ZF

Steven Obua

January 18, 2026

theory HOLZF
imports Main
begin

typedecl ZF

axiomatization
Empty :: ZF and
FElem :: ZF = ZF = bool and
Sum :: ZF = ZF and
Power :: ZF = ZF and
Repl :: ZF = (ZF = ZF) = ZF and
Inf :: ZF

definition Upair :: ZF = ZF = ZF where
Upair a b == Repl (Power (Power Empty)) (% z. if x = Empty then a else b)

definition Singleton:: ZF = ZF where
Singleton x == Upair x x

definition union :: ZF = ZF = ZF where
union A B == Sum (Upair A B)

definition SucNat:: ZF = ZF where
SucNat © == union x (Singleton x)

definition subset :: ZF = ZF = bool where
subset A B=Vz. Elem x A — Elem z B

axiomatization where
Empty: Not (Elem x Empty) and
Ezt: (x = y) = (V2. Elem z © = Elem z y) and
Sum: Elem z (Sum z) = (3y. Elem z y A Elem y z) and
Power: Elem y (Power z) = (subset y z) and
Repl: Elem b (Repl A f) = (3a. Elem a A A b= fa) and
Regularity: A # Empty — (3z. Elem ¢ A N (Vy. Elem y £ — Not (Elem y

A))) and
Infinity: Elem Empty Inf A (Vz. Elem x Inf — Elem (SucNat z) Inf)

definition Sep :: ZF = (ZF = bool) = ZF where
Sep A p == (if (Vx. Elem x A — Not (p z)) then Empty else
(let z= (¢ z. Elemz A & p z) in
let f = Az. (if p x then z else z) in Repl A f))

thm Power|unfolded subset-def]

theorem Sep: Elem b (Sep A p) = (Elem b A A\ p b)
apply (auto simp add: Sep-def Empty)
apply (auto simp add: Let-def Repl)
apply (rule somel2, auto)+
done

lemma subset-empty: subset Empty A
by (simp add: subset-def Empty)

theorem Upair: Elem z (Upair a b) = (x = a V z = b)
apply (auto simp add: Upair-def Repl)
apply (rule exI[where z=Empty]|)
apply (simp add: Power subset-empty)
apply (rule exI[where z=Power Empty])
apply (auto)
apply (auto simp add: Ext Power subset-def Empty)
apply (drule spec[where z=FEmpty|, simp add: Empty)+
done

lemma Singleton: Elem x (Singleton y) = (z = y)
by (simp add: Singleton-def Upair)

definition Opair :: ZF = ZF = ZF where
Opair a b == Upair (Upair a o) (Upair a b)

lemma Upair-singleton: (Upair a a = Upair ¢ d) = (a = ¢ & a = d)
by (auto simp add: Ext[where z=Upair a a] Upair)

lemma Upair-fsteq: (Upair a b = Upair a ¢) = (a=b& a=c¢) | (b = ¢))
by (auto simp add: FExt[where z=Upair a b] Upair)

lemma Upair-comm: Upair a b = Upair b a
by (auto simp add: Ext Upair)

theorem Opair: (Opair a b = Opair ¢ d) = (a = c & b= d)
proof —
have fst: (Opair a b = Opair ¢ d) = a = ¢
apply (simp add: Opair-def)
apply (simp add: Ext[where x=Upair (Upair a a) (Upair a b)])

apply (drule spec[where z=Upair a a])
apply (auto simp add: Upair Upair-singleton)
done
show ?thesis
apply (auto)
apply (erule fst)
apply (frule fst)
apply (auto simp add: Opair-def Upair-fsteq)
done
qged

definition Replacement :: ZF = (ZF = ZF option) = ZF where
Replacement A f == Repl (Sep A (% a. f a # None)) (the o f)

theorem Replacement: Elem y (Replacement A f) = (3x. Elem z A A fx = Some

y)
by (auto simp add: Replacement-def Repl Sep)

definition Fst :: ZF = ZF where
Fst ¢ == SOMFE z. 3y. ¢ = Opair z y

definition Snd :: ZF = ZF where
Snd ¢ == SOME y. 3z. ¢ = Opair x y

theorem Fst: Fst (Opair x y) = z
apply (simp add: Fst-def)
apply (rule somel2)
apply (simp-all add: Opair)
done

theorem Snd: Snd (Opair x y) = y
apply (simp add: Snd-def)
apply (rule somel2)
apply (simp-all add: Opair)
done

definition isOpair :: ZF = bool where
isOpair ¢ == Az y. ¢ = Opair z y

lemma isOpair: isOpair (Opair z y) = True
by (auto simp add: isOpair-def)

lemma FstSnd: isOpair © = Opair (Fst x) (Snd z) =
by (auto simp add: isOpair-def Fst Snd)

definition CartProd :: ZF = ZF = ZF where
CartProd A B == Sum(Repl A (% a. Repl B (% b. Opair a b)))

lemma CartProd: Elem x (CartProd A B) = (3a b. Elem a A A Elem b B A x =

(Opair a b))
apply (auto simp add: CartProd-def Sum Repl)
apply (rule-tac z=Repl B (Opair a) in exl)
apply (auto simp add: Repl)
done

definition explode :: ZF = ZF set where
explode z == { z. Elem z z }

lemma explode-Empty: (explode x = {}) = (z = Empty)
by (auto simp add: explode-def Ext Empty)

lemma explode-Elem: (z € explode X) = (Elem = X)
by (simp add: explode-def)

lemma FElem-explode-in: | Elem a A; explode A C B] = a € B
by (auto simp add: explode-def)

lemma ezplode-CartProd-eq: explode (CartProd a b) = (% (z,y). Opair z y)
((explode a) x (explode b))
by (simp add: explode-def set-eq-iff CartProd image-def)

lemma explode-Repl-eq: explode (Repl A f) = image f (explode A)
by (simp add: explode-def Repl image-def)

definition Domain :: ZF = ZF where
Domain f == Replacement f (% p. if isOpair p then Some (Fst p) else None)

definition Range :: ZF = ZF where
Range f == Replacement f (% p. if isOpair p then Some (Snd p) else None)

theorem Domain: Elem z (Domain f) = (3y. Elem (Opair x y) f)
apply (auto simp add: Domain-def Replacement)
apply (rule-tac x=5nd za in exl)
apply (simp add: FstSnd)
apply (rule-tac x=Opair z y in exl)
apply (simp add: isOpair Fst)
done

theorem Range: Elem y (Range f) = (3z. Elem (Opair z y) f)
apply (auto simp add: Range-def Replacement)
apply (rule-tac x=Fst = in exl)
apply (simp add: FstSnd)
apply (rule-tac x=O0Opair z y in exl)
apply (simp add: isOpair Snd)
done

theorem union: Elem z (union A B) = (Elem x A | Elem z B)
by (auto simp add: union-def Sum Upair)

definition Field :: ZF = ZF where
Field A == union (Domain A) (Range A)

definition app :: ZF = ZF => ZF (infixl <"» 90) — function application where
f =« == (THE y. Elem (Opair z y) f)

definition isFun :: ZF = bool where
isPun f == (Vz y1 y2. Elem (Opair x y1) f & Elem (Opair z y2) f — yl =
y2)

definition Lambda :: ZF = (ZF = ZF) = ZF where
Lambda A f == Repl A (% z. Opair z (f x))

lemma Lambda-app: Elem © A = (Lambda A f) 'z = fx
by (simp add: app-def Lambda-def Repl Opair)

lemma isFun-Lambda: isFun (Lambda A f)
by (auto simp add: isFun-def Lambda-def Repl Opair)

lemma domain-Lambda: Domain (Lambda A f) = A
apply (auto simp add: Domain-def)
apply (subst Ext)

apply (auto simp add: Replacement)

apply (simp add: Lambda-def Repl)

apply (auto simp add: Fst)

apply (simp add: Lambda-def Repl)

apply (rule-tac =_Opair z (f z) in exl)

apply (auto simp add: Fst isOpair-def)

done

lemma Lambda-ext: (Lambda s f = Lambda t g) = (s =t A (Vz. Elemz s — f
T =gu1))
proof —
have Lambda s f = Lambda t g =— s =t
apply (subst domain-Lambda]where A = s and f = f, symmetric])
apply (subst domain-Lambda]where A = t and f = g, symmetric])
apply auto
done
then show ?thesis
apply auto
apply (subst Lambda-app|where f=f, symmetric], simp)
apply (subst Lambda-app|where f=g, symmetric], simp)
apply auto
apply (auto simp add: Lambda-def Repl Ext)
apply (auto simp add: Ext[symmetric])
done
qed

definition PFun :: ZF = ZF = ZF where
PFun A B == Sep (Power (CartProd A B)) isFun

definition Fun :: ZF = ZF = ZF where
Fun A B == Sep (PFun A B) (A f. Domain f = A)

lemma Fun-Range: Elem f (Fun U V) = subset (Range f) V
apply (simp add: Fun-def Sep PFun-def Power subset-def CartProd)
apply (auto simp add: Domain Range)
apply (erule-tac ©=0Opair za z in allE)
apply (auto simp add: Opair)
done

lemma Elem-Elem-PFun: Elem F (PFun U V) = Elem p F' = isOpair p &
Elem (Fst p) U & Elem (Snd p) V

apply (simp add: PFun-def Sep Power subset-def, clarify)

apply (erule-tac x=p in allE)

apply (auto simp add: CartProd isOpair Fst Snd)

done

lemma Fun-implies-PFun[simp]: Elem f (Fun U V) = Elem f (PFun U V)
by (simp add: Fun-def Sep)

lemma Elem-Elem-Fun: Elem F (Fun U V) = Elem p F = isOpair p & Elem
(Fst p) U & Elem (Snd p) V
by (auto simp add: Elem-Elem-PFun dest: Fun-implies-PFun)

lemma PFun-inj: Elem F (PFun U V) = Elem © F = Elem y F = Fst x =
Fsty = Sndx = Snd y

apply (frule Elem-Elem-PFun[where p=z|, simp)

apply (frule Elem-Elem-PFun|where p=y|, simp)

apply (subgoal-tac isFun F)

apply (simp add: isFun-def isOpair-def)

apply (auto simp add: Fst Snd)

apply (auto simp add: PFun-def Sep)

done

lemma Fun-total: [Elem F (Fun U V); Elem a U] = Jz. Elem (Opair a) F
using [[simp-depth-limit = 2]]
by (auto simp add: Fun-def Sep Domain)

lemma unique-fun-value: [isFun f; Elem x (Domain f)] = 3ly. Elem (Opair x

y) f
by (auto simp add: Domain isFun-def)

lemma fun-value-in-range: [isFun f; Elem x (Domain f)] = Elem (f"z) (Range

)
apply (auto simp add: Range)

apply (drule unique-fun-value)
apply simp

apply (simp add: app-def)

apply (rule exI[where z=x))
apply (auto simp add: the-equality)
done

lemma fun-range-witness: [isFun f; Elem y (Range f)] = 3. Elem z (Domain
N&fz=y

apply (auto simp add: Range)

apply (rule-tac =z in exl)

apply (auto simp add: app-def the-equality isFun-def Domain)

done

lemma FElem-Fun-Lambda: Elem F (Fun U V) = 3f. F = Lambda U f
apply (rule exI[where x= % z. (THE y. Elem (Opair z y) F)))
apply (simp add: Ext Lambda-def Repl Domain)
apply (simp add: Ext[symmetric])
apply auto
apply (frule Elem-Elem-Fun)
apply auto
apply (rule-tac t=Fst z in exl)
apply (simp add: isOpair-def)
apply (auto simp add: Fst Snd Opair)
apply (rule thell2)
apply auto
apply (drule Fun-implies-PFun)
apply (drule-tac z=O0Opair © ya and y=Opair z yb in PFun-inj)
apply (auto simp add: Fst Snd)
apply (drule Fun-implies-PFun)
apply (drule-tac x=Opair z y and y=Opair = ya in PFun-inj)
apply (auto simp add: Fst Snd)
apply (rule the1l2)
apply (auto simp add: Fun-total)
apply (drule Fun-implies-PFun)
apply (drule-tac x=0Opair o x and y=Opair a y in PFun-inj)
apply (auto simp add: Fst Snd)
done

lemma Elem-Lambda-Fun: Elem (Lambda A f) (Fun UV) = (A= U A (Vz. Elem
x A — Elem (fz) V))
proof —
have Elem (Lambda A f) (Fun UV) = A=1TU
by (simp add: Fun-def Sep domain-Lambda)
then show ?thesis
apply auto
apply (drule Fun-Range)
apply (subgoal-tac fx = ((Lambda U f) * x))
prefer 2

apply (simp add: Lambda-app)
apply simp
apply (subgoal-tac Elem (Lambda U f * x) (Range (Lambda U f)))
apply (simp add: subset-def)
apply (rule fun-value-in-range)
apply (simp-all add: isFun-Lambda domain-Lambda)
apply (simp add: Fun-def Sep PFun-def Power domain-Lambda isFun-Lambda)
apply (auto simp add: subset-def CartProd)
apply (rule-tac x=Fst z in exl)
apply (auto simp add: Lambda-def Repl Fst)
done
qed

definition is-Elem-of :: (ZF % ZF) set where
is-Elem-of == { (a,b) | a b. Elem a b }

lemma cond-wf-FElem:
assumes hyps:Vz. (Vy. Elem y x — Elem y U — P y) — Elem 2 U — P
z Elem a U
shows P a
proof —
{
fix P
fix U
fix a
assume P-induct: (Vz. (Vy. Elem y x — Elem y U — P y) — (Elem z U
— Pua))
assume a-in-U: Elem a U
have P a
proof —
term P
term Sep
let ?Z = Sep U (Not o P)
have ¢Z = Empty — P a by (simp add: Ext Sep Empty a-in-U)
moreover have 77 # Empty — Fulse
proof
assume not-empty: ?Z %+ Empty
note thereis-r = Regularity[where A=?Z, simplified not-empty, simplified]
then obtain z where z-def: Elem x ?Z A (Vy. Elem y x — Not (Elem

then have z-induct:Vy. Elem y x — Elem y U — P y by (simp add:
Sep)
have Elem 2 U — Pz
by (rule impE[OF spec[OF P-induct, where z=z|, OF z-induct],
assumption)

moreover have Elem z U & Not(P x)
apply (insert z-def)
apply (simp add: Sep)

done
ultimately show Fulse by auto
qed
ultimately show P a by auto
qed
}
with hyps show ?thesis by blast
qed

lemma cond2-wf-FElem:
assumes
special-P: 3U. Y. Not(Elem v U) — (P z)
and P-induct: Vz. (Vy. Elemyxz — Py) — Pz
shows
Pa
proof —
have 3U Q. P = (A z. (Elem z U — Q@ x))
proof —
from special-P obtain U where U: V. Not(Elem z U) — (P x) ..
show ?thesis
apply (rule-tac exl[where z="U])
apply (rule exI[where z=P))
apply (rule ext)
apply (auto simp add: U)
done
qged
then obtain U where 3Q. P = (A z. (Elem z U — Q z)) ..
then obtain @ where UQ: P = (A z. (Elemz U — Q 1)) ..
show ?thesis
apply (auto simp add: UQ)
apply (rule cond-wf-Elem)
apply (rule P-induct][simplified UQ)])
apply simp
done
qed

primrec nat2Nat :: nat = ZF where
nat2Nat-0[intro]: nat2Nat 0 = Empty
| nat2Nat-Suclintro]: nat2Nat (Suc n) = SucNat (nat2Nat n)

definition Nat2nat :: ZF = nat where
Nat2Znat == inv nat2Nat

lemma FElem-nat2Nat-inf[intro]: Elem (nat2Nat n) Inf
apply (induct n)
apply (simp-all add: Infinity)
done

definition Nat :: ZF

where Nat == Sep Inf (AN. In. nat2Nat n = N)

lemma Elem-nat2Nat-Nat[intro|: Elem (nat2Nat n) Nat
by (auto simp add: Nat-def Sep)

lemma FElem-Empty-Nat: Elem Empty Nat
by (auto simp add: Nat-def Sep Infinity)

lemma FElem-SucNat-Nat: Elem N Nat = Elem (SucNat N) Nat
by (auto simp add: Nat-def Sep Infinity)

lemma no-infinite- Elem-down-chain:
Not (3f. isFun f A Domain f = Nat A (VN. Elem N Nat — Elem (f"(SucNat
N)) (f"N)))

proof —
{
fix f
assume f: isFun f A Domain f = Nat A (VY N. Elem N Nat — FElem (f’(SucNat
N)) ()
let ?r = Range f
have ?r # Empty
apply (auto simp add: Ext Empty)
apply (rule exI[where z=f" Empty|)
apply (rule fun-value-in-range)
apply (auto simp add: f Elem-Empty-Nat)
done
then have 3z. Elem x ?r A (Vy. Elem y x — Not(Elem y ?r))
by (simp add: Regularity)
then obtain z where z: Elem z ?r A (Vy. Elem y v — Not(Elem y ?r)) ..
then have IN. Elem N (Domain f) & f'N =z
apply (rule-tac fun-range-witness)
apply (simp-all add: f)
done
then have I N. Elem N Nat & f'N =z
by (simp add: f)
then obtain N where N: Elem N Nat & f'N =z ..
from N have N’ Elem N Nat by auto
let 2y = f’(SucNat N)
have Elem-y-r: Elem %y %r
by (simp-all add: f Elem-SucNat-Nat N fun-value-in-range)
have Elem ?y (f'N) by (auto simp add: f N')
then have Elem ?y z by (simp add: N)
with z have Not (Elem ?y ?r) by auto
with FElem-y-r have Fualse by auto
}
then show ?thesis by auto
qed

lemma Upair-nonEmpty: Upair a b £ Empty

10

by (auto simp add: Ext Empty Upair)

lemma Singleton-nonEmpty: Singleton © # Empty
by (auto simp add: Singleton-def Upair-nonEmpty)

lemma notsym-Elem: Not(Elem a b & Elem b a)
proof —
{
fix a b
assume ab: Elem a b
assume ba: Elem b a
let 27 = Upair a b
have 77 # Empty by (simp add: Upair-nonEmpty)
then have 3z. Elem x ?Z A (Vy. Elem y x — Not(Elem y ?Z))
by (simp add: Regularity)
then obtain z where z:Elem x© ?Z A (Vy. Elem y x — Not(Elem y ?7)) ..
then have z = a V x = b by (simp add: Upair)
moreover have © = a — Not (Elem b ¢7)
by (auto simp add: x ba)
moreover have © = b — Not (Elem a ?7)
by (auto simp add: z ab)
ultimately have Fulse
by (auto simp add: Upair)

then show “thesis by auto
qged

lemma irreflexiv-Elem: Not(Elem a a)
by (simp add: notsym-Elem[of a a, simplified])

lemma antisym-Elem: Elem a b = Not (Elem b a)
apply (insert notsym-Elem][of a b))
apply auto
done

primrec NatInterval :: nat = nat = ZF where
NatInterval n 0 = Singleton (nat2Nat n)
| NatInterval n (Suc m) = union (NatInterval n m) (Singleton (nat2Nat (n+m-+1)))

lemma n-Elem-NatInterval[rule-format]: ¥ q. ¢ < m — Elem (nat2Nat (n+q))
(NatInterval n m)

apply (induct m)

apply (auto simp add: Singleton union)

apply (case-tac ¢ <= m)

apply auto

apply (subgoal-tac ¢ = Suc m)

apply auto

done

11

lemma NatInterval-not-Empty: NatInterval n m # Empty
by (auto intro: n-Elem-NatIntervallwhere g = 0, simplified] simp add: Empty
Ext)

lemma increasing-nat2Nat[rule-format]: 0 < n — FElem (nat2Nat (n — 1))
(nat2Nat n)

apply (case-tac Im. n = Suc m)

apply (auto simp add: SucNat-def union Singleton)

apply (drule spec[where z=n — 1])

apply arith

done

lemma represent-NatInterval[rule-format]: Elem x (NatInterval n m) — (Ju. n
<uAu<ntm A nat2Nat u = x)

apply (induct m)

apply (auto simp add: Singleton union)

apply (rule-tac z=Suc (n+m) in exl)

apply auto

done

lemma inj-nat2Nat: inj nat2Nat
proof —
{
fix n m :: nat
assume nm: nat2Nat n = nat2Nat (n+m)
assume mg0: 0 < m
let ?Z = NatInterval n m
have ?Z # Empty by (simp add: NatInterval-not-Empty)
then have 3z. (Elem z ?Z) A (Vy. Elem y x — Not (Elem y ?Z))
by (auto simp add: Regularity)
then obtain = where z:Elem © ?Z N (Vy. Elem y © — Not (Elem y 7)) ..
then have Ju. n < v & v < n+m & nat2Nat v =
by (simp add: represent-NatInterval)
then obtain u where u: n < u & u < n+m A nat2Nat v = z ..
have n < u — False
proof
assume n-less-u: n < u
let %y = nat2Nat (u — 1)
have Elem ?y (nat2Nat u)
apply (rule increasing-nat2Nat)
apply (insert n-less-u)
apply arith
done
with v have Elem ?y xz by auto
with z have Not (Elem ?y ?Z) by auto
moreover have Elem %y 77
apply (insert n-Elem-NatInterval[where ¢ = v — n — I and n=n and
m=m)
apply (insert n-less-u)

12

apply (insert u)
apply auto
done
ultimately show Fulse by auto
qed
moreover have u = n — False
proof
assume u = n
with v have nat2Nat n = x by auto
then have nm-eg-z: nat2Nat (n+m) = x by (simp add: nm)
let %y = nat2Nat (n+m — 1)
have Elem ?y (nat2Nat (n+m))
apply (rule increasing-nat2Nat)
apply (insert mg0)
apply arith
done
with nm-eq-r have Elem ?y z by auto
with z have Not (Elem ?y ?Z) by auto
moreover have Elem %y 77
apply (insert n-Elem-NatInterval[where ¢ = m — 1 and n=n and m=m])
apply (insert mg0)
apply auto
done
ultimately show Fualse by auto
qed
ultimately have Fulse using u by arith
}
note lemma-nat2Nat = this
have th:Az y. = (x < y A (VY (m:nat). y # x + m)) by presburger
have th: Az y. = (z #y AN (mz < y) A (V(munat). z # y + m)) by presburger
show ?thesis
apply (auto simp add: inj-on-def)
apply (case-tac x = y)
apply auto
apply (case-tac = < y)
apply (case-tac IAm. y =2 + m & 0 < m)
apply (auto intro: lemma-nat2Nat)
apply (case-tac y < x)
apply (case-tac Im. z =y + m & 0 < m)
apply simp
apply simp
using th apply blast
apply (case-tac Im. z = y + m)
apply (auto intro: lemma-nat2Nat)
apply (drule sym)
using lemma-nat2Nat apply blast
using th’ apply blast
done
qed

13

lemma Nat2nat-nat2Nat|[simp]: Nat2nat (nat2Nat n) = n
by (simp add: Nat2nat-def inv-f-f|OF inj-nat2Nat])

lemma nat2Nat-Nat2nat[simp]: Elem n Nat = nat2Nat (Nat2nat n) = n
apply (simp add: Nat2nat-def)
apply (rule-tac f-inv-into-f)
apply (auto simp add: image-def Nat-def Sep)
done

lemma Nat2nat-SucNat: Elem N Nat = Nat2nat (SucNat N) = Suc (Nat2nat

N)
apply
apply
apply
apply
done

auto simp add: Nat-def Sep Nat2nat-def)
auto simp add: inv-f-f|OF inj-nat2Nat])
simp only: nat2Nat.simps|[symmetric])
simp only: inv-f-f|OF inj-nat2Nat])

Py

lemma FElem-Opair-exists: 3z. Elem x z & Elem y z & FElem z (Opair x y)
apply (rule exI[where z=Upair z y|)
by (simp add: Upair Opair-def)

lemma UNIV-is-not-in-ZF: UNIV # explode R
proof
let ?Russell = { z. Not(Elem z z) }
have ?Russell = UNIV by (simp add: irreflexiv-Elem)
moreover assume UNIV = explode R
ultimately have russell: ?Russell = explode R by simp
then show Fulse
proof(cases Elem R R)
case True
then show ?thesis
by (insert irreflexiv-Elem, auto)
next
case Fulse
then have R € ?Russell by auto
then have Elem R R by (simp add: russell explode-def)
with Fualse show ?thesis by auto
qed
qed

definition SpecialR :: (ZF % ZF) set where
SpecialR = { (z, y) . * # Empty A y = Empty}

lemma wf SpecialR
apply (subst wf-def)

14

apply (auto simp add: SpecialR-def)
done

definition Ezt :: (‘a x 'b) set = 'b = 'a set where
ExtRy={z.(z,y) €R}

lemma Ezt-FElem: Eaxt is-Elem-of = explode
by (auto simp add: Ext-def is-Elem-of-def explode-def)

lemma FEzxt SpecialR Empty # explode z
proof
have Ext SpecialR Empty = UNIV — {Empty}
by (auto simp add: Ext-def SpecialR-def)
moreover assume Fzxt SpecialR Empty = explode z
ultimately have UNIV = explode(union z (Singleton Empty))
by (auto simp add: explode-def union Singleton)
then show Fulse by (simp add: UNIV-is-not-in-ZF)
qed

definition implode :: ZF set = ZF where
implode == inv explode

lemma inj-explode: inj explode
by (auto simp add: inj-on-def explode-def Ext)

lemma implode-explode[simp]: implode (explode x) = x
by (simp add: implode-def inj-explode)

definition regular :: (ZF x ZF) set = bool where
reqgular R ==V A. A # Empty — (3z. Elem 2 A N (Vy. (y, z) € R — Not
(Elem y A)))

definition set-like :: (ZF x ZF) set = bool where
set-like R == Vy. Ext R y € range explode

definition wfzf :: (ZF * ZF) set = bool where
wfzf R == reqular R N set-like R

lemma regular-Elem: regular is-FElem-of
by (simp add: regular-def is-Elem-of-def Regularity)

lemma set-like-Elem: set-like is-Elem-of
by (auto simp add: set-like-def image-def Ext-Elem)

lemma wfzf-is-Elem-of: wfzf is-Elem-of
by (auto simp add: wfzf-def regular-Elem set-like-Elem)

definition SeqSum :: (nat = ZF) = ZF where
SeqSum f == Sum (Repl Nat (f o Nat2nat))

15

lemma SeqSum: Elem z (SeqSum f) = (3 n. Elem z (f n))
apply (auto simp add: SeqSum-def Sum Repl)
apply (rule-tac z = fn in exl)
apply auto
done

definition Ext-ZF :: (ZF x ZF) set = ZF = ZF where
Exzt-ZF R s == implode (Ext R s)

lemma FElem-implode: A € range explode => Elem z (implode A) = (z € A)
apply (auto)
apply (simp-all add: explode-def)
done

lemma Elem-Fxt-ZF: set-like R = Elem z (Ext-ZF R s) = ((z,s) € R)
apply (simp add: Ext-ZF-def)
apply (subst Elem-implode)
apply (simp add: set-like-def)
apply (simp add: Eaxt-def)
done

primrec Ezt-ZF-n :: (ZF * ZF) set = ZF = nat = ZF where
Ext-ZF-n R s 0 = Ext-ZF R s
| Bxt-ZF-n R s (Suc n) = Sum (Repl (Ext-ZF-n R s n) (Fxt-ZF R))

definition Ezt-ZF-hull :: (ZF x ZF) set = ZF = ZF where
Ext-ZF-hull R s == SeqSum (Ext-ZF-n R s)

lemma FElem-FEaxt-ZF-hull:
assumes set-like-R: set-like R
shows FElem z (Ext-ZF-hull R S) = (In. Elem z (Ext-ZF-n R S n))
by (simp add: Ext-ZF-hull-def SeqSum)

lemma Elem-Elem-Ext-ZF-hull:
assumes set-like-R: set-like R
and z-hull: Elem x (Ext-ZF-hull R S)
and y-R-z: (y,) € R
shows FElem y (Ext-ZF-hull R S)
proof —
from Elem-Exzt-ZF-hull|OF set-like-R] z-hull
have 3 n. Elem z (Ext-ZF-n R S n) by auto
then obtain n where n:Elem x (Ext-ZF-n R S n) ..
with y-R-z have Elem y (Ezt-ZF-n R S (Suc n))
apply (auto simp add: Repl Sum)
apply (rule-tac z=Ext-ZF R z in ezl)
apply (auto simp add: Elem-Fuxt-ZF|OF set-like-R))
done
with Elem-Ext-ZF-hull|OF set-like-R, where z=y| show ?thesis

16

by (auto simp del: Ext-ZF-n.simps)
qed

lemma wfzf-minimal:
assumes hyps: wizf R C # {}
shows dz. 2z € C A Vy. (y,2) € R— y ¢ C)
proof —
from hyps have 35. S € C by auto
then obtain S where S:S € C by auto
let ?T = Sep (Ext-ZF-hull R S) (A s. s € C)
from hyps have set-like-R: set-like R by (simp add: wfzf-def)
show ?thesis
proof (cases ?T = Empty)
case True
then have V z. = (Elem z (Sep (Ext-ZF R S) (A s. s € 0)))
apply (auto simp add: Ext Empty Sep Ext-ZF-hull-def SeqSum)
apply (erule-tac x=z in allE, auto)
apply (erule-tac z=0 in allE, auto)
done
then show ?thesis
apply (rule-tac exl[where z=5])
apply (auto simp add: Sep Empty S)
apply (erule-tac z=y in allF)
apply (simp add: set-like-R Elem-Ext-ZF)
done
next
case Fulse
from hyps have regular-R: regular R by (simp add: wfzf-def)
from
regular-R[simplified reqular-def, rule-format, OF False, simplified Sep)
Elem-Elem-Ext-ZF-hull|OF set-like-R)
show ?thesis by blast
qed
qed

lemma wfzf-implies-wf: wfzf R — wf R
proof (subst wf-def, rule alll)
assume wfzf: wfzf R
fix P :: ZF = bool
let ?C = {z. Pz}
{
assume induct: (Vz. (Vy. (y,) € R — Py) — P x)
let ?C = {z. = (P z)
have ?C = {}
proof (rule ccontr)
assume C: ?C # {}
from
wfzf-minimal| OF wfzf C]
obtain z where z: z € ?C A Vy. (y,2) € R — y ¢ 2C) ..

——

17

then have P z
apply (rule-tac induct[rule-format])
apply auto
done
with z show Fulse by auto
qed
then have V. P x by auto
}
then show (Vz. (Vy. (y, z) € R — Py) — Pz) — (V. P z) by blast
qed

lemma wf-is-FElem-of: wf is-FElem-of
by (auto simp add: wfzf-is-Elem-of wfzf-implies-wf)

lemma in-Exrt-RTrans-implies- Elem-Ext-ZF-hull:
set-like R = 1 € (Ext (RT) s) = Elem z (Ext-ZF-hull R s)
apply (simp add: Ext-def Elem-FExt-ZF-hull)
apply (erule converse-trancl-inductjwhere r=R])
apply (rule ezl[where z=0])
apply (simp add: Elem-Ext-ZF)
apply auto
apply (rule-tac z=Suc n in exl)
apply (simp add: Sum Repl)
apply (rule-tac z=FExt-ZF R z in ezl)
apply (auto simp add: Elem-FEaxt-ZF)
done

lemma implodeable-Ext-trancl: set-like R = set-like (R™)
apply (subst set-like-def)
apply (auto simp add: image-def)
apply (rule-tac z=Sep (Ext-ZF-hull R y) (A z. z € (Ext (RT) y)) in ezl)
apply (auto simp add: explode-def Sep set-eql
in-Ext-RTrans-implies- Elem-Ext-ZF-hull)
done

lemma FElem-Ext-ZF-hull-implies-in- Ext- RTrans[rule-format]:
set-like R = YV z. Elem z (Ext-ZF-n R s n) — z € (Ext (RT1) s)
apply (induct-tac n)
apply (auto simp add: Elem-Ext-ZF Ext-def Sum Repl)
done

lemma set-like R = Ext-ZF (R") s = Ext-ZF-hull R s

apply (frule implodeable- Ext-trancl)

apply (auto simp add: Ext)

apply (erule in-Ezt-RTrans-implies- Elem-Ext-ZF-hull)

apply (simp add: Elem-Ext-ZF Ext-def)

apply (auto simp add: Elem-Ext-ZF Elem-FEaxt-ZF-hull)

apply (erule Elem-Ext-ZF-hull-implies-in-Ext- RTrans|simplified Ext-def, simpli-
fied], assumption)

18

done

lemma wf-implies-reqular: wf R = regular R
proof (simp add: regular-def, rule alll)
assume wf: wf R
fix A
show A # Empty — (3z. Elemz A AN (Vy. (y,) € R — — Elem y A))
proof
assume A: A # Empty
then have dz. z € explode A
by (auto simp add: explode-def Ext Empty)
then obtain z where z:2 € explode A ..
from iffD1[OF wf-eq-minimal wf, rule-format, where Q=explode A, OF 1]
obtain z where z € explode A A (Vy. (y, z2) € R — y ¢ explode A) by auto

then show Jdz. Elem x A N (Vy. (y, x) € R — — Elem y A)
apply (rule-tac exl[where z = z])
apply (simp add: explode-def)
done
qed
qed

lemma wf-eq-wfzf: (wf R A set-like R) = wfzf R
apply (auto simp add: wfzf-implies-wf)
apply (auto simp add: wfzf-def wf-implies-regular)
done

lemma wfzf-trancl: wizf R = wfzf (RT)
by (auto simp add: wf-eq-wfzf[symmetric] implodeable- Ext-trancl wf-trancl)

lemma FEzxt-subset-mono: R C S = Ext Ry C FExt Sy
by (auto simp add: Ext-def)

lemma set-like-subset: set-like R — S C R —> set-like S
apply (auto simp add: set-like-def)
apply (erule-tac z=y in allF)
apply (drule-tac y=y in Ext-subset-mono)
apply (auto simp add: image-def)
apply (rule-tac =Sep = (% 2. z € (Ext S y)) in exl)
apply (auto simp add: explode-def Sep)
done

lemma wfzf-subset: wfzf S = R C S = wfzf R
by (auto intro: set-like-subset wf-subset simp add: wf-eq-wfzf[symmetric])

end

theory Zet

19

imports HOLZF
begin

definition zet = {4 :: ‘a set | A fz. injon f AN f A C explode 2}

typedef ‘a zet = zet :: 'a set set
unfolding zet-def by blast

definition zin :: ‘a = 'a zet = bool where
zin x A == z € (Rep-zet A)

lemma zet-ext-eq: (A = B) = (Vz. zin ¢ A = zin z B)
by (auto simp add: Rep-zet-inject[symmetric| zin-def)

definition zimage :: ('a = 'b) = 'a zet = 'b zet where
zimage f A == Abs-zet (image f (Rep-zet A))

lemma zet-def’: zet = {A :: ‘a set | A fz. injron f AN f* A= explode z}
apply (rule set-eql)
apply (auto simp add: zet-def)
apply (rule-tac z=f in exl)
apply auto
apply (rule-tac x=Sep z (A y. y € (f ‘z)) in exl)
apply (auto simp add: explode-def Sep)
done

lemma image-zet-rep: A € zet = Iz . g * A = explode z
apply (auto simp add: zet-def”)
apply (rule-tac z=Repl z (g o (inv-into A f)) in exl)
apply (simp add: explode-Repl-eq)
apply (subgoal-tac explode z = f “ A)
apply (simp-all add: image-image cong: image-cong-simp)
done

lemma zet-image-mem:
assumes Azet: A € zet
shows g ‘ A € zet
proof —
from Azet have 3(f :: - = ZF). inj-on f A
by (auto simp add: zet-def’)
then obtain f where injf: inj-on (f :: - = ZF) A
by auto
let 2w = f o (inv-into A g)
have subset: (inv-into A g) ‘(g ‘A) C A
by (auto simp add: inv-into-into)
have inj-on (inv-into A g) (g * A) by (simp add: inj-on-inv-into)
then have injw: inj-on 2w (g * A)
apply (rule comp-inj-on)
apply (rule inj-on-subset[where A=A])

20

apply (auto simp add: subset injf)
done
show ?thesis
apply (simp add: zet-def’ image-comp)
apply (rule exI[where x=?w])
apply (simp add: injw image-zet-rep Azet)
done
qed

lemma Rep-zimage-eq: Rep-zet (zimage f A) = image f (Rep-zet A)
apply (simp add: zimage-def)
apply (subst Abs-zet-inverse)
apply (simp-all add: Rep-zet zet-image-mem)
done

lemma zimage-iff: zin y (zimage f A) = 3z. zinz ANy = fx)
by (auto simp add: zin-def Rep-zimage-eq)

definition zimplode :: ZF zet = ZF where
zimplode A == implode (Rep-zet A)

definition zexplode :: ZF = ZF zet where
zexplode z == Abs-zet (explode z)

lemma Rep-zet-eq-explode: 3 z. Rep-zet A = explode z
by (rule image-zet-rep[where g=\ z. x,OF Rep-zet, simplified])

lemma zexplode-zimplode: zexplode (zimplode A) = A
apply (simp add: zimplode-def zexplode-def)
apply (simp add: implode-def)
apply (subst f-inv-into-f[where y=Rep-zet A])
apply (auto simp add: Rep-zet-inverse Rep-zet-eq-explode image-def)
done

lemma explode-mem-zet: explode z € zet
apply (simp add: zet-def”)
apply (rule-tac z=% z. = in exl)
apply (auto simp add: inj-on-def)
done

lemma zimplode-zexplode: zimplode (zexplode z) = z
apply (simp add: zimplode-def zexplode-def)
apply (subst Abs-zet-inverse)
apply (auto simp add: explode-mem-zet)
done

lemma zin-zexplode-eq: zin z (zexplode A) = Elem x A

apply (simp add: zin-def zexplode-def)
apply (subst Abs-zet-inverse)

21

apply (simp-all add: explode-Elem explode-mem-zet)
done

lemma comp-zimage-eq: zimage g (zimage f A) = zimage (g o f) A
apply (simp add: zimage-def)
apply (subst Abs-zet-inverse)
apply (simp-all add: image-comp zet-image-mem Rep-zet)
done

definition zunion :: 'a zet = 'a zet = ’a zet where
zunion a b = Abs-zet ((Rep-zet a) U (Rep-zet b))

definition zsubset :: ‘a zet = 'a zet = bool where
zsubset a b=Vzx. zinxza — zinx b

lemma explode-union: explode (union a b) = (explode a) U (explode b)
apply (rule set-eql)
apply (simp add: explode-def union)
done

lemma Rep-zet-zunion: Rep-zet (zunion a b) = (Rep-zet a) U (Rep-zet b)
proof —
from Rep-zet[of a] have 3 f z. inj-on f (Rep-zet a) A [* (Rep-zet a) = explode z
by (auto simp add: zet-def’)
then obtain fa za where a:inj-on fa (Rep-zet a) A fa ‘ (Rep-zet a) = explode za
by blast
from « have fa: inj-on fa (Rep-zet a) by blast
from a have za: fa ¢ (Rep-zet a) = explode za by blast
from Rep-zet[of b] have 3 f z. inj-on f (Rep-zet b) A f ¢ (Rep-zet b) = explode z
by (auto simp add: zet-def’)
then obtain fb zb where b:inj-on fb (Rep-zet b) A fb ‘ (Rep-zet b) = explode zb
by blast
from b have fb: inj-on fo (Rep-zet b) by blast
from b have z2b: fbo ¢ (Rep-zet b) = explode zb by blast
let ?f = (X z. if v € (Rep-zet a) then Opair (fa x) (Empty) else Opair (fb x)
(Singleton Empty))
let 22 = CartProd (union za 2b) (Upair Empty (Singleton Empty))
have se: Singleton Empty # Empty
apply (auto simp add: Ext Singleton)
apply (rule exI[where z=FEmpty))
apply (simp add: Empty)
done
show ?thesis
apply (simp add: zunion-def)
apply (subst Abs-zet-inverse)
apply (auto simp add: zet-def)
apply (rule exI[where z = ?f])
apply (rule conjI)
apply (auto simp add: inj-on-def Opair inj-onD[OF fa] inj-onD[OF fb] se

22

se[symmetric])
apply (rule exI[where z = ?z])
apply (insert za zb)
apply (auto simp add: explode-def CartProd union Upair Opair)
done
qed

lemma zunion: zin x (zunion a b) = ((zin z a) V (zin z b))
by (auto simp add: zin-def Rep-zet-zunion)

lemma zimage-zexplode-eq: zimage f (zexplode z) = zexplode (Repl z f)
by (simp add: zet-ext-eq zin-zexplode-eq Repl zimage-iff)

lemma range-explode-eq-zet: range explode = zet
apply (rule set-eql)
apply (auto simp add: explode-mem-zet)
apply (drule image-zet-rep)
apply (simp add: image-def)
apply auto
apply (rule-tac x=z in exl)
apply auto
done

lemma Elem-zimplode: (Elem z (zimplode z)) = (zin = 2)
apply (simp add: zimplode-def)
apply (subst Elem-implode)
apply (simp-all add: zin-def Rep-zet range-explode-eq-zet)
done

definition zempty :: 'a zet where
zempty = Abs-zet {}

lemma zempty[simp]: = (zin z zempty)
by (auto simp add: zin-def zempty-def Abs-zet-inverse zet-def)

lemma zimage-zempty[simpl: zimage f zempty = zempty
by (auto simp add: zet-ext-eq zimage-iff)

lemma zunion-zempty-left[simp|: zunion zempty a = a
by (simp add: zet-ext-eq zunion)

lemma zunion-zempty-right[simpl: zunion a zempty = a
by (simp add: zet-ext-eq zunion)

lemma zimage-id[simp|: zimage id A = A
by (simp add: zet-ext-eq zimage-iff)

lemma zimage-cong[fundef-congl: [M = N; 1 2. zinz N = fr =gz] =
zimage f M = zimage g N

23

by (auto simp add: zet-ext-eq zimage-iff)

end

theory LProd
imports HOL— Library. Multiset
begin

inductive-set
lprod :: (a * 'a) set = (‘a list x 'a list) set
for R :: (‘a x 'a) set
where
Iprod-single[intro!]: (a, b) € R = ([a], [b]) € lprod R
| Iprod-list[introl]: (ahQat, bhQbt) € Iprod R = (a,b) € RV a = b = (ahQa#at,
bh@Qb#0bt) € lprod R

lemma (as,bs) € lprod R = length as = length bs
apply (induct as bs rule: lprod.induct)
apply auto
done

lemma (as, bs) € lprod R = 1 < length as A 1 < length bs
apply (induct as bs rule: lprod.induct)
apply auto
done

lemma Ilprod-subset-elem: (as, bs) € lprod S = S C R = (as, bs) € lprod R
apply (induct as bs rule: lprod.induct)

apply (auto)
done

lemma Iprod-subset: S C R = Iprod S C Iprod R
by (auto intro: Ilprod-subset-elem)

lemma lprod-implies-mult: (as, bs) € lprod R = trans R = (mset as, mset bs)
€ mult R
proof (induct as bs rule: Iprod.induct)
case (lprod-single a b)
note step = one-step-implies-mult|
where r=R and I={#} and K={#a#} and J={#b#}, simplified]
show ?case by (auto intro: Iprod-single step)
next
case (lprod-list ah at bh bt a b)
then have transR: trans R by auto
have as: mset (ah @ a # at) = mset (ah Q at) + {#a#} (is - = ma + -)
by (simp add: algebra-simps)
have bs: mset (bh @ b # bt) = mset (bh Q bt) + {#b#} (is - = mb + -)
by (simp add: algebra-simps)

24

from Iprod-list have (?ma, ?mb) € mult R
by auto
with mult-implies-one-step[OF transR] have
JIJK. mb=1+J A %ma=1+ K AN J # {#} N (Vkeset-mset K.
Jjeset-mset J. (k, j) € R)
by blast
then obtain I J K where
decomposed: ?mb =1 + J A ?ma =1+ K N J # {#} N (Vk€Eset-mset K.
Jjeset-mset J. (k, j) € R)
by blast
show ?Zcase
proof (cases a = b)
case True
have ((I + {#b#}) + K, (I + {#b#}) + J) € mult R
apply (rule one-step-implies-mult)
apply (auto simp add: decomposed)
done
then show ?thesis
apply (simp only: as bs)
apply (simp only: decomposed True)
apply (simp add: algebra-simps)
done
next
case Fulse
from Fulse Iprod-list have Fulse: (a, b) € R by blast
have (I + (K + {#a#}), I + (J + {#b#})) € mult R
apply (rule one-step-implies-mult)
apply (auto simp add: False decomposed)
done
then show #thesis
apply (simp only: as bs)
apply (simp only: decomposed)
apply (simp add: algebra-simps)
done
qed
qed

lemma wf-Iprod[simp,introl:
assumes wf-R: wf R
shows wf (Iprod R)
proof —
have subset: Iprod (RT) C inv-image (mult (RT)) mset
by (auto simp add: lprod-implies-mult trans-trancl)
note Iprodtrancl = wf-subset| OF wf-inv-image[where r=mult (RT) and f=mset,

OF wf-mult|OF wf-trancl|OF wf-R]]], OF subset]
note lprod = wf-subset[OF Iprodtrancl, where p=Iprod R, OF Ilprod-subset, sim-
plified)
show ?thesis by (auto intro: lprod)

25

qed

definition gprod-2-2 :: (‘a x 'a) set = (('a * 'a) * (Ya * 'a)) set where
gprod-2-2 R = { ((a,b), (¢,d)) . (a=c A (bd) € R)V (b=4d A (a,c) €ER) }

definition gprod-2-1 :: ('a x 'a) set = (('a * 'a) * (a * 'a)) set where
gprod-2-1 R = { ((a,b), (¢,d)) . (a =d A (byc) € R)V (b=1c¢A (a,d) € R) }

lemma lprod-2-3: (a, b)) € R = ([a, c], [b, ¢]) € Iprod R
by (auto intro: Iprod-listfwhere a=c and b=c and
ah = [a] and at = || and bh=[b] and bt=[], simplified])

lemma Ilprod-2-4: (a, b)) € R = ([c, al, [¢, b]) € lprod R
by (auto intro: Iprod-listfwhere a=c and b=c and
ah =[] and at = [a] and bh=]] and bt=[b], simplified])

lemma Iprod-2-1: (a, b)) € R = ([c, al, [b, c]) € Iprod R
by (auto intro: Iprod-listfwhere a=c and b=c and
ah =[] and at = [a] and bh=[b] and bt=[], simplified])

lemma lprod-2-2: (a, b) € R = ([a, c], [¢c, b]) € Iprod R
by (auto intro: Iprod-listfwhere a=c and b=c and
ah = [a] and at = || and bh=[] and bt=[b], simplified])

lemma [simp, introl:
assumes wfR: wf R shows wf (gprod-2-1 R)
proof —
have gprod-2-1 R C inv-image (Iprod R) (A (a,b). [a,b])
by (auto simp add: gprod-2-1-def lprod-2-1 lprod-2-2)
with wfR show ?thesis
by (rule-tac wf-subset, auto)
qed

lemma [simp, intro]:
assumes wfR: wf R shows wf (gprod-2-2 R)
proof —
have gprod-2-2 R C inv-image (Iprod R) (A (a,b). [a,b])
by (auto simp add: gprod-2-2-def lprod-2-3 lprod-2-4)
with wfR show ?thesis
by (rule-tac wf-subset, auto)
qed

lemma lprod-3-1: assumes (z’, z) € R shows ([y, 2, z], [z, y, 2]) € lprod R
apply (rule lprod-listfwhere a=y and b=y and ah=[] and at=[z,z'] and bh=[z]
and bt=[z], simplified))
apply (auto simp add: lprod-2-1 assms)
done

lemma Iprod-3-2: assumes (z',z) € R shows ([2/, z, y], [z,y,2]) € lprod R

26

apply (rule lprod-listfwhere a=y and b=y and ah=[z',z] and at=[] and bh=][z]
and bt=[z], simplified))

apply (auto simp add: lprod-2-2 assms)

done

lemma Ilprod-3-3: assumes zr: (zr, x) € R shows ([zr, y, 2], [z, y, 2]) € Iprod R
apply (rule lprod-listiwhere a=y and b=y and ah=[zr] and at=[z] and bh=|z]
and bt=[z], simplified])
apply (simp add: zr lprod-2-3)
done

lemma Iprod-3-4: assumes yr: (yr, y) € R shows ([z, yr, 2], [z, v, 2]) € lprod R
apply (rule lprod-listfwhere a=z and b=z and ah=|] and at=[yr,z] and bh=|]
and bt=[y,z|, simplified])
apply (simp add: yr lprod-2-3)
done

lemma Iprod-3-5: assumes zr: (zr, z) € R shows ([z, v, 2r], [z, y, 2]) € lprod R
apply (rule lprod-listfwhere a=z and b=z and ah=[] and at=[y,zr| and bh=|]
and bt=[y,z|, simplified])
apply (simp add: zr lprod-2-4)
done

lemma Ilprod-3-6: assumes y” (y’, y) € R shows ([z, 2, y'], [z, y, 2]) € lprod R
apply (rule Iprod-listiwhere a=z and b=z and eh=[z] and at=[y’] and bh=|z,y]
and bt=[], simplified])
apply (simp add: y' lprod-2-4)
done

lemma Iprod-5-7: assumes 2" (z,z) € R shows ([z, 2/, y], [z, y, 2]) € lprod R
apply (rule lprod-listfwhere a=y and b=y and ah=[z, z'] and at=[] and bh=|z]
and bt=[z], simplified])
apply (simp add: z' lprod-2-4)
done

definition perm :: (Ya = ’a) = 'a set = bool where
perm fA=injon fANf A=A

lemma ((as,bs) € lprod R) =

(3 f. perm f {0 ..< (length as)} A

(V j. j < length as — ((nth as j, nth bs (fj)) € R V (nth as j = nth bs (f j))))
A

(3 4. i < length as A (nth as i, nth bs (fi)) € R))
oops

lemma trans R = (ahQa#at, bhQb#0bt) € lprod R = (b, a) € RV a = b =

(ahQat, bhQb) € Iprod R
oops

27

end

theory MainZF
imports Zet LProd
begin

end

theory Games
imports MainZF
begin

definition fizgames :: ZF set = ZF set where
fixgames A = { Opair I r | lr. explode | C A & explode r C A}

definition games-Iifp :: ZF set where
games-lfp = Ilfp fizgames

definition games-gfp :: ZF set where
games-gfp = gfp fizgames

lemma mono-fixgames: mono (fizgames)
apply (auto simp add: mono-def fixgames-def)
apply (rule-tac =1 in exl)
apply (rule-tac z=r in exl)
apply auto
done

lemma games-lfp-unfold: games-lfp = fizgames games-Ifp
by (auto simp add: def-lfp-unfold games-lfp-def mono-fixgames)

lemma games-gfp-unfold: games-gfp = fixgames games-gfp
by (auto simp add: def-gfp-unfold games-gfp-def mono-fizgames)

lemma games-Ilfp-nonempty: Opair Empty Empty € games-Ifp
proof —
have fizgames {} C games-Ifp
apply (subst games-lfp-unfold)
apply (simp add: mono-fizgames|simplified mono-def, rule-format))
done
moreover have fizgames {} = {Opair Empty Empty}
by (simp add: fixgames-def explode-Empty)
finally show ?thesis
by auto
qed

definition left-option :: ZF = ZF = bool where

28

left-option g opt = (Elem opt (Fst g))

definition right-option :: ZF = ZF = bool where
right-option g opt = (Elem opt (Snd g))

definition is-option-of :: (ZF x ZF) set where
is-option-of = { (opt, g) | opt g. g € games-gfp N (left-option g opt \V right-option
g opt) }

lemma games-Ilfp-subset-gfp: games-lfp C games-gfp
proof —
have games-lfp C fixrgames games-Ifp
by (simp add: games-lfp-unfold[symmetric])
then show ?thesis
by (simp add: games-gfp-def gfp-upperbound)
qed

lemma games-option-stable:
assumes fizgames: games = firgames games
and g: g € games
and opt: left-option g opt V right-option g opt
shows opt € games
proof —
from g fizgames have g € fixrgames games by auto
then have 3 [r. ¢ = Opair I r N explode | C games A explode r C games
by (simp add: fizgames-def)
then obtain [where 3 r. ¢ = Opair | v A explode | C games N explode v C
games ..
then obtain r where Ir: ¢ = Opair [r A explode | C games N explode r C
games ..
with opt show ?thesis
by (auto intro: Elem-explode-in simp add: left-option-def right-option-def Fst
Snd)
qed

lemma option2elem: (opt,g) € is-option-of = 3 u v. Elem opt u A Elem u v A
Elem v g

apply (simp add: is-option-of-def)

apply (subgoal-tac (g € games-gfp) = (g € (fixgames games-gfp)))

prefer 2

apply (simp add: games-gfp-unfold[symmetric])

apply (auto simp add: firgames-def left-option-def right-option-def Fst Snd)

apply (rule-tac z=I in exl, insert Elem-Opair-exists, blast)

apply (rule-tac x=r in exl, insert Elem-Opair-exists, blast)

done

lemma is-option-of-subset-is-Elem-of: is-option-of C (is-Elem-of ™)

proof —

{

29

fix opt
fix ¢
assume (opt, g) € is-option-of
then have 3 u v. (opt, u) € (is-Elem-of *) A (u,v) € (is-Elem-of *) A (v,9) €
(is-Elem-of *)
apply —
apply (drule optionZ2elem)
apply (auto simp add: r-into-trancl’ is-Elem-of-def)
done
then have (opt, g) € (is-Elem-of)
by (blast intro: trancl-into-rtrancl trancl-rtrancl-trancl)
}

then show ?thesis by auto
qed

lemma wfzf-is-option-of : wfzf is-option-of
proof —
have wfzf (is-Elem-of ") by (simp add: wfzf-trancl wfzf-is-Elem-of)
then show ?thesis
apply (rule wfzf-subset)
apply (rule is-option-of-subset-is- Elem-of)
done
qed

lemma games-gfp-imp-ifp: g € games-gfp — g € games-ifp
proof —
have unfold-gfp: \ z. © € games-gfp = = € (fixgames games-gfp)
by (simp add: games-gfp-unfold[symmetric])
have unfold-lfp: \ z. (z € games-lfp) = (x € (fizgames games-Ifp))
by (simp add: games-lfp-unfold[symmetric])
show ?thesis
apply (rule wf-induct] OF wfzf-implies-wf[OF wfzf-is-option-of]])
apply (auto simp add: is-option-of-def)
apply (drule-tac unfold-gfp)
apply (simp add: fixrgames-def)
apply (auto simp add: left-option-def Fst right-option-def Snd)
apply (subgoal-tac explode | C games-ifp)
apply (subgoal-tac explode r C games-Ifp)
apply (subst unfold-lfp)
apply (auto simp add: fizgames-def)
apply (simp-all add: explode-Elem Elem-explode-in)
done
qed

theorem games-ifp-eq-gfp: games-Ifp = games-gfp
apply (auto simp add: games-gfp-imp-Ifp)
apply (insert games-lfp-subset-gfp)
apply auto
done

30

theorem unique-games: (g = fizgames g) = (g = games-lfp)
proof —
{
fix g
assume g: g = fizgames g
from g have fixrgames g C g by auto
then have [l:games-Ifp C g
by (simp add: games-lfp-def lfp-lowerbound)
from g have g C fizgames g by auto
then have u:g C games-gfp
by (simp add: games-gfp-def gfp-upperbound)
from [u games-lfp-eq-gfp[symmetric] have g = games-Ifp
by auto
}

note games = this
show ?thesis
apply (rule iffI)
apply (erule games)
apply (simp add: games-lfp-unfold|[symmetric))
done
qged

lemma games-Ifp-option-stable:
assumes g: g € games-lfp
and opt: left-option g opt V right-option g opt
shows opt € games-ifp
apply (rule games-option-stable[where g=g|)
apply (simp add: games-lfp-unfold[symmetric))
apply (simp-all add: assms)
done

lemma is-option-of-imp-games:
assumes hyp: (opt, g) € is-option-of
shows opt € games-lfp N\ g € games-lfp
proof —
from hyp have g-game: g € games-ifp
by (simp add: is-option-of-def games-lfp-eq-gfp)
from hyp have left-option g opt V right-option g opt
by (auto simp add: is-option-of-def)
with g-game games-ifp-option-stable[OF g-game, OF this] show ?thesis
by auto
qed

lemma games-lfp-represent: © € games-lifp = 3 lr. v = Opair lr
apply (rule exI[where x=F'st x])
apply (rule exI[where x=Snd x))
apply (subgoal-tac z € (fizgames games-ifp))
apply (simp add: fizgames-def)

31

apply (auto simp add: Fst Snd)
apply (simp add: games-lfp-unfold[symmetric))
done

definition game = games-Ifp

typedef game = game
unfolding game-def by (blast intro: games-lfp-nonempty)

definition left-options :: game = game zet where
left-options g = zimage Abs-game (zexplode (Fst (Rep-game g)))

definition right-options :: game = game zet where
right-options g = zimage Abs-game (zexplode (Snd (Rep-game g)))

definition options :: game = game zet where
options g = zunion (left-options g) (right-options g)

definition Game :: game zet = game zet = game where
Game L R = Abs-game (Opair (zimplode (zimage Rep-game L)) (zimplode (zimage
Rep-game R)))

lemma Repl-Rep-game-Abs-game: ¥ e. Elem e z — e € games-lfp = Repl z
(Rep-game o Abs-game) = z

apply (subst Ext)

apply (simp add: Repl)

apply auto

apply (subst Abs-game-inverse, simp-all add: game-def)

apply (rule-tac z=za in exl)

apply (subst Abs-game-inverse, simp-all add: game-def)

done

lemma game-split: g = Game (left-options g) (right-options g)
proof —
have 3 [r. Rep-game g = Opair [r
apply (insert Rep-gamelof g])
apply (simp add: game-def games-lfp-represent)
done
then obtain [r where Ir: Rep-game g = Opair [r by auto
have partizan-g: Rep-game g € games-Ifp
apply (insert Rep-gamelof g|)
apply (simp add: game-def)
done
have V e. Elem e | — left-option (Rep-game g) e
by (simp add: Ir left-option-def Fst)
then have partizan-1: V e. Elem e l — e € games-Ifp
apply auto
apply (rule games-lfp-option-stable[where g=Rep-game g, OF partizan-g|)
apply auto

32

done
have V e. Elem e r — right-option (Rep-game g) e
by (simp add: Ir right-option-def Snd)
then have partizan-r: ¥V e. Elem e r — e € games-lfp
apply auto
apply (rule games-lfp-option-stablelwhere g=Rep-game g, OF partizan-g|)
apply auto
done
let ?L = zimage (Abs-game) (zexplode 1)
let R = zimage (Abs-game) (zexplode r)
have L:?L = left-options g
by (simp add: left-options-def Ir Fst)
have R:?R = right-options g
by (simp add: right-options-def lr Snd)
have g = Game ?L ?R
apply (simp add: Game-def Rep-game-inject[symmetric] comp-zimage-eq zim-
age-zexplode-eq zimplode-zexplode)
apply (simp add: Repl-Rep-game-Abs-game partizan-l partizan-r)
apply (subst Abs-game-inverse)
apply (simp-all add: Ir[symmetric] Rep-game)
done
then show ?thesis
by (simp add: L R)
qed

lemma Opair-in-games-ifp:
assumes [: ezplode | C games-Ifp
and r: explode r C games-Ifp
shows Opair I v € games-Ifp
proof —
note f = unique-games|of games-lfp, simplified)
show ?thesis
apply (subst f)
apply (simp add: fixgames-def)
apply (rule exI[where z=I])
(
(

apply (rule exI[where z=r])
apply (auto simp add: |)
done

qed

lemma left-options[simpl: left-options (Game | 1) = 1

apply (simp add: left-options-def Game-def)

apply (subst Abs-game-inverse)

apply (simp add: game-def)

apply (rule Opair-in-games-Ifp)

apply (auto simp add: explode-Elem Elem-zimplode zimage-iff Rep-game[simplified
game-def])

apply (simp add: Fst zexplode-zimplode comp-zimage-eq)

apply (simp add: zet-ext-eq zimage-iff Rep-game-inverse)

33

done

lemma right-options[simp): right-options (Game lr) = r

apply (simp add: right-options-def Game-def)

apply (subst Abs-game-inverse)

apply (simp add: game-def)

apply (rule Opair-in-games-Ifp)

apply (auto simp add: explode-Elem Elem-zimplode zimage-iff Rep-game[simplified
game-def])

apply (simp add: Snd zexplode-zimplode comp-zimage-eq)

apply (simp add: zet-ext-eq zimage-iff Rep-game-inverse)

done

lemma Game-ext: (Game l1 r1 = Game 12 12) = ((I1 = 12) A (rl = 12))
apply auto
apply (subst left-options[where I=11 and r=r1,symmetric])
apply (subst left-options[where (=12 and r=r2 symmetric|)
apply simp
apply (subst right-optionsjwhere [=I1 and r=rl,symmetric])
apply (subst right-optionsjwhere (=12 and r=r2,symmetric])
apply simp
done

definition option-of :: (game * game) set where
option-of = image (A (option, g). (Abs-game option, Abs-game g)) is-option-of

lemma option-to-is-option-of: ((option, g) € option-of) = ((Rep-game option,
Rep-game g) € is-option-of)
apply (auto simp add: option-of-def)
apply (subst Abs-game-inverse)
apply (simp add: is-option-of-imp-games game-def)
apply (subst Abs-game-inverse)
apply (simp add: is-option-of-imp-games game-def)
apply simp
apply (auto simp add: Bez-def image-def)
apply (rule exI[where z=Rep-game option])
apply (rule exI[where z=Rep-game g])
apply (simp add: Rep-game-inverse)
done

lemma wf-is-option-of: wf is-option-of
apply (rule wfzf-implies-wf)
apply (simp add: wfzf-is-option-of)
done

lemma wf-option-of [simp, intro|: wf option-of
proof —
have option-of: option-of = inv-image is-option-of Rep-game
apply (rule set-eql)

34

apply (case-tac x)
by (simp add: option-to-is-option-of)
show ?thesis
apply (simp add: option-of)
apply (auto intro: wf-is-option-of)
done
qed

lemma right-option-is-option|[simp, intro|: zin x (right-options g) = zin z (options

9)
by (simp add: options-def zunion)

lemma left-option-is-option[simp, intro]: zin x (left-options g) = zin x (options

9)
by (simp add: options-def zunion)

lemma zin-options[simp, intro|: zin x (options g) = (z, g) € option-of
apply (simp add: options-def zunion left-options-def right-options-def option-of-def

image-def is-option-of-def zimage-iff zin-zexplode-eq)

apply (cases g)

apply (cases)

apply (auto simp add: Abs-game-inverse games-lfp-eq-gfp[symmetric] game-def
right-option-def [symmetric] left-option-def [symmetric])

done

function
neg-game :: game = game
where
[simp del]: neg-game g = Game (zimage neg-game (right-options g)) (zimage
neg-game (left-options g))
by auto
termination by (relation option-of) auto

lemma neg-game (neg-game g) = g

apply (induct g rule: neg-game.induct)

apply (subst neg-game.simps)—+

apply (simp add: comp-zimage-eq)

apply (subgoal-tac zimage (neg-game o neg-game) (left-options g) = left-options
9)

apply (subgoal-tac zimage (neg-game o neg-game) (right-options g) = right-options
9)

apply (auto simp add: game-split]symmetric))

apply (auto simp add: zet-ext-eq zimage-iff)

done

function

ge-game :: (game x game) = bool
where

35

[simp del]: ge-game (G, H) = (V z. if zin z (right-options G) then (
if zin x (left-options H) then — (ge-game (H, z) V (ge-game
(z, G)))

else = (ge-game (H, x)))
else (if zin © (left-options H) then — (ge-game (z, G)) else
True))
by auto
termination by (relation (gprod-2-1 option-of))
(simp, auto simp: gprod-2-1-def)

lemma ge-game-eq: ge-game (G, H) = (V xz. (zin x (right-options G) — —
ge-game (H, x)) A (zin z (left-options H) — — ge-game (z, G)))

apply (subst ge-game.simps[where G=G and H=H))

apply (auto)

done

lemma ge-game-leftright-refi[rule-format]:
Y y. (zin y (right-options) — — ge-game (x, y)) A (zin y (left-options x) —
- (ge-game (y, x))) A ge-game (z, x)
proof (induct z rule: wf-induct|OF wf-option-of])
case (1 g)
{
fix y
assume y: zin y (right-options g)
have - ge-game (g, v)
proof —
have (y, g) € option-of by (auto intro: y)
with 7 have ge-game (y, y) by auto
with y show %thesis by (subst ge-game-eq, auto)
qed
}
note right = this
{
fix y
assume y: zin y (left-options g)
have — ge-game (y, g)
proof —
have (y, g) € option-of by (auto intro: y)
with 7 have ge-game (y, y) by auto
with y show %thesis by (subst ge-game-eq, auto)
qed
}
note left = this
from left right show ?case
by (auto, subst ge-game-eq, auto)
qed

lemma ge-game-refl: ge-game (z,x) by (simp add: ge-game-leftright-refl)

36

lemma V y. (zin y (right-options) — — ge-game (z, y)) A (zin y (left-options
z) — — (ge-game (y, z))) A ge-game (z, z)
proof (induct z rule: wf-induct|OF wf-option-of])
case (1 g)
show Zcase
proof (auto, goal-cases)
{case prems: (1 y)
from prems have (y, g) € option-of by (auto)
with 1 have ge-game (y, y) by auto
with prems have - ge-game (g, y)
by (subst ge-game-eq, auto)
with prems show Zcase by auto}
note right = this
{case prems: (2 y)
from prems have (y, g) € option-of by (auto)
with 7 have ge-game (y, y) by auto
with prems have — ge-game (y, g)
by (subst ge-game-eq, auto)
with prems show ?case by auto}
note left = this
{case 3
from left right show ?case
by (subst ge-game-eq, auto)
}

qed
qged

definition eq-game :: game = game = bool where
eq-game G H = ge-game (G, H) N ge-game (H, G)

lemma eg-game-sym: (eg-game G H) = (eq-game H G)
by (auto simp add: eq-game-def)

lemma eg-game-refl: eq-game G G
by (simp add: ge-game-refl eq-game-def)

lemma induct-game: (Az. Vy. (y,) € lprod option-of — Py —=— Pz) = Pa
by (erule wf-induct| OF wf-lprod[OF wf-option-of]])

lemma ge-game-trans:
assumes ge-game (z, y) ge-game (y, 2)
shows ge-game (z, z)

proof —

{

fix a
have V z y z. a = [z,y,2] — ge-game (z,y) — ge-game (y,z) —> ge-game

(z, 2)
proof (induct a rule: induct-game)
case (1 a)

37

show ?case
proof ((rule alll | rule impl)+, goal-cases)
case prems: (1 ¢y 2)
show ?Zcase
proof —
{ fix zr
assume zr:zin zr (right-options x)
assume a: ge-game (z, zr)
have ge-game (y, zr)
apply (rule 1[rule-format, where y=[y,z,2r]])
apply (auto intro: zr lprod-3-1 simp add: prems a)
done
moreover from zr have — ge-game (y, zr)
by (simp add: prems(2)[simplified ge-game-eq[of x y], rule-format, of
ar, simplified xr))
ultimately have Fualse by auto
}
note zr = this
{ fix 2l
assume zl:zin 2zl (left-options z)
assume a: ge-game (zl, x)
have ge-game (2, y)
apply (rule 1[rule-format, where y=[zl,x,y]])
apply (auto intro: zl lprod-3-2 simp add: prems a)
done
moreover from zl have — ge-game (21, y)
by (simp add: prems(3)[simplified ge-game-eq[of y 2], rule-format, of
21, simplified 21))
ultimately have Fulse by auto
}
note 2l = this
show ?thesis
by (auto simp add: ge-game-eq[of x z] intro: zr zl)
qed
qed
qed
}
note trans = this[of [z, y, 2], simplified, rule-format]
with assms show ?thesis by blast
qed

lemma eg-game-trans: eq-game a b = eq-game b ¢ => eq-game a ¢
by (auto simp add: eq-game-def intro: ge-game-trans)

definition zero-game :: game
where zero-game = Game zempty zempty

function
plus-game :: game = game = game

38

where
[simp del]: plus-game G H = Game (zunion (zimage (A g. plus-game g H)
(left-options G))
(zimage (A h. plus-game G h) (left-options H)))
(zunion (zimage (X g. plus-game g H) (right-options G))
(zimage (X h. plus-game G h) (right-options H)))
by auto
termination by (relation gprod-2-2 option-of)
(simp, auto simp: gprod-2-2-def)

lemma plus-game-comm: plus-game G H = plus-game H G
proof (induct G H rule: plus-game.induct)
case (1 G H)
show ?Zcase
by (auto simp add:
plus-game.simps[where G=G and H=H|
plus-game.simps[where G=H and H=G|
Game-ext zet-ext-eq zunion zimage-iff 1)
qed

lemma game-ext-eq: (G = H) = (left-options G = left-options H A right-options
G = right-options H)
proof —

have (G = H) = (Game (left-options G) (right-options G) = Game (left-options
H) (right-options H))

by (simp add: game-split[symmetric])

then show ?thesis by auto

qed

lemma left-zero-game[simpl: left-options (zero-game) = zempty
by (simp add: zero-game-def)

lemma right-zero-game[simp|: right-options (zero-game) = zempty
by (simp add: zero-game-def)

lemma plus-game-zero-right[simp]: plus-game G zero-game = G
proof —
have H = zero-game — plus-game G H = G for G H
proof (induct G H rule: plus-game.induct, rule impl, goal-cases)
case prems: (1 G H)
note induct-hyp = this[simplified prems, simplified] and this
show ?Zcase
apply (simp only: plus-game.simps[where G=G and H=H))
apply (simp add: game-ext-eq prems)
apply (auto simp add:
zimage-cong [where f = X g. plus-game g zero-game and g = id|
induct-hyp)
done
qed

39

then show ?thesis by auto
qed

lemma plus-game-zero-left: plus-game zero-game G = G
by (simp add: plus-game-comm)

lemma left-imp-options[simp]: zin opt (left-options g) = zin opt (options g)
by (simp add: options-def zunion)

lemma right-imp-options[simp|: zin opt (right-options g) = zin opt (options g)
by (simp add: options-def zunion)

lemma left-options-plus:

left-options (plus-game u v) = zunion (zimage (Ag. plus-game g v) (left-options
u)) (zimage (Mh. plus-game u h) (left-options v))

by (subst plus-game.simps, simp)

lemma right-options-plus:

right-options (plus-game u v) = zunion (zimage (Ag. plus-game g v) (right-options
u)) (zimage (Ah. plus-game u h) (right-options v))

by (subst plus-game.simps, simp)

lemma left-options-neg: left-options (neg-game u) = zimage neg-game (right-options

u)

by (subst neg-game.simps, simp)

lemma right-options-neg: right-options (neg-game u) = zimage neg-game (left-options

u)

by (subst neg-game.simps, simp)

lemma plus-game-assoc: plus-game (plus-game F G) H = plus-game F (plus-game
G H)
proof —
have VF G H. a = [F, G, H| — plus-game (plus-game F G) H = plus-game F
(plus-game G H) for a
proof (induct a rule: induct-game, (rule impl | rule alll)+, goal-cases)
case prems: (1 ¢ F G H)
let ?L = plus-game (plus-game F G) H
let ?R = plus-game F (plus-game G H)
note options-plus = left-options-plus right-options-plus
{
fix opt
note hyp = prems(1)[simplified prems(2), rule-format]
have F': zin opt (options F) = plus-game (plus-game opt G) H = plus-game
opt (plus-game G H)
by (blast intro: hyp lprod-3-3)
have G: zin opt (options G) = plus-game (plus-game F opt) H = plus-game
F (plus-game opt H)
by (blast intro: hyp lprod-3-4)

40

have H: zin opt (options H) = plus-game (plus-game F G) opt = plus-game
F (plus-game G opt)
by (blast intro: hyp lprod-3-5)
note F and G and H
}
note induct-hyp = this
have left-options ?L = left-options ?R A right-options ?L = right-options R
by (auto simp add:
plus-game.simps[where G=plus-game F G and H=H]
plus-game.simpsjwhere G=F and H=plus-game G H]
zet-ext-eq zunion zimage-iff options-plus
induct-hyp left-imp-options right-imp-options)
then show ?case
by (simp add: game-ext-eq)
qed
then show ?thesis by auto
qed

lemma neg-plus-game: neg-game (plus-game G H) = plus-game (neg-game Q)
(neg-game H)
proof (induct G H rule: plus-game.induct)
case (1 G H)
note opt-ops =
left-options-plus right-options-plus
left-options-neg right-options-neg
show ?Zcase
by (auto simp add: opt-ops
neg-game.simps|of plus-game G H]
plus-game.simps|of neg-game G neg-game H)|
Game-ext zet-ext-eq zunion zimage-iff 1)
qed

lemma eg-game-plus-inverse: eg-game (plus-game z (neg-game x)) zero-game
proof (induct x rule: wf-induct[OF wf-option-of], goal-cases)
case prems: (1 z)
then have ihyp: eq-game (plus-game y (neg-game y)) zero-game if zin y (options
z) for y
using that by (auto simp add: prems)
have casel: — (ge-game (zero-game, plus-game y (neg-game x)))
if y: zin y (right-options z) for y
apply (subst ge-game.simps, simp)
apply (rule exI[where x=plus-game y (neg-game y)])
apply (auto simp add: ihyp|of y, simplified y right-imp-options eq-game-def])
apply (auto simp add: left-options-plus left-options-neg zunion zimage-iff intro:
y)
done
have case2: - (ge-game (zero-game, plus-game x (neg-game y)))
if y: zin y (left-options z) for y
apply (subst ge-game.simps, simp)

41

apply (rule exl[where z=plus-game y (neg-game y)])
apply (auto simp add: ihyp[of y, simplified y left-imp-options eg-game-def])
apply (auto simp add: left-options-plus zunion zimage-iff intro: y)
done
have case3: = (ge-game (plus-game y (neg-game x), zero-game))
if y: zin y (left-options z) for y
apply (subst ge-game.simps, simp)
apply (rule exI[where z=plus-game y (neg-game y)])
apply (auto simp add: ihyp|of y, simplified y left-imp-options eq-game-def])
apply (auto simp add: right-options-plus right-options-neg zunion zimage-iff
intro: y)
done
have case/: — (ge-game (plus-game x (neg-game y), zero-game))
if y: zin y (right-options z) for y
apply (subst ge-game.simps, simp)
apply (rule exI[where x=plus-game y (neg-game y)])
apply (auto simp add: ihyp[of y, simplified y right-imp-options eg-game-def])
apply (auto simp add: right-options-plus zunion zimage-iff intro: y)
done
show ?Zcase
apply (simp add: eq-game-def)
apply (simp add: ge-game.simps|of plus-game x (neg-game) zero-game))
apply (simp add: ge-game.simps|of zero-game plus-game x (neg-game x)])
apply (simp add: right-options-plus left-options-plus right-options-neg left-options-neg
zunion zimage-iff)
apply (auto simp add: casel case2 case3 casel)
done
qed

lemma ge-plus-game-left: ge-game (y,z) = ge-game (plus-game z y, plus-game x
z)
proof —
have Vz y z. a = [z,y,2] — ge-game (y,z) = ge-game (plus-game z y, plus-game
z z) for a
proof (induct a rule: induct-game, (rule impl | rule alll)+, goal-cases)
case prems: (1 a z y 2)
note induct-hyp = prems(1)[rule-format, simplified prems(2)]
{
assume hyp: ge-game(plus-game z y, plus-game z z)
have ge-game (y, z)
proof —
{ fix yr
assume yr: zin yr (right-options y)
from hyp have — (ge-game (plus-game z z, plus-game x yr))
by (auto simp add: ge-game-eq[of plus-game z y plus-game x 2|
right-options-plus zunion zimage-iff intro: yr)
then have — (ge-game (z, yr))
apply (subst induct-hyp[where y=[z, z, yr], of x z yr])
apply (simp-all add: yr lprod-3-6)

42

done
}
note yr = this
{ fix 2l
assume zl: zin zl (left-options z)
from hyp have — (ge-game (plus-game z zl, plus-game z y))
by (auto simp add: ge-game-eq[of plus-game z y plus-game x 2|
left-options-plus zunion zimage-iff intro: zl)
then have — (ge-game (21, y))
apply (subst prems(1)[rule-format, where y=[z, zl, y], of z 2l y])
apply (simp-all add: prems(2) 2l lprod-3-7)
done
}
note 2l = this
show ge-game (y, z)
apply (subst ge-game-eq)
apply (auto simp add: yr 2l)
done
qed
}
note right-imp-left = this
{
assume yz: ge-game (y, z)
{
fix z’
assume z”: zin ¢’ (right-options x)
assume hyp: ge-game (plus-game x z, plus-game z’ y)
then have n: = (ge-game (plus-game z’ y, plus-game z’ z))
by (auto simp add: ge-game-eq|of plus-game z z plus-game z' y]
right-options-plus zunion zimage-iff intro: z’)
have t: ge-game (plus-game x' y, plus-game x’ z)
apply (subst induct-hyp[symmetric])
apply (auto intro: lprod-3-3 ' yz)
done
from n t have Fualse by blast

}

note casel = this
{
fix z’
assume z”: zin z’ (left-options x)
assume hyp: ge-game (plus-game z' z, plus-game x y)
then have n: - (ge-game (plus-game ' y, plus-game =’ z))
by (auto simp add: ge-game-eq|of plus-game ' z plus-game z y]
left-options-plus zunion zimage-iff intro: x’)
have t: ge-game (plus-game x’ y, plus-game z’ 2)
apply (subst induct-hyp[symmetric])
apply (auto intro: lprod-3-3 z' yz)
done
from n t have Fulse by blast

43

}

note case3 = this
{
fix y’
assume y” zin y’ (right-options y)
assume hyp: ge-game (plus-game x z, plus-game z y')
then have ge-game(z, y')
apply (subst induct-hyplof [z, z, y'] z z y'])
apply (auto simp add: hyp lprod-3-6 y’)
done
with yz have ge-game (y, y')
by (blast intro: ge-game-trans)
with y’ have False by (auto simp add: ge-game-leftright-refl)

}

note case2 = this
{
fix 2’
assume z": zin z’ (left-options z)
assume hyp: ge-game (plus-game z 2z’ plus-game z y)
then have ge-game(z’, y)
apply (subst induct-hyp[of [z, z’, y] 2" y])
apply (auto simp add: hyp lprod-3-7 z')
done
with yz have ge-game (2, 2)
by (blast intro: ge-game-trans)
with 2’ have Fulse by (auto simp add: ge-game-leftright-refl)
}
note case = this
have ge-game(plus-game z y, plus-game z z)
apply (subst ge-game-eq)
apply (auto simp add: right-options-plus left-options-plus zunion zimage-iff)
apply (auto intro: casel case2 casel cases,)
done
}
note left-imp-right = this
show ?case by (auto intro: right-imp-left left-imp-right)
qed
from this[of [z, y, 2]] show %thesis by blast
qed

lemma ge-plus-game-right: ge-game (y,z) = ge-game(plus-game y z, plus-game z

z)

by (simp add: ge-plus-game-left plus-game-comm,)

lemma ge-neg-game: ge-game (neg-game x, neg-game y) = ge-game (y,)
proof —

have Vz y. a = [z, y| — ge-game (neg-game z, neg-game y) = ge-game (y, x)
for a

proof (induct a rule: induct-game, (rule impl | rule alll)+, goal-cases)

44

case prems: (1 a x y)
note ihyp = prems(1)[rule-format, simplified prems(2)]
{ fix =l
assume zl: zin 2l (left-options x)
have ge-game (neg-game y, neg-game zl) = ge-game (zl, y)
apply (subst ihyp)
apply (auto simp add: lprod-2-1 zl)
done
}
note zl = this
{ fix yr
assume yr: zin yr (right-options y)
have ge-game (neg-game yr, neg-game z) = ge-game (x, yr)
apply (subst ihyp)
apply (auto simp add: lprod-2-2 yr)
done
}
note yr = this
show ?case
by (auto simp add: ge-game-eq|of neg-game x neg-game y| ge-game-eq|of y]
right-options-neg left-options-neg zimage-iff xl yr)
qed
from this[of [z,y]] show ?thesis by blast
qed

definition eq-game-rel :: (game * game) set where
eq-game-rel = { (p, q) . eg-game p q }

definition Pg = UNIV //eg-game-rel

typedef Pg = Pg
unfolding Pg-def by (auto simp add: quotient-def)

lemma equiv-eq-game[simpl: equiv UNIV eq-game-rel
proof (rule equivl)
show eq-game-rel C UNIV x UNIV
by simp
next
show refl eq-game-rel
by (auto simp only: eq-game-rel-def intro: refll eq-game-refl)
next
show sym eq-game-rel
by (auto simp only: eq-game-rel-def eq-game-sym intro: syml)
next
show trans eq-game-rel
by (auto simp only: eq-game-rel-def intro: transl eq-game-trans)
qed

instantiation Pg :: {ord, zero, plus, minus, uminus}

45

begin

definition
Pg-zero-def: 0 = Abs-Pg (eq-game-rel “* {zero-game})

definition
Pg-le-def: G < H <+ (3 gh. g € Rep-Pg G N h € Rep-Pg H N\ ge-game (h, g))

definition
Pg-less-def: G < H +— G < H A G # (H::Pg)

definition
Pg-minus-def: — G = the-elem (| g € Rep-Pg G. { Abs-Pg (eq-game-rel *‘ {neg-game
9h})

definition
Pg-plus-def: G + H = the-elem ((Ug € Rep-Pg G. |Jh € Rep-Pg H. {Abs-Pyg
(eg-game-rel “ {plus-game g h})})

definition
Pg-diff-def: G — H = G + (— (H::Pg))

instance ..
end

lemma Rep-Abs-eq-Pg[simp|: Rep-Pg (Abs-Pg (eg-game-rel ““ {g})) = eq-game-rel
“{g}

apply (subst Abs-Pg-inverse)

apply (auto simp add: Pg-def quotient-def)

done

lemma char-Pg-le[simp]: (Abs-Pg (eg-game-rel “ {g}) < Abs-Pg (eq-game-rel *
{h})) = (ge-game (h, g))

apply (simp add: Pg-le-def)

apply (auto simp add: eq-game-rel-def eq-game-def intro: ge-game-trans ge-game-refl)
done

lemma char-Pg-eq[simp|: (Abs-Pg (eq-game-rel “ {g}) = Abs-Pg (eq-game-rel “
{h})) = (eg-game g h)

apply (simp add: Rep-Pg-inject [symmetric])

apply (subst eq-equiv-class-iff [of UNIV])

apply (simp-all)

apply (simp add: eq-game-rel-def)

done

lemma char-Pg-plus[simp]: Abs-Pg (eq-game-rel *“ {g}) + Abs-Pg (eq-game-rel

{h}) = Abs-Pg (eg-game-rel *‘ {plus-game g h})
proof —

46

have (A g h. {Abs-Pg (eq-game-rel ** {plus-game g h})}) respects2 eq-game-rel
apply (simp add: congruent2-def)
apply (auto simp add: eq-game-rel-def eg-game-def)
apply (rule-tac y=plus-game a ba in ge-game-trans)

apply (simp add: ge-plus-game-left[symmetric] ge-plus-game-right[symmetric])+
apply (rule-tac y=plus-game b aa in ge-game-trans)

apply (simp add: ge-plus-game-left[symmetric] ge-plus-game-right[symmetric])+
done

then show ?thesis
by (simp add: Pg-plus-def UN-equiv-class2[OF equiv-eq-game equiv-eq-game))

qged

lemma char-Pg-minus[simp|: — Abs-Pg (eq-game-rel ““ {g}) = Abs-Pg (eq-game-rel
““ {neg-game g})
proof —
have (A g. {Abs-Pg (eq-game-rel ““ {neg-game g})}) respects eq-game-rel
apply (simp add: congruent-def)
apply (auto simp add: eq-game-rel-def eq-game-def ge-neg-game)
done
then show ?thesis
by (simp add: Pg-minus-def UN-equiv-class|OF equiv-eq-game])
qged

lemma eq-Abs-Pg[rule-format, cases type: Pg|: (V g. z = Abs-Pg (eq-game-rel
{9}) — P)— P

apply (cases z, simp)

apply (simp add: Rep-Pg-inject[symmetric])

apply (subst Abs-Pg-inverse, simp)

apply (auto simp add: Pg-def quotient-def)

done

instance Pg :: ordered-ab-group-add
proof
fix abc: Pg
show ¢ — b = a + (— b) by (simp add: Pg-diff-def)
{
assume ab: a < b
assume ba: b < a
from ab ba show a = b
apply (cases a, cases b)
apply (simp add: eq-game-def)
done
}
then show (a < b) = (a < b A = b < a) by (auto simp add: Pg-less-def)
show a + b=0+ a
apply (cases a, cases b)
apply (simp add: eg-game-def plus-game-comm)
done
show a + b+ c=a+ (b+ ¢

47

apply (cases a, cases b, cases c)
apply (simp add: eq-game-def plus-game-assoc)
done
show 0 + a=a
apply (cases a)
apply (simp add: Pg-zero-def plus-game-zero-left)
done
show —a+ a =0
apply (cases a)
apply (simp add: Pg-zero-def eq-game-plus-inverse plus-game-comm,)
done
show a < a
apply (cases a)
apply (simp add: ge-game-refl)
done
{
assume ab: a < b
assume bc: b < ¢
from ab bc show a < ¢
apply (cases a, cases b, cases c)
apply (auto intro: ge-game-trans)
done
}
{
assume ab: a < b
from ab show ¢ + a < c+ b
apply (cases a, cases b, cases c)
apply (simp add: ge-plus-game-left[symmetric])
done

}

qed

end

48

