
The UNITY Formalism
Sidi Ehmety and Lawrence C. Paulson

January 18, 2026

Contents
1 The Basic UNITY Theory 2

1.0.1 The abstract type of programs . . . . . . . . . . . . . . . 3
1.0.2 Inspectors for type "program" . . . . . . . . . . . . . . . . 3
1.0.3 Equality for UNITY programs . . . . . . . . . . . . . . . 3
1.0.4 co . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.0.5 Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.0.6 Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.0.7 unless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.0.8 stable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.0.9 Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.0.10 Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.0.11 invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.0.12 increasing . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.0.13 Theoretical Results from Section 6 . . . . . . . . . . . . . 7
1.0.14 Ad-hoc set-theory rules . . . . . . . . . . . . . . . . . . . 7

1.1 Partial versus Total Transitions . . . . . . . . . . . . . . . . . . . 7
1.1.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Rules for Lazy Definition Expansion . . . . . . . . . . . . . . . . 9
1.2.1 Inspectors for type "program" . . . . . . . . . . . . . . . . 9

2 Fixed Point of a Program 10

3 Progress 10
3.1 transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 ensures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 leadsTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 PSP: Progress-Safety-Progress . . . . . . . . . . . . . . . . . . . . 16
3.5 Proving the induction rules . . . . . . . . . . . . . . . . . . . . . 16
3.6 wlt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7 Completion: Binary and General Finite versions . . . . . . . . . 18

4 Weak Safety 19
4.1 traces and reachable . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Co . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Stable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Increasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 The Elimination Theorem . . . . . . . . . . . . . . . . . . . . . . 22

1



2 CONTENTS

4.6 Specialized laws for handling Always . . . . . . . . . . . . . . . . 23
4.7 "Co" rules involving Always . . . . . . . . . . . . . . . . . . . . . 23
4.8 Totalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Weak Progress 25
5.1 Specialized laws for handling invariants . . . . . . . . . . . . . . 25
5.2 Introduction rules: Basis, Trans, Union . . . . . . . . . . . . . . 25
5.3 Derived rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 PSP: Progress-Safety-Progress . . . . . . . . . . . . . . . . . . . . 28
5.5 Induction rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6 Completion: Binary and General Finite versions . . . . . . . . . 30

6 The Detects Relation 31

7 Unions of Programs 32
7.1 SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 SKIP and safety properties . . . . . . . . . . . . . . . . . . . . . 33
7.3 Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.4 JN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.5 Algebraic laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.6 Laws Governing

⊔
. . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.7 Safety: co, stable, FP . . . . . . . . . . . . . . . . . . . . . . . . 34
7.8 Progress: transient, ensures . . . . . . . . . . . . . . . . . . . . . 35
7.9 the ok and OK relations . . . . . . . . . . . . . . . . . . . . . . . 37
7.10 Allowed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.11 safety_prop, for reasoning about given instances of "ok" . . . . . 38

8 Composition: Basic Primitives 39
8.1 The component relation . . . . . . . . . . . . . . . . . . . . . . . 40
8.2 The preserves property . . . . . . . . . . . . . . . . . . . . . . . . 41

9 Guarantees Specifications 43
9.1 Existential Properties . . . . . . . . . . . . . . . . . . . . . . . . 44
9.2 Universal Properties . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.3 Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.4 Distributive Laws. Re-Orient to Perform Miniscoping . . . . . . 45
9.5 Guarantees: Additional Laws (by lcp) . . . . . . . . . . . . . . . 46
9.6 Guarantees Laws for Breaking Down the Program (by lcp) . . . . 47

10 Extending State Sets 49
10.1 Restrict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.2 Trivial properties of f, g, h . . . . . . . . . . . . . . . . . . . . . . 51
10.3 extend_set : basic properties . . . . . . . . . . . . . . . . . . . . . 52
10.4 project_set : basic properties . . . . . . . . . . . . . . . . . . . . 53
10.5 More laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.6 extend_act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.7 extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.8 Safety: co, stable . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.9 Weak safety primitives: Co, Stable . . . . . . . . . . . . . . . . . 56
10.10Progress: transient, ensures . . . . . . . . . . . . . . . . . . . . . 58
10.11Proving the converse takes some doing! . . . . . . . . . . . . . . . 58



CONTENTS 3

10.12preserves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.13Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11 Renaming of State Sets 60
11.1 inverse properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
11.2 the lattice operations . . . . . . . . . . . . . . . . . . . . . . . . . 62
11.3 Strong Safety: co, stable . . . . . . . . . . . . . . . . . . . . . . . 62
11.4 Weak Safety: Co, Stable . . . . . . . . . . . . . . . . . . . . . . . 62
11.5 Progress: transient, ensures . . . . . . . . . . . . . . . . . . . . . 63
11.6 "image" versions of the rules, for lifting "guarantees" properties . 64

12 Replication of Components 65
12.1 Injectiveness proof . . . . . . . . . . . . . . . . . . . . . . . . . . 65
12.2 Surjectiveness proof . . . . . . . . . . . . . . . . . . . . . . . . . 66
12.3 The Operator lift_set . . . . . . . . . . . . . . . . . . . . . . . 67
12.4 The Lattice Operations . . . . . . . . . . . . . . . . . . . . . . . 67
12.5 Safety: constrains, stable, invariant . . . . . . . . . . . . . . . . . 67
12.6 Progress: transient, ensures . . . . . . . . . . . . . . . . . . . . . 68
12.7 Lemmas to Handle Function Composition (o) More Consistently 70
12.8 More lemmas about extend and project . . . . . . . . . . . . . . 70
12.9 OK and "lift" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

13 The Prefix Ordering on Lists 73
13.1 preliminary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . 74
13.2 genPrefix is a partial order . . . . . . . . . . . . . . . . . . . . . 74
13.3 recursion equations . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.4 The type of lists is partially ordered . . . . . . . . . . . . . . . . 77
13.5 pfixLe, pfixGe: properties inherited from the translations . . . . 78

14 The Follows Relation of Charpentier and Sivilotte 79
14.1 Destruction rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
14.2 Union properties (with the subset ordering) . . . . . . . . . . . . 80
14.3 Multiset union properties (with the multiset ordering) . . . . . . 81

15 Predicate Transformers 82
15.1 Defining the Predicate Transformers wp, awp and wens . . . . . . 82
15.2 Defining the Weakest Ensures Set . . . . . . . . . . . . . . . . . . 84
15.3 Properties Involving Program Union . . . . . . . . . . . . . . . . 85
15.4 The Set wens_set F B for a Single-Assignment Program . . . . . 85

16 Progress Sets 88
16.1 Complete Lattices and the Operator cl . . . . . . . . . . . . . . 88
16.2 Progress Sets and the Main Lemma . . . . . . . . . . . . . . . . . 90
16.3 The Progress Set Union Theorem . . . . . . . . . . . . . . . . . . 91
16.4 Some Progress Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 92

16.4.1 Lattices and Relations . . . . . . . . . . . . . . . . . . . . 92
16.4.2 Decoupling Theorems . . . . . . . . . . . . . . . . . . . . 93

16.5 Composition Theorems Based on Monotonicity and Commutativity 93
16.5.1 Commutativity of cl L and assignment. . . . . . . . . . . 93
16.5.2 Commutativity of Functions and Relation . . . . . . . . . 94

16.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



4 CONTENTS

17 Comprehensive UNITY Theory 95

18 The Token Ring 99
18.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
18.2 Progress under Weak Fairness . . . . . . . . . . . . . . . . . . . . 100
18.3 Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

19 Analyzing the Needham-Schroeder Public-Key Protocol in UNITY120
19.1 Inductive Proofs about ns_public . . . . . . . . . . . . . . . . . . 121
19.2 Authenticity properties obtained from NS2 . . . . . . . . . . . . 121
19.3 Authenticity properties obtained from NS2 . . . . . . . . . . . . 122

20 A Family of Similar Counters: Original Version 125

21 A Family of Similar Counters: Version with Compatibility 126

22 The priority system 130
22.1 Component correctness proofs . . . . . . . . . . . . . . . . . . . . 131
22.2 System properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
22.3 The main result: above set decreases . . . . . . . . . . . . . . . . 133

23 Progress Set Examples 135
23.1 The Composition of Two Single-Assignment Programs . . . . . . 135

23.1.1 Calculating wens_set FF {k..} . . . . . . . . . . . . . . . 135
23.1.2 Proving FF ∈ UNIV 7−→ {k..} . . . . . . . . . . . . . . . . 136

24 Common Declarations for Chandy and Charpentier’s Allocator136
24.1 State definitions. OUTPUT variables are locals . . . . . . . . . . 138

24.1.1 Resource allocation system specification . . . . . . . . . . 138
24.1.2 Client specification (required) . . . . . . . . . . . . . . . . 139
24.1.3 Allocator specification (required) . . . . . . . . . . . . . . 139
24.1.4 Network specification . . . . . . . . . . . . . . . . . . . . 140
24.1.5 State mappings . . . . . . . . . . . . . . . . . . . . . . . . 141
24.1.6 bijectivity of sysOfClient . . . . . . . . . . . . . . . . . . 143
24.1.7 bijectivity of client_map . . . . . . . . . . . . . . . . . . . 143

24.2 o-simprules for sysOfAlloc [MUST BE AUTOMATED] . . . . . 144
24.3 o-simprules for sysOfClient [MUST BE AUTOMATED] . . . . . 144
24.4 Components Lemmas [MUST BE AUTOMATED] . . . . . . . . 146
24.5 Proof of the safety property (1) . . . . . . . . . . . . . . . . . . . 149
24.6 Proof of the progress property (2) . . . . . . . . . . . . . . . . . 150

25 Implementation of a multiple-client allocator from a single-
client allocator 152
25.1 Theorems for Merge . . . . . . . . . . . . . . . . . . . . . . . . . 155
25.2 Theorems for Distributor . . . . . . . . . . . . . . . . . . . . . . 156
25.3 Theorems for Allocator . . . . . . . . . . . . . . . . . . . . . . . 157

26 Distributed Resource Management System: the Client 157



CONTENTS 5

27 Projections of State Sets 161

27.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

27.2 "projecting" and union/intersection (no converses) . . . . . . . . 162

27.3 Reachability and project . . . . . . . . . . . . . . . . . . . . . . . 164

27.4 Converse results for weak safety: benefits of the argument C . . . 164

27.5 A lot of redundant theorems: all are proved to facilitate reasoning
about guarantees. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

27.6 leadsETo in the precondition (??) . . . . . . . . . . . . . . . . . . 166

27.6.1 transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

27.6.2 ensures – a primitive combining progress with safety . . . 166

27.7 Towards the theorem project_Ensures_D . . . . . . . . . . . . . . 167

27.8 Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

27.9 guarantees corollaries . . . . . . . . . . . . . . . . . . . . . . . . . 168

27.9.1 Some could be deleted: the required versions are easy to
prove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

27.9.2 Guarantees with a leadsTo postcondition . . . . . . . . . 169

28 Progress Under Allowable Sets 169



6 CONTENTS

Alloc

AllocBase

AllocImpl

Channel

Client

Common

Comp

Constrains

Counter Counterc

Deadlock

Detects

ELT

Extend

FP

Follows

Guar

Handshake Lift

Lift_prog

ListOrder

Mutex NSP_Bad

Network

PPROD

Priority

PriorityAuxProgress

ProgressSets

Project

README README_Comp README_Simple

Reach

Reachability

Rename

SubstAx

TimerArray

Token

Transformers

UNITY

UNITY_Main

Union

WFair [HOL-Auth]

[HOL-Library]

[HOL]

[Pure]

[Tools]



7

1 The Basic UNITY Theory

theory UNITY imports Main begin

definition
"Program =

{(init:: ’a set, acts :: (’a * ’a)set set,
allowed :: (’a * ’a)set set). Id ∈ acts & Id ∈ allowed}"

typedef ’a program = "Program :: (’a set * (’a * ’a) set set * (’a * ’a) set
set) set"

morphisms Rep_Program Abs_Program
〈proof 〉

definition Acts :: "’a program => (’a * ’a)set set" where
"Acts F == (%(init, acts, allowed). acts) (Rep_Program F)"

definition "constrains" :: "[’a set, ’a set] => ’a program set" (infixl ‹co›
60) where

"A co B == {F. ∀ act ∈ Acts F. act‘‘A ⊆ B}"

definition unless :: "[’a set, ’a set] => ’a program set" (infixl ‹unless›
60) where

"A unless B == (A-B) co (A ∪ B)"

definition mk_program :: "(’a set * (’a * ’a)set set * (’a * ’a)set set)
=> ’a program" where

"mk_program == %(init, acts, allowed).
Abs_Program (init, insert Id acts, insert Id allowed)"

definition Init :: "’a program => ’a set" where
"Init F == (%(init, acts, allowed). init) (Rep_Program F)"

definition AllowedActs :: "’a program => (’a * ’a)set set" where
"AllowedActs F == (%(init, acts, allowed). allowed) (Rep_Program F)"

definition Allowed :: "’a program => ’a program set" where
"Allowed F == {G. Acts G ⊆ AllowedActs F}"

definition stable :: "’a set => ’a program set" where
"stable A == A co A"

definition strongest_rhs :: "[’a program, ’a set] => ’a set" where
"strongest_rhs F A ==

⋂
{B. F ∈ A co B}"

definition invariant :: "’a set => ’a program set" where
"invariant A == {F. Init F ⊆ A} ∩ stable A"

definition increasing :: "[’a => ’b::{order}] => ’a program set" where
— Polymorphic in both states and the meaning of ≤
"increasing f ==

⋂
z. stable {s. z ≤ f s}"



8 1 THE BASIC UNITY THEORY

1.0.1 The abstract type of programs
lemmas program_typedef =

Rep_Program Rep_Program_inverse Abs_Program_inverse
Program_def Init_def Acts_def AllowedActs_def mk_program_def

lemma Id_in_Acts [iff]: "Id ∈ Acts F"
〈proof 〉

lemma insert_Id_Acts [iff]: "insert Id (Acts F) = Acts F"
〈proof 〉

lemma Acts_nonempty [simp]: "Acts F 6= {}"
〈proof 〉

lemma Id_in_AllowedActs [iff]: "Id ∈ AllowedActs F"
〈proof 〉

lemma insert_Id_AllowedActs [iff]: "insert Id (AllowedActs F) = AllowedActs
F"
〈proof 〉

1.0.2 Inspectors for type "program"
lemma Init_eq [simp]: "Init (mk_program (init,acts,allowed)) = init"
〈proof 〉

lemma Acts_eq [simp]: "Acts (mk_program (init,acts,allowed)) = insert Id
acts"
〈proof 〉

lemma AllowedActs_eq [simp]:
"AllowedActs (mk_program (init,acts,allowed)) = insert Id allowed"

〈proof 〉

1.0.3 Equality for UNITY programs
lemma surjective_mk_program [simp]:

"mk_program (Init F, Acts F, AllowedActs F) = F"
〈proof 〉

lemma program_equalityI:
"[| Init F = Init G; Acts F = Acts G; AllowedActs F = AllowedActs G |]

==> F = G"
〈proof 〉

lemma program_equalityE:
"[| F = G;

[| Init F = Init G; Acts F = Acts G; AllowedActs F = AllowedActs G
|]

==> P |] ==> P"
〈proof 〉

lemma program_equality_iff:



9

"(F=G) =
(Init F = Init G & Acts F = Acts G &AllowedActs F = AllowedActs G)"

〈proof 〉

1.0.4 co
lemma constrainsI:

"(!!act s s’. [| act ∈ Acts F; (s,s’) ∈ act; s ∈ A |] ==> s’ ∈ A’)

==> F ∈ A co A’"
〈proof 〉

lemma constrainsD:
"[| F ∈ A co A’; act ∈ Acts F; (s,s’) ∈ act; s ∈ A |] ==> s’ ∈ A’"

〈proof 〉

lemma constrains_empty [iff]: "F ∈ {} co B"
〈proof 〉

lemma constrains_empty2 [iff]: "(F ∈ A co {}) = (A={})"
〈proof 〉

lemma constrains_UNIV [iff]: "(F ∈ UNIV co B) = (B = UNIV)"
〈proof 〉

lemma constrains_UNIV2 [iff]: "F ∈ A co UNIV"
〈proof 〉

monotonic in 2nd argument
lemma constrains_weaken_R:

"[| F ∈ A co A’; A’<=B’ |] ==> F ∈ A co B’"
〈proof 〉

anti-monotonic in 1st argument
lemma constrains_weaken_L:

"[| F ∈ A co A’; B ⊆ A |] ==> F ∈ B co A’"
〈proof 〉

lemma constrains_weaken:
"[| F ∈ A co A’; B ⊆ A; A’<=B’ |] ==> F ∈ B co B’"

〈proof 〉

1.0.5 Union
lemma constrains_Un:

"[| F ∈ A co A’; F ∈ B co B’ |] ==> F ∈ (A ∪ B) co (A’ ∪ B’)"
〈proof 〉

lemma constrains_UN:
"(!!i. i ∈ I ==> F ∈ (A i) co (A’ i))
==> F ∈ (

⋃
i ∈ I. A i) co (

⋃
i ∈ I. A’ i)"

〈proof 〉

lemma constrains_Un_distrib: "(A ∪ B) co C = (A co C) ∩ (B co C)"



10 1 THE BASIC UNITY THEORY

〈proof 〉

lemma constrains_UN_distrib: "(
⋃

i ∈ I. A i) co B = (
⋂

i ∈ I. A i co B)"
〈proof 〉

lemma constrains_Int_distrib: "C co (A ∩ B) = (C co A) ∩ (C co B)"
〈proof 〉

lemma constrains_INT_distrib: "A co (
⋂

i ∈ I. B i) = (
⋂

i ∈ I. A co B i)"
〈proof 〉

1.0.6 Intersection

lemma constrains_Int:
"[| F ∈ A co A’; F ∈ B co B’ |] ==> F ∈ (A ∩ B) co (A’ ∩ B’)"

〈proof 〉

lemma constrains_INT:
"(!!i. i ∈ I ==> F ∈ (A i) co (A’ i))
==> F ∈ (

⋂
i ∈ I. A i) co (

⋂
i ∈ I. A’ i)"

〈proof 〉

lemma constrains_imp_subset: "F ∈ A co A’ ==> A ⊆ A’"
〈proof 〉

The reasoning is by subsets since "co" refers to single actions only. So this rule
isn’t that useful.

lemma constrains_trans:
"[| F ∈ A co B; F ∈ B co C |] ==> F ∈ A co C"

〈proof 〉

lemma constrains_cancel:
"[| F ∈ A co (A’ ∪ B); F ∈ B co B’ |] ==> F ∈ A co (A’ ∪ B’)"

〈proof 〉

1.0.7 unless

lemma unlessI: "F ∈ (A-B) co (A ∪ B) ==> F ∈ A unless B"
〈proof 〉

lemma unlessD: "F ∈ A unless B ==> F ∈ (A-B) co (A ∪ B)"
〈proof 〉

1.0.8 stable

lemma stableI: "F ∈ A co A ==> F ∈ stable A"
〈proof 〉

lemma stableD: "F ∈ stable A ==> F ∈ A co A"
〈proof 〉

lemma stable_UNIV [simp]: "stable UNIV = UNIV"
〈proof 〉



11

1.0.9 Union
lemma stable_Un:

"[| F ∈ stable A; F ∈ stable A’ |] ==> F ∈ stable (A ∪ A’)"

〈proof 〉

lemma stable_UN:
"(!!i. i ∈ I ==> F ∈ stable (A i)) ==> F ∈ stable (

⋃
i ∈ I. A i)"

〈proof 〉

lemma stable_Union:
"(!!A. A ∈ X ==> F ∈ stable A) ==> F ∈ stable (

⋃
X)"

〈proof 〉

1.0.10 Intersection
lemma stable_Int:

"[| F ∈ stable A; F ∈ stable A’ |] ==> F ∈ stable (A ∩ A’)"
〈proof 〉

lemma stable_INT:
"(!!i. i ∈ I ==> F ∈ stable (A i)) ==> F ∈ stable (

⋂
i ∈ I. A i)"

〈proof 〉

lemma stable_Inter:
"(!!A. A ∈ X ==> F ∈ stable A) ==> F ∈ stable (

⋂
X)"

〈proof 〉

lemma stable_constrains_Un:
"[| F ∈ stable C; F ∈ A co (C ∪ A’) |] ==> F ∈ (C ∪ A) co (C ∪ A’)"

〈proof 〉

lemma stable_constrains_Int:
"[| F ∈ stable C; F ∈ (C ∩ A) co A’ |] ==> F ∈ (C ∩ A) co (C ∩ A’)"

〈proof 〉

lemmas stable_constrains_stable = stable_constrains_Int[THEN stableI]

1.0.11 invariant
lemma invariantI: "[| Init F ⊆ A; F ∈ stable A |] ==> F ∈ invariant A"
〈proof 〉

Could also say invariant A ∩ invariant B ⊆ invariant (A ∩ B)

lemma invariant_Int:
"[| F ∈ invariant A; F ∈ invariant B |] ==> F ∈ invariant (A ∩ B)"

〈proof 〉

1.0.12 increasing
lemma increasingD:

"F ∈ increasing f ==> F ∈ stable {s. z ⊆ f s}"
〈proof 〉



12 1 THE BASIC UNITY THEORY

lemma increasing_constant [iff]: "F ∈ increasing (%s. c)"
〈proof 〉

lemma mono_increasing_o:
"mono g ==> increasing f ⊆ increasing (g o f)"

〈proof 〉

lemma strict_increasingD:
"!!z::nat. F ∈ increasing f ==> F ∈ stable {s. z < f s}"

〈proof 〉

lemma elimination:
"[| ∀ m ∈ M. F ∈ {s. s x = m} co (B m) |]
==> F ∈ {s. s x ∈ M} co (

⋃
m ∈ M. B m)"

〈proof 〉

As above, but for the trivial case of a one-variable state, in which the state is
identified with its one variable.
lemma elimination_sing:

"(∀ m ∈ M. F ∈ {m} co (B m)) ==> F ∈ M co (
⋃

m ∈ M. B m)"
〈proof 〉

1.0.13 Theoretical Results from Section 6
lemma constrains_strongest_rhs:

"F ∈ A co (strongest_rhs F A )"
〈proof 〉

lemma strongest_rhs_is_strongest:
"F ∈ A co B ==> strongest_rhs F A ⊆ B"

〈proof 〉

1.0.14 Ad-hoc set-theory rules
lemma Un_Diff_Diff [simp]: "A ∪ B - (A - B) = B"
〈proof 〉

lemma Int_Union_Union: "
⋃

B ∩ A =
⋃

((%C. C ∩ A)‘B)"
〈proof 〉

Needed for WF reasoning in WFair.thy
lemma Image_less_than [simp]: "less_than ‘‘ {k} = greaterThan k"
〈proof 〉

lemma Image_inverse_less_than [simp]: "less_than−1 ‘‘ {k} = lessThan k"
〈proof 〉

1.1 Partial versus Total Transitions
definition totalize_act :: "(’a * ’a)set => (’a * ’a)set" where



1.1 Partial versus Total Transitions 13

"totalize_act act == act ∪ Id_on (-(Domain act))"

definition totalize :: "’a program => ’a program" where
"totalize F == mk_program (Init F,

totalize_act ‘ Acts F,
AllowedActs F)"

definition mk_total_program :: "(’a set * (’a * ’a)set set * (’a * ’a)set set)
=> ’a program" where

"mk_total_program args == totalize (mk_program args)"

definition all_total :: "’a program => bool" where
"all_total F == ∀ act ∈ Acts F. Domain act = UNIV"

lemma insert_Id_image_Acts: "f Id = Id ==> insert Id (f‘Acts F) = f ‘ Acts
F"
〈proof 〉

1.1.1 Basic properties

lemma totalize_act_Id [simp]: "totalize_act Id = Id"
〈proof 〉

lemma Domain_totalize_act [simp]: "Domain (totalize_act act) = UNIV"
〈proof 〉

lemma Init_totalize [simp]: "Init (totalize F) = Init F"
〈proof 〉

lemma Acts_totalize [simp]: "Acts (totalize F) = (totalize_act ‘ Acts F)"
〈proof 〉

lemma AllowedActs_totalize [simp]: "AllowedActs (totalize F) = AllowedActs
F"
〈proof 〉

lemma totalize_constrains_iff [simp]: "(totalize F ∈ A co B) = (F ∈ A co
B)"
〈proof 〉

lemma totalize_stable_iff [simp]: "(totalize F ∈ stable A) = (F ∈ stable
A)"
〈proof 〉

lemma totalize_invariant_iff [simp]:
"(totalize F ∈ invariant A) = (F ∈ invariant A)"

〈proof 〉

lemma all_total_totalize: "all_total (totalize F)"
〈proof 〉

lemma Domain_iff_totalize_act: "(Domain act = UNIV) = (totalize_act act =
act)"
〈proof 〉



14 1 THE BASIC UNITY THEORY

lemma all_total_imp_totalize: "all_total F ==> (totalize F = F)"
〈proof 〉

lemma all_total_iff_totalize: "all_total F = (totalize F = F)"
〈proof 〉

lemma mk_total_program_constrains_iff [simp]:
"(mk_total_program args ∈ A co B) = (mk_program args ∈ A co B)"

〈proof 〉

1.2 Rules for Lazy Definition Expansion
They avoid expanding the full program, which is a large expression

lemma def_prg_Init:
"F = mk_total_program (init,acts,allowed) ==> Init F = init"

〈proof 〉

lemma def_prg_Acts:
"F = mk_total_program (init,acts,allowed)
==> Acts F = insert Id (totalize_act ‘ acts)"

〈proof 〉

lemma def_prg_AllowedActs:
"F = mk_total_program (init,acts,allowed)
==> AllowedActs F = insert Id allowed"

〈proof 〉

An action is expanded if a pair of states is being tested against it

lemma def_act_simp:
"act = {(s,s’). P s s’} ==> ((s,s’) ∈ act) = P s s’"

〈proof 〉

A set is expanded only if an element is being tested against it

lemma def_set_simp: "A = B ==> (x ∈ A) = (x ∈ B)"
〈proof 〉

1.2.1 Inspectors for type "program"
lemma Init_total_eq [simp]:

"Init (mk_total_program (init,acts,allowed)) = init"
〈proof 〉

lemma Acts_total_eq [simp]:
"Acts(mk_total_program(init,acts,allowed)) = insert Id (totalize_act‘acts)"

〈proof 〉

lemma AllowedActs_total_eq [simp]:
"AllowedActs (mk_total_program (init,acts,allowed)) = insert Id allowed"

〈proof 〉

end



15

2 Fixed Point of a Program
theory FP imports UNITY begin

definition FP_Orig :: "’a program => ’a set" where
"FP_Orig F ==

⋃
{A. ∀ B. F ∈ stable (A ∩ B)}"

definition FP :: "’a program => ’a set" where
"FP F == {s. F ∈ stable {s}}"

lemma stable_FP_Orig_Int: "F ∈ stable (FP_Orig F Int B)"
〈proof 〉

lemma FP_Orig_weakest:
"(
∧

B. F ∈ stable (A ∩ B)) =⇒ A <= FP_Orig F"
〈proof 〉

lemma stable_FP_Int: "F ∈ stable (FP F ∩ B)"
〈proof 〉

lemma FP_equivalence: "FP F = FP_Orig F"
〈proof 〉

lemma FP_weakest:
"(
∧

B. F ∈ stable (A Int B)) =⇒ A <= FP F"
〈proof 〉

lemma Compl_FP:
"-(FP F) = (UN act: Acts F. -{s. act‘‘{s} <= {s}})"

〈proof 〉

lemma Diff_FP: "A - (FP F) = (UN act: Acts F. A - {s. act‘‘{s} <= {s}})"
〈proof 〉

lemma totalize_FP [simp]: "FP (totalize F) = FP F"
〈proof 〉

end

3 Progress
theory WFair imports UNITY begin

The original version of this theory was based on weak fairness. (Thus, the entire
UNITY development embodied this assumption, until February 2003.) Weak
fairness states that if a command is enabled continuously, then it is eventually
executed. Ernie Cohen suggested that I instead adopt unconditional fairness:
every command is executed infinitely often.
In fact, Misra’s paper on "Progress" seems to be ambiguous about the correct
interpretation, and says that the two forms of fairness are equivalent. They
differ only on their treatment of partial transitions, which under unconditional
fairness behave magically. That is because if there are partial transitions then
there may be no fair executions, making all leads-to properties hold vacuously.



16 3 PROGRESS

Unconditional fairness has some great advantages. By distinguishing partial
transitions from total ones that are the identity on part of their domain, it
is more expressive. Also, by simplifying the definition of the transient prop-
erty, it simplifies many proofs. A drawback is that some laws only hold under
the assumption that all transitions are total. The best-known of these is the
impossibility law for leads-to.

definition

— This definition specifies conditional fairness. The rest of the theory is generic
to all forms of fairness. To get weak fairness, conjoin the inclusion below with A ⊆
Domain act, which specifies that the action is enabled over all of A.

transient :: "’a set => ’a program set" where
"transient A == {F. ∃ act∈Acts F. act‘‘A ⊆ -A}"

definition
ensures :: "[’a set, ’a set] => ’a program set" (infixl ‹ensures› 60)

where
"A ensures B == (A-B co A ∪ B) ∩ transient (A-B)"

inductive_set
leads :: "’a program => (’a set * ’a set) set"

— LEADS-TO constant for the inductive definition
for F :: "’a program"
where

Basis: "F ∈ A ensures B ==> (A,B) ∈ leads F"

| Trans: "[| (A,B) ∈ leads F; (B,C) ∈ leads F |] ==> (A,C) ∈ leads F"

| Union: "∀ A ∈ S. (A,B) ∈ leads F ==> (Union S, B) ∈ leads F"

definition leadsTo :: "[’a set, ’a set] => ’a program set" (infixl ‹leadsTo›
60) where

— visible version of the LEADS-TO relation
"A leadsTo B == {F. (A,B) ∈ leads F}"

definition wlt :: "[’a program, ’a set] => ’a set" where
— predicate transformer: the largest set that leads to B

"wlt F B ==
⋃

{A. F ∈ A leadsTo B}"

notation leadsTo (infixl ‹ 7−→› 60)

3.1 transient
lemma stable_transient:

"[| F ∈ stable A; F ∈ transient A |] ==> ∃ act∈Acts F. A ⊆ - (Domain
act)"
〈proof 〉

lemma stable_transient_empty:
"[| F ∈ stable A; F ∈ transient A; all_total F |] ==> A = {}"



3.2 ensures 17

〈proof 〉

lemma transient_strengthen:
"[| F ∈ transient A; B ⊆ A |] ==> F ∈ transient B"

〈proof 〉

lemma transientI:
"[| act ∈ Acts F; act‘‘A ⊆ -A |] ==> F ∈ transient A"

〈proof 〉

lemma transientE:
"[| F ∈ transient A;∧

act. [| act ∈ Acts F; act‘‘A ⊆ -A |] ==> P |]
==> P"

〈proof 〉

lemma transient_empty [simp]: "transient {} = UNIV"
〈proof 〉

This equation recovers the notion of weak fairness. A totalized program satisfies
a transient assertion just if the original program contains a suitable action that
is also enabled.

lemma totalize_transient_iff:
"(totalize F ∈ transient A) = (∃ act∈Acts F. A ⊆ Domain act & act‘‘A ⊆

-A)"
〈proof 〉

lemma totalize_transientI:
"[| act ∈ Acts F; A ⊆ Domain act; act‘‘A ⊆ -A |]
==> totalize F ∈ transient A"

〈proof 〉

3.2 ensures
lemma ensuresI:

"[| F ∈ (A-B) co (A ∪ B); F ∈ transient (A-B) |] ==> F ∈ A ensures B"
〈proof 〉

lemma ensuresD:
"F ∈ A ensures B ==> F ∈ (A-B) co (A ∪ B) & F ∈ transient (A-B)"

〈proof 〉

lemma ensures_weaken_R:
"[| F ∈ A ensures A’; A’<=B’ |] ==> F ∈ A ensures B’"

〈proof 〉

The L-version (precondition strengthening) fails, but we have this

lemma stable_ensures_Int:
"[| F ∈ stable C; F ∈ A ensures B |]
==> F ∈ (C ∩ A) ensures (C ∩ B)"

〈proof 〉

lemma stable_transient_ensures:



18 3 PROGRESS

"[| F ∈ stable A; F ∈ transient C; A ⊆ B ∪ C |] ==> F ∈ A ensures
B"
〈proof 〉

lemma ensures_eq: "(A ensures B) = (A unless B) ∩ transient (A-B)"
〈proof 〉

3.3 leadsTo
lemma leadsTo_Basis [intro]: "F ∈ A ensures B ==> F ∈ A leadsTo B"
〈proof 〉

lemma leadsTo_Trans:
"[| F ∈ A leadsTo B; F ∈ B leadsTo C |] ==> F ∈ A leadsTo C"

〈proof 〉

lemma leadsTo_Basis’:
"[| F ∈ A co A ∪ B; F ∈ transient A |] ==> F ∈ A leadsTo B"

〈proof 〉

lemma transient_imp_leadsTo: "F ∈ transient A ==> F ∈ A leadsTo (-A)"
〈proof 〉

Useful with cancellation, disjunction

lemma leadsTo_Un_duplicate: "F ∈ A leadsTo (A’ ∪ A’) ==> F ∈ A leadsTo A’"
〈proof 〉

lemma leadsTo_Un_duplicate2:
"F ∈ A leadsTo (A’ ∪ C ∪ C) ==> F ∈ A leadsTo (A’ ∪ C)"

〈proof 〉

The Union introduction rule as we should have liked to state it

lemma leadsTo_Union:
"(!!A. A ∈ S ==> F ∈ A leadsTo B) ==> F ∈ (

⋃
S) leadsTo B"

〈proof 〉

lemma leadsTo_Union_Int:
"(!!A. A ∈ S ==> F ∈ (A ∩ C) leadsTo B) ==> F ∈ (

⋃
S ∩ C) leadsTo B"

〈proof 〉

lemma leadsTo_UN:
"(!!i. i ∈ I ==> F ∈ (A i) leadsTo B) ==> F ∈ (

⋃
i ∈ I. A i) leadsTo

B"
〈proof 〉

Binary union introduction rule

lemma leadsTo_Un:
"[| F ∈ A leadsTo C; F ∈ B leadsTo C |] ==> F ∈ (A ∪ B) leadsTo C"

〈proof 〉

lemma single_leadsTo_I:
"(!!x. x ∈ A ==> F ∈ {x} leadsTo B) ==> F ∈ A leadsTo B"

〈proof 〉



3.3 leadsTo 19

The INDUCTION rule as we should have liked to state it
lemma leadsTo_induct:

"[| F ∈ za leadsTo zb;
!!A B. F ∈ A ensures B ==> P A B;
!!A B C. [| F ∈ A leadsTo B; P A B; F ∈ B leadsTo C; P B C |]

==> P A C;
!!B S. ∀ A ∈ S. F ∈ A leadsTo B & P A B ==> P (

⋃
S) B

|] ==> P za zb"
〈proof 〉

lemma subset_imp_ensures: "A ⊆ B ==> F ∈ A ensures B"
〈proof 〉

lemmas subset_imp_leadsTo = subset_imp_ensures [THEN leadsTo_Basis]

lemmas leadsTo_refl = subset_refl [THEN subset_imp_leadsTo]

lemmas empty_leadsTo = empty_subsetI [THEN subset_imp_leadsTo, simp]

lemmas leadsTo_UNIV = subset_UNIV [THEN subset_imp_leadsTo, simp]

Lemma is the weak version: can’t see how to do it in one step
lemma leadsTo_induct_pre_lemma:

"[| F ∈ za leadsTo zb;
P zb;
!!A B. [| F ∈ A ensures B; P B |] ==> P A;
!!S. ∀ A ∈ S. P A ==> P (

⋃
S)

|] ==> P za"

by induction on this formula

〈proof 〉

lemma leadsTo_induct_pre:
"[| F ∈ za leadsTo zb;

P zb;
!!A B. [| F ∈ A ensures B; F ∈ B leadsTo zb; P B |] ==> P A;
!!S. ∀ A ∈ S. F ∈ A leadsTo zb & P A ==> P (

⋃
S)

|] ==> P za"
〈proof 〉

lemma leadsTo_weaken_R: "[| F ∈ A leadsTo A’; A’<=B’ |] ==> F ∈ A leadsTo
B’"
〈proof 〉

lemma leadsTo_weaken_L:
"[| F ∈ A leadsTo A’; B ⊆ A |] ==> F ∈ B leadsTo A’"

〈proof 〉

Distributes over binary unions
lemma leadsTo_Un_distrib:

"F ∈ (A ∪ B) leadsTo C = (F ∈ A leadsTo C & F ∈ B leadsTo C)"



20 3 PROGRESS

〈proof 〉

lemma leadsTo_UN_distrib:
"F ∈ (

⋃
i ∈ I. A i) leadsTo B = (∀ i ∈ I. F ∈ (A i) leadsTo B)"

〈proof 〉

lemma leadsTo_Union_distrib:
"F ∈ (

⋃
S) leadsTo B = (∀ A ∈ S. F ∈ A leadsTo B)"

〈proof 〉

lemma leadsTo_weaken:
"[| F ∈ A leadsTo A’; B ⊆ A; A’<=B’ |] ==> F ∈ B leadsTo B’"

〈proof 〉

Set difference: maybe combine with leadsTo_weaken_L??

lemma leadsTo_Diff:
"[| F ∈ (A-B) leadsTo C; F ∈ B leadsTo C |] ==> F ∈ A leadsTo C"

〈proof 〉

lemma leadsTo_UN_UN:
"(!! i. i ∈ I ==> F ∈ (A i) leadsTo (A’ i))
==> F ∈ (

⋃
i ∈ I. A i) leadsTo (

⋃
i ∈ I. A’ i)"

〈proof 〉

Binary union version

lemma leadsTo_Un_Un:
"[| F ∈ A leadsTo A’; F ∈ B leadsTo B’ |]
==> F ∈ (A ∪ B) leadsTo (A’ ∪ B’)"

〈proof 〉

lemma leadsTo_cancel2:
"[| F ∈ A leadsTo (A’ ∪ B); F ∈ B leadsTo B’ |]
==> F ∈ A leadsTo (A’ ∪ B’)"

〈proof 〉

lemma leadsTo_cancel_Diff2:
"[| F ∈ A leadsTo (A’ ∪ B); F ∈ (B-A’) leadsTo B’ |]
==> F ∈ A leadsTo (A’ ∪ B’)"

〈proof 〉

lemma leadsTo_cancel1:
"[| F ∈ A leadsTo (B ∪ A’); F ∈ B leadsTo B’ |]

==> F ∈ A leadsTo (B’ ∪ A’)"
〈proof 〉

lemma leadsTo_cancel_Diff1:
"[| F ∈ A leadsTo (B ∪ A’); F ∈ (B-A’) leadsTo B’ |]

==> F ∈ A leadsTo (B’ ∪ A’)"
〈proof 〉



3.4 PSP: Progress-Safety-Progress 21

The impossibility law

lemma leadsTo_empty: "[|F ∈ A leadsTo {}; all_total F|] ==> A={}"
〈proof 〉

3.4 PSP: Progress-Safety-Progress
Special case of PSP: Misra’s "stable conjunction"

lemma psp_stable:
"[| F ∈ A leadsTo A’; F ∈ stable B |]
==> F ∈ (A ∩ B) leadsTo (A’ ∩ B)"

〈proof 〉

lemma psp_stable2:
"[| F ∈ A leadsTo A’; F ∈ stable B |] ==> F ∈ (B ∩ A) leadsTo (B ∩ A’)"

〈proof 〉

lemma psp_ensures:
"[| F ∈ A ensures A’; F ∈ B co B’ |]
==> F ∈ (A ∩ B’) ensures ((A’ ∩ B) ∪ (B’ - B))"

〈proof 〉

lemma psp:
"[| F ∈ A leadsTo A’; F ∈ B co B’ |]
==> F ∈ (A ∩ B’) leadsTo ((A’ ∩ B) ∪ (B’ - B))"

〈proof 〉

lemma psp2:
"[| F ∈ A leadsTo A’; F ∈ B co B’ |]

==> F ∈ (B’ ∩ A) leadsTo ((B ∩ A’) ∪ (B’ - B))"
〈proof 〉

lemma psp_unless:
"[| F ∈ A leadsTo A’; F ∈ B unless B’ |]
==> F ∈ (A ∩ B) leadsTo ((A’ ∩ B) ∪ B’)"

〈proof 〉

3.5 Proving the induction rules
lemma leadsTo_wf_induct_lemma:

"[| wf r;
∀ m. F ∈ (A ∩ f-‘{m}) leadsTo

((A ∩ f-‘(r−1 ‘‘ {m})) ∪ B) |]
==> F ∈ (A ∩ f-‘{m}) leadsTo B"

〈proof 〉

lemma leadsTo_wf_induct:
"[| wf r;

∀ m. F ∈ (A ∩ f-‘{m}) leadsTo
((A ∩ f-‘(r−1 ‘‘ {m})) ∪ B) |]

==> F ∈ A leadsTo B"



22 3 PROGRESS

〈proof 〉

lemma bounded_induct:
"[| wf r;

∀ m ∈ I. F ∈ (A ∩ f-‘{m}) leadsTo
((A ∩ f-‘(r−1 ‘‘ {m})) ∪ B) |]

==> F ∈ A leadsTo ((A - (f-‘I)) ∪ B)"
〈proof 〉

lemma lessThan_induct:
"[| !!m::nat. F ∈ (A ∩ f-‘{m}) leadsTo ((A ∩ f-‘{..<m}) ∪ B) |]
==> F ∈ A leadsTo B"

〈proof 〉

lemma lessThan_bounded_induct:
"!!l::nat. [| ∀ m ∈ greaterThan l.

F ∈ (A ∩ f-‘{m}) leadsTo ((A ∩ f-‘(lessThan m)) ∪ B) |]
==> F ∈ A leadsTo ((A ∩ (f-‘(atMost l))) ∪ B)"

〈proof 〉

lemma greaterThan_bounded_induct:
"(!!l::nat. ∀ m ∈ lessThan l.

F ∈ (A ∩ f-‘{m}) leadsTo ((A ∩ f-‘(greaterThan m)) ∪ B))
==> F ∈ A leadsTo ((A ∩ (f-‘(atLeast l))) ∪ B)"

〈proof 〉

3.6 wlt
Misra’s property W3

lemma wlt_leadsTo: "F ∈ (wlt F B) leadsTo B"
〈proof 〉

lemma leadsTo_subset: "F ∈ A leadsTo B ==> A ⊆ wlt F B"
〈proof 〉

Misra’s property W2

lemma leadsTo_eq_subset_wlt: "F ∈ A leadsTo B = (A ⊆ wlt F B)"
〈proof 〉

Misra’s property W4

lemma wlt_increasing: "B ⊆ wlt F B"
〈proof 〉

Used in the Trans case below

lemma lemma1:
"[| B ⊆ A2;

F ∈ (A1 - B) co (A1 ∪ B);
F ∈ (A2 - C) co (A2 ∪ C) |]

==> F ∈ (A1 ∪ A2 - C) co (A1 ∪ A2 ∪ C)"



3.7 Completion: Binary and General Finite versions 23

〈proof 〉

Lemma (1,2,3) of Misra’s draft book, Chapter 4, "Progress"

lemma leadsTo_123:
"F ∈ A leadsTo A’
==> ∃ B. A ⊆ B & F ∈ B leadsTo A’ & F ∈ (B-A’) co (B ∪ A’)"

〈proof 〉

Misra’s property W5

lemma wlt_constrains_wlt: "F ∈ (wlt F B - B) co (wlt F B)"
〈proof 〉

3.7 Completion: Binary and General Finite versions
lemma completion_lemma :

"[| W = wlt F (B’ ∪ C);
F ∈ A leadsTo (A’ ∪ C); F ∈ A’ co (A’ ∪ C);
F ∈ B leadsTo (B’ ∪ C); F ∈ B’ co (B’ ∪ C) |]

==> F ∈ (A ∩ B) leadsTo ((A’ ∩ B’) ∪ C)"
〈proof 〉

lemmas completion = completion_lemma [OF refl]

lemma finite_completion_lemma:
"finite I ==> (∀ i ∈ I. F ∈ (A i) leadsTo (A’ i ∪ C)) -->

(∀ i ∈ I. F ∈ (A’ i) co (A’ i ∪ C)) -->
F ∈ (

⋂
i ∈ I. A i) leadsTo ((

⋂
i ∈ I. A’ i) ∪ C)"

〈proof 〉

lemma finite_completion:
"[| finite I;

!!i. i ∈ I ==> F ∈ (A i) leadsTo (A’ i ∪ C);
!!i. i ∈ I ==> F ∈ (A’ i) co (A’ i ∪ C) |]

==> F ∈ (
⋂

i ∈ I. A i) leadsTo ((
⋂

i ∈ I. A’ i) ∪ C)"
〈proof 〉

lemma stable_completion:
"[| F ∈ A leadsTo A’; F ∈ stable A’;

F ∈ B leadsTo B’; F ∈ stable B’ |]
==> F ∈ (A ∩ B) leadsTo (A’ ∩ B’)"

〈proof 〉

lemma finite_stable_completion:
"[| finite I;

!!i. i ∈ I ==> F ∈ (A i) leadsTo (A’ i);
!!i. i ∈ I ==> F ∈ stable (A’ i) |]

==> F ∈ (
⋂

i ∈ I. A i) leadsTo (
⋂

i ∈ I. A’ i)"
〈proof 〉

end



24 4 WEAK SAFETY

4 Weak Safety
theory Constrains imports UNITY begin

inductive_set
traces :: "[’a set, (’a * ’a)set set] => (’a * ’a list) set"
for init :: "’a set" and acts :: "(’a * ’a)set set"
where

Init: "s ∈ init ==> (s,[]) ∈ traces init acts"

| Acts: "[| act ∈ acts; (s,evs) ∈ traces init acts; (s,s’) ∈ act |]
==> (s’, s#evs) ∈ traces init acts"

inductive_set
reachable :: "’a program => ’a set"
for F :: "’a program"
where

Init: "s ∈ Init F ==> s ∈ reachable F"

| Acts: "[| act ∈ Acts F; s ∈ reachable F; (s,s’) ∈ act |]
==> s’ ∈ reachable F"

definition Constrains :: "[’a set, ’a set] => ’a program set" (infixl ‹Co› 60)
where

"A Co B == {F. F ∈ (reachable F ∩ A) co B}"

definition Unless :: "[’a set, ’a set] => ’a program set" (infixl ‹Unless›
60) where

"A Unless B == (A-B) Co (A ∪ B)"

definition Stable :: "’a set => ’a program set" where
"Stable A == A Co A"

definition Always :: "’a set => ’a program set" where
"Always A == {F. Init F ⊆ A} ∩ Stable A"

definition Increasing :: "[’a => ’b::{order}] => ’a program set" where
"Increasing f ==

⋂
z. Stable {s. z ≤ f s}"

4.1 traces and reachable
lemma reachable_equiv_traces:

"reachable F = {s. ∃ evs. (s,evs) ∈ traces (Init F) (Acts F)}"
〈proof 〉

lemma Init_subset_reachable: "Init F ⊆ reachable F"
〈proof 〉



4.2 Co 25

lemma stable_reachable [intro!,simp]:
"Acts G ⊆ Acts F ==> G ∈ stable (reachable F)"

〈proof 〉

lemma invariant_reachable: "F ∈ invariant (reachable F)"
〈proof 〉

lemma invariant_includes_reachable: "F ∈ invariant A ==> reachable F ⊆ A"
〈proof 〉

4.2 Co
lemmas constrains_reachable_Int =

subset_refl [THEN stable_reachable [unfolded stable_def], THEN constrains_Int]

lemma Constrains_eq_constrains:
"A Co B = {F. F ∈ (reachable F ∩ A) co (reachable F ∩ B)}"

〈proof 〉

lemma constrains_imp_Constrains: "F ∈ A co A’ ==> F ∈ A Co A’"
〈proof 〉

lemma stable_imp_Stable: "F ∈ stable A ==> F ∈ Stable A"
〈proof 〉

lemma ConstrainsI:
"(!!act s s’. [| act ∈ Acts F; (s,s’) ∈ act; s ∈ A |] ==> s’ ∈ A’)

==> F ∈ A Co A’"
〈proof 〉

lemma Constrains_empty [iff]: "F ∈ {} Co B"
〈proof 〉

lemma Constrains_UNIV [iff]: "F ∈ A Co UNIV"
〈proof 〉

lemma Constrains_weaken_R:
"[| F ∈ A Co A’; A’<=B’ |] ==> F ∈ A Co B’"

〈proof 〉

lemma Constrains_weaken_L:
"[| F ∈ A Co A’; B ⊆ A |] ==> F ∈ B Co A’"

〈proof 〉

lemma Constrains_weaken:
"[| F ∈ A Co A’; B ⊆ A; A’<=B’ |] ==> F ∈ B Co B’"

〈proof 〉



26 4 WEAK SAFETY

lemma Constrains_Un:
"[| F ∈ A Co A’; F ∈ B Co B’ |] ==> F ∈ (A ∪ B) Co (A’ ∪ B’)"

〈proof 〉

lemma Constrains_UN:
assumes Co: "!!i. i ∈ I ==> F ∈ (A i) Co (A’ i)"
shows "F ∈ (

⋃
i ∈ I. A i) Co (

⋃
i ∈ I. A’ i)"

〈proof 〉

lemma Constrains_Int:
"[| F ∈ A Co A’; F ∈ B Co B’ |] ==> F ∈ (A ∩ B) Co (A’ ∩ B’)"

〈proof 〉

lemma Constrains_INT:
assumes Co: "!!i. i ∈ I ==> F ∈ (A i) Co (A’ i)"
shows "F ∈ (

⋂
i ∈ I. A i) Co (

⋂
i ∈ I. A’ i)"

〈proof 〉

lemma Constrains_imp_subset: "F ∈ A Co A’ ==> reachable F ∩ A ⊆ A’"
〈proof 〉

lemma Constrains_trans: "[| F ∈ A Co B; F ∈ B Co C |] ==> F ∈ A Co C"
〈proof 〉

lemma Constrains_cancel:
"[| F ∈ A Co (A’ ∪ B); F ∈ B Co B’ |] ==> F ∈ A Co (A’ ∪ B’)"

〈proof 〉

4.3 Stable
lemma Stable_eq: "[| F ∈ Stable A; A = B |] ==> F ∈ Stable B"
〈proof 〉

lemma Stable_eq_stable: "(F ∈ Stable A) = (F ∈ stable (reachable F ∩ A))"
〈proof 〉

lemma StableI: "F ∈ A Co A ==> F ∈ Stable A"
〈proof 〉

lemma StableD: "F ∈ Stable A ==> F ∈ A Co A"
〈proof 〉

lemma Stable_Un:
"[| F ∈ Stable A; F ∈ Stable A’ |] ==> F ∈ Stable (A ∪ A’)"

〈proof 〉

lemma Stable_Int:
"[| F ∈ Stable A; F ∈ Stable A’ |] ==> F ∈ Stable (A ∩ A’)"

〈proof 〉

lemma Stable_Constrains_Un:
"[| F ∈ Stable C; F ∈ A Co (C ∪ A’) |]



4.4 Increasing 27

==> F ∈ (C ∪ A) Co (C ∪ A’)"
〈proof 〉

lemma Stable_Constrains_Int:
"[| F ∈ Stable C; F ∈ (C ∩ A) Co A’ |]
==> F ∈ (C ∩ A) Co (C ∩ A’)"

〈proof 〉

lemma Stable_UN:
"(!!i. i ∈ I ==> F ∈ Stable (A i)) ==> F ∈ Stable (

⋃
i ∈ I. A i)"

〈proof 〉

lemma Stable_INT:
"(!!i. i ∈ I ==> F ∈ Stable (A i)) ==> F ∈ Stable (

⋂
i ∈ I. A i)"

〈proof 〉

lemma Stable_reachable: "F ∈ Stable (reachable F)"
〈proof 〉

4.4 Increasing
lemma IncreasingD:

"F ∈ Increasing f ==> F ∈ Stable {s. x ≤ f s}"
〈proof 〉

lemma mono_Increasing_o:
"mono g ==> Increasing f ⊆ Increasing (g o f)"

〈proof 〉

lemma strict_IncreasingD:
"!!z::nat. F ∈ Increasing f ==> F ∈ Stable {s. z < f s}"

〈proof 〉

lemma increasing_imp_Increasing:
"F ∈ increasing f ==> F ∈ Increasing f"

〈proof 〉

lemmas Increasing_constant = increasing_constant [THEN increasing_imp_Increasing,
iff]

4.5 The Elimination Theorem
lemma Elimination:

"[| ∀ m. F ∈ {s. s x = m} Co (B m) |]
==> F ∈ {s. s x ∈ M} Co (

⋃
m ∈ M. B m)"

〈proof 〉

lemma Elimination_sing:
"(∀ m. F ∈ {m} Co (B m)) ==> F ∈ M Co (

⋃
m ∈ M. B m)"

〈proof 〉



28 4 WEAK SAFETY

4.6 Specialized laws for handling Always
lemma AlwaysI: "[| Init F ⊆ A; F ∈ Stable A |] ==> F ∈ Always A"
〈proof 〉

lemma AlwaysD: "F ∈ Always A ==> Init F ⊆ A & F ∈ Stable A"
〈proof 〉

lemmas AlwaysE = AlwaysD [THEN conjE]
lemmas Always_imp_Stable = AlwaysD [THEN conjunct2]

lemma Always_includes_reachable: "F ∈ Always A ==> reachable F ⊆ A"
〈proof 〉

lemma invariant_imp_Always:
"F ∈ invariant A ==> F ∈ Always A"

〈proof 〉

lemmas Always_reachable = invariant_reachable [THEN invariant_imp_Always]

lemma Always_eq_invariant_reachable:
"Always A = {F. F ∈ invariant (reachable F ∩ A)}"

〈proof 〉

lemma Always_eq_includes_reachable: "Always A = {F. reachable F ⊆ A}"
〈proof 〉

lemma Always_UNIV_eq [simp]: "Always UNIV = UNIV"
〈proof 〉

lemma UNIV_AlwaysI: "UNIV ⊆ A ==> F ∈ Always A"
〈proof 〉

lemma Always_eq_UN_invariant: "Always A = (
⋃

I ∈ Pow A. invariant I)"
〈proof 〉

lemma Always_weaken: "[| F ∈ Always A; A ⊆ B |] ==> F ∈ Always B"
〈proof 〉

4.7 "Co" rules involving Always
lemma Always_Constrains_pre:

"F ∈ Always INV ==> (F ∈ (INV ∩ A) Co A’) = (F ∈ A Co A’)"
〈proof 〉

lemma Always_Constrains_post:
"F ∈ Always INV ==> (F ∈ A Co (INV ∩ A’)) = (F ∈ A Co A’)"

〈proof 〉

lemmas Always_ConstrainsI = Always_Constrains_pre [THEN iffD1]



4.8 Totalize 29

lemmas Always_ConstrainsD = Always_Constrains_post [THEN iffD2]

lemma Always_Constrains_weaken:
"[| F ∈ Always C; F ∈ A Co A’;

C ∩ B ⊆ A; C ∩ A’ ⊆ B’ |]
==> F ∈ B Co B’"

〈proof 〉

lemma Always_Int_distrib: "Always (A ∩ B) = Always A ∩ Always B"
〈proof 〉

lemma Always_INT_distrib: "Always (
⋂

(A ‘ I)) = (
⋂

i ∈ I. Always (A i))"
〈proof 〉

lemma Always_Int_I:
"[| F ∈ Always A; F ∈ Always B |] ==> F ∈ Always (A ∩ B)"

〈proof 〉

lemma Always_Compl_Un_eq:
"F ∈ Always A ==> (F ∈ Always (-A ∪ B)) = (F ∈ Always B)"

〈proof 〉

lemmas Always_thin = thin_rl [of "F ∈ Always A"] for F A

4.8 Totalize
lemma reachable_imp_reachable_tot:

"s ∈ reachable F ==> s ∈ reachable (totalize F)"
〈proof 〉

lemma reachable_tot_imp_reachable:
"s ∈ reachable (totalize F) ==> s ∈ reachable F"

〈proof 〉

lemma reachable_tot_eq [simp]: "reachable (totalize F) = reachable F"
〈proof 〉

lemma totalize_Constrains_iff [simp]: "(totalize F ∈ A Co B) = (F ∈ A Co
B)"
〈proof 〉

lemma totalize_Stable_iff [simp]: "(totalize F ∈ Stable A) = (F ∈ Stable
A)"
〈proof 〉

lemma totalize_Always_iff [simp]: "(totalize F ∈ Always A) = (F ∈ Always
A)"



30 5 WEAK PROGRESS

〈proof 〉

end

5 Weak Progress
theory SubstAx imports WFair Constrains begin

definition Ensures :: "[’a set, ’a set] => ’a program set" (infixl ‹Ensures›
60) where

"A Ensures B == {F. F ∈ (reachable F ∩ A) ensures B}"

definition LeadsTo :: "[’a set, ’a set] => ’a program set" (infixl ‹LeadsTo›
60) where

"A LeadsTo B == {F. F ∈ (reachable F ∩ A) leadsTo B}"

notation LeadsTo (infixl ‹ 7−→w› 60)

Resembles the previous definition of LeadsTo

lemma LeadsTo_eq_leadsTo:
"A LeadsTo B = {F. F ∈ (reachable F ∩ A) leadsTo (reachable F ∩ B)}"

〈proof 〉

5.1 Specialized laws for handling invariants
lemma Always_LeadsTo_pre:

"F ∈ Always INV ==> (F ∈ (INV ∩ A) LeadsTo A’) = (F ∈ A LeadsTo A’)"
〈proof 〉

lemma Always_LeadsTo_post:
"F ∈ Always INV ==> (F ∈ A LeadsTo (INV ∩ A’)) = (F ∈ A LeadsTo A’)"

〈proof 〉

lemmas Always_LeadsToI = Always_LeadsTo_pre [THEN iffD1]

lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2]

5.2 Introduction rules: Basis, Trans, Union
lemma leadsTo_imp_LeadsTo: "F ∈ A leadsTo B ==> F ∈ A LeadsTo B"
〈proof 〉

lemma LeadsTo_Trans:
"[| F ∈ A LeadsTo B; F ∈ B LeadsTo C |] ==> F ∈ A LeadsTo C"

〈proof 〉

lemma LeadsTo_Union:
"(!!A. A ∈ S ==> F ∈ A LeadsTo B) ==> F ∈ (

⋃
S) LeadsTo B"

〈proof 〉



5.3 Derived rules 31

5.3 Derived rules
lemma LeadsTo_UNIV [simp]: "F ∈ A LeadsTo UNIV"
〈proof 〉

Useful with cancellation, disjunction
lemma LeadsTo_Un_duplicate:

"F ∈ A LeadsTo (A’ ∪ A’) ==> F ∈ A LeadsTo A’"
〈proof 〉

lemma LeadsTo_Un_duplicate2:
"F ∈ A LeadsTo (A’ ∪ C ∪ C) ==> F ∈ A LeadsTo (A’ ∪ C)"

〈proof 〉

lemma LeadsTo_UN:
"(!!i. i ∈ I ==> F ∈ (A i) LeadsTo B) ==> F ∈ (

⋃
i ∈ I. A i) LeadsTo

B"
〈proof 〉

Binary union introduction rule
lemma LeadsTo_Un:

"[| F ∈ A LeadsTo C; F ∈ B LeadsTo C |] ==> F ∈ (A ∪ B) LeadsTo C"
〈proof 〉

Lets us look at the starting state
lemma single_LeadsTo_I:

"(!!s. s ∈ A ==> F ∈ {s} LeadsTo B) ==> F ∈ A LeadsTo B"
〈proof 〉

lemma subset_imp_LeadsTo: "A ⊆ B ==> F ∈ A LeadsTo B"
〈proof 〉

lemmas empty_LeadsTo = empty_subsetI [THEN subset_imp_LeadsTo, simp]

lemma LeadsTo_weaken_R:
"[| F ∈ A LeadsTo A’; A’ ⊆ B’ |] ==> F ∈ A LeadsTo B’"

〈proof 〉

lemma LeadsTo_weaken_L:
"[| F ∈ A LeadsTo A’; B ⊆ A |]
==> F ∈ B LeadsTo A’"

〈proof 〉

lemma LeadsTo_weaken:
"[| F ∈ A LeadsTo A’;

B ⊆ A; A’ ⊆ B’ |]
==> F ∈ B LeadsTo B’"

〈proof 〉

lemma Always_LeadsTo_weaken:
"[| F ∈ Always C; F ∈ A LeadsTo A’;

C ∩ B ⊆ A; C ∩ A’ ⊆ B’ |]
==> F ∈ B LeadsTo B’"

〈proof 〉



32 5 WEAK PROGRESS

lemma LeadsTo_Un_post: "F ∈ A LeadsTo B ==> F ∈ (A ∪ B) LeadsTo B"
〈proof 〉

lemma LeadsTo_Trans_Un:
"[| F ∈ A LeadsTo B; F ∈ B LeadsTo C |]
==> F ∈ (A ∪ B) LeadsTo C"

〈proof 〉

lemma LeadsTo_Un_distrib:
"(F ∈ (A ∪ B) LeadsTo C) = (F ∈ A LeadsTo C & F ∈ B LeadsTo C)"

〈proof 〉

lemma LeadsTo_UN_distrib:
"(F ∈ (

⋃
i ∈ I. A i) LeadsTo B) = (∀ i ∈ I. F ∈ (A i) LeadsTo B)"

〈proof 〉

lemma LeadsTo_Union_distrib:
"(F ∈ (

⋃
S) LeadsTo B) = (∀ A ∈ S. F ∈ A LeadsTo B)"

〈proof 〉

lemma LeadsTo_Basis: "F ∈ A Ensures B ==> F ∈ A LeadsTo B"
〈proof 〉

lemma EnsuresI:
"[| F ∈ (A-B) Co (A ∪ B); F ∈ transient (A-B) |]
==> F ∈ A Ensures B"

〈proof 〉

lemma Always_LeadsTo_Basis:
"[| F ∈ Always INV;

F ∈ (INV ∩ (A-A’)) Co (A ∪ A’);
F ∈ transient (INV ∩ (A-A’)) |]

==> F ∈ A LeadsTo A’"
〈proof 〉

Set difference: maybe combine with leadsTo_weaken_L?? This is the most useful
form of the "disjunction" rule
lemma LeadsTo_Diff:

"[| F ∈ (A-B) LeadsTo C; F ∈ (A ∩ B) LeadsTo C |]
==> F ∈ A LeadsTo C"

〈proof 〉

lemma LeadsTo_UN_UN:
"(!! i. i ∈ I ==> F ∈ (A i) LeadsTo (A’ i))



5.4 PSP: Progress-Safety-Progress 33

==> F ∈ (
⋃

i ∈ I. A i) LeadsTo (
⋃

i ∈ I. A’ i)"
〈proof 〉

Version with no index set
lemma LeadsTo_UN_UN_noindex:

"(!!i. F ∈ (A i) LeadsTo (A’ i)) ==> F ∈ (
⋃

i. A i) LeadsTo (
⋃

i. A’
i)"
〈proof 〉

Version with no index set
lemma all_LeadsTo_UN_UN:

"∀ i. F ∈ (A i) LeadsTo (A’ i)
==> F ∈ (

⋃
i. A i) LeadsTo (

⋃
i. A’ i)"

〈proof 〉

Binary union version
lemma LeadsTo_Un_Un:

"[| F ∈ A LeadsTo A’; F ∈ B LeadsTo B’ |]
==> F ∈ (A ∪ B) LeadsTo (A’ ∪ B’)"

〈proof 〉

lemma LeadsTo_cancel2:
"[| F ∈ A LeadsTo (A’ ∪ B); F ∈ B LeadsTo B’ |]
==> F ∈ A LeadsTo (A’ ∪ B’)"

〈proof 〉

lemma LeadsTo_cancel_Diff2:
"[| F ∈ A LeadsTo (A’ ∪ B); F ∈ (B-A’) LeadsTo B’ |]
==> F ∈ A LeadsTo (A’ ∪ B’)"

〈proof 〉

lemma LeadsTo_cancel1:
"[| F ∈ A LeadsTo (B ∪ A’); F ∈ B LeadsTo B’ |]
==> F ∈ A LeadsTo (B’ ∪ A’)"

〈proof 〉

lemma LeadsTo_cancel_Diff1:
"[| F ∈ A LeadsTo (B ∪ A’); F ∈ (B-A’) LeadsTo B’ |]
==> F ∈ A LeadsTo (B’ ∪ A’)"

〈proof 〉

The impossibility law

The set "A" may be non-empty, but it contains no reachable states
lemma LeadsTo_empty: "[|F ∈ A LeadsTo {}; all_total F|] ==> F ∈ Always (-A)"
〈proof 〉

5.4 PSP: Progress-Safety-Progress
Special case of PSP: Misra’s "stable conjunction"



34 5 WEAK PROGRESS

lemma PSP_Stable:
"[| F ∈ A LeadsTo A’; F ∈ Stable B |]
==> F ∈ (A ∩ B) LeadsTo (A’ ∩ B)"

〈proof 〉

lemma PSP_Stable2:
"[| F ∈ A LeadsTo A’; F ∈ Stable B |]
==> F ∈ (B ∩ A) LeadsTo (B ∩ A’)"

〈proof 〉

lemma PSP:
"[| F ∈ A LeadsTo A’; F ∈ B Co B’ |]
==> F ∈ (A ∩ B’) LeadsTo ((A’ ∩ B) ∪ (B’ - B))"

〈proof 〉

lemma PSP2:
"[| F ∈ A LeadsTo A’; F ∈ B Co B’ |]
==> F ∈ (B’ ∩ A) LeadsTo ((B ∩ A’) ∪ (B’ - B))"

〈proof 〉

lemma PSP_Unless:
"[| F ∈ A LeadsTo A’; F ∈ B Unless B’ |]
==> F ∈ (A ∩ B) LeadsTo ((A’ ∩ B) ∪ B’)"

〈proof 〉

lemma Stable_transient_Always_LeadsTo:
"[| F ∈ Stable A; F ∈ transient C;

F ∈ Always (-A ∪ B ∪ C) |] ==> F ∈ A LeadsTo B"
〈proof 〉

5.5 Induction rules
lemma LeadsTo_wf_induct:

"[| wf r;
∀ m. F ∈ (A ∩ f-‘{m}) LeadsTo

((A ∩ f-‘(r−1 ‘‘ {m})) ∪ B) |]
==> F ∈ A LeadsTo B"

〈proof 〉

lemma Bounded_induct:
"[| wf r;

∀ m ∈ I. F ∈ (A ∩ f-‘{m}) LeadsTo
((A ∩ f-‘(r−1 ‘‘ {m})) ∪ B) |]

==> F ∈ A LeadsTo ((A - (f-‘I)) ∪ B)"
〈proof 〉

lemma LessThan_induct:
"(!!m::nat. F ∈ (A ∩ f-‘{m}) LeadsTo ((A ∩ f-‘(lessThan m)) ∪ B))
==> F ∈ A LeadsTo B"

〈proof 〉



5.6 Completion: Binary and General Finite versions 35

Integer version. Could generalize from 0 to any lower bound
lemma integ_0_le_induct:

"[| F ∈ Always {s. (0::int) ≤ f s};
!! z. F ∈ (A ∩ {s. f s = z}) LeadsTo

((A ∩ {s. f s < z}) ∪ B) |]
==> F ∈ A LeadsTo B"

〈proof 〉

lemma LessThan_bounded_induct:
"!!l::nat. ∀ m ∈ greaterThan l.

F ∈ (A ∩ f-‘{m}) LeadsTo ((A ∩ f-‘(lessThan m)) ∪ B)
==> F ∈ A LeadsTo ((A ∩ (f-‘(atMost l))) ∪ B)"

〈proof 〉

lemma GreaterThan_bounded_induct:
"!!l::nat. ∀ m ∈ lessThan l.

F ∈ (A ∩ f-‘{m}) LeadsTo ((A ∩ f-‘(greaterThan m)) ∪ B)
==> F ∈ A LeadsTo ((A ∩ (f-‘(atLeast l))) ∪ B)"

〈proof 〉

5.6 Completion: Binary and General Finite versions
lemma Completion:

"[| F ∈ A LeadsTo (A’ ∪ C); F ∈ A’ Co (A’ ∪ C);
F ∈ B LeadsTo (B’ ∪ C); F ∈ B’ Co (B’ ∪ C) |]

==> F ∈ (A ∩ B) LeadsTo ((A’ ∩ B’) ∪ C)"
〈proof 〉

lemma Finite_completion_lemma:
"finite I
==> (∀ i ∈ I. F ∈ (A i) LeadsTo (A’ i ∪ C)) -->

(∀ i ∈ I. F ∈ (A’ i) Co (A’ i ∪ C)) -->
F ∈ (

⋂
i ∈ I. A i) LeadsTo ((

⋂
i ∈ I. A’ i) ∪ C)"

〈proof 〉

lemma Finite_completion:
"[| finite I;

!!i. i ∈ I ==> F ∈ (A i) LeadsTo (A’ i ∪ C);
!!i. i ∈ I ==> F ∈ (A’ i) Co (A’ i ∪ C) |]

==> F ∈ (
⋂

i ∈ I. A i) LeadsTo ((
⋂

i ∈ I. A’ i) ∪ C)"
〈proof 〉

lemma Stable_completion:
"[| F ∈ A LeadsTo A’; F ∈ Stable A’;

F ∈ B LeadsTo B’; F ∈ Stable B’ |]
==> F ∈ (A ∩ B) LeadsTo (A’ ∩ B’)"

〈proof 〉

lemma Finite_stable_completion:
"[| finite I;

!!i. i ∈ I ==> F ∈ (A i) LeadsTo (A’ i);
!!i. i ∈ I ==> F ∈ Stable (A’ i) |]

==> F ∈ (
⋂

i ∈ I. A i) LeadsTo (
⋂

i ∈ I. A’ i)"
〈proof 〉



36 6 THE DETECTS RELATION

end

6 The Detects Relation
theory Detects imports FP SubstAx begin

definition Detects :: "[’a set, ’a set] => ’a program set" (infixl ‹Detects›
60)

where "A Detects B = (Always (-A ∪ B)) ∩ (B LeadsTo A)"

definition Equality :: "[’a set, ’a set] => ’a set" (infixl ‹<==>› 60)
where "A <==> B = (-A ∪ B) ∩ (A ∪ -B)"

lemma Always_at_FP:
"[|F ∈ A LeadsTo B; all_total F|] ==> F ∈ Always (-((FP F) ∩ A ∩ -B))"

〈proof 〉

lemma Detects_Trans:
"[| F ∈ A Detects B; F ∈ B Detects C |] ==> F ∈ A Detects C"

〈proof 〉

lemma Detects_refl: "F ∈ A Detects A"
〈proof 〉

lemma Detects_eq_Un: "(A<==>B) = (A ∩ B) ∪ (-A ∩ -B)"
〈proof 〉

lemma Detects_antisym:
"[| F ∈ A Detects B; F ∈ B Detects A|] ==> F ∈ Always (A <==> B)"

〈proof 〉

lemma Detects_Always:
"[|F ∈ A Detects B; all_total F|] ==> F ∈ Always (-(FP F) ∪ (A <==>

B))"
〈proof 〉

lemma Detects_Imp_LeadstoEQ:
"F ∈ A Detects B ==> F ∈ UNIV LeadsTo (A <==> B)"

〈proof 〉

end



37

7 Unions of Programs
theory Union imports SubstAx FP begin

definition
ok :: "[’a program, ’a program] => bool" (infixl ‹ok› 65)
where "F ok G == Acts F ⊆ AllowedActs G &

Acts G ⊆ AllowedActs F"

definition
OK :: "[’a set, ’a => ’b program] => bool"
where "OK I F = (∀ i ∈ I. ∀ j ∈ I-{i}. Acts (F i) ⊆ AllowedActs (F j))"

definition
JOIN :: "[’a set, ’a => ’b program] => ’b program"
where "JOIN I F = mk_program (

⋂
i ∈ I. Init (F i),

⋃
i ∈ I. Acts (F i),⋂

i ∈ I. AllowedActs (F i))"

definition
Join :: "[’a program, ’a program] => ’a program" (infixl ‹t› 65)
where "F t G = mk_program (Init F ∩ Init G, Acts F ∪ Acts G,

AllowedActs F ∩ AllowedActs G)"

definition SKIP :: "’a program" (‹⊥›)
where "⊥ = mk_program (UNIV, {}, UNIV)"

definition
safety_prop :: "’a program set => bool"
where "safety_prop X ←→ SKIP ∈ X ∧ (∀ G. Acts G ⊆

⋃
(Acts ‘ X) −→ G

∈ X)"

syntax
"_JOIN1" :: "[pttrns, ’b set] => ’b set" (‹(‹indent=3 notation=‹binder

⊔
››
⊔

_./
_)› 10)

"_JOIN" :: "[pttrn, ’a set, ’b set] => ’b set" (‹(‹indent=3 notation=‹binder⊔
››
⊔

_∈_./ _)› 10)
syntax_consts

"_JOIN1" "_JOIN" == JOIN
translations

"
⊔

x ∈ A. B" == "CONST JOIN A (λx. B)"
"
⊔

x y. B" == "
⊔

x.
⊔

y. B"
"
⊔

x. B" == "CONST JOIN (CONST UNIV) (λx. B)"

7.1 SKIP
lemma Init_SKIP [simp]: "Init SKIP = UNIV"
〈proof 〉

lemma Acts_SKIP [simp]: "Acts SKIP = {Id}"
〈proof 〉



38 7 UNIONS OF PROGRAMS

lemma AllowedActs_SKIP [simp]: "AllowedActs SKIP = UNIV"
〈proof 〉

lemma reachable_SKIP [simp]: "reachable SKIP = UNIV"
〈proof 〉

7.2 SKIP and safety properties
lemma SKIP_in_constrains_iff [iff]: "(SKIP ∈ A co B) = (A ⊆ B)"
〈proof 〉

lemma SKIP_in_Constrains_iff [iff]: "(SKIP ∈ A Co B) = (A ⊆ B)"
〈proof 〉

lemma SKIP_in_stable [iff]: "SKIP ∈ stable A"
〈proof 〉

declare SKIP_in_stable [THEN stable_imp_Stable, iff]

7.3 Join
lemma Init_Join [simp]: "Init (FtG) = Init F ∩ Init G"
〈proof 〉

lemma Acts_Join [simp]: "Acts (FtG) = Acts F ∪ Acts G"
〈proof 〉

lemma AllowedActs_Join [simp]:
"AllowedActs (FtG) = AllowedActs F ∩ AllowedActs G"

〈proof 〉

7.4 JN
lemma JN_empty [simp]: "(

⊔
i∈{}. F i) = SKIP"

〈proof 〉

lemma JN_insert [simp]: "(
⊔

i ∈ insert a I. F i) = (F a)t(
⊔

i ∈ I. F i)"
〈proof 〉

lemma Init_JN [simp]: "Init (
⊔

i ∈ I. F i) = (
⋂

i ∈ I. Init (F i))"
〈proof 〉

lemma Acts_JN [simp]: "Acts (
⊔

i ∈ I. F i) = insert Id (
⋃

i ∈ I. Acts (F
i))"
〈proof 〉

lemma AllowedActs_JN [simp]:
"AllowedActs (

⊔
i ∈ I. F i) = (

⋂
i ∈ I. AllowedActs (F i))"

〈proof 〉

lemma JN_cong [cong]:
"[| I=J; !!i. i ∈ J ==> F i = G i |] ==> (

⊔
i ∈ I. F i) = (

⊔
i ∈ J.

G i)"



7.5 Algebraic laws 39

〈proof 〉

7.5 Algebraic laws
lemma Join_commute: "FtG = GtF"
〈proof 〉

lemma Join_assoc: "(FtG)tH = Ft(GtH)"
〈proof 〉

lemma Join_left_commute: "At(BtC) = Bt(AtC)"
〈proof 〉

lemma Join_SKIP_left [simp]: "SKIPtF = F"
〈proof 〉

lemma Join_SKIP_right [simp]: "FtSKIP = F"
〈proof 〉

lemma Join_absorb [simp]: "FtF = F"
〈proof 〉

lemma Join_left_absorb: "Ft(FtG) = FtG"
〈proof 〉

lemmas Join_ac = Join_assoc Join_left_absorb Join_commute Join_left_commute

7.6 Laws Governing ⊔
lemma JN_absorb: "k ∈ I ==> F kt(

⊔
i ∈ I. F i) = (

⊔
i ∈ I. F i)"

〈proof 〉

lemma JN_Un: "(
⊔

i ∈ I ∪ J. F i) = ((
⊔

i ∈ I. F i)t(
⊔

i ∈ J. F i))"
〈proof 〉

lemma JN_constant: "(
⊔

i ∈ I. c) = (if I={} then SKIP else c)"
〈proof 〉

lemma JN_Join_distrib:
"(
⊔

i ∈ I. F itG i) = (
⊔

i ∈ I. F i) t (
⊔

i ∈ I. G i)"
〈proof 〉

lemma JN_Join_miniscope:
"i ∈ I ==> (

⊔
i ∈ I. F itG) = ((

⊔
i ∈ I. F i)tG)"

〈proof 〉

lemma JN_Join_diff: "i ∈ I ==> F itJOIN (I - {i}) F = JOIN I F"
〈proof 〉

7.7 Safety: co, stable, FP
lemma JN_constrains:



40 7 UNIONS OF PROGRAMS

"i ∈ I ==> (
⊔

i ∈ I. F i) ∈ A co B = (∀ i ∈ I. F i ∈ A co B)"
〈proof 〉

lemma Join_constrains [simp]:
"(FtG ∈ A co B) = (F ∈ A co B & G ∈ A co B)"

〈proof 〉

lemma Join_unless [simp]:
"(FtG ∈ A unless B) = (F ∈ A unless B & G ∈ A unless B)"

〈proof 〉

lemma Join_constrains_weaken:
"[| F ∈ A co A’; G ∈ B co B’ |]
==> FtG ∈ (A ∩ B) co (A’ ∪ B’)"

〈proof 〉

lemma JN_constrains_weaken:
"[| ∀ i ∈ I. F i ∈ A i co A’ i; i ∈ I |]
==> (

⊔
i ∈ I. F i) ∈ (

⋂
i ∈ I. A i) co (

⋃
i ∈ I. A’ i)"

〈proof 〉

lemma JN_stable: "(
⊔

i ∈ I. F i) ∈ stable A = (∀ i ∈ I. F i ∈ stable A)"
〈proof 〉

lemma invariant_JN_I:
"[| !!i. i ∈ I ==> F i ∈ invariant A; i ∈ I |]

==> (
⊔

i ∈ I. F i) ∈ invariant A"
〈proof 〉

lemma Join_stable [simp]:
"(FtG ∈ stable A) =
(F ∈ stable A & G ∈ stable A)"

〈proof 〉

lemma Join_increasing [simp]:
"(FtG ∈ increasing f) =
(F ∈ increasing f & G ∈ increasing f)"

〈proof 〉

lemma invariant_JoinI:
"[| F ∈ invariant A; G ∈ invariant A |]
==> FtG ∈ invariant A"

〈proof 〉

lemma FP_JN: "FP (
⊔

i ∈ I. F i) = (
⋂

i ∈ I. FP (F i))"
〈proof 〉

7.8 Progress: transient, ensures
lemma JN_transient:



7.8 Progress: transient, ensures 41

"i ∈ I ==>
(
⊔

i ∈ I. F i) ∈ transient A = (∃ i ∈ I. F i ∈ transient A)"
〈proof 〉

lemma Join_transient [simp]:
"FtG ∈ transient A =
(F ∈ transient A | G ∈ transient A)"

〈proof 〉

lemma Join_transient_I1: "F ∈ transient A ==> FtG ∈ transient A"
〈proof 〉

lemma Join_transient_I2: "G ∈ transient A ==> FtG ∈ transient A"
〈proof 〉

lemma JN_ensures:
"i ∈ I ==>
(
⊔

i ∈ I. F i) ∈ A ensures B =
((∀ i ∈ I. F i ∈ (A-B) co (A ∪ B)) & (∃ i ∈ I. F i ∈ A ensures B))"

〈proof 〉

lemma Join_ensures:
"FtG ∈ A ensures B =
(F ∈ (A-B) co (A ∪ B) & G ∈ (A-B) co (A ∪ B) &
(F ∈ transient (A-B) | G ∈ transient (A-B)))"

〈proof 〉

lemma stable_Join_constrains:
"[| F ∈ stable A; G ∈ A co A’ |]
==> FtG ∈ A co A’"

〈proof 〉

lemma stable_Join_Always1:
"[| F ∈ stable A; G ∈ invariant A |] ==> FtG ∈ Always A"

〈proof 〉

lemma stable_Join_Always2:
"[| F ∈ invariant A; G ∈ stable A |] ==> FtG ∈ Always A"

〈proof 〉

lemma stable_Join_ensures1:
"[| F ∈ stable A; G ∈ A ensures B |] ==> FtG ∈ A ensures B"

〈proof 〉

lemma stable_Join_ensures2:
"[| F ∈ A ensures B; G ∈ stable A |] ==> FtG ∈ A ensures B"

〈proof 〉



42 7 UNIONS OF PROGRAMS

7.9 the ok and OK relations
lemma ok_SKIP1 [iff]: "SKIP ok F"
〈proof 〉

lemma ok_SKIP2 [iff]: "F ok SKIP"
〈proof 〉

lemma ok_Join_commute:
"(F ok G & (FtG) ok H) = (G ok H & F ok (GtH))"

〈proof 〉

lemma ok_commute: "(F ok G) = (G ok F)"
〈proof 〉

lemmas ok_sym = ok_commute [THEN iffD1]

lemma ok_iff_OK:
"OK {(0::int,F),(1,G),(2,H)} snd = (F ok G & (FtG) ok H)"

〈proof 〉

lemma ok_Join_iff1 [iff]: "F ok (GtH) = (F ok G & F ok H)"
〈proof 〉

lemma ok_Join_iff2 [iff]: "(GtH) ok F = (G ok F & H ok F)"
〈proof 〉

lemma ok_Join_commute_I: "[| F ok G; (FtG) ok H |] ==> F ok (GtH)"
〈proof 〉

lemma ok_JN_iff1 [iff]: "F ok (JOIN I G) = (∀ i ∈ I. F ok G i)"
〈proof 〉

lemma ok_JN_iff2 [iff]: "(JOIN I G) ok F = (∀ i ∈ I. G i ok F)"
〈proof 〉

lemma OK_iff_ok: "OK I F = (∀ i ∈ I. ∀ j ∈ I-{i}. (F i) ok (F j))"
〈proof 〉

lemma OK_imp_ok: "[| OK I F; i ∈ I; j ∈ I; i 6= j|] ==> (F i) ok (F j)"
〈proof 〉

7.10 Allowed
lemma Allowed_SKIP [simp]: "Allowed SKIP = UNIV"
〈proof 〉

lemma Allowed_Join [simp]: "Allowed (FtG) = Allowed F ∩ Allowed G"
〈proof 〉

lemma Allowed_JN [simp]: "Allowed (JOIN I F) = (
⋂

i ∈ I. Allowed (F i))"
〈proof 〉

lemma ok_iff_Allowed: "F ok G = (F ∈ Allowed G & G ∈ Allowed F)"



7.11 safety_prop, for reasoning about given instances of "ok" 43

〈proof 〉

lemma OK_iff_Allowed: "OK I F = (∀ i ∈ I. ∀ j ∈ I-{i}. F i ∈ Allowed(F j))"
〈proof 〉

7.11 safety_prop, for reasoning about given instances of "ok"
lemma safety_prop_Acts_iff:

"safety_prop X ==> (Acts G ⊆ insert Id (
⋃

(Acts ‘ X))) = (G ∈ X)"
〈proof 〉

lemma safety_prop_AllowedActs_iff_Allowed:
"safety_prop X ==> (

⋃
(Acts ‘ X) ⊆ AllowedActs F) = (X ⊆ Allowed F)"

〈proof 〉

lemma Allowed_eq:
"safety_prop X ==> Allowed (mk_program (init, acts,

⋃
(Acts ‘ X))) =

X"
〈proof 〉

lemma safety_prop_constrains [iff]: "safety_prop (A co B) = (A ⊆ B)"
〈proof 〉

lemma safety_prop_stable [iff]: "safety_prop (stable A)"
〈proof 〉

lemma safety_prop_Int [simp]:
"safety_prop X =⇒ safety_prop Y =⇒ safety_prop (X ∩ Y)"

〈proof 〉

lemma safety_prop_INTER [simp]:
"(
∧

i. i ∈ I =⇒ safety_prop (X i)) =⇒ safety_prop (
⋂

i∈I. X i)"
〈proof 〉

lemma safety_prop_INTER1 [simp]:
"(
∧

i. safety_prop (X i)) =⇒ safety_prop (
⋂

i. X i)"
〈proof 〉

lemma def_prg_Allowed:
"[| F == mk_program (init, acts,

⋃
(Acts ‘ X)) ; safety_prop X |]

==> Allowed F = X"
〈proof 〉

lemma Allowed_totalize [simp]: "Allowed (totalize F) = Allowed F"
〈proof 〉

lemma def_total_prg_Allowed:
"[| F = mk_total_program (init, acts,

⋃
(Acts ‘ X)) ; safety_prop X |]

==> Allowed F = X"
〈proof 〉

lemma def_UNION_ok_iff:



44 8 COMPOSITION: BASIC PRIMITIVES

"[| F = mk_program(init,acts,
⋃

(Acts ‘ X)); safety_prop X |]
==> F ok G = (G ∈ X & acts ⊆ AllowedActs G)"

〈proof 〉

The union of two total programs is total.

lemma totalize_Join: "totalize Fttotalize G = totalize (FtG)"
〈proof 〉

lemma all_total_Join: "[|all_total F; all_total G|] ==> all_total (FtG)"
〈proof 〉

lemma totalize_JN: "(
⊔

i ∈ I. totalize (F i)) = totalize(
⊔

i ∈ I. F i)"
〈proof 〉

lemma all_total_JN: "(!!i. i∈I ==> all_total (F i)) ==> all_total(
⊔

i∈I.
F i)"
〈proof 〉

end

8 Composition: Basic Primitives
theory Comp
imports Union
begin

instantiation program :: (type) ord
begin

definition component_def: "F ≤ H ←→ (∃ G. FtG = H)"

definition strict_component_def: "F < (H::’a program) ←→ (F ≤ H & F 6= H)"

instance 〈proof 〉

end

definition component_of :: "’a program =>’a program=> bool" (infixl ‹component’_of›
50)

where "F component_of H == ∃ G. F ok G & FtG = H"

definition strict_component_of :: "’a program⇒’a program=> bool" (infixl ‹strict’_component’_of›
50)

where "F strict_component_of H == F component_of H & F 6=H"

definition preserves :: "(’a=>’b) => ’a program set"
where "preserves v ==

⋂
z. stable {s. v s = z}"

definition localize :: "(’a=>’b) => ’a program => ’a program" where
"localize v F == mk_program(Init F, Acts F,

AllowedActs F ∩ (
⋃

G ∈ preserves v. Acts G))"

definition funPair :: "[’a => ’b, ’a => ’c, ’a] => ’b * ’c"



8.1 The component relation 45

where "funPair f g == %x. (f x, g x)"

8.1 The component relation
lemma componentI: "H ≤ F | H ≤ G ==> H ≤ (FtG)"
〈proof 〉

lemma component_eq_subset:
"(F ≤ G) =
(Init G ⊆ Init F & Acts F ⊆ Acts G & AllowedActs G ⊆ AllowedActs F)"

〈proof 〉

lemma component_SKIP [iff]: "SKIP ≤ F"
〈proof 〉

lemma component_refl [iff]: "F ≤ (F :: ’a program)"
〈proof 〉

lemma SKIP_minimal: "F ≤ SKIP ==> F = SKIP"
〈proof 〉

lemma component_Join1: "F ≤ (FtG)"
〈proof 〉

lemma component_Join2: "G ≤ (FtG)"
〈proof 〉

lemma Join_absorb1: "F ≤ G ==> FtG = G"
〈proof 〉

lemma Join_absorb2: "G ≤ F ==> FtG = F"
〈proof 〉

lemma JN_component_iff: "((JOIN I F) ≤ H) = (∀ i ∈ I. F i ≤ H)"
〈proof 〉

lemma component_JN: "i ∈ I ==> (F i) ≤ (
⊔

i ∈ I. (F i))"
〈proof 〉

lemma component_trans: "[| F ≤ G; G ≤ H |] ==> F ≤ (H :: ’a program)"
〈proof 〉

lemma component_antisym: "[| F ≤ G; G ≤ F |] ==> F = (G :: ’a program)"
〈proof 〉

lemma Join_component_iff: "((FtG) ≤ H) = (F ≤ H & G ≤ H)"
〈proof 〉

lemma component_constrains: "[| F ≤ G; G ∈ A co B |] ==> F ∈ A co B"
〈proof 〉

lemma component_stable: "[| F ≤ G; G ∈ stable A |] ==> F ∈ stable A"
〈proof 〉



46 8 COMPOSITION: BASIC PRIMITIVES

lemmas program_less_le = strict_component_def

8.2 The preserves property
lemma preservesI: "(!!z. F ∈ stable {s. v s = z}) ==> F ∈ preserves v"
〈proof 〉

lemma preserves_imp_eq:
"[| F ∈ preserves v; act ∈ Acts F; (s,s’) ∈ act |] ==> v s = v s’"

〈proof 〉

lemma Join_preserves [iff]:
"(FtG ∈ preserves v) = (F ∈ preserves v & G ∈ preserves v)"

〈proof 〉

lemma JN_preserves [iff]:
"(JOIN I F ∈ preserves v) = (∀ i ∈ I. F i ∈ preserves v)"

〈proof 〉

lemma SKIP_preserves [iff]: "SKIP ∈ preserves v"
〈proof 〉

lemma funPair_apply [simp]: "(funPair f g) x = (f x, g x)"
〈proof 〉

lemma preserves_funPair: "preserves (funPair v w) = preserves v ∩ preserves
w"
〈proof 〉

declare preserves_funPair [THEN eqset_imp_iff, iff]

lemma funPair_o_distrib: "(funPair f g) o h = funPair (f o h) (g o h)"
〈proof 〉

lemma fst_o_funPair [simp]: "fst o (funPair f g) = f"
〈proof 〉

lemma snd_o_funPair [simp]: "snd o (funPair f g) = g"
〈proof 〉

lemma subset_preserves_o: "preserves v ⊆ preserves (w o v)"
〈proof 〉

lemma preserves_subset_stable: "preserves v ⊆ stable {s. P (v s)}"
〈proof 〉

lemma preserves_subset_increasing: "preserves v ⊆ increasing v"
〈proof 〉

lemma preserves_id_subset_stable: "preserves id ⊆ stable A"
〈proof 〉



8.2 The preserves property 47

lemma safety_prop_preserves [iff]: "safety_prop (preserves v)"
〈proof 〉

lemma stable_localTo_stable2:
"[| F ∈ stable {s. P (v s) (w s)};

G ∈ preserves v; G ∈ preserves w |]
==> FtG ∈ stable {s. P (v s) (w s)}"

〈proof 〉

lemma Increasing_preserves_Stable:
"[| F ∈ stable {s. v s ≤ w s}; G ∈ preserves v; FtG ∈ Increasing w

|]
==> FtG ∈ Stable {s. v s ≤ w s}"

〈proof 〉

lemma component_of_imp_component: "F component_of H ==> F ≤ H"
〈proof 〉

lemma component_of_refl [simp]: "F component_of F"
〈proof 〉

lemma component_of_SKIP [simp]: "SKIP component_of F"
〈proof 〉

lemma component_of_trans:
"[| F component_of G; G component_of H |] ==> F component_of H"

〈proof 〉

lemmas strict_component_of_eq = strict_component_of_def

lemma localize_Init_eq [simp]: "Init (localize v F) = Init F"
〈proof 〉

lemma localize_Acts_eq [simp]: "Acts (localize v F) = Acts F"
〈proof 〉

lemma localize_AllowedActs_eq [simp]:
"AllowedActs (localize v F) = AllowedActs F ∩ (

⋃
G ∈ preserves v. Acts

G)"
〈proof 〉



48 9 GUARANTEES SPECIFICATIONS

end

9 Guarantees Specifications
theory Guar
imports Comp
begin

instance program :: (type) order
〈proof 〉

Existential and Universal properties. I formalize the two-program case, proving
equivalence with Chandy and Sanders’s n-ary definitions
definition ex_prop :: "’a program set => bool" where

"ex_prop X == ∀ F G. F ok G -->F ∈ X | G ∈ X --> (FtG) ∈ X"

definition strict_ex_prop :: "’a program set => bool" where
"strict_ex_prop X == ∀ F G. F ok G --> (F ∈ X | G ∈ X) = (FtG ∈ X)"

definition uv_prop :: "’a program set => bool" where
"uv_prop X == SKIP ∈ X & (∀ F G. F ok G --> F ∈ X & G ∈ X --> (FtG) ∈

X)"

definition strict_uv_prop :: "’a program set => bool" where
"strict_uv_prop X ==

SKIP ∈ X & (∀ F G. F ok G --> (F ∈ X & G ∈ X) = (FtG ∈ X))"

Guarantees properties
definition guar :: "[’a program set, ’a program set] => ’a program set" (infixl
‹guarantees› 55) where

"X guarantees Y == {F. ∀ G. F ok G --> FtG ∈ X --> FtG ∈ Y}"

definition wg :: "[’a program, ’a program set] => ’a program set" where
"wg F Y ==

⋃
({X. F ∈ X guarantees Y})"

definition wx :: "(’a program) set => (’a program)set" where
"wx X ==

⋃
({Y. Y ⊆ X & ex_prop Y})"

definition welldef :: "’a program set" where
"welldef == {F. Init F 6= {}}"

definition refines :: "[’a program, ’a program, ’a program set] => bool"
(‹(3_ refines _ wrt _)› [10,10,10] 10) where

"G refines F wrt X ==
∀ H. (F ok H & G ok H & FtH ∈ welldef ∩ X) -->

(GtH ∈ welldef ∩ X)"

definition iso_refines :: "[’a program, ’a program, ’a program set] => bool"



9.1 Existential Properties 49

(‹(3_ iso’_refines _ wrt _)› [10,10,10] 10) where
"G iso_refines F wrt X ==
F ∈ welldef ∩ X --> G ∈ welldef ∩ X"

lemma OK_insert_iff:
"(OK (insert i I) F) =
(if i ∈ I then OK I F else OK I F & (F i ok JOIN I F))"

〈proof 〉

9.1 Existential Properties
lemma ex1:

assumes "ex_prop X" and "finite GG"
shows "GG ∩ X 6= {} =⇒ OK GG (%G. G) =⇒ (

⊔
G ∈ GG. G) ∈ X"

〈proof 〉

lemma ex2:
"∀ GG. finite GG & GG ∩ X 6= {} −→ OK GG (λG. G) −→ (

⊔
G ∈ GG. G) ∈

X
=⇒ ex_prop X"

〈proof 〉

lemma ex_prop_finite:
"ex_prop X =
(∀ GG. finite GG & GG ∩ X 6= {} & OK GG (%G. G)--> (

⊔
G ∈ GG. G) ∈ X)"

〈proof 〉

lemma ex_prop_equiv:
"ex_prop X = (∀ G. G ∈ X = (∀ H. (G component_of H) --> H ∈ X))"

〈proof 〉

9.2 Universal Properties
lemma uv1:

assumes "uv_prop X"
and "finite GG"
and "GG ⊆ X"
and "OK GG (%G. G)"

shows "(
⊔

G ∈ GG. G) ∈ X"
〈proof 〉

lemma uv2:
"∀ GG. finite GG & GG ⊆ X & OK GG (%G. G) --> (

⊔
G ∈ GG. G) ∈ X

==> uv_prop X"
〈proof 〉

lemma uv_prop_finite:
"uv_prop X =



50 9 GUARANTEES SPECIFICATIONS

(∀ GG. finite GG ∧ GG ⊆ X ∧ OK GG (λG. G) −→ (
⊔

G ∈ GG. G) ∈ X)"
〈proof 〉

9.3 Guarantees
lemma guaranteesI:

"(!!G. [| F ok G; FtG ∈ X |] ==> FtG ∈ Y) ==> F ∈ X guarantees Y"
〈proof 〉

lemma guaranteesD:
"[| F ∈ X guarantees Y; F ok G; FtG ∈ X |] ==> FtG ∈ Y"

〈proof 〉

lemma component_guaranteesD:
"[| F ∈ X guarantees Y; FtG = H; H ∈ X; F ok G |] ==> H ∈ Y"

〈proof 〉

lemma guarantees_weaken:
"[| F ∈ X guarantees X’; Y ⊆ X; X’ ⊆ Y’ |] ==> F ∈ Y guarantees Y’"

〈proof 〉

lemma subset_imp_guarantees_UNIV: "X ⊆ Y ==> X guarantees Y = UNIV"
〈proof 〉

lemma subset_imp_guarantees: "X ⊆ Y ==> F ∈ X guarantees Y"
〈proof 〉

lemma ex_prop_imp: "ex_prop Y ==> (Y = UNIV guarantees Y)"
〈proof 〉

lemma guarantees_imp: "(Y = UNIV guarantees Y) ==> ex_prop(Y)"
〈proof 〉

lemma ex_prop_equiv2: "(ex_prop Y) = (Y = UNIV guarantees Y)"
〈proof 〉

9.4 Distributive Laws. Re-Orient to Perform Miniscoping
lemma guarantees_UN_left:

"(
⋃

i ∈ I. X i) guarantees Y = (
⋂

i ∈ I. X i guarantees Y)"
〈proof 〉

lemma guarantees_Un_left:
"(X ∪ Y) guarantees Z = (X guarantees Z) ∩ (Y guarantees Z)"

〈proof 〉

lemma guarantees_INT_right:
"X guarantees (

⋂
i ∈ I. Y i) = (

⋂
i ∈ I. X guarantees Y i)"

〈proof 〉



9.5 Guarantees: Additional Laws (by lcp) 51

lemma guarantees_Int_right:
"Z guarantees (X ∩ Y) = (Z guarantees X) ∩ (Z guarantees Y)"

〈proof 〉

lemma guarantees_Int_right_I:
"[| F ∈ Z guarantees X; F ∈ Z guarantees Y |]
==> F ∈ Z guarantees (X ∩ Y)"

〈proof 〉

lemma guarantees_INT_right_iff:
"(F ∈ X guarantees (

⋂
(Y ‘ I))) = (∀ i∈I. F ∈ X guarantees (Y i))"

〈proof 〉

lemma shunting: "(X guarantees Y) = (UNIV guarantees (-X ∪ Y))"
〈proof 〉

lemma contrapositive: "(X guarantees Y) = -Y guarantees -X"
〈proof 〉

lemma combining1:
"[| F ∈ V guarantees X; F ∈ (X ∩ Y) guarantees Z |]
==> F ∈ (V ∩ Y) guarantees Z"

〈proof 〉

lemma combining2:
"[| F ∈ V guarantees (X ∪ Y); F ∈ Y guarantees Z |]
==> F ∈ V guarantees (X ∪ Z)"

〈proof 〉

lemma all_guarantees:
"∀ i∈I. F ∈ X guarantees (Y i) ==> F ∈ X guarantees (

⋂
i ∈ I. Y i)"

〈proof 〉

lemma ex_guarantees:
"∃ i∈I. F ∈ X guarantees (Y i) ==> F ∈ X guarantees (

⋃
i ∈ I. Y i)"

〈proof 〉

9.5 Guarantees: Additional Laws (by lcp)
lemma guarantees_Join_Int:

"[| F ∈ U guarantees V; G ∈ X guarantees Y; F ok G |]
==> FtG ∈ (U ∩ X) guarantees (V ∩ Y)"

〈proof 〉

lemma guarantees_Join_Un:
"[| F ∈ U guarantees V; G ∈ X guarantees Y; F ok G |]
==> FtG ∈ (U ∪ X) guarantees (V ∪ Y)"

〈proof 〉



52 9 GUARANTEES SPECIFICATIONS

lemma guarantees_JN_INT:
"[| ∀ i∈I. F i ∈ X i guarantees Y i; OK I F |]
==> (JOIN I F) ∈ (

⋂
(X ‘ I)) guarantees (

⋂
(Y ‘ I))"

〈proof 〉

lemma guarantees_JN_UN:
"[| ∀ i∈I. F i ∈ X i guarantees Y i; OK I F |]
==> (JOIN I F) ∈ (

⋃
(X ‘ I)) guarantees (

⋃
(Y ‘ I))"

〈proof 〉

9.6 Guarantees Laws for Breaking Down the Program (by
lcp)

lemma guarantees_Join_I1:
"[| F ∈ X guarantees Y; F ok G |] ==> FtG ∈ X guarantees Y"

〈proof 〉

lemma guarantees_Join_I2:
"[| G ∈ X guarantees Y; F ok G |] ==> FtG ∈ X guarantees Y"

〈proof 〉

lemma guarantees_JN_I:
"[| i ∈ I; F i ∈ X guarantees Y; OK I F |]
==> (

⊔
i ∈ I. (F i)) ∈ X guarantees Y"

〈proof 〉

lemma Join_welldef_D1: "FtG ∈ welldef ==> F ∈ welldef"
〈proof 〉

lemma Join_welldef_D2: "FtG ∈ welldef ==> G ∈ welldef"
〈proof 〉

lemma refines_refl: "F refines F wrt X"
〈proof 〉

lemma refines_trans:
"[| H refines G wrt X; G refines F wrt X |] ==> H refines F wrt X"

〈proof 〉

lemma strict_ex_refine_lemma:
"strict_ex_prop X
==> (∀ H. F ok H & G ok H & FtH ∈ X --> GtH ∈ X)

= (F ∈ X --> G ∈ X)"
〈proof 〉

lemma strict_ex_refine_lemma_v:



9.6 Guarantees Laws for Breaking Down the Program (by lcp) 53

"strict_ex_prop X
==> (∀ H. F ok H & G ok H & FtH ∈ welldef & FtH ∈ X --> GtH ∈ X) =

(F ∈ welldef ∩ X --> G ∈ X)"
〈proof 〉

lemma ex_refinement_thm:
"[| strict_ex_prop X;

∀ H. F ok H & G ok H & FtH ∈ welldef ∩ X --> GtH ∈ welldef |]
==> (G refines F wrt X) = (G iso_refines F wrt X)"

〈proof 〉

lemma strict_uv_refine_lemma:
"strict_uv_prop X ==>
(∀ H. F ok H & G ok H & FtH ∈ X --> GtH ∈ X) = (F ∈ X --> G ∈ X)"

〈proof 〉

lemma strict_uv_refine_lemma_v:
"strict_uv_prop X
==> (∀ H. F ok H & G ok H & FtH ∈ welldef & FtH ∈ X --> GtH ∈ X) =

(F ∈ welldef ∩ X --> G ∈ X)"
〈proof 〉

lemma uv_refinement_thm:
"[| strict_uv_prop X;

∀ H. F ok H & G ok H & FtH ∈ welldef ∩ X -->
GtH ∈ welldef |]

==> (G refines F wrt X) = (G iso_refines F wrt X)"
〈proof 〉

lemma guarantees_equiv:
"(F ∈ X guarantees Y) = (∀ H. H ∈ X −→ (F component_of H −→ H ∈ Y))"

〈proof 〉

lemma wg_weakest: "!!X. F∈ (X guarantees Y) ==> X ⊆ (wg F Y)"
〈proof 〉

lemma wg_guarantees: "F∈ ((wg F Y) guarantees Y)"
〈proof 〉

lemma wg_equiv: "(H ∈ wg F X) = (F component_of H --> H ∈ X)"
〈proof 〉

lemma component_of_wg: "F component_of H ==> (H ∈ wg F X) = (H ∈ X)"
〈proof 〉

lemma wg_finite:
"∀ FF. finite FF ∧ FF ∩ X 6= {} −→ OK FF (λF. F)

−→ (∀ F∈FF. ((
⊔

F ∈ FF. F) ∈ wg F X) = ((
⊔

F ∈ FF. F) ∈ X))"
〈proof 〉



54 10 EXTENDING STATE SETS

lemma wg_ex_prop: "ex_prop X ==> (F ∈ X) = (∀ H. H ∈ wg F X)"
〈proof 〉

lemma wx_subset: "(wx X)<=X"
〈proof 〉

lemma wx_ex_prop: "ex_prop (wx X)"
〈proof 〉

lemma wx_weakest: "∀ Z. Z<= X --> ex_prop Z --> Z ⊆ wx X"
〈proof 〉

lemma wx’_ex_prop: "ex_prop({F. ∀ G. F ok G --> FtG ∈ X})"
〈proof 〉

Equivalence with the other definition of wx
lemma wx_equiv: "wx X = {F. ∀ G. F ok G --> (FtG) ∈ X}"
〈proof 〉

Propositions 7 to 11 are about this second definition of wx. They are the same
as the ones proved for the first definition of wx, by equivalence
lemma guarantees_wx_eq: "(X guarantees Y) = wx(-X ∪ Y)"
〈proof 〉

lemma stable_guarantees_Always:
"Init F ⊆ A ==> F ∈ (stable A) guarantees (Always A)"

〈proof 〉

lemma constrains_guarantees_leadsTo:
"F ∈ transient A ==> F ∈ (A co A ∪ B) guarantees (A leadsTo (B-A))"

〈proof 〉

end

10 Extending State Sets
theory Extend imports Guar begin

definition

Restrict :: "[ ’a set, (’a*’b) set] => (’a*’b) set"
where "Restrict A r = r ∩ (A × UNIV)"

definition
good_map :: "[’a*’b => ’c] => bool"
where "good_map h ←→ surj h & (∀ x y. fst (inv h (h (x,y))) = x)"



10.1 Restrict 55

definition
extend_set :: "[’a*’b => ’c, ’a set] => ’c set"
where "extend_set h A = h ‘ (A × UNIV)"

definition
project_set :: "[’a*’b => ’c, ’c set] => ’a set"
where "project_set h C = {x. ∃ y. h(x,y) ∈ C}"

definition
extend_act :: "[’a*’b => ’c, (’a*’a) set] => (’c*’c) set"
where "extend_act h = (%act.

⋃
(s,s’) ∈ act.

⋃
y. {(h(s,y), h(s’,y))})"

definition
project_act :: "[’a*’b => ’c, (’c*’c) set] => (’a*’a) set"
where "project_act h act = {(x,x’). ∃ y y’. (h(x,y), h(x’,y’)) ∈ act}"

definition
extend :: "[’a*’b => ’c, ’a program] => ’c program"
where "extend h F = mk_program (extend_set h (Init F),

extend_act h ‘ Acts F,
project_act h -‘ AllowedActs F)"

definition

project :: "[’a*’b => ’c, ’c set, ’c program] => ’a program"
where "project h C F =

mk_program (project_set h (Init F),
project_act h ‘ Restrict C ‘ Acts F,
{act. Restrict (project_set h C) act ∈

project_act h ‘ Restrict C ‘ AllowedActs F})"

locale Extend =
fixes f :: "’c => ’a"

and g :: "’c => ’b"
and h :: "’a*’b => ’c"
and slice :: "[’c set, ’b] => ’a set"

assumes
good_h: "good_map h"

defines f_def: "f z == fst (inv h z)"
and g_def: "g z == snd (inv h z)"
and slice_def: "slice Z y == {x. h(x,y) ∈ Z}"

10.1 Restrict
lemma Restrict_iff [iff]: "((x,y) ∈ Restrict A r) = ((x,y) ∈ r & x ∈ A)"
〈proof 〉

lemma Restrict_UNIV [simp]: "Restrict UNIV = id"
〈proof 〉

lemma Restrict_empty [simp]: "Restrict {} r = {}"
〈proof 〉

lemma Restrict_Int [simp]: "Restrict A (Restrict B r) = Restrict (A ∩ B)



56 10 EXTENDING STATE SETS

r"
〈proof 〉

lemma Restrict_triv: "Domain r ⊆ A ==> Restrict A r = r"
〈proof 〉

lemma Restrict_subset: "Restrict A r ⊆ r"
〈proof 〉

lemma Restrict_eq_mono:
"[| A ⊆ B; Restrict B r = Restrict B s |]
==> Restrict A r = Restrict A s"

〈proof 〉

lemma Restrict_imageI:
"[| s ∈ RR; Restrict A r = Restrict A s |]
==> Restrict A r ∈ Restrict A ‘ RR"

〈proof 〉

lemma Domain_Restrict [simp]: "Domain (Restrict A r) = A ∩ Domain r"
〈proof 〉

lemma Image_Restrict [simp]: "(Restrict A r) ‘‘ B = r ‘‘ (A ∩ B)"
〈proof 〉

lemma good_mapI:
assumes surj_h: "surj h"

and prem: "!! x x’ y y’. h(x,y) = h(x’,y’) ==> x=x’"
shows "good_map h"

〈proof 〉

lemma good_map_is_surj: "good_map h ==> surj h"
〈proof 〉

lemma fst_inv_equalityI:
assumes surj_h: "surj h"

and prem: "!! x y. g (h(x,y)) = x"
shows "fst (inv h z) = g z"

〈proof 〉

10.2 Trivial properties of f, g, h
context Extend
begin

lemma f_h_eq [simp]: "f(h(x,y)) = x"
〈proof 〉

lemma h_inject1 [dest]: "h(x,y) = h(x’,y’) ==> x=x’"
〈proof 〉

lemma h_f_g_equiv: "h(f z, g z) == z"



10.3 extend_set: basic properties 57

〈proof 〉

lemma h_f_g_eq: "h(f z, g z) = z"
〈proof 〉

lemma split_extended_all:
"(!!z. PROP P z) == (!!u y. PROP P (h (u, y)))"

〈proof 〉

end

10.3 extend_set: basic properties

lemma project_set_iff [iff]:
"(x ∈ project_set h C) = (∃ y. h(x,y) ∈ C)"

〈proof 〉

lemma extend_set_mono: "A ⊆ B ==> extend_set h A ⊆ extend_set h B"
〈proof 〉

context Extend
begin

lemma mem_extend_set_iff [iff]: "z ∈ extend_set h A = (f z ∈ A)"
〈proof 〉

lemma extend_set_strict_mono [iff]:
"(extend_set h A ⊆ extend_set h B) = (A ⊆ B)"

〈proof 〉

lemma (in -) extend_set_empty [simp]: "extend_set h {} = {}"
〈proof 〉

lemma extend_set_eq_Collect: "extend_set h {s. P s} = {s. P(f s)}"
〈proof 〉

lemma extend_set_sing: "extend_set h {x} = {s. f s = x}"
〈proof 〉

lemma extend_set_inverse [simp]: "project_set h (extend_set h C) = C"
〈proof 〉

lemma extend_set_project_set: "C ⊆ extend_set h (project_set h C)"
〈proof 〉

lemma inj_extend_set: "inj (extend_set h)"
〈proof 〉

lemma extend_set_UNIV_eq [simp]: "extend_set h UNIV = UNIV"
〈proof 〉



58 10 EXTENDING STATE SETS

10.4 project_set: basic properties
lemma project_set_eq: "project_set h C = f ‘ C"
〈proof 〉

lemma project_set_I: "!!z. z ∈ C ==> f z ∈ project_set h C"
〈proof 〉

10.5 More laws
lemma project_set_extend_set_Int: "project_set h ((extend_set h A) ∩ B) =
A ∩ (project_set h B)"
〈proof 〉

lemma project_set_extend_set_Un: "project_set h ((extend_set h A) ∪ B) =
A ∪ (project_set h B)"
〈proof 〉

lemma (in -) project_set_Int_subset:
"project_set h (A ∩ B) ⊆ (project_set h A) ∩ (project_set h B)"

〈proof 〉

lemma extend_set_Un_distrib: "extend_set h (A ∪ B) = extend_set h A ∪ extend_set
h B"
〈proof 〉

lemma extend_set_Int_distrib: "extend_set h (A ∩ B) = extend_set h A ∩ extend_set
h B"
〈proof 〉

lemma extend_set_INT_distrib: "extend_set h (
⋂

(B ‘ A)) = (
⋂

x ∈ A. extend_set
h (B x))"
〈proof 〉

lemma extend_set_Diff_distrib: "extend_set h (A - B) = extend_set h A - extend_set
h B"
〈proof 〉

lemma extend_set_Union: "extend_set h (
⋃

A) = (
⋃

X ∈ A. extend_set h X)"
〈proof 〉

lemma extend_set_subset_Compl_eq: "(extend_set h A ⊆ - extend_set h B) =
(A ⊆ - B)"
〈proof 〉

10.6 extend_act

lemma mem_extend_act_iff [iff]: "((h(s,y), h(s’,y)) ∈ extend_act h act) =
((s, s’) ∈ act)"
〈proof 〉

lemma extend_act_D: "(z, z’) ∈ extend_act h act ==> (f z, f z’) ∈ act"



10.7 extend 59

〈proof 〉

lemma extend_act_inverse [simp]: "project_act h (extend_act h act) = act"
〈proof 〉

lemma project_act_extend_act_restrict [simp]:
"project_act h (Restrict C (extend_act h act)) =
Restrict (project_set h C) act"

〈proof 〉

lemma subset_extend_act_D: "act’ ⊆ extend_act h act ==> project_act h act’
⊆ act"
〈proof 〉

lemma inj_extend_act: "inj (extend_act h)"
〈proof 〉

lemma extend_act_Image [simp]:
"extend_act h act ‘‘ (extend_set h A) = extend_set h (act ‘‘ A)"

〈proof 〉

lemma extend_act_strict_mono [iff]:
"(extend_act h act’ ⊆ extend_act h act) = (act’<=act)"

〈proof 〉

lemma [iff]: "(extend_act h act = extend_act h act’) = (act = act’)"
〈proof 〉

lemma (in -) Domain_extend_act:
"Domain (extend_act h act) = extend_set h (Domain act)"

〈proof 〉

lemma extend_act_Id [simp]: "extend_act h Id = Id"
〈proof 〉

lemma project_act_I: "!!z z’. (z, z’) ∈ act ==> (f z, f z’) ∈ project_act
h act"
〈proof 〉

lemma project_act_Id [simp]: "project_act h Id = Id"
〈proof 〉

lemma Domain_project_act: "Domain (project_act h act) = project_set h (Domain
act)"
〈proof 〉

10.7 extend

Basic properties

lemma (in -) Init_extend [simp]:
"Init (extend h F) = extend_set h (Init F)"

〈proof 〉



60 10 EXTENDING STATE SETS

lemma (in -) Init_project [simp]:
"Init (project h C F) = project_set h (Init F)"

〈proof 〉

lemma Acts_extend [simp]: "Acts (extend h F) = (extend_act h ‘ Acts F)"
〈proof 〉

lemma AllowedActs_extend [simp]:
"AllowedActs (extend h F) = project_act h -‘ AllowedActs F"

〈proof 〉

lemma (in -) Acts_project [simp]:
"Acts(project h C F) = insert Id (project_act h ‘ Restrict C ‘ Acts F)"

〈proof 〉

lemma AllowedActs_project [simp]:
"AllowedActs(project h C F) =

{act. Restrict (project_set h C) act
∈ project_act h ‘ Restrict C ‘ AllowedActs F}"

〈proof 〉

lemma Allowed_extend: "Allowed (extend h F) = project h UNIV -‘ Allowed F"
〈proof 〉

lemma extend_SKIP [simp]: "extend h SKIP = SKIP"
〈proof 〉

lemma (in -) project_set_UNIV [simp]: "project_set h UNIV = UNIV"
〈proof 〉

lemma (in -) project_set_Union: "project_set h (
⋃

A) = (
⋃

X ∈ A. project_set
h X)"
〈proof 〉

lemma (in -) project_act_Restrict_subset:
"project_act h (Restrict C act) ⊆ Restrict (project_set h C) (project_act

h act)"
〈proof 〉

lemma project_act_Restrict_Id_eq: "project_act h (Restrict C Id) = Restrict
(project_set h C) Id"
〈proof 〉

lemma project_extend_eq:
"project h C (extend h F) =
mk_program (Init F, Restrict (project_set h C) ‘ Acts F,

{act. Restrict (project_set h C) act
∈ project_act h ‘ Restrict C ‘

(project_act h -‘ AllowedActs F)})"
〈proof 〉

lemma extend_inverse [simp]:



10.8 Safety: co, stable 61

"project h UNIV (extend h F) = F"
〈proof 〉

lemma inj_extend: "inj (extend h)"
〈proof 〉

lemma extend_Join [simp]: "extend h (FtG) = extend h Ftextend h G"
〈proof 〉

lemma extend_JN [simp]: "extend h (JOIN I F) = (
⊔

i ∈ I. extend h (F i))"
〈proof 〉

lemma extend_mono: "F ≤ G ==> extend h F ≤ extend h G"
〈proof 〉

lemma project_mono: "F ≤ G ==> project h C F ≤ project h C G"
〈proof 〉

lemma all_total_extend: "all_total F ==> all_total (extend h F)"
〈proof 〉

10.8 Safety: co, stable
lemma extend_constrains:

"(extend h F ∈ (extend_set h A) co (extend_set h B)) =
(F ∈ A co B)"

〈proof 〉

lemma extend_stable:
"(extend h F ∈ stable (extend_set h A)) = (F ∈ stable A)"

〈proof 〉

lemma extend_invariant:
"(extend h F ∈ invariant (extend_set h A)) = (F ∈ invariant A)"

〈proof 〉

lemma extend_constrains_project_set:
"extend h F ∈ A co B ==> F ∈ (project_set h A) co (project_set h B)"

〈proof 〉

lemma extend_stable_project_set:
"extend h F ∈ stable A ==> F ∈ stable (project_set h A)"

〈proof 〉

10.9 Weak safety primitives: Co, Stable
lemma reachable_extend_f: "p ∈ reachable (extend h F) ==> f p ∈ reachable
F"
〈proof 〉

lemma h_reachable_extend: "h(s,y) ∈ reachable (extend h F) ==> s ∈ reachable



62 10 EXTENDING STATE SETS

F"
〈proof 〉

lemma reachable_extend_eq: "reachable (extend h F) = extend_set h (reachable
F)"
〈proof 〉

lemma extend_Constrains:
"(extend h F ∈ (extend_set h A) Co (extend_set h B)) =
(F ∈ A Co B)"

〈proof 〉

lemma extend_Stable: "(extend h F ∈ Stable (extend_set h A)) = (F ∈ Stable
A)"
〈proof 〉

lemma extend_Always: "(extend h F ∈ Always (extend_set h A)) = (F ∈ Always
A)"
〈proof 〉

lemma (in -) project_act_mono:
"D ⊆ C ==>
project_act h (Restrict D act) ⊆ project_act h (Restrict C act)"

〈proof 〉

lemma project_constrains_mono:
"[| D ⊆ C; project h C F ∈ A co B |] ==> project h D F ∈ A co B"

〈proof 〉

lemma project_stable_mono:
"[| D ⊆ C; project h C F ∈ stable A |] ==> project h D F ∈ stable A"

〈proof 〉

lemma project_constrains:
"(project h C F ∈ A co B) =
(F ∈ (C ∩ extend_set h A) co (extend_set h B) & A ⊆ B)"

〈proof 〉

lemma project_stable: "(project h UNIV F ∈ stable A) = (F ∈ stable (extend_set
h A))"
〈proof 〉

lemma project_stable_I: "F ∈ stable (extend_set h A) ==> project h C F ∈
stable A"
〈proof 〉

lemma Int_extend_set_lemma:
"A ∩ extend_set h ((project_set h A) ∩ B) = A ∩ extend_set h B"



10.10 Progress: transient, ensures 63

〈proof 〉

lemma project_constrains_project_set:
"G ∈ C co B ==> project h C G ∈ project_set h C co project_set h B"

〈proof 〉

lemma project_stable_project_set:
"G ∈ stable C ==> project h C G ∈ stable (project_set h C)"

〈proof 〉

10.10 Progress: transient, ensures
lemma extend_transient:

"(extend h F ∈ transient (extend_set h A)) = (F ∈ transient A)"
〈proof 〉

lemma extend_ensures:
"(extend h F ∈ (extend_set h A) ensures (extend_set h B)) =
(F ∈ A ensures B)"

〈proof 〉

lemma leadsTo_imp_extend_leadsTo:
"F ∈ A leadsTo B
==> extend h F ∈ (extend_set h A) leadsTo (extend_set h B)"

〈proof 〉

10.11 Proving the converse takes some doing!
lemma slice_iff [iff]: "(x ∈ slice C y) = (h(x,y) ∈ C)"
〈proof 〉

lemma slice_Union: "slice (
⋃

S) y = (
⋃

x ∈ S. slice x y)"
〈proof 〉

lemma slice_extend_set: "slice (extend_set h A) y = A"
〈proof 〉

lemma project_set_is_UN_slice: "project_set h A = (
⋃

y. slice A y)"
〈proof 〉

lemma extend_transient_slice:
"extend h F ∈ transient A ==> F ∈ transient (slice A y)"

〈proof 〉

lemma extend_constrains_slice:
"extend h F ∈ A co B ==> F ∈ (slice A y) co (slice B y)"

〈proof 〉

lemma extend_ensures_slice:
"extend h F ∈ A ensures B ==> F ∈ (slice A y) ensures (project_set h

B)"
〈proof 〉



64 10 EXTENDING STATE SETS

lemma leadsTo_slice_project_set:
"∀ y. F ∈ (slice B y) leadsTo CU ==> F ∈ (project_set h B) leadsTo CU"

〈proof 〉

lemma extend_leadsTo_slice [rule_format]:
"extend h F ∈ AU leadsTo BU
==> ∀ y. F ∈ (slice AU y) leadsTo (project_set h BU)"

〈proof 〉

lemma extend_leadsTo:
"(extend h F ∈ (extend_set h A) leadsTo (extend_set h B)) =
(F ∈ A leadsTo B)"

〈proof 〉

lemma extend_LeadsTo:
"(extend h F ∈ (extend_set h A) LeadsTo (extend_set h B)) =
(F ∈ A LeadsTo B)"

〈proof 〉

10.12 preserves
lemma project_preserves_I:

"G ∈ preserves (v o f) ==> project h C G ∈ preserves v"
〈proof 〉

lemma project_preserves_id_I:
"G ∈ preserves f ==> project h C G ∈ preserves id"

〈proof 〉

lemma extend_preserves:
"(extend h G ∈ preserves (v o f)) = (G ∈ preserves v)"

〈proof 〉

lemma inj_extend_preserves: "inj h ==> (extend h G ∈ preserves g)"
〈proof 〉

10.13 Guarantees
lemma project_extend_Join: "project h UNIV ((extend h F)tG) = Ft(project
h UNIV G)"
〈proof 〉

lemma extend_Join_eq_extend_D:
"(extend h F)tG = extend h H ==> H = Ft(project h UNIV G)"

〈proof 〉

lemma ok_extend_imp_ok_project: "extend h F ok G ==> F ok project h UNIV
G"
〈proof 〉



65

lemma ok_extend_iff: "(extend h F ok extend h G) = (F ok G)"
〈proof 〉

lemma OK_extend_iff: "OK I (%i. extend h (F i)) = (OK I F)"
〈proof 〉

lemma guarantees_imp_extend_guarantees:
"F ∈ X guarantees Y ==>
extend h F ∈ (extend h ‘ X) guarantees (extend h ‘ Y)"

〈proof 〉

lemma extend_guarantees_imp_guarantees:
"extend h F ∈ (extend h ‘ X) guarantees (extend h ‘ Y)
==> F ∈ X guarantees Y"

〈proof 〉

lemma extend_guarantees_eq:
"(extend h F ∈ (extend h ‘ X) guarantees (extend h ‘ Y)) =
(F ∈ X guarantees Y)"

〈proof 〉

end

end

11 Renaming of State Sets
theory Rename imports Extend begin

definition rename :: "[’a => ’b, ’a program] => ’b program" where
"rename h == extend (%(x,u::unit). h x)"

declare image_inv_f_f [simp] image_f_inv_f [simp]

declare Extend.intro [simp,intro]

lemma good_map_bij [simp,intro]: "bij h ==> good_map (%(x,u). h x)"
〈proof 〉

lemma fst_o_inv_eq_inv: "bij h ==> fst (inv (%(x,u). h x) s) = inv h s"
〈proof 〉

lemma mem_rename_set_iff: "bij h ==> z ∈ h‘A = (inv h z ∈ A)"
〈proof 〉

lemma extend_set_eq_image [simp]: "extend_set (%(x,u). h x) A = h‘A"
〈proof 〉

lemma Init_rename [simp]: "Init (rename h F) = h‘(Init F)"
〈proof 〉



66 11 RENAMING OF STATE SETS

11.1 inverse properties

lemma extend_set_inv:
"bij h
==> extend_set (%(x,u::’c). inv h x) = project_set (%(x,u::’c). h x)"

〈proof 〉

lemma bij_extend_act_eq_project_act: "bij h
==> extend_act (%(x,u::’c). h x) = project_act (%(x,u::’c). inv h x)"

〈proof 〉

lemma bij_extend_act: "bij h ==> bij (extend_act (%(x,u::’c). h x))"
〈proof 〉

lemma bij_project_act: "bij h ==> bij (project_act (%(x,u::’c). h x))"
〈proof 〉

lemma bij_inv_project_act_eq: "bij h ==> inv (project_act (%(x,u::’c). inv
h x)) =

project_act (%(x,u::’c). h x)"
〈proof 〉

lemma extend_inv: "bij h
==> extend (%(x,u::’c). inv h x) = project (%(x,u::’c). h x) UNIV"

〈proof 〉

lemma rename_inv_rename [simp]: "bij h ==> rename (inv h) (rename h F) =
F"
〈proof 〉

lemma rename_rename_inv [simp]: "bij h ==> rename h (rename (inv h) F) =
F"
〈proof 〉

lemma rename_inv_eq: "bij h ==> rename (inv h) = inv (rename h)"
〈proof 〉

lemma bij_extend: "bij h ==> bij (extend (%(x,u::’c). h x))"
〈proof 〉

lemma bij_project: "bij h ==> bij (project (%(x,u::’c). h x) UNIV)"
〈proof 〉

lemma inv_project_eq:
"bij h
==> inv (project (%(x,u::’c). h x) UNIV) = extend (%(x,u::’c). h x)"

〈proof 〉

lemma Allowed_rename [simp]:
"bij h ==> Allowed (rename h F) = rename h ‘ Allowed F"



11.2 the lattice operations 67

〈proof 〉

lemma bij_rename: "bij h ==> bij (rename h)"
〈proof 〉
lemmas surj_rename = bij_rename [THEN bij_is_surj]

lemma inj_rename_imp_inj: "inj (rename h) ==> inj h"
〈proof 〉

lemma surj_rename_imp_surj: "surj (rename h) ==> surj h"
〈proof 〉

lemma bij_rename_imp_bij: "bij (rename h) ==> bij h"
〈proof 〉

lemma bij_rename_iff [simp]: "bij (rename h) = bij h"
〈proof 〉

11.2 the lattice operations
lemma rename_SKIP [simp]: "bij h ==> rename h SKIP = SKIP"
〈proof 〉

lemma rename_Join [simp]:
"bij h ==> rename h (F t G) = rename h F t rename h G"

〈proof 〉

lemma rename_JN [simp]:
"bij h ==> rename h (JOIN I F) = (

⊔
i ∈ I. rename h (F i))"

〈proof 〉

11.3 Strong Safety: co, stable
lemma rename_constrains:

"bij h ==> (rename h F ∈ (h‘A) co (h‘B)) = (F ∈ A co B)"
〈proof 〉

lemma rename_stable:
"bij h ==> (rename h F ∈ stable (h‘A)) = (F ∈ stable A)"

〈proof 〉

lemma rename_invariant:
"bij h ==> (rename h F ∈ invariant (h‘A)) = (F ∈ invariant A)"

〈proof 〉

lemma rename_increasing:
"bij h ==> (rename h F ∈ increasing func) = (F ∈ increasing (func o

h))"
〈proof 〉

11.4 Weak Safety: Co, Stable
lemma reachable_rename_eq:

"bij h ==> reachable (rename h F) = h ‘ (reachable F)"



68 11 RENAMING OF STATE SETS

〈proof 〉

lemma rename_Constrains:
"bij h ==> (rename h F ∈ (h‘A) Co (h‘B)) = (F ∈ A Co B)"

〈proof 〉

lemma rename_Stable:
"bij h ==> (rename h F ∈ Stable (h‘A)) = (F ∈ Stable A)"

〈proof 〉

lemma rename_Always: "bij h ==> (rename h F ∈ Always (h‘A)) = (F ∈ Always
A)"
〈proof 〉

lemma rename_Increasing:
"bij h ==> (rename h F ∈ Increasing func) = (F ∈ Increasing (func o

h))"
〈proof 〉

11.5 Progress: transient, ensures
lemma rename_transient:

"bij h ==> (rename h F ∈ transient (h‘A)) = (F ∈ transient A)"
〈proof 〉

lemma rename_ensures:
"bij h ==> (rename h F ∈ (h‘A) ensures (h‘B)) = (F ∈ A ensures B)"

〈proof 〉

lemma rename_leadsTo:
"bij h ==> (rename h F ∈ (h‘A) leadsTo (h‘B)) = (F ∈ A leadsTo B)"

〈proof 〉

lemma rename_LeadsTo:
"bij h ==> (rename h F ∈ (h‘A) LeadsTo (h‘B)) = (F ∈ A LeadsTo B)"

〈proof 〉

lemma rename_rename_guarantees_eq:
"bij h ==> (rename h F ∈ (rename h ‘ X) guarantees

(rename h ‘ Y)) =
(F ∈ X guarantees Y)"

〈proof 〉

lemma rename_guarantees_eq_rename_inv:
"bij h ==> (rename h F ∈ X guarantees Y) =

(F ∈ (rename (inv h) ‘ X) guarantees
(rename (inv h) ‘ Y))"

〈proof 〉

lemma rename_preserves:
"bij h ==> (rename h G ∈ preserves v) = (G ∈ preserves (v o h))"

〈proof 〉

lemma ok_rename_iff [simp]: "bij h ==> (rename h F ok rename h G) = (F ok



11.6 "image" versions of the rules, for lifting "guarantees" properties 69

G)"
〈proof 〉

lemma OK_rename_iff [simp]: "bij h ==> OK I (%i. rename h (F i)) = (OK I
F)"
〈proof 〉

11.6 "image" versions of the rules, for lifting "guarantees"
properties

lemmas bij_eq_rename = surj_rename [THEN surj_f_inv_f, symmetric]

lemma rename_image_constrains:
"bij h ==> rename h ‘ (A co B) = (h ‘ A) co (h‘B)"

〈proof 〉

lemma rename_image_stable: "bij h ==> rename h ‘ stable A = stable (h ‘ A)"
〈proof 〉

lemma rename_image_increasing:
"bij h ==> rename h ‘ increasing func = increasing (func o inv h)"

〈proof 〉

lemma rename_image_invariant:
"bij h ==> rename h ‘ invariant A = invariant (h ‘ A)"

〈proof 〉

lemma rename_image_Constrains:
"bij h ==> rename h ‘ (A Co B) = (h ‘ A) Co (h‘B)"

〈proof 〉

lemma rename_image_preserves:
"bij h ==> rename h ‘ preserves v = preserves (v o inv h)"

〈proof 〉

lemma rename_image_Stable:
"bij h ==> rename h ‘ Stable A = Stable (h ‘ A)"

〈proof 〉

lemma rename_image_Increasing:
"bij h ==> rename h ‘ Increasing func = Increasing (func o inv h)"

〈proof 〉

lemma rename_image_Always: "bij h ==> rename h ‘ Always A = Always (h ‘ A)"
〈proof 〉

lemma rename_image_leadsTo:
"bij h ==> rename h ‘ (A leadsTo B) = (h ‘ A) leadsTo (h‘B)"

〈proof 〉

lemma rename_image_LeadsTo:
"bij h ==> rename h ‘ (A LeadsTo B) = (h ‘ A) LeadsTo (h‘B)"

〈proof 〉



70 12 REPLICATION OF COMPONENTS

end

12 Replication of Components
theory Lift_prog imports Rename begin

definition insert_map :: "[nat, ’b, nat=>’b] => (nat=>’b)" where
"insert_map i z f k == if k<i then f k

else if k=i then z
else f(k - 1)"

definition delete_map :: "[nat, nat=>’b] => (nat=>’b)" where
"delete_map i g k == if k<i then g k else g (Suc k)"

definition lift_map :: "[nat, ’b * ((nat=>’b) * ’c)] => (nat=>’b) * ’c" where
"lift_map i == %(s,(f,uu)). (insert_map i s f, uu)"

definition drop_map :: "[nat, (nat=>’b) * ’c] => ’b * ((nat=>’b) * ’c)" where
"drop_map i == %(g, uu). (g i, (delete_map i g, uu))"

definition lift_set :: "[nat, (’b * ((nat=>’b) * ’c)) set] => ((nat=>’b) *
’c) set" where

"lift_set i A == lift_map i ‘ A"

definition lift :: "[nat, (’b * ((nat=>’b) * ’c)) program] => ((nat=>’b) *
’c) program" where

"lift i == rename (lift_map i)"

definition sub :: "[’a, ’a=>’b] => ’b" where
"sub == %i f. f i"

declare insert_map_def [simp] delete_map_def [simp]

lemma insert_map_inverse: "delete_map i (insert_map i x f) = f"
〈proof 〉

lemma insert_map_delete_map_eq: "(insert_map i x (delete_map i g)) = g(i:=x)"
〈proof 〉

12.1 Injectiveness proof
lemma insert_map_inject1: "(insert_map i x f) = (insert_map i y g) ==> x=y"
〈proof 〉

lemma insert_map_inject2: "(insert_map i x f) = (insert_map i y g) ==> f=g"
〈proof 〉

lemma insert_map_inject’:
"(insert_map i x f) = (insert_map i y g) ==> x=y & f=g"

〈proof 〉



12.2 Surjectiveness proof 71

lemmas insert_map_inject = insert_map_inject’ [THEN conjE, elim!]

lemma lift_map_eq_iff [iff]:
"(lift_map i (s,(f,uu)) = lift_map i’ (s’,(f’,uu’)))
= (uu = uu’ & insert_map i s f = insert_map i’ s’ f’)"

〈proof 〉

lemma drop_map_lift_map_eq [simp]: "!!s. drop_map i (lift_map i s) = s"
〈proof 〉

lemma inj_lift_map: "inj (lift_map i)"
〈proof 〉

12.2 Surjectiveness proof
lemma lift_map_drop_map_eq [simp]: "!!s. lift_map i (drop_map i s) = s"
〈proof 〉

lemma drop_map_inject [dest!]: "(drop_map i s) = (drop_map i s’) ==> s=s’"
〈proof 〉

lemma surj_lift_map: "surj (lift_map i)"
〈proof 〉

lemma bij_lift_map [iff]: "bij (lift_map i)"
〈proof 〉

lemma inv_lift_map_eq [simp]: "inv (lift_map i) = drop_map i"
〈proof 〉

lemma inv_drop_map_eq [simp]: "inv (drop_map i) = lift_map i"
〈proof 〉

lemma bij_drop_map [iff]: "bij (drop_map i)"
〈proof 〉

lemma sub_apply [simp]: "sub i f = f i"
〈proof 〉

lemma all_total_lift: "all_total F ==> all_total (lift i F)"
〈proof 〉

lemma insert_map_upd_same: "(insert_map i t f)(i := s) = insert_map i s f"
〈proof 〉

lemma insert_map_upd:
"(insert_map j t f)(i := s) =
(if i=j then insert_map i s f
else if i<j then insert_map j t (f(i:=s))
else insert_map j t (f(i - Suc 0 := s)))"

〈proof 〉



72 12 REPLICATION OF COMPONENTS

lemma insert_map_eq_diff:
"[| insert_map i s f = insert_map j t g; i 6=j |]
==> ∃ g’. insert_map i s’ f = insert_map j t g’"

〈proof 〉

lemma lift_map_eq_diff:
"[| lift_map i (s,(f,uu)) = lift_map j (t,(g,vv)); i 6=j |]
==> ∃ g’. lift_map i (s’,(f,uu)) = lift_map j (t,(g’,vv))"

〈proof 〉

12.3 The Operator lift_set

lemma lift_set_empty [simp]: "lift_set i {} = {}"
〈proof 〉

lemma lift_set_iff: "(lift_map i x ∈ lift_set i A) = (x ∈ A)"
〈proof 〉

lemma lift_set_iff2 [iff]:
"((f,uu) ∈ lift_set i A) = ((f i, (delete_map i f, uu)) ∈ A)"

〈proof 〉

lemma lift_set_mono: "A ⊆ B ==> lift_set i A ⊆ lift_set i B"
〈proof 〉

lemma lift_set_Un_distrib: "lift_set i (A ∪ B) = lift_set i A ∪ lift_set
i B"
〈proof 〉

lemma lift_set_Diff_distrib: "lift_set i (A-B) = lift_set i A - lift_set
i B"
〈proof 〉

12.4 The Lattice Operations
lemma bij_lift [iff]: "bij (lift i)"
〈proof 〉

lemma lift_SKIP [simp]: "lift i SKIP = SKIP"
〈proof 〉

lemma lift_Join [simp]: "lift i (F t G) = lift i F t lift i G"
〈proof 〉

lemma lift_JN [simp]: "lift j (JOIN I F) = (
⊔

i ∈ I. lift j (F i))"
〈proof 〉

12.5 Safety: constrains, stable, invariant
lemma lift_constrains:

"(lift i F ∈ (lift_set i A) co (lift_set i B)) = (F ∈ A co B)"



12.6 Progress: transient, ensures 73

〈proof 〉

lemma lift_stable:
"(lift i F ∈ stable (lift_set i A)) = (F ∈ stable A)"

〈proof 〉

lemma lift_invariant:
"(lift i F ∈ invariant (lift_set i A)) = (F ∈ invariant A)"

〈proof 〉

lemma lift_Constrains:
"(lift i F ∈ (lift_set i A) Co (lift_set i B)) = (F ∈ A Co B)"

〈proof 〉

lemma lift_Stable:
"(lift i F ∈ Stable (lift_set i A)) = (F ∈ Stable A)"

〈proof 〉

lemma lift_Always:
"(lift i F ∈ Always (lift_set i A)) = (F ∈ Always A)"

〈proof 〉

12.6 Progress: transient, ensures
lemma lift_transient:

"(lift i F ∈ transient (lift_set i A)) = (F ∈ transient A)"
〈proof 〉

lemma lift_ensures:
"(lift i F ∈ (lift_set i A) ensures (lift_set i B)) =
(F ∈ A ensures B)"

〈proof 〉

lemma lift_leadsTo:
"(lift i F ∈ (lift_set i A) leadsTo (lift_set i B)) =
(F ∈ A leadsTo B)"

〈proof 〉

lemma lift_LeadsTo:
"(lift i F ∈ (lift_set i A) LeadsTo (lift_set i B)) =
(F ∈ A LeadsTo B)"

〈proof 〉

lemma lift_lift_guarantees_eq:
"(lift i F ∈ (lift i ‘ X) guarantees (lift i ‘ Y)) =
(F ∈ X guarantees Y)"

〈proof 〉

lemma lift_guarantees_eq_lift_inv:
"(lift i F ∈ X guarantees Y) =
(F ∈ (rename (drop_map i) ‘ X) guarantees (rename (drop_map i) ‘ Y))"



74 12 REPLICATION OF COMPONENTS

〈proof 〉

lemma lift_preserves_snd_I: "F ∈ preserves snd ==> lift i F ∈ preserves
snd"
〈proof 〉

lemma delete_map_eqE’:
"(delete_map i g) = (delete_map i g’) ==> ∃ x. g = g’(i:=x)"

〈proof 〉

lemmas delete_map_eqE = delete_map_eqE’ [THEN exE, elim!]

lemma delete_map_neq_apply:
"[| delete_map j g = delete_map j g’; i 6=j |] ==> g i = g’ i"

〈proof 〉

lemma vimage_o_fst_eq [simp]: "(f o fst) -‘ A = (f-‘A) × UNIV"
〈proof 〉

lemma vimage_sub_eq_lift_set [simp]:
"(sub i -‘A) × UNIV = lift_set i (A × UNIV)"

〈proof 〉

lemma mem_lift_act_iff [iff]:
"((s,s’) ∈ extend_act (%(x,u::unit). lift_map i x) act) =
((drop_map i s, drop_map i s’) ∈ act)"

〈proof 〉

lemma preserves_snd_lift_stable:
"[| F ∈ preserves snd; i 6=j |]
==> lift j F ∈ stable (lift_set i (A × UNIV))"

〈proof 〉

lemma constrains_imp_lift_constrains:
"[| F i ∈ (A × UNIV) co (B × UNIV);

F j ∈ preserves snd |]
==> lift j (F j) ∈ (lift_set i (A × UNIV)) co (lift_set i (B × UNIV))"

〈proof 〉

lemma lift_map_image_Times:
"lift_map i ‘ (A × UNIV) =
(
⋃

s ∈ A.
⋃

f. {insert_map i s f}) × UNIV"
〈proof 〉

lemma lift_preserves_eq:
"(lift i F ∈ preserves v) = (F ∈ preserves (v o lift_map i))"

〈proof 〉



12.7 Lemmas to Handle Function Composition (o) More Consistently 75

lemma lift_preserves_sub:
"F ∈ preserves snd
==> lift i F ∈ preserves (v o sub j o fst) =

(if i=j then F ∈ preserves (v o fst) else True)"
〈proof 〉

12.7 Lemmas to Handle Function Composition (o) More
Consistently

lemma o_equiv_assoc: "f o g = h ==> f’ o f o g = f’ o h"
〈proof 〉

lemma o_equiv_apply: "f o g = h ==> ∀ x. f(g x) = h x"
〈proof 〉

lemma fst_o_lift_map: "sub i o fst o lift_map i = fst"
〈proof 〉

lemma snd_o_lift_map: "snd o lift_map i = snd o snd"
〈proof 〉

12.8 More lemmas about extend and project
They could be moved to theory Extend or Project

lemma extend_act_extend_act:
"extend_act h’ (extend_act h act) =
extend_act (%(x,(y,y’)). h’(h(x,y),y’)) act"

〈proof 〉

lemma project_act_project_act:
"project_act h (project_act h’ act) =
project_act (%(x,(y,y’)). h’(h(x,y),y’)) act"

〈proof 〉

lemma project_act_extend_act:
"project_act h (extend_act h’ act) =

{(x,x’). ∃ s s’ y y’ z. (s,s’) ∈ act &
h(x,y) = h’(s,z) & h(x’,y’) = h’(s’,z)}"

〈proof 〉

12.9 OK and "lift"
lemma act_in_UNION_preserves_fst:

"act ⊆ {(x,x’). fst x = fst x’} ==> act ∈
⋃

(Acts ‘ (preserves fst))"
〈proof 〉

lemma UNION_OK_lift_I:
"[| ∀ i ∈ I. F i ∈ preserves snd;

∀ i ∈ I.
⋃

(Acts ‘ (preserves fst)) ⊆ AllowedActs (F i) |]
==> OK I (%i. lift i (F i))"

〈proof 〉



76 12 REPLICATION OF COMPONENTS

lemma OK_lift_I:
"[| ∀ i ∈ I. F i ∈ preserves snd;

∀ i ∈ I. preserves fst ⊆ Allowed (F i) |]
==> OK I (%i. lift i (F i))"

〈proof 〉

lemma Allowed_lift [simp]: "Allowed (lift i F) = lift i ‘ (Allowed F)"
〈proof 〉

lemma lift_image_preserves:
"lift i ‘ preserves v = preserves (v o drop_map i)"

〈proof 〉

end

theory PPROD imports Lift_prog begin

definition PLam :: "[nat set, nat => (’b * ((nat=>’b) * ’c)) program]
=> ((nat=>’b) * ’c) program" where

"PLam I F ==
⊔

i ∈ I. lift i (F i)"

syntax
"_PLam" :: "[pttrn, nat set, ’b set] => (nat => ’b) set" (‹(3plam _:_./

_)› 10)
syntax_consts

"_PLam" == PLam
translations

"plam x : A. B" == "CONST PLam A (%x. B)"

lemma Init_PLam [simp]: "Init (PLam I F) = (
⋂

i ∈ I. lift_set i (Init (F
i)))"
〈proof 〉

lemma PLam_empty [simp]: "PLam {} F = SKIP"
〈proof 〉

lemma PLam_SKIP [simp]: "(plam i : I. SKIP) = SKIP"
〈proof 〉

lemma PLam_insert: "PLam (insert i I) F = (lift i (F i)) t (PLam I F)"
〈proof 〉

lemma PLam_component_iff: "((PLam I F) ≤ H) = (∀ i ∈ I. lift i (F i) ≤ H)"
〈proof 〉

lemma component_PLam: "i ∈ I ==> lift i (F i) ≤ (PLam I F)"
〈proof 〉



12.9 OK and "lift" 77

lemma PLam_constrains:
"[| i ∈ I; ∀ j. F j ∈ preserves snd |]
==> (PLam I F ∈ (lift_set i (A × UNIV)) co

(lift_set i (B × UNIV))) =
(F i ∈ (A × UNIV) co (B × UNIV))"

〈proof 〉

lemma PLam_stable:
"[| i ∈ I; ∀ j. F j ∈ preserves snd |]
==> (PLam I F ∈ stable (lift_set i (A × UNIV))) =

(F i ∈ stable (A × UNIV))"
〈proof 〉

lemma PLam_transient:
"i ∈ I ==>

PLam I F ∈ transient A = (∃ i ∈ I. lift i (F i) ∈ transient A)"
〈proof 〉

This holds because the F j cannot change lift_set i

lemma PLam_ensures:
"[| i ∈ I; F i ∈ (A × UNIV) ensures (B × UNIV);

∀ j. F j ∈ preserves snd |]
==> PLam I F ∈ lift_set i (A × UNIV) ensures lift_set i (B × UNIV)"

〈proof 〉

lemma PLam_leadsTo_Basis:
"[| i ∈ I;

F i ∈ ((A × UNIV) - (B × UNIV)) co
((A × UNIV) ∪ (B × UNIV));

F i ∈ transient ((A × UNIV) - (B × UNIV));
∀ j. F j ∈ preserves snd |]

==> PLam I F ∈ lift_set i (A × UNIV) leadsTo lift_set i (B × UNIV)"
〈proof 〉

lemma invariant_imp_PLam_invariant:
"[| F i ∈ invariant (A × UNIV); i ∈ I;

∀ j. F j ∈ preserves snd |]
==> PLam I F ∈ invariant (lift_set i (A × UNIV))"

〈proof 〉

lemma PLam_preserves_fst [simp]:
"∀ j. F j ∈ preserves snd
==> (PLam I F ∈ preserves (v o sub j o fst)) =

(if j ∈ I then F j ∈ preserves (v o fst) else True)"
〈proof 〉

lemma PLam_preserves_snd [simp,intro]:
"∀ j. F j ∈ preserves snd ==> PLam I F ∈ preserves snd"



78 13 THE PREFIX ORDERING ON LISTS

〈proof 〉

This rule looks unsatisfactory because it refers to lift. One must use lift_guarantees_eq_lift_inv
to rewrite the first subgoal and something like lift_preserves_sub to rewrite
the third. However there’s no obvious alternative for the third premise.

lemma guarantees_PLam_I:
"[| lift i (F i) ∈ X guarantees Y; i ∈ I;

OK I (λi. lift i (F i)) |]
==> (PLam I F) ∈ X guarantees Y"

〈proof 〉

lemma Allowed_PLam [simp]:
"Allowed (PLam I F) = (

⋂
i ∈ I. lift i ‘ Allowed(F i))"

〈proof 〉

lemma PLam_preserves [simp]:
"(PLam I F) ∈ preserves v = (∀ i ∈ I. F i ∈ preserves (v o lift_map i))"

〈proof 〉

end

13 The Prefix Ordering on Lists
theory ListOrder
imports Main
begin

inductive_set
genPrefix :: "(’a * ’a)set => (’a list * ’a list)set"
for r :: "(’a * ’a)set"

where
Nil: "([],[]) ∈ genPrefix(r)"

| prepend: "[| (xs,ys) ∈ genPrefix(r); (x,y) ∈ r |] ==>
(x#xs, y#ys) ∈ genPrefix(r)"

| append: "(xs,ys) ∈ genPrefix(r) ==> (xs, ys@zs) ∈ genPrefix(r)"

instantiation list :: (type) ord
begin

definition
prefix_def: "xs <= zs ←→ (xs, zs) ∈ genPrefix Id"

definition



13.1 preliminary lemmas 79

strict_prefix_def: "xs < zs ←→ xs ≤ zs ∧ ¬ zs ≤ (xs :: ’a list)"

instance 〈proof 〉

end

definition Le :: "(nat*nat) set" where
"Le == {(x,y). x <= y}"

definition Ge :: "(nat*nat) set" where
"Ge == {(x,y). y <= x}"

abbreviation
pfixLe :: "[nat list, nat list] => bool" (infixl ‹pfixLe› 50) where
"xs pfixLe ys == (xs,ys) ∈ genPrefix Le"

abbreviation
pfixGe :: "[nat list, nat list] => bool" (infixl ‹pfixGe› 50) where
"xs pfixGe ys == (xs,ys) ∈ genPrefix Ge"

13.1 preliminary lemmas
lemma Nil_genPrefix [iff]: "([], xs) ∈ genPrefix r"
〈proof 〉

lemma genPrefix_length_le: "(xs,ys) ∈ genPrefix r =⇒ length xs <= length
ys"
〈proof 〉

lemma cdlemma:
"[| (xs’, ys’) ∈ genPrefix r |]
==> (∀ x xs. xs’ = x#xs −→ (∃ y ys. ys’ = y#ys & (x,y) ∈ r & (xs, ys)

∈ genPrefix r))"
〈proof 〉

lemma cons_genPrefixE [elim!]:
"[| (x#xs, zs) ∈ genPrefix r;

!!y ys. [| zs = y#ys; (x,y) ∈ r; (xs, ys) ∈ genPrefix r |] ==>
P

|] ==> P"
〈proof 〉

lemma Cons_genPrefix_Cons [iff]:
"((x#xs,y#ys) ∈ genPrefix r) = ((x,y) ∈ r ∧ (xs,ys) ∈ genPrefix r)"

〈proof 〉

13.2 genPrefix is a partial order
lemma refl_genPrefix: "refl r ==> refl (genPrefix r)"
〈proof 〉



80 13 THE PREFIX ORDERING ON LISTS

lemma genPrefix_refl [simp]: "refl r =⇒ (l,l) ∈ genPrefix r"
〈proof 〉

lemma genPrefix_mono: "r<=s ==> genPrefix r <= genPrefix s"
〈proof 〉

lemma append_genPrefix:
"(xs @ ys, zs) ∈ genPrefix r =⇒ (xs, zs) ∈ genPrefix r"

〈proof 〉

lemma genPrefix_trans_O:
assumes "(x, y) ∈ genPrefix r"
shows "

∧
z. (y, z) ∈ genPrefix s =⇒ (x, z) ∈ genPrefix (r O s)"

〈proof 〉

lemma genPrefix_trans:
"(x, y) ∈ genPrefix r =⇒ (y, z) ∈ genPrefix r =⇒ trans r

=⇒ (x, z) ∈ genPrefix r"
〈proof 〉

lemma prefix_genPrefix_trans:
"[| x<=y; (y,z) ∈ genPrefix r |] ==> (x, z) ∈ genPrefix r"

〈proof 〉

lemma genPrefix_prefix_trans:
"[| (x,y) ∈ genPrefix r; y<=z |] ==> (x,z) ∈ genPrefix r"

〈proof 〉

lemma trans_genPrefix: "trans r ==> trans (genPrefix r)"
〈proof 〉

lemma genPrefix_antisym:
assumes 1: "(xs, ys) ∈ genPrefix r"

and 2: "antisym r"
and 3: "(ys, xs) ∈ genPrefix r"

shows "xs = ys"
〈proof 〉

lemma antisym_genPrefix: "antisym r ==> antisym (genPrefix r)"
〈proof 〉

13.3 recursion equations
lemma genPrefix_Nil [simp]: "((xs, []) ∈ genPrefix r) = (xs = [])"
〈proof 〉



13.3 recursion equations 81

lemma same_genPrefix_genPrefix [simp]:
"refl r =⇒ ((xs@ys, xs@zs) ∈ genPrefix r) = ((ys,zs) ∈ genPrefix r)"

〈proof 〉

lemma genPrefix_Cons:
"((xs, y#ys) ∈ genPrefix r) =
(xs=[] | (∃ z zs. xs=z#zs & (z,y) ∈ r & (zs,ys) ∈ genPrefix r))"

〈proof 〉

lemma genPrefix_take_append:
"[| refl r; (xs,ys) ∈ genPrefix r |]
==> (xs@zs, take (length xs) ys @ zs) ∈ genPrefix r"

〈proof 〉

lemma genPrefix_append_both:
"[| refl r; (xs,ys) ∈ genPrefix r; length xs = length ys |]
==> (xs@zs, ys @ zs) ∈ genPrefix r"

〈proof 〉

lemma append_cons_eq: "xs @ y # ys = (xs @ [y]) @ ys"
〈proof 〉

lemma aolemma:
"[| (xs,ys) ∈ genPrefix r; refl r |]
==> length xs < length ys −→ (xs @ [ys ! length xs], ys) ∈ genPrefix

r"
〈proof 〉

lemma append_one_genPrefix:
"[| (xs,ys) ∈ genPrefix r; length xs < length ys; refl r |]
==> (xs @ [ys ! length xs], ys) ∈ genPrefix r"

〈proof 〉

lemma genPrefix_imp_nth:
"i < length xs =⇒ (xs, ys) ∈ genPrefix r =⇒ (xs ! i, ys ! i) ∈ r"

〈proof 〉

lemma nth_imp_genPrefix:
"length xs <= length ys =⇒

(∀ i. i < length xs −→ (xs ! i, ys ! i) ∈ r) =⇒
(xs, ys) ∈ genPrefix r"

〈proof 〉

lemma genPrefix_iff_nth:
"((xs,ys) ∈ genPrefix r) =
(length xs <= length ys & (∀ i. i < length xs −→ (xs!i, ys!i) ∈ r))"

〈proof 〉



82 13 THE PREFIX ORDERING ON LISTS

13.4 The type of lists is partially ordered

declare refl_Id [iff]
antisym_Id [iff]
trans_Id [iff]

lemma prefix_refl [iff]: "xs <= (xs::’a list)"
〈proof 〉

lemma prefix_trans: "!!xs::’a list. [| xs <= ys; ys <= zs |] ==> xs <= zs"
〈proof 〉

lemma prefix_antisym: "!!xs::’a list. [| xs <= ys; ys <= xs |] ==> xs = ys"
〈proof 〉

lemma prefix_less_le_not_le: "!!xs::’a list. (xs < zs) = (xs <= zs & ¬ zs
≤ xs)"
〈proof 〉

instance list :: (type) order
〈proof 〉

lemma set_mono: "xs <= ys ==> set xs <= set ys"
〈proof 〉

lemma Nil_prefix [iff]: "[] <= xs"
〈proof 〉

lemma prefix_Nil [simp]: "(xs <= []) = (xs = [])"
〈proof 〉

lemma Cons_prefix_Cons [simp]: "(x#xs <= y#ys) = (x=y & xs<=ys)"
〈proof 〉

lemma same_prefix_prefix [simp]: "(xs@ys <= xs@zs) = (ys <= zs)"
〈proof 〉

lemma append_prefix [iff]: "(xs@ys <= xs) = (ys <= [])"
〈proof 〉

lemma prefix_appendI [simp]: "xs <= ys ==> xs <= ys@zs"
〈proof 〉

lemma prefix_Cons:
"(xs <= y#ys) = (xs=[] | (∃ zs. xs=y#zs ∧ zs <= ys))"

〈proof 〉

lemma append_one_prefix:
"[| xs <= ys; length xs < length ys |] ==> xs @ [ys ! length xs] <= ys"

〈proof 〉



13.5 pfixLe, pfixGe: properties inherited from the translations 83

lemma prefix_length_le: "xs <= ys ==> length xs <= length ys"
〈proof 〉

lemma splemma: "xs<=ys ==> xs~=ys --> length xs < length ys"
〈proof 〉

lemma strict_prefix_length_less: "xs < ys ==> length xs < length ys"
〈proof 〉

lemma mono_length: "mono length"
〈proof 〉

lemma prefix_iff: "(xs <= zs) = (∃ ys. zs = xs@ys)"
〈proof 〉

lemma prefix_snoc [simp]: "(xs <= ys@[y]) = (xs = ys@[y] | xs <= ys)"
〈proof 〉

lemma prefix_append_iff:
"(xs <= ys@zs) = (xs <= ys | (∃ us. xs = ys@us & us <= zs))"

〈proof 〉

lemma common_prefix_linear:
fixes xs ys zs :: "’a list"
shows "xs <= zs =⇒ ys <= zs =⇒ xs <= ys | ys <= xs"
〈proof 〉

13.5 pfixLe, pfixGe: properties inherited from the trans-
lations

lemma refl_Le [iff]: "refl Le"
〈proof 〉

lemma antisym_Le [iff]: "antisym Le"
〈proof 〉

lemma trans_Le [iff]: "trans Le"
〈proof 〉

lemma pfixLe_refl [iff]: "x pfixLe x"
〈proof 〉

lemma pfixLe_trans: "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z"
〈proof 〉

lemma pfixLe_antisym: "[| x pfixLe y; y pfixLe x |] ==> x = y"
〈proof 〉

lemma prefix_imp_pfixLe: "xs<=ys ==> xs pfixLe ys"
〈proof 〉



84 14 THE FOLLOWS RELATION OF CHARPENTIER AND SIVILOTTE

lemma refl_Ge [iff]: "refl Ge"
〈proof 〉

lemma antisym_Ge [iff]: "antisym Ge"
〈proof 〉

lemma trans_Ge [iff]: "trans Ge"
〈proof 〉

lemma pfixGe_refl [iff]: "x pfixGe x"
〈proof 〉

lemma pfixGe_trans: "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z"
〈proof 〉

lemma pfixGe_antisym: "[| x pfixGe y; y pfixGe x |] ==> x = y"
〈proof 〉

lemma prefix_imp_pfixGe: "xs<=ys ==> xs pfixGe ys"
〈proof 〉

end

14 The Follows Relation of Charpentier and Sivilotte
theory Follows
imports SubstAx ListOrder "HOL-Library.Multiset"
begin

definition Follows :: "[’a => ’b::{order}, ’a => ’b::{order}] => ’a program
set" (infixl ‹Fols› 65) where

"f Fols g == Increasing g ∩ Increasing f Int
Always {s. f s ≤ g s} Int
(
⋂

k. {s. k ≤ g s} LeadsTo {s. k ≤ f s})"

lemma mono_Always_o:
"mono h ==> Always {s. f s ≤ g s} ⊆ Always {s. h (f s) ≤ h (g s)}"

〈proof 〉

lemma mono_LeadsTo_o:
"mono (h::’a::order => ’b::order)
==> (

⋂
j. {s. j ≤ g s} LeadsTo {s. j ≤ f s}) ⊆

(
⋂

k. {s. k ≤ h (g s)} LeadsTo {s. k ≤ h (f s)})"
〈proof 〉

lemma Follows_constant [iff]: "F ∈ (%s. c) Fols (%s. c)"
〈proof 〉

lemma mono_Follows_o:
assumes "mono h"
shows "f Fols g ⊆ (h o f) Fols (h o g)"



14.1 Destruction rules 85

〈proof 〉

lemma mono_Follows_apply:
"mono h ==> f Fols g ⊆ (%x. h (f x)) Fols (%x. h (g x))"

〈proof 〉

lemma Follows_trans:
"[| F ∈ f Fols g; F ∈ g Fols h |] ==> F ∈ f Fols h"

〈proof 〉

14.1 Destruction rules
lemma Follows_Increasing1: "F ∈ f Fols g ==> F ∈ Increasing f"
〈proof 〉

lemma Follows_Increasing2: "F ∈ f Fols g ==> F ∈ Increasing g"
〈proof 〉

lemma Follows_Bounded: "F ∈ f Fols g ==> F ∈ Always {s. f s ≤ g s}"
〈proof 〉

lemma Follows_LeadsTo:
"F ∈ f Fols g ==> F ∈ {s. k ≤ g s} LeadsTo {s. k ≤ f s}"

〈proof 〉

lemma Follows_LeadsTo_pfixLe:
"F ∈ f Fols g ==> F ∈ {s. k pfixLe g s} LeadsTo {s. k pfixLe f s}"

〈proof 〉

lemma Follows_LeadsTo_pfixGe:
"F ∈ f Fols g ==> F ∈ {s. k pfixGe g s} LeadsTo {s. k pfixGe f s}"

〈proof 〉

lemma Always_Follows1:
"[| F ∈ Always {s. f s = f’ s}; F ∈ f Fols g |] ==> F ∈ f’ Fols g"

〈proof 〉

lemma Always_Follows2:
"[| F ∈ Always {s. g s = g’ s}; F ∈ f Fols g |] ==> F ∈ f Fols g’"

〈proof 〉

14.2 Union properties (with the subset ordering)
lemma increasing_Un:

"[| F ∈ increasing f; F ∈ increasing g |]
==> F ∈ increasing (%s. (f s) ∪ (g s))"

〈proof 〉

lemma Increasing_Un:
"[| F ∈ Increasing f; F ∈ Increasing g |]
==> F ∈ Increasing (%s. (f s) ∪ (g s))"

〈proof 〉



86 14 THE FOLLOWS RELATION OF CHARPENTIER AND SIVILOTTE

lemma Always_Un:
"[| F ∈ Always {s. f’ s ≤ f s}; F ∈ Always {s. g’ s ≤ g s} |]
==> F ∈ Always {s. f’ s ∪ g’ s ≤ f s ∪ g s}"

〈proof 〉

lemma Follows_Un_lemma:
"[| F ∈ Increasing f; F ∈ Increasing g;

F ∈ Increasing g’; F ∈ Always {s. f’ s ≤ f s};
∀ k. F ∈ {s. k ≤ f s} LeadsTo {s. k ≤ f’ s} |]

==> F ∈ {s. k ≤ f s ∪ g s} LeadsTo {s. k ≤ f’ s ∪ g s}"
〈proof 〉

lemma Follows_Un:
"[| F ∈ f’ Fols f; F ∈ g’ Fols g |]
==> F ∈ (%s. (f’ s) ∪ (g’ s)) Fols (%s. (f s) ∪ (g s))"

〈proof 〉

14.3 Multiset union properties (with the multiset order-
ing)

lemma increasing_union:
"[| F ∈ increasing f; F ∈ increasing g |]
==> F ∈ increasing (%s. (f s) + (g s :: (’a::order) multiset))"

〈proof 〉

lemma Increasing_union:
"[| F ∈ Increasing f; F ∈ Increasing g |]
==> F ∈ Increasing (%s. (f s) + (g s :: (’a::order) multiset))"

〈proof 〉

lemma Always_union:
"[| F ∈ Always {s. f’ s ≤ f s}; F ∈ Always {s. g’ s ≤ g s} |]
==> F ∈ Always {s. f’ s + g’ s ≤ f s + (g s :: (’a::order) multiset)}"

〈proof 〉

lemma Follows_union_lemma:
"[| F ∈ Increasing f; F ∈ Increasing g;

F ∈ Increasing g’; F ∈ Always {s. f’ s ≤ f s};
∀ k::(’a::order) multiset.

F ∈ {s. k ≤ f s} LeadsTo {s. k ≤ f’ s} |]
==> F ∈ {s. k ≤ f s + g s} LeadsTo {s. k ≤ f’ s + g s}"

〈proof 〉

lemma Follows_union:
"!!g g’ ::’b => (’a::order) multiset.

[| F ∈ f’ Fols f; F ∈ g’ Fols g |]
==> F ∈ (%s. (f’ s) + (g’ s)) Fols (%s. (f s) + (g s))"

〈proof 〉



87

lemma Follows_sum:
"!!f ::[’c,’b] => (’a::order) multiset.

[| ∀ i ∈ I. F ∈ f’ i Fols f i; finite I |]
==> F ∈ (%s.

∑
i ∈ I. f’ i s) Fols (%s.

∑
i ∈ I. f i s)"

〈proof 〉

lemma Increasing_imp_Stable_pfixGe:
"F ∈ Increasing func ==> F ∈ Stable {s. h pfixGe (func s)}"

〈proof 〉

lemma LeadsTo_le_imp_pfixGe:
"∀ z. F ∈ {s. z ≤ f s} LeadsTo {s. z ≤ g s}
==> F ∈ {s. z pfixGe f s} LeadsTo {s. z pfixGe g s}"

〈proof 〉

end

15 Predicate Transformers
theory Transformers imports Comp begin

15.1 Defining the Predicate Transformers wp, awp and wens

definition wp :: "[(’a*’a) set, ’a set] => ’a set" where
— Dijkstra’s weakest-precondition operator (for an individual command)
"wp act B == - (act−1 ‘‘ (-B))"

definition awp :: "[’a program, ’a set] => ’a set" where
— Dijkstra’s weakest-precondition operator (for a program)
"awp F B == (

⋂
act ∈ Acts F. wp act B)"

definition wens :: "[’a program, (’a*’a) set, ’a set] => ’a set" where
— The weakest-ensures transformer
"wens F act B == gfp(λX. (wp act B ∩ awp F (B ∪ X)) ∪ B)"

The fundamental theorem for wp

theorem wp_iff: "(A <= wp act B) = (act ‘‘ A <= B)"
〈proof 〉

This lemma is a good deal more intuitive than the definition!

lemma in_wp_iff: "(a ∈ wp act B) = (∀ x. (a,x) ∈ act --> x ∈ B)"
〈proof 〉

lemma Compl_Domain_subset_wp: "- (Domain act) ⊆ wp act B"
〈proof 〉

lemma wp_empty [simp]: "wp act {} = - (Domain act)"
〈proof 〉

The identity relation is the skip action



88 15 PREDICATE TRANSFORMERS

lemma wp_Id [simp]: "wp Id B = B"
〈proof 〉

lemma wp_totalize_act:
"wp (totalize_act act) B = (wp act B ∩ Domain act) ∪ (B - Domain act)"

〈proof 〉

lemma awp_subset: "(awp F A ⊆ A)"
〈proof 〉

lemma awp_Int_eq: "awp F (A∩B) = awp F A ∩ awp F B"
〈proof 〉

The fundamental theorem for awp

theorem awp_iff_constrains: "(A <= awp F B) = (F ∈ A co B)"
〈proof 〉

lemma awp_iff_stable: "(A ⊆ awp F A) = (F ∈ stable A)"
〈proof 〉

lemma stable_imp_awp_ident: "F ∈ stable A ==> awp F A = A"
〈proof 〉

lemma wp_mono: "(A ⊆ B) ==> wp act A ⊆ wp act B"
〈proof 〉

lemma awp_mono: "(A ⊆ B) ==> awp F A ⊆ awp F B"
〈proof 〉

lemma wens_unfold:
"wens F act B = (wp act B ∩ awp F (B ∪ wens F act B)) ∪ B"

〈proof 〉

lemma wens_Id [simp]: "wens F Id B = B"
〈proof 〉

These two theorems justify the claim that wens returns the weakest assertion
satisfying the ensures property

lemma ensures_imp_wens: "F ∈ A ensures B ==> ∃ act ∈ Acts F. A ⊆ wens F
act B"
〈proof 〉

lemma wens_ensures: "act ∈ Acts F ==> F ∈ (wens F act B) ensures B"
〈proof 〉

These two results constitute assertion (4.13) of the thesis

lemma wens_mono: "(A ⊆ B) ==> wens F act A ⊆ wens F act B"
〈proof 〉

lemma wens_weakening: "B ⊆ wens F act B"
〈proof 〉

Assertion (6), or 4.16 in the thesis



15.2 Defining the Weakest Ensures Set 89

lemma subset_wens: "A-B ⊆ wp act B ∩ awp F (B ∪ A) ==> A ⊆ wens F act
B"
〈proof 〉

Assertion 4.17 in the thesis
lemma Diff_wens_constrains: "F ∈ (wens F act A - A) co wens F act A"
〈proof 〉

Assertion (7): 4.18 in the thesis. NOTE that many of these results hold for an
arbitrary action. We often do not require act ∈ Acts F

lemma stable_wens: "F ∈ stable A ==> F ∈ stable (wens F act A)"
〈proof 〉

Assertion 4.20 in the thesis.
lemma wens_Int_eq_lemma:

"[|T-B ⊆ awp F T; act ∈ Acts F|]
==> T ∩ wens F act B ⊆ wens F act (T∩B)"

〈proof 〉

Assertion (8): 4.21 in the thesis. Here we indeed require act ∈ Acts F

lemma wens_Int_eq:
"[|T-B ⊆ awp F T; act ∈ Acts F|]
==> T ∩ wens F act B = T ∩ wens F act (T∩B)"

〈proof 〉

15.2 Defining the Weakest Ensures Set
inductive_set

wens_set :: "[’a program, ’a set] => ’a set set"
for F :: "’a program" and B :: "’a set"

where

Basis: "B ∈ wens_set F B"

| Wens: "[|X ∈ wens_set F B; act ∈ Acts F|] ==> wens F act X ∈ wens_set
F B"

| Union: "W 6= {} ==> ∀ U ∈ W. U ∈ wens_set F B ==>
⋃

W ∈ wens_set F B"

lemma wens_set_imp_co: "A ∈ wens_set F B ==> F ∈ (A-B) co A"
〈proof 〉

lemma wens_set_imp_leadsTo: "A ∈ wens_set F B ==> F ∈ A leadsTo B"
〈proof 〉

lemma leadsTo_imp_wens_set: "F ∈ A leadsTo B ==> ∃ C ∈ wens_set F B. A ⊆
C"
〈proof 〉

Assertion (9): 4.27 in the thesis.
lemma leadsTo_iff_wens_set: "(F ∈ A leadsTo B) = (∃ C ∈ wens_set F B. A ⊆
C)"
〈proof 〉



90 15 PREDICATE TRANSFORMERS

This is the result that requires the definition of wens_set to require W to be non-
empty in the Unio case, for otherwise we should always have {} ∈ wens_set F
B.
lemma wens_set_imp_subset: "A ∈ wens_set F B ==> B ⊆ A"
〈proof 〉

15.3 Properties Involving Program Union
Assertion (4.30) of thesis, reoriented
lemma awp_Join_eq: "awp (FtG) B = awp F B ∩ awp G B"
〈proof 〉

lemma wens_subset: "wens F act B - B ⊆ wp act B ∩ awp F (B ∪ wens F act
B)"
〈proof 〉

Assertion (4.31)
lemma subset_wens_Join:

"[|A = T ∩ wens F act B; T-B ⊆ awp F T; A-B ⊆ awp G (A ∪ B)|]
==> A ⊆ wens (FtG) act B"

〈proof 〉

Assertion (4.32)
lemma wens_Join_subset: "wens (FtG) act B ⊆ wens F act B"
〈proof 〉

Lemma, because the inductive step is just too messy.
lemma wens_Union_inductive_step:

assumes awpF: "T-B ⊆ awp F T"
and awpG: "!!X. X ∈ wens_set F B ==> (T∩X) - B ⊆ awp G (T∩X)"

shows "[|X ∈ wens_set F B; act ∈ Acts F; Y ⊆ X; T∩X = T∩Y|]
==> wens (FtG) act Y ⊆ wens F act X ∧

T ∩ wens F act X = T ∩ wens (FtG) act Y"
〈proof 〉

theorem wens_Union:
assumes awpF: "T-B ⊆ awp F T"

and awpG: "!!X. X ∈ wens_set F B ==> (T∩X) - B ⊆ awp G (T∩X)"
and major: "X ∈ wens_set F B"

shows "∃ Y ∈ wens_set (FtG) B. Y ⊆ X & T∩X = T∩Y"
〈proof 〉

theorem leadsTo_Join:
assumes leadsTo: "F ∈ A leadsTo B"

and awpF: "T-B ⊆ awp F T"
and awpG: "!!X. X ∈ wens_set F B ==> (T∩X) - B ⊆ awp G (T∩X)"

shows "FtG ∈ T∩A leadsTo B"
〈proof 〉

15.4 The Set wens_set F B for a Single-Assignment Program
Thesis Section 4.3.3



15.4 The Set wens_set F B for a Single-Assignment Program 91

We start by proving laws about single-assignment programs
lemma awp_single_eq [simp]:

"awp (mk_program (init, {act}, allowed)) B = B ∩ wp act B"
〈proof 〉

lemma wp_Un_subset: "wp act A ∪ wp act B ⊆ wp act (A ∪ B)"
〈proof 〉

lemma wp_Un_eq: "single_valued act ==> wp act (A ∪ B) = wp act A ∪ wp act
B"
〈proof 〉

lemma wp_UN_subset: "(
⋃

i∈I. wp act (A i)) ⊆ wp act (
⋃

i∈I. A i)"
〈proof 〉

lemma wp_UN_eq:
"[|single_valued act; I 6={}|]
==> wp act (

⋃
i∈I. A i) = (

⋃
i∈I. wp act (A i))"

〈proof 〉

lemma wens_single_eq:
"wens (mk_program (init, {act}, allowed)) act B = B ∪ wp act B"

〈proof 〉

Next, we express the wens_set for single-assignment programs
definition wens_single_finite :: "[(’a*’a) set, ’a set, nat] => ’a set" where

"wens_single_finite act B k ==
⋃

i ∈ atMost k. (wp act ^^ i) B"

definition wens_single :: "[(’a*’a) set, ’a set] => ’a set" where
"wens_single act B ==

⋃
i. (wp act ^^ i) B"

lemma wens_single_Un_eq:
"single_valued act
==> wens_single act B ∪ wp act (wens_single act B) = wens_single act

B"
〈proof 〉

lemma atMost_nat_nonempty: "atMost (k::nat) 6= {}"
〈proof 〉

lemma wens_single_finite_0 [simp]: "wens_single_finite act B 0 = B"
〈proof 〉

lemma wens_single_finite_Suc:
"single_valued act
==> wens_single_finite act B (Suc k) =

wens_single_finite act B k ∪ wp act (wens_single_finite act B k)"
〈proof 〉

lemma wens_single_finite_Suc_eq_wens:
"single_valued act

==> wens_single_finite act B (Suc k) =
wens (mk_program (init, {act}, allowed)) act



92 15 PREDICATE TRANSFORMERS

(wens_single_finite act B k)"
〈proof 〉

lemma def_wens_single_finite_Suc_eq_wens:
"[|F = mk_program (init, {act}, allowed); single_valued act|]

==> wens_single_finite act B (Suc k) =
wens F act (wens_single_finite act B k)"

〈proof 〉

lemma wens_single_finite_Un_eq:
"single_valued act
==> wens_single_finite act B k ∪ wp act (wens_single_finite act B k)

∈ range (wens_single_finite act B)"
〈proof 〉

lemma wens_single_eq_Union:
"wens_single act B =

⋃
(range (wens_single_finite act B))"

〈proof 〉

lemma wens_single_finite_eq_Union:
"wens_single_finite act B n = (

⋃
k∈atMost n. wens_single_finite act B

k)"
〈proof 〉

lemma wens_single_finite_mono:
"m ≤ n ==> wens_single_finite act B m ⊆ wens_single_finite act B n"

〈proof 〉

lemma wens_single_finite_subset_wens_single:
"wens_single_finite act B k ⊆ wens_single act B"

〈proof 〉

lemma subset_wens_single_finite:
"[|W ⊆ wens_single_finite act B ‘ (atMost k); single_valued act; W 6={}|]
==> ∃ m.

⋃
W = wens_single_finite act B m"

〈proof 〉

lemma for Union case

lemma Union_eq_wens_single:
" [[∀ k. ¬ W ⊆ wens_single_finite act B ‘ {..k};

W ⊆ insert (wens_single act B)
(range (wens_single_finite act B))]]

=⇒
⋃

W = wens_single act B"
〈proof 〉

lemma wens_set_subset_single:
"single_valued act
==> wens_set (mk_program (init, {act}, allowed)) B ⊆

insert (wens_single act B) (range (wens_single_finite act B))"
〈proof 〉

lemma wens_single_finite_in_wens_set:
"single_valued act =⇒

wens_single_finite act B k



93

∈ wens_set (mk_program (init, {act}, allowed)) B"
〈proof 〉

lemma single_subset_wens_set:
"single_valued act
==> insert (wens_single act B) (range (wens_single_finite act B)) ⊆

wens_set (mk_program (init, {act}, allowed)) B"
〈proof 〉

Theorem (4.29)
theorem wens_set_single_eq:

"[|F = mk_program (init, {act}, allowed); single_valued act|]
==> wens_set F B =

insert (wens_single act B) (range (wens_single_finite act B))"
〈proof 〉

Generalizing Misra’s Fixed Point Union Theorem (4.41)
lemma fp_leadsTo_Join:

"[|T-B ⊆ awp F T; T-B ⊆ FP G; F ∈ A leadsTo B|] ==> FtG ∈ T∩A leadsTo
B"
〈proof 〉

end

16 Progress Sets
theory ProgressSets imports Transformers begin

16.1 Complete Lattices and the Operator cl

definition lattice :: "’a set set => bool" where
— Meier calls them closure sets, but they are just complete lattices
"lattice L ==

(∀ M. M ⊆ L -->
⋂

M ∈ L) & (∀ M. M ⊆ L -->
⋃

M ∈ L)"

definition cl :: "[’a set set, ’a set] => ’a set" where
— short for “closure”
"cl L r ==

⋂
{x. x∈L & r ⊆ x}"

lemma UNIV_in_lattice: "lattice L ==> UNIV ∈ L"
〈proof 〉

lemma empty_in_lattice: "lattice L ==> {} ∈ L"
〈proof 〉

lemma Union_in_lattice: "[|M ⊆ L; lattice L|] ==>
⋃

M ∈ L"
〈proof 〉

lemma Inter_in_lattice: "[|M ⊆ L; lattice L|] ==>
⋂

M ∈ L"
〈proof 〉

lemma UN_in_lattice:



94 16 PROGRESS SETS

"[|lattice L; !!i. i∈I ==> r i ∈ L|] ==> (
⋃

i∈I. r i) ∈ L"
〈proof 〉

lemma INT_in_lattice:
"[|lattice L; !!i. i∈I ==> r i ∈ L|] ==> (

⋂
i∈I. r i) ∈ L"

〈proof 〉

lemma Un_in_lattice: "[|x∈L; y∈L; lattice L|] ==> x∪y ∈ L"
〈proof 〉

lemma Int_in_lattice: "[|x∈L; y∈L; lattice L|] ==> x∩y ∈ L"
〈proof 〉

lemma lattice_stable: "lattice {X. F ∈ stable X}"
〈proof 〉

The next three results state that cl L r is the minimal element of L that includes
r.
lemma cl_in_lattice: "lattice L ==> cl L r ∈ L"
〈proof 〉

lemma cl_least: "[|c∈L; r⊆c|] ==> cl L r ⊆ c"
〈proof 〉

The next three lemmas constitute assertion (4.61)
lemma cl_mono: "r ⊆ r’ ==> cl L r ⊆ cl L r’"
〈proof 〉

lemma subset_cl: "r ⊆ cl L r"
〈proof 〉

A reformulation of ?r ⊆ cl ?L ?r

lemma clI: "x ∈ r ==> x ∈ cl L r"
〈proof 〉

A reformulation of [[?c ∈ ?L; ?r ⊆ ?c ]] =⇒ cl ?L ?r ⊆ ?c

lemma clD: "[|c ∈ cl L r; B ∈ L; r ⊆ B|] ==> c ∈ B"
〈proof 〉

lemma cl_UN_subset: "(
⋃

i∈I. cl L (r i)) ⊆ cl L (
⋃

i∈I. r i)"
〈proof 〉

lemma cl_Un: "lattice L ==> cl L (r∪s) = cl L r ∪ cl L s"
〈proof 〉

lemma cl_UN: "lattice L ==> cl L (
⋃

i∈I. r i) = (
⋃

i∈I. cl L (r i))"
〈proof 〉

lemma cl_Int_subset: "cl L (r∩s) ⊆ cl L r ∩ cl L s"
〈proof 〉

lemma cl_idem [simp]: "cl L (cl L r) = cl L r"
〈proof 〉



16.2 Progress Sets and the Main Lemma 95

lemma cl_ident: "r∈L ==> cl L r = r"
〈proof 〉

lemma cl_empty [simp]: "lattice L ==> cl L {} = {}"
〈proof 〉

lemma cl_UNIV [simp]: "lattice L ==> cl L UNIV = UNIV"
〈proof 〉

Assertion (4.62)

lemma cl_ident_iff: "lattice L ==> (cl L r = r) = (r∈L)"
〈proof 〉

lemma cl_subset_in_lattice: "[|cl L r ⊆ r; lattice L|] ==> r∈L"
〈proof 〉

16.2 Progress Sets and the Main Lemma
A progress set satisfies certain closure conditions and is a simple way of including
the set wens_set F B.

definition closed :: "[’a program, ’a set, ’a set, ’a set set] => bool" where
"closed F T B L == ∀ M. ∀ act ∈ Acts F. B⊆M & T∩M ∈ L -->

T ∩ (B ∪ wp act M) ∈ L"

definition progress_set :: "[’a program, ’a set, ’a set] => ’a set set set"
where

"progress_set F T B ==
{L. lattice L & B ∈ L & T ∈ L & closed F T B L}"

lemma closedD:
"[|closed F T B L; act ∈ Acts F; B⊆M; T∩M ∈ L|]
==> T ∩ (B ∪ wp act M) ∈ L"

〈proof 〉

Note: the formalization below replaces Meier’s q by B and m by X.

Part of the proof of the claim at the bottom of page 97. It’s proved separately
because the argument requires a generalization over all act ∈ Acts F.

lemma lattice_awp_lemma:
assumes TXC: "T∩X ∈ C" — induction hypothesis in theorem below

and BsubX: "B ⊆ X" — holds in inductive step
and latt: "lattice C"
and TC: "T ∈ C"
and BC: "B ∈ C"
and clos: "closed F T B C"

shows "T ∩ (B ∪ awp F (X ∪ cl C (T∩r))) ∈ C"
〈proof 〉

Remainder of the proof of the claim at the bottom of page 97.

lemma lattice_lemma:
assumes TXC: "T∩X ∈ C" — induction hypothesis in theorem below



96 16 PROGRESS SETS

and BsubX: "B ⊆ X" — holds in inductive step
and act: "act ∈ Acts F"
and latt: "lattice C"
and TC: "T ∈ C"
and BC: "B ∈ C"
and clos: "closed F T B C"

shows "T ∩ (wp act X ∩ awp F (X ∪ cl C (T∩r)) ∪ X) ∈ C"
〈proof 〉

Induction step for the main lemma
lemma progress_induction_step:

assumes TXC: "T∩X ∈ C" — induction hypothesis in theorem below
and act: "act ∈ Acts F"
and Xwens: "X ∈ wens_set F B"
and latt: "lattice C"
and TC: "T ∈ C"
and BC: "B ∈ C"
and clos: "closed F T B C"
and Fstable: "F ∈ stable T"

shows "T ∩ wens F act X ∈ C"
〈proof 〉

Proved on page 96 of Meier’s thesis. The special case when T = UNIV states that
every progress set for the program F and set B includes the set wens_set F B.
lemma progress_set_lemma:

"[|C ∈ progress_set F T B; r ∈ wens_set F B; F ∈ stable T|] ==> T∩r
∈ C"
〈proof 〉

16.3 The Progress Set Union Theorem
lemma closed_mono:

assumes BB’: "B ⊆ B’"
and TBwp: "T ∩ (B ∪ wp act M) ∈ C"
and B’C: "B’ ∈ C"
and TC: "T ∈ C"
and latt: "lattice C"

shows "T ∩ (B’ ∪ wp act M) ∈ C"
〈proof 〉

lemma progress_set_mono:
assumes BB’: "B ⊆ B’"
shows
"[| B’ ∈ C; C ∈ progress_set F T B|]
==> C ∈ progress_set F T B’"

〈proof 〉

theorem progress_set_Union:
assumes leadsTo: "F ∈ A leadsTo B’"

and prog: "C ∈ progress_set F T B"
and Fstable: "F ∈ stable T"
and BB’: "B ⊆ B’"
and B’C: "B’ ∈ C"



16.4 Some Progress Sets 97

and Gco: "!!X. X∈C ==> G ∈ X-B co X"
shows "FtG ∈ T∩A leadsTo B’"

〈proof 〉

16.4 Some Progress Sets
lemma UNIV_in_progress_set: "UNIV ∈ progress_set F T B"
〈proof 〉

16.4.1 Lattices and Relations

From Meier’s thesis, section 4.5.3
definition relcl :: "’a set set => (’a * ’a) set" where

— Derived relation from a lattice
"relcl L == {(x,y). y ∈ cl L {x}}"

definition latticeof :: "(’a * ’a) set => ’a set set" where
— Derived lattice from a relation: the set of upwards-closed sets
"latticeof r == {X. ∀ s t. s ∈ X & (s,t) ∈ r --> t ∈ X}"

lemma relcl_refl: "(a,a) ∈ relcl L"
〈proof 〉

lemma relcl_trans:
"[| (a,b) ∈ relcl L; (b,c) ∈ relcl L; lattice L |] ==> (a,c) ∈ relcl

L"
〈proof 〉

lemma refl_relcl: "lattice L ==> refl (relcl L)"
〈proof 〉

lemma trans_relcl: "lattice L ==> trans (relcl L)"
〈proof 〉

lemma lattice_latticeof: "lattice (latticeof r)"
〈proof 〉

lemma lattice_singletonI:
"[|lattice L; !!s. s ∈ X ==> {s} ∈ L|] ==> X ∈ L"

〈proof 〉

Equation (4.71) of Meier’s thesis. He gives no proof.
lemma cl_latticeof:

"[|refl r; trans r|]
==> cl (latticeof r) X = {t. ∃ s. s∈X & (s,t) ∈ r}"

〈proof 〉

Related to (4.71).
lemma cl_eq_Collect_relcl:

"lattice L ==> cl L X = {t. ∃ s. s∈X & (s,t) ∈ relcl L}"
〈proof 〉

Meier’s theorem of section 4.5.3



98 16 PROGRESS SETS

theorem latticeof_relcl_eq: "lattice L ==> latticeof (relcl L) = L"
〈proof 〉

theorem relcl_latticeof_eq:
"[|refl r; trans r|] ==> relcl (latticeof r) = r"

〈proof 〉

16.4.2 Decoupling Theorems
definition decoupled :: "[’a program, ’a program] => bool" where

"decoupled F G ==
∀ act ∈ Acts F. ∀ B. G ∈ stable B --> G ∈ stable (wp act B)"

Rao’s Decoupling Theorem
lemma stableco: "F ∈ stable A ==> F ∈ A-B co A"
〈proof 〉

theorem decoupling:
assumes leadsTo: "F ∈ A leadsTo B"

and Gstable: "G ∈ stable B"
and dec: "decoupled F G"

shows "FtG ∈ A leadsTo B"
〈proof 〉

Rao’s Weak Decoupling Theorem
theorem weak_decoupling:

assumes leadsTo: "F ∈ A leadsTo B"
and stable: "FtG ∈ stable B"
and dec: "decoupled F (FtG)"

shows "FtG ∈ A leadsTo B"
〈proof 〉

The “Decoupling via G’ Union Theorem”
theorem decoupling_via_aux:

assumes leadsTo: "F ∈ A leadsTo B"
and prog: "{X. G’ ∈ stable X} ∈ progress_set F UNIV B"
and GG’: "G ≤ G’"

— Beware! This is the converse of the refinement relation!
shows "FtG ∈ A leadsTo B"

〈proof 〉

16.5 Composition Theorems Based on Monotonicity and
Commutativity

16.5.1 Commutativity of cl L and assignment.
definition commutes :: "[’a program, ’a set, ’a set, ’a set set] => bool"
where

"commutes F T B L ==
∀ M. ∀ act ∈ Acts F. B ⊆ M -->

cl L (T ∩ wp act M) ⊆ T ∩ (B ∪ wp act (cl L (T∩M)))"

From Meier’s thesis, section 4.5.6
lemma commutativity1_lemma:



16.5 Composition Theorems Based on Monotonicity and Commutativity 99

assumes commutes: "commutes F T B L"
and lattice: "lattice L"
and BL: "B ∈ L"
and TL: "T ∈ L"

shows "closed F T B L"
〈proof 〉

Version packaged with [[?F ∈ ?A 7−→ ?B’; ?C ∈ progress_set ?F ?T ?B; ?F ∈
UNITY.stable ?T; ?B ⊆ ?B’; ?B’ ∈ ?C;

∧
X. X ∈ ?C =⇒ ?G ∈ X - ?B co X ]] =⇒

?F t ?G ∈ ?T ∩ ?A 7−→ ?B’

lemma commutativity1:
assumes leadsTo: "F ∈ A leadsTo B"

and lattice: "lattice L"
and BL: "B ∈ L"
and TL: "T ∈ L"
and Fstable: "F ∈ stable T"
and Gco: "!!X. X∈L ==> G ∈ X-B co X"
and commutes: "commutes F T B L"

shows "FtG ∈ T∩A leadsTo B"
〈proof 〉

Possibly move to Relation.thy, after single_valued

definition funof :: "[(’a*’b)set, ’a] => ’b" where
"funof r == (λx. THE y. (x,y) ∈ r)"

lemma funof_eq: "[|single_valued r; (x,y) ∈ r|] ==> funof r x = y"
〈proof 〉

lemma funof_Pair_in:
"[|single_valued r; x ∈ Domain r|] ==> (x, funof r x) ∈ r"

〈proof 〉

lemma funof_in:
"[|r‘‘{x} ⊆ A; single_valued r; x ∈ Domain r|] ==> funof r x ∈ A"

〈proof 〉

lemma funof_imp_wp: "[|funof act t ∈ A; single_valued act|] ==> t ∈ wp act
A"
〈proof 〉

16.5.2 Commutativity of Functions and Relation

Thesis, page 109

From Meier’s thesis, section 4.5.6
lemma commutativity2_lemma:

assumes dcommutes:
"
∧

act s t. act ∈ Acts F =⇒ s ∈ T =⇒ (s, t) ∈ relcl L =⇒
s ∈ B | t ∈ B | (funof act s, funof act t) ∈ relcl L"

and determ: "!!act. act ∈ Acts F ==> single_valued act"
and total: "!!act. act ∈ Acts F ==> Domain act = UNIV"
and lattice: "lattice L"
and BL: "B ∈ L"



100 17 COMPREHENSIVE UNITY THEORY

and TL: "T ∈ L"
and Fstable: "F ∈ stable T"

shows "commutes F T B L"
〈proof 〉

Version packaged with [[?F ∈ ?A 7−→ ?B’; ?C ∈ progress_set ?F ?T ?B; ?F ∈
UNITY.stable ?T; ?B ⊆ ?B’; ?B’ ∈ ?C;

∧
X. X ∈ ?C =⇒ ?G ∈ X - ?B co X ]] =⇒

?F t ?G ∈ ?T ∩ ?A 7−→ ?B’

lemma commutativity2:
assumes leadsTo: "F ∈ A leadsTo B"

and dcommutes:
"∀ act ∈ Acts F.
∀ s ∈ T. ∀ t. (s,t) ∈ relcl L -->

s ∈ B | t ∈ B | (funof act s, funof act t) ∈ relcl
L"

and determ: "!!act. act ∈ Acts F ==> single_valued act"
and total: "!!act. act ∈ Acts F ==> Domain act = UNIV"
and lattice: "lattice L"
and BL: "B ∈ L"
and TL: "T ∈ L"
and Fstable: "F ∈ stable T"
and Gco: "!!X. X∈L ==> G ∈ X-B co X"

shows "FtG ∈ T∩A leadsTo B"
〈proof 〉

16.6 Monotonicity
From Meier’s thesis, section 4.5.7, page 110

end

17 Comprehensive UNITY Theory
theory UNITY_Main
imports Detects PPROD Follows ProgressSets
begin

〈ML〉

end

theory Deadlock imports "../UNITY" begin

lemma "[| F ∈ (A ∩ B) co A; F ∈ (B ∩ A) co B |] ==> F ∈ stable (A ∩ B)"
〈proof 〉

lemma Collect_le_Int_equals:
"(
⋂

i ∈ atMost n. A(Suc i) ∩ A i) = (
⋂

i ∈ atMost (Suc n). A i)"
〈proof 〉



101

lemma UN_Int_Compl_subset:
"(
⋃

i ∈ lessThan n. A i) ∩ (- A n) ⊆
(
⋃

i ∈ lessThan n. (A i) ∩ (- A (Suc i)))"
〈proof 〉

lemma INT_Un_Compl_subset:
"(
⋂

i ∈ lessThan n. -A i ∪ A (Suc i)) ⊆
(
⋂

i ∈ lessThan n. -A i) ∪ A n"
〈proof 〉

lemma INT_le_equals_Int_lemma:
"A 0 ∩ (-(A n) ∩ (

⋂
i ∈ lessThan n. -A i ∪ A (Suc i))) = {}"

〈proof 〉

lemma INT_le_equals_Int:
"(
⋂

i ∈ atMost n. A i) =
A 0 ∩ (

⋂
i ∈ lessThan n. -A i ∪ A(Suc i))"

〈proof 〉

lemma INT_le_Suc_equals_Int:
"(
⋂

i ∈ atMost (Suc n). A i) =
A 0 ∩ (

⋂
i ∈ atMost n. -A i ∪ A(Suc i))"

〈proof 〉

lemma
assumes zeroprem: "F ∈ (A 0 ∩ A (Suc n)) co (A 0)"

and allprem:
"!!i. i ∈ atMost n ==> F ∈ (A(Suc i) ∩ A i) co (-A i ∪ A(Suc

i))"
shows "F ∈ stable (

⋂
i ∈ atMost (Suc n). A i)"

〈proof 〉

end

theory Common
imports "../UNITY_Main"
begin

consts
ftime :: "nat=>nat"
gtime :: "nat=>nat"

axiomatization where
fmono: "m ≤ n ==> ftime m ≤ ftime n" and



102 17 COMPREHENSIVE UNITY THEORY

gmono: "m ≤ n ==> gtime m ≤ gtime n" and

fasc: "m ≤ ftime n" and
gasc: "m ≤ gtime n"

definition common :: "nat set" where
"common == {n. ftime n = n & gtime n = n}"

definition maxfg :: "nat => nat set" where
"maxfg m == {t. t ≤ max (ftime m) (gtime m)}"

lemma common_stable:
"[| ∀ m. F ∈ {m} Co (maxfg m); n ∈ common |]
==> F ∈ Stable (atMost n)"

〈proof 〉

lemma common_safety:
"[| Init F ⊆ atMost n;

∀ m. F ∈ {m} Co (maxfg m); n ∈ common |]
==> F ∈ Always (atMost n)"

〈proof 〉

lemma "SKIP ∈ {m} co (maxfg m)"
〈proof 〉

lemma "mk_total_program
(UNIV, {range(%t.(t,ftime t)), range(%t.(t,gtime t))}, UNIV)

∈ {m} co (maxfg m)"
〈proof 〉

lemma "mk_total_program (UNIV, {range(%t.(t, max (ftime t) (gtime t)))},
UNIV)

∈ {m} co (maxfg m)"
〈proof 〉

lemma "mk_total_program
(UNIV, { {(t, Suc t) | t. t < max (ftime t) (gtime t)} }, UNIV)

∈ {m} co (maxfg m)"
〈proof 〉



103

lemma leadsTo_common_lemma:
assumes "∀ m. F ∈ {m} Co (maxfg m)"

and "∀ m ∈ lessThan n. F ∈ {m} LeadsTo (greaterThan m)"
and "n ∈ common"

shows "F ∈ (atMost n) LeadsTo common"
〈proof 〉

lemma leadsTo_common:
"[| ∀ m. F ∈ {m} Co (maxfg m);

∀ m ∈ -common. F ∈ {m} LeadsTo (greaterThan m);
n ∈ common |]

==> F ∈ (atMost (LEAST n. n ∈ common)) LeadsTo common"
〈proof 〉

end

theory Network imports "../UNITY" begin

datatype pvar = Sent | Rcvd | Idle

datatype pname = Aproc | Bproc

type_synonym state = "pname * pvar => nat"

locale F_props =
fixes F
assumes rsA: "F ∈ stable {s. s(Bproc,Rcvd) ≤ s(Aproc,Sent)}"

and rsB: "F ∈ stable {s. s(Aproc,Rcvd) ≤ s(Bproc,Sent)}"
and sent_nondec: "F ∈ stable {s. m ≤ s(proc,Sent)}"
and rcvd_nondec: "F ∈ stable {s. n ≤ s(proc,Rcvd)}"
and rcvd_idle: "F ∈ {s. s(proc,Idle) = Suc 0 & s(proc,Rcvd) = m}

co {s. s(proc,Rcvd) = m --> s(proc,Idle) = Suc 0}"
and sent_idle: "F ∈ {s. s(proc,Idle) = Suc 0 & s(proc,Sent) = n}

co {s. s(proc,Sent) = n}"
begin

lemmas sent_nondec_A = sent_nondec [of _ Aproc]
and sent_nondec_B = sent_nondec [of _ Bproc]
and rcvd_nondec_A = rcvd_nondec [of _ Aproc]
and rcvd_nondec_B = rcvd_nondec [of _ Bproc]
and rcvd_idle_A = rcvd_idle [of Aproc]
and rcvd_idle_B = rcvd_idle [of Bproc]
and sent_idle_A = sent_idle [of Aproc]
and sent_idle_B = sent_idle [of Bproc]

and rs_AB = stable_Int [OF rsA rsB]

lemmas sent_nondec_AB = stable_Int [OF sent_nondec_A sent_nondec_B]
and rcvd_nondec_AB = stable_Int [OF rcvd_nondec_A rcvd_nondec_B]
and rcvd_idle_AB = constrains_Int [OF rcvd_idle_A rcvd_idle_B]



104 18 THE TOKEN RING

and sent_idle_AB = constrains_Int [OF sent_idle_A sent_idle_B]

lemmas nondec_AB = stable_Int [OF sent_nondec_AB rcvd_nondec_AB]
and idle_AB = constrains_Int [OF rcvd_idle_AB sent_idle_AB]

lemmas nondec_idle = constrains_Int [OF nondec_AB [unfolded stable_def] idle_AB]

lemma
shows "F ∈ stable {s. s(Aproc,Idle) = Suc 0 & s(Bproc,Idle) = Suc 0 &

s(Aproc,Sent) = s(Bproc,Rcvd) &
s(Bproc,Sent) = s(Aproc,Rcvd) &
s(Aproc,Rcvd) = m & s(Bproc,Rcvd) = n}"

〈proof 〉

end

end

18 The Token Ring
theory Token
imports "../WFair"

begin

From Misra, "A Logic for Concurrent Programming" (1994), sections 5.2 and
13.2.

18.1 Definitions
datatype pstate = Hungry | Eating | Thinking

— process states

record state =
token :: "nat"
proc :: "nat => pstate"

definition HasTok :: "nat => state set" where
"HasTok i == {s. token s = i}"

definition H :: "nat => state set" where
"H i == {s. proc s i = Hungry}"

definition E :: "nat => state set" where
"E i == {s. proc s i = Eating}"

definition T :: "nat => state set" where
"T i == {s. proc s i = Thinking}"

locale Token =
fixes N and F and nodeOrder and "next"



18.2 Progress under Weak Fairness 105

defines nodeOrder_def:
"nodeOrder j == measure(%i. ((j+N)-i) mod N) ∩ {..<N} × {..<N}"

and next_def:
"next i == (Suc i) mod N"

assumes N_positive [iff]: "0<N"
and TR2: "F ∈ (T i) co (T i ∪ H i)"
and TR3: "F ∈ (H i) co (H i ∪ E i)"
and TR4: "F ∈ (H i - HasTok i) co (H i)"
and TR5: "F ∈ (HasTok i) co (HasTok i ∪ -(E i))"
and TR6: "F ∈ (H i ∩ HasTok i) leadsTo (E i)"
and TR7: "F ∈ (HasTok i) leadsTo (HasTok (next i))"

lemma HasToK_partition: "[| s ∈ HasTok i; s ∈ HasTok j |] ==> i=j"
〈proof 〉

lemma not_E_eq: "(s /∈ E i) = (s ∈ H i | s ∈ T i)"
〈proof 〉

context Token
begin

lemma token_stable: "F ∈ stable (-(E i) ∪ (HasTok i))"
〈proof 〉

18.2 Progress under Weak Fairness
lemma wf_nodeOrder: "wf(nodeOrder j)"
〈proof 〉

lemma nodeOrder_eq:
"[| i<N; j<N |] ==> ((next i, i) ∈ nodeOrder j) = (i 6= j)"

〈proof 〉

From "A Logic for Concurrent Programming", but not used in Chapter 4. Note
the use of cases. Reasoning about leadsTo takes practice!

lemma TR7_nodeOrder:
"[| i<N; j<N |] ==>
F ∈ (HasTok i) leadsTo ({s. (token s, i) ∈ nodeOrder j} ∪ HasTok j)"

〈proof 〉

Chapter 4 variant, the one actually used below.

lemma TR7_aux: "[| i<N; j<N; i 6=j |]
==> F ∈ (HasTok i) leadsTo {s. (token s, i) ∈ nodeOrder j}"

〈proof 〉

lemma token_lemma:
"({s. token s < N} ∩ token -‘ {m}) = (if m<N then token -‘ {m} else {})"

〈proof 〉

Misra’s TR9: the token reaches an arbitrary node

lemma leadsTo_j: "j<N ==> F ∈ {s. token s < N} leadsTo (HasTok j)"
〈proof 〉



106 18 THE TOKEN RING

Misra’s TR8: a hungry process eventually eats
lemma token_progress:

"j<N ==> F ∈ ({s. token s < N} ∩ H j) leadsTo (E j)"
〈proof 〉

end

end

theory Channel imports "../UNITY_Main" begin

type_synonym state = "nat set"

consts
F :: "state program"

definition minSet :: "nat set => nat option" where
"minSet A == if A={} then None else Some (LEAST x. x ∈ A)"

axiomatization where

UC1: "F ∈ (minSet -‘ {Some x}) co (minSet -‘ (Some‘atLeast x))" and

UC2: "F ∈ (minSet -‘ {Some x}) leadsTo {s. x /∈ s}"

lemma minSet_eq_SomeD: "minSet A = Some x ==> x ∈ A"
〈proof 〉

lemma minSet_empty [simp]: " minSet{} = None"
〈proof 〉

lemma minSet_nonempty: "x ∈ A ==> minSet A = Some (LEAST x. x ∈ A)"
〈proof 〉

lemma minSet_greaterThan:
"F ∈ (minSet -‘ {Some x}) leadsTo (minSet -‘ (Some‘greaterThan x))"

〈proof 〉

lemma Channel_progress_lemma:
"F ∈ (UNIV-{{}}) leadsTo (minSet -‘ (Some‘atLeast y))"

〈proof 〉

lemma Channel_progress: "!!y::nat. F ∈ (UNIV-{{}}) leadsTo {s. y /∈ s}"
〈proof 〉

end



18.2 Progress under Weak Fairness 107

theory Lift
imports "../UNITY_Main"
begin

record state =
floor :: "int" — current position of the lift
"open" :: "bool" — whether the door is opened at floor
stop :: "bool" — whether the lift is stopped at floor
req :: "int set" — for each floor, whether the lift is requested
up :: "bool" — current direction of movement
move :: "bool" — whether moving takes precedence over opening

axiomatization
Min :: "int" and — least and greatest floors
Max :: "int" — least and greatest floors

where
Min_le_Max [iff]: "Min ≤ Max"

— Abbreviations: the "always" part

definition
above :: "state set"
where "above = {s. ∃ i. floor s < i & i ≤ Max & i ∈ req s}"

definition
below :: "state set"
where "below = {s. ∃ i. Min ≤ i & i < floor s & i ∈ req s}"

definition
queueing :: "state set"
where "queueing = above ∪ below"

definition
goingup :: "state set"
where "goingup = above ∩ ({s. up s} ∪ -below)"

definition
goingdown :: "state set"
where "goingdown = below ∩ ({s. ~ up s} ∪ -above)"

definition
ready :: "state set"
where "ready = {s. stop s & ~ open s & move s}"

— Further abbreviations

definition
moving :: "state set"
where "moving = {s. ~ stop s & ~ open s}"

definition
stopped :: "state set"



108 18 THE TOKEN RING

where "stopped = {s. stop s & ~ open s & ~ move s}"

definition
opened :: "state set"
where "opened = {s. stop s & open s & move s}"

definition
closed :: "state set" — but this is the same as ready!!
where "closed = {s. stop s & ~ open s & move s}"

definition
atFloor :: "int => state set"
where "atFloor n = {s. floor s = n}"

definition
Req :: "int => state set"
where "Req n = {s. n ∈ req s}"

— The program

definition
request_act :: "(state*state) set"
where "request_act = {(s,s’). s’ = s (|stop:=True, move:=False|)

& ~ stop s & floor s ∈ req s}"

definition
open_act :: "(state*state) set"
where "open_act =

{(s,s’). s’ = s (|open :=True,
req := req s - {floor s},
move := True|)

& stop s & ~ open s & floor s ∈ req s
& ~(move s & s ∈ queueing)}"

definition
close_act :: "(state*state) set"
where "close_act = {(s,s’). s’ = s (|open := False|) & open s}"

definition
req_up :: "(state*state) set"
where "req_up =

{(s,s’). s’ = s (|stop :=False,
floor := floor s + 1,
up := True|)

& s ∈ (ready ∩ goingup)}"

definition
req_down :: "(state*state) set"
where "req_down =

{(s,s’). s’ = s (|stop :=False,
floor := floor s - 1,
up := False|)



18.2 Progress under Weak Fairness 109

& s ∈ (ready ∩ goingdown)}"

definition
move_up :: "(state*state) set"
where "move_up =

{(s,s’). s’ = s (|floor := floor s + 1|)
& ~ stop s & up s & floor s /∈ req s}"

definition
move_down :: "(state*state) set"
where "move_down =

{(s,s’). s’ = s (|floor := floor s - 1|)
& ~ stop s & ~ up s & floor s /∈ req s}"

definition
button_press :: "(state*state) set"

— This action is omitted from prior treatments, which therefore are unrealistic:
nobody asks the lift to do anything! But adding this action invalidates many of the
existing progress arguments: various "ensures" properties fail. Maybe it should be
constrained to only allow button presses in the current direction of travel, like in a
real lift.

where "button_press =
{(s,s’). ∃ n. s’ = s (|req := insert n (req s)|)

& Min ≤ n & n ≤ Max}"

definition
Lift :: "state program"

— for the moment, we OMIT button_press
where "Lift = mk_total_program

({s. floor s = Min & ~ up s & move s & stop s &
~ open s & req s = {}},

{request_act, open_act, close_act,
req_up, req_down, move_up, move_down},

UNIV)"

— Invariants

definition
bounded :: "state set"
where "bounded = {s. Min ≤ floor s & floor s ≤ Max}"

definition
open_stop :: "state set"
where "open_stop = {s. open s --> stop s}"

definition
open_move :: "state set"
where "open_move = {s. open s --> move s}"

definition
stop_floor :: "state set"
where "stop_floor = {s. stop s & ~ move s --> floor s ∈ req s}"



110 18 THE TOKEN RING

definition
moving_up :: "state set"
where "moving_up = {s. ~ stop s & up s -->

(∃ f. floor s ≤ f & f ≤ Max & f ∈ req s)}"

definition
moving_down :: "state set"
where "moving_down = {s. ~ stop s & ~ up s -->

(∃ f. Min ≤ f & f ≤ floor s & f ∈ req s)}"

definition
metric :: "[int,state] => int"
where "metric =

(%n s. if floor s < n then (if up s then n - floor s
else (floor s - Min) + (n-Min))

else
if n < floor s then (if up s then (Max - floor s) + (Max-n)

else floor s - n)
else 0)"

locale Floor =
fixes n
assumes Min_le_n [iff]: "Min ≤ n"

and n_le_Max [iff]: "n ≤ Max"

lemma not_mem_distinct: "[| x /∈ A; y ∈ A |] ==> x 6= y"
〈proof 〉

declare Lift_def [THEN def_prg_Init, simp]

declare request_act_def [THEN def_act_simp, simp]
declare open_act_def [THEN def_act_simp, simp]
declare close_act_def [THEN def_act_simp, simp]
declare req_up_def [THEN def_act_simp, simp]
declare req_down_def [THEN def_act_simp, simp]
declare move_up_def [THEN def_act_simp, simp]
declare move_down_def [THEN def_act_simp, simp]
declare button_press_def [THEN def_act_simp, simp]

declare above_def [THEN def_set_simp, simp]
declare below_def [THEN def_set_simp, simp]
declare queueing_def [THEN def_set_simp, simp]
declare goingup_def [THEN def_set_simp, simp]
declare goingdown_def [THEN def_set_simp, simp]
declare ready_def [THEN def_set_simp, simp]

declare bounded_def [simp]
open_stop_def [simp]
open_move_def [simp]
stop_floor_def [simp]



18.3 Progress 111

moving_up_def [simp]
moving_down_def [simp]

lemma open_stop: "Lift ∈ Always open_stop"
〈proof 〉

lemma stop_floor: "Lift ∈ Always stop_floor"
〈proof 〉

lemma open_move: "Lift ∈ Always open_move"
〈proof 〉

lemma moving_up: "Lift ∈ Always moving_up"
〈proof 〉

lemma moving_down: "Lift ∈ Always moving_down"
〈proof 〉

lemma bounded: "Lift ∈ Always bounded"
〈proof 〉

18.3 Progress
declare moving_def [THEN def_set_simp, simp]
declare stopped_def [THEN def_set_simp, simp]
declare opened_def [THEN def_set_simp, simp]
declare closed_def [THEN def_set_simp, simp]
declare atFloor_def [THEN def_set_simp, simp]
declare Req_def [THEN def_set_simp, simp]

The HUG’93 paper mistakenly omits the Req n from these!

lemma E_thm01: "Lift ∈ (stopped ∩ atFloor n) LeadsTo (opened ∩ atFloor
n)"
〈proof 〉

lemma E_thm02: "Lift ∈ (Req n ∩ stopped - atFloor n) LeadsTo
(Req n ∩ opened - atFloor n)"

〈proof 〉

lemma E_thm03: "Lift ∈ (Req n ∩ opened - atFloor n) LeadsTo
(Req n ∩ closed - (atFloor n - queueing))"

〈proof 〉

lemma E_thm04: "Lift ∈ (Req n ∩ closed ∩ (atFloor n - queueing))
LeadsTo (opened ∩ atFloor n)"

〈proof 〉



112 18 THE TOKEN RING

lemmas linorder_leI = linorder_not_less [THEN iffD1]

context Floor
begin

lemmas le_MinD = Min_le_n [THEN order_antisym]
and Max_leD = n_le_Max [THEN [2] order_antisym]

declare le_MinD [dest!]
and linorder_leI [THEN le_MinD, dest!]
and Max_leD [dest!]
and linorder_leI [THEN Max_leD, dest!]

lemma E_thm05c:
"Lift ∈ (Req n ∩ closed - (atFloor n - queueing))

LeadsTo ((closed ∩ goingup ∩ Req n) ∪
(closed ∩ goingdown ∩ Req n))"

〈proof 〉

lemma lift_2: "Lift ∈ (Req n ∩ closed - (atFloor n - queueing))
LeadsTo (moving ∩ Req n)"

〈proof 〉

declare if_split_asm [split]

lemma E_thm12a:
"0 < N ==>
Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩

{s. floor s /∈ req s} ∩ {s. up s})
LeadsTo

(moving ∩ Req n ∩ {s. metric n s < N})"
〈proof 〉

lemma E_thm12b: "0 < N ==>
Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩

{s. floor s /∈ req s} - {s. up s})
LeadsTo (moving ∩ Req n ∩ {s. metric n s < N})"

〈proof 〉

lemma lift_4:
"0<N ==> Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩

{s. floor s /∈ req s}) LeadsTo
(moving ∩ Req n ∩ {s. metric n s < N})"



18.3 Progress 113

〈proof 〉

lemma E_thm16a: "0<N
==> Lift ∈ (closed ∩ Req n ∩ {s. metric n s = N} ∩ goingup) LeadsTo

(moving ∩ Req n ∩ {s. metric n s < N})"
〈proof 〉

lemma E_thm16b: "0<N ==>
Lift ∈ (closed ∩ Req n ∩ {s. metric n s = N} ∩ goingdown) LeadsTo

(moving ∩ Req n ∩ {s. metric n s < N})"
〈proof 〉

lemma E_thm16c:
"0<N ==> Req n ∩ {s. metric n s = N} ⊆ goingup ∪ goingdown"

〈proof 〉

lemma lift_5:
"0<N ==> Lift ∈ (closed ∩ Req n ∩ {s. metric n s = N}) LeadsTo

(moving ∩ Req n ∩ {s. metric n s < N})"
〈proof 〉

lemma metric_eq_0D [dest]:
"[| metric n s = 0; Min ≤ floor s; floor s ≤ Max |] ==> floor s =

n"
〈proof 〉

lemma E_thm11: "Lift ∈ (moving ∩ Req n ∩ {s. metric n s = 0}) LeadsTo
(stopped ∩ atFloor n)"

〈proof 〉

lemma E_thm13:
"Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})

LeadsTo (stopped ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})"
〈proof 〉



114 18 THE TOKEN RING

lemma E_thm14: "0 < N ==>
Lift ∈

(stopped ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})
LeadsTo (opened ∩ Req n ∩ {s. metric n s = N})"

〈proof 〉

lemma E_thm15: "Lift ∈ (opened ∩ Req n ∩ {s. metric n s = N})
LeadsTo (closed ∩ Req n ∩ {s. metric n s = N})"

〈proof 〉

lemma lift_3_Req: "0 < N ==>
Lift ∈

(moving ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})
LeadsTo (moving ∩ Req n ∩ {s. metric n s < N})"

〈proof 〉

lemma Always_nonneg: "Lift ∈ Always {s. 0 ≤ metric n s}"
〈proof 〉

lemmas R_thm11 = Always_LeadsTo_weaken [OF Always_nonneg E_thm11]

lemma lift_3: "Lift ∈ (moving ∩ Req n) LeadsTo (stopped ∩ atFloor n)"
〈proof 〉

lemma lift_1: "Lift ∈ (Req n) LeadsTo (opened ∩ atFloor n)"
〈proof 〉

end

end

theory Mutex imports "../UNITY_Main" begin

record state =
p :: bool
m :: int
n :: int
u :: bool
v :: bool

type_synonym command = "(state*state) set"

definition U0 :: command



18.3 Progress 115

where "U0 = {(s,s’). s’ = s (|u:=True, m:=1|) & m s = 0}"

definition U1 :: command
where "U1 = {(s,s’). s’ = s (|p:= v s, m:=2|) & m s = 1}"

definition U2 :: command
where "U2 = {(s,s’). s’ = s (|m:=3|) & ~ p s & m s = 2}"

definition U3 :: command
where "U3 = {(s,s’). s’ = s (|u:=False, m:=4|) & m s = 3}"

definition U4 :: command
where "U4 = {(s,s’). s’ = s (|p:=True, m:=0|) & m s = 4}"

definition V0 :: command
where "V0 = {(s,s’). s’ = s (|v:=True, n:=1|) & n s = 0}"

definition V1 :: command
where "V1 = {(s,s’). s’ = s (|p:= ~ u s, n:=2|) & n s = 1}"

definition V2 :: command
where "V2 = {(s,s’). s’ = s (|n:=3|) & p s & n s = 2}"

definition V3 :: command
where "V3 = {(s,s’). s’ = s (|v:=False, n:=4|) & n s = 3}"

definition V4 :: command
where "V4 = {(s,s’). s’ = s (|p:=False, n:=0|) & n s = 4}"

definition Mutex :: "state program"
where "Mutex = mk_total_program

({s. ~ u s & ~ v s & m s = 0 & n s = 0},
{U0, U1, U2, U3, U4, V0, V1, V2, V3, V4},
UNIV)"

definition IU :: "state set"
where "IU = {s. (u s = (1 ≤ m s & m s ≤ 3)) & (m s = 3 --> ~ p s)}"

definition IV :: "state set"
where "IV = {s. (v s = (1 ≤ n s & n s ≤ 3)) & (n s = 3 --> p s)}"

definition bad_IU :: "state set"
where "bad_IU = {s. (u s = (1 ≤ m s & m s ≤ 3)) &

(3 ≤ m s & m s ≤ 4 --> ~ p s)}"

declare Mutex_def [THEN def_prg_Init, simp]



116 18 THE TOKEN RING

declare U0_def [THEN def_act_simp, simp]
declare U1_def [THEN def_act_simp, simp]
declare U2_def [THEN def_act_simp, simp]
declare U3_def [THEN def_act_simp, simp]
declare U4_def [THEN def_act_simp, simp]
declare V0_def [THEN def_act_simp, simp]
declare V1_def [THEN def_act_simp, simp]
declare V2_def [THEN def_act_simp, simp]
declare V3_def [THEN def_act_simp, simp]
declare V4_def [THEN def_act_simp, simp]

declare IU_def [THEN def_set_simp, simp]
declare IV_def [THEN def_set_simp, simp]
declare bad_IU_def [THEN def_set_simp, simp]

lemma IU: "Mutex ∈ Always IU"
〈proof 〉

lemma IV: "Mutex ∈ Always IV"
〈proof 〉

lemma mutual_exclusion: "Mutex ∈ Always {s. ~ (m s = 3 & n s = 3)}"
〈proof 〉

lemma "Mutex ∈ Always bad_IU"
〈proof 〉

lemma eq_123: "((1::int) ≤ i & i ≤ 3) = (i = 1 | i = 2 | i = 3)"
〈proof 〉

lemma U_F0: "Mutex ∈ {s. m s=2} Unless {s. m s=3}"
〈proof 〉

lemma U_F1: "Mutex ∈ {s. m s=1} LeadsTo {s. p s = v s & m s = 2}"
〈proof 〉

lemma U_F2: "Mutex ∈ {s. ~ p s & m s = 2} LeadsTo {s. m s = 3}"
〈proof 〉

lemma U_F3: "Mutex ∈ {s. m s = 3} LeadsTo {s. p s}"
〈proof 〉

lemma U_lemma2: "Mutex ∈ {s. m s = 2} LeadsTo {s. p s}"
〈proof 〉



18.3 Progress 117

lemma U_lemma1: "Mutex ∈ {s. m s = 1} LeadsTo {s. p s}"
〈proof 〉

lemma U_lemma123: "Mutex ∈ {s. 1 ≤ m s & m s ≤ 3} LeadsTo {s. p s}"
〈proof 〉

lemma u_Leadsto_p: "Mutex ∈ {s. u s} LeadsTo {s. p s}"
〈proof 〉

lemma V_F0: "Mutex ∈ {s. n s=2} Unless {s. n s=3}"
〈proof 〉

lemma V_F1: "Mutex ∈ {s. n s=1} LeadsTo {s. p s = (~ u s) & n s = 2}"
〈proof 〉

lemma V_F2: "Mutex ∈ {s. p s & n s = 2} LeadsTo {s. n s = 3}"
〈proof 〉

lemma V_F3: "Mutex ∈ {s. n s = 3} LeadsTo {s. ~ p s}"
〈proof 〉

lemma V_lemma2: "Mutex ∈ {s. n s = 2} LeadsTo {s. ~ p s}"
〈proof 〉

lemma V_lemma1: "Mutex ∈ {s. n s = 1} LeadsTo {s. ~ p s}"
〈proof 〉

lemma V_lemma123: "Mutex ∈ {s. 1 ≤ n s & n s ≤ 3} LeadsTo {s. ~ p s}"
〈proof 〉

lemma v_Leadsto_not_p: "Mutex ∈ {s. v s} LeadsTo {s. ~ p s}"
〈proof 〉

lemma m1_Leadsto_3: "Mutex ∈ {s. m s = 1} LeadsTo {s. m s = 3}"
〈proof 〉

lemma n1_Leadsto_3: "Mutex ∈ {s. n s = 1} LeadsTo {s. n s = 3}"
〈proof 〉

end



118 18 THE TOKEN RING

theory Reach imports "../UNITY_Main" begin

typedecl vertex

type_synonym state = "vertex=>bool"

consts
init :: "vertex"

edges :: "(vertex*vertex) set"

definition asgt :: "[vertex,vertex] => (state*state) set"
where "asgt u v = {(s,s’). s’ = s(v:= s u | s v)}"

definition Rprg :: "state program"
where "Rprg = mk_total_program ({%v. v=init},

⋃
(u,v)∈edges. {asgt u v},

UNIV)"

definition reach_invariant :: "state set"
where "reach_invariant = {s. (∀ v. s v --> (init, v) ∈ edges∗) & s init}"

definition fixedpoint :: "state set"
where "fixedpoint = {s. ∀ (u,v)∈edges. s u --> s v}"

definition metric :: "state => nat"
where "metric s = card {v. ~ s v}"

*We assume that the set of vertices is finite
axiomatization where

finite_graph: "finite (UNIV :: vertex set)"

lemma ifE [elim!]:
"[| if P then Q else R;

[| P; Q |] ==> S;
[| ~ P; R |] ==> S |] ==> S"

〈proof 〉

declare Rprg_def [THEN def_prg_Init, simp]

declare asgt_def [THEN def_act_simp,simp]

All vertex sets are finite
declare finite_subset [OF subset_UNIV finite_graph, iff]

declare reach_invariant_def [THEN def_set_simp, simp]

lemma reach_invariant: "Rprg ∈ Always reach_invariant"
〈proof 〉



18.3 Progress 119

lemma fixedpoint_invariant_correct:
"fixedpoint ∩ reach_invariant = { %v. (init, v) ∈ edges∗ }"

〈proof 〉

lemma lemma1:
"FP Rprg ⊆ fixedpoint"

〈proof 〉

lemma lemma2:
"fixedpoint ⊆ FP Rprg"

〈proof 〉

lemma FP_fixedpoint: "FP Rprg = fixedpoint"
〈proof 〉

lemma Compl_fixedpoint: "- fixedpoint = (
⋃

(u,v)∈edges. {s. s u & ~ s v})"
〈proof 〉

lemma Diff_fixedpoint:
"A - fixedpoint = (

⋃
(u,v)∈edges. A ∩ {s. s u & ~ s v})"

〈proof 〉

lemma Suc_metric: "~ s x ==> Suc (metric (s(x:=True))) = metric s"
〈proof 〉

lemma metric_less [intro!]: "~ s x ==> metric (s(x:=True)) < metric s"
〈proof 〉

lemma metric_le: "metric (s(y:=s x | s y)) ≤ metric s"
〈proof 〉

lemma LeadsTo_Diff_fixedpoint:
"Rprg ∈ ((metric-‘{m}) - fixedpoint) LeadsTo (metric-‘(lessThan m))"

〈proof 〉

lemma LeadsTo_Un_fixedpoint:
"Rprg ∈ (metric-‘{m}) LeadsTo (metric-‘(lessThan m) ∪ fixedpoint)"

〈proof 〉

lemma LeadsTo_fixedpoint: "Rprg ∈ UNIV LeadsTo fixedpoint"
〈proof 〉



120 18 THE TOKEN RING

lemma LeadsTo_correct: "Rprg ∈ UNIV LeadsTo { %v. (init, v) ∈ edges∗ }"
〈proof 〉

end

theory Reachability imports "../Detects" Reach begin

type_synonym edge = "vertex * vertex"

record state =
reach :: "vertex => bool"
nmsg :: "edge => nat"

consts root :: "vertex"
E :: "edge set"
V :: "vertex set"

inductive_set REACHABLE :: "edge set"
where

base: "v ∈ V ==> ((v,v) ∈ REACHABLE)"
| step: "((u,v) ∈ REACHABLE) & (v,w) ∈ E ==> ((u,w) ∈ REACHABLE)"

definition reachable :: "vertex => state set" where
"reachable p == {s. reach s p}"

definition nmsg_eq :: "nat => edge => state set" where
"nmsg_eq k == %e. {s. nmsg s e = k}"

definition nmsg_gt :: "nat => edge => state set" where
"nmsg_gt k == %e. {s. k < nmsg s e}"

definition nmsg_gte :: "nat => edge => state set" where
"nmsg_gte k == %e. {s. k ≤ nmsg s e}"

definition nmsg_lte :: "nat => edge => state set" where
"nmsg_lte k == %e. {s. nmsg s e ≤ k}"

definition final :: "state set" where
"final == (

⋂
v∈V. reachable v <==> {s. (root, v) ∈ REACHABLE}) ∩

(
⋂

((nmsg_eq 0) ‘ E))"

axiomatization
where

Graph1: "root ∈ V" and

Graph2: "(v,w) ∈ E ==> (v ∈ V) & (w ∈ V)" and

MA1: "F ∈ Always (reachable root)" and

MA2: "v ∈ V ==> F ∈ Always (- reachable v ∪ {s. ((root,v) ∈ REACHABLE)})"
and

MA3: "[|v ∈ V;w ∈ V|] ==> F ∈ Always (-(nmsg_gt 0 (v,w)) ∪ (reachable



18.3 Progress 121

v))" and

MA4: "(v,w) ∈ E ==>
F ∈ Always (-(reachable v) ∪ (nmsg_gt 0 (v,w)) ∪ (reachable w))"

and

MA5: "[|v ∈ V; w ∈ V|]
==> F ∈ Always (nmsg_gte 0 (v,w) ∩ nmsg_lte (Suc 0) (v,w))" and

MA6: "[|v ∈ V|] ==> F ∈ Stable (reachable v)" and

MA6b: "[|v ∈ V;w ∈ W|] ==> F ∈ Stable (reachable v ∩ nmsg_lte k (v,w))"
and

MA7: "[|v ∈ V;w ∈ V|] ==> F ∈ UNIV LeadsTo nmsg_eq 0 (v,w)"

lemmas E_imp_in_V_L = Graph2 [THEN conjunct1]
lemmas E_imp_in_V_R = Graph2 [THEN conjunct2]

lemma lemma2:
"(v,w) ∈ E ==> F ∈ reachable v LeadsTo nmsg_eq 0 (v,w) ∩ reachable v"

〈proof 〉

lemma Induction_base: "(v,w) ∈ E ==> F ∈ reachable v LeadsTo reachable w"
〈proof 〉

lemma REACHABLE_LeadsTo_reachable:
"(v,w) ∈ REACHABLE ==> F ∈ reachable v LeadsTo reachable w"

〈proof 〉

lemma Detects_part1: "F ∈ {s. (root,v) ∈ REACHABLE} LeadsTo reachable v"
〈proof 〉

lemma Reachability_Detected:
"v ∈ V ==> F ∈ (reachable v) Detects {s. (root,v) ∈ REACHABLE}"

〈proof 〉

lemma LeadsTo_Reachability:
"v ∈ V ==> F ∈ UNIV LeadsTo (reachable v <==> {s. (root,v) ∈ REACHABLE})"

〈proof 〉

lemma Eq_lemma1:
"(reachable v <==> {s. (root,v) ∈ REACHABLE}) =
{s. ((s ∈ reachable v) = ((root,v) ∈ REACHABLE))}"

〈proof 〉



122 18 THE TOKEN RING

lemma Eq_lemma2:
"(reachable v <==> (if (root,v) ∈ REACHABLE then UNIV else {})) =
{s. ((s ∈ reachable v) = ((root,v) ∈ REACHABLE))}"

〈proof 〉

lemma final_lemma1:
"(
⋂

v ∈ V.
⋂

w ∈ V. {s. ((s ∈ reachable v) = ((root,v) ∈ REACHABLE))
&

s ∈ nmsg_eq 0 (v,w)})
⊆ final"

〈proof 〉

lemma final_lemma2:
"E 6={}
==> (

⋂
v ∈ V.

⋂
e ∈ E. {s. ((s ∈ reachable v) = ((root,v) ∈ REACHABLE))}

∩ nmsg_eq 0 e) ⊆ final"
〈proof 〉

lemma final_lemma3:
"E 6={}
==> (

⋂
v ∈ V.

⋂
e ∈ E.

(reachable v <==> {s. (root,v) ∈ REACHABLE}) ∩ nmsg_eq 0 e)
⊆ final"

〈proof 〉

lemma final_lemma4:
"E 6={}
==> (

⋂
v ∈ V.

⋂
e ∈ E.

{s. ((s ∈ reachable v) = ((root,v) ∈ REACHABLE))} ∩ nmsg_eq 0
e)

= final"
〈proof 〉

lemma final_lemma5:
"E 6={}
==> (

⋂
v ∈ V.

⋂
e ∈ E.

((reachable v) <==> {s. (root,v) ∈ REACHABLE}) ∩ nmsg_eq 0 e)
= final"

〈proof 〉

lemma final_lemma6:
"(
⋂

v ∈ V.
⋂

w ∈ V.
(reachable v <==> {s. (root,v) ∈ REACHABLE}) ∩ nmsg_eq 0 (v,w))
⊆ final"

〈proof 〉



18.3 Progress 123

lemma final_lemma7:
"final =
(
⋂

v ∈ V.
⋂

w ∈ V.
((reachable v) <==> {s. (root,v) ∈ REACHABLE}) ∩
(-{s. (v,w) ∈ E} ∪ (nmsg_eq 0 (v,w))))"

〈proof 〉

lemma not_REACHABLE_imp_Stable_not_reachable:
"[| v ∈ V; (root,v) /∈ REACHABLE |] ==> F ∈ Stable (- reachable v)"

〈proof 〉

lemma Stable_reachable_EQ_R:
"v ∈ V ==> F ∈ Stable (reachable v <==> {s. (root,v) ∈ REACHABLE})"

〈proof 〉

lemma lemma4:
"((nmsg_gte 0 (v,w) ∩ nmsg_lte (Suc 0) (v,w)) ∩

(- nmsg_gt 0 (v,w) ∪ A))
⊆ A ∪ nmsg_eq 0 (v,w)"

〈proof 〉

lemma lemma5:
"reachable v ∩ nmsg_eq 0 (v,w) =
((nmsg_gte 0 (v,w) ∩ nmsg_lte (Suc 0) (v,w)) ∩
(reachable v ∩ nmsg_lte 0 (v,w)))"

〈proof 〉

lemma lemma6:
"- nmsg_gt 0 (v,w) ∪ reachable v ⊆ nmsg_eq 0 (v,w) ∪ reachable v"

〈proof 〉

lemma Always_reachable_OR_nmsg_0:
"[|v ∈ V; w ∈ V|] ==> F ∈ Always (reachable v ∪ nmsg_eq 0 (v,w))"

〈proof 〉

lemma Stable_reachable_AND_nmsg_0:
"[|v ∈ V; w ∈ V|] ==> F ∈ Stable (reachable v ∩ nmsg_eq 0 (v,w))"

〈proof 〉

lemma Stable_nmsg_0_OR_reachable:
"[|v ∈ V; w ∈ V|] ==> F ∈ Stable (nmsg_eq 0 (v,w) ∪ reachable v)"

〈proof 〉

lemma not_REACHABLE_imp_Stable_not_reachable_AND_nmsg_0:



124 18 THE TOKEN RING

"[| v ∈ V; w ∈ V; (root,v) /∈ REACHABLE |]
==> F ∈ Stable (- reachable v ∩ nmsg_eq 0 (v,w))"

〈proof 〉

lemma Stable_reachable_EQ_R_AND_nmsg_0:
"[| v ∈ V; w ∈ V |]
==> F ∈ Stable ((reachable v <==> {s. (root,v) ∈ REACHABLE}) ∩

nmsg_eq 0 (v,w))"
〈proof 〉

lemma UNIV_lemma: "UNIV ⊆ (
⋂

v ∈ V. UNIV)"
〈proof 〉

lemmas UNIV_LeadsTo_completion =
LeadsTo_weaken_L [OF Finite_stable_completion UNIV_lemma]

lemma LeadsTo_final_E_empty: "E={} ==> F ∈ UNIV LeadsTo final"
〈proof 〉

lemma Leadsto_reachability_AND_nmsg_0:
"[| v ∈ V; w ∈ V |]
==> F ∈ UNIV LeadsTo

((reachable v <==> {s. (root,v) ∈ REACHABLE}) ∩ nmsg_eq 0 (v,w))"
〈proof 〉

lemma LeadsTo_final_E_NOT_empty: "E 6={} ==> F ∈ UNIV LeadsTo final"
〈proof 〉

lemma LeadsTo_final: "F ∈ UNIV LeadsTo final"
〈proof 〉

lemma Stable_final_E_empty: "E={} ==> F ∈ Stable final"
〈proof 〉

lemma Stable_final_E_NOT_empty: "E 6={} ==> F ∈ Stable final"
〈proof 〉

lemma Stable_final: "F ∈ Stable final"
〈proof 〉

end



125

19 Analyzing the Needham-Schroeder Public-
Key Protocol in UNITY

theory NSP_Bad imports "HOL-Auth.Public" "../UNITY_Main" begin

This is the flawed version, vulnerable to Lowe’s attack. From page 260 of Bur-
rows, Abadi and Needham. A Logic of Authentication. Proc. Royal Soc. 426
(1989).

type_synonym state = "event list"

definition
Fake :: "(state*state) set"
where "Fake = {(s,s’).

∃ B X. s’ = Says Spy B X # s
& X ∈ synth (analz (spies s))}"

definition
NS1 :: "(state*state) set"
where "NS1 = {(s1,s’).

∃ A1 B NA.
s’ = Says A1 B (Crypt (pubK B) {|Nonce NA, Agent A1|}) # s1

& Nonce NA /∈ used s1}"

definition
NS2 :: "(state*state) set"
where "NS2 = {(s2,s’).

∃ A’ A2 B NA NB.
s’ = Says B A2 (Crypt (pubK A2) {|Nonce NA, Nonce NB |}) # s2

& Says A’ B (Crypt (pubK B) {|Nonce NA, Agent A2|}) ∈ set s2
& Nonce NB /∈ used s2}"

definition
NS3 :: "(state*state) set"
where "NS3 = {(s3,s’).

∃ A3 B’ B NA NB.
s’ = Says A3 B (Crypt (pubK B) (Nonce NB)) # s3

& Says A3 B (Crypt (pubK B) {|Nonce NA, Agent A3|}) ∈ set s3
& Says B’ A3 (Crypt (pubK A3) {|Nonce NA, Nonce NB |}) ∈ set s3}"

definition Nprg :: "state program" where

"Nprg = mk_total_program({[]}, {Fake, NS1, NS2, NS3}, UNIV)"

declare spies_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]



12619 ANALYZING THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL IN UNITY

For other theories, e.g. Mutex and Lift, using [iff] slows proofs down. Here, it
facilitates re-use of the Auth proofs.
declare Fake_def [THEN def_act_simp, iff]
declare NS1_def [THEN def_act_simp, iff]
declare NS2_def [THEN def_act_simp, iff]
declare NS3_def [THEN def_act_simp, iff]

declare Nprg_def [THEN def_prg_Init, simp]

A "possibility property": there are traces that reach the end. Replace by LEAD-
STO proof!
lemma "A 6= B ==>

∃ NB. ∃ s ∈ reachable Nprg. Says A B (Crypt (pubK B) (Nonce NB)) ∈ set
s"
〈proof 〉

19.1 Inductive Proofs about ns_public

lemma ns_constrainsI:
"(!!act s s’. [| act ∈ {Id, Fake, NS1, NS2, NS3};

(s,s’) ∈ act; s ∈ A |] ==> s’ ∈ A’)
==> Nprg ∈ A co A’"

〈proof 〉

This ML code does the inductions directly.
〈ML〉
Converts invariants into statements about reachable states
lemmas Always_Collect_reachableD =

Always_includes_reachable [THEN subsetD, THEN CollectD]

Spy never sees another agent’s private key! (unless it’s bad at start)
lemma Spy_see_priK:

"Nprg ∈ Always {s. (Key (priK A) ∈ parts (spies s)) = (A ∈ bad)}"
〈proof 〉
declare Spy_see_priK [THEN Always_Collect_reachableD, simp]

lemma Spy_analz_priK:
"Nprg ∈ Always {s. (Key (priK A) ∈ analz (spies s)) = (A ∈ bad)}"

〈proof 〉
declare Spy_analz_priK [THEN Always_Collect_reachableD, simp]

19.2 Authenticity properties obtained from NS2
It is impossible to re-use a nonce in both NS1 and NS2 provided the nonce is
secret. (Honest users generate fresh nonces.)
lemma no_nonce_NS1_NS2:
"Nprg
∈ Always {s. Crypt (pubK C) {|NA’, Nonce NA |} ∈ parts (spies s) -->

Crypt (pubK B) {|Nonce NA, Agent A |} ∈ parts (spies s) -->
Nonce NA ∈ analz (spies s)}"

〈proof 〉



19.3 Authenticity properties obtained from NS2 127

Adding it to the claset slows down proofs...
lemmas no_nonce_NS1_NS2_reachable =

no_nonce_NS1_NS2 [THEN Always_Collect_reachableD, rule_format]

Unicity for NS1: nonce NA identifies agents A and B
lemma unique_NA_lemma:

"Nprg
∈ Always {s. Nonce NA /∈ analz (spies s) -->

Crypt(pubK B) {|Nonce NA, Agent A |} ∈ parts(spies s) -->
Crypt(pubK B’) {|Nonce NA, Agent A’|} ∈ parts(spies s) -->
A=A’ & B=B’}"

〈proof 〉

Unicity for NS1: nonce NA identifies agents A and B
lemma unique_NA:

"[| Crypt(pubK B) {|Nonce NA, Agent A |} ∈ parts(spies s);
Crypt(pubK B’) {|Nonce NA, Agent A’|} ∈ parts(spies s);
Nonce NA /∈ analz (spies s);
s ∈ reachable Nprg |]

==> A=A’ & B=B’"
〈proof 〉

Secrecy: Spy does not see the nonce sent in msg NS1 if A and B are secure
lemma Spy_not_see_NA:

"[| A /∈ bad; B /∈ bad |]
==> Nprg ∈ Always

{s. Says A B (Crypt(pubK B) {|Nonce NA, Agent A |}) ∈ set s
--> Nonce NA /∈ analz (spies s)}"

〈proof 〉

Authentication for A: if she receives message 2 and has used NA to start a run,
then B has sent message 2.
lemma A_trusts_NS2:
"[| A /∈ bad; B /∈ bad |]
==> Nprg ∈ Always

{s. Says A B (Crypt(pubK B) {|Nonce NA, Agent A |}) ∈ set s &
Crypt(pubK A) {|Nonce NA, Nonce NB |} ∈ parts (knows Spy s)

--> Says B A (Crypt(pubK A) {|Nonce NA, Nonce NB |}) ∈ set s}"

〈proof 〉

If the encrypted message appears then it originated with Alice in NS1
lemma B_trusts_NS1:

"Nprg ∈ Always
{s. Nonce NA /∈ analz (spies s) -->

Crypt (pubK B) {|Nonce NA, Agent A |} ∈ parts (spies s)
--> Says A B (Crypt (pubK B) {|Nonce NA, Agent A |}) ∈ set s}"

〈proof 〉

19.3 Authenticity properties obtained from NS2
Unicity for NS2: nonce NB identifies nonce NA and agent A. Proof closely follows
that of unique_NA.



12819 ANALYZING THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL IN UNITY

lemma unique_NB_lemma:
"Nprg
∈ Always {s. Nonce NB /∈ analz (spies s) -->

Crypt (pubK A) {|Nonce NA, Nonce NB |} ∈ parts (spies s) -->
Crypt(pubK A’) {|Nonce NA’, Nonce NB |} ∈ parts(spies s) -->
A=A’ & NA=NA’}"

〈proof 〉

lemma unique_NB:
"[| Crypt(pubK A) {|Nonce NA, Nonce NB |} ∈ parts(spies s);

Crypt(pubK A’) {|Nonce NA’, Nonce NB |} ∈ parts(spies s);
Nonce NB /∈ analz (spies s);
s ∈ reachable Nprg |]

==> A=A’ & NA=NA’"
〈proof 〉

NB remains secret PROVIDED Alice never responds with round 3

lemma Spy_not_see_NB:
"[| A /∈ bad; B /∈ bad |]

==> Nprg ∈ Always
{s. Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB |}) ∈ set s &

(∀ C. Says A C (Crypt (pubK C) (Nonce NB)) /∈ set s)
--> Nonce NB /∈ analz (spies s)}"

〈proof 〉

Authentication for B: if he receives message 3 and has used NB in message 2,
then A has sent message 3–to somebody....

lemma B_trusts_NS3:
"[| A /∈ bad; B /∈ bad |]

==> Nprg ∈ Always
{s. Crypt (pubK B) (Nonce NB) ∈ parts (spies s) &

Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB |}) ∈ set s
--> (∃ C. Says A C (Crypt (pubK C) (Nonce NB)) ∈ set s)}"

〈proof 〉

Can we strengthen the secrecy theorem? NO

lemma "[| A /∈ bad; B /∈ bad |]
==> Nprg ∈ Always

{s. Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB |}) ∈ set s
--> Nonce NB /∈ analz (spies s)}"

〈proof 〉

end

theory Handshake imports "../UNITY_Main" begin

record state =
BB :: bool



19.3 Authenticity properties obtained from NS2 129

NF :: nat
NG :: nat

definition

cmdF :: "(state*state) set"
where "cmdF = {(s,s’). s’ = s (|NF:= Suc(NF s), BB:=False|) & BB s}"

definition
F :: "state program"
where "F = mk_total_program ({s. NF s = 0 & BB s}, {cmdF}, UNIV)"

definition

cmdG :: "(state*state) set"
where "cmdG = {(s,s’). s’ = s (|NG:= Suc(NG s), BB:=True|) & ~ BB s}"

definition
G :: "state program"
where "G = mk_total_program ({s. NG s = 0 & BB s}, {cmdG}, UNIV)"

definition

invFG :: "state set"
where "invFG = {s. NG s <= NF s & NF s <= Suc (NG s) & (BB s = (NF s = NG

s))}"

declare F_def [THEN def_prg_Init, simp]
G_def [THEN def_prg_Init, simp]

cmdF_def [THEN def_act_simp, simp]
cmdG_def [THEN def_act_simp, simp]

invFG_def [THEN def_set_simp, simp]

lemma invFG: "(F t G) ∈ Always invFG"
〈proof 〉

lemma lemma2_1: "(F t G) ∈ ({s. NF s = k} - {s. BB s}) LeadsTo
({s. NF s = k} Int {s. BB s})"

〈proof 〉

lemma lemma2_2: "(F t G) ∈ ({s. NF s = k} Int {s. BB s}) LeadsTo
{s. k < NF s}"

〈proof 〉

lemma progress: "(F t G) ∈ UNIV LeadsTo {s. m < NF s}"
〈proof 〉

end



130 20 A FAMILY OF SIMILAR COUNTERS: ORIGINAL VERSION

20 A Family of Similar Counters: Original Ver-
sion

theory Counter imports "../UNITY_Main" begin

datatype name = C | c nat
type_synonym state = "name=>int"

primrec sum :: "[nat,state]=>int" where

"sum 0 s = 0"
| "sum (Suc i) s = s (c i) + sum i s"

primrec sumj :: "[nat, nat, state]=>int" where
"sumj 0 i s = 0"

| "sumj (Suc n) i s = (if n=i then sum n s else s (c n) + sumj n i s)"

type_synonym command = "(state*state)set"

definition a :: "nat=>command" where
"a i = {(s, s’). s’=s(c i:= s (c i) + 1, C:= s C + 1)}"

definition Component :: "nat => state program" where
"Component i =

mk_total_program({s. s C = 0 & s (c i) = 0}, {a i},⋃
G ∈ preserves (%s. s (c i)). Acts G)"

declare Component_def [THEN def_prg_Init, simp]
declare a_def [THEN def_act_simp, simp]

lemma sum_upd_gt: "I<n ==> sum I (s(c n := x)) = sum I s"
〈proof 〉

lemma sum_upd_eq: "sum I (s(c I := x)) = sum I s"
〈proof 〉

lemma sum_upd_C: "sum I (s(C := x)) = sum I s"
〈proof 〉

lemma sumj_upd_ci: "sumj I i (s(c i := x)) = sumj I i s"
〈proof 〉

lemma sumj_upd_C: "sumj I i (s(C := x)) = sumj I i s"
〈proof 〉

lemma sumj_sum_gt: "I<i ==> sumj I i s = sum I s"
〈proof 〉

lemma sumj_sum_eq: "(sumj I I s = sum I s)"



131

〈proof 〉

lemma sum_sumj: "i<I ==> sum I s = s (c i) + sumj I i s"
〈proof 〉

lemma p2: "Component i ∈ stable {s. s C = s (c i) + k}"
〈proof 〉

lemma p3: "Component i ∈ stable {s. ∀ v. v 6=c i & v 6=C --> s v = k v}"
〈proof 〉

lemma p2_p3_lemma1:
"(∀ k. Component i ∈ stable ({s. s C = s (c i) + sumj I i k}

∩ {s. ∀ v. v 6=c i & v 6=C --> s v = k v}))
= (Component i ∈ stable {s. s C = s (c i) + sumj I i s})"

〈proof 〉

lemma p2_p3_lemma2:
"∀ k. Component i ∈ stable ({s. s C = s (c i) + sumj I i k} Int

{s. ∀ v. v 6=c i & v 6=C --> s v = k v})"
〈proof 〉

lemma p2_p3: "Component i ∈ stable {s. s C = s (c i) + sumj I i s}"
〈proof 〉

lemma sum_0’: "(
∧

i. i < I ==> s (c i) = 0) ==> sum I s = 0"
〈proof 〉

lemma safety:
"0<I ==> (

⊔
i ∈ {i. i<I}. Component i) ∈ invariant {s. s C = sum I s}"

〈proof 〉

end

21 A Family of Similar Counters: Version with
Compatibility

theory Counterc imports "../UNITY_Main" begin

typedecl state

consts
C :: "state=>int"
c :: "state=>nat=>int"

primrec sum :: "[nat,state]=>int" where



13221 A FAMILY OF SIMILAR COUNTERS: VERSION WITH COMPATIBILITY

"sum 0 s = 0"
| "sum (Suc i) s = (c s) i + sum i s"

primrec sumj :: "[nat, nat, state]=>int" where
"sumj 0 i s = 0"

| "sumj (Suc n) i s = (if n=i then sum n s else (c s) n + sumj n i s)"

type_synonym command = "(state*state)set"

definition a :: "nat=>command" where
"a i = {(s, s’). (c s’) i = (c s) i + 1 & (C s’) = (C s) + 1}"

definition Component :: "nat => state program" where
"Component i = mk_total_program({s. C s = 0 & (c s) i = 0},

{a i},⋃
G ∈ preserves (%s. (c s) i). Acts G)"

declare Component_def [THEN def_prg_Init, simp]
declare Component_def [THEN def_prg_AllowedActs, simp]
declare a_def [THEN def_act_simp, simp]

lemma sum_sumj_eq1: "I<i ==> sum I s = sumj I i s"
〈proof 〉

lemma sum_sumj_eq2: "i<I ==> sum I s = c s i + sumj I i s"
〈proof 〉

lemma sum_ext: "(
∧

i. i<I =⇒ c s’ i = c s i) ==> sum I s’ = sum I s"
〈proof 〉

lemma sumj_ext: "(
∧

j. j<I ==> j 6=i ==> c s’ j = c s j) ==> sumj I i s’
= sumj I i s"
〈proof 〉

lemma sum0: "(
∧

i. i<I ==> c s i = 0) ==> sum I s = 0"
〈proof 〉

lemma Component_ok_iff:
"(Component i ok G) =
(G ∈ preserves (%s. c s i) & Component i ∈ Allowed G)"

〈proof 〉
declare Component_ok_iff [iff]
declare OK_iff_ok [iff]
declare preserves_def [simp]

lemma p2: "Component i ∈ stable {s. C s = (c s) i + k}"
〈proof 〉



133

lemma p3:
"[| OK I Component; i∈I |]
==> Component i ∈ stable {s. ∀ j∈I. j 6=i --> c s j = c k j}"

〈proof 〉

lemma p2_p3_lemma1:
"[| OK {i. i<I} Component; i<I |] ==>
∀ k. Component i ∈ stable ({s. C s = c s i + sumj I i k} Int

{s. ∀ j∈{i. i<I}. j 6=i --> c s j = c k j})"
〈proof 〉

lemma p2_p3_lemma2:
"(∀ k. F ∈ stable ({s. C s = (c s) i + sumj I i k} Int

{s. ∀ j∈{i. i<I}. j 6=i --> c s j = c k j}))
==> (F ∈ stable {s. C s = c s i + sumj I i s})"

〈proof 〉

lemma p2_p3:
"[| OK {i. i<I} Component; i<I |]
==> Component i ∈ stable {s. C s = c s i + sumj I i s}"

〈proof 〉

lemma safety:
"[| 0<I; OK {i. i<I} Component |]
==> (

⊔
i∈{i. i<I}. (Component i)) ∈ invariant {s. C s = sum I s}"

〈proof 〉

end

theory PriorityAux
imports "../UNITY_Main"
begin

typedecl vertex

definition symcl :: "(vertex*vertex)set=>(vertex*vertex)set" where
"symcl r == r ∪ (r−1)"

— symmetric closure: removes the orientation of a relation

definition neighbors :: "[vertex, (vertex*vertex)set]=>vertex set" where
"neighbors i r == ((r ∪ r−1)‘‘{i}) - {i}"

— Neighbors of a vertex i

definition R :: "[vertex, (vertex*vertex)set]=>vertex set" where
"R i r == r‘‘{i}"

definition A :: "[vertex, (vertex*vertex)set]=>vertex set" where
"A i r == (r−1)‘‘{i}"



13421 A FAMILY OF SIMILAR COUNTERS: VERSION WITH COMPATIBILITY

definition reach :: "[vertex, (vertex*vertex)set]=> vertex set" where
"reach i r == (r+)‘‘{i}"

— reachable and above vertices: the original notation was R* and A*

definition above :: "[vertex, (vertex*vertex)set]=> vertex set" where
"above i r == ((r−1)+)‘‘{i}"

definition reverse :: "[vertex, (vertex*vertex) set]=>(vertex*vertex)set" where
"reverse i r == (r - {(x,y). x=i | y=i} ∩ r) ∪ ({(x,y). x=i|y=i} ∩ r)−1"

definition derive1 :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool"
where

— The original definition
"derive1 i r q == symcl r = symcl q &

(∀ k k’. k 6=i & k’6=i -->((k,k’) ∈ r) = ((k,k’) ∈ q)) ∧
A i r = {} & R i q = {}"

definition derive :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool"
where

— Our alternative definition
"derive i r q == A i r = {} & (q = reverse i r)"

axiomatization where
finite_vertex_univ: "finite (UNIV :: vertex set)"

— we assume that the universe of vertices is finite

declare derive_def [simp] derive1_def [simp] symcl_def [simp]
A_def [simp] R_def [simp]
above_def [simp] reach_def [simp]
reverse_def [simp] neighbors_def [simp]

All vertex sets are finite
declare finite_subset [OF subset_UNIV finite_vertex_univ, iff]

and relatons over vertex are finite too
lemmas finite_UNIV_Prod =

finite_Prod_UNIV [OF finite_vertex_univ finite_vertex_univ]

declare finite_subset [OF subset_UNIV finite_UNIV_Prod, iff]

lemma image0_trancl_iff_image0_r: "((r+)‘‘{i} = {}) = (r‘‘{i} = {})"
〈proof 〉

lemma image0_r_iff_image0_trancl: "(r‘‘{i}={}) = (∀ x. ((i,x) ∈ r+) = False)"
〈proof 〉

lemma acyclic_eq_wf: "!!r::(vertex*vertex)set. acyclic r = wf r"
〈proof 〉



135

lemma derive_derive1_eq: "derive i r q = derive1 i r q"
〈proof 〉

lemma lemma1_a:
"[| x ∈ reach i q; derive1 k r q |] ==> x 6=k --> x ∈ reach i r"

〈proof 〉

lemma reach_lemma: "derive k r q ==> reach i q ⊆ (reach i r ∪ {k})"
〈proof 〉

lemma reach_above_lemma:
"(∀ i. reach i q ⊆ (reach i r ∪ {k})) =
(∀ x. x 6=k --> (∀ i. i /∈ above x r --> i /∈ above x q))"

〈proof 〉

lemma maximal_converse_image0:
"(z, i) ∈ r+ =⇒ (∀ y. (y, z) ∈ r −→ (y,i) /∈ r+) = ((r−1)‘‘{z}={})"

〈proof 〉

lemma above_lemma_a:
"acyclic r ==> A i r 6={}-->(∃ j ∈ above i r. A j r = {})"

〈proof 〉

lemma above_lemma_b:
"acyclic r ==> above i r 6={}-->(∃ j ∈ above i r. above j r = {})"

〈proof 〉

end

22 The priority system
theory Priority imports PriorityAux begin

From Charpentier and Chandy, Examples of Program Composition Illustrating
the Use of Universal Properties In J. Rolim (editor), Parallel and Distributed
Processing, Spriner LNCS 1586 (1999), pages 1215-1227.
type_synonym state = "(vertex*vertex)set"
type_synonym command = "vertex=>(state*state)set"

consts
init :: "(vertex*vertex)set"
— the initial state

Following the definitions given in section 4.4
definition highest :: "[vertex, (vertex*vertex)set]=>bool"

where "highest i r ←→ A i r = {}"
— i has highest priority in r



136 22 THE PRIORITY SYSTEM

definition lowest :: "[vertex, (vertex*vertex)set]=>bool"
where "lowest i r ←→ R i r = {}"

— i has lowest priority in r

definition act :: command
where "act i = {(s, s’). s’=reverse i s & highest i s}"

definition Component :: "vertex=>state program"
where "Component i = mk_total_program({init}, {act i}, UNIV)"

— All components start with the same initial state

Some Abbreviations

definition Highest :: "vertex=>state set"
where "Highest i = {s. highest i s}"

definition Lowest :: "vertex=>state set"
where "Lowest i = {s. lowest i s}"

definition Acyclic :: "state set"
where "Acyclic = {s. acyclic s}"

definition Maximal :: "state set"
— Every “above” set has a maximal vertex

where "Maximal = (
⋂

i. {s. ~highest i s-->(∃ j ∈ above i s. highest j s)})"

definition Maximal’ :: "state set"
— Maximal vertex: equivalent definition

where "Maximal’ = (
⋂

i. Highest i Un (
⋃

j. {s. j ∈ above i s} Int Highest
j))"

definition Safety :: "state set"
where "Safety = (

⋂
i. {s. highest i s --> (∀ j ∈ neighbors i s. ~highest

j s)})"

definition system :: "state program"
where "system = (

⊔
i. Component i)"

declare highest_def [simp] lowest_def [simp]
declare Highest_def [THEN def_set_simp, simp]

and Lowest_def [THEN def_set_simp, simp]

declare Component_def [THEN def_prg_Init, simp]
declare act_def [THEN def_act_simp, simp]

22.1 Component correctness proofs

neighbors is stable



22.2 System properties 137

lemma Component_neighbors_stable: "Component i ∈ stable {s. neighbors k
s = n}"
〈proof 〉

property 4

lemma Component_waits_priority: "Component i ∈ {s. ((i,j) ∈ s) = b} ∩ (-
Highest i) co {s. ((i,j) ∈ s)=b}"
〈proof 〉

property 5: charpentier and Chandy mistakenly express it as ’transient Highest
i’. Consider the case where i has neighbors

lemma Component_yields_priority:
"Component i ∈ {s. neighbors i s 6= {}} Int Highest i

ensures - Highest i"
〈proof 〉

or better

lemma Component_yields_priority’: "Component i ∈ Highest i ensures Lowest
i"
〈proof 〉

property 6: Component doesn’t introduce cycle

lemma Component_well_behaves: "Component i ∈ Highest i co Highest i Un Lowest
i"
〈proof 〉

property 7: local axiom

lemma locality: "Component i ∈ stable {s. ∀ j k. j 6=i & k 6=i--> ((j,k) ∈
s) = b j k}"
〈proof 〉

22.2 System properties
property 8: strictly universal

lemma Safety: "system ∈ stable Safety"
〈proof 〉

property 13: universal

lemma p13: "system ∈ {s. s = q} co {s. s=q} Un {s. ∃ i. derive i q s}"
〈proof 〉

property 14: the ’above set’ of a Component that hasn’t got priority doesn’t
increase

lemma above_not_increase:
"system ∈ -Highest i Int {s. j /∈above i s} co {s. j /∈above i s}"

〈proof 〉

lemma above_not_increase’:
"system ∈ -Highest i Int {s. above i s = x} co {s. above i s <= x}"

〈proof 〉



138 22 THE PRIORITY SYSTEM

p15: universal property: all Components well behave
lemma system_well_behaves: "system ∈ Highest i co Highest i Un Lowest i"
〈proof 〉

lemma Acyclic_eq: "Acyclic = (
⋂

i. {s. i /∈above i s})"
〈proof 〉

lemmas system_co =
constrains_Un [OF above_not_increase [rule_format] system_well_behaves]

lemma Acyclic_stable: "system ∈ stable Acyclic"
〈proof 〉

lemma Acyclic_subset_Maximal: "Acyclic <= Maximal"
〈proof 〉

property 17: original one is an invariant
lemma Acyclic_Maximal_stable: "system ∈ stable (Acyclic Int Maximal)"
〈proof 〉

property 5: existential property
lemma Highest_leadsTo_Lowest: "system ∈ Highest i leadsTo Lowest i"
〈proof 〉

a lowest i can never be in any abover set
lemma Lowest_above_subset: "Lowest i <= (

⋂
k. {s. i /∈above k s})"

〈proof 〉

property 18: a simpler proof than the original, one which uses psp
lemma Highest_escapes_above: "system ∈ Highest i leadsTo (

⋂
k. {s. i /∈above

k s})"
〈proof 〉

lemma Highest_escapes_above’:
"system ∈ Highest j Int {s. j ∈ above i s} leadsTo {s. j /∈above i s}"

〈proof 〉

22.3 The main result: above set decreases
The original proof of the following formula was wrong
lemma Highest_iff_above0: "Highest i = {s. above i s ={}}"
〈proof 〉

lemmas above_decreases_lemma =
psp [THEN leadsTo_weaken, OF Highest_escapes_above’ above_not_increase’]



22.3 The main result: above set decreases 139

lemma above_decreases:
"system ∈ (

⋃
j. {s. above i s = x} Int {s. j ∈ above i s} Int Highest

j)
leadsTo {s. above i s < x}"

〈proof 〉

lemma Maximal_eq_Maximal’: "Maximal = Maximal’"
〈proof 〉

lemma Acyclic_subset:
"x 6={} ==>
Acyclic Int {s. above i s = x} <=
(
⋃

j. {s. above i s = x} Int {s. j ∈ above i s} Int Highest j)"
〈proof 〉

lemmas above_decreases’ = leadsTo_weaken_L [OF above_decreases Acyclic_subset]
lemmas above_decreases_psp = psp_stable [OF above_decreases’ Acyclic_stable]

lemma above_decreases_psp’:
"x 6={}==> system ∈ Acyclic Int {s. above i s = x} leadsTo

Acyclic Int {s. above i s < x}"
〈proof 〉

lemmas finite_psubset_induct = wf_finite_psubset [THEN leadsTo_wf_induct]

lemma Progress: "system ∈ Acyclic leadsTo Highest i"
〈proof 〉

We have proved all (relevant) theorems given in the paper. We didn’t assume
any thing about the relation r. It is not necessary that r be a priority relation
as assumed in the original proof. It suffices that we start from a state which is
finite and acyclic.
end

theory TimerArray imports "../UNITY_Main" begin

type_synonym ’a state = "nat * ’a"

definition count :: "’a state => nat"
where "count s = fst s"

definition decr :: "(’a state * ’a state) set"
where "decr = (UN n uu. {((Suc n, uu), (n,uu))})"

definition Timer :: "’a state program"
where "Timer = mk_total_program (UNIV, {decr}, UNIV)"

declare Timer_def [THEN def_prg_Init, simp]



140 23 PROGRESS SET EXAMPLES

declare count_def [simp] decr_def [simp]

lemma Timer_leadsTo_zero: "Timer ∈ UNIV leadsTo {s. count s = 0}"
〈proof 〉

lemma Timer_preserves_snd [iff]: "Timer ∈ preserves snd"
〈proof 〉

declare PLam_stable [simp]

lemma TimerArray_leadsTo_zero:
"finite I
=⇒ (plam i: I. Timer) ∈ UNIV leadsTo {(s,uu). ∀ i∈I. s i = 0}"

〈proof 〉

end

23 Progress Set Examples
theory Progress imports "../UNITY_Main" begin

23.1 The Composition of Two Single-Assignment Programs
Thesis Section 4.4.2

definition FF :: "int program" where
"FF = mk_total_program (UNIV, {range (λx. (x, x+1))}, UNIV)"

definition GG :: "int program" where
"GG = mk_total_program (UNIV, {range (λx. (x, 2*x))}, UNIV)"

23.1.1 Calculating wens_set FF {k..}

lemma Domain_actFF: "Domain (range (λx::int. (x, x + 1))) = UNIV"
〈proof 〉

lemma FF_eq:
"FF = mk_program (UNIV, {range (λx. (x, x+1))}, UNIV)"

〈proof 〉

lemma wp_actFF:
"wp (range (λx::int. (x, x + 1))) (atLeast k) = atLeast (k - 1)"

〈proof 〉

lemma wens_FF: "wens FF (range (λx. (x, x+1))) (atLeast k) = atLeast (k -
1)"
〈proof 〉

lemma single_valued_actFF: "single_valued (range (λx::int. (x, x + 1)))"
〈proof 〉

lemma wens_single_finite_FF:



141

"wens_single_finite (range (λx. (x, x+1))) (atLeast k) n =
atLeast (k - int n)"

〈proof 〉

lemma wens_single_FF_eq_UNIV:
"wens_single (range (λx::int. (x, x + 1))) (atLeast k) = UNIV"

〈proof 〉

lemma wens_set_FF:
"wens_set FF (atLeast k) = insert UNIV (atLeast ‘ atMost k)"

〈proof 〉

23.1.2 Proving FF ∈ UNIV 7−→ {k..}

lemma atLeast_ensures: "FF ∈ atLeast (k - 1) ensures atLeast (k::int)"
〈proof 〉

lemma atLeast_leadsTo: "FF ∈ atLeast (k - int n) leadsTo atLeast (k::int)"
〈proof 〉

lemma UN_atLeast_UNIV: "(
⋃

n. atLeast (k - int n)) = UNIV"
〈proof 〉

lemma FF_leadsTo: "FF ∈ UNIV leadsTo atLeast (k::int)"
〈proof 〉

Result (4.39): Applying the leadsTo-Join Theorem
theorem "FFtGG ∈ atLeast 0 leadsTo atLeast (k::int)"
〈proof 〉

end

24 Common Declarations for Chandy and Char-
pentier’s Allocator

theory AllocBase imports "../UNITY_Main" "HOL-Library.Multiset_Order" be-
gin

consts Nclients :: nat

axiomatization NbT :: nat
where NbT_pos: "0 < NbT"

abbreviation (input) tokens :: "nat list ⇒ nat"
where

"tokens ≡ sum_list"

abbreviation (input)
"bag_of ≡ mset"

lemma sum_fun_mono:
fixes f :: "nat ⇒ nat"
shows "(

∧
i. i < n =⇒ f i ≤ g i) =⇒ sum f {..<n} ≤ sum g {..<n}"



14224 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

〈proof 〉

lemma tokens_mono_prefix: "xs ≤ ys =⇒ tokens xs ≤ tokens ys"
〈proof 〉

lemma mono_tokens: "mono tokens"
〈proof 〉

lemma bag_of_append [simp]: "bag_of (l@l’) = bag_of l + bag_of l’"
〈proof 〉

lemma mono_bag_of: "mono (bag_of :: ’a list => (’a::order) multiset)"
〈proof 〉

declare sum.cong [cong]

lemma bag_of_nths_lemma:
"(
∑

i∈ A Int lessThan k. {#if i<k then f i else g i#}) =
(
∑

i∈ A Int lessThan k. {#f i#})"
〈proof 〉

lemma bag_of_nths:
"bag_of (nths l A) =
(
∑

i∈ A Int lessThan (length l). {# l!i #})"
〈proof 〉

lemma bag_of_nths_Un_Int:
"bag_of (nths l (A Un B)) + bag_of (nths l (A Int B)) =
bag_of (nths l A) + bag_of (nths l B)"

〈proof 〉

lemma bag_of_nths_Un_disjoint:
"A Int B = {}
==> bag_of (nths l (A Un B)) =

bag_of (nths l A) + bag_of (nths l B)"
〈proof 〉

lemma bag_of_nths_UN_disjoint [rule_format]:
"[| finite I; ∀ i∈I. ∀ j∈I. i 6=j −→ A i Int A j = {} |]
==> bag_of (nths l (

⋃
(A ‘ I))) =

(
∑

i∈I. bag_of (nths l (A i)))"
〈proof 〉

end

theory Alloc
imports AllocBase "../PPROD"



24.1 State definitions. OUTPUT variables are locals 143

begin

24.1 State definitions. OUTPUT variables are locals
record clientState =

giv :: "nat list" — client’s INPUT history: tokens GRANTED
ask :: "nat list" — client’s OUTPUT history: tokens REQUESTED
rel :: "nat list" — client’s OUTPUT history: tokens RELEASED

record ’a clientState_d =
clientState +
dummy :: ’a — dummy field for new variables

definition
— DUPLICATED FROM Client.thy, but with "tok" removed
— Maybe want a special theory section to declare such maps
non_dummy :: "’a clientState_d => clientState"
where "non_dummy s = (|giv = giv s, ask = ask s, rel = rel s|)"

definition
— Renaming map to put a Client into the standard form
client_map :: "’a clientState_d => clientState*’a"
where "client_map = funPair non_dummy dummy"

record allocState =
allocGiv :: "nat => nat list" — OUTPUT history: source of "giv" for i
allocAsk :: "nat => nat list" — INPUT: allocator’s copy of "ask" for i
allocRel :: "nat => nat list" — INPUT: allocator’s copy of "rel" for i

record ’a allocState_d =
allocState +
dummy :: ’a — dummy field for new variables

record ’a systemState =
allocState +
client :: "nat => clientState" — states of all clients
dummy :: ’a — dummy field for new variables

24.1.1 Resource allocation system specification

definition
— spec (1)
system_safety :: "’a systemState program set"
where "system_safety =

Always {s. (
∑

i ∈ lessThan Nclients. (tokens o giv o sub i o client)s)
≤ NbT + (

∑
i ∈ lessThan Nclients. (tokens o rel o sub i o client)s)}"

definition
— spec (2)
system_progress :: "’a systemState program set"
where "system_progress = (INT i : lessThan Nclients.

INT h.
{s. h ≤ (ask o sub i o client)s} LeadsTo



14424 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

{s. h pfixLe (giv o sub i o client) s})"

definition
system_spec :: "’a systemState program set"
where "system_spec = system_safety Int system_progress"

24.1.2 Client specification (required)
definition

— spec (3)
client_increasing :: "’a clientState_d program set"
where "client_increasing = UNIV guarantees Increasing ask Int Increasing

rel"

definition
— spec (4)
client_bounded :: "’a clientState_d program set"
where "client_bounded = UNIV guarantees Always {s. ∀ elt ∈ set (ask s).

elt ≤ NbT}"

definition
— spec (5)
client_progress :: "’a clientState_d program set"
where "client_progress =

Increasing giv guarantees
(INT h. {s. h ≤ giv s & h pfixGe ask s}

LeadsTo {s. tokens h ≤ (tokens o rel) s})"

definition
— spec: preserves part
client_preserves :: "’a clientState_d program set"
where "client_preserves = preserves giv Int preserves clientState_d.dummy"

definition
— environmental constraints
client_allowed_acts :: "’a clientState_d program set"
where "client_allowed_acts =

{F. AllowedActs F =
insert Id (

⋃
(Acts ‘ preserves (funPair rel ask)))}"

definition
client_spec :: "’a clientState_d program set"
where "client_spec = client_increasing Int client_bounded Int client_progress

Int client_allowed_acts Int client_preserves"

24.1.3 Allocator specification (required)
definition

— spec (6)
alloc_increasing :: "’a allocState_d program set"
where "alloc_increasing =

UNIV guarantees
(INT i : lessThan Nclients. Increasing (sub i o allocGiv))"

definition



24.1 State definitions. OUTPUT variables are locals 145

— spec (7)
alloc_safety :: "’a allocState_d program set"
where "alloc_safety =

(INT i : lessThan Nclients. Increasing (sub i o allocRel))
guarantees
Always {s. (

∑
i ∈ lessThan Nclients. (tokens o sub i o allocGiv)s)

≤ NbT + (
∑

i ∈ lessThan Nclients. (tokens o sub i o allocRel)s)}"

definition
— spec (8)
alloc_progress :: "’a allocState_d program set"
where "alloc_progress =

(INT i : lessThan Nclients. Increasing (sub i o allocAsk) Int
Increasing (sub i o allocRel))

Int
Always {s. ∀ i<Nclients.

∀ elt ∈ set ((sub i o allocAsk) s). elt ≤ NbT}
Int
(INT i : lessThan Nclients.
INT h. {s. h ≤ (sub i o allocGiv)s & h pfixGe (sub i o allocAsk)s}

LeadsTo
{s. tokens h ≤ (tokens o sub i o allocRel)s})

guarantees
(INT i : lessThan Nclients.
INT h. {s. h ≤ (sub i o allocAsk) s}

LeadsTo
{s. h pfixLe (sub i o allocGiv) s})"

definition
— spec: preserves part
alloc_preserves :: "’a allocState_d program set"
where "alloc_preserves = preserves allocRel Int preserves allocAsk Int

preserves allocState_d.dummy"

definition
— environmental constraints
alloc_allowed_acts :: "’a allocState_d program set"
where "alloc_allowed_acts =

{F. AllowedActs F =
insert Id (

⋃
(Acts ‘ (preserves allocGiv)))}"

definition
alloc_spec :: "’a allocState_d program set"
where "alloc_spec = alloc_increasing Int alloc_safety Int alloc_progress

Int
alloc_allowed_acts Int alloc_preserves"

24.1.4 Network specification

definition
— spec (9.1)
network_ask :: "’a systemState program set"



14624 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

where "network_ask = (INT i : lessThan Nclients.
Increasing (ask o sub i o client) guarantees
((sub i o allocAsk) Fols (ask o sub i o client)))"

definition
— spec (9.2)
network_giv :: "’a systemState program set"
where "network_giv = (INT i : lessThan Nclients.

Increasing (sub i o allocGiv)
guarantees
((giv o sub i o client) Fols (sub i o allocGiv)))"

definition
— spec (9.3)
network_rel :: "’a systemState program set"
where "network_rel = (INT i : lessThan Nclients.

Increasing (rel o sub i o client)
guarantees
((sub i o allocRel) Fols (rel o sub i o client)))"

definition
— spec: preserves part
network_preserves :: "’a systemState program set"
where "network_preserves =

preserves allocGiv Int
(INT i : lessThan Nclients. preserves (rel o sub i o client) Int

preserves (ask o sub i o client))"

definition
— environmental constraints
network_allowed_acts :: "’a systemState program set"
where "network_allowed_acts =

{F. AllowedActs F = insert Id
(
⋃

(Acts ‘ (preserves allocRel ∩ (
⋂

i<Nclients.
preserves (giv ◦ sub i ◦ client)))))}"

definition
network_spec :: "’a systemState program set"
where "network_spec = network_ask Int network_giv Int

network_rel Int network_allowed_acts Int
network_preserves"

24.1.5 State mappings

definition
sysOfAlloc :: "((nat => clientState) * ’a) allocState_d => ’a systemState"
where "sysOfAlloc = (%s. let (cl,xtr) = allocState_d.dummy s

in (| allocGiv = allocGiv s,
allocAsk = allocAsk s,
allocRel = allocRel s,
client = cl,
dummy = xtr|))"



24.1 State definitions. OUTPUT variables are locals 147

definition
sysOfClient :: "(nat => clientState) * ’a allocState_d => ’a systemState"
where "sysOfClient = (%(cl,al). (| allocGiv = allocGiv al,

allocAsk = allocAsk al,
allocRel = allocRel al,
client = cl,
systemState.dummy = allocState_d.dummy al|))"

axiomatization Alloc :: "’a allocState_d program"
where Alloc: "Alloc ∈ alloc_spec"

axiomatization Client :: "’a clientState_d program"
where Client: "Client ∈ client_spec"

axiomatization Network :: "’a systemState program"
where Network: "Network ∈ network_spec"

definition System :: "’a systemState program"
where "System = rename sysOfAlloc Alloc t Network t

(rename sysOfClient
(plam x: lessThan Nclients. rename client_map Client))"

declare subset_preserves_o [THEN [2] rev_subsetD, intro]
declare subset_preserves_o [THEN [2] rev_subsetD, simp]
declare funPair_o_distrib [simp]
declare Always_INT_distrib [simp]
declare o_apply [simp del]

lemmas [simp] =
rename_image_constrains
rename_image_stable
rename_image_increasing
rename_image_invariant
rename_image_Constrains
rename_image_Stable
rename_image_Increasing
rename_image_Always
rename_image_leadsTo
rename_image_LeadsTo
rename_preserves
rename_image_preserves
lift_image_preserves
bij_image_INT
bij_is_inj [THEN image_Int]
bij_image_Collect_eq

〈ML〉

lemmas lessThanBspec = lessThan_iff [THEN iffD2, THEN [2] bspec]



14824 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

〈ML〉

lemma inj_sysOfAlloc [iff]: "inj sysOfAlloc"
〈proof 〉

We need the inverse; also having it simplifies the proof of surjectivity
lemma inv_sysOfAlloc_eq [simp]: "!!s. inv sysOfAlloc s =

(| allocGiv = allocGiv s,
allocAsk = allocAsk s,
allocRel = allocRel s,
allocState_d.dummy = (client s, dummy s) |)"

〈proof 〉

lemma surj_sysOfAlloc [iff]: "surj sysOfAlloc"
〈proof 〉

lemma bij_sysOfAlloc [iff]: "bij sysOfAlloc"
〈proof 〉

24.1.6 bijectivity of sysOfClient

lemma inj_sysOfClient [iff]: "inj sysOfClient"
〈proof 〉

lemma inv_sysOfClient_eq [simp]: "!!s. inv sysOfClient s =
(client s,
(| allocGiv = allocGiv s,

allocAsk = allocAsk s,
allocRel = allocRel s,
allocState_d.dummy = systemState.dummy s|) )"

〈proof 〉

lemma surj_sysOfClient [iff]: "surj sysOfClient"
〈proof 〉

lemma bij_sysOfClient [iff]: "bij sysOfClient"
〈proof 〉

24.1.7 bijectivity of client_map

lemma inj_client_map [iff]: "inj client_map"
〈proof 〉

lemma inv_client_map_eq [simp]: "!!s. inv client_map s =
(%(x,y).(|giv = giv x, ask = ask x, rel = rel x,

clientState_d.dummy = y|)) s"
〈proof 〉

lemma surj_client_map [iff]: "surj client_map"
〈proof 〉

lemma bij_client_map [iff]: "bij client_map"
〈proof 〉

o-simprules for client_map



24.2 o-simprules for sysOfAlloc [MUST BE AUTOMATED] 149

lemma fst_o_client_map: "fst o client_map = non_dummy"
〈proof 〉

〈ML〉
declare fst_o_client_map’ [simp]

lemma snd_o_client_map: "snd o client_map = clientState_d.dummy"
〈proof 〉

〈ML〉
declare snd_o_client_map’ [simp]

24.2 o-simprules for sysOfAlloc [MUST BE AUTOMATED]
lemma client_o_sysOfAlloc: "client o sysOfAlloc = fst o allocState_d.dummy
"
〈proof 〉

〈ML〉
declare client_o_sysOfAlloc’ [simp]

lemma allocGiv_o_sysOfAlloc_eq: "allocGiv o sysOfAlloc = allocGiv"
〈proof 〉

〈ML〉
declare allocGiv_o_sysOfAlloc_eq’ [simp]

lemma allocAsk_o_sysOfAlloc_eq: "allocAsk o sysOfAlloc = allocAsk"
〈proof 〉

〈ML〉
declare allocAsk_o_sysOfAlloc_eq’ [simp]

lemma allocRel_o_sysOfAlloc_eq: "allocRel o sysOfAlloc = allocRel"
〈proof 〉

〈ML〉
declare allocRel_o_sysOfAlloc_eq’ [simp]

24.3 o-simprules for sysOfClient [MUST BE AUTOMATED]
lemma client_o_sysOfClient: "client o sysOfClient = fst"
〈proof 〉

〈ML〉
declare client_o_sysOfClient’ [simp]

lemma allocGiv_o_sysOfClient_eq: "allocGiv o sysOfClient = allocGiv o snd
"
〈proof 〉

〈ML〉
declare allocGiv_o_sysOfClient_eq’ [simp]



15024 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

lemma allocAsk_o_sysOfClient_eq: "allocAsk o sysOfClient = allocAsk o snd
"
〈proof 〉

〈ML〉
declare allocAsk_o_sysOfClient_eq’ [simp]

lemma allocRel_o_sysOfClient_eq: "allocRel o sysOfClient = allocRel o snd
"
〈proof 〉

〈ML〉
declare allocRel_o_sysOfClient_eq’ [simp]

lemma allocGiv_o_inv_sysOfAlloc_eq: "allocGiv o inv sysOfAlloc = allocGiv"
〈proof 〉

〈ML〉
declare allocGiv_o_inv_sysOfAlloc_eq’ [simp]

lemma allocAsk_o_inv_sysOfAlloc_eq: "allocAsk o inv sysOfAlloc = allocAsk"
〈proof 〉

〈ML〉
declare allocAsk_o_inv_sysOfAlloc_eq’ [simp]

lemma allocRel_o_inv_sysOfAlloc_eq: "allocRel o inv sysOfAlloc = allocRel"
〈proof 〉

〈ML〉
declare allocRel_o_inv_sysOfAlloc_eq’ [simp]

lemma rel_inv_client_map_drop_map: "(rel o inv client_map o drop_map i o
inv sysOfClient) =

rel o sub i o client"
〈proof 〉

〈ML〉
declare rel_inv_client_map_drop_map [simp]

lemma ask_inv_client_map_drop_map: "(ask o inv client_map o drop_map i o
inv sysOfClient) =

ask o sub i o client"
〈proof 〉

〈ML〉
declare ask_inv_client_map_drop_map [simp]

Client : <unfolded specification>

lemmas client_spec_simps =
client_spec_def client_increasing_def client_bounded_def
client_progress_def client_allowed_acts_def client_preserves_def
guarantees_Int_right



24.4 Components Lemmas [MUST BE AUTOMATED] 151

〈ML〉

declare
Client_Increasing_ask [iff]
Client_Increasing_rel [iff]
Client_Bounded [iff]
Client_preserves_giv [iff]
Client_preserves_dummy [iff]

Network : <unfolded specification>

lemmas network_spec_simps =
network_spec_def network_ask_def network_giv_def
network_rel_def network_allowed_acts_def network_preserves_def
ball_conj_distrib

〈ML〉

declare Network_preserves_allocGiv [iff]

declare
Network_preserves_rel [simp]
Network_preserves_ask [simp]

declare
Network_preserves_rel [simplified o_def, simp]
Network_preserves_ask [simplified o_def, simp]

Alloc : <unfolded specification>

lemmas alloc_spec_simps =
alloc_spec_def alloc_increasing_def alloc_safety_def
alloc_progress_def alloc_allowed_acts_def alloc_preserves_def

〈ML〉

Strip off the INT in the guarantees postcondition

lemmas Alloc_Increasing = Alloc_Increasing_0 [normalized]

declare
Alloc_preserves_allocRel [iff]
Alloc_preserves_allocAsk [iff]
Alloc_preserves_dummy [iff]

24.4 Components Lemmas [MUST BE AUTOMATED]
lemma Network_component_System: "Network t

((rename sysOfClient
(plam x: (lessThan Nclients). rename client_map Client)) t

rename sysOfAlloc Alloc)
= System"

〈proof 〉

lemma Client_component_System: "(rename sysOfClient
(plam x: (lessThan Nclients). rename client_map Client)) t



15224 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

(Network t rename sysOfAlloc Alloc) = System"
〈proof 〉

lemma Alloc_component_System: "rename sysOfAlloc Alloc t
((rename sysOfClient (plam x: (lessThan Nclients). rename client_map

Client)) t
Network) = System"

〈proof 〉

declare
Client_component_System [iff]
Network_component_System [iff]
Alloc_component_System [iff]

* These preservation laws should be generated automatically *

lemma Client_Allowed [simp]: "Allowed Client = preserves rel Int preserves
ask"
〈proof 〉

lemma Network_Allowed [simp]: "Allowed Network =
preserves allocRel Int
(INT i: lessThan Nclients. preserves(giv o sub i o client))"

〈proof 〉

lemma Alloc_Allowed [simp]: "Allowed Alloc = preserves allocGiv"
〈proof 〉

needed in rename_client_map_tac

lemma OK_lift_rename_Client [simp]: "OK I (%i. lift i (rename client_map
Client))"
〈proof 〉

lemma fst_lift_map_eq_fst [simp]: "fst (lift_map i x) i = fst x"
〈proof 〉

lemma fst_o_lift_map’ [simp]:
"(f ◦ sub i ◦ fst ◦ lift_map i ◦ g) = f o fst o g"

〈proof 〉

〈ML〉

Lifting Client_Increasing to systemState

lemma rename_Client_Increasing: "i ∈ I
==> rename sysOfClient (plam x: I. rename client_map Client) ∈

UNIV guarantees
Increasing (ask o sub i o client) Int
Increasing (rel o sub i o client)"

〈proof 〉

lemma preserves_sub_fst_lift_map: "[| F ∈ preserves w; i 6= j |]
==> F ∈ preserves (sub i o fst o lift_map j o funPair v w)"



24.4 Components Lemmas [MUST BE AUTOMATED] 153

〈proof 〉

lemma client_preserves_giv_oo_client_map: "[| i < Nclients; j < Nclients
|]

==> Client ∈ preserves (giv o sub i o fst o lift_map j o client_map)"
〈proof 〉

lemma rename_sysOfClient_ok_Network:
"rename sysOfClient (plam x: lessThan Nclients. rename client_map Client)

ok Network"
〈proof 〉

lemma rename_sysOfClient_ok_Alloc:
"rename sysOfClient (plam x: lessThan Nclients. rename client_map Client)

ok rename sysOfAlloc Alloc"
〈proof 〉

lemma rename_sysOfAlloc_ok_Network: "rename sysOfAlloc Alloc ok Network"
〈proof 〉

declare
rename_sysOfClient_ok_Network [iff]
rename_sysOfClient_ok_Alloc [iff]
rename_sysOfAlloc_ok_Network [iff]

The "ok" laws, re-oriented. But not sure this works: theorem ok_commute is
needed below
declare

rename_sysOfClient_ok_Network [THEN ok_sym, iff]
rename_sysOfClient_ok_Alloc [THEN ok_sym, iff]
rename_sysOfAlloc_ok_Network [THEN ok_sym]

lemma System_Increasing: "i < Nclients
==> System ∈ Increasing (ask o sub i o client) Int

Increasing (rel o sub i o client)"
〈proof 〉

lemmas rename_guarantees_sysOfAlloc_I =
bij_sysOfAlloc [THEN rename_rename_guarantees_eq, THEN iffD2]

lemmas rename_Alloc_Increasing =
Alloc_Increasing

[THEN rename_guarantees_sysOfAlloc_I,
simplified surj_rename o_def sub_apply

rename_image_Increasing bij_sysOfAlloc
allocGiv_o_inv_sysOfAlloc_eq’]

lemma System_Increasing_allocGiv:
"i < Nclients =⇒ System ∈ Increasing (sub i o allocGiv)"

〈proof 〉



15424 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

〈ML〉

declare System_Increasing’ [intro!]

Follows consequences. The "Always (INT ...) formulation expresses the general
safety property and allows it to be combined using Always_Int_rule below.
lemma System_Follows_rel:

"i < Nclients ==> System ∈ ((sub i o allocRel) Fols (rel o sub i o client))"
〈proof 〉

lemma System_Follows_ask:
"i < Nclients ==> System ∈ ((sub i o allocAsk) Fols (ask o sub i o client))"
〈proof 〉

lemma System_Follows_allocGiv:
"i < Nclients ==> System ∈ (giv o sub i o client) Fols (sub i o allocGiv)"
〈proof 〉

lemma Always_giv_le_allocGiv: "System ∈ Always (INT i: lessThan Nclients.
{s. (giv o sub i o client) s ≤ (sub i o allocGiv) s})"

〈proof 〉

lemma Always_allocAsk_le_ask: "System ∈ Always (INT i: lessThan Nclients.
{s. (sub i o allocAsk) s ≤ (ask o sub i o client) s})"

〈proof 〉

lemma Always_allocRel_le_rel: "System ∈ Always (INT i: lessThan Nclients.
{s. (sub i o allocRel) s ≤ (rel o sub i o client) s})"

〈proof 〉

24.5 Proof of the safety property (1)
safety (1), step 1 is System_Follows_rel

safety (1), step 2
lemmas System_Increasing_allocRel = System_Follows_rel [THEN Follows_Increasing1]

safety (1), step 3
lemma System_sum_bounded:

"System ∈ Always {s. (
∑

i ∈ lessThan Nclients. (tokens o sub i o allocGiv)
s)

≤ NbT + (
∑

i ∈ lessThan Nclients. (tokens o sub i o allocRel)
s)}"
〈proof 〉

Follows reasoning
lemma Always_tokens_giv_le_allocGiv: "System ∈ Always (INT i: lessThan Nclients.

{s. (tokens o giv o sub i o client) s
≤ (tokens o sub i o allocGiv) s})"

〈proof 〉



24.6 Proof of the progress property (2) 155

lemma Always_tokens_allocRel_le_rel: "System ∈ Always (INT i: lessThan Nclients.
{s. (tokens o sub i o allocRel) s
≤ (tokens o rel o sub i o client) s})"

〈proof 〉

safety (1), step 4 (final result!)

theorem System_safety: "System ∈ system_safety"
〈proof 〉

24.6 Proof of the progress property (2)
progress (2), step 1 is System_Follows_ask and System_Follows_rel

progress (2), step 2; see also System_Increasing_allocRel

lemmas System_Increasing_allocAsk = System_Follows_ask [THEN Follows_Increasing1]

progress (2), step 3: lifting Client_Bounded to systemState

lemma rename_Client_Bounded: "i ∈ I
==> rename sysOfClient (plam x: I. rename client_map Client) ∈

UNIV guarantees
Always {s. ∀ elt ∈ set ((ask o sub i o client) s). elt ≤ NbT}"

〈proof 〉

lemma System_Bounded_ask: "i < Nclients
==> System ∈ Always

{s. ∀ elt ∈ set ((ask o sub i o client) s). elt ≤ NbT}"
〈proof 〉

lemma Collect_all_imp_eq: "{x. ∀ y. P y −→ Q x y} = (INT y: {y. P y}. {x.
Q x y})"
〈proof 〉

progress (2), step 4

lemma System_Bounded_allocAsk: "System ∈ Always {s. ∀ i<Nclients.
∀ elt ∈ set ((sub i o allocAsk) s). elt ≤ NbT}"

〈proof 〉

progress (2), step 5 is System_Increasing_allocGiv

progress (2), step 6

lemmas System_Increasing_giv = System_Follows_allocGiv [THEN Follows_Increasing1]

lemma rename_Client_Progress: "i ∈ I
==> rename sysOfClient (plam x: I. rename client_map Client)

∈ Increasing (giv o sub i o client)
guarantees
(INT h. {s. h ≤ (giv o sub i o client) s &

h pfixGe (ask o sub i o client) s}
LeadsTo {s. tokens h ≤ (tokens o rel o sub i o client) s})"

〈proof 〉



15624 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

progress (2), step 7

lemma System_Client_Progress:
"System ∈ (INT i : (lessThan Nclients).

INT h. {s. h ≤ (giv o sub i o client) s &
h pfixGe (ask o sub i o client) s}

LeadsTo {s. tokens h ≤ (tokens o rel o sub i o client) s})"
〈proof 〉

lemmas System_lemma1 =
Always_LeadsToD [OF System_Follows_ask [THEN Follows_Bounded]

System_Follows_allocGiv [THEN Follows_LeadsTo]]

lemmas System_lemma2 =
PSP_Stable [OF System_lemma1

System_Follows_ask [THEN Follows_Increasing1, THEN IncreasingD]]

lemma System_lemma3: "i < Nclients
==> System ∈ {s. h ≤ (sub i o allocGiv) s &

h pfixGe (sub i o allocAsk) s}
LeadsTo
{s. h ≤ (giv o sub i o client) s &

h pfixGe (ask o sub i o client) s}"
〈proof 〉

progress (2), step 8: Client i’s "release" action is visible system-wide

lemma System_Alloc_Client_Progress: "i < Nclients
==> System ∈ {s. h ≤ (sub i o allocGiv) s &

h pfixGe (sub i o allocAsk) s}
LeadsTo {s. tokens h ≤ (tokens o sub i o allocRel) s}"

〈proof 〉

Lifting Alloc_Progress up to the level of systemState

progress (2), step 9

lemma System_Alloc_Progress:
"System ∈ (INT i : (lessThan Nclients).

INT h. {s. h ≤ (sub i o allocAsk) s}
LeadsTo {s. h pfixLe (sub i o allocGiv) s})"

〈proof 〉

progress (2), step 10 (final result!)

lemma System_Progress: "System ∈ system_progress"
〈proof 〉

theorem System_correct: "System ∈ system_spec"
〈proof 〉

Some obsolete lemmas



157

lemma non_dummy_eq_o_funPair: "non_dummy = (% (g,a,r). (| giv = g, ask =
a, rel = r |)) o

(funPair giv (funPair ask rel))"
〈proof 〉

lemma preserves_non_dummy_eq: "(preserves non_dummy) =
(preserves rel Int preserves ask Int preserves giv)"

〈proof 〉

Could go to Extend.ML
lemma bij_fst_inv_inv_eq: "bij f =⇒ fst (inv (%(x, u). inv f x) z) = f z"
〈proof 〉

end

25 Implementation of a multiple-client allocator
from a single-client allocator

theory AllocImpl imports AllocBase "../Follows" "../PPROD" begin

record ’b merge =
In :: "nat => ’b list"
Out :: "’b list"
iOut :: "nat list"

record (’a,’b) merge_d =
"’b merge" +
dummy :: ’a

definition non_dummy :: "(’a,’b) merge_d => ’b merge" where
"non_dummy s = (|In = In s, Out = Out s, iOut = iOut s|)"

record ’b distr =
In :: "’b list"
iIn :: "nat list"
Out :: "nat => ’b list"

record (’a,’b) distr_d =
"’b distr" +
dummy :: ’a

record allocState =
giv :: "nat list"
ask :: "nat list"
rel :: "nat list"

record ’a allocState_d =
allocState +
dummy :: ’a



15825 IMPLEMENTATION OF A MULTIPLE-CLIENT ALLOCATOR FROM A SINGLE-CLIENT ALLOCATOR

record ’a systemState =
allocState +
mergeRel :: "nat merge"
mergeAsk :: "nat merge"
distr :: "nat distr"
dummy :: ’a

definition

merge_increasing :: "(’a,’b) merge_d program set"
where "merge_increasing =

UNIV guarantees (Increasing merge.Out) Int (Increasing merge.iOut)"

definition

merge_eqOut :: "(’a,’b) merge_d program set"
where "merge_eqOut =

UNIV guarantees
Always {s. length (merge.Out s) = length (merge.iOut s)}"

definition

merge_bounded :: "(’a,’b) merge_d program set"
where "merge_bounded =

UNIV guarantees
Always {s. ∀ elt ∈ set (merge.iOut s). elt < Nclients}"

definition

merge_follows :: "(’a,’b) merge_d program set"
where "merge_follows =

(
⋂

i ∈ lessThan Nclients. Increasing (sub i o merge.In))
guarantees
(
⋂

i ∈ lessThan Nclients.
(%s. nths (merge.Out s)

{k. k < size(merge.iOut s) & merge.iOut s! k = i})
Fols (sub i o merge.In))"

definition

merge_preserves :: "(’a,’b) merge_d program set"
where "merge_preserves = preserves merge.In Int preserves merge_d.dummy"

definition

merge_allowed_acts :: "(’a,’b) merge_d program set"
where "merge_allowed_acts =

{F. AllowedActs F =
insert Id (

⋃
(Acts ‘ preserves (funPair merge.Out iOut)))}"



159

definition
merge_spec :: "(’a,’b) merge_d program set"
where "merge_spec = merge_increasing Int merge_eqOut Int merge_bounded Int

merge_follows Int merge_allowed_acts Int merge_preserves"

definition

distr_follows :: "(’a,’b) distr_d program set"
where "distr_follows =

Increasing distr.In Int Increasing distr.iIn Int
Always {s. ∀ elt ∈ set (distr.iIn s). elt < Nclients}
guarantees
(
⋂

i ∈ lessThan Nclients.
(sub i o distr.Out) Fols
(%s. nths (distr.In s)

{k. k < size(distr.iIn s) & distr.iIn s ! k = i}))"

definition
distr_allowed_acts :: "(’a,’b) distr_d program set"
where "distr_allowed_acts =

{D. AllowedActs D = insert Id (
⋃

(Acts ‘ (preserves distr.Out)))}"

definition
distr_spec :: "(’a,’b) distr_d program set"
where "distr_spec = distr_follows Int distr_allowed_acts"

definition

alloc_increasing :: "’a allocState_d program set"
where "alloc_increasing = UNIV guarantees Increasing giv"

definition

alloc_safety :: "’a allocState_d program set"
where "alloc_safety =

Increasing rel
guarantees Always {s. tokens (giv s) ≤ NbT + tokens (rel s)}"

definition

alloc_progress :: "’a allocState_d program set"
where "alloc_progress =

Increasing ask Int Increasing rel Int
Always {s. ∀ elt ∈ set (ask s). elt ≤ NbT}
Int
(
⋂

h. {s. h ≤ giv s & h pfixGe (ask s)}
LeadsTo
{s. tokens h ≤ tokens (rel s)})

guarantees (
⋂

h. {s. h ≤ ask s} LeadsTo {s. h pfixLe giv s})"



16025 IMPLEMENTATION OF A MULTIPLE-CLIENT ALLOCATOR FROM A SINGLE-CLIENT ALLOCATOR

definition

alloc_preserves :: "’a allocState_d program set"
where "alloc_preserves = preserves rel Int

preserves ask Int
preserves allocState_d.dummy"

definition

alloc_allowed_acts :: "’a allocState_d program set"
where "alloc_allowed_acts =

{F. AllowedActs F = insert Id (
⋃

(Acts ‘ (preserves giv)))}"

definition
alloc_spec :: "’a allocState_d program set"
where "alloc_spec = alloc_increasing Int alloc_safety Int alloc_progress

Int
alloc_allowed_acts Int alloc_preserves"

locale Merge =
fixes M :: "(’a,’b::order) merge_d program"
assumes

Merge_spec: "M ∈ merge_spec"

locale Distrib =
fixes D :: "(’a,’b::order) distr_d program"
assumes

Distrib_spec: "D ∈ distr_spec"

declare subset_preserves_o [THEN subsetD, intro]
declare funPair_o_distrib [simp]
declare Always_INT_distrib [simp]
declare o_apply [simp del]

25.1 Theorems for Merge
context Merge
begin

lemma Merge_Allowed:
"Allowed M = (preserves merge.Out) Int (preserves merge.iOut)"

〈proof 〉

lemma M_ok_iff [iff]:
"M ok G = (G ∈ preserves merge.Out & G ∈ preserves merge.iOut &

M ∈ Allowed G)"
〈proof 〉



25.2 Theorems for Distributor 161

lemma Merge_Always_Out_eq_iOut:
"[| G ∈ preserves merge.Out; G ∈ preserves merge.iOut; M ∈ Allowed G

|]
==> M t G ∈ Always {s. length (merge.Out s) = length (merge.iOut s)}"

〈proof 〉

lemma Merge_Bounded:
"[| G ∈ preserves merge.iOut; G ∈ preserves merge.Out; M ∈ Allowed G

|]
==> M t G ∈ Always {s. ∀ elt ∈ set (merge.iOut s). elt < Nclients}"

〈proof 〉

lemma Merge_Bag_Follows_lemma:
"[| G ∈ preserves merge.iOut; G ∈ preserves merge.Out; M ∈ Allowed G

|]
==> M t G ∈ Always

{s. (
∑

i ∈ lessThan Nclients. bag_of (nths (merge.Out s)
{k. k < length (iOut s) & iOut s ! k = i}))

=
(bag_of o merge.Out) s}"

〈proof 〉

lemma Merge_Bag_Follows:
"M ∈ (

⋂
i ∈ lessThan Nclients. Increasing (sub i o merge.In))

guarantees
(bag_of o merge.Out) Fols
(%s.

∑
i ∈ lessThan Nclients. (bag_of o sub i o merge.In) s)"

〈proof 〉

end

25.2 Theorems for Distributor
context Distrib
begin

lemma Distr_Increasing_Out:
"D ∈ Increasing distr.In Int Increasing distr.iIn Int

Always {s. ∀ elt ∈ set (distr.iIn s). elt < Nclients}
guarantees
(
⋂

i ∈ lessThan Nclients. Increasing (sub i o distr.Out))"
〈proof 〉

lemma Distr_Bag_Follows_lemma:
"[| G ∈ preserves distr.Out;

D t G ∈ Always {s. ∀ elt ∈ set (distr.iIn s). elt < Nclients} |]
==> D t G ∈ Always

{s. (
∑

i ∈ lessThan Nclients. bag_of (nths (distr.In s)
{k. k < length (iIn s) & iIn s ! k = i}))

=
bag_of (nths (distr.In s) (lessThan (length (iIn s))))}"

〈proof 〉

lemma D_ok_iff [iff]:



16226 DISTRIBUTED RESOURCE MANAGEMENT SYSTEM: THE CLIENT

"D ok G = (G ∈ preserves distr.Out & D ∈ Allowed G)"
〈proof 〉

lemma Distr_Bag_Follows:
"D ∈ Increasing distr.In Int Increasing distr.iIn Int

Always {s. ∀ elt ∈ set (distr.iIn s). elt < Nclients}
guarantees
(
⋂

i ∈ lessThan Nclients.
(%s.

∑
i ∈ lessThan Nclients. (bag_of o sub i o distr.Out) s)

Fols
(%s. bag_of (nths (distr.In s) (lessThan (length(distr.iIn s))))))"

〈proof 〉

end

25.3 Theorems for Allocator
lemma alloc_refinement_lemma:

"!!f::nat=>nat. (
⋂

i ∈ lessThan n. {s. f i ≤ g i s})
⊆ {s. (

∑
x ∈ lessThan n. f x) ≤ (

∑
x ∈ lessThan n. g x s)}"

〈proof 〉

lemma alloc_refinement:
"(
⋂

i ∈ lessThan Nclients. Increasing (sub i o allocAsk) Int
Increasing (sub i o allocRel))

Int
Always {s. ∀ i. i<Nclients -->

(∀ elt ∈ set ((sub i o allocAsk) s). elt ≤ NbT)}
Int
(
⋂

i ∈ lessThan Nclients.⋂
h. {s. h ≤ (sub i o allocGiv)s & h pfixGe (sub i o allocAsk)s}

LeadsTo {s. tokens h ≤ (tokens o sub i o allocRel)s})
⊆

(
⋂

i ∈ lessThan Nclients. Increasing (sub i o allocAsk) Int
Increasing (sub i o allocRel))

Int
Always {s. ∀ i. i<Nclients -->

(∀ elt ∈ set ((sub i o allocAsk) s). elt ≤ NbT)}
Int
(
⋂

hf. (
⋂

i ∈ lessThan Nclients.
{s. hf i ≤ (sub i o allocGiv)s & hf i pfixGe (sub i o allocAsk)s})

LeadsTo {s. (
∑

i ∈ lessThan Nclients. tokens (hf i)) ≤
(
∑

i ∈ lessThan Nclients. (tokens o sub i o allocRel)s)})"
〈proof 〉

end

26 Distributed Resource Management System:
the Client

theory Client imports "../Rename" AllocBase begin

type_synonym



163

tokbag = nat — tokbags could be multisets...or any ordered type?

record state =
giv :: "tokbag list" — input history: tokens granted
ask :: "tokbag list" — output history: tokens requested
rel :: "tokbag list" — output history: tokens released
tok :: tokbag — current token request

record ’a state_d =
state +
dummy :: ’a — new variables

definition
rel_act :: "(’a state_d * ’a state_d) set"
where "rel_act = {(s,s’).

∃ nrel. nrel = size (rel s) &
s’ = s (| rel := rel s @ [giv s!nrel] |) &
nrel < size (giv s) &
ask s!nrel ≤ giv s!nrel}"

definition
tok_act :: "(’a state_d * ’a state_d) set"
where "tok_act = {(s,s’). s’=s | s’ = s (|tok := Suc (tok s mod NbT) |)}"

definition
ask_act :: "(’a state_d * ’a state_d) set"
where "ask_act = {(s,s’). s’=s |

(s’ = s (|ask := ask s @ [tok s]|))}"

definition
Client :: "’a state_d program"
where "Client =

mk_total_program
({s. tok s ∈ atMost NbT &

giv s = [] & ask s = [] & rel s = []},
{rel_act, tok_act, ask_act},⋃

G ∈ preserves rel Int preserves ask Int preserves tok.
Acts G)"

definition

non_dummy :: "’a state_d => state"
where "non_dummy s = (|giv = giv s, ask = ask s, rel = rel s, tok = tok

s|)"



16426 DISTRIBUTED RESOURCE MANAGEMENT SYSTEM: THE CLIENT

definition

client_map :: "’a state_d => state*’a"
where "client_map = funPair non_dummy dummy"

declare Client_def [THEN def_prg_Init, simp]
declare Client_def [THEN def_prg_AllowedActs, simp]
declare rel_act_def [THEN def_act_simp, simp]
declare tok_act_def [THEN def_act_simp, simp]
declare ask_act_def [THEN def_act_simp, simp]

lemma Client_ok_iff [iff]:
"(Client ok G) =
(G ∈ preserves rel & G ∈ preserves ask & G ∈ preserves tok &
Client ∈ Allowed G)"

〈proof 〉

Safety property 1: ask, rel are increasing
lemma increasing_ask_rel:

"Client ∈ UNIV guarantees Increasing ask Int Increasing rel"
〈proof 〉

declare nth_append [simp] append_one_prefix [simp]

Safety property 2: the client never requests too many tokens. With no Substi-
tution Axiom, we must prove the two invariants simultaneously.
lemma ask_bounded_lemma:

"Client ok G
==> Client t G ∈

Always ({s. tok s ≤ NbT} Int
{s. ∀ elt ∈ set (ask s). elt ≤ NbT})"

〈proof 〉

export version, with no mention of tok in the postcondition, but unfortunately
tok must be declared local.
lemma ask_bounded:

"Client ∈ UNIV guarantees Always {s. ∀ elt ∈ set (ask s). elt ≤ NbT}"
〈proof 〉

** Towards proving the liveness property **
lemma stable_rel_le_giv: "Client ∈ stable {s. rel s ≤ giv s}"
〈proof 〉

lemma Join_Stable_rel_le_giv:
"[| Client t G ∈ Increasing giv; G ∈ preserves rel |]
==> Client t G ∈ Stable {s. rel s ≤ giv s}"

〈proof 〉

lemma Join_Always_rel_le_giv:
"[| Client t G ∈ Increasing giv; G ∈ preserves rel |]
==> Client t G ∈ Always {s. rel s ≤ giv s}"



165

〈proof 〉

lemma transient_lemma:
"Client ∈ transient {s. rel s = k & k<h & h ≤ giv s & h pfixGe ask s}"

〈proof 〉

lemma induct_lemma:
"[| Client t G ∈ Increasing giv; Client ok G |]

==> Client t G ∈ {s. rel s = k & k<h & h ≤ giv s & h pfixGe ask s}
LeadsTo {s. k < rel s & rel s ≤ giv s &

h ≤ giv s & h pfixGe ask s}"
〈proof 〉

lemma rel_progress_lemma:
"[| Client t G ∈ Increasing giv; Client ok G |]

==> Client t G ∈ {s. rel s < h & h ≤ giv s & h pfixGe ask s}
LeadsTo {s. h ≤ rel s}"

〈proof 〉

lemma client_progress_lemma:
"[| Client t G ∈ Increasing giv; Client ok G |]
==> Client t G ∈ {s. h ≤ giv s & h pfixGe ask s}

LeadsTo {s. h ≤ rel s}"
〈proof 〉

Progress property: all tokens that are given will be released

lemma client_progress:
"Client ∈

Increasing giv guarantees
(INT h. {s. h ≤ giv s & h pfixGe ask s} LeadsTo {s. h ≤ rel s})"

〈proof 〉

This shows that the Client won’t alter other variables in any state that it is
combined with

lemma client_preserves_dummy: "Client ∈ preserves dummy"
〈proof 〉

* Obsolete lemmas from first version of the Client *

lemma stable_size_rel_le_giv:
"Client ∈ stable {s. size (rel s) ≤ size (giv s)}"

〈proof 〉

clients return the right number of tokens

lemma ok_guar_rel_prefix_giv:
"Client ∈ Increasing giv guarantees Always {s. rel s ≤ giv s}"

〈proof 〉

end



166 27 PROJECTIONS OF STATE SETS

27 Projections of State Sets
theory Project imports Extend begin

definition projecting :: "[’c program => ’c set, ’a*’b => ’c,
’a program, ’c program set, ’a program set] => bool" where

"projecting C h F X’ X ==
∀ G. extend h FtG ∈ X’ --> Ftproject h (C G) G ∈ X"

definition extending :: "[’c program => ’c set, ’a*’b => ’c, ’a program,
’c program set, ’a program set] => bool" where

"extending C h F Y’ Y ==
∀ G. extend h F ok G --> Ftproject h (C G) G ∈ Y

--> extend h FtG ∈ Y’"

definition subset_closed :: "’a set set => bool" where
"subset_closed U == ∀ A ∈ U. Pow A ⊆ U"

context Extend
begin

lemma project_extend_constrains_I:
"F ∈ A co B ==> project h C (extend h F) ∈ A co B"

〈proof 〉

27.1 Safety
lemma project_unless:

"[| G ∈ stable C; project h C G ∈ A unless B |]
==> G ∈ (C ∩ extend_set h A) unless (extend_set h B)"

〈proof 〉

lemma Join_project_constrains:
"(Ftproject h C G ∈ A co B) =

(extend h FtG ∈ (C ∩ extend_set h A) co (extend_set h B) &
F ∈ A co B)"

〈proof 〉

lemma Join_project_stable:
"extend h FtG ∈ stable C
==> (Ftproject h C G ∈ stable A) =

(extend h FtG ∈ stable (C ∩ extend_set h A) &
F ∈ stable A)"

〈proof 〉

lemma project_constrains_I:
"extend h FtG ∈ extend_set h A co extend_set h B
==> Ftproject h C G ∈ A co B"

〈proof 〉



27.2 "projecting" and union/intersection (no converses) 167

lemma project_increasing_I:
"extend h FtG ∈ increasing (func o f)
==> Ftproject h C G ∈ increasing func"

〈proof 〉

lemma Join_project_increasing:
"(Ftproject h UNIV G ∈ increasing func) =
(extend h FtG ∈ increasing (func o f))"

〈proof 〉

lemma project_constrains_D:
"Ftproject h UNIV G ∈ A co B
==> extend h FtG ∈ extend_set h A co extend_set h B"

〈proof 〉

end

27.2 "projecting" and union/intersection (no converses)
lemma projecting_Int:

"[| projecting C h F XA’ XA; projecting C h F XB’ XB |]
==> projecting C h F (XA’ ∩ XB’) (XA ∩ XB)"

〈proof 〉

lemma projecting_Un:
"[| projecting C h F XA’ XA; projecting C h F XB’ XB |]
==> projecting C h F (XA’ ∪ XB’) (XA ∪ XB)"

〈proof 〉

lemma projecting_INT:
"[| !!i. i ∈ I ==> projecting C h F (X’ i) (X i) |]
==> projecting C h F (

⋂
i ∈ I. X’ i) (

⋂
i ∈ I. X i)"

〈proof 〉

lemma projecting_UN:
"[| !!i. i ∈ I ==> projecting C h F (X’ i) (X i) |]
==> projecting C h F (

⋃
i ∈ I. X’ i) (

⋃
i ∈ I. X i)"

〈proof 〉

lemma projecting_weaken:
"[| projecting C h F X’ X; U’<=X’; X ⊆ U |] ==> projecting C h F U’

U"
〈proof 〉

lemma projecting_weaken_L:
"[| projecting C h F X’ X; U’<=X’ |] ==> projecting C h F U’ X"

〈proof 〉

lemma extending_Int:
"[| extending C h F YA’ YA; extending C h F YB’ YB |]
==> extending C h F (YA’ ∩ YB’) (YA ∩ YB)"

〈proof 〉



168 27 PROJECTIONS OF STATE SETS

lemma extending_Un:
"[| extending C h F YA’ YA; extending C h F YB’ YB |]
==> extending C h F (YA’ ∪ YB’) (YA ∪ YB)"

〈proof 〉

lemma extending_INT:
"[| !!i. i ∈ I ==> extending C h F (Y’ i) (Y i) |]
==> extending C h F (

⋂
i ∈ I. Y’ i) (

⋂
i ∈ I. Y i)"

〈proof 〉

lemma extending_UN:
"[| !!i. i ∈ I ==> extending C h F (Y’ i) (Y i) |]
==> extending C h F (

⋃
i ∈ I. Y’ i) (

⋃
i ∈ I. Y i)"

〈proof 〉

lemma extending_weaken:
"[| extending C h F Y’ Y; Y’<=V’; V ⊆ Y |] ==> extending C h F V’ V"

〈proof 〉

lemma extending_weaken_L:
"[| extending C h F Y’ Y; Y’<=V’ |] ==> extending C h F V’ Y"

〈proof 〉

lemma projecting_UNIV: "projecting C h F X’ UNIV"
〈proof 〉

context Extend
begin

lemma projecting_constrains:
"projecting C h F (extend_set h A co extend_set h B) (A co B)"

〈proof 〉

lemma projecting_stable:
"projecting C h F (stable (extend_set h A)) (stable A)"

〈proof 〉

lemma projecting_increasing:
"projecting C h F (increasing (func o f)) (increasing func)"

〈proof 〉

lemma extending_UNIV: "extending C h F UNIV Y"
〈proof 〉

lemma extending_constrains:
"extending (%G. UNIV) h F (extend_set h A co extend_set h B) (A co B)"

〈proof 〉

lemma extending_stable:
"extending (%G. UNIV) h F (stable (extend_set h A)) (stable A)"

〈proof 〉

lemma extending_increasing:
"extending (%G. UNIV) h F (increasing (func o f)) (increasing func)"



27.3 Reachability and project 169

〈proof 〉

27.3 Reachability and project
lemma reachable_imp_reachable_project:

"[| reachable (extend h FtG) ⊆ C;
z ∈ reachable (extend h FtG) |]

==> f z ∈ reachable (Ftproject h C G)"
〈proof 〉

lemma project_Constrains_D:
"Ftproject h (reachable (extend h FtG)) G ∈ A Co B
==> extend h FtG ∈ (extend_set h A) Co (extend_set h B)"

〈proof 〉

lemma project_Stable_D:
"Ftproject h (reachable (extend h FtG)) G ∈ Stable A
==> extend h FtG ∈ Stable (extend_set h A)"

〈proof 〉

lemma project_Always_D:
"Ftproject h (reachable (extend h FtG)) G ∈ Always A
==> extend h FtG ∈ Always (extend_set h A)"

〈proof 〉

lemma project_Increasing_D:
"Ftproject h (reachable (extend h FtG)) G ∈ Increasing func
==> extend h FtG ∈ Increasing (func o f)"

〈proof 〉

27.4 Converse results for weak safety: benefits of the ar-
gument C

lemma reachable_project_imp_reachable:
"[| C ⊆ reachable(extend h FtG);

x ∈ reachable (Ftproject h C G) |]
==> ∃ y. h(x,y) ∈ reachable (extend h FtG)"

〈proof 〉

lemma project_set_reachable_extend_eq:
"project_set h (reachable (extend h FtG)) =
reachable (Ftproject h (reachable (extend h FtG)) G)"

〈proof 〉

lemma reachable_extend_Join_subset:
"reachable (extend h FtG) ⊆ C
==> reachable (extend h FtG) ⊆

extend_set h (reachable (Ftproject h C G))"
〈proof 〉

lemma project_Constrains_I:
"extend h FtG ∈ (extend_set h A) Co (extend_set h B)
==> Ftproject h (reachable (extend h FtG)) G ∈ A Co B"



170 27 PROJECTIONS OF STATE SETS

〈proof 〉

lemma project_Stable_I:
"extend h FtG ∈ Stable (extend_set h A)
==> Ftproject h (reachable (extend h FtG)) G ∈ Stable A"

〈proof 〉

lemma project_Always_I:
"extend h FtG ∈ Always (extend_set h A)
==> Ftproject h (reachable (extend h FtG)) G ∈ Always A"

〈proof 〉

lemma project_Increasing_I:
"extend h FtG ∈ Increasing (func o f)
==> Ftproject h (reachable (extend h FtG)) G ∈ Increasing func"

〈proof 〉

lemma project_Constrains:
"(Ftproject h (reachable (extend h FtG)) G ∈ A Co B) =
(extend h FtG ∈ (extend_set h A) Co (extend_set h B))"

〈proof 〉

lemma project_Stable:
"(Ftproject h (reachable (extend h FtG)) G ∈ Stable A) =
(extend h FtG ∈ Stable (extend_set h A))"

〈proof 〉

lemma project_Increasing:
"(Ftproject h (reachable (extend h FtG)) G ∈ Increasing func) =
(extend h FtG ∈ Increasing (func o f))"

〈proof 〉

27.5 A lot of redundant theorems: all are proved to facil-
itate reasoning about guarantees.

lemma projecting_Constrains:
"projecting (%G. reachable (extend h FtG)) h F

(extend_set h A Co extend_set h B) (A Co B)"

〈proof 〉

lemma projecting_Stable:
"projecting (%G. reachable (extend h FtG)) h F

(Stable (extend_set h A)) (Stable A)"
〈proof 〉

lemma projecting_Always:
"projecting (%G. reachable (extend h FtG)) h F

(Always (extend_set h A)) (Always A)"
〈proof 〉

lemma projecting_Increasing:
"projecting (%G. reachable (extend h FtG)) h F

(Increasing (func o f)) (Increasing func)"



27.6 leadsETo in the precondition (??) 171

〈proof 〉

lemma extending_Constrains:
"extending (%G. reachable (extend h FtG)) h F

(extend_set h A Co extend_set h B) (A Co B)"
〈proof 〉

lemma extending_Stable:
"extending (%G. reachable (extend h FtG)) h F

(Stable (extend_set h A)) (Stable A)"
〈proof 〉

lemma extending_Always:
"extending (%G. reachable (extend h FtG)) h F

(Always (extend_set h A)) (Always A)"
〈proof 〉

lemma extending_Increasing:
"extending (%G. reachable (extend h FtG)) h F

(Increasing (func o f)) (Increasing func)"
〈proof 〉

27.6 leadsETo in the precondition (??)
27.6.1 transient
lemma transient_extend_set_imp_project_transient:

"[| G ∈ transient (C ∩ extend_set h A); G ∈ stable C |]
==> project h C G ∈ transient (project_set h C ∩ A)"

〈proof 〉

lemma project_extend_transient_D:
"project h C (extend h F) ∈ transient (project_set h C ∩ D)
==> F ∈ transient (project_set h C ∩ D)"

〈proof 〉

27.6.2 ensures – a primitive combining progress with safety
lemma ensures_extend_set_imp_project_ensures:

"[| extend h F ∈ stable C; G ∈ stable C;
extend h FtG ∈ A ensures B; A-B = C ∩ extend_set h D |]

==> Ftproject h C G
∈ (project_set h C ∩ project_set h A) ensures (project_set h B)"

〈proof 〉

Transferring a transient property upwards
lemma project_transient_extend_set:

"project h C G ∈ transient (project_set h C ∩ A - B)
==> G ∈ transient (C ∩ extend_set h A - extend_set h B)"

〈proof 〉

lemma project_unless2:
"[| G ∈ stable C; project h C G ∈ (project_set h C ∩ A) unless B |]



172 27 PROJECTIONS OF STATE SETS

==> G ∈ (C ∩ extend_set h A) unless (extend_set h B)"
〈proof 〉

lemma extend_unless:
"[|extend h F ∈ stable C; F ∈ A unless B|]
==> extend h F ∈ C ∩ extend_set h A unless extend_set h B"

〈proof 〉

lemma Join_project_ensures:
"[| extend h FtG ∈ stable C;

Ftproject h C G ∈ A ensures B |]
==> extend h FtG ∈ (C ∩ extend_set h A) ensures (extend_set h B)"

〈proof 〉

Lemma useful for both STRONG and WEAK progress, but the transient con-
dition’s very strong
lemma PLD_lemma:

"[| extend h FtG ∈ stable C;
Ftproject h C G ∈ (project_set h C ∩ A) leadsTo B |]

==> extend h FtG ∈
C ∩ extend_set h (project_set h C ∩ A) leadsTo (extend_set h B)"

〈proof 〉

lemma project_leadsTo_D_lemma:
"[| extend h FtG ∈ stable C;

Ftproject h C G ∈ (project_set h C ∩ A) leadsTo B |]
==> extend h FtG ∈ (C ∩ extend_set h A) leadsTo (extend_set h B)"

〈proof 〉

lemma Join_project_LeadsTo:
"[| C = (reachable (extend h FtG));

Ftproject h C G ∈ A LeadsTo B |]
==> extend h FtG ∈ (extend_set h A) LeadsTo (extend_set h B)"

〈proof 〉

27.7 Towards the theorem project_Ensures_D

lemma project_ensures_D_lemma:
"[| G ∈ stable ((C ∩ extend_set h A) - (extend_set h B));

Ftproject h C G ∈ (project_set h C ∩ A) ensures B;
extend h FtG ∈ stable C |]

==> extend h FtG ∈ (C ∩ extend_set h A) ensures (extend_set h B)"

〈proof 〉

lemma project_ensures_D:
"[| Ftproject h UNIV G ∈ A ensures B;

G ∈ stable (extend_set h A - extend_set h B) |]
==> extend h FtG ∈ (extend_set h A) ensures (extend_set h B)"

〈proof 〉

lemma project_Ensures_D:



27.8 Guarantees 173

"[| Ftproject h (reachable (extend h FtG)) G ∈ A Ensures B;
G ∈ stable (reachable (extend h FtG) ∩ extend_set h A -

extend_set h B) |]
==> extend h FtG ∈ (extend_set h A) Ensures (extend_set h B)"

〈proof 〉

27.8 Guarantees
lemma project_act_Restrict_subset_project_act:

"project_act h (Restrict C act) ⊆ project_act h act"
〈proof 〉

lemma subset_closed_ok_extend_imp_ok_project:
"[| extend h F ok G; subset_closed (AllowedActs F) |]
==> F ok project h C G"

〈proof 〉

lemma project_guarantees_raw:
assumes xguary: "F ∈ X guarantees Y"

and closed: "subset_closed (AllowedActs F)"
and project: "!!G. extend h FtG ∈ X’

==> Ftproject h (C G) G ∈ X"
and extend: "!!G. [| Ftproject h (C G) G ∈ Y |]

==> extend h FtG ∈ Y’"
shows "extend h F ∈ X’ guarantees Y’"
〈proof 〉

lemma project_guarantees:
"[| F ∈ X guarantees Y; subset_closed (AllowedActs F);

projecting C h F X’ X; extending C h F Y’ Y |]
==> extend h F ∈ X’ guarantees Y’"

〈proof 〉

27.9 guarantees corollaries
27.9.1 Some could be deleted: the required versions are easy to prove
lemma extend_guar_increasing:

"[| F ∈ UNIV guarantees increasing func;
subset_closed (AllowedActs F) |]

==> extend h F ∈ X’ guarantees increasing (func o f)"
〈proof 〉

lemma extend_guar_Increasing:
"[| F ∈ UNIV guarantees Increasing func;

subset_closed (AllowedActs F) |]
==> extend h F ∈ X’ guarantees Increasing (func o f)"

〈proof 〉

lemma extend_guar_Always:



174 28 PROGRESS UNDER ALLOWABLE SETS

"[| F ∈ Always A guarantees Always B;
subset_closed (AllowedActs F) |]

==> extend h F
∈ Always(extend_set h A) guarantees Always(extend_set h B)"

〈proof 〉

27.9.2 Guarantees with a leadsTo postcondition
lemma project_leadsTo_D:

"Ftproject h UNIV G ∈ A leadsTo B
==> extend h FtG ∈ (extend_set h A) leadsTo (extend_set h B)"

〈proof 〉

lemma project_LeadsTo_D:
"Ftproject h (reachable (extend h FtG)) G ∈ A LeadsTo B

==> extend h FtG ∈ (extend_set h A) LeadsTo (extend_set h B)"
〈proof 〉

lemma extending_leadsTo:
"extending (%G. UNIV) h F

(extend_set h A leadsTo extend_set h B) (A leadsTo B)"
〈proof 〉

lemma extending_LeadsTo:
"extending (%G. reachable (extend h FtG)) h F

(extend_set h A LeadsTo extend_set h B) (A LeadsTo B)"
〈proof 〉

end

end

28 Progress Under Allowable Sets
theory ELT imports Project begin

inductive_set

elt :: "[’a set set, ’a program] => (’a set * ’a set) set"
for CC :: "’a set set" and F :: "’a program"

where

Basis: "[| F ∈ A ensures B; A-B ∈ (insert {} CC) |] ==> (A,B) ∈ elt
CC F"

| Trans: "[| (A,B) ∈ elt CC F; (B,C) ∈ elt CC F |] ==> (A,C) ∈ elt CC F"

| Union: "∀ A∈S. (A,B) ∈ elt CC F ==> (Union S, B) ∈ elt CC F"

definition

givenBy :: "[’a => ’b] => ’a set set"
where "givenBy f = range (%B. f-‘ B)"



175

definition

leadsETo :: "[’a set, ’a set set, ’a set] => ’a program set"
(‹(3_/ leadsTo[_]/ _)› [80,0,80] 80)

where "leadsETo A CC B = {F. (A,B) ∈ elt CC F}"

definition
LeadsETo :: "[’a set, ’a set set, ’a set] => ’a program set"

(‹(3_/ LeadsTo[_]/ _)› [80,0,80] 80)
where "LeadsETo A CC B =

{F. F ∈ (reachable F Int A) leadsTo[(%C. reachable F Int C) ‘ CC] B}"

lemma givenBy_id [simp]: "givenBy id = UNIV"
〈proof 〉

lemma givenBy_eq_all: "(givenBy v) = {A. ∀ x∈A. ∀ y. v x = v y −→ y ∈ A}"
〈proof 〉

lemma givenByI: "(
∧

x y. [| x ∈ A; v x = v y |] ==> y ∈ A) ==> A ∈ givenBy
v"
〈proof 〉

lemma givenByD: "[| A ∈ givenBy v; x ∈ A; v x = v y |] ==> y ∈ A"
〈proof 〉

lemma empty_mem_givenBy [iff]: "{} ∈ givenBy v"
〈proof 〉

lemma givenBy_imp_eq_Collect: "A ∈ givenBy v ==> ∃ P. A = {s. P(v s)}"
〈proof 〉

lemma Collect_mem_givenBy: "{s. P(v s)} ∈ givenBy v"
〈proof 〉

lemma givenBy_eq_Collect: "givenBy v = {A. ∃ P. A = {s. P(v s)}}"
〈proof 〉

lemma preserves_givenBy_imp_stable:
"[| F ∈ preserves v; D ∈ givenBy v |] ==> F ∈ stable D"

〈proof 〉

lemma givenBy_o_subset: "givenBy (w o v) <= givenBy v"
〈proof 〉

lemma givenBy_DiffI:
"[| A ∈ givenBy v; B ∈ givenBy v |] ==> A-B ∈ givenBy v"

〈proof 〉



176 28 PROGRESS UNDER ALLOWABLE SETS

lemma leadsETo_Basis [intro]:
"[| F ∈ A ensures B; A-B ∈ insert {} CC |] ==> F ∈ A leadsTo[CC] B"

〈proof 〉

lemma leadsETo_Trans:
"[| F ∈ A leadsTo[CC] B; F ∈ B leadsTo[CC] C |] ==> F ∈ A leadsTo[CC]

C"
〈proof 〉

lemma leadsETo_Un_duplicate:
"F ∈ A leadsTo[CC] (A’ ∪ A’) =⇒ F ∈ A leadsTo[CC] A’"

〈proof 〉

lemma leadsETo_Un_duplicate2:
"F ∈ A leadsTo[CC] (A’ ∪ C ∪ C) ==> F ∈ A leadsTo[CC] (A’ Un C)"

〈proof 〉

lemma leadsETo_Union:
"(
∧

A. A ∈ S =⇒ F ∈ A leadsTo[CC] B) =⇒ F ∈ (
⋃

S) leadsTo[CC] B"
〈proof 〉

lemma leadsETo_UN:
"(
∧

i. i ∈ I =⇒ F ∈ (A i) leadsTo[CC] B)
==> F ∈ (UN i:I. A i) leadsTo[CC] B"

〈proof 〉

lemma leadsETo_induct:
"[| F ∈ za leadsTo[CC] zb;

!!A B. [| F ∈ A ensures B; A-B ∈ insert {} CC |] ==> P A B;
!!A B C. [| F ∈ A leadsTo[CC] B; P A B; F ∈ B leadsTo[CC] C; P B C

|]
==> P A C;

!!B S. ∀ A∈S. F ∈ A leadsTo[CC] B & P A B ==> P (
⋃

S) B
|] ==> P za zb"

〈proof 〉

lemma leadsETo_mono: "CC’ <= CC ==> (A leadsTo[CC’] B) <= (A leadsTo[CC]
B)"
〈proof 〉

lemma leadsETo_Trans_Un:
"[| F ∈ A leadsTo[CC] B; F ∈ B leadsTo[DD] C |]
==> F ∈ A leadsTo[CC Un DD] C"

〈proof 〉



177

lemma leadsETo_Union_Int:
"(!!A. A ∈ S ==> F ∈ (A Int C) leadsTo[CC] B)
==> F ∈ (

⋃
S Int C) leadsTo[CC] B"

〈proof 〉

lemma leadsETo_Un:
"[| F ∈ A leadsTo[CC] C; F ∈ B leadsTo[CC] C |]
==> F ∈ (A Un B) leadsTo[CC] C"

〈proof 〉

lemma single_leadsETo_I:
"(
∧

x. x ∈ A ==> F ∈ {x} leadsTo[CC] B) =⇒ F ∈ A leadsTo[CC] B"
〈proof 〉

lemma subset_imp_leadsETo: "A<=B =⇒ F ∈ A leadsTo[CC] B"
〈proof 〉

lemmas empty_leadsETo = empty_subsetI [THEN subset_imp_leadsETo, simp]

lemma leadsETo_weaken_R:
"[| F ∈ A leadsTo[CC] A’; A’<=B’ |] ==> F ∈ A leadsTo[CC] B’"

〈proof 〉

lemma leadsETo_weaken_L:
"[| F ∈ A leadsTo[CC] A’; B<=A |] ==> F ∈ B leadsTo[CC] A’"

〈proof 〉

lemma leadsETo_Un_distrib:
"F ∈ (A Un B) leadsTo[CC] C =
(F ∈ A leadsTo[CC] C ∧ F ∈ B leadsTo[CC] C)"

〈proof 〉

lemma leadsETo_UN_distrib:
"F ∈ (UN i:I. A i) leadsTo[CC] B =
(∀ i∈I. F ∈ (A i) leadsTo[CC] B)"

〈proof 〉

lemma leadsETo_Union_distrib:
"F ∈ (

⋃
S) leadsTo[CC] B = (∀ A∈S. F ∈ A leadsTo[CC] B)"

〈proof 〉

lemma leadsETo_weaken:
"[| F ∈ A leadsTo[CC’] A’; B<=A; A’<=B’; CC’ <= CC |]
==> F ∈ B leadsTo[CC] B’"

〈proof 〉

lemma leadsETo_givenBy:



178 28 PROGRESS UNDER ALLOWABLE SETS

"[| F ∈ A leadsTo[CC] A’; CC <= givenBy v |]
==> F ∈ A leadsTo[givenBy v] A’"

〈proof 〉

lemma leadsETo_Diff:
"[| F ∈ (A-B) leadsTo[CC] C; F ∈ B leadsTo[CC] C |]
==> F ∈ A leadsTo[CC] C"

〈proof 〉

lemma leadsETo_Un_Un:
"[| F ∈ A leadsTo[CC] A’; F ∈ B leadsTo[CC] B’ |]
==> F ∈ (A Un B) leadsTo[CC] (A’ Un B’)"

〈proof 〉

lemma leadsETo_cancel2:
"[| F ∈ A leadsTo[CC] (A’ Un B); F ∈ B leadsTo[CC] B’ |]
==> F ∈ A leadsTo[CC] (A’ Un B’)"

〈proof 〉

lemma leadsETo_cancel1:
"[| F ∈ A leadsTo[CC] (B Un A’); F ∈ B leadsTo[CC] B’ |]

==> F ∈ A leadsTo[CC] (B’ Un A’)"
〈proof 〉

lemma leadsETo_cancel_Diff1:
"[| F ∈ A leadsTo[CC] (B Un A’); F ∈ (B-A’) leadsTo[CC] B’ |]

==> F ∈ A leadsTo[CC] (B’ Un A’)"
〈proof 〉

lemma e_psp_stable:
"[| F ∈ A leadsTo[CC] A’; F ∈ stable B; ∀ C∈CC. C Int B ∈ CC |]
==> F ∈ (A Int B) leadsTo[CC] (A’ Int B)"

〈proof 〉

lemma e_psp_stable2:
"[| F ∈ A leadsTo[CC] A’; F ∈ stable B; ∀ C∈CC. C Int B ∈ CC |]
==> F ∈ (B Int A) leadsTo[CC] (B Int A’)"

〈proof 〉

lemma e_psp:
"[| F ∈ A leadsTo[CC] A’; F ∈ B co B’;

∀ C∈CC. C Int B Int B’ ∈ CC |]
==> F ∈ (A Int B’) leadsTo[CC] ((A’ Int B) Un (B’ - B))"



179

〈proof 〉

lemma e_psp2:
"[| F ∈ A leadsTo[CC] A’; F ∈ B co B’;

∀ C∈CC. C Int B Int B’ ∈ CC |]
==> F ∈ (B’ Int A) leadsTo[CC] ((B Int A’) Un (B’ - B))"

〈proof 〉

lemma gen_leadsETo_imp_Join_leadsETo:
"[| F ∈ (A leadsTo[givenBy v] B); G ∈ preserves v;

FtG ∈ stable C |]
==> FtG ∈ ((C Int A) leadsTo[(%D. C Int D) ‘ givenBy v] B)"

〈proof 〉

lemma leadsETo_subset_leadsTo: "(A leadsTo[CC] B) <= (A leadsTo B)"
〈proof 〉

lemma leadsETo_UNIV_eq_leadsTo: "(A leadsTo[UNIV] B) = (A leadsTo B)"
〈proof 〉

lemma LeadsETo_eq_leadsETo:
"A LeadsTo[CC] B =

{F. F ∈ (reachable F Int A) leadsTo[(%C. reachable F Int C) ‘ CC]

(reachable F Int B)}"
〈proof 〉

lemma LeadsETo_Trans:
"[| F ∈ A LeadsTo[CC] B; F ∈ B LeadsTo[CC] C |]
==> F ∈ A LeadsTo[CC] C"

〈proof 〉

lemma LeadsETo_Union:
"(
∧

A. A ∈ S =⇒ F ∈ A LeadsTo[CC] B) =⇒ F ∈ (
⋃

S) LeadsTo[CC] B"
〈proof 〉

lemma LeadsETo_UN:
"(
∧

i. i ∈ I =⇒ F ∈ (A i) LeadsTo[CC] B)
=⇒ F ∈ (UN i:I. A i) LeadsTo[CC] B"

〈proof 〉



180 28 PROGRESS UNDER ALLOWABLE SETS

lemma LeadsETo_Un:
"[| F ∈ A LeadsTo[CC] C; F ∈ B LeadsTo[CC] C |]
==> F ∈ (A Un B) LeadsTo[CC] C"

〈proof 〉

lemma single_LeadsETo_I:
"(
∧

s. s ∈ A ==> F ∈ {s} LeadsTo[CC] B) =⇒ F ∈ A LeadsTo[CC] B"
〈proof 〉

lemma subset_imp_LeadsETo:
"A <= B =⇒ F ∈ A LeadsTo[CC] B"

〈proof 〉

lemmas empty_LeadsETo = empty_subsetI [THEN subset_imp_LeadsETo]

lemma LeadsETo_weaken_R:
"[| F ∈ A LeadsTo[CC] A’; A’ <= B’ |] ==> F ∈ A LeadsTo[CC] B’"

〈proof 〉

lemma LeadsETo_weaken_L:
"[| F ∈ A LeadsTo[CC] A’; B <= A |] ==> F ∈ B LeadsTo[CC] A’"

〈proof 〉

lemma LeadsETo_weaken:
"[| F ∈ A LeadsTo[CC’] A’;

B <= A; A’ <= B’; CC’ <= CC |]
==> F ∈ B LeadsTo[CC] B’"

〈proof 〉

lemma LeadsETo_subset_LeadsTo: "(A LeadsTo[CC] B) <= (A LeadsTo B)"
〈proof 〉

lemma reachable_ensures:
"F ∈ A ensures B =⇒ F ∈ (reachable F Int A) ensures B"

〈proof 〉

lemma lel_lemma:
"F ∈ A leadsTo B =⇒ F ∈ (reachable F Int A) leadsTo[Pow(reachable F)]

B"
〈proof 〉

lemma LeadsETo_UNIV_eq_LeadsTo: "(A LeadsTo[UNIV] B) = (A LeadsTo B)"
〈proof 〉

context Extend
begin

lemma givenBy_o_eq_extend_set:
"givenBy (v o f) = extend_set h ‘ (givenBy v)"



181

〈proof 〉

lemma givenBy_eq_extend_set: "givenBy f = range (extend_set h)"
〈proof 〉

lemma extend_set_givenBy_I:
"D ∈ givenBy v ==> extend_set h D ∈ givenBy (v o f)"

〈proof 〉

lemma leadsETo_imp_extend_leadsETo:
"F ∈ A leadsTo[CC] B
==> extend h F ∈ (extend_set h A) leadsTo[extend_set h ‘ CC]

(extend_set h B)"
〈proof 〉

lemma Join_project_ensures_strong:
"[| project h C G /∈ transient (project_set h C Int (A-B)) |

project_set h C Int (A - B) = {};
extend h FtG ∈ stable C;
Ftproject h C G ∈ (project_set h C Int A) ensures B |]

==> extend h FtG ∈ (C Int extend_set h A) ensures (extend_set h B)"
〈proof 〉

lemma pli_lemma:
"[| extend h FtG ∈ stable C;

Ftproject h C G
∈ project_set h C Int project_set h A leadsTo project_set h B |]

==> Ftproject h C G
∈ project_set h C Int project_set h A leadsTo

project_set h C Int project_set h B"
〈proof 〉

lemma project_leadsETo_I_lemma:
"[| extend h FtG ∈ stable C;

extend h FtG ∈
(C Int A) leadsTo[(%D. C Int D)‘givenBy f] B |]

==> Ftproject h C G
∈ (project_set h C Int project_set h (C Int A)) leadsTo (project_set h

B)"
〈proof 〉

lemma project_leadsETo_I:
"extend h FtG ∈ (extend_set h A) leadsTo[givenBy f] (extend_set h B)
=⇒ Ftproject h UNIV G ∈ A leadsTo B"

〈proof 〉



182 28 PROGRESS UNDER ALLOWABLE SETS

lemma project_LeadsETo_I:
"extend h FtG ∈ (extend_set h A) LeadsTo[givenBy f] (extend_set h B)

=⇒ Ftproject h (reachable (extend h FtG)) G
∈ A LeadsTo B"

〈proof 〉

lemma projecting_leadsTo:
"projecting (λG. UNIV) h F

(extend_set h A leadsTo[givenBy f] extend_set h B)
(A leadsTo B)"

〈proof 〉

lemma projecting_LeadsTo:
"projecting (λG. reachable (extend h FtG)) h F

(extend_set h A LeadsTo[givenBy f] extend_set h B)
(A LeadsTo B)"

〈proof 〉

end

end


	The Basic UNITY Theory
	The abstract type of programs
	Inspectors for type "program"
	Equality for UNITY programs
	co
	Union
	Intersection
	unless
	stable
	Union
	Intersection
	invariant
	increasing
	Theoretical Results from Section 6
	Ad-hoc set-theory rules

	Partial versus Total Transitions
	Basic properties

	Rules for Lazy Definition Expansion
	Inspectors for type "program"


	Fixed Point of a Program
	Progress
	transient
	ensures
	leadsTo
	PSP: Progress-Safety-Progress
	Proving the induction rules
	wlt
	Completion: Binary and General Finite versions

	Weak Safety
	traces and reachable
	Co
	Stable
	Increasing
	The Elimination Theorem
	Specialized laws for handling Always
	"Co" rules involving Always
	Totalize

	Weak Progress
	Specialized laws for handling invariants
	Introduction rules: Basis, Trans, Union
	Derived rules
	PSP: Progress-Safety-Progress
	Induction rules
	Completion: Binary and General Finite versions

	The Detects Relation
	Unions of Programs
	SKIP
	SKIP and safety properties
	Join
	JN
	Algebraic laws
	Laws Governing 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 
	Safety: co, stable, FP
	Progress: transient, ensures
	the ok and OK relations
	Allowed
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 safetyprop, for reasoning about given instances of "ok"

	Composition: Basic Primitives
	The component relation
	The preserves property

	Guarantees Specifications
	Existential Properties
	Universal Properties
	Guarantees
	Distributive Laws. Re-Orient to Perform Miniscoping
	Guarantees: Additional Laws (by lcp)
	Guarantees Laws for Breaking Down the Program (by lcp)

	Extending State Sets
	Restrict
	Trivial properties of f, g, h
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 extendset: basic properties
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 projectset: basic properties
	More laws
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 extendact
	extend
	Safety: co, stable
	Weak safety primitives: Co, Stable
	Progress: transient, ensures
	Proving the converse takes some doing!
	preserves
	Guarantees

	Renaming of State Sets
	inverse properties
	the lattice operations
	Strong Safety: co, stable
	Weak Safety: Co, Stable
	Progress: transient, ensures
	"image" versions of the rules, for lifting "guarantees" properties

	Replication of Components
	Injectiveness proof
	Surjectiveness proof
	The Operator 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 liftset
	The Lattice Operations
	Safety: constrains, stable, invariant
	Progress: transient, ensures
	Lemmas to Handle Function Composition (o) More Consistently
	More lemmas about extend and project
	OK and "lift"

	The Prefix Ordering on Lists
	preliminary lemmas
	genPrefix is a partial order
	recursion equations
	The type of lists is partially ordered
	pfixLe, pfixGe: properties inherited from the translations

	The Follows Relation of Charpentier and Sivilotte
	Destruction rules
	Union properties (with the subset ordering)
	Multiset union properties (with the multiset ordering)

	Predicate Transformers
	Defining the Predicate Transformers 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wp, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 awp and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wens
	Defining the Weakest Ensures Set
	Properties Involving Program Union
	The Set 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wensset F B for a Single-Assignment Program

	Progress Sets
	Complete Lattices and the Operator 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cl
	Progress Sets and the Main Lemma
	The Progress Set Union Theorem
	Some Progress Sets
	Lattices and Relations
	Decoupling Theorems

	Composition Theorems Based on Monotonicity and Commutativity
	Commutativity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cl L and assignment.
	Commutativity of Functions and Relation

	Monotonicity

	Comprehensive UNITY Theory
	The Token Ring
	Definitions
	Progress under Weak Fairness
	Progress

	Analyzing the Needham-Schroeder Public-Key Protocol in UNITY
	Inductive Proofs about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nspublic
	Authenticity properties obtained from NS2
	Authenticity properties obtained from NS2

	A Family of Similar Counters: Original Version
	A Family of Similar Counters: Version with Compatibility
	The priority system
	Component correctness proofs
	System properties
	The main result: above set decreases

	Progress Set Examples
	The Composition of Two Single-Assignment Programs
	Calculating 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wensset FF k
	Proving 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 FF  UNIV --3mu k


	Common Declarations for Chandy and Charpentier's Allocator
	State definitions. OUTPUT variables are locals
	Resource allocation system specification
	Client specification (required)
	Allocator specification (required)
	Network specification
	State mappings
	bijectivity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sysOfClient
	bijectivity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 clientmap

	o-simprules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sysOfAlloc [MUST BE AUTOMATED]
	o-simprules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sysOfClient [MUST BE AUTOMATED]
	Components Lemmas [MUST BE AUTOMATED]
	Proof of the safety property (1)
	Proof of the progress property (2)

	Implementation of a multiple-client allocator from a single-client allocator
	Theorems for Merge
	Theorems for Distributor
	Theorems for Allocator

	Distributed Resource Management System: the Client
	Projections of State Sets
	Safety
	"projecting" and union/intersection (no converses)
	Reachability and project
	Converse results for weak safety: benefits of the argument C
	A lot of redundant theorems: all are proved to facilitate reasoning about guarantees.
	leadsETo in the precondition (??)
	transient
	ensures – a primitive combining progress with safety

	Towards the theorem 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 projectEnsuresD
	Guarantees
	guarantees corollaries
	Some could be deleted: the required versions are easy to prove
	Guarantees with a leadsTo postcondition


	Progress Under Allowable Sets

