x)
have ge-game (neg-game y, neg-game xl) = ge-game (xl, y)

apply (subst ihyp)
apply (auto simp add: lprod-2-1 xl)
done

}
note xl = this
{ fix yr

assume yr : zin yr (right-options y)
have ge-game (neg-game yr , neg-game x) = ge-game (x, yr)

apply (subst ihyp)
apply (auto simp add: lprod-2-2 yr)
done

}
note yr = this
show ?case

by (auto simp add: ge-game-eq[of neg-game x neg-game y] ge-game-eq[of y x]
right-options-neg left-options-neg zimage-iff xl yr)

qed
from this[of [x,y]] show ?thesis by blast

qed

definition eq-game-rel :: (game ∗ game) set where
eq-game-rel ≡ { (p, q) . eq-game p q }

definition Pg = UNIV //eq-game-rel

typedef Pg = Pg
unfolding Pg-def by (auto simp add: quotient-def )

lemma equiv-eq-game[simp]: equiv UNIV eq-game-rel
proof (rule equivI )

show eq-game-rel ⊆ UNIV × UNIV
by simp

next
show refl eq-game-rel

by (auto simp only: eq-game-rel-def intro: reflI eq-game-refl)
next

show sym eq-game-rel
by (auto simp only: eq-game-rel-def eq-game-sym intro: symI )

next
show trans eq-game-rel

by (auto simp only: eq-game-rel-def intro: transI eq-game-trans)
qed

instantiation Pg :: {ord, zero, plus, minus, uminus}

45



begin

definition
Pg-zero-def : 0 = Abs-Pg (eq-game-rel ‘‘ {zero-game})

definition
Pg-le-def : G ≤ H ←→ (∃ g h. g ∈ Rep-Pg G ∧ h ∈ Rep-Pg H ∧ ge-game (h, g))

definition
Pg-less-def : G < H ←→ G ≤ H ∧ G 6= (H ::Pg)

definition
Pg-minus-def : − G = the-elem (

⋃
g ∈ Rep-Pg G. {Abs-Pg (eq-game-rel ‘‘ {neg-game

g})})

definition
Pg-plus-def : G + H = the-elem (

⋃
g ∈ Rep-Pg G.

⋃
h ∈ Rep-Pg H . {Abs-Pg

(eq-game-rel ‘‘ {plus-game g h})})

definition
Pg-diff-def : G − H = G + (− (H ::Pg))

instance ..

end

lemma Rep-Abs-eq-Pg[simp]: Rep-Pg (Abs-Pg (eq-game-rel ‘‘ {g})) = eq-game-rel
‘‘ {g}

apply (subst Abs-Pg-inverse)
apply (auto simp add: Pg-def quotient-def )
done

lemma char-Pg-le[simp]: (Abs-Pg (eq-game-rel ‘‘ {g}) ≤ Abs-Pg (eq-game-rel ‘‘
{h})) = (ge-game (h, g))

apply (simp add: Pg-le-def )
apply (auto simp add: eq-game-rel-def eq-game-def intro: ge-game-trans ge-game-refl)
done

lemma char-Pg-eq[simp]: (Abs-Pg (eq-game-rel ‘‘ {g}) = Abs-Pg (eq-game-rel ‘‘
{h})) = (eq-game g h)

apply (simp add: Rep-Pg-inject [symmetric])
apply (subst eq-equiv-class-iff [of UNIV ])
apply (simp-all)
apply (simp add: eq-game-rel-def )
done

lemma char-Pg-plus[simp]: Abs-Pg (eq-game-rel ‘‘ {g}) + Abs-Pg (eq-game-rel ‘‘
{h}) = Abs-Pg (eq-game-rel ‘‘ {plus-game g h})
proof −
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have (λ g h. {Abs-Pg (eq-game-rel ‘‘ {plus-game g h})}) respects2 eq-game-rel
apply (simp add: congruent2-def )
apply (auto simp add: eq-game-rel-def eq-game-def )
apply (rule-tac y=plus-game a ba in ge-game-trans)

apply (simp add: ge-plus-game-left[symmetric] ge-plus-game-right[symmetric])+
apply (rule-tac y=plus-game b aa in ge-game-trans)

apply (simp add: ge-plus-game-left[symmetric] ge-plus-game-right[symmetric])+
done

then show ?thesis
by (simp add: Pg-plus-def UN-equiv-class2 [OF equiv-eq-game equiv-eq-game])

qed

lemma char-Pg-minus[simp]: − Abs-Pg (eq-game-rel ‘‘ {g}) = Abs-Pg (eq-game-rel
‘‘ {neg-game g})
proof −

have (λ g. {Abs-Pg (eq-game-rel ‘‘ {neg-game g})}) respects eq-game-rel
apply (simp add: congruent-def )
apply (auto simp add: eq-game-rel-def eq-game-def ge-neg-game)
done

then show ?thesis
by (simp add: Pg-minus-def UN-equiv-class[OF equiv-eq-game])

qed

lemma eq-Abs-Pg[rule-format, cases type: Pg]: (∀ g. z = Abs-Pg (eq-game-rel ‘‘
{g}) −→ P) −→ P

apply (cases z, simp)
apply (simp add: Rep-Pg-inject[symmetric])
apply (subst Abs-Pg-inverse, simp)
apply (auto simp add: Pg-def quotient-def )
done

instance Pg :: ordered-ab-group-add
proof

fix a b c :: Pg
show a − b = a + (− b) by (simp add: Pg-diff-def )
{

assume ab: a ≤ b
assume ba: b ≤ a
from ab ba show a = b

apply (cases a, cases b)
apply (simp add: eq-game-def )
done

}
then show (a < b) = (a ≤ b ∧ ¬ b ≤ a) by (auto simp add: Pg-less-def )
show a + b = b + a

apply (cases a, cases b)
apply (simp add: eq-game-def plus-game-comm)
done

show a + b + c = a + (b + c)
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apply (cases a, cases b, cases c)
apply (simp add: eq-game-def plus-game-assoc)
done

show 0 + a = a
apply (cases a)
apply (simp add: Pg-zero-def plus-game-zero-left)
done

show − a + a = 0
apply (cases a)
apply (simp add: Pg-zero-def eq-game-plus-inverse plus-game-comm)
done

show a ≤ a
apply (cases a)
apply (simp add: ge-game-refl)
done

{
assume ab: a ≤ b
assume bc: b ≤ c
from ab bc show a ≤ c

apply (cases a, cases b, cases c)
apply (auto intro: ge-game-trans)
done

}
{

assume ab: a ≤ b
from ab show c + a ≤ c + b

apply (cases a, cases b, cases c)
apply (simp add: ge-plus-game-left[symmetric])
done

}
qed

end
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