
The UNITY Formalism
Sidi Ehmety and Lawrence C. Paulson

January 18, 2026

Contents
1 The Basic UNITY Theory 2

1.0.1 The abstract type of programs 3
1.0.2 Inspectors for type "program" 3
1.0.3 Equality for UNITY programs 3
1.0.4 co . 4
1.0.5 Union . 4
1.0.6 Intersection . 5
1.0.7 unless . 5
1.0.8 stable . 5
1.0.9 Union . 6
1.0.10 Intersection . 6
1.0.11 invariant . 7
1.0.12 increasing . 7
1.0.13 Theoretical Results from Section 6 7
1.0.14 Ad-hoc set-theory rules 8

1.1 Partial versus Total Transitions 8
1.1.1 Basic properties . 8

1.2 Rules for Lazy Definition Expansion 9
1.2.1 Inspectors for type "program" 10

2 Fixed Point of a Program 10

3 Progress 11
3.1 transient . 12
3.2 ensures . 13
3.3 leadsTo . 14
3.4 PSP: Progress-Safety-Progress . 18
3.5 Proving the induction rules . 19
3.6 wlt . 20
3.7 Completion: Binary and General Finite versions 21

4 Weak Safety 23
4.1 traces and reachable . 24
4.2 Co . 24
4.3 Stable . 26
4.4 Increasing . 27
4.5 The Elimination Theorem . 27

1

2 CONTENTS

4.6 Specialized laws for handling Always 28
4.7 "Co" rules involving Always . 29
4.8 Totalize . 30

5 Weak Progress 30
5.1 Specialized laws for handling invariants 31
5.2 Introduction rules: Basis, Trans, Union 31
5.3 Derived rules . 31
5.4 PSP: Progress-Safety-Progress . 35
5.5 Induction rules . 36
5.6 Completion: Binary and General Finite versions 37

6 The Detects Relation 38

7 Unions of Programs 39
7.1 SKIP . 40
7.2 SKIP and safety properties . 40
7.3 Join . 41
7.4 JN . 41
7.5 Algebraic laws . 41
7.6 Laws Governing

⊔
. 42

7.7 Safety: co, stable, FP . 42
7.8 Progress: transient, ensures . 43
7.9 the ok and OK relations . 45
7.10 Allowed . 46
7.11 safety_prop, for reasoning about given instances of "ok" 46

8 Composition: Basic Primitives 47
8.1 The component relation . 48
8.2 The preserves property . 49

9 Guarantees Specifications 52
9.1 Existential Properties . 53
9.2 Universal Properties . 54
9.3 Guarantees . 54
9.4 Distributive Laws. Re-Orient to Perform Miniscoping 55
9.5 Guarantees: Additional Laws (by lcp) 56
9.6 Guarantees Laws for Breaking Down the Program (by lcp) 57

10 Extending State Sets 61
10.1 Restrict . 62
10.2 Trivial properties of f, g, h . 63
10.3 extend_set : basic properties . 63
10.4 project_set : basic properties . 64
10.5 More laws . 64
10.6 extend_act . 65
10.7 extend . 66
10.8 Safety: co, stable . 68
10.9 Weak safety primitives: Co, Stable 69
10.10Progress: transient, ensures . 70
10.11Proving the converse takes some doing! 71

CONTENTS 3

10.12preserves . 72
10.13Guarantees . 72

11 Renaming of State Sets 74
11.1 inverse properties . 74
11.2 the lattice operations . 77
11.3 Strong Safety: co, stable . 77
11.4 Weak Safety: Co, Stable . 77
11.5 Progress: transient, ensures . 78
11.6 "image" versions of the rules, for lifting "guarantees" properties . 79

12 Replication of Components 81
12.1 Injectiveness proof . 82
12.2 Surjectiveness proof . 82
12.3 The Operator lift_set . 83
12.4 The Lattice Operations . 84
12.5 Safety: constrains, stable, invariant 84
12.6 Progress: transient, ensures . 85
12.7 Lemmas to Handle Function Composition (o) More Consistently 87
12.8 More lemmas about extend and project 87
12.9 OK and "lift" . 88

13 The Prefix Ordering on Lists 91
13.1 preliminary lemmas . 92
13.2 genPrefix is a partial order . 92
13.3 recursion equations . 94
13.4 The type of lists is partially ordered 95
13.5 pfixLe, pfixGe: properties inherited from the translations 98

14 The Follows Relation of Charpentier and Sivilotte 99
14.1 Destruction rules . 100
14.2 Union properties (with the subset ordering) 101
14.3 Multiset union properties (with the multiset ordering) 102

15 Predicate Transformers 103
15.1 Defining the Predicate Transformers wp, awp and wens 104
15.2 Defining the Weakest Ensures Set 106
15.3 Properties Involving Program Union 107
15.4 The Set wens_set F B for a Single-Assignment Program 109

16 Progress Sets 113
16.1 Complete Lattices and the Operator cl 113
16.2 Progress Sets and the Main Lemma 115
16.3 The Progress Set Union Theorem 117
16.4 Some Progress Sets . 118

16.4.1 Lattices and Relations . 118
16.4.2 Decoupling Theorems . 120

16.5 Composition Theorems Based on Monotonicity and Commutativity121
16.5.1 Commutativity of cl L and assignment. 121
16.5.2 Commutativity of Functions and Relation 122

16.6 Monotonicity . 123

4 CONTENTS

17 Comprehensive UNITY Theory 123

18 The Token Ring 128
18.1 Definitions . 129
18.2 Progress under Weak Fairness . 130
18.3 Progress . 137

19 Analyzing the Needham-Schroeder Public-Key Protocol in UNITY155
19.1 Inductive Proofs about ns_public 156
19.2 Authenticity properties obtained from NS2 157
19.3 Authenticity properties obtained from NS2 159

20 A Family of Similar Counters: Original Version 162

21 A Family of Similar Counters: Version with Compatibility 164

22 The priority system 169
22.1 Component correctness proofs . 170
22.2 System properties . 171
22.3 The main result: above set decreases 172

23 Progress Set Examples 175
23.1 The Composition of Two Single-Assignment Programs 175

23.1.1 Calculating wens_set FF {k..} 175
23.1.2 Proving FF ∈ UNIV 7−→ {k..} 176

24 Common Declarations for Chandy and Charpentier’s Allocator177
24.1 State definitions. OUTPUT variables are locals 178

24.1.1 Resource allocation system specification 179
24.1.2 Client specification (required) 179
24.1.3 Allocator specification (required) 180
24.1.4 Network specification . 181
24.1.5 State mappings . 182
24.1.6 bijectivity of sysOfClient 184
24.1.7 bijectivity of client_map 185

24.2 o-simprules for sysOfAlloc [MUST BE AUTOMATED] 186
24.3 o-simprules for sysOfClient [MUST BE AUTOMATED] 186
24.4 Components Lemmas [MUST BE AUTOMATED] 189
24.5 Proof of the safety property (1) 193
24.6 Proof of the progress property (2) 194

25 Implementation of a multiple-client allocator from a single-
client allocator 197
25.1 Theorems for Merge . 201
25.2 Theorems for Distributor . 202
25.3 Theorems for Allocator . 203

26 Distributed Resource Management System: the Client 204

CONTENTS 5

27 Projections of State Sets 208

27.1 Safety . 209

27.2 "projecting" and union/intersection (no converses) 210

27.3 Reachability and project . 212

27.4 Converse results for weak safety: benefits of the argument C . . . 213

27.5 A lot of redundant theorems: all are proved to facilitate reasoning
about guarantees. 214

27.6 leadsETo in the precondition (??) 215

27.6.1 transient . 215

27.6.2 ensures – a primitive combining progress with safety . . . 216

27.7 Towards the theorem project_Ensures_D 218

27.8 Guarantees . 218

27.9 guarantees corollaries . 219

27.9.1 Some could be deleted: the required versions are easy to
prove . 219

27.9.2 Guarantees with a leadsTo postcondition 220

28 Progress Under Allowable Sets 220

6 CONTENTS

Alloc

AllocBase

AllocImpl

Channel

Client

Common

Comp

Constrains

Counter Counterc

Deadlock

Detects

ELT

Extend

FP

Follows

Guar

Handshake Lift

Lift_prog

ListOrder

Mutex NSP_Bad

Network

PPROD

Priority

PriorityAuxProgress

ProgressSets

Project

README README_Comp README_Simple

Reach

Reachability

Rename

SubstAx

TimerArray

Token

Transformers

UNITY

UNITY_Main

Union

WFair [HOL-Auth]

[HOL-Library]

[HOL]

[Pure]

[Tools]

7

1 The Basic UNITY Theory

theory UNITY imports Main begin

definition
"Program =

{(init:: ’a set, acts :: (’a * ’a)set set,
allowed :: (’a * ’a)set set). Id ∈ acts & Id ∈ allowed}"

typedef ’a program = "Program :: (’a set * (’a * ’a) set set * (’a * ’a) set
set) set"

morphisms Rep_Program Abs_Program
unfolding Program_def by blast

definition Acts :: "’a program => (’a * ’a)set set" where
"Acts F == (%(init, acts, allowed). acts) (Rep_Program F)"

definition "constrains" :: "[’a set, ’a set] => ’a program set" (infixl ‹co›
60) where

"A co B == {F. ∀ act ∈ Acts F. act‘‘A ⊆ B}"

definition unless :: "[’a set, ’a set] => ’a program set" (infixl ‹unless›
60) where

"A unless B == (A-B) co (A ∪ B)"

definition mk_program :: "(’a set * (’a * ’a)set set * (’a * ’a)set set)
=> ’a program" where

"mk_program == %(init, acts, allowed).
Abs_Program (init, insert Id acts, insert Id allowed)"

definition Init :: "’a program => ’a set" where
"Init F == (%(init, acts, allowed). init) (Rep_Program F)"

definition AllowedActs :: "’a program => (’a * ’a)set set" where
"AllowedActs F == (%(init, acts, allowed). allowed) (Rep_Program F)"

definition Allowed :: "’a program => ’a program set" where
"Allowed F == {G. Acts G ⊆ AllowedActs F}"

definition stable :: "’a set => ’a program set" where
"stable A == A co A"

definition strongest_rhs :: "[’a program, ’a set] => ’a set" where
"strongest_rhs F A ==

⋂
{B. F ∈ A co B}"

definition invariant :: "’a set => ’a program set" where
"invariant A == {F. Init F ⊆ A} ∩ stable A"

definition increasing :: "[’a => ’b::{order}] => ’a program set" where
— Polymorphic in both states and the meaning of ≤
"increasing f ==

⋂
z. stable {s. z ≤ f s}"

8 1 THE BASIC UNITY THEORY

1.0.1 The abstract type of programs
lemmas program_typedef =

Rep_Program Rep_Program_inverse Abs_Program_inverse
Program_def Init_def Acts_def AllowedActs_def mk_program_def

lemma Id_in_Acts [iff]: "Id ∈ Acts F"
apply (cut_tac x = F in Rep_Program)
apply (auto simp add: program_typedef)
done

lemma insert_Id_Acts [iff]: "insert Id (Acts F) = Acts F"
by (simp add: insert_absorb)

lemma Acts_nonempty [simp]: "Acts F 6= {}"
by auto

lemma Id_in_AllowedActs [iff]: "Id ∈ AllowedActs F"
apply (cut_tac x = F in Rep_Program)
apply (auto simp add: program_typedef)
done

lemma insert_Id_AllowedActs [iff]: "insert Id (AllowedActs F) = AllowedActs
F"
by (simp add: insert_absorb)

1.0.2 Inspectors for type "program"
lemma Init_eq [simp]: "Init (mk_program (init,acts,allowed)) = init"
by (simp add: program_typedef)

lemma Acts_eq [simp]: "Acts (mk_program (init,acts,allowed)) = insert Id
acts"
by (simp add: program_typedef)

lemma AllowedActs_eq [simp]:
"AllowedActs (mk_program (init,acts,allowed)) = insert Id allowed"

by (simp add: program_typedef)

1.0.3 Equality for UNITY programs
lemma surjective_mk_program [simp]:

"mk_program (Init F, Acts F, AllowedActs F) = F"
apply (cut_tac x = F in Rep_Program)
apply (auto simp add: program_typedef)
apply (drule_tac f = Abs_Program in arg_cong)+
apply (simp add: program_typedef insert_absorb)
done

lemma program_equalityI:
"[| Init F = Init G; Acts F = Acts G; AllowedActs F = AllowedActs G |]

==> F = G"
apply (rule_tac t = F in surjective_mk_program [THEN subst])
apply (rule_tac t = G in surjective_mk_program [THEN subst], simp)

9

done

lemma program_equalityE:
"[| F = G;

[| Init F = Init G; Acts F = Acts G; AllowedActs F = AllowedActs G
|]

==> P |] ==> P"
by simp

lemma program_equality_iff:
"(F=G) =
(Init F = Init G & Acts F = Acts G &AllowedActs F = AllowedActs G)"

by (blast intro: program_equalityI program_equalityE)

1.0.4 co
lemma constrainsI:

"(!!act s s’. [| act ∈ Acts F; (s,s’) ∈ act; s ∈ A |] ==> s’ ∈ A’)

==> F ∈ A co A’"
by (simp add: constrains_def, blast)

lemma constrainsD:
"[| F ∈ A co A’; act ∈ Acts F; (s,s’) ∈ act; s ∈ A |] ==> s’ ∈ A’"

by (unfold constrains_def, blast)

lemma constrains_empty [iff]: "F ∈ {} co B"
by (unfold constrains_def, blast)

lemma constrains_empty2 [iff]: "(F ∈ A co {}) = (A={})"
by (unfold constrains_def, blast)

lemma constrains_UNIV [iff]: "(F ∈ UNIV co B) = (B = UNIV)"
by (unfold constrains_def, blast)

lemma constrains_UNIV2 [iff]: "F ∈ A co UNIV"
by (unfold constrains_def, blast)

monotonic in 2nd argument
lemma constrains_weaken_R:

"[| F ∈ A co A’; A’<=B’ |] ==> F ∈ A co B’"
by (unfold constrains_def, blast)

anti-monotonic in 1st argument
lemma constrains_weaken_L:

"[| F ∈ A co A’; B ⊆ A |] ==> F ∈ B co A’"
by (unfold constrains_def, blast)

lemma constrains_weaken:
"[| F ∈ A co A’; B ⊆ A; A’<=B’ |] ==> F ∈ B co B’"

by (unfold constrains_def, blast)

1.0.5 Union
lemma constrains_Un:

10 1 THE BASIC UNITY THEORY

"[| F ∈ A co A’; F ∈ B co B’ |] ==> F ∈ (A ∪ B) co (A’ ∪ B’)"
by (unfold constrains_def, blast)

lemma constrains_UN:
"(!!i. i ∈ I ==> F ∈ (A i) co (A’ i))
==> F ∈ (

⋃
i ∈ I. A i) co (

⋃
i ∈ I. A’ i)"

by (unfold constrains_def, blast)

lemma constrains_Un_distrib: "(A ∪ B) co C = (A co C) ∩ (B co C)"
by (unfold constrains_def, blast)

lemma constrains_UN_distrib: "(
⋃

i ∈ I. A i) co B = (
⋂

i ∈ I. A i co B)"
by (unfold constrains_def, blast)

lemma constrains_Int_distrib: "C co (A ∩ B) = (C co A) ∩ (C co B)"
by (unfold constrains_def, blast)

lemma constrains_INT_distrib: "A co (
⋂

i ∈ I. B i) = (
⋂

i ∈ I. A co B i)"
by (unfold constrains_def, blast)

1.0.6 Intersection
lemma constrains_Int:

"[| F ∈ A co A’; F ∈ B co B’ |] ==> F ∈ (A ∩ B) co (A’ ∩ B’)"
by (unfold constrains_def, blast)

lemma constrains_INT:
"(!!i. i ∈ I ==> F ∈ (A i) co (A’ i))
==> F ∈ (

⋂
i ∈ I. A i) co (

⋂
i ∈ I. A’ i)"

by (unfold constrains_def, blast)

lemma constrains_imp_subset: "F ∈ A co A’ ==> A ⊆ A’"
by (unfold constrains_def, auto)

The reasoning is by subsets since "co" refers to single actions only. So this rule
isn’t that useful.
lemma constrains_trans:

"[| F ∈ A co B; F ∈ B co C |] ==> F ∈ A co C"
by (unfold constrains_def, blast)

lemma constrains_cancel:
"[| F ∈ A co (A’ ∪ B); F ∈ B co B’ |] ==> F ∈ A co (A’ ∪ B’)"

by (unfold constrains_def, clarify, blast)

1.0.7 unless
lemma unlessI: "F ∈ (A-B) co (A ∪ B) ==> F ∈ A unless B"
by (unfold unless_def, assumption)

lemma unlessD: "F ∈ A unless B ==> F ∈ (A-B) co (A ∪ B)"
by (unfold unless_def, assumption)

1.0.8 stable
lemma stableI: "F ∈ A co A ==> F ∈ stable A"

11

by (unfold stable_def, assumption)

lemma stableD: "F ∈ stable A ==> F ∈ A co A"
by (unfold stable_def, assumption)

lemma stable_UNIV [simp]: "stable UNIV = UNIV"
by (unfold stable_def constrains_def, auto)

1.0.9 Union
lemma stable_Un:

"[| F ∈ stable A; F ∈ stable A’ |] ==> F ∈ stable (A ∪ A’)"

apply (unfold stable_def)
apply (blast intro: constrains_Un)
done

lemma stable_UN:
"(!!i. i ∈ I ==> F ∈ stable (A i)) ==> F ∈ stable (

⋃
i ∈ I. A i)"

apply (unfold stable_def)
apply (blast intro: constrains_UN)
done

lemma stable_Union:
"(!!A. A ∈ X ==> F ∈ stable A) ==> F ∈ stable (

⋃
X)"

by (unfold stable_def constrains_def, blast)

1.0.10 Intersection
lemma stable_Int:

"[| F ∈ stable A; F ∈ stable A’ |] ==> F ∈ stable (A ∩ A’)"
apply (unfold stable_def)
apply (blast intro: constrains_Int)
done

lemma stable_INT:
"(!!i. i ∈ I ==> F ∈ stable (A i)) ==> F ∈ stable (

⋂
i ∈ I. A i)"

apply (unfold stable_def)
apply (blast intro: constrains_INT)
done

lemma stable_Inter:
"(!!A. A ∈ X ==> F ∈ stable A) ==> F ∈ stable (

⋂
X)"

by (unfold stable_def constrains_def, blast)

lemma stable_constrains_Un:
"[| F ∈ stable C; F ∈ A co (C ∪ A’) |] ==> F ∈ (C ∪ A) co (C ∪ A’)"

by (unfold stable_def constrains_def, blast)

lemma stable_constrains_Int:
"[| F ∈ stable C; F ∈ (C ∩ A) co A’ |] ==> F ∈ (C ∩ A) co (C ∩ A’)"

by (unfold stable_def constrains_def, blast)

lemmas stable_constrains_stable = stable_constrains_Int[THEN stableI]

12 1 THE BASIC UNITY THEORY

1.0.11 invariant

lemma invariantI: "[| Init F ⊆ A; F ∈ stable A |] ==> F ∈ invariant A"
by (simp add: invariant_def)

Could also say invariant A ∩ invariant B ⊆ invariant (A ∩ B)

lemma invariant_Int:
"[| F ∈ invariant A; F ∈ invariant B |] ==> F ∈ invariant (A ∩ B)"

by (auto simp add: invariant_def stable_Int)

1.0.12 increasing

lemma increasingD:
"F ∈ increasing f ==> F ∈ stable {s. z ⊆ f s}"

by (unfold increasing_def, blast)

lemma increasing_constant [iff]: "F ∈ increasing (%s. c)"
by (unfold increasing_def stable_def, auto)

lemma mono_increasing_o:
"mono g ==> increasing f ⊆ increasing (g o f)"

apply (unfold increasing_def stable_def constrains_def, auto)
apply (blast intro: monoD order_trans)
done

lemma strict_increasingD:
"!!z::nat. F ∈ increasing f ==> F ∈ stable {s. z < f s}"

by (simp add: increasing_def Suc_le_eq [symmetric])

lemma elimination:
"[| ∀ m ∈ M. F ∈ {s. s x = m} co (B m) |]
==> F ∈ {s. s x ∈ M} co (

⋃
m ∈ M. B m)"

by (unfold constrains_def, blast)

As above, but for the trivial case of a one-variable state, in which the state is
identified with its one variable.

lemma elimination_sing:
"(∀ m ∈ M. F ∈ {m} co (B m)) ==> F ∈ M co (

⋃
m ∈ M. B m)"

by (unfold constrains_def, blast)

1.0.13 Theoretical Results from Section 6

lemma constrains_strongest_rhs:
"F ∈ A co (strongest_rhs F A)"

by (unfold constrains_def strongest_rhs_def, blast)

lemma strongest_rhs_is_strongest:
"F ∈ A co B ==> strongest_rhs F A ⊆ B"

by (unfold constrains_def strongest_rhs_def, blast)

1.1 Partial versus Total Transitions 13

1.0.14 Ad-hoc set-theory rules
lemma Un_Diff_Diff [simp]: "A ∪ B - (A - B) = B"
by blast

lemma Int_Union_Union: "
⋃

B ∩ A =
⋃

((%C. C ∩ A)‘B)"
by blast

Needed for WF reasoning in WFair.thy

lemma Image_less_than [simp]: "less_than ‘‘ {k} = greaterThan k"
by blast

lemma Image_inverse_less_than [simp]: "less_than−1 ‘‘ {k} = lessThan k"
by blast

1.1 Partial versus Total Transitions
definition totalize_act :: "(’a * ’a)set => (’a * ’a)set" where

"totalize_act act == act ∪ Id_on (-(Domain act))"

definition totalize :: "’a program => ’a program" where
"totalize F == mk_program (Init F,

totalize_act ‘ Acts F,
AllowedActs F)"

definition mk_total_program :: "(’a set * (’a * ’a)set set * (’a * ’a)set set)
=> ’a program" where

"mk_total_program args == totalize (mk_program args)"

definition all_total :: "’a program => bool" where
"all_total F == ∀ act ∈ Acts F. Domain act = UNIV"

lemma insert_Id_image_Acts: "f Id = Id ==> insert Id (f‘Acts F) = f ‘ Acts
F"
by (blast intro: sym [THEN image_eqI])

1.1.1 Basic properties
lemma totalize_act_Id [simp]: "totalize_act Id = Id"
by (simp add: totalize_act_def)

lemma Domain_totalize_act [simp]: "Domain (totalize_act act) = UNIV"
by (auto simp add: totalize_act_def)

lemma Init_totalize [simp]: "Init (totalize F) = Init F"
by (unfold totalize_def, auto)

lemma Acts_totalize [simp]: "Acts (totalize F) = (totalize_act ‘ Acts F)"
by (simp add: totalize_def insert_Id_image_Acts)

lemma AllowedActs_totalize [simp]: "AllowedActs (totalize F) = AllowedActs
F"
by (simp add: totalize_def)

14 1 THE BASIC UNITY THEORY

lemma totalize_constrains_iff [simp]: "(totalize F ∈ A co B) = (F ∈ A co
B)"
by (simp add: totalize_def totalize_act_def constrains_def, blast)

lemma totalize_stable_iff [simp]: "(totalize F ∈ stable A) = (F ∈ stable
A)"
by (simp add: stable_def)

lemma totalize_invariant_iff [simp]:
"(totalize F ∈ invariant A) = (F ∈ invariant A)"

by (simp add: invariant_def)

lemma all_total_totalize: "all_total (totalize F)"
by (simp add: totalize_def all_total_def)

lemma Domain_iff_totalize_act: "(Domain act = UNIV) = (totalize_act act =
act)"
by (force simp add: totalize_act_def)

lemma all_total_imp_totalize: "all_total F ==> (totalize F = F)"
apply (simp add: all_total_def totalize_def)
apply (rule program_equalityI)

apply (simp_all add: Domain_iff_totalize_act image_def)
done

lemma all_total_iff_totalize: "all_total F = (totalize F = F)"
apply (rule iffI)
apply (erule all_total_imp_totalize)

apply (erule subst)
apply (rule all_total_totalize)
done

lemma mk_total_program_constrains_iff [simp]:
"(mk_total_program args ∈ A co B) = (mk_program args ∈ A co B)"

by (simp add: mk_total_program_def)

1.2 Rules for Lazy Definition Expansion
They avoid expanding the full program, which is a large expression
lemma def_prg_Init:

"F = mk_total_program (init,acts,allowed) ==> Init F = init"
by (simp add: mk_total_program_def)

lemma def_prg_Acts:
"F = mk_total_program (init,acts,allowed)
==> Acts F = insert Id (totalize_act ‘ acts)"

by (simp add: mk_total_program_def)

lemma def_prg_AllowedActs:
"F = mk_total_program (init,acts,allowed)
==> AllowedActs F = insert Id allowed"

by (simp add: mk_total_program_def)

An action is expanded if a pair of states is being tested against it

15

lemma def_act_simp:
"act = {(s,s’). P s s’} ==> ((s,s’) ∈ act) = P s s’"

by (simp add: mk_total_program_def)

A set is expanded only if an element is being tested against it

lemma def_set_simp: "A = B ==> (x ∈ A) = (x ∈ B)"
by (simp add: mk_total_program_def)

1.2.1 Inspectors for type "program"
lemma Init_total_eq [simp]:

"Init (mk_total_program (init,acts,allowed)) = init"
by (simp add: mk_total_program_def)

lemma Acts_total_eq [simp]:
"Acts(mk_total_program(init,acts,allowed)) = insert Id (totalize_act‘acts)"

by (simp add: mk_total_program_def)

lemma AllowedActs_total_eq [simp]:
"AllowedActs (mk_total_program (init,acts,allowed)) = insert Id allowed"

by (auto simp add: mk_total_program_def)

end

2 Fixed Point of a Program
theory FP imports UNITY begin

definition FP_Orig :: "’a program => ’a set" where
"FP_Orig F ==

⋃
{A. ∀ B. F ∈ stable (A ∩ B)}"

definition FP :: "’a program => ’a set" where
"FP F == {s. F ∈ stable {s}}"

lemma stable_FP_Orig_Int: "F ∈ stable (FP_Orig F Int B)"
apply (simp only: FP_Orig_def stable_def Int_Union2)
apply (blast intro: constrains_UN)
done

lemma FP_Orig_weakest:
"(
∧

B. F ∈ stable (A ∩ B)) =⇒ A <= FP_Orig F"
by (simp add: FP_Orig_def stable_def, blast)

lemma stable_FP_Int: "F ∈ stable (FP F ∩ B)"
proof -

have "F ∈ stable (
⋃

x∈B. FP F ∩ {x})"
apply (simp only: Int_insert_right FP_def stable_def)
apply (rule constrains_UN)
apply simp
done

also have "(
⋃

x∈B. FP F ∩ {x}) = FP F ∩ B"
by simp

finally show ?thesis .

16 3 PROGRESS

qed

lemma FP_equivalence: "FP F = FP_Orig F"
apply (rule equalityI)
apply (rule stable_FP_Int [THEN FP_Orig_weakest])

apply (simp add: FP_Orig_def FP_def, clarify)
apply (drule_tac x = "{x}" in spec)
apply (simp add: Int_insert_right)
done

lemma FP_weakest:
"(
∧

B. F ∈ stable (A Int B)) =⇒ A <= FP F"
by (simp add: FP_equivalence FP_Orig_weakest)

lemma Compl_FP:
"-(FP F) = (UN act: Acts F. -{s. act‘‘{s} <= {s}})"

by (simp add: FP_def stable_def constrains_def, blast)

lemma Diff_FP: "A - (FP F) = (UN act: Acts F. A - {s. act‘‘{s} <= {s}})"
by (simp add: Diff_eq Compl_FP)

lemma totalize_FP [simp]: "FP (totalize F) = FP F"
by (simp add: FP_def)

end

3 Progress
theory WFair imports UNITY begin

The original version of this theory was based on weak fairness. (Thus, the entire
UNITY development embodied this assumption, until February 2003.) Weak
fairness states that if a command is enabled continuously, then it is eventually
executed. Ernie Cohen suggested that I instead adopt unconditional fairness:
every command is executed infinitely often.
In fact, Misra’s paper on "Progress" seems to be ambiguous about the correct
interpretation, and says that the two forms of fairness are equivalent. They
differ only on their treatment of partial transitions, which under unconditional
fairness behave magically. That is because if there are partial transitions then
there may be no fair executions, making all leads-to properties hold vacuously.
Unconditional fairness has some great advantages. By distinguishing partial
transitions from total ones that are the identity on part of their domain, it
is more expressive. Also, by simplifying the definition of the transient prop-
erty, it simplifies many proofs. A drawback is that some laws only hold under
the assumption that all transitions are total. The best-known of these is the
impossibility law for leads-to.

definition

— This definition specifies conditional fairness. The rest of the theory is generic
to all forms of fairness. To get weak fairness, conjoin the inclusion below with A ⊆
Domain act, which specifies that the action is enabled over all of A.

3.1 transient 17

transient :: "’a set => ’a program set" where
"transient A == {F. ∃ act∈Acts F. act‘‘A ⊆ -A}"

definition
ensures :: "[’a set, ’a set] => ’a program set" (infixl ‹ensures› 60)

where
"A ensures B == (A-B co A ∪ B) ∩ transient (A-B)"

inductive_set
leads :: "’a program => (’a set * ’a set) set"

— LEADS-TO constant for the inductive definition
for F :: "’a program"
where

Basis: "F ∈ A ensures B ==> (A,B) ∈ leads F"

| Trans: "[| (A,B) ∈ leads F; (B,C) ∈ leads F |] ==> (A,C) ∈ leads F"

| Union: "∀ A ∈ S. (A,B) ∈ leads F ==> (Union S, B) ∈ leads F"

definition leadsTo :: "[’a set, ’a set] => ’a program set" (infixl ‹leadsTo›
60) where

— visible version of the LEADS-TO relation
"A leadsTo B == {F. (A,B) ∈ leads F}"

definition wlt :: "[’a program, ’a set] => ’a set" where
— predicate transformer: the largest set that leads to B

"wlt F B ==
⋃

{A. F ∈ A leadsTo B}"

notation leadsTo (infixl ‹7−→› 60)

3.1 transient
lemma stable_transient:

"[| F ∈ stable A; F ∈ transient A |] ==> ∃ act∈Acts F. A ⊆ - (Domain
act)"
apply (simp add: stable_def constrains_def transient_def, clarify)
apply (rule rev_bexI, auto)
done

lemma stable_transient_empty:
"[| F ∈ stable A; F ∈ transient A; all_total F |] ==> A = {}"

apply (drule stable_transient, assumption)
apply (simp add: all_total_def)
done

lemma transient_strengthen:
"[| F ∈ transient A; B ⊆ A |] ==> F ∈ transient B"

apply (unfold transient_def, clarify)
apply (blast intro!: rev_bexI)
done

18 3 PROGRESS

lemma transientI:
"[| act ∈ Acts F; act‘‘A ⊆ -A |] ==> F ∈ transient A"

by (unfold transient_def, blast)

lemma transientE:
"[| F ∈ transient A;∧

act. [| act ∈ Acts F; act‘‘A ⊆ -A |] ==> P |]
==> P"

by (unfold transient_def, blast)

lemma transient_empty [simp]: "transient {} = UNIV"
by (unfold transient_def, auto)

This equation recovers the notion of weak fairness. A totalized program satisfies
a transient assertion just if the original program contains a suitable action that
is also enabled.

lemma totalize_transient_iff:
"(totalize F ∈ transient A) = (∃ act∈Acts F. A ⊆ Domain act & act‘‘A ⊆

-A)"
apply (simp add: totalize_def totalize_act_def transient_def

Un_Image, safe)
apply (blast intro!: rev_bexI)+
done

lemma totalize_transientI:
"[| act ∈ Acts F; A ⊆ Domain act; act‘‘A ⊆ -A |]
==> totalize F ∈ transient A"

by (simp add: totalize_transient_iff, blast)

3.2 ensures
lemma ensuresI:

"[| F ∈ (A-B) co (A ∪ B); F ∈ transient (A-B) |] ==> F ∈ A ensures B"
by (unfold ensures_def, blast)

lemma ensuresD:
"F ∈ A ensures B ==> F ∈ (A-B) co (A ∪ B) & F ∈ transient (A-B)"

by (unfold ensures_def, blast)

lemma ensures_weaken_R:
"[| F ∈ A ensures A’; A’<=B’ |] ==> F ∈ A ensures B’"

apply (unfold ensures_def)
apply (blast intro: constrains_weaken transient_strengthen)
done

The L-version (precondition strengthening) fails, but we have this

lemma stable_ensures_Int:
"[| F ∈ stable C; F ∈ A ensures B |]
==> F ∈ (C ∩ A) ensures (C ∩ B)"

apply (unfold ensures_def)
apply (auto simp add: ensures_def Int_Un_distrib [symmetric] Diff_Int_distrib
[symmetric])
prefer 2 apply (blast intro: transient_strengthen)

3.3 leadsTo 19

apply (blast intro: stable_constrains_Int constrains_weaken)
done

lemma stable_transient_ensures:
"[| F ∈ stable A; F ∈ transient C; A ⊆ B ∪ C |] ==> F ∈ A ensures

B"
apply (simp add: ensures_def stable_def)
apply (blast intro: constrains_weaken transient_strengthen)
done

lemma ensures_eq: "(A ensures B) = (A unless B) ∩ transient (A-B)"
by (simp (no_asm) add: ensures_def unless_def)

3.3 leadsTo
lemma leadsTo_Basis [intro]: "F ∈ A ensures B ==> F ∈ A leadsTo B"
apply (unfold leadsTo_def)
apply (blast intro: leads.Basis)
done

lemma leadsTo_Trans:
"[| F ∈ A leadsTo B; F ∈ B leadsTo C |] ==> F ∈ A leadsTo C"

apply (unfold leadsTo_def)
apply (blast intro: leads.Trans)
done

lemma leadsTo_Basis’:
"[| F ∈ A co A ∪ B; F ∈ transient A |] ==> F ∈ A leadsTo B"

apply (drule_tac B = "A-B" in constrains_weaken_L)
apply (drule_tac [2] B = "A-B" in transient_strengthen)
apply (rule_tac [3] ensuresI [THEN leadsTo_Basis])
apply (blast+)
done

lemma transient_imp_leadsTo: "F ∈ transient A ==> F ∈ A leadsTo (-A)"
by (simp (no_asm_simp) add: leadsTo_Basis ensuresI Compl_partition)

Useful with cancellation, disjunction
lemma leadsTo_Un_duplicate: "F ∈ A leadsTo (A’ ∪ A’) ==> F ∈ A leadsTo A’"
by (simp add: Un_ac)

lemma leadsTo_Un_duplicate2:
"F ∈ A leadsTo (A’ ∪ C ∪ C) ==> F ∈ A leadsTo (A’ ∪ C)"

by (simp add: Un_ac)

The Union introduction rule as we should have liked to state it
lemma leadsTo_Union:

"(!!A. A ∈ S ==> F ∈ A leadsTo B) ==> F ∈ (
⋃

S) leadsTo B"
apply (unfold leadsTo_def)
apply (blast intro: leads.Union)
done

lemma leadsTo_Union_Int:
"(!!A. A ∈ S ==> F ∈ (A ∩ C) leadsTo B) ==> F ∈ (

⋃
S ∩ C) leadsTo B"

20 3 PROGRESS

apply (unfold leadsTo_def)
apply (simp only: Int_Union_Union)
apply (blast intro: leads.Union)
done

lemma leadsTo_UN:
"(!!i. i ∈ I ==> F ∈ (A i) leadsTo B) ==> F ∈ (

⋃
i ∈ I. A i) leadsTo

B"
apply (blast intro: leadsTo_Union)
done

Binary union introduction rule
lemma leadsTo_Un:

"[| F ∈ A leadsTo C; F ∈ B leadsTo C |] ==> F ∈ (A ∪ B) leadsTo C"
using leadsTo_Union [of "{A, B}" F C] by auto

lemma single_leadsTo_I:
"(!!x. x ∈ A ==> F ∈ {x} leadsTo B) ==> F ∈ A leadsTo B"

by (subst UN_singleton [symmetric], rule leadsTo_UN, blast)

The INDUCTION rule as we should have liked to state it
lemma leadsTo_induct:

"[| F ∈ za leadsTo zb;
!!A B. F ∈ A ensures B ==> P A B;
!!A B C. [| F ∈ A leadsTo B; P A B; F ∈ B leadsTo C; P B C |]

==> P A C;
!!B S. ∀ A ∈ S. F ∈ A leadsTo B & P A B ==> P (

⋃
S) B

|] ==> P za zb"
apply (unfold leadsTo_def)
apply (drule CollectD, erule leads.induct)
apply (blast+)
done

lemma subset_imp_ensures: "A ⊆ B ==> F ∈ A ensures B"
by (unfold ensures_def constrains_def transient_def, blast)

lemmas subset_imp_leadsTo = subset_imp_ensures [THEN leadsTo_Basis]

lemmas leadsTo_refl = subset_refl [THEN subset_imp_leadsTo]

lemmas empty_leadsTo = empty_subsetI [THEN subset_imp_leadsTo, simp]

lemmas leadsTo_UNIV = subset_UNIV [THEN subset_imp_leadsTo, simp]

Lemma is the weak version: can’t see how to do it in one step
lemma leadsTo_induct_pre_lemma:

"[| F ∈ za leadsTo zb;
P zb;
!!A B. [| F ∈ A ensures B; P B |] ==> P A;
!!S. ∀ A ∈ S. P A ==> P (

⋃
S)

|] ==> P za"

by induction on this formula

3.3 leadsTo 21

apply (subgoal_tac "P zb --> P za")

now solve first subgoal: this formula is sufficient

apply (blast intro: leadsTo_refl)
apply (erule leadsTo_induct)
apply (blast+)
done

lemma leadsTo_induct_pre:
"[| F ∈ za leadsTo zb;

P zb;
!!A B. [| F ∈ A ensures B; F ∈ B leadsTo zb; P B |] ==> P A;
!!S. ∀ A ∈ S. F ∈ A leadsTo zb & P A ==> P (

⋃
S)

|] ==> P za"
apply (subgoal_tac "F ∈ za leadsTo zb & P za")
apply (erule conjunct2)
apply (erule leadsTo_induct_pre_lemma)
prefer 3 apply (blast intro: leadsTo_Union)
prefer 2 apply (blast intro: leadsTo_Trans)
apply (blast intro: leadsTo_refl)
done

lemma leadsTo_weaken_R: "[| F ∈ A leadsTo A’; A’<=B’ |] ==> F ∈ A leadsTo
B’"
by (blast intro: subset_imp_leadsTo leadsTo_Trans)

lemma leadsTo_weaken_L:
"[| F ∈ A leadsTo A’; B ⊆ A |] ==> F ∈ B leadsTo A’"

by (blast intro: leadsTo_Trans subset_imp_leadsTo)

Distributes over binary unions

lemma leadsTo_Un_distrib:
"F ∈ (A ∪ B) leadsTo C = (F ∈ A leadsTo C & F ∈ B leadsTo C)"

by (blast intro: leadsTo_Un leadsTo_weaken_L)

lemma leadsTo_UN_distrib:
"F ∈ (

⋃
i ∈ I. A i) leadsTo B = (∀ i ∈ I. F ∈ (A i) leadsTo B)"

by (blast intro: leadsTo_UN leadsTo_weaken_L)

lemma leadsTo_Union_distrib:
"F ∈ (

⋃
S) leadsTo B = (∀ A ∈ S. F ∈ A leadsTo B)"

by (blast intro: leadsTo_Union leadsTo_weaken_L)

lemma leadsTo_weaken:
"[| F ∈ A leadsTo A’; B ⊆ A; A’<=B’ |] ==> F ∈ B leadsTo B’"

by (blast intro: leadsTo_weaken_R leadsTo_weaken_L leadsTo_Trans)

Set difference: maybe combine with leadsTo_weaken_L??

lemma leadsTo_Diff:
"[| F ∈ (A-B) leadsTo C; F ∈ B leadsTo C |] ==> F ∈ A leadsTo C"

by (blast intro: leadsTo_Un leadsTo_weaken)

22 3 PROGRESS

lemma leadsTo_UN_UN:
"(!! i. i ∈ I ==> F ∈ (A i) leadsTo (A’ i))
==> F ∈ (

⋃
i ∈ I. A i) leadsTo (

⋃
i ∈ I. A’ i)"

apply (blast intro: leadsTo_Union leadsTo_weaken_R)
done

Binary union version

lemma leadsTo_Un_Un:
"[| F ∈ A leadsTo A’; F ∈ B leadsTo B’ |]
==> F ∈ (A ∪ B) leadsTo (A’ ∪ B’)"

by (blast intro: leadsTo_Un leadsTo_weaken_R)

lemma leadsTo_cancel2:
"[| F ∈ A leadsTo (A’ ∪ B); F ∈ B leadsTo B’ |]
==> F ∈ A leadsTo (A’ ∪ B’)"

by (blast intro: leadsTo_Un_Un subset_imp_leadsTo leadsTo_Trans)

lemma leadsTo_cancel_Diff2:
"[| F ∈ A leadsTo (A’ ∪ B); F ∈ (B-A’) leadsTo B’ |]
==> F ∈ A leadsTo (A’ ∪ B’)"

apply (rule leadsTo_cancel2)
prefer 2 apply assumption
apply (simp_all (no_asm_simp))
done

lemma leadsTo_cancel1:
"[| F ∈ A leadsTo (B ∪ A’); F ∈ B leadsTo B’ |]

==> F ∈ A leadsTo (B’ ∪ A’)"
apply (simp add: Un_commute)
apply (blast intro!: leadsTo_cancel2)
done

lemma leadsTo_cancel_Diff1:
"[| F ∈ A leadsTo (B ∪ A’); F ∈ (B-A’) leadsTo B’ |]

==> F ∈ A leadsTo (B’ ∪ A’)"
apply (rule leadsTo_cancel1)
prefer 2 apply assumption
apply (simp_all (no_asm_simp))
done

The impossibility law

lemma leadsTo_empty: "[|F ∈ A leadsTo {}; all_total F|] ==> A={}"
apply (erule leadsTo_induct_pre)
apply (simp_all add: ensures_def constrains_def transient_def all_total_def,
clarify)
apply (drule bspec, assumption)+
apply blast
done

3.4 PSP: Progress-Safety-Progress 23

3.4 PSP: Progress-Safety-Progress
Special case of PSP: Misra’s "stable conjunction"
lemma psp_stable:

"[| F ∈ A leadsTo A’; F ∈ stable B |]
==> F ∈ (A ∩ B) leadsTo (A’ ∩ B)"

apply (unfold stable_def)
apply (erule leadsTo_induct)
prefer 3 apply (blast intro: leadsTo_Union_Int)
prefer 2 apply (blast intro: leadsTo_Trans)
apply (rule leadsTo_Basis)
apply (simp add: ensures_def Diff_Int_distrib2 [symmetric] Int_Un_distrib2
[symmetric])
apply (blast intro: transient_strengthen constrains_Int)
done

lemma psp_stable2:
"[| F ∈ A leadsTo A’; F ∈ stable B |] ==> F ∈ (B ∩ A) leadsTo (B ∩ A’)"

by (simp add: psp_stable Int_ac)

lemma psp_ensures:
"[| F ∈ A ensures A’; F ∈ B co B’ |]
==> F ∈ (A ∩ B’) ensures ((A’ ∩ B) ∪ (B’ - B))"

apply (unfold ensures_def constrains_def, clarify)
apply (blast intro: transient_strengthen)
done

lemma psp:
"[| F ∈ A leadsTo A’; F ∈ B co B’ |]
==> F ∈ (A ∩ B’) leadsTo ((A’ ∩ B) ∪ (B’ - B))"

apply (erule leadsTo_induct)
prefer 3 apply (blast intro: leadsTo_Union_Int)

Basis case

apply (blast intro: psp_ensures)

Transitivity case has a delicate argument involving "cancellation"

apply (rule leadsTo_Un_duplicate2)
apply (erule leadsTo_cancel_Diff1)
apply (simp add: Int_Diff Diff_triv)
apply (blast intro: leadsTo_weaken_L dest: constrains_imp_subset)
done

lemma psp2:
"[| F ∈ A leadsTo A’; F ∈ B co B’ |]

==> F ∈ (B’ ∩ A) leadsTo ((B ∩ A’) ∪ (B’ - B))"
by (simp (no_asm_simp) add: psp Int_ac)

lemma psp_unless:
"[| F ∈ A leadsTo A’; F ∈ B unless B’ |]
==> F ∈ (A ∩ B) leadsTo ((A’ ∩ B) ∪ B’)"

apply (unfold unless_def)
apply (drule psp, assumption)

24 3 PROGRESS

apply (blast intro: leadsTo_weaken)
done

3.5 Proving the induction rules
lemma leadsTo_wf_induct_lemma:

"[| wf r;
∀ m. F ∈ (A ∩ f-‘{m}) leadsTo

((A ∩ f-‘(r−1 ‘‘ {m})) ∪ B) |]
==> F ∈ (A ∩ f-‘{m}) leadsTo B"

apply (erule_tac a = m in wf_induct)
apply (subgoal_tac "F ∈ (A ∩ (f -‘ (r−1 ‘‘ {x}))) leadsTo B")
apply (blast intro: leadsTo_cancel1 leadsTo_Un_duplicate)

apply (subst vimage_eq_UN)
apply (simp only: UN_simps [symmetric])
apply (blast intro: leadsTo_UN)
done

lemma leadsTo_wf_induct:
"[| wf r;

∀ m. F ∈ (A ∩ f-‘{m}) leadsTo
((A ∩ f-‘(r−1 ‘‘ {m})) ∪ B) |]

==> F ∈ A leadsTo B"
apply (rule_tac t = A in subst)
defer 1
apply (rule leadsTo_UN)
apply (erule leadsTo_wf_induct_lemma)
apply assumption

apply fast
done

lemma bounded_induct:
"[| wf r;

∀ m ∈ I. F ∈ (A ∩ f-‘{m}) leadsTo
((A ∩ f-‘(r−1 ‘‘ {m})) ∪ B) |]

==> F ∈ A leadsTo ((A - (f-‘I)) ∪ B)"
apply (erule leadsTo_wf_induct, safe)
apply (case_tac "m ∈ I")
apply (blast intro: leadsTo_weaken)
apply (blast intro: subset_imp_leadsTo)
done

lemma lessThan_induct:
"[| !!m::nat. F ∈ (A ∩ f-‘{m}) leadsTo ((A ∩ f-‘{..<m}) ∪ B) |]
==> F ∈ A leadsTo B"

apply (rule wf_less_than [THEN leadsTo_wf_induct])
apply (simp (no_asm_simp))
apply blast
done

3.6 wlt 25

lemma lessThan_bounded_induct:
"!!l::nat. [| ∀ m ∈ greaterThan l.

F ∈ (A ∩ f-‘{m}) leadsTo ((A ∩ f-‘(lessThan m)) ∪ B) |]
==> F ∈ A leadsTo ((A ∩ (f-‘(atMost l))) ∪ B)"

apply (simp only: Diff_eq [symmetric] vimage_Compl Compl_greaterThan [symmetric])
apply (rule wf_less_than [THEN bounded_induct])
apply (simp (no_asm_simp))
done

lemma greaterThan_bounded_induct:
"(!!l::nat. ∀ m ∈ lessThan l.

F ∈ (A ∩ f-‘{m}) leadsTo ((A ∩ f-‘(greaterThan m)) ∪ B))
==> F ∈ A leadsTo ((A ∩ (f-‘(atLeast l))) ∪ B)"

apply (rule_tac f = f and f1 = "%k. l - k"
in wf_less_than [THEN wf_inv_image, THEN leadsTo_wf_induct])

apply (simp (no_asm) add:Image_singleton)
apply clarify
apply (case_tac "m<l")
apply (blast intro: leadsTo_weaken_R diff_less_mono2)

apply (blast intro: not_le_imp_less subset_imp_leadsTo)
done

3.6 wlt
Misra’s property W3

lemma wlt_leadsTo: "F ∈ (wlt F B) leadsTo B"
apply (unfold wlt_def)
apply (blast intro!: leadsTo_Union)
done

lemma leadsTo_subset: "F ∈ A leadsTo B ==> A ⊆ wlt F B"
apply (unfold wlt_def)
apply (blast intro!: leadsTo_Union)
done

Misra’s property W2

lemma leadsTo_eq_subset_wlt: "F ∈ A leadsTo B = (A ⊆ wlt F B)"
by (blast intro!: leadsTo_subset wlt_leadsTo [THEN leadsTo_weaken_L])

Misra’s property W4

lemma wlt_increasing: "B ⊆ wlt F B"
apply (simp (no_asm_simp) add: leadsTo_eq_subset_wlt [symmetric] subset_imp_leadsTo)
done

Used in the Trans case below

lemma lemma1:
"[| B ⊆ A2;

F ∈ (A1 - B) co (A1 ∪ B);
F ∈ (A2 - C) co (A2 ∪ C) |]

==> F ∈ (A1 ∪ A2 - C) co (A1 ∪ A2 ∪ C)"
by (unfold constrains_def, clarify, blast)

26 3 PROGRESS

Lemma (1,2,3) of Misra’s draft book, Chapter 4, "Progress"
lemma leadsTo_123:

"F ∈ A leadsTo A’
==> ∃ B. A ⊆ B & F ∈ B leadsTo A’ & F ∈ (B-A’) co (B ∪ A’)"

apply (erule leadsTo_induct)

Basis

apply (blast dest: ensuresD)

Trans

apply clarify
apply (rule_tac x = "Ba ∪ Bb" in exI)
apply (blast intro: lemma1 leadsTo_Un_Un leadsTo_cancel1 leadsTo_Un_duplicate)

Union

apply (clarify dest!: ball_conj_distrib [THEN iffD1] bchoice)
apply (rule_tac x = "

⋃
A ∈ S. f A" in exI)

apply (auto intro: leadsTo_UN)

apply (rule_tac I1=S and A1="%i. f i - B" and A’1="%i. f i ∪ B"
in constrains_UN [THEN constrains_weaken], auto)

done

Misra’s property W5
lemma wlt_constrains_wlt: "F ∈ (wlt F B - B) co (wlt F B)"
proof -

from wlt_leadsTo [of F B, THEN leadsTo_123]
show ?thesis
proof (elim exE conjE)

fix C
assume wlt: "wlt F B ⊆ C"

and lt: "F ∈ C leadsTo B"
and co: "F ∈ C - B co C ∪ B"

have eq: "C = wlt F B"
proof -

from lt and wlt show ?thesis
by (blast dest: leadsTo_eq_subset_wlt [THEN iffD1])

qed
from co show ?thesis by (simp add: eq wlt_increasing Un_absorb2)

qed
qed

3.7 Completion: Binary and General Finite versions
lemma completion_lemma :

"[| W = wlt F (B’ ∪ C);
F ∈ A leadsTo (A’ ∪ C); F ∈ A’ co (A’ ∪ C);
F ∈ B leadsTo (B’ ∪ C); F ∈ B’ co (B’ ∪ C) |]

==> F ∈ (A ∩ B) leadsTo ((A’ ∩ B’) ∪ C)"
apply (subgoal_tac "F ∈ (W-C) co (W ∪ B’ ∪ C) ")
prefer 2
apply (blast intro: wlt_constrains_wlt [THEN [2] constrains_Un,

3.7 Completion: Binary and General Finite versions 27

THEN constrains_weaken])
apply (subgoal_tac "F ∈ (W-C) co W")
prefer 2
apply (simp add: wlt_increasing Un_assoc Un_absorb2)

apply (subgoal_tac "F ∈ (A ∩ W - C) leadsTo (A’ ∩ W ∪ C) ")
prefer 2 apply (blast intro: wlt_leadsTo psp [THEN leadsTo_weaken])

apply (subgoal_tac "F ∈ (A’ ∩ W ∪ C) leadsTo (A’ ∩ B’ ∪ C) ")
prefer 2
apply (rule leadsTo_Un_duplicate2)
apply (blast intro: leadsTo_Un_Un wlt_leadsTo

[THEN psp2, THEN leadsTo_weaken] leadsTo_refl)
apply (drule leadsTo_Diff)
apply (blast intro: subset_imp_leadsTo)
apply (subgoal_tac "A ∩ B ⊆ A ∩ W")
prefer 2
apply (blast dest!: leadsTo_subset intro!: subset_refl [THEN Int_mono])

apply (blast intro: leadsTo_Trans subset_imp_leadsTo)
done

lemmas completion = completion_lemma [OF refl]

lemma finite_completion_lemma:
"finite I ==> (∀ i ∈ I. F ∈ (A i) leadsTo (A’ i ∪ C)) -->

(∀ i ∈ I. F ∈ (A’ i) co (A’ i ∪ C)) -->
F ∈ (

⋂
i ∈ I. A i) leadsTo ((

⋂
i ∈ I. A’ i) ∪ C)"

apply (erule finite_induct, auto)
apply (rule completion)

prefer 4
apply (simp only: INT_simps [symmetric])
apply (rule constrains_INT, auto)

done

lemma finite_completion:
"[| finite I;

!!i. i ∈ I ==> F ∈ (A i) leadsTo (A’ i ∪ C);
!!i. i ∈ I ==> F ∈ (A’ i) co (A’ i ∪ C) |]

==> F ∈ (
⋂

i ∈ I. A i) leadsTo ((
⋂

i ∈ I. A’ i) ∪ C)"
by (blast intro: finite_completion_lemma [THEN mp, THEN mp])

lemma stable_completion:
"[| F ∈ A leadsTo A’; F ∈ stable A’;

F ∈ B leadsTo B’; F ∈ stable B’ |]
==> F ∈ (A ∩ B) leadsTo (A’ ∩ B’)"

apply (unfold stable_def)
apply (rule_tac C1 = "{}" in completion [THEN leadsTo_weaken_R])
apply (force+)
done

lemma finite_stable_completion:
"[| finite I;

!!i. i ∈ I ==> F ∈ (A i) leadsTo (A’ i);
!!i. i ∈ I ==> F ∈ stable (A’ i) |]

==> F ∈ (
⋂

i ∈ I. A i) leadsTo (
⋂

i ∈ I. A’ i)"

28 4 WEAK SAFETY

apply (unfold stable_def)
apply (rule_tac C1 = "{}" in finite_completion [THEN leadsTo_weaken_R])
apply (simp_all (no_asm_simp))
apply blast+
done

end

4 Weak Safety
theory Constrains imports UNITY begin

inductive_set
traces :: "[’a set, (’a * ’a)set set] => (’a * ’a list) set"
for init :: "’a set" and acts :: "(’a * ’a)set set"
where

Init: "s ∈ init ==> (s,[]) ∈ traces init acts"

| Acts: "[| act ∈ acts; (s,evs) ∈ traces init acts; (s,s’) ∈ act |]
==> (s’, s#evs) ∈ traces init acts"

inductive_set
reachable :: "’a program => ’a set"
for F :: "’a program"
where

Init: "s ∈ Init F ==> s ∈ reachable F"

| Acts: "[| act ∈ Acts F; s ∈ reachable F; (s,s’) ∈ act |]
==> s’ ∈ reachable F"

definition Constrains :: "[’a set, ’a set] => ’a program set" (infixl ‹Co› 60)
where

"A Co B == {F. F ∈ (reachable F ∩ A) co B}"

definition Unless :: "[’a set, ’a set] => ’a program set" (infixl ‹Unless›
60) where

"A Unless B == (A-B) Co (A ∪ B)"

definition Stable :: "’a set => ’a program set" where
"Stable A == A Co A"

definition Always :: "’a set => ’a program set" where
"Always A == {F. Init F ⊆ A} ∩ Stable A"

definition Increasing :: "[’a => ’b::{order}] => ’a program set" where
"Increasing f ==

⋂
z. Stable {s. z ≤ f s}"

4.1 traces and reachable 29

4.1 traces and reachable
lemma reachable_equiv_traces:

"reachable F = {s. ∃ evs. (s,evs) ∈ traces (Init F) (Acts F)}"
apply safe
apply (erule_tac [2] traces.induct)
apply (erule reachable.induct)
apply (blast intro: reachable.intros traces.intros)+
done

lemma Init_subset_reachable: "Init F ⊆ reachable F"
by (blast intro: reachable.intros)

lemma stable_reachable [intro!,simp]:
"Acts G ⊆ Acts F ==> G ∈ stable (reachable F)"

by (blast intro: stableI constrainsI reachable.intros)

lemma invariant_reachable: "F ∈ invariant (reachable F)"
apply (simp add: invariant_def)
apply (blast intro: reachable.intros)
done

lemma invariant_includes_reachable: "F ∈ invariant A ==> reachable F ⊆ A"
apply (simp add: stable_def constrains_def invariant_def)
apply (rule subsetI)
apply (erule reachable.induct)
apply (blast intro: reachable.intros)+
done

4.2 Co
lemmas constrains_reachable_Int =

subset_refl [THEN stable_reachable [unfolded stable_def], THEN constrains_Int]

lemma Constrains_eq_constrains:
"A Co B = {F. F ∈ (reachable F ∩ A) co (reachable F ∩ B)}"

apply (unfold Constrains_def)
apply (blast dest: constrains_reachable_Int intro: constrains_weaken)
done

lemma constrains_imp_Constrains: "F ∈ A co A’ ==> F ∈ A Co A’"
apply (unfold Constrains_def)
apply (blast intro: constrains_weaken_L)
done

lemma stable_imp_Stable: "F ∈ stable A ==> F ∈ Stable A"
apply (unfold stable_def Stable_def)
apply (erule constrains_imp_Constrains)
done

lemma ConstrainsI:
"(!!act s s’. [| act ∈ Acts F; (s,s’) ∈ act; s ∈ A |] ==> s’ ∈ A’)

30 4 WEAK SAFETY

==> F ∈ A Co A’"
apply (rule constrains_imp_Constrains)
apply (blast intro: constrainsI)
done

lemma Constrains_empty [iff]: "F ∈ {} Co B"
by (unfold Constrains_def constrains_def, blast)

lemma Constrains_UNIV [iff]: "F ∈ A Co UNIV"
by (blast intro: ConstrainsI)

lemma Constrains_weaken_R:
"[| F ∈ A Co A’; A’<=B’ |] ==> F ∈ A Co B’"

apply (unfold Constrains_def)
apply (blast intro: constrains_weaken_R)
done

lemma Constrains_weaken_L:
"[| F ∈ A Co A’; B ⊆ A |] ==> F ∈ B Co A’"

apply (unfold Constrains_def)
apply (blast intro: constrains_weaken_L)
done

lemma Constrains_weaken:
"[| F ∈ A Co A’; B ⊆ A; A’<=B’ |] ==> F ∈ B Co B’"

apply (unfold Constrains_def)
apply (blast intro: constrains_weaken)
done

lemma Constrains_Un:
"[| F ∈ A Co A’; F ∈ B Co B’ |] ==> F ∈ (A ∪ B) Co (A’ ∪ B’)"

apply (unfold Constrains_def)
apply (blast intro: constrains_Un [THEN constrains_weaken])
done

lemma Constrains_UN:
assumes Co: "!!i. i ∈ I ==> F ∈ (A i) Co (A’ i)"
shows "F ∈ (

⋃
i ∈ I. A i) Co (

⋃
i ∈ I. A’ i)"

apply (unfold Constrains_def)
apply (rule CollectI)
apply (rule Co [unfolded Constrains_def, THEN CollectD, THEN constrains_UN,

THEN constrains_weaken], auto)
done

lemma Constrains_Int:
"[| F ∈ A Co A’; F ∈ B Co B’ |] ==> F ∈ (A ∩ B) Co (A’ ∩ B’)"

apply (unfold Constrains_def)
apply (blast intro: constrains_Int [THEN constrains_weaken])

4.3 Stable 31

done

lemma Constrains_INT:
assumes Co: "!!i. i ∈ I ==> F ∈ (A i) Co (A’ i)"
shows "F ∈ (

⋂
i ∈ I. A i) Co (

⋂
i ∈ I. A’ i)"

apply (unfold Constrains_def)
apply (rule CollectI)
apply (rule Co [unfolded Constrains_def, THEN CollectD, THEN constrains_INT,

THEN constrains_weaken], auto)
done

lemma Constrains_imp_subset: "F ∈ A Co A’ ==> reachable F ∩ A ⊆ A’"
by (simp add: constrains_imp_subset Constrains_def)

lemma Constrains_trans: "[| F ∈ A Co B; F ∈ B Co C |] ==> F ∈ A Co C"
apply (simp add: Constrains_eq_constrains)
apply (blast intro: constrains_trans constrains_weaken)
done

lemma Constrains_cancel:
"[| F ∈ A Co (A’ ∪ B); F ∈ B Co B’ |] ==> F ∈ A Co (A’ ∪ B’)"

apply (simp add: Constrains_eq_constrains constrains_def)
apply best
done

4.3 Stable
lemma Stable_eq: "[| F ∈ Stable A; A = B |] ==> F ∈ Stable B"
by blast

lemma Stable_eq_stable: "(F ∈ Stable A) = (F ∈ stable (reachable F ∩ A))"
by (simp add: Stable_def Constrains_eq_constrains stable_def)

lemma StableI: "F ∈ A Co A ==> F ∈ Stable A"
by (unfold Stable_def, assumption)

lemma StableD: "F ∈ Stable A ==> F ∈ A Co A"
by (unfold Stable_def, assumption)

lemma Stable_Un:
"[| F ∈ Stable A; F ∈ Stable A’ |] ==> F ∈ Stable (A ∪ A’)"

apply (unfold Stable_def)
apply (blast intro: Constrains_Un)
done

lemma Stable_Int:
"[| F ∈ Stable A; F ∈ Stable A’ |] ==> F ∈ Stable (A ∩ A’)"

apply (unfold Stable_def)
apply (blast intro: Constrains_Int)
done

lemma Stable_Constrains_Un:
"[| F ∈ Stable C; F ∈ A Co (C ∪ A’) |]

32 4 WEAK SAFETY

==> F ∈ (C ∪ A) Co (C ∪ A’)"
apply (unfold Stable_def)
apply (blast intro: Constrains_Un [THEN Constrains_weaken])
done

lemma Stable_Constrains_Int:
"[| F ∈ Stable C; F ∈ (C ∩ A) Co A’ |]
==> F ∈ (C ∩ A) Co (C ∩ A’)"

apply (unfold Stable_def)
apply (blast intro: Constrains_Int [THEN Constrains_weaken])
done

lemma Stable_UN:
"(!!i. i ∈ I ==> F ∈ Stable (A i)) ==> F ∈ Stable (

⋃
i ∈ I. A i)"

by (simp add: Stable_def Constrains_UN)

lemma Stable_INT:
"(!!i. i ∈ I ==> F ∈ Stable (A i)) ==> F ∈ Stable (

⋂
i ∈ I. A i)"

by (simp add: Stable_def Constrains_INT)

lemma Stable_reachable: "F ∈ Stable (reachable F)"
by (simp add: Stable_eq_stable)

4.4 Increasing
lemma IncreasingD:

"F ∈ Increasing f ==> F ∈ Stable {s. x ≤ f s}"
by (unfold Increasing_def, blast)

lemma mono_Increasing_o:
"mono g ==> Increasing f ⊆ Increasing (g o f)"

apply (simp add: Increasing_def Stable_def Constrains_def stable_def
constrains_def)

apply (blast intro: monoD order_trans)
done

lemma strict_IncreasingD:
"!!z::nat. F ∈ Increasing f ==> F ∈ Stable {s. z < f s}"

by (simp add: Increasing_def Suc_le_eq [symmetric])

lemma increasing_imp_Increasing:
"F ∈ increasing f ==> F ∈ Increasing f"

apply (unfold increasing_def Increasing_def)
apply (blast intro: stable_imp_Stable)
done

lemmas Increasing_constant = increasing_constant [THEN increasing_imp_Increasing,
iff]

4.5 The Elimination Theorem
lemma Elimination:

"[| ∀ m. F ∈ {s. s x = m} Co (B m) |]
==> F ∈ {s. s x ∈ M} Co (

⋃
m ∈ M. B m)"

4.6 Specialized laws for handling Always 33

by (unfold Constrains_def constrains_def, blast)

lemma Elimination_sing:
"(∀ m. F ∈ {m} Co (B m)) ==> F ∈ M Co (

⋃
m ∈ M. B m)"

by (unfold Constrains_def constrains_def, blast)

4.6 Specialized laws for handling Always
lemma AlwaysI: "[| Init F ⊆ A; F ∈ Stable A |] ==> F ∈ Always A"
by (simp add: Always_def)

lemma AlwaysD: "F ∈ Always A ==> Init F ⊆ A & F ∈ Stable A"
by (simp add: Always_def)

lemmas AlwaysE = AlwaysD [THEN conjE]
lemmas Always_imp_Stable = AlwaysD [THEN conjunct2]

lemma Always_includes_reachable: "F ∈ Always A ==> reachable F ⊆ A"
apply (simp add: Stable_def Constrains_def constrains_def Always_def)
apply (rule subsetI)
apply (erule reachable.induct)
apply (blast intro: reachable.intros)+
done

lemma invariant_imp_Always:
"F ∈ invariant A ==> F ∈ Always A"

apply (unfold Always_def invariant_def Stable_def stable_def)
apply (blast intro: constrains_imp_Constrains)
done

lemmas Always_reachable = invariant_reachable [THEN invariant_imp_Always]

lemma Always_eq_invariant_reachable:
"Always A = {F. F ∈ invariant (reachable F ∩ A)}"

apply (simp add: Always_def invariant_def Stable_def Constrains_eq_constrains
stable_def)

apply (blast intro: reachable.intros)
done

lemma Always_eq_includes_reachable: "Always A = {F. reachable F ⊆ A}"
by (auto dest: invariant_includes_reachable simp add: Int_absorb2 invariant_reachable
Always_eq_invariant_reachable)

lemma Always_UNIV_eq [simp]: "Always UNIV = UNIV"
by (auto simp add: Always_eq_includes_reachable)

lemma UNIV_AlwaysI: "UNIV ⊆ A ==> F ∈ Always A"
by (auto simp add: Always_eq_includes_reachable)

lemma Always_eq_UN_invariant: "Always A = (
⋃

I ∈ Pow A. invariant I)"

34 4 WEAK SAFETY

apply (simp add: Always_eq_includes_reachable)
apply (blast intro: invariantI Init_subset_reachable [THEN subsetD]

invariant_includes_reachable [THEN subsetD])
done

lemma Always_weaken: "[| F ∈ Always A; A ⊆ B |] ==> F ∈ Always B"
by (auto simp add: Always_eq_includes_reachable)

4.7 "Co" rules involving Always
lemma Always_Constrains_pre:

"F ∈ Always INV ==> (F ∈ (INV ∩ A) Co A’) = (F ∈ A Co A’)"
by (simp add: Always_includes_reachable [THEN Int_absorb2] Constrains_def

Int_assoc [symmetric])

lemma Always_Constrains_post:
"F ∈ Always INV ==> (F ∈ A Co (INV ∩ A’)) = (F ∈ A Co A’)"

by (simp add: Always_includes_reachable [THEN Int_absorb2]
Constrains_eq_constrains Int_assoc [symmetric])

lemmas Always_ConstrainsI = Always_Constrains_pre [THEN iffD1]

lemmas Always_ConstrainsD = Always_Constrains_post [THEN iffD2]

lemma Always_Constrains_weaken:
"[| F ∈ Always C; F ∈ A Co A’;

C ∩ B ⊆ A; C ∩ A’ ⊆ B’ |]
==> F ∈ B Co B’"

apply (rule Always_ConstrainsI, assumption)
apply (drule Always_ConstrainsD, assumption)
apply (blast intro: Constrains_weaken)
done

lemma Always_Int_distrib: "Always (A ∩ B) = Always A ∩ Always B"
by (auto simp add: Always_eq_includes_reachable)

lemma Always_INT_distrib: "Always (
⋂

(A ‘ I)) = (
⋂

i ∈ I. Always (A i))"
by (auto simp add: Always_eq_includes_reachable)

lemma Always_Int_I:
"[| F ∈ Always A; F ∈ Always B |] ==> F ∈ Always (A ∩ B)"

by (simp add: Always_Int_distrib)

lemma Always_Compl_Un_eq:
"F ∈ Always A ==> (F ∈ Always (-A ∪ B)) = (F ∈ Always B)"

by (auto simp add: Always_eq_includes_reachable)

4.8 Totalize 35

lemmas Always_thin = thin_rl [of "F ∈ Always A"] for F A

4.8 Totalize
lemma reachable_imp_reachable_tot:

"s ∈ reachable F ==> s ∈ reachable (totalize F)"
apply (erule reachable.induct)
apply (rule reachable.Init)
apply simp

apply (rule_tac act = "totalize_act act" in reachable.Acts)
apply (auto simp add: totalize_act_def)
done

lemma reachable_tot_imp_reachable:
"s ∈ reachable (totalize F) ==> s ∈ reachable F"

apply (erule reachable.induct)
apply (rule reachable.Init, simp)

apply (force simp add: totalize_act_def intro: reachable.Acts)
done

lemma reachable_tot_eq [simp]: "reachable (totalize F) = reachable F"
by (blast intro: reachable_imp_reachable_tot reachable_tot_imp_reachable)

lemma totalize_Constrains_iff [simp]: "(totalize F ∈ A Co B) = (F ∈ A Co
B)"
by (simp add: Constrains_def)

lemma totalize_Stable_iff [simp]: "(totalize F ∈ Stable A) = (F ∈ Stable
A)"
by (simp add: Stable_def)

lemma totalize_Always_iff [simp]: "(totalize F ∈ Always A) = (F ∈ Always
A)"
by (simp add: Always_def)

end

5 Weak Progress
theory SubstAx imports WFair Constrains begin

definition Ensures :: "[’a set, ’a set] => ’a program set" (infixl ‹Ensures›
60) where

"A Ensures B == {F. F ∈ (reachable F ∩ A) ensures B}"

definition LeadsTo :: "[’a set, ’a set] => ’a program set" (infixl ‹LeadsTo›
60) where

"A LeadsTo B == {F. F ∈ (reachable F ∩ A) leadsTo B}"

notation LeadsTo (infixl ‹7−→w› 60)

36 5 WEAK PROGRESS

Resembles the previous definition of LeadsTo

lemma LeadsTo_eq_leadsTo:
"A LeadsTo B = {F. F ∈ (reachable F ∩ A) leadsTo (reachable F ∩ B)}"

apply (unfold LeadsTo_def)
apply (blast dest: psp_stable2 intro: leadsTo_weaken)
done

5.1 Specialized laws for handling invariants
lemma Always_LeadsTo_pre:

"F ∈ Always INV ==> (F ∈ (INV ∩ A) LeadsTo A’) = (F ∈ A LeadsTo A’)"
by (simp add: LeadsTo_def Always_eq_includes_reachable Int_absorb2

Int_assoc [symmetric])

lemma Always_LeadsTo_post:
"F ∈ Always INV ==> (F ∈ A LeadsTo (INV ∩ A’)) = (F ∈ A LeadsTo A’)"

by (simp add: LeadsTo_eq_leadsTo Always_eq_includes_reachable Int_absorb2

Int_assoc [symmetric])

lemmas Always_LeadsToI = Always_LeadsTo_pre [THEN iffD1]

lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2]

5.2 Introduction rules: Basis, Trans, Union
lemma leadsTo_imp_LeadsTo: "F ∈ A leadsTo B ==> F ∈ A LeadsTo B"
apply (simp add: LeadsTo_def)
apply (blast intro: leadsTo_weaken_L)
done

lemma LeadsTo_Trans:
"[| F ∈ A LeadsTo B; F ∈ B LeadsTo C |] ==> F ∈ A LeadsTo C"

apply (simp add: LeadsTo_eq_leadsTo)
apply (blast intro: leadsTo_Trans)
done

lemma LeadsTo_Union:
"(!!A. A ∈ S ==> F ∈ A LeadsTo B) ==> F ∈ (

⋃
S) LeadsTo B"

apply (simp add: LeadsTo_def)
apply (subst Int_Union)
apply (blast intro: leadsTo_UN)
done

5.3 Derived rules
lemma LeadsTo_UNIV [simp]: "F ∈ A LeadsTo UNIV"
by (simp add: LeadsTo_def)

Useful with cancellation, disjunction

lemma LeadsTo_Un_duplicate:

5.3 Derived rules 37

"F ∈ A LeadsTo (A’ ∪ A’) ==> F ∈ A LeadsTo A’"
by (simp add: Un_ac)

lemma LeadsTo_Un_duplicate2:
"F ∈ A LeadsTo (A’ ∪ C ∪ C) ==> F ∈ A LeadsTo (A’ ∪ C)"

by (simp add: Un_ac)

lemma LeadsTo_UN:
"(!!i. i ∈ I ==> F ∈ (A i) LeadsTo B) ==> F ∈ (

⋃
i ∈ I. A i) LeadsTo

B"
apply (blast intro: LeadsTo_Union)
done

Binary union introduction rule
lemma LeadsTo_Un:

"[| F ∈ A LeadsTo C; F ∈ B LeadsTo C |] ==> F ∈ (A ∪ B) LeadsTo C"
using LeadsTo_UN [of "{A, B}" F id C] by auto

Lets us look at the starting state
lemma single_LeadsTo_I:

"(!!s. s ∈ A ==> F ∈ {s} LeadsTo B) ==> F ∈ A LeadsTo B"
by (subst UN_singleton [symmetric], rule LeadsTo_UN, blast)

lemma subset_imp_LeadsTo: "A ⊆ B ==> F ∈ A LeadsTo B"
apply (simp add: LeadsTo_def)
apply (blast intro: subset_imp_leadsTo)
done

lemmas empty_LeadsTo = empty_subsetI [THEN subset_imp_LeadsTo, simp]

lemma LeadsTo_weaken_R:
"[| F ∈ A LeadsTo A’; A’ ⊆ B’ |] ==> F ∈ A LeadsTo B’"

apply (simp add: LeadsTo_def)
apply (blast intro: leadsTo_weaken_R)
done

lemma LeadsTo_weaken_L:
"[| F ∈ A LeadsTo A’; B ⊆ A |]
==> F ∈ B LeadsTo A’"

apply (simp add: LeadsTo_def)
apply (blast intro: leadsTo_weaken_L)
done

lemma LeadsTo_weaken:
"[| F ∈ A LeadsTo A’;

B ⊆ A; A’ ⊆ B’ |]
==> F ∈ B LeadsTo B’"

by (blast intro: LeadsTo_weaken_R LeadsTo_weaken_L LeadsTo_Trans)

lemma Always_LeadsTo_weaken:
"[| F ∈ Always C; F ∈ A LeadsTo A’;

C ∩ B ⊆ A; C ∩ A’ ⊆ B’ |]
==> F ∈ B LeadsTo B’"

by (blast dest: Always_LeadsToI intro: LeadsTo_weaken intro: Always_LeadsToD)

38 5 WEAK PROGRESS

lemma LeadsTo_Un_post: "F ∈ A LeadsTo B ==> F ∈ (A ∪ B) LeadsTo B"
by (blast intro: LeadsTo_Un subset_imp_LeadsTo)

lemma LeadsTo_Trans_Un:
"[| F ∈ A LeadsTo B; F ∈ B LeadsTo C |]
==> F ∈ (A ∪ B) LeadsTo C"

by (blast intro: LeadsTo_Un subset_imp_LeadsTo LeadsTo_weaken_L LeadsTo_Trans)

lemma LeadsTo_Un_distrib:
"(F ∈ (A ∪ B) LeadsTo C) = (F ∈ A LeadsTo C & F ∈ B LeadsTo C)"

by (blast intro: LeadsTo_Un LeadsTo_weaken_L)

lemma LeadsTo_UN_distrib:
"(F ∈ (

⋃
i ∈ I. A i) LeadsTo B) = (∀ i ∈ I. F ∈ (A i) LeadsTo B)"

by (blast intro: LeadsTo_UN LeadsTo_weaken_L)

lemma LeadsTo_Union_distrib:
"(F ∈ (

⋃
S) LeadsTo B) = (∀ A ∈ S. F ∈ A LeadsTo B)"

by (blast intro: LeadsTo_Union LeadsTo_weaken_L)

lemma LeadsTo_Basis: "F ∈ A Ensures B ==> F ∈ A LeadsTo B"
by (simp add: Ensures_def LeadsTo_def leadsTo_Basis)

lemma EnsuresI:
"[| F ∈ (A-B) Co (A ∪ B); F ∈ transient (A-B) |]
==> F ∈ A Ensures B"

apply (simp add: Ensures_def Constrains_eq_constrains)
apply (blast intro: ensuresI constrains_weaken transient_strengthen)
done

lemma Always_LeadsTo_Basis:
"[| F ∈ Always INV;

F ∈ (INV ∩ (A-A’)) Co (A ∪ A’);
F ∈ transient (INV ∩ (A-A’)) |]

==> F ∈ A LeadsTo A’"
apply (rule Always_LeadsToI, assumption)
apply (blast intro: EnsuresI LeadsTo_Basis Always_ConstrainsD [THEN Constrains_weaken]
transient_strengthen)
done

Set difference: maybe combine with leadsTo_weaken_L?? This is the most useful
form of the "disjunction" rule
lemma LeadsTo_Diff:

"[| F ∈ (A-B) LeadsTo C; F ∈ (A ∩ B) LeadsTo C |]
==> F ∈ A LeadsTo C"

5.3 Derived rules 39

by (blast intro: LeadsTo_Un LeadsTo_weaken)

lemma LeadsTo_UN_UN:
"(!! i. i ∈ I ==> F ∈ (A i) LeadsTo (A’ i))
==> F ∈ (

⋃
i ∈ I. A i) LeadsTo (

⋃
i ∈ I. A’ i)"

apply (blast intro: LeadsTo_Union LeadsTo_weaken_R)
done

Version with no index set

lemma LeadsTo_UN_UN_noindex:
"(!!i. F ∈ (A i) LeadsTo (A’ i)) ==> F ∈ (

⋃
i. A i) LeadsTo (

⋃
i. A’

i)"
by (blast intro: LeadsTo_UN_UN)

Version with no index set

lemma all_LeadsTo_UN_UN:
"∀ i. F ∈ (A i) LeadsTo (A’ i)
==> F ∈ (

⋃
i. A i) LeadsTo (

⋃
i. A’ i)"

by (blast intro: LeadsTo_UN_UN)

Binary union version

lemma LeadsTo_Un_Un:
"[| F ∈ A LeadsTo A’; F ∈ B LeadsTo B’ |]

==> F ∈ (A ∪ B) LeadsTo (A’ ∪ B’)"
by (blast intro: LeadsTo_Un LeadsTo_weaken_R)

lemma LeadsTo_cancel2:
"[| F ∈ A LeadsTo (A’ ∪ B); F ∈ B LeadsTo B’ |]
==> F ∈ A LeadsTo (A’ ∪ B’)"

by (blast intro: LeadsTo_Un_Un subset_imp_LeadsTo LeadsTo_Trans)

lemma LeadsTo_cancel_Diff2:
"[| F ∈ A LeadsTo (A’ ∪ B); F ∈ (B-A’) LeadsTo B’ |]
==> F ∈ A LeadsTo (A’ ∪ B’)"

apply (rule LeadsTo_cancel2)
prefer 2 apply assumption
apply (simp_all (no_asm_simp))
done

lemma LeadsTo_cancel1:
"[| F ∈ A LeadsTo (B ∪ A’); F ∈ B LeadsTo B’ |]
==> F ∈ A LeadsTo (B’ ∪ A’)"

apply (simp add: Un_commute)
apply (blast intro!: LeadsTo_cancel2)
done

lemma LeadsTo_cancel_Diff1:
"[| F ∈ A LeadsTo (B ∪ A’); F ∈ (B-A’) LeadsTo B’ |]
==> F ∈ A LeadsTo (B’ ∪ A’)"

40 5 WEAK PROGRESS

apply (rule LeadsTo_cancel1)
prefer 2 apply assumption
apply (simp_all (no_asm_simp))
done

The impossibility law

The set "A" may be non-empty, but it contains no reachable states

lemma LeadsTo_empty: "[|F ∈ A LeadsTo {}; all_total F|] ==> F ∈ Always (-A)"
apply (simp add: LeadsTo_def Always_eq_includes_reachable)
apply (drule leadsTo_empty, auto)
done

5.4 PSP: Progress-Safety-Progress
Special case of PSP: Misra’s "stable conjunction"

lemma PSP_Stable:
"[| F ∈ A LeadsTo A’; F ∈ Stable B |]
==> F ∈ (A ∩ B) LeadsTo (A’ ∩ B)"

apply (simp add: LeadsTo_eq_leadsTo Stable_eq_stable)
apply (drule psp_stable, assumption)
apply (simp add: Int_ac)
done

lemma PSP_Stable2:
"[| F ∈ A LeadsTo A’; F ∈ Stable B |]
==> F ∈ (B ∩ A) LeadsTo (B ∩ A’)"

by (simp add: PSP_Stable Int_ac)

lemma PSP:
"[| F ∈ A LeadsTo A’; F ∈ B Co B’ |]
==> F ∈ (A ∩ B’) LeadsTo ((A’ ∩ B) ∪ (B’ - B))"

apply (simp add: LeadsTo_def Constrains_eq_constrains)
apply (blast dest: psp intro: leadsTo_weaken)
done

lemma PSP2:
"[| F ∈ A LeadsTo A’; F ∈ B Co B’ |]
==> F ∈ (B’ ∩ A) LeadsTo ((B ∩ A’) ∪ (B’ - B))"

by (simp add: PSP Int_ac)

lemma PSP_Unless:
"[| F ∈ A LeadsTo A’; F ∈ B Unless B’ |]
==> F ∈ (A ∩ B) LeadsTo ((A’ ∩ B) ∪ B’)"

apply (unfold Unless_def)
apply (drule PSP, assumption)
apply (blast intro: LeadsTo_Diff LeadsTo_weaken subset_imp_LeadsTo)
done

lemma Stable_transient_Always_LeadsTo:
"[| F ∈ Stable A; F ∈ transient C;

F ∈ Always (-A ∪ B ∪ C) |] ==> F ∈ A LeadsTo B"

5.5 Induction rules 41

apply (erule Always_LeadsTo_weaken)
apply (rule LeadsTo_Diff)

prefer 2
apply (erule

transient_imp_leadsTo [THEN leadsTo_imp_LeadsTo, THEN PSP_Stable2])
apply (blast intro: subset_imp_LeadsTo)+

done

5.5 Induction rules
lemma LeadsTo_wf_induct:

"[| wf r;
∀ m. F ∈ (A ∩ f-‘{m}) LeadsTo

((A ∩ f-‘(r−1 ‘‘ {m})) ∪ B) |]
==> F ∈ A LeadsTo B"

apply (simp add: LeadsTo_eq_leadsTo)
apply (erule leadsTo_wf_induct)
apply (blast intro: leadsTo_weaken)
done

lemma Bounded_induct:
"[| wf r;

∀ m ∈ I. F ∈ (A ∩ f-‘{m}) LeadsTo
((A ∩ f-‘(r−1 ‘‘ {m})) ∪ B) |]

==> F ∈ A LeadsTo ((A - (f-‘I)) ∪ B)"
apply (erule LeadsTo_wf_induct, safe)
apply (case_tac "m ∈ I")
apply (blast intro: LeadsTo_weaken)
apply (blast intro: subset_imp_LeadsTo)
done

lemma LessThan_induct:
"(!!m::nat. F ∈ (A ∩ f-‘{m}) LeadsTo ((A ∩ f-‘(lessThan m)) ∪ B))
==> F ∈ A LeadsTo B"

by (rule wf_less_than [THEN LeadsTo_wf_induct], auto)

Integer version. Could generalize from 0 to any lower bound

lemma integ_0_le_induct:
"[| F ∈ Always {s. (0::int) ≤ f s};

!! z. F ∈ (A ∩ {s. f s = z}) LeadsTo
((A ∩ {s. f s < z}) ∪ B) |]

==> F ∈ A LeadsTo B"
apply (rule_tac f = "nat o f" in LessThan_induct)
apply (simp add: vimage_def)
apply (rule Always_LeadsTo_weaken, assumption+)
apply (auto simp add: nat_eq_iff nat_less_iff)
done

lemma LessThan_bounded_induct:
"!!l::nat. ∀ m ∈ greaterThan l.

F ∈ (A ∩ f-‘{m}) LeadsTo ((A ∩ f-‘(lessThan m)) ∪ B)
==> F ∈ A LeadsTo ((A ∩ (f-‘(atMost l))) ∪ B)"

42 5 WEAK PROGRESS

apply (simp only: Diff_eq [symmetric] vimage_Compl
Compl_greaterThan [symmetric])

apply (rule wf_less_than [THEN Bounded_induct], simp)
done

lemma GreaterThan_bounded_induct:
"!!l::nat. ∀ m ∈ lessThan l.

F ∈ (A ∩ f-‘{m}) LeadsTo ((A ∩ f-‘(greaterThan m)) ∪ B)
==> F ∈ A LeadsTo ((A ∩ (f-‘(atLeast l))) ∪ B)"

apply (rule_tac f = f and f1 = "%k. l - k"
in wf_less_than [THEN wf_inv_image, THEN LeadsTo_wf_induct])

apply (simp add: Image_singleton, clarify)
apply (case_tac "m<l")
apply (blast intro: LeadsTo_weaken_R diff_less_mono2)

apply (blast intro: not_le_imp_less subset_imp_LeadsTo)
done

5.6 Completion: Binary and General Finite versions
lemma Completion:

"[| F ∈ A LeadsTo (A’ ∪ C); F ∈ A’ Co (A’ ∪ C);
F ∈ B LeadsTo (B’ ∪ C); F ∈ B’ Co (B’ ∪ C) |]

==> F ∈ (A ∩ B) LeadsTo ((A’ ∩ B’) ∪ C)"
apply (simp add: LeadsTo_eq_leadsTo Constrains_eq_constrains Int_Un_distrib)
apply (blast intro: completion leadsTo_weaken)
done

lemma Finite_completion_lemma:
"finite I
==> (∀ i ∈ I. F ∈ (A i) LeadsTo (A’ i ∪ C)) -->

(∀ i ∈ I. F ∈ (A’ i) Co (A’ i ∪ C)) -->
F ∈ (

⋂
i ∈ I. A i) LeadsTo ((

⋂
i ∈ I. A’ i) ∪ C)"

apply (erule finite_induct, auto)
apply (rule Completion)

prefer 4
apply (simp only: INT_simps [symmetric])
apply (rule Constrains_INT, auto)

done

lemma Finite_completion:
"[| finite I;

!!i. i ∈ I ==> F ∈ (A i) LeadsTo (A’ i ∪ C);
!!i. i ∈ I ==> F ∈ (A’ i) Co (A’ i ∪ C) |]

==> F ∈ (
⋂

i ∈ I. A i) LeadsTo ((
⋂

i ∈ I. A’ i) ∪ C)"
by (blast intro: Finite_completion_lemma [THEN mp, THEN mp])

lemma Stable_completion:
"[| F ∈ A LeadsTo A’; F ∈ Stable A’;

F ∈ B LeadsTo B’; F ∈ Stable B’ |]
==> F ∈ (A ∩ B) LeadsTo (A’ ∩ B’)"

apply (unfold Stable_def)
apply (rule_tac C1 = "{}" in Completion [THEN LeadsTo_weaken_R])
apply (force+)
done

43

lemma Finite_stable_completion:
"[| finite I;

!!i. i ∈ I ==> F ∈ (A i) LeadsTo (A’ i);
!!i. i ∈ I ==> F ∈ Stable (A’ i) |]

==> F ∈ (
⋂

i ∈ I. A i) LeadsTo (
⋂

i ∈ I. A’ i)"
apply (unfold Stable_def)
apply (rule_tac C1 = "{}" in Finite_completion [THEN LeadsTo_weaken_R])
apply (simp_all, blast+)
done

end

6 The Detects Relation
theory Detects imports FP SubstAx begin

definition Detects :: "[’a set, ’a set] => ’a program set" (infixl ‹Detects›
60)

where "A Detects B = (Always (-A ∪ B)) ∩ (B LeadsTo A)"

definition Equality :: "[’a set, ’a set] => ’a set" (infixl ‹<==>› 60)
where "A <==> B = (-A ∪ B) ∩ (A ∪ -B)"

lemma Always_at_FP:
"[|F ∈ A LeadsTo B; all_total F|] ==> F ∈ Always (-((FP F) ∩ A ∩ -B))"

supply [[simproc del: boolean_algebra_cancel_inf]] inf_compl_bot_right[simp
del]
apply (rule LeadsTo_empty)
apply (subgoal_tac "F ∈ (FP F ∩ A ∩ - B) LeadsTo (B ∩ (FP F ∩ -B))")
apply (subgoal_tac [2] " (FP F ∩ A ∩ - B) = (A ∩ (FP F ∩ -B))")
apply (subgoal_tac "(B ∩ (FP F ∩ -B)) = {}")
apply auto
apply (blast intro: PSP_Stable stable_imp_Stable stable_FP_Int)
done

lemma Detects_Trans:
"[| F ∈ A Detects B; F ∈ B Detects C |] ==> F ∈ A Detects C"

apply (unfold Detects_def Int_def)
apply (simp (no_asm))
apply safe
apply (rule_tac [2] LeadsTo_Trans, auto)
apply (subgoal_tac "F ∈ Always ((-A ∪ B) ∩ (-B ∪ C))")
apply (blast intro: Always_weaken)

apply (simp add: Always_Int_distrib)
done

lemma Detects_refl: "F ∈ A Detects A"
apply (unfold Detects_def)

44 7 UNIONS OF PROGRAMS

apply (simp (no_asm) add: Un_commute Compl_partition subset_imp_LeadsTo)
done

lemma Detects_eq_Un: "(A<==>B) = (A ∩ B) ∪ (-A ∩ -B)"
by (unfold Equality_def, blast)

lemma Detects_antisym:
"[| F ∈ A Detects B; F ∈ B Detects A|] ==> F ∈ Always (A <==> B)"

apply (unfold Detects_def Equality_def)
apply (simp add: Always_Int_I Un_commute)
done

lemma Detects_Always:
"[|F ∈ A Detects B; all_total F|] ==> F ∈ Always (-(FP F) ∪ (A <==>

B))"
apply (unfold Detects_def Equality_def)
apply (simp add: Un_Int_distrib Always_Int_distrib)
apply (blast dest: Always_at_FP intro: Always_weaken)
done

lemma Detects_Imp_LeadstoEQ:
"F ∈ A Detects B ==> F ∈ UNIV LeadsTo (A <==> B)"

apply (unfold Detects_def Equality_def)
apply (rule_tac B = B in LeadsTo_Diff)
apply (blast intro: Always_LeadsToI subset_imp_LeadsTo)

apply (blast intro: Always_LeadsTo_weaken)
done

end

7 Unions of Programs
theory Union imports SubstAx FP begin

definition
ok :: "[’a program, ’a program] => bool" (infixl ‹ok› 65)
where "F ok G == Acts F ⊆ AllowedActs G &

Acts G ⊆ AllowedActs F"

definition
OK :: "[’a set, ’a => ’b program] => bool"
where "OK I F = (∀ i ∈ I. ∀ j ∈ I-{i}. Acts (F i) ⊆ AllowedActs (F j))"

definition

7.1 SKIP 45

JOIN :: "[’a set, ’a => ’b program] => ’b program"
where "JOIN I F = mk_program (

⋂
i ∈ I. Init (F i),

⋃
i ∈ I. Acts (F i),⋂

i ∈ I. AllowedActs (F i))"

definition
Join :: "[’a program, ’a program] => ’a program" (infixl ‹t› 65)
where "F t G = mk_program (Init F ∩ Init G, Acts F ∪ Acts G,

AllowedActs F ∩ AllowedActs G)"

definition SKIP :: "’a program" (‹⊥›)
where "⊥ = mk_program (UNIV, {}, UNIV)"

definition
safety_prop :: "’a program set => bool"
where "safety_prop X ←→ SKIP ∈ X ∧ (∀ G. Acts G ⊆

⋃
(Acts ‘ X) −→ G

∈ X)"

syntax
"_JOIN1" :: "[pttrns, ’b set] => ’b set" (‹(‹indent=3 notation=‹binder

⊔
››
⊔

_./
_)› 10)

"_JOIN" :: "[pttrn, ’a set, ’b set] => ’b set" (‹(‹indent=3 notation=‹binder⊔
››
⊔

∈./ _)› 10)
syntax_consts

"_JOIN1" "_JOIN" == JOIN
translations

"
⊔

x ∈ A. B" == "CONST JOIN A (λx. B)"
"
⊔

x y. B" == "
⊔

x.
⊔

y. B"
"
⊔

x. B" == "CONST JOIN (CONST UNIV) (λx. B)"

7.1 SKIP
lemma Init_SKIP [simp]: "Init SKIP = UNIV"
by (simp add: SKIP_def)

lemma Acts_SKIP [simp]: "Acts SKIP = {Id}"
by (simp add: SKIP_def)

lemma AllowedActs_SKIP [simp]: "AllowedActs SKIP = UNIV"
by (auto simp add: SKIP_def)

lemma reachable_SKIP [simp]: "reachable SKIP = UNIV"
by (force elim: reachable.induct intro: reachable.intros)

7.2 SKIP and safety properties
lemma SKIP_in_constrains_iff [iff]: "(SKIP ∈ A co B) = (A ⊆ B)"
by (unfold constrains_def, auto)

lemma SKIP_in_Constrains_iff [iff]: "(SKIP ∈ A Co B) = (A ⊆ B)"
by (unfold Constrains_def, auto)

lemma SKIP_in_stable [iff]: "SKIP ∈ stable A"
by (unfold stable_def, auto)

46 7 UNIONS OF PROGRAMS

declare SKIP_in_stable [THEN stable_imp_Stable, iff]

7.3 Join
lemma Init_Join [simp]: "Init (FtG) = Init F ∩ Init G"
by (simp add: Join_def)

lemma Acts_Join [simp]: "Acts (FtG) = Acts F ∪ Acts G"
by (auto simp add: Join_def)

lemma AllowedActs_Join [simp]:
"AllowedActs (FtG) = AllowedActs F ∩ AllowedActs G"

by (auto simp add: Join_def)

7.4 JN
lemma JN_empty [simp]: "(

⊔
i∈{}. F i) = SKIP"

by (unfold JOIN_def SKIP_def, auto)

lemma JN_insert [simp]: "(
⊔

i ∈ insert a I. F i) = (F a)t(
⊔

i ∈ I. F i)"
apply (rule program_equalityI)
apply (auto simp add: JOIN_def Join_def)
done

lemma Init_JN [simp]: "Init (
⊔

i ∈ I. F i) = (
⋂

i ∈ I. Init (F i))"
by (simp add: JOIN_def)

lemma Acts_JN [simp]: "Acts (
⊔

i ∈ I. F i) = insert Id (
⋃

i ∈ I. Acts (F
i))"
by (auto simp add: JOIN_def)

lemma AllowedActs_JN [simp]:
"AllowedActs (

⊔
i ∈ I. F i) = (

⋂
i ∈ I. AllowedActs (F i))"

by (auto simp add: JOIN_def)

lemma JN_cong [cong]:
"[| I=J; !!i. i ∈ J ==> F i = G i |] ==> (

⊔
i ∈ I. F i) = (

⊔
i ∈ J.

G i)"
by (simp add: JOIN_def)

7.5 Algebraic laws
lemma Join_commute: "FtG = GtF"
by (simp add: Join_def Un_commute Int_commute)

lemma Join_assoc: "(FtG)tH = Ft(GtH)"
by (simp add: Un_ac Join_def Int_assoc insert_absorb)

lemma Join_left_commute: "At(BtC) = Bt(AtC)"
by (simp add: Un_ac Int_ac Join_def insert_absorb)

lemma Join_SKIP_left [simp]: "SKIPtF = F"

7.6 Laws Governing
⊔

47

apply (unfold Join_def SKIP_def)
apply (rule program_equalityI)
apply (simp_all (no_asm) add: insert_absorb)
done

lemma Join_SKIP_right [simp]: "FtSKIP = F"
apply (unfold Join_def SKIP_def)
apply (rule program_equalityI)
apply (simp_all (no_asm) add: insert_absorb)
done

lemma Join_absorb [simp]: "FtF = F"
apply (unfold Join_def)
apply (rule program_equalityI, auto)
done

lemma Join_left_absorb: "Ft(FtG) = FtG"
apply (unfold Join_def)
apply (rule program_equalityI, auto)
done

lemmas Join_ac = Join_assoc Join_left_absorb Join_commute Join_left_commute

7.6 Laws Governing ⊔
lemma JN_absorb: "k ∈ I ==> F kt(

⊔
i ∈ I. F i) = (

⊔
i ∈ I. F i)"

by (auto intro!: program_equalityI)

lemma JN_Un: "(
⊔

i ∈ I ∪ J. F i) = ((
⊔

i ∈ I. F i)t(
⊔

i ∈ J. F i))"
by (auto intro!: program_equalityI)

lemma JN_constant: "(
⊔

i ∈ I. c) = (if I={} then SKIP else c)"
by (rule program_equalityI, auto)

lemma JN_Join_distrib:
"(
⊔

i ∈ I. F itG i) = (
⊔

i ∈ I. F i) t (
⊔

i ∈ I. G i)"
by (auto intro!: program_equalityI)

lemma JN_Join_miniscope:
"i ∈ I ==> (

⊔
i ∈ I. F itG) = ((

⊔
i ∈ I. F i)tG)"

by (auto simp add: JN_Join_distrib JN_constant)

lemma JN_Join_diff: "i ∈ I ==> F itJOIN (I - {i}) F = JOIN I F"
apply (unfold JOIN_def Join_def)
apply (rule program_equalityI, auto)
done

7.7 Safety: co, stable, FP
lemma JN_constrains:

"i ∈ I ==> (
⊔

i ∈ I. F i) ∈ A co B = (∀ i ∈ I. F i ∈ A co B)"
by (simp add: constrains_def JOIN_def, blast)

48 7 UNIONS OF PROGRAMS

lemma Join_constrains [simp]:
"(FtG ∈ A co B) = (F ∈ A co B & G ∈ A co B)"

by (auto simp add: constrains_def Join_def)

lemma Join_unless [simp]:
"(FtG ∈ A unless B) = (F ∈ A unless B & G ∈ A unless B)"

by (simp add: unless_def)

lemma Join_constrains_weaken:
"[| F ∈ A co A’; G ∈ B co B’ |]
==> FtG ∈ (A ∩ B) co (A’ ∪ B’)"

by (simp, blast intro: constrains_weaken)

lemma JN_constrains_weaken:
"[| ∀ i ∈ I. F i ∈ A i co A’ i; i ∈ I |]
==> (

⊔
i ∈ I. F i) ∈ (

⋂
i ∈ I. A i) co (

⋃
i ∈ I. A’ i)"

apply (simp (no_asm_simp) add: JN_constrains)
apply (blast intro: constrains_weaken)
done

lemma JN_stable: "(
⊔

i ∈ I. F i) ∈ stable A = (∀ i ∈ I. F i ∈ stable A)"
by (simp add: stable_def constrains_def JOIN_def)

lemma invariant_JN_I:
"[| !!i. i ∈ I ==> F i ∈ invariant A; i ∈ I |]

==> (
⊔

i ∈ I. F i) ∈ invariant A"
by (simp add: invariant_def JN_stable, blast)

lemma Join_stable [simp]:
"(FtG ∈ stable A) =
(F ∈ stable A & G ∈ stable A)"

by (simp add: stable_def)

lemma Join_increasing [simp]:
"(FtG ∈ increasing f) =
(F ∈ increasing f & G ∈ increasing f)"

by (auto simp add: increasing_def)

lemma invariant_JoinI:
"[| F ∈ invariant A; G ∈ invariant A |]
==> FtG ∈ invariant A"

by (auto simp add: invariant_def)

lemma FP_JN: "FP (
⊔

i ∈ I. F i) = (
⋂

i ∈ I. FP (F i))"
by (simp add: FP_def JN_stable INTER_eq)

7.8 Progress: transient, ensures
lemma JN_transient:

7.8 Progress: transient, ensures 49

"i ∈ I ==>
(
⊔

i ∈ I. F i) ∈ transient A = (∃ i ∈ I. F i ∈ transient A)"
by (auto simp add: transient_def JOIN_def)

lemma Join_transient [simp]:
"FtG ∈ transient A =
(F ∈ transient A | G ∈ transient A)"

by (auto simp add: bex_Un transient_def Join_def)

lemma Join_transient_I1: "F ∈ transient A ==> FtG ∈ transient A"
by simp

lemma Join_transient_I2: "G ∈ transient A ==> FtG ∈ transient A"
by simp

lemma JN_ensures:
"i ∈ I ==>
(
⊔

i ∈ I. F i) ∈ A ensures B =
((∀ i ∈ I. F i ∈ (A-B) co (A ∪ B)) & (∃ i ∈ I. F i ∈ A ensures B))"

by (auto simp add: ensures_def JN_constrains JN_transient)

lemma Join_ensures:
"FtG ∈ A ensures B =
(F ∈ (A-B) co (A ∪ B) & G ∈ (A-B) co (A ∪ B) &
(F ∈ transient (A-B) | G ∈ transient (A-B)))"

by (auto simp add: ensures_def)

lemma stable_Join_constrains:
"[| F ∈ stable A; G ∈ A co A’ |]
==> FtG ∈ A co A’"

apply (unfold stable_def constrains_def Join_def)
apply (simp add: ball_Un, blast)
done

lemma stable_Join_Always1:
"[| F ∈ stable A; G ∈ invariant A |] ==> FtG ∈ Always A"

apply (simp (no_asm_use) add: Always_def invariant_def Stable_eq_stable)
apply (force intro: stable_Int)
done

lemma stable_Join_Always2:
"[| F ∈ invariant A; G ∈ stable A |] ==> FtG ∈ Always A"

apply (subst Join_commute)
apply (blast intro: stable_Join_Always1)
done

lemma stable_Join_ensures1:
"[| F ∈ stable A; G ∈ A ensures B |] ==> FtG ∈ A ensures B"

apply (simp (no_asm_simp) add: Join_ensures)
apply (simp add: stable_def ensures_def)
apply (erule constrains_weaken, auto)

50 7 UNIONS OF PROGRAMS

done

lemma stable_Join_ensures2:
"[| F ∈ A ensures B; G ∈ stable A |] ==> FtG ∈ A ensures B"

apply (subst Join_commute)
apply (blast intro: stable_Join_ensures1)
done

7.9 the ok and OK relations
lemma ok_SKIP1 [iff]: "SKIP ok F"
by (simp add: ok_def)

lemma ok_SKIP2 [iff]: "F ok SKIP"
by (simp add: ok_def)

lemma ok_Join_commute:
"(F ok G & (FtG) ok H) = (G ok H & F ok (GtH))"

by (auto simp add: ok_def)

lemma ok_commute: "(F ok G) = (G ok F)"
by (auto simp add: ok_def)

lemmas ok_sym = ok_commute [THEN iffD1]

lemma ok_iff_OK:
"OK {(0::int,F),(1,G),(2,H)} snd = (F ok G & (FtG) ok H)"

apply (simp add: Ball_def conj_disj_distribR ok_def Join_def OK_def insert_absorb
all_conj_distrib)

apply blast
done

lemma ok_Join_iff1 [iff]: "F ok (GtH) = (F ok G & F ok H)"
by (auto simp add: ok_def)

lemma ok_Join_iff2 [iff]: "(GtH) ok F = (G ok F & H ok F)"
by (auto simp add: ok_def)

lemma ok_Join_commute_I: "[| F ok G; (FtG) ok H |] ==> F ok (GtH)"
by (auto simp add: ok_def)

lemma ok_JN_iff1 [iff]: "F ok (JOIN I G) = (∀ i ∈ I. F ok G i)"
by (auto simp add: ok_def)

lemma ok_JN_iff2 [iff]: "(JOIN I G) ok F = (∀ i ∈ I. G i ok F)"
by (auto simp add: ok_def)

lemma OK_iff_ok: "OK I F = (∀ i ∈ I. ∀ j ∈ I-{i}. (F i) ok (F j))"
by (auto simp add: ok_def OK_def)

lemma OK_imp_ok: "[| OK I F; i ∈ I; j ∈ I; i 6= j|] ==> (F i) ok (F j)"
by (auto simp add: OK_iff_ok)

7.10 Allowed 51

7.10 Allowed
lemma Allowed_SKIP [simp]: "Allowed SKIP = UNIV"
by (auto simp add: Allowed_def)

lemma Allowed_Join [simp]: "Allowed (FtG) = Allowed F ∩ Allowed G"
by (auto simp add: Allowed_def)

lemma Allowed_JN [simp]: "Allowed (JOIN I F) = (
⋂

i ∈ I. Allowed (F i))"
by (auto simp add: Allowed_def)

lemma ok_iff_Allowed: "F ok G = (F ∈ Allowed G & G ∈ Allowed F)"
by (simp add: ok_def Allowed_def)

lemma OK_iff_Allowed: "OK I F = (∀ i ∈ I. ∀ j ∈ I-{i}. F i ∈ Allowed(F j))"
by (auto simp add: OK_iff_ok ok_iff_Allowed)

7.11 safety_prop, for reasoning about given instances of "ok"
lemma safety_prop_Acts_iff:

"safety_prop X ==> (Acts G ⊆ insert Id (
⋃

(Acts ‘ X))) = (G ∈ X)"
by (auto simp add: safety_prop_def)

lemma safety_prop_AllowedActs_iff_Allowed:
"safety_prop X ==> (

⋃
(Acts ‘ X) ⊆ AllowedActs F) = (X ⊆ Allowed F)"

by (auto simp add: Allowed_def safety_prop_Acts_iff [symmetric])

lemma Allowed_eq:
"safety_prop X ==> Allowed (mk_program (init, acts,

⋃
(Acts ‘ X))) =

X"
by (simp add: Allowed_def safety_prop_Acts_iff)

lemma safety_prop_constrains [iff]: "safety_prop (A co B) = (A ⊆ B)"
by (simp add: safety_prop_def constrains_def, blast)

lemma safety_prop_stable [iff]: "safety_prop (stable A)"
by (simp add: stable_def)

lemma safety_prop_Int [simp]:
"safety_prop X =⇒ safety_prop Y =⇒ safety_prop (X ∩ Y)"

proof (clarsimp simp add: safety_prop_def)
fix G
assume "∀ G. Acts G ⊆ (

⋃
x∈X. Acts x) −→ G ∈ X"

then have X: "Acts G ⊆ (
⋃

x∈X. Acts x) =⇒ G ∈ X" by blast
assume "∀ G. Acts G ⊆ (

⋃
x∈Y. Acts x) −→ G ∈ Y"

then have Y: "Acts G ⊆ (
⋃

x∈Y. Acts x) =⇒ G ∈ Y" by blast
assume Acts: "Acts G ⊆ (

⋃
x∈X ∩ Y. Acts x)"

with X and Y show "G ∈ X ∧ G ∈ Y" by auto
qed

lemma safety_prop_INTER [simp]:
"(
∧

i. i ∈ I =⇒ safety_prop (X i)) =⇒ safety_prop (
⋂

i∈I. X i)"
proof (clarsimp simp add: safety_prop_def)

fix G and i

52 8 COMPOSITION: BASIC PRIMITIVES

assume "
∧

i. i ∈ I =⇒ ⊥ ∈ X i ∧
(∀ G. Acts G ⊆ (

⋃
x∈X i. Acts x) −→ G ∈ X i)"

then have *: "i ∈ I =⇒ Acts G ⊆ (
⋃

x∈X i. Acts x) =⇒ G ∈ X i"
by blast

assume "i ∈ I"
moreover assume "Acts G ⊆ (

⋃
j∈

⋂
i∈I. X i. Acts j)"

ultimately have "Acts G ⊆ (
⋃

i∈X i. Acts i)"
by auto

with * ‹i ∈ I› show "G ∈ X i" by blast
qed

lemma safety_prop_INTER1 [simp]:
"(
∧

i. safety_prop (X i)) =⇒ safety_prop (
⋂

i. X i)"
by (rule safety_prop_INTER) simp

lemma def_prg_Allowed:
"[| F == mk_program (init, acts,

⋃
(Acts ‘ X)) ; safety_prop X |]

==> Allowed F = X"
by (simp add: Allowed_eq)

lemma Allowed_totalize [simp]: "Allowed (totalize F) = Allowed F"
by (simp add: Allowed_def)

lemma def_total_prg_Allowed:
"[| F = mk_total_program (init, acts,

⋃
(Acts ‘ X)) ; safety_prop X |]

==> Allowed F = X"
by (simp add: mk_total_program_def def_prg_Allowed)

lemma def_UNION_ok_iff:
"[| F = mk_program(init,acts,

⋃
(Acts ‘ X)); safety_prop X |]

==> F ok G = (G ∈ X & acts ⊆ AllowedActs G)"
by (auto simp add: ok_def safety_prop_Acts_iff)

The union of two total programs is total.

lemma totalize_Join: "totalize Fttotalize G = totalize (FtG)"
by (simp add: program_equalityI totalize_def Join_def image_Un)

lemma all_total_Join: "[|all_total F; all_total G|] ==> all_total (FtG)"
by (simp add: all_total_def, blast)

lemma totalize_JN: "(
⊔

i ∈ I. totalize (F i)) = totalize(
⊔

i ∈ I. F i)"
by (simp add: program_equalityI totalize_def JOIN_def image_UN)

lemma all_total_JN: "(!!i. i∈I ==> all_total (F i)) ==> all_total(
⊔

i∈I.
F i)"
by (simp add: all_total_iff_totalize totalize_JN [symmetric])

end

8 Composition: Basic Primitives
theory Comp

8.1 The component relation 53

imports Union
begin

instantiation program :: (type) ord
begin

definition component_def: "F ≤ H ←→ (∃ G. FtG = H)"

definition strict_component_def: "F < (H::’a program) ←→ (F ≤ H & F 6= H)"

instance ..

end

definition component_of :: "’a program =>’a program=> bool" (infixl ‹component’_of›
50)

where "F component_of H == ∃ G. F ok G & FtG = H"

definition strict_component_of :: "’a program⇒’a program=> bool" (infixl ‹strict’_component’_of›
50)

where "F strict_component_of H == F component_of H & F 6=H"

definition preserves :: "(’a=>’b) => ’a program set"
where "preserves v ==

⋂
z. stable {s. v s = z}"

definition localize :: "(’a=>’b) => ’a program => ’a program" where
"localize v F == mk_program(Init F, Acts F,

AllowedActs F ∩ (
⋃

G ∈ preserves v. Acts G))"

definition funPair :: "[’a => ’b, ’a => ’c, ’a] => ’b * ’c"
where "funPair f g == %x. (f x, g x)"

8.1 The component relation
lemma componentI: "H ≤ F | H ≤ G ==> H ≤ (FtG)"
apply (unfold component_def, auto)
apply (rule_tac x = "GtGa" in exI)
apply (rule_tac [2] x = "GtF" in exI)
apply (auto simp add: Join_ac)
done

lemma component_eq_subset:
"(F ≤ G) =
(Init G ⊆ Init F & Acts F ⊆ Acts G & AllowedActs G ⊆ AllowedActs F)"

apply (unfold component_def)
apply (force intro!: exI program_equalityI)
done

lemma component_SKIP [iff]: "SKIP ≤ F"
apply (unfold component_def)
apply (force intro: Join_SKIP_left)
done

lemma component_refl [iff]: "F ≤ (F :: ’a program)"

54 8 COMPOSITION: BASIC PRIMITIVES

apply (unfold component_def)
apply (blast intro: Join_SKIP_right)
done

lemma SKIP_minimal: "F ≤ SKIP ==> F = SKIP"
by (auto intro!: program_equalityI simp add: component_eq_subset)

lemma component_Join1: "F ≤ (FtG)"
by (unfold component_def, blast)

lemma component_Join2: "G ≤ (FtG)"
apply (unfold component_def)
apply (simp add: Join_commute, blast)
done

lemma Join_absorb1: "F ≤ G ==> FtG = G"
by (auto simp add: component_def Join_left_absorb)

lemma Join_absorb2: "G ≤ F ==> FtG = F"
by (auto simp add: Join_ac component_def)

lemma JN_component_iff: "((JOIN I F) ≤ H) = (∀ i ∈ I. F i ≤ H)"
by (simp add: component_eq_subset, blast)

lemma component_JN: "i ∈ I ==> (F i) ≤ (
⊔

i ∈ I. (F i))"
apply (unfold component_def)
apply (blast intro: JN_absorb)
done

lemma component_trans: "[| F ≤ G; G ≤ H |] ==> F ≤ (H :: ’a program)"
apply (unfold component_def)
apply (blast intro: Join_assoc [symmetric])
done

lemma component_antisym: "[| F ≤ G; G ≤ F |] ==> F = (G :: ’a program)"
apply (simp (no_asm_use) add: component_eq_subset)
apply (blast intro!: program_equalityI)
done

lemma Join_component_iff: "((FtG) ≤ H) = (F ≤ H & G ≤ H)"
by (simp add: component_eq_subset, blast)

lemma component_constrains: "[| F ≤ G; G ∈ A co B |] ==> F ∈ A co B"
by (auto simp add: constrains_def component_eq_subset)

lemma component_stable: "[| F ≤ G; G ∈ stable A |] ==> F ∈ stable A"
by (auto simp add: stable_def component_constrains)

lemmas program_less_le = strict_component_def

8.2 The preserves property
lemma preservesI: "(!!z. F ∈ stable {s. v s = z}) ==> F ∈ preserves v"

8.2 The preserves property 55

by (unfold preserves_def, blast)

lemma preserves_imp_eq:
"[| F ∈ preserves v; act ∈ Acts F; (s,s’) ∈ act |] ==> v s = v s’"

by (unfold preserves_def stable_def constrains_def, force)

lemma Join_preserves [iff]:
"(FtG ∈ preserves v) = (F ∈ preserves v & G ∈ preserves v)"

by (unfold preserves_def, auto)

lemma JN_preserves [iff]:
"(JOIN I F ∈ preserves v) = (∀ i ∈ I. F i ∈ preserves v)"

by (simp add: JN_stable preserves_def, blast)

lemma SKIP_preserves [iff]: "SKIP ∈ preserves v"
by (auto simp add: preserves_def)

lemma funPair_apply [simp]: "(funPair f g) x = (f x, g x)"
by (simp add: funPair_def)

lemma preserves_funPair: "preserves (funPair v w) = preserves v ∩ preserves
w"
by (auto simp add: preserves_def stable_def constrains_def, blast)

declare preserves_funPair [THEN eqset_imp_iff, iff]

lemma funPair_o_distrib: "(funPair f g) o h = funPair (f o h) (g o h)"
by (simp add: funPair_def o_def)

lemma fst_o_funPair [simp]: "fst o (funPair f g) = f"
by (simp add: funPair_def o_def)

lemma snd_o_funPair [simp]: "snd o (funPair f g) = g"
by (simp add: funPair_def o_def)

lemma subset_preserves_o: "preserves v ⊆ preserves (w o v)"
by (force simp add: preserves_def stable_def constrains_def)

lemma preserves_subset_stable: "preserves v ⊆ stable {s. P (v s)}"
apply (auto simp add: preserves_def stable_def constrains_def)
apply (rename_tac s’ s)
apply (subgoal_tac "v s = v s’")
apply (force+)
done

lemma preserves_subset_increasing: "preserves v ⊆ increasing v"
by (auto simp add: preserves_subset_stable [THEN subsetD] increasing_def)

lemma preserves_id_subset_stable: "preserves id ⊆ stable A"
by (force simp add: preserves_def stable_def constrains_def)

56 8 COMPOSITION: BASIC PRIMITIVES

lemma safety_prop_preserves [iff]: "safety_prop (preserves v)"
by (auto intro: safety_prop_INTER1 simp add: preserves_def)

lemma stable_localTo_stable2:
"[| F ∈ stable {s. P (v s) (w s)};

G ∈ preserves v; G ∈ preserves w |]
==> FtG ∈ stable {s. P (v s) (w s)}"

apply simp
apply (subgoal_tac "G ∈ preserves (funPair v w) ")
prefer 2 apply simp

apply (drule_tac P1 = "case_prod Q" for Q in preserves_subset_stable [THEN
subsetD],

auto)
done

lemma Increasing_preserves_Stable:
"[| F ∈ stable {s. v s ≤ w s}; G ∈ preserves v; FtG ∈ Increasing w

|]
==> FtG ∈ Stable {s. v s ≤ w s}"

apply (auto simp add: stable_def Stable_def Increasing_def Constrains_def
all_conj_distrib)
apply (blast intro: constrains_weaken)

apply (auto simp add: preserves_def stable_def constrains_def)

apply (erule_tac V = "∀ act ∈ Acts F. P act" for P in thin_rl)
apply (erule_tac V = "∀ z. ∀ act ∈ Acts F. P z act" for P in thin_rl)
apply (subgoal_tac "v x = v xa")
apply auto

apply (erule order_trans, blast)
done

lemma component_of_imp_component: "F component_of H ==> F ≤ H"
by (unfold component_def component_of_def, blast)

lemma component_of_refl [simp]: "F component_of F"
apply (unfold component_of_def)
apply (rule_tac x = SKIP in exI, auto)
done

lemma component_of_SKIP [simp]: "SKIP component_of F"
by (unfold component_of_def, auto)

lemma component_of_trans:

57

"[| F component_of G; G component_of H |] ==> F component_of H"
apply (unfold component_of_def)
apply (blast intro: Join_assoc [symmetric])
done

lemmas strict_component_of_eq = strict_component_of_def

lemma localize_Init_eq [simp]: "Init (localize v F) = Init F"
by (simp add: localize_def)

lemma localize_Acts_eq [simp]: "Acts (localize v F) = Acts F"
by (simp add: localize_def)

lemma localize_AllowedActs_eq [simp]:
"AllowedActs (localize v F) = AllowedActs F ∩ (

⋃
G ∈ preserves v. Acts

G)"
by (unfold localize_def, auto)

end

9 Guarantees Specifications
theory Guar
imports Comp
begin

instance program :: (type) order
by standard (auto simp add: program_less_le dest: component_antisym intro:

component_trans)

Existential and Universal properties. I formalize the two-program case, proving
equivalence with Chandy and Sanders’s n-ary definitions
definition ex_prop :: "’a program set => bool" where

"ex_prop X == ∀ F G. F ok G -->F ∈ X | G ∈ X --> (FtG) ∈ X"

definition strict_ex_prop :: "’a program set => bool" where
"strict_ex_prop X == ∀ F G. F ok G --> (F ∈ X | G ∈ X) = (FtG ∈ X)"

definition uv_prop :: "’a program set => bool" where
"uv_prop X == SKIP ∈ X & (∀ F G. F ok G --> F ∈ X & G ∈ X --> (FtG) ∈

X)"

definition strict_uv_prop :: "’a program set => bool" where
"strict_uv_prop X ==

SKIP ∈ X & (∀ F G. F ok G --> (F ∈ X & G ∈ X) = (FtG ∈ X))"

Guarantees properties
definition guar :: "[’a program set, ’a program set] => ’a program set" (infixl
‹guarantees› 55) where

"X guarantees Y == {F. ∀ G. F ok G --> FtG ∈ X --> FtG ∈ Y}"

58 9 GUARANTEES SPECIFICATIONS

definition wg :: "[’a program, ’a program set] => ’a program set" where
"wg F Y ==

⋃
({X. F ∈ X guarantees Y})"

definition wx :: "(’a program) set => (’a program)set" where
"wx X ==

⋃
({Y. Y ⊆ X & ex_prop Y})"

definition welldef :: "’a program set" where
"welldef == {F. Init F 6= {}}"

definition refines :: "[’a program, ’a program, ’a program set] => bool"
(‹(3_ refines _ wrt _)› [10,10,10] 10) where

"G refines F wrt X ==
∀ H. (F ok H & G ok H & FtH ∈ welldef ∩ X) -->

(GtH ∈ welldef ∩ X)"

definition iso_refines :: "[’a program, ’a program, ’a program set] => bool"
(‹(3_ iso’_refines _ wrt _)› [10,10,10] 10) where

"G iso_refines F wrt X ==
F ∈ welldef ∩ X --> G ∈ welldef ∩ X"

lemma OK_insert_iff:
"(OK (insert i I) F) =
(if i ∈ I then OK I F else OK I F & (F i ok JOIN I F))"

by (auto intro: ok_sym simp add: OK_iff_ok)

9.1 Existential Properties
lemma ex1:

assumes "ex_prop X" and "finite GG"
shows "GG ∩ X 6= {} =⇒ OK GG (%G. G) =⇒ (

⊔
G ∈ GG. G) ∈ X"

apply (atomize (full))
using assms(2) apply induct
using assms(1) apply (unfold ex_prop_def)
apply (auto simp add: OK_insert_iff Int_insert_left)

done

lemma ex2:
"∀ GG. finite GG & GG ∩ X 6= {} −→ OK GG (λG. G) −→ (

⊔
G ∈ GG. G) ∈

X
=⇒ ex_prop X"

apply (unfold ex_prop_def, clarify)
apply (drule_tac x = "{F,G}" in spec)
apply (auto dest: ok_sym simp add: OK_iff_ok)
done

lemma ex_prop_finite:
"ex_prop X =

9.2 Universal Properties 59

(∀ GG. finite GG & GG ∩ X 6= {} & OK GG (%G. G)--> (
⊔

G ∈ GG. G) ∈ X)"
by (blast intro: ex1 ex2)

lemma ex_prop_equiv:
"ex_prop X = (∀ G. G ∈ X = (∀ H. (G component_of H) --> H ∈ X))"

apply auto
apply (unfold ex_prop_def component_of_def, safe, blast, blast)
apply (subst Join_commute)
apply (drule ok_sym, blast)
done

9.2 Universal Properties
lemma uv1:

assumes "uv_prop X"
and "finite GG"
and "GG ⊆ X"
and "OK GG (%G. G)"

shows "(
⊔

G ∈ GG. G) ∈ X"
using assms(2-)
apply induct
using assms(1)
apply (unfold uv_prop_def)
apply (auto simp add: Int_insert_left OK_insert_iff)

done

lemma uv2:
"∀ GG. finite GG & GG ⊆ X & OK GG (%G. G) --> (

⊔
G ∈ GG. G) ∈ X

==> uv_prop X"
apply (unfold uv_prop_def)
apply (rule conjI)
apply (drule_tac x = "{}" in spec)
prefer 2
apply clarify
apply (drule_tac x = "{F,G}" in spec)

apply (auto dest: ok_sym simp add: OK_iff_ok)
done

lemma uv_prop_finite:
"uv_prop X =
(∀ GG. finite GG ∧ GG ⊆ X ∧ OK GG (λG. G) −→ (

⊔
G ∈ GG. G) ∈ X)"

by (blast intro: uv1 uv2)

9.3 Guarantees
lemma guaranteesI:

"(!!G. [| F ok G; FtG ∈ X |] ==> FtG ∈ Y) ==> F ∈ X guarantees Y"
by (simp add: guar_def component_def)

lemma guaranteesD:
"[| F ∈ X guarantees Y; F ok G; FtG ∈ X |] ==> FtG ∈ Y"

60 9 GUARANTEES SPECIFICATIONS

by (unfold guar_def component_def, blast)

lemma component_guaranteesD:
"[| F ∈ X guarantees Y; FtG = H; H ∈ X; F ok G |] ==> H ∈ Y"

by (unfold guar_def, blast)

lemma guarantees_weaken:
"[| F ∈ X guarantees X’; Y ⊆ X; X’ ⊆ Y’ |] ==> F ∈ Y guarantees Y’"

by (unfold guar_def, blast)

lemma subset_imp_guarantees_UNIV: "X ⊆ Y ==> X guarantees Y = UNIV"
by (unfold guar_def, blast)

lemma subset_imp_guarantees: "X ⊆ Y ==> F ∈ X guarantees Y"
by (unfold guar_def, blast)

lemma ex_prop_imp: "ex_prop Y ==> (Y = UNIV guarantees Y)"
apply (simp (no_asm_use) add: guar_def ex_prop_equiv)
apply safe
apply (drule_tac x = x in spec)
apply (drule_tac [2] x = x in spec)
apply (drule_tac [2] sym)

apply (auto simp add: component_of_def)
done

lemma guarantees_imp: "(Y = UNIV guarantees Y) ==> ex_prop(Y)"
by (auto simp add: guar_def ex_prop_equiv component_of_def dest: sym)

lemma ex_prop_equiv2: "(ex_prop Y) = (Y = UNIV guarantees Y)"
apply (rule iffI)
apply (rule ex_prop_imp)
apply (auto simp add: guarantees_imp)
done

9.4 Distributive Laws. Re-Orient to Perform Miniscoping
lemma guarantees_UN_left:

"(
⋃

i ∈ I. X i) guarantees Y = (
⋂

i ∈ I. X i guarantees Y)"
by (unfold guar_def, blast)

lemma guarantees_Un_left:
"(X ∪ Y) guarantees Z = (X guarantees Z) ∩ (Y guarantees Z)"

by (unfold guar_def, blast)

lemma guarantees_INT_right:
"X guarantees (

⋂
i ∈ I. Y i) = (

⋂
i ∈ I. X guarantees Y i)"

by (unfold guar_def, blast)

lemma guarantees_Int_right:
"Z guarantees (X ∩ Y) = (Z guarantees X) ∩ (Z guarantees Y)"

9.5 Guarantees: Additional Laws (by lcp) 61

by (unfold guar_def, blast)

lemma guarantees_Int_right_I:
"[| F ∈ Z guarantees X; F ∈ Z guarantees Y |]
==> F ∈ Z guarantees (X ∩ Y)"

by (simp add: guarantees_Int_right)

lemma guarantees_INT_right_iff:
"(F ∈ X guarantees (

⋂
(Y ‘ I))) = (∀ i∈I. F ∈ X guarantees (Y i))"

by (simp add: guarantees_INT_right)

lemma shunting: "(X guarantees Y) = (UNIV guarantees (-X ∪ Y))"
by (unfold guar_def, blast)

lemma contrapositive: "(X guarantees Y) = -Y guarantees -X"
by (unfold guar_def, blast)

lemma combining1:
"[| F ∈ V guarantees X; F ∈ (X ∩ Y) guarantees Z |]
==> F ∈ (V ∩ Y) guarantees Z"

by (unfold guar_def, blast)

lemma combining2:
"[| F ∈ V guarantees (X ∪ Y); F ∈ Y guarantees Z |]
==> F ∈ V guarantees (X ∪ Z)"

by (unfold guar_def, blast)

lemma all_guarantees:
"∀ i∈I. F ∈ X guarantees (Y i) ==> F ∈ X guarantees (

⋂
i ∈ I. Y i)"

by (unfold guar_def, blast)

lemma ex_guarantees:
"∃ i∈I. F ∈ X guarantees (Y i) ==> F ∈ X guarantees (

⋃
i ∈ I. Y i)"

by (unfold guar_def, blast)

9.5 Guarantees: Additional Laws (by lcp)
lemma guarantees_Join_Int:

"[| F ∈ U guarantees V; G ∈ X guarantees Y; F ok G |]
==> FtG ∈ (U ∩ X) guarantees (V ∩ Y)"

apply (simp add: guar_def, safe)
apply (simp add: Join_assoc)

apply (subgoal_tac "FtGtGa = Gt(FtGa) ")
apply (simp add: ok_commute)

apply (simp add: Join_ac)
done

lemma guarantees_Join_Un:

62 9 GUARANTEES SPECIFICATIONS

"[| F ∈ U guarantees V; G ∈ X guarantees Y; F ok G |]
==> FtG ∈ (U ∪ X) guarantees (V ∪ Y)"

apply (simp add: guar_def, safe)
apply (simp add: Join_assoc)

apply (subgoal_tac "FtGtGa = Gt(FtGa) ")
apply (simp add: ok_commute)

apply (simp add: Join_ac)
done

lemma guarantees_JN_INT:
"[| ∀ i∈I. F i ∈ X i guarantees Y i; OK I F |]
==> (JOIN I F) ∈ (

⋂
(X ‘ I)) guarantees (

⋂
(Y ‘ I))"

apply (unfold guar_def, auto)
apply (drule bspec, assumption)
apply (rename_tac "i")
apply (drule_tac x = "JOIN (I-{i}) FtG" in spec)
apply (auto intro: OK_imp_ok

simp add: Join_assoc [symmetric] JN_Join_diff JN_absorb)
done

lemma guarantees_JN_UN:
"[| ∀ i∈I. F i ∈ X i guarantees Y i; OK I F |]
==> (JOIN I F) ∈ (

⋃
(X ‘ I)) guarantees (

⋃
(Y ‘ I))"

apply (unfold guar_def, auto)
apply (drule bspec, assumption)
apply (rename_tac "i")
apply (drule_tac x = "JOIN (I-{i}) FtG" in spec)
apply (auto intro: OK_imp_ok

simp add: Join_assoc [symmetric] JN_Join_diff JN_absorb)
done

9.6 Guarantees Laws for Breaking Down the Program (by
lcp)

lemma guarantees_Join_I1:
"[| F ∈ X guarantees Y; F ok G |] ==> FtG ∈ X guarantees Y"

by (simp add: guar_def Join_assoc)

lemma guarantees_Join_I2:
"[| G ∈ X guarantees Y; F ok G |] ==> FtG ∈ X guarantees Y"

apply (simp add: Join_commute [of _ G] ok_commute [of _ G])
apply (blast intro: guarantees_Join_I1)
done

lemma guarantees_JN_I:
"[| i ∈ I; F i ∈ X guarantees Y; OK I F |]
==> (

⊔
i ∈ I. (F i)) ∈ X guarantees Y"

apply (unfold guar_def, clarify)
apply (drule_tac x = "JOIN (I-{i}) FtG" in spec)
apply (auto intro: OK_imp_ok simp add: JN_Join_diff Join_assoc [symmetric])
done

9.6 Guarantees Laws for Breaking Down the Program (by lcp) 63

lemma Join_welldef_D1: "FtG ∈ welldef ==> F ∈ welldef"
by (unfold welldef_def, auto)

lemma Join_welldef_D2: "FtG ∈ welldef ==> G ∈ welldef"
by (unfold welldef_def, auto)

lemma refines_refl: "F refines F wrt X"
by (unfold refines_def, blast)

lemma refines_trans:
"[| H refines G wrt X; G refines F wrt X |] ==> H refines F wrt X"

apply (simp add: refines_def)
oops

lemma strict_ex_refine_lemma:
"strict_ex_prop X
==> (∀ H. F ok H & G ok H & FtH ∈ X --> GtH ∈ X)

= (F ∈ X --> G ∈ X)"
by (unfold strict_ex_prop_def, auto)

lemma strict_ex_refine_lemma_v:
"strict_ex_prop X
==> (∀ H. F ok H & G ok H & FtH ∈ welldef & FtH ∈ X --> GtH ∈ X) =

(F ∈ welldef ∩ X --> G ∈ X)"
apply (unfold strict_ex_prop_def, safe)
apply (erule_tac x = SKIP and P = "%H. PP H --> RR H" for PP RR in allE)
apply (auto dest: Join_welldef_D1 Join_welldef_D2)
done

lemma ex_refinement_thm:
"[| strict_ex_prop X;

∀ H. F ok H & G ok H & FtH ∈ welldef ∩ X --> GtH ∈ welldef |]
==> (G refines F wrt X) = (G iso_refines F wrt X)"

apply (rule_tac x = SKIP in allE, assumption)
apply (simp add: refines_def iso_refines_def strict_ex_refine_lemma_v)
done

lemma strict_uv_refine_lemma:
"strict_uv_prop X ==>
(∀ H. F ok H & G ok H & FtH ∈ X --> GtH ∈ X) = (F ∈ X --> G ∈ X)"

by (unfold strict_uv_prop_def, blast)

lemma strict_uv_refine_lemma_v:
"strict_uv_prop X
==> (∀ H. F ok H & G ok H & FtH ∈ welldef & FtH ∈ X --> GtH ∈ X) =

(F ∈ welldef ∩ X --> G ∈ X)"

64 9 GUARANTEES SPECIFICATIONS

apply (unfold strict_uv_prop_def, safe)
apply (erule_tac x = SKIP and P = "%H. PP H --> RR H" for PP RR in allE)
apply (auto dest: Join_welldef_D1 Join_welldef_D2)
done

lemma uv_refinement_thm:
"[| strict_uv_prop X;

∀ H. F ok H & G ok H & FtH ∈ welldef ∩ X -->
GtH ∈ welldef |]

==> (G refines F wrt X) = (G iso_refines F wrt X)"
apply (rule_tac x = SKIP in allE, assumption)
apply (simp add: refines_def iso_refines_def strict_uv_refine_lemma_v)
done

lemma guarantees_equiv:
"(F ∈ X guarantees Y) = (∀ H. H ∈ X −→ (F component_of H −→ H ∈ Y))"

by (unfold guar_def component_of_def, auto)

lemma wg_weakest: "!!X. F∈ (X guarantees Y) ==> X ⊆ (wg F Y)"
by (unfold wg_def, auto)

lemma wg_guarantees: "F∈ ((wg F Y) guarantees Y)"
by (unfold wg_def guar_def, blast)

lemma wg_equiv: "(H ∈ wg F X) = (F component_of H --> H ∈ X)"
by (simp add: guarantees_equiv wg_def, blast)

lemma component_of_wg: "F component_of H ==> (H ∈ wg F X) = (H ∈ X)"
by (simp add: wg_equiv)

lemma wg_finite:
"∀ FF. finite FF ∧ FF ∩ X 6= {} −→ OK FF (λF. F)

−→ (∀ F∈FF. ((
⊔

F ∈ FF. F) ∈ wg F X) = ((
⊔

F ∈ FF. F) ∈ X))"
apply clarify
apply (subgoal_tac "F component_of (

⊔
F ∈ FF. F) ")

apply (drule_tac X = X in component_of_wg, simp)
apply (simp add: component_of_def)
apply (rule_tac x = "

⊔
F ∈ (FF-{F}) . F" in exI)

apply (auto intro: JN_Join_diff dest: ok_sym simp add: OK_iff_ok)
done

lemma wg_ex_prop: "ex_prop X ==> (F ∈ X) = (∀ H. H ∈ wg F X)"
apply (simp (no_asm_use) add: ex_prop_equiv wg_equiv)
apply blast
done

lemma wx_subset: "(wx X)<=X"
by (unfold wx_def, auto)

lemma wx_ex_prop: "ex_prop (wx X)"
apply (simp add: wx_def ex_prop_equiv cong: bex_cong, safe, blast)

9.6 Guarantees Laws for Breaking Down the Program (by lcp) 65

apply force
done

lemma wx_weakest: "∀ Z. Z<= X --> ex_prop Z --> Z ⊆ wx X"
by (auto simp add: wx_def)

lemma wx’_ex_prop: "ex_prop({F. ∀ G. F ok G --> FtG ∈ X})"
apply (unfold ex_prop_def, safe)
apply (drule_tac x = "GtGa" in spec)
apply (force simp add: Join_assoc)

apply (drule_tac x = "FtGa" in spec)
apply (simp add: ok_commute Join_ac)
done

Equivalence with the other definition of wx

lemma wx_equiv: "wx X = {F. ∀ G. F ok G --> (FtG) ∈ X}"
apply (unfold wx_def, safe)
apply (simp add: ex_prop_def, blast)

apply (simp (no_asm))
apply (rule_tac x = "{F. ∀ G. F ok G --> FtG ∈ X}" in exI, safe)
apply (rule_tac [2] wx’_ex_prop)
apply (drule_tac x = SKIP in spec)+
apply auto
done

Propositions 7 to 11 are about this second definition of wx. They are the same
as the ones proved for the first definition of wx, by equivalence

lemma guarantees_wx_eq: "(X guarantees Y) = wx(-X ∪ Y)"
by (simp add: guar_def wx_equiv)

lemma stable_guarantees_Always:
"Init F ⊆ A ==> F ∈ (stable A) guarantees (Always A)"

apply (rule guaranteesI)
apply (simp add: Join_commute)
apply (rule stable_Join_Always1)
apply (simp_all add: invariant_def)

done

lemma constrains_guarantees_leadsTo:
"F ∈ transient A ==> F ∈ (A co A ∪ B) guarantees (A leadsTo (B-A))"

apply (rule guaranteesI)
apply (rule leadsTo_Basis’)
apply (drule constrains_weaken_R)
prefer 2 apply assumption

apply blast
apply (blast intro: Join_transient_I1)
done

end

66 10 EXTENDING STATE SETS

10 Extending State Sets

theory Extend imports Guar begin

definition

Restrict :: "[’a set, (’a*’b) set] => (’a*’b) set"
where "Restrict A r = r ∩ (A × UNIV)"

definition
good_map :: "[’a*’b => ’c] => bool"
where "good_map h ←→ surj h & (∀ x y. fst (inv h (h (x,y))) = x)"

definition
extend_set :: "[’a*’b => ’c, ’a set] => ’c set"
where "extend_set h A = h ‘ (A × UNIV)"

definition
project_set :: "[’a*’b => ’c, ’c set] => ’a set"
where "project_set h C = {x. ∃ y. h(x,y) ∈ C}"

definition
extend_act :: "[’a*’b => ’c, (’a*’a) set] => (’c*’c) set"
where "extend_act h = (%act.

⋃
(s,s’) ∈ act.

⋃
y. {(h(s,y), h(s’,y))})"

definition
project_act :: "[’a*’b => ’c, (’c*’c) set] => (’a*’a) set"
where "project_act h act = {(x,x’). ∃ y y’. (h(x,y), h(x’,y’)) ∈ act}"

definition
extend :: "[’a*’b => ’c, ’a program] => ’c program"
where "extend h F = mk_program (extend_set h (Init F),

extend_act h ‘ Acts F,
project_act h -‘ AllowedActs F)"

definition

project :: "[’a*’b => ’c, ’c set, ’c program] => ’a program"
where "project h C F =

mk_program (project_set h (Init F),
project_act h ‘ Restrict C ‘ Acts F,
{act. Restrict (project_set h C) act ∈

project_act h ‘ Restrict C ‘ AllowedActs F})"

locale Extend =
fixes f :: "’c => ’a"

and g :: "’c => ’b"
and h :: "’a*’b => ’c"
and slice :: "[’c set, ’b] => ’a set"

assumes
good_h: "good_map h"

defines f_def: "f z == fst (inv h z)"
and g_def: "g z == snd (inv h z)"

10.1 Restrict 67

and slice_def: "slice Z y == {x. h(x,y) ∈ Z}"

10.1 Restrict
lemma Restrict_iff [iff]: "((x,y) ∈ Restrict A r) = ((x,y) ∈ r & x ∈ A)"
by (unfold Restrict_def, blast)

lemma Restrict_UNIV [simp]: "Restrict UNIV = id"
apply (rule ext)
apply (auto simp add: Restrict_def)
done

lemma Restrict_empty [simp]: "Restrict {} r = {}"
by (auto simp add: Restrict_def)

lemma Restrict_Int [simp]: "Restrict A (Restrict B r) = Restrict (A ∩ B)
r"
by (unfold Restrict_def, blast)

lemma Restrict_triv: "Domain r ⊆ A ==> Restrict A r = r"
by (unfold Restrict_def, auto)

lemma Restrict_subset: "Restrict A r ⊆ r"
by (unfold Restrict_def, auto)

lemma Restrict_eq_mono:
"[| A ⊆ B; Restrict B r = Restrict B s |]
==> Restrict A r = Restrict A s"

by (unfold Restrict_def, blast)

lemma Restrict_imageI:
"[| s ∈ RR; Restrict A r = Restrict A s |]
==> Restrict A r ∈ Restrict A ‘ RR"

by (unfold Restrict_def image_def, auto)

lemma Domain_Restrict [simp]: "Domain (Restrict A r) = A ∩ Domain r"
by blast

lemma Image_Restrict [simp]: "(Restrict A r) ‘‘ B = r ‘‘ (A ∩ B)"
by blast

lemma good_mapI:
assumes surj_h: "surj h"

and prem: "!! x x’ y y’. h(x,y) = h(x’,y’) ==> x=x’"
shows "good_map h"

apply (simp add: good_map_def)
apply (safe intro!: surj_h)
apply (rule prem)
apply (subst surjective_pairing [symmetric])
apply (subst surj_h [THEN surj_f_inv_f])
apply (rule refl)
done

68 10 EXTENDING STATE SETS

lemma good_map_is_surj: "good_map h ==> surj h"
by (unfold good_map_def, auto)

lemma fst_inv_equalityI:
assumes surj_h: "surj h"

and prem: "!! x y. g (h(x,y)) = x"
shows "fst (inv h z) = g z"

by (metis UNIV_I f_inv_into_f prod.collapse prem surj_h)

10.2 Trivial properties of f, g, h
context Extend
begin

lemma f_h_eq [simp]: "f(h(x,y)) = x"
by (simp add: f_def good_h [unfolded good_map_def, THEN conjunct2])

lemma h_inject1 [dest]: "h(x,y) = h(x’,y’) ==> x=x’"
apply (drule_tac f = f in arg_cong)
apply (simp add: f_def good_h [unfolded good_map_def, THEN conjunct2])
done

lemma h_f_g_equiv: "h(f z, g z) == z"
by (simp add: f_def g_def

good_h [unfolded good_map_def, THEN conjunct1, THEN surj_f_inv_f])

lemma h_f_g_eq: "h(f z, g z) = z"
by (simp add: h_f_g_equiv)

lemma split_extended_all:
"(!!z. PROP P z) == (!!u y. PROP P (h (u, y)))"

proof
assume allP: "

∧
z. PROP P z"

fix u y
show "PROP P (h (u, y))" by (rule allP)

next
assume allPh: "

∧
u y. PROP P (h(u,y))"

fix z
have Phfgz: "PROP P (h (f z, g z))" by (rule allPh)
show "PROP P z" by (rule Phfgz [unfolded h_f_g_equiv])

qed

end

10.3 extend_set: basic properties
lemma project_set_iff [iff]:

"(x ∈ project_set h C) = (∃ y. h(x,y) ∈ C)"
by (simp add: project_set_def)

lemma extend_set_mono: "A ⊆ B ==> extend_set h A ⊆ extend_set h B"
by (unfold extend_set_def, blast)

10.4 project_set: basic properties 69

context Extend
begin

lemma mem_extend_set_iff [iff]: "z ∈ extend_set h A = (f z ∈ A)"
apply (unfold extend_set_def)
apply (force intro: h_f_g_eq [symmetric])
done

lemma extend_set_strict_mono [iff]:
"(extend_set h A ⊆ extend_set h B) = (A ⊆ B)"

by (unfold extend_set_def, force)

lemma (in -) extend_set_empty [simp]: "extend_set h {} = {}"
by (unfold extend_set_def, auto)

lemma extend_set_eq_Collect: "extend_set h {s. P s} = {s. P(f s)}"
by auto

lemma extend_set_sing: "extend_set h {x} = {s. f s = x}"
by auto

lemma extend_set_inverse [simp]: "project_set h (extend_set h C) = C"
by (unfold extend_set_def, auto)

lemma extend_set_project_set: "C ⊆ extend_set h (project_set h C)"
apply (unfold extend_set_def)
apply (auto simp add: split_extended_all, blast)
done

lemma inj_extend_set: "inj (extend_set h)"
apply (rule inj_on_inverseI)
apply (rule extend_set_inverse)
done

lemma extend_set_UNIV_eq [simp]: "extend_set h UNIV = UNIV"
apply (unfold extend_set_def)
apply (auto simp add: split_extended_all)
done

10.4 project_set: basic properties
lemma project_set_eq: "project_set h C = f ‘ C"
by (auto intro: f_h_eq [symmetric] simp add: split_extended_all)

lemma project_set_I: "!!z. z ∈ C ==> f z ∈ project_set h C"
by (auto simp add: split_extended_all)

10.5 More laws
lemma project_set_extend_set_Int: "project_set h ((extend_set h A) ∩ B) =
A ∩ (project_set h B)"

by auto

70 10 EXTENDING STATE SETS

lemma project_set_extend_set_Un: "project_set h ((extend_set h A) ∪ B) =
A ∪ (project_set h B)"

by auto

lemma (in -) project_set_Int_subset:
"project_set h (A ∩ B) ⊆ (project_set h A) ∩ (project_set h B)"

by auto

lemma extend_set_Un_distrib: "extend_set h (A ∪ B) = extend_set h A ∪ extend_set
h B"

by auto

lemma extend_set_Int_distrib: "extend_set h (A ∩ B) = extend_set h A ∩ extend_set
h B"

by auto

lemma extend_set_INT_distrib: "extend_set h (
⋂

(B ‘ A)) = (
⋂

x ∈ A. extend_set
h (B x))"

by auto

lemma extend_set_Diff_distrib: "extend_set h (A - B) = extend_set h A - extend_set
h B"

by auto

lemma extend_set_Union: "extend_set h (
⋃

A) = (
⋃

X ∈ A. extend_set h X)"
by blast

lemma extend_set_subset_Compl_eq: "(extend_set h A ⊆ - extend_set h B) =
(A ⊆ - B)"

by (auto simp: extend_set_def)

10.6 extend_act

lemma mem_extend_act_iff [iff]: "((h(s,y), h(s’,y)) ∈ extend_act h act) =
((s, s’) ∈ act)"

by (auto simp: extend_act_def)

lemma extend_act_D: "(z, z’) ∈ extend_act h act ==> (f z, f z’) ∈ act"
by (auto simp: extend_act_def)

lemma extend_act_inverse [simp]: "project_act h (extend_act h act) = act"
unfolding extend_act_def project_act_def by blast

lemma project_act_extend_act_restrict [simp]:
"project_act h (Restrict C (extend_act h act)) =
Restrict (project_set h C) act"

unfolding extend_act_def project_act_def by blast

lemma subset_extend_act_D: "act’ ⊆ extend_act h act ==> project_act h act’
⊆ act"

unfolding extend_act_def project_act_def by force

10.7 extend 71

lemma inj_extend_act: "inj (extend_act h)"
apply (rule inj_on_inverseI)
apply (rule extend_act_inverse)
done

lemma extend_act_Image [simp]:
"extend_act h act ‘‘ (extend_set h A) = extend_set h (act ‘‘ A)"

unfolding extend_set_def extend_act_def by force

lemma extend_act_strict_mono [iff]:
"(extend_act h act’ ⊆ extend_act h act) = (act’<=act)"

by (auto simp: extend_act_def)

lemma [iff]: "(extend_act h act = extend_act h act’) = (act = act’)"
by (rule inj_extend_act [THEN inj_eq])

lemma (in -) Domain_extend_act:
"Domain (extend_act h act) = extend_set h (Domain act)"

unfolding extend_set_def extend_act_def by force

lemma extend_act_Id [simp]: "extend_act h Id = Id"
unfolding extend_act_def by (force intro: h_f_g_eq [symmetric])

lemma project_act_I: "!!z z’. (z, z’) ∈ act ==> (f z, f z’) ∈ project_act
h act"

unfolding project_act_def by (force simp add: split_extended_all)

lemma project_act_Id [simp]: "project_act h Id = Id"
unfolding project_act_def by force

lemma Domain_project_act: "Domain (project_act h act) = project_set h (Domain
act)"

unfolding project_act_def by (force simp add: split_extended_all)

10.7 extend

Basic properties

lemma (in -) Init_extend [simp]:
"Init (extend h F) = extend_set h (Init F)"

by (auto simp: extend_def)

lemma (in -) Init_project [simp]:
"Init (project h C F) = project_set h (Init F)"

by (auto simp: project_def)

lemma Acts_extend [simp]: "Acts (extend h F) = (extend_act h ‘ Acts F)"
by (simp add: extend_def insert_Id_image_Acts)

lemma AllowedActs_extend [simp]:
"AllowedActs (extend h F) = project_act h -‘ AllowedActs F"

by (simp add: extend_def insert_absorb)

72 10 EXTENDING STATE SETS

lemma (in -) Acts_project [simp]:
"Acts(project h C F) = insert Id (project_act h ‘ Restrict C ‘ Acts F)"

by (auto simp add: project_def image_iff)

lemma AllowedActs_project [simp]:
"AllowedActs(project h C F) =

{act. Restrict (project_set h C) act
∈ project_act h ‘ Restrict C ‘ AllowedActs F}"

apply (simp (no_asm) add: project_def image_iff)
apply (subst insert_absorb)
apply (auto intro!: bexI [of _ Id] simp add: project_act_def)
done

lemma Allowed_extend: "Allowed (extend h F) = project h UNIV -‘ Allowed F"
by (auto simp add: Allowed_def)

lemma extend_SKIP [simp]: "extend h SKIP = SKIP"
apply (unfold SKIP_def)
apply (rule program_equalityI, auto)
done

lemma (in -) project_set_UNIV [simp]: "project_set h UNIV = UNIV"
by auto

lemma (in -) project_set_Union: "project_set h (
⋃

A) = (
⋃

X ∈ A. project_set
h X)"

by blast

lemma (in -) project_act_Restrict_subset:
"project_act h (Restrict C act) ⊆ Restrict (project_set h C) (project_act

h act)"
by (auto simp add: project_act_def)

lemma project_act_Restrict_Id_eq: "project_act h (Restrict C Id) = Restrict
(project_set h C) Id"

by (auto simp add: project_act_def)

lemma project_extend_eq:
"project h C (extend h F) =
mk_program (Init F, Restrict (project_set h C) ‘ Acts F,

{act. Restrict (project_set h C) act
∈ project_act h ‘ Restrict C ‘

(project_act h -‘ AllowedActs F)})"
apply (rule program_equalityI)

apply simp
apply (simp add: image_image)

apply (simp add: project_def)
done

lemma extend_inverse [simp]:
"project h UNIV (extend h F) = F"

apply (simp (no_asm_simp) add: project_extend_eq

10.8 Safety: co, stable 73

subset_UNIV [THEN subset_trans, THEN Restrict_triv])
apply (rule program_equalityI)
apply (simp_all (no_asm))
apply (subst insert_absorb)
apply (simp (no_asm) add: bexI [of _ Id])
apply auto
apply (simp add: image_def)
using project_act_Id apply blast
apply (simp add: image_def)
apply (rename_tac "act")
apply (rule_tac x = "extend_act h act" in exI)
apply simp
done

lemma inj_extend: "inj (extend h)"
apply (rule inj_on_inverseI)
apply (rule extend_inverse)
done

lemma extend_Join [simp]: "extend h (FtG) = extend h Ftextend h G"
apply (rule program_equalityI)
apply (simp (no_asm) add: extend_set_Int_distrib)
apply (simp add: image_Un, auto)
done

lemma extend_JN [simp]: "extend h (JOIN I F) = (
⊔

i ∈ I. extend h (F i))"
apply (rule program_equalityI)

apply (simp (no_asm) add: extend_set_INT_distrib)
apply (simp add: image_UN, auto)

done

lemma extend_mono: "F ≤ G ==> extend h F ≤ extend h G"
by (force simp add: component_eq_subset)

lemma project_mono: "F ≤ G ==> project h C F ≤ project h C G"
by (simp add: component_eq_subset, blast)

lemma all_total_extend: "all_total F ==> all_total (extend h F)"
by (simp add: all_total_def Domain_extend_act)

10.8 Safety: co, stable
lemma extend_constrains:

"(extend h F ∈ (extend_set h A) co (extend_set h B)) =
(F ∈ A co B)"

by (simp add: constrains_def)

lemma extend_stable:
"(extend h F ∈ stable (extend_set h A)) = (F ∈ stable A)"

by (simp add: stable_def extend_constrains)

lemma extend_invariant:

74 10 EXTENDING STATE SETS

"(extend h F ∈ invariant (extend_set h A)) = (F ∈ invariant A)"
by (simp add: invariant_def extend_stable)

lemma extend_constrains_project_set:
"extend h F ∈ A co B ==> F ∈ (project_set h A) co (project_set h B)"

by (auto simp add: constrains_def, force)

lemma extend_stable_project_set:
"extend h F ∈ stable A ==> F ∈ stable (project_set h A)"

by (simp add: stable_def extend_constrains_project_set)

10.9 Weak safety primitives: Co, Stable
lemma reachable_extend_f: "p ∈ reachable (extend h F) ==> f p ∈ reachable
F"

by (induct set: reachable) (auto intro: reachable.intros simp add: extend_act_def
image_iff)

lemma h_reachable_extend: "h(s,y) ∈ reachable (extend h F) ==> s ∈ reachable
F"

by (force dest!: reachable_extend_f)

lemma reachable_extend_eq: "reachable (extend h F) = extend_set h (reachable
F)"
apply (unfold extend_set_def)
apply (rule equalityI)
apply (force intro: h_f_g_eq [symmetric] dest!: reachable_extend_f, clarify)
apply (erule reachable.induct)
apply (force intro: reachable.intros)+
done

lemma extend_Constrains:
"(extend h F ∈ (extend_set h A) Co (extend_set h B)) =
(F ∈ A Co B)"

by (simp add: Constrains_def reachable_extend_eq extend_constrains
extend_set_Int_distrib [symmetric])

lemma extend_Stable: "(extend h F ∈ Stable (extend_set h A)) = (F ∈ Stable
A)"

by (simp add: Stable_def extend_Constrains)

lemma extend_Always: "(extend h F ∈ Always (extend_set h A)) = (F ∈ Always
A)"

by (simp add: Always_def extend_Stable)

lemma (in -) project_act_mono:
"D ⊆ C ==>
project_act h (Restrict D act) ⊆ project_act h (Restrict C act)"

10.10 Progress: transient, ensures 75

by (auto simp add: project_act_def)

lemma project_constrains_mono:
"[| D ⊆ C; project h C F ∈ A co B |] ==> project h D F ∈ A co B"

apply (auto simp add: constrains_def)
apply (drule project_act_mono, blast)
done

lemma project_stable_mono:
"[| D ⊆ C; project h C F ∈ stable A |] ==> project h D F ∈ stable A"

by (simp add: stable_def project_constrains_mono)

lemma project_constrains:
"(project h C F ∈ A co B) =
(F ∈ (C ∩ extend_set h A) co (extend_set h B) & A ⊆ B)"

apply (unfold constrains_def)
apply (auto intro!: project_act_I simp add: ball_Un)
apply (force intro!: project_act_I dest!: subsetD)

apply (unfold project_act_def)
apply (force dest!: subsetD)
done

lemma project_stable: "(project h UNIV F ∈ stable A) = (F ∈ stable (extend_set
h A))"

by (simp add: stable_def project_constrains)

lemma project_stable_I: "F ∈ stable (extend_set h A) ==> project h C F ∈
stable A"
apply (drule project_stable [THEN iffD2])
apply (blast intro: project_stable_mono)
done

lemma Int_extend_set_lemma:
"A ∩ extend_set h ((project_set h A) ∩ B) = A ∩ extend_set h B"

by (auto simp add: split_extended_all)

lemma project_constrains_project_set:
"G ∈ C co B ==> project h C G ∈ project_set h C co project_set h B"

by (simp add: constrains_def project_def project_act_def, blast)

lemma project_stable_project_set:
"G ∈ stable C ==> project h C G ∈ stable (project_set h C)"

by (simp add: stable_def project_constrains_project_set)

10.10 Progress: transient, ensures
lemma extend_transient:

"(extend h F ∈ transient (extend_set h A)) = (F ∈ transient A)"
by (auto simp add: transient_def extend_set_subset_Compl_eq Domain_extend_act)

lemma extend_ensures:

76 10 EXTENDING STATE SETS

"(extend h F ∈ (extend_set h A) ensures (extend_set h B)) =
(F ∈ A ensures B)"

by (simp add: ensures_def extend_constrains extend_transient
extend_set_Un_distrib [symmetric] extend_set_Diff_distrib [symmetric])

lemma leadsTo_imp_extend_leadsTo:
"F ∈ A leadsTo B
==> extend h F ∈ (extend_set h A) leadsTo (extend_set h B)"

apply (erule leadsTo_induct)
apply (simp add: leadsTo_Basis extend_ensures)

apply (blast intro: leadsTo_Trans)
apply (simp add: leadsTo_UN extend_set_Union)
done

10.11 Proving the converse takes some doing!
lemma slice_iff [iff]: "(x ∈ slice C y) = (h(x,y) ∈ C)"

by (simp add: slice_def)

lemma slice_Union: "slice (
⋃

S) y = (
⋃

x ∈ S. slice x y)"
by auto

lemma slice_extend_set: "slice (extend_set h A) y = A"
by auto

lemma project_set_is_UN_slice: "project_set h A = (
⋃

y. slice A y)"
by auto

lemma extend_transient_slice:
"extend h F ∈ transient A ==> F ∈ transient (slice A y)"

by (auto simp: transient_def)

lemma extend_constrains_slice:
"extend h F ∈ A co B ==> F ∈ (slice A y) co (slice B y)"

by (auto simp add: constrains_def)

lemma extend_ensures_slice:
"extend h F ∈ A ensures B ==> F ∈ (slice A y) ensures (project_set h

B)"
apply (auto simp add: ensures_def extend_constrains extend_transient)
apply (erule_tac [2] extend_transient_slice [THEN transient_strengthen])
apply (erule extend_constrains_slice [THEN constrains_weaken], auto)
done

lemma leadsTo_slice_project_set:
"∀ y. F ∈ (slice B y) leadsTo CU ==> F ∈ (project_set h B) leadsTo CU"

apply (simp add: project_set_is_UN_slice)
apply (blast intro: leadsTo_UN)
done

lemma extend_leadsTo_slice [rule_format]:
"extend h F ∈ AU leadsTo BU
==> ∀ y. F ∈ (slice AU y) leadsTo (project_set h BU)"

10.12 preserves 77

apply (erule leadsTo_induct)
apply (blast intro: extend_ensures_slice)

apply (blast intro: leadsTo_slice_project_set leadsTo_Trans)
apply (simp add: leadsTo_UN slice_Union)
done

lemma extend_leadsTo:
"(extend h F ∈ (extend_set h A) leadsTo (extend_set h B)) =
(F ∈ A leadsTo B)"

apply safe
apply (erule_tac [2] leadsTo_imp_extend_leadsTo)
apply (drule extend_leadsTo_slice)
apply (simp add: slice_extend_set)
done

lemma extend_LeadsTo:
"(extend h F ∈ (extend_set h A) LeadsTo (extend_set h B)) =
(F ∈ A LeadsTo B)"

by (simp add: LeadsTo_def reachable_extend_eq extend_leadsTo
extend_set_Int_distrib [symmetric])

10.12 preserves
lemma project_preserves_I:

"G ∈ preserves (v o f) ==> project h C G ∈ preserves v"
by (auto simp add: preserves_def project_stable_I extend_set_eq_Collect)

lemma project_preserves_id_I:
"G ∈ preserves f ==> project h C G ∈ preserves id"

by (simp add: project_preserves_I)

lemma extend_preserves:
"(extend h G ∈ preserves (v o f)) = (G ∈ preserves v)"

by (auto simp add: preserves_def extend_stable [symmetric]
extend_set_eq_Collect)

lemma inj_extend_preserves: "inj h ==> (extend h G ∈ preserves g)"
by (auto simp add: preserves_def extend_def extend_act_def stable_def

constrains_def g_def)

10.13 Guarantees
lemma project_extend_Join: "project h UNIV ((extend h F)tG) = Ft(project
h UNIV G)"

apply (rule program_equalityI)
apply (auto simp add: project_set_extend_set_Int image_iff)
apply (metis Un_iff extend_act_inverse image_iff)
apply (metis Un_iff extend_act_inverse image_iff)
done

lemma extend_Join_eq_extend_D:
"(extend h F)tG = extend h H ==> H = Ft(project h UNIV G)"

apply (drule_tac f = "project h UNIV" in arg_cong)

78 10 EXTENDING STATE SETS

apply (simp add: project_extend_Join)
done

lemma ok_extend_imp_ok_project: "extend h F ok G ==> F ok project h UNIV
G"
apply (auto simp add: ok_def)
apply (drule subsetD)
apply (auto intro!: rev_image_eqI)
done

lemma ok_extend_iff: "(extend h F ok extend h G) = (F ok G)"
apply (simp add: ok_def, safe)
apply force+
done

lemma OK_extend_iff: "OK I (%i. extend h (F i)) = (OK I F)"
apply (unfold OK_def, safe)
apply (drule_tac x = i in bspec)
apply (drule_tac [2] x = j in bspec)
apply force+
done

lemma guarantees_imp_extend_guarantees:
"F ∈ X guarantees Y ==>
extend h F ∈ (extend h ‘ X) guarantees (extend h ‘ Y)"

apply (rule guaranteesI, clarify)
apply (blast dest: ok_extend_imp_ok_project extend_Join_eq_extend_D

guaranteesD)
done

lemma extend_guarantees_imp_guarantees:
"extend h F ∈ (extend h ‘ X) guarantees (extend h ‘ Y)
==> F ∈ X guarantees Y"

apply (auto simp add: guar_def)
apply (drule_tac x = "extend h G" in spec)
apply (simp del: extend_Join

add: extend_Join [symmetric] ok_extend_iff
inj_extend [THEN inj_image_mem_iff])

done

lemma extend_guarantees_eq:
"(extend h F ∈ (extend h ‘ X) guarantees (extend h ‘ Y)) =
(F ∈ X guarantees Y)"

by (blast intro: guarantees_imp_extend_guarantees
extend_guarantees_imp_guarantees)

end

end

79

11 Renaming of State Sets
theory Rename imports Extend begin

definition rename :: "[’a => ’b, ’a program] => ’b program" where
"rename h == extend (%(x,u::unit). h x)"

declare image_inv_f_f [simp] image_f_inv_f [simp]

declare Extend.intro [simp,intro]

lemma good_map_bij [simp,intro]: "bij h ==> good_map (%(x,u). h x)"
apply (rule good_mapI)
apply (unfold bij_def inj_on_def surj_def, auto)
done

lemma fst_o_inv_eq_inv: "bij h ==> fst (inv (%(x,u). h x) s) = inv h s"
apply (unfold bij_def split_def, clarify)
apply (subgoal_tac "surj (%p. h (fst p))")
prefer 2 apply (simp add: surj_def)

apply (erule injD)
apply (simp (no_asm_simp) add: surj_f_inv_f)
apply (erule surj_f_inv_f)
done

lemma mem_rename_set_iff: "bij h ==> z ∈ h‘A = (inv h z ∈ A)"
by (force simp add: bij_is_inj bij_is_surj [THEN surj_f_inv_f])

lemma extend_set_eq_image [simp]: "extend_set (%(x,u). h x) A = h‘A"
by (force simp add: extend_set_def)

lemma Init_rename [simp]: "Init (rename h F) = h‘(Init F)"
by (simp add: rename_def)

11.1 inverse properties
lemma extend_set_inv:

"bij h
==> extend_set (%(x,u::’c). inv h x) = project_set (%(x,u::’c). h x)"

apply (unfold bij_def)
apply (rule ext)
apply (force simp add: extend_set_def project_set_def surj_f_inv_f)
done

lemma bij_extend_act_eq_project_act: "bij h
==> extend_act (%(x,u::’c). h x) = project_act (%(x,u::’c). inv h x)"

apply (rule ext)
apply (force simp add: extend_act_def project_act_def bij_def surj_f_inv_f)
done

lemma bij_extend_act: "bij h ==> bij (extend_act (%(x,u::’c). h x))"

80 11 RENAMING OF STATE SETS

apply (rule bijI)
apply (rule Extend.inj_extend_act)
apply simp
apply (simp add: bij_extend_act_eq_project_act)
apply (rule surjI)
apply (rule Extend.extend_act_inverse)
apply (blast intro: bij_imp_bij_inv)
done

lemma bij_project_act: "bij h ==> bij (project_act (%(x,u::’c). h x))"
apply (frule bij_imp_bij_inv [THEN bij_extend_act])
apply (simp add: bij_extend_act_eq_project_act bij_imp_bij_inv inv_inv_eq)
done

lemma bij_inv_project_act_eq: "bij h ==> inv (project_act (%(x,u::’c). inv
h x)) =

project_act (%(x,u::’c). h x)"
apply (simp (no_asm_simp) add: bij_extend_act_eq_project_act [symmetric])
apply (rule surj_imp_inv_eq)
apply (blast intro!: bij_extend_act bij_is_surj)
apply (simp (no_asm_simp) add: Extend.extend_act_inverse)
done

lemma extend_inv: "bij h
==> extend (%(x,u::’c). inv h x) = project (%(x,u::’c). h x) UNIV"

apply (frule bij_imp_bij_inv)
apply (rule ext)
apply (rule program_equalityI)

apply (simp (no_asm_simp) add: extend_set_inv)
apply (simp add: Extend.project_act_Id Extend.Acts_extend

insert_Id_image_Acts bij_extend_act_eq_project_act inv_inv_eq)
apply (simp add: Extend.AllowedActs_extend Extend.AllowedActs_project

bij_project_act bij_vimage_eq_inv_image bij_inv_project_act_eq)
done

lemma rename_inv_rename [simp]: "bij h ==> rename (inv h) (rename h F) =
F"
by (simp add: rename_def extend_inv Extend.extend_inverse)

lemma rename_rename_inv [simp]: "bij h ==> rename h (rename (inv h) F) =
F"
apply (frule bij_imp_bij_inv)
apply (erule inv_inv_eq [THEN subst], erule rename_inv_rename)
done

lemma rename_inv_eq: "bij h ==> rename (inv h) = inv (rename h)"
by (rule inv_equality [symmetric], auto)

lemma bij_extend: "bij h ==> bij (extend (%(x,u::’c). h x))"
apply (rule bijI)
apply (blast intro: Extend.inj_extend)
apply (rule_tac f = "extend (% (x,u) . inv h x)" in surjI)

11.1 inverse properties 81

apply (subst (1 2) inv_inv_eq [of h, symmetric], assumption+)
apply (simp add: bij_imp_bij_inv extend_inv [of "inv h"])
apply (simp add: inv_inv_eq)
apply (rule Extend.extend_inverse)
apply (simp add: bij_imp_bij_inv)
done

lemma bij_project: "bij h ==> bij (project (%(x,u::’c). h x) UNIV)"
apply (subst extend_inv [symmetric])
apply (auto simp add: bij_imp_bij_inv bij_extend)
done

lemma inv_project_eq:
"bij h
==> inv (project (%(x,u::’c). h x) UNIV) = extend (%(x,u::’c). h x)"

apply (rule inj_imp_inv_eq)
apply (erule bij_project [THEN bij_is_inj])
apply (simp (no_asm_simp) add: Extend.extend_inverse)
done

lemma Allowed_rename [simp]:
"bij h ==> Allowed (rename h F) = rename h ‘ Allowed F"

apply (simp (no_asm_simp) add: rename_def Extend.Allowed_extend)
apply (subst bij_vimage_eq_inv_image)
apply (rule bij_project, blast)
apply (simp (no_asm_simp) add: inv_project_eq)
done

lemma bij_rename: "bij h ==> bij (rename h)"
apply (simp (no_asm_simp) add: rename_def bij_extend)
done
lemmas surj_rename = bij_rename [THEN bij_is_surj]

lemma inj_rename_imp_inj: "inj (rename h) ==> inj h"
apply (unfold inj_on_def, auto)
apply (drule_tac x = "mk_program ({x}, {}, {})" in spec)
apply (drule_tac x = "mk_program ({y}, {}, {})" in spec)
apply (auto simp add: program_equality_iff rename_def extend_def)
done

lemma surj_rename_imp_surj: "surj (rename h) ==> surj h"
apply (unfold surj_def, auto)
apply (drule_tac x = "mk_program ({y}, {}, {})" in spec)
apply (auto simp add: program_equality_iff rename_def extend_def)
done

lemma bij_rename_imp_bij: "bij (rename h) ==> bij h"
apply (unfold bij_def)
apply (simp (no_asm_simp) add: inj_rename_imp_inj surj_rename_imp_surj)
done

lemma bij_rename_iff [simp]: "bij (rename h) = bij h"
by (blast intro: bij_rename bij_rename_imp_bij)

82 11 RENAMING OF STATE SETS

11.2 the lattice operations
lemma rename_SKIP [simp]: "bij h ==> rename h SKIP = SKIP"
by (simp add: rename_def Extend.extend_SKIP)

lemma rename_Join [simp]:
"bij h ==> rename h (F t G) = rename h F t rename h G"

by (simp add: rename_def Extend.extend_Join)

lemma rename_JN [simp]:
"bij h ==> rename h (JOIN I F) = (

⊔
i ∈ I. rename h (F i))"

by (simp add: rename_def Extend.extend_JN)

11.3 Strong Safety: co, stable
lemma rename_constrains:

"bij h ==> (rename h F ∈ (h‘A) co (h‘B)) = (F ∈ A co B)"
apply (unfold rename_def)
apply (subst extend_set_eq_image [symmetric])+
apply (erule good_map_bij [THEN Extend.intro, THEN Extend.extend_constrains])
done

lemma rename_stable:
"bij h ==> (rename h F ∈ stable (h‘A)) = (F ∈ stable A)"

apply (simp add: stable_def rename_constrains)
done

lemma rename_invariant:
"bij h ==> (rename h F ∈ invariant (h‘A)) = (F ∈ invariant A)"

apply (simp add: invariant_def rename_stable bij_is_inj [THEN inj_image_subset_iff])
done

lemma rename_increasing:
"bij h ==> (rename h F ∈ increasing func) = (F ∈ increasing (func o

h))"
apply (simp add: increasing_def rename_stable [symmetric] bij_image_Collect_eq
bij_is_surj [THEN surj_f_inv_f])
done

11.4 Weak Safety: Co, Stable
lemma reachable_rename_eq:

"bij h ==> reachable (rename h F) = h ‘ (reachable F)"
apply (simp add: rename_def Extend.reachable_extend_eq)
done

lemma rename_Constrains:
"bij h ==> (rename h F ∈ (h‘A) Co (h‘B)) = (F ∈ A Co B)"

by (simp add: Constrains_def reachable_rename_eq rename_constrains
bij_is_inj image_Int [symmetric])

lemma rename_Stable:
"bij h ==> (rename h F ∈ Stable (h‘A)) = (F ∈ Stable A)"

by (simp add: Stable_def rename_Constrains)

11.5 Progress: transient, ensures 83

lemma rename_Always: "bij h ==> (rename h F ∈ Always (h‘A)) = (F ∈ Always
A)"
by (simp add: Always_def rename_Stable bij_is_inj [THEN inj_image_subset_iff])

lemma rename_Increasing:
"bij h ==> (rename h F ∈ Increasing func) = (F ∈ Increasing (func o

h))"
by (simp add: Increasing_def rename_Stable [symmetric] bij_image_Collect_eq

bij_is_surj [THEN surj_f_inv_f])

11.5 Progress: transient, ensures
lemma rename_transient:

"bij h ==> (rename h F ∈ transient (h‘A)) = (F ∈ transient A)"
apply (unfold rename_def)
apply (subst extend_set_eq_image [symmetric])
apply (erule good_map_bij [THEN Extend.intro, THEN Extend.extend_transient])
done

lemma rename_ensures:
"bij h ==> (rename h F ∈ (h‘A) ensures (h‘B)) = (F ∈ A ensures B)"

apply (unfold rename_def)
apply (subst extend_set_eq_image [symmetric])+
apply (erule good_map_bij [THEN Extend.intro, THEN Extend.extend_ensures])
done

lemma rename_leadsTo:
"bij h ==> (rename h F ∈ (h‘A) leadsTo (h‘B)) = (F ∈ A leadsTo B)"

apply (unfold rename_def)
apply (subst extend_set_eq_image [symmetric])+
apply (erule good_map_bij [THEN Extend.intro, THEN Extend.extend_leadsTo])
done

lemma rename_LeadsTo:
"bij h ==> (rename h F ∈ (h‘A) LeadsTo (h‘B)) = (F ∈ A LeadsTo B)"

apply (unfold rename_def)
apply (subst extend_set_eq_image [symmetric])+
apply (erule good_map_bij [THEN Extend.intro, THEN Extend.extend_LeadsTo])
done

lemma rename_rename_guarantees_eq:
"bij h ==> (rename h F ∈ (rename h ‘ X) guarantees

(rename h ‘ Y)) =
(F ∈ X guarantees Y)"

apply (unfold rename_def)
apply (subst good_map_bij [THEN Extend.intro, THEN Extend.extend_guarantees_eq
[symmetric]], assumption)
apply (simp (no_asm_simp) add: fst_o_inv_eq_inv o_def)
done

lemma rename_guarantees_eq_rename_inv:
"bij h ==> (rename h F ∈ X guarantees Y) =

(F ∈ (rename (inv h) ‘ X) guarantees

84 11 RENAMING OF STATE SETS

(rename (inv h) ‘ Y))"
apply (subst rename_rename_guarantees_eq [symmetric], assumption)
apply (simp add: o_def bij_is_surj [THEN surj_f_inv_f] image_comp)
done

lemma rename_preserves:
"bij h ==> (rename h G ∈ preserves v) = (G ∈ preserves (v o h))"

apply (subst good_map_bij [THEN Extend.intro, THEN Extend.extend_preserves
[symmetric]], assumption)
apply (simp add: o_def fst_o_inv_eq_inv rename_def bij_is_surj [THEN surj_f_inv_f])
done

lemma ok_rename_iff [simp]: "bij h ==> (rename h F ok rename h G) = (F ok
G)"
by (simp add: Extend.ok_extend_iff rename_def)

lemma OK_rename_iff [simp]: "bij h ==> OK I (%i. rename h (F i)) = (OK I
F)"
by (simp add: Extend.OK_extend_iff rename_def)

11.6 "image" versions of the rules, for lifting "guarantees"
properties

lemmas bij_eq_rename = surj_rename [THEN surj_f_inv_f, symmetric]

lemma rename_image_constrains:
"bij h ==> rename h ‘ (A co B) = (h ‘ A) co (h‘B)"

apply auto
defer 1
apply (rename_tac F)
apply (subgoal_tac "∃ G. F = rename h G")
apply (auto intro!: bij_eq_rename simp add: rename_constrains)

done

lemma rename_image_stable: "bij h ==> rename h ‘ stable A = stable (h ‘ A)"
apply auto
defer 1
apply (rename_tac F)
apply (subgoal_tac "∃ G. F = rename h G")
apply (auto intro!: bij_eq_rename simp add: rename_stable)

done

lemma rename_image_increasing:
"bij h ==> rename h ‘ increasing func = increasing (func o inv h)"

apply auto
defer 1
apply (rename_tac F)
apply (subgoal_tac "∃ G. F = rename h G")
apply (auto intro!: bij_eq_rename simp add: rename_increasing o_def bij_is_inj)

done

lemma rename_image_invariant:
"bij h ==> rename h ‘ invariant A = invariant (h ‘ A)"

11.6 "image" versions of the rules, for lifting "guarantees" properties 85

apply auto
defer 1
apply (rename_tac F)
apply (subgoal_tac "∃ G. F = rename h G")
apply (auto intro!: bij_eq_rename simp add: rename_invariant)

done

lemma rename_image_Constrains:
"bij h ==> rename h ‘ (A Co B) = (h ‘ A) Co (h‘B)"

apply auto
defer 1
apply (rename_tac F)
apply (subgoal_tac "∃ G. F = rename h G")
apply (auto intro!: bij_eq_rename simp add: rename_Constrains)

done

lemma rename_image_preserves:
"bij h ==> rename h ‘ preserves v = preserves (v o inv h)"

by (simp add: o_def rename_image_stable preserves_def bij_image_INT
bij_image_Collect_eq)

lemma rename_image_Stable:
"bij h ==> rename h ‘ Stable A = Stable (h ‘ A)"

apply auto
defer 1
apply (rename_tac F)
apply (subgoal_tac "∃ G. F = rename h G")
apply (auto intro!: bij_eq_rename simp add: rename_Stable)

done

lemma rename_image_Increasing:
"bij h ==> rename h ‘ Increasing func = Increasing (func o inv h)"

apply auto
defer 1
apply (rename_tac F)
apply (subgoal_tac "∃ G. F = rename h G")
apply (auto intro!: bij_eq_rename simp add: rename_Increasing o_def bij_is_inj)

done

lemma rename_image_Always: "bij h ==> rename h ‘ Always A = Always (h ‘ A)"
apply auto
defer 1
apply (rename_tac F)
apply (subgoal_tac "∃ G. F = rename h G")
apply (auto intro!: bij_eq_rename simp add: rename_Always)

done

lemma rename_image_leadsTo:
"bij h ==> rename h ‘ (A leadsTo B) = (h ‘ A) leadsTo (h‘B)"

apply auto
defer 1
apply (rename_tac F)
apply (subgoal_tac "∃ G. F = rename h G")
apply (auto intro!: bij_eq_rename simp add: rename_leadsTo)

86 12 REPLICATION OF COMPONENTS

done

lemma rename_image_LeadsTo:
"bij h ==> rename h ‘ (A LeadsTo B) = (h ‘ A) LeadsTo (h‘B)"

apply auto
defer 1
apply (rename_tac F)
apply (subgoal_tac "∃ G. F = rename h G")
apply (auto intro!: bij_eq_rename simp add: rename_LeadsTo)

done

end

12 Replication of Components
theory Lift_prog imports Rename begin

definition insert_map :: "[nat, ’b, nat=>’b] => (nat=>’b)" where
"insert_map i z f k == if k<i then f k

else if k=i then z
else f(k - 1)"

definition delete_map :: "[nat, nat=>’b] => (nat=>’b)" where
"delete_map i g k == if k<i then g k else g (Suc k)"

definition lift_map :: "[nat, ’b * ((nat=>’b) * ’c)] => (nat=>’b) * ’c" where
"lift_map i == %(s,(f,uu)). (insert_map i s f, uu)"

definition drop_map :: "[nat, (nat=>’b) * ’c] => ’b * ((nat=>’b) * ’c)" where
"drop_map i == %(g, uu). (g i, (delete_map i g, uu))"

definition lift_set :: "[nat, (’b * ((nat=>’b) * ’c)) set] => ((nat=>’b) *
’c) set" where

"lift_set i A == lift_map i ‘ A"

definition lift :: "[nat, (’b * ((nat=>’b) * ’c)) program] => ((nat=>’b) *
’c) program" where

"lift i == rename (lift_map i)"

definition sub :: "[’a, ’a=>’b] => ’b" where
"sub == %i f. f i"

declare insert_map_def [simp] delete_map_def [simp]

lemma insert_map_inverse: "delete_map i (insert_map i x f) = f"
by (rule ext, simp)

lemma insert_map_delete_map_eq: "(insert_map i x (delete_map i g)) = g(i:=x)"
apply (rule ext)
apply (auto split: nat_diff_split)
done

12.1 Injectiveness proof 87

12.1 Injectiveness proof
lemma insert_map_inject1: "(insert_map i x f) = (insert_map i y g) ==> x=y"
by (drule_tac x = i in fun_cong, simp)

lemma insert_map_inject2: "(insert_map i x f) = (insert_map i y g) ==> f=g"
apply (drule_tac f = "delete_map i" in arg_cong)
apply (simp add: insert_map_inverse)
done

lemma insert_map_inject’:
"(insert_map i x f) = (insert_map i y g) ==> x=y & f=g"

by (blast dest: insert_map_inject1 insert_map_inject2)

lemmas insert_map_inject = insert_map_inject’ [THEN conjE, elim!]

lemma lift_map_eq_iff [iff]:
"(lift_map i (s,(f,uu)) = lift_map i’ (s’,(f’,uu’)))
= (uu = uu’ & insert_map i s f = insert_map i’ s’ f’)"

by (unfold lift_map_def, auto)

lemma drop_map_lift_map_eq [simp]: "!!s. drop_map i (lift_map i s) = s"
apply (unfold lift_map_def drop_map_def)
apply (force intro: insert_map_inverse)
done

lemma inj_lift_map: "inj (lift_map i)"
apply (unfold lift_map_def)
apply (rule inj_onI, auto)
done

12.2 Surjectiveness proof
lemma lift_map_drop_map_eq [simp]: "!!s. lift_map i (drop_map i s) = s"
apply (unfold lift_map_def drop_map_def)
apply (force simp add: insert_map_delete_map_eq)
done

lemma drop_map_inject [dest!]: "(drop_map i s) = (drop_map i s’) ==> s=s’"
by (drule_tac f = "lift_map i" in arg_cong, simp)

lemma surj_lift_map: "surj (lift_map i)"
apply (rule surjI)
apply (rule lift_map_drop_map_eq)
done

lemma bij_lift_map [iff]: "bij (lift_map i)"
by (simp add: bij_def inj_lift_map surj_lift_map)

lemma inv_lift_map_eq [simp]: "inv (lift_map i) = drop_map i"
by (rule inv_equality, auto)

lemma inv_drop_map_eq [simp]: "inv (drop_map i) = lift_map i"

88 12 REPLICATION OF COMPONENTS

by (rule inv_equality, auto)

lemma bij_drop_map [iff]: "bij (drop_map i)"
by (simp del: inv_lift_map_eq add: inv_lift_map_eq [symmetric] bij_imp_bij_inv)

lemma sub_apply [simp]: "sub i f = f i"
by (simp add: sub_def)

lemma all_total_lift: "all_total F ==> all_total (lift i F)"
by (simp add: lift_def rename_def Extend.all_total_extend)

lemma insert_map_upd_same: "(insert_map i t f)(i := s) = insert_map i s f"
by (rule ext, auto)

lemma insert_map_upd:
"(insert_map j t f)(i := s) =
(if i=j then insert_map i s f
else if i<j then insert_map j t (f(i:=s))
else insert_map j t (f(i - Suc 0 := s)))"

apply (rule ext)
apply (simp split: nat_diff_split)

This simplification is VERY slow

done

lemma insert_map_eq_diff:
"[| insert_map i s f = insert_map j t g; i 6=j |]
==> ∃ g’. insert_map i s’ f = insert_map j t g’"

apply (subst insert_map_upd_same [symmetric])
apply (erule ssubst)
apply (simp only: insert_map_upd if_False split: if_split, blast)
done

lemma lift_map_eq_diff:
"[| lift_map i (s,(f,uu)) = lift_map j (t,(g,vv)); i 6=j |]
==> ∃ g’. lift_map i (s’,(f,uu)) = lift_map j (t,(g’,vv))"

apply (unfold lift_map_def, auto)
apply (blast dest: insert_map_eq_diff)
done

12.3 The Operator lift_set

lemma lift_set_empty [simp]: "lift_set i {} = {}"
by (unfold lift_set_def, auto)

lemma lift_set_iff: "(lift_map i x ∈ lift_set i A) = (x ∈ A)"
apply (unfold lift_set_def)
apply (rule inj_lift_map [THEN inj_image_mem_iff])
done

lemma lift_set_iff2 [iff]:
"((f,uu) ∈ lift_set i A) = ((f i, (delete_map i f, uu)) ∈ A)"

12.4 The Lattice Operations 89

by (simp add: lift_set_def mem_rename_set_iff drop_map_def)

lemma lift_set_mono: "A ⊆ B ==> lift_set i A ⊆ lift_set i B"
apply (unfold lift_set_def)
apply (erule image_mono)
done

lemma lift_set_Un_distrib: "lift_set i (A ∪ B) = lift_set i A ∪ lift_set
i B"
by (simp add: lift_set_def image_Un)

lemma lift_set_Diff_distrib: "lift_set i (A-B) = lift_set i A - lift_set
i B"
apply (unfold lift_set_def)
apply (rule inj_lift_map [THEN image_set_diff])
done

12.4 The Lattice Operations
lemma bij_lift [iff]: "bij (lift i)"
by (simp add: lift_def)

lemma lift_SKIP [simp]: "lift i SKIP = SKIP"
by (simp add: lift_def)

lemma lift_Join [simp]: "lift i (F t G) = lift i F t lift i G"
by (simp add: lift_def)

lemma lift_JN [simp]: "lift j (JOIN I F) = (
⊔

i ∈ I. lift j (F i))"
by (simp add: lift_def)

12.5 Safety: constrains, stable, invariant
lemma lift_constrains:

"(lift i F ∈ (lift_set i A) co (lift_set i B)) = (F ∈ A co B)"
by (simp add: lift_def lift_set_def rename_constrains)

lemma lift_stable:
"(lift i F ∈ stable (lift_set i A)) = (F ∈ stable A)"

by (simp add: lift_def lift_set_def rename_stable)

lemma lift_invariant:
"(lift i F ∈ invariant (lift_set i A)) = (F ∈ invariant A)"

by (simp add: lift_def lift_set_def rename_invariant)

lemma lift_Constrains:
"(lift i F ∈ (lift_set i A) Co (lift_set i B)) = (F ∈ A Co B)"

by (simp add: lift_def lift_set_def rename_Constrains)

lemma lift_Stable:
"(lift i F ∈ Stable (lift_set i A)) = (F ∈ Stable A)"

by (simp add: lift_def lift_set_def rename_Stable)

90 12 REPLICATION OF COMPONENTS

lemma lift_Always:
"(lift i F ∈ Always (lift_set i A)) = (F ∈ Always A)"

by (simp add: lift_def lift_set_def rename_Always)

12.6 Progress: transient, ensures
lemma lift_transient:

"(lift i F ∈ transient (lift_set i A)) = (F ∈ transient A)"
by (simp add: lift_def lift_set_def rename_transient)

lemma lift_ensures:
"(lift i F ∈ (lift_set i A) ensures (lift_set i B)) =
(F ∈ A ensures B)"

by (simp add: lift_def lift_set_def rename_ensures)

lemma lift_leadsTo:
"(lift i F ∈ (lift_set i A) leadsTo (lift_set i B)) =
(F ∈ A leadsTo B)"

by (simp add: lift_def lift_set_def rename_leadsTo)

lemma lift_LeadsTo:
"(lift i F ∈ (lift_set i A) LeadsTo (lift_set i B)) =
(F ∈ A LeadsTo B)"

by (simp add: lift_def lift_set_def rename_LeadsTo)

lemma lift_lift_guarantees_eq:
"(lift i F ∈ (lift i ‘ X) guarantees (lift i ‘ Y)) =
(F ∈ X guarantees Y)"

apply (unfold lift_def)
apply (subst bij_lift_map [THEN rename_rename_guarantees_eq, symmetric])
apply (simp add: o_def)
done

lemma lift_guarantees_eq_lift_inv:
"(lift i F ∈ X guarantees Y) =
(F ∈ (rename (drop_map i) ‘ X) guarantees (rename (drop_map i) ‘ Y))"

by (simp add: bij_lift_map [THEN rename_guarantees_eq_rename_inv] lift_def)

lemma lift_preserves_snd_I: "F ∈ preserves snd ==> lift i F ∈ preserves
snd"
apply (drule_tac w1=snd in subset_preserves_o [THEN subsetD])
apply (simp add: lift_def rename_preserves)
apply (simp add: lift_map_def o_def split_def)
done

lemma delete_map_eqE’:
"(delete_map i g) = (delete_map i g’) ==> ∃ x. g = g’(i:=x)"

apply (drule_tac f = "insert_map i (g i) " in arg_cong)
apply (simp add: insert_map_delete_map_eq)

12.6 Progress: transient, ensures 91

apply (erule exI)
done

lemmas delete_map_eqE = delete_map_eqE’ [THEN exE, elim!]

lemma delete_map_neq_apply:
"[| delete_map j g = delete_map j g’; i 6=j |] ==> g i = g’ i"

by force

lemma vimage_o_fst_eq [simp]: "(f o fst) -‘ A = (f-‘A) × UNIV"
by auto

lemma vimage_sub_eq_lift_set [simp]:
"(sub i -‘A) × UNIV = lift_set i (A × UNIV)"

by auto

lemma mem_lift_act_iff [iff]:
"((s,s’) ∈ extend_act (%(x,u::unit). lift_map i x) act) =
((drop_map i s, drop_map i s’) ∈ act)"

apply (unfold extend_act_def, auto)
apply (rule bexI, auto)
done

lemma preserves_snd_lift_stable:
"[| F ∈ preserves snd; i 6=j |]
==> lift j F ∈ stable (lift_set i (A × UNIV))"

apply (auto simp add: lift_def lift_set_def stable_def constrains_def
rename_def extend_def mem_rename_set_iff)

apply (auto dest!: preserves_imp_eq simp add: lift_map_def drop_map_def)
apply (drule_tac x = i in fun_cong, auto)
done

lemma constrains_imp_lift_constrains:
"[| F i ∈ (A × UNIV) co (B × UNIV);

F j ∈ preserves snd |]
==> lift j (F j) ∈ (lift_set i (A × UNIV)) co (lift_set i (B × UNIV))"

apply (cases "i=j")
apply (simp add: lift_def lift_set_def rename_constrains)
apply (erule preserves_snd_lift_stable[THEN stableD, THEN constrains_weaken_R],

assumption)
apply (erule constrains_imp_subset [THEN lift_set_mono])
done

lemma lift_map_image_Times:
"lift_map i ‘ (A × UNIV) =
(
⋃

s ∈ A.
⋃

f. {insert_map i s f}) × UNIV"
apply (auto intro!: bexI image_eqI simp add: lift_map_def)
apply (rule split_conv [symmetric])
done

92 12 REPLICATION OF COMPONENTS

lemma lift_preserves_eq:
"(lift i F ∈ preserves v) = (F ∈ preserves (v o lift_map i))"

by (simp add: lift_def rename_preserves)

lemma lift_preserves_sub:
"F ∈ preserves snd
==> lift i F ∈ preserves (v o sub j o fst) =

(if i=j then F ∈ preserves (v o fst) else True)"
apply (drule subset_preserves_o [THEN subsetD])
apply (simp add: lift_preserves_eq o_def)
apply (auto cong del: if_weak_cong

simp add: lift_map_def eq_commute split_def o_def)
done

12.7 Lemmas to Handle Function Composition (o) More
Consistently

lemma o_equiv_assoc: "f o g = h ==> f’ o f o g = f’ o h"
by (simp add: fun_eq_iff o_def)

lemma o_equiv_apply: "f o g = h ==> ∀ x. f(g x) = h x"
by (simp add: fun_eq_iff o_def)

lemma fst_o_lift_map: "sub i o fst o lift_map i = fst"
apply (rule ext)
apply (auto simp add: o_def lift_map_def sub_def)
done

lemma snd_o_lift_map: "snd o lift_map i = snd o snd"
apply (rule ext)
apply (auto simp add: o_def lift_map_def)
done

12.8 More lemmas about extend and project
They could be moved to theory Extend or Project

lemma extend_act_extend_act:
"extend_act h’ (extend_act h act) =
extend_act (%(x,(y,y’)). h’(h(x,y),y’)) act"

apply (auto elim!: rev_bexI simp add: extend_act_def, blast)
done

lemma project_act_project_act:
"project_act h (project_act h’ act) =
project_act (%(x,(y,y’)). h’(h(x,y),y’)) act"

by (auto elim!: rev_bexI simp add: project_act_def)

lemma project_act_extend_act:
"project_act h (extend_act h’ act) =

{(x,x’). ∃ s s’ y y’ z. (s,s’) ∈ act &
h(x,y) = h’(s,z) & h(x’,y’) = h’(s’,z)}"

by (simp add: extend_act_def project_act_def, blast)

12.9 OK and "lift" 93

12.9 OK and "lift"

lemma act_in_UNION_preserves_fst:
"act ⊆ {(x,x’). fst x = fst x’} ==> act ∈

⋃
(Acts ‘ (preserves fst))"

apply (rule_tac a = "mk_program (UNIV,{act},UNIV) " in UN_I)
apply (auto simp add: preserves_def stable_def constrains_def)
done

lemma UNION_OK_lift_I:
"[| ∀ i ∈ I. F i ∈ preserves snd;

∀ i ∈ I.
⋃

(Acts ‘ (preserves fst)) ⊆ AllowedActs (F i) |]
==> OK I (%i. lift i (F i))"

apply (auto simp add: OK_def lift_def rename_def Extend.Acts_extend)
apply (simp add: Extend.AllowedActs_extend project_act_extend_act)
apply (rename_tac "act")
apply (subgoal_tac

"{(x, x’). ∃ s f u s’ f’ u’.
((s, f, u), s’, f’, u’) ∈ act &
lift_map j x = lift_map i (s, f, u) &
lift_map j x’ = lift_map i (s’, f’, u’) }

⊆ { (x,x’) . fst x = fst x’}")
apply (blast intro: act_in_UNION_preserves_fst, clarify)
apply (drule_tac x = j in fun_cong)+
apply (drule_tac x = i in bspec, assumption)
apply (frule preserves_imp_eq, auto)
done

lemma OK_lift_I:
"[| ∀ i ∈ I. F i ∈ preserves snd;

∀ i ∈ I. preserves fst ⊆ Allowed (F i) |]
==> OK I (%i. lift i (F i))"

by (simp add: safety_prop_AllowedActs_iff_Allowed UNION_OK_lift_I)

lemma Allowed_lift [simp]: "Allowed (lift i F) = lift i ‘ (Allowed F)"
by (simp add: lift_def)

lemma lift_image_preserves:
"lift i ‘ preserves v = preserves (v o drop_map i)"

by (simp add: rename_image_preserves lift_def)

end

theory PPROD imports Lift_prog begin

definition PLam :: "[nat set, nat => (’b * ((nat=>’b) * ’c)) program]
=> ((nat=>’b) * ’c) program" where

"PLam I F ==
⊔

i ∈ I. lift i (F i)"

syntax
"_PLam" :: "[pttrn, nat set, ’b set] => (nat => ’b) set" (‹(3plam _:_./

_)› 10)
syntax_consts

"_PLam" == PLam

94 12 REPLICATION OF COMPONENTS

translations
"plam x : A. B" == "CONST PLam A (%x. B)"

lemma Init_PLam [simp]: "Init (PLam I F) = (
⋂

i ∈ I. lift_set i (Init (F
i)))"
by (simp add: PLam_def lift_def lift_set_def)

lemma PLam_empty [simp]: "PLam {} F = SKIP"
by (simp add: PLam_def)

lemma PLam_SKIP [simp]: "(plam i : I. SKIP) = SKIP"
by (simp add: PLam_def JN_constant)

lemma PLam_insert: "PLam (insert i I) F = (lift i (F i)) t (PLam I F)"
by (unfold PLam_def, auto)

lemma PLam_component_iff: "((PLam I F) ≤ H) = (∀ i ∈ I. lift i (F i) ≤ H)"
by (simp add: PLam_def JN_component_iff)

lemma component_PLam: "i ∈ I ==> lift i (F i) ≤ (PLam I F)"
apply (unfold PLam_def)

apply (fast intro: component_JN)
done

lemma PLam_constrains:
"[| i ∈ I; ∀ j. F j ∈ preserves snd |]
==> (PLam I F ∈ (lift_set i (A × UNIV)) co

(lift_set i (B × UNIV))) =
(F i ∈ (A × UNIV) co (B × UNIV))"

apply (simp add: PLam_def JN_constrains)
apply (subst insert_Diff [symmetric], assumption)
apply (simp add: lift_constrains)
apply (blast intro: constrains_imp_lift_constrains)
done

lemma PLam_stable:
"[| i ∈ I; ∀ j. F j ∈ preserves snd |]
==> (PLam I F ∈ stable (lift_set i (A × UNIV))) =

(F i ∈ stable (A × UNIV))"
by (simp add: stable_def PLam_constrains)

lemma PLam_transient:
"i ∈ I ==>

PLam I F ∈ transient A = (∃ i ∈ I. lift i (F i) ∈ transient A)"
by (simp add: JN_transient PLam_def)

This holds because the F j cannot change lift_set i

12.9 OK and "lift" 95

lemma PLam_ensures:
"[| i ∈ I; F i ∈ (A × UNIV) ensures (B × UNIV);

∀ j. F j ∈ preserves snd |]
==> PLam I F ∈ lift_set i (A × UNIV) ensures lift_set i (B × UNIV)"

apply (simp add: ensures_def PLam_constrains PLam_transient
lift_set_Un_distrib [symmetric] lift_set_Diff_distrib [symmetric]
Times_Un_distrib1 [symmetric] Times_Diff_distrib1 [symmetric])

apply (rule rev_bexI, assumption)
apply (simp add: lift_transient)
done

lemma PLam_leadsTo_Basis:
"[| i ∈ I;

F i ∈ ((A × UNIV) - (B × UNIV)) co
((A × UNIV) ∪ (B × UNIV));

F i ∈ transient ((A × UNIV) - (B × UNIV));
∀ j. F j ∈ preserves snd |]

==> PLam I F ∈ lift_set i (A × UNIV) leadsTo lift_set i (B × UNIV)"
by (rule PLam_ensures [THEN leadsTo_Basis], rule_tac [2] ensuresI)

lemma invariant_imp_PLam_invariant:
"[| F i ∈ invariant (A × UNIV); i ∈ I;

∀ j. F j ∈ preserves snd |]
==> PLam I F ∈ invariant (lift_set i (A × UNIV))"

by (auto simp add: PLam_stable invariant_def)

lemma PLam_preserves_fst [simp]:
"∀ j. F j ∈ preserves snd
==> (PLam I F ∈ preserves (v o sub j o fst)) =

(if j ∈ I then F j ∈ preserves (v o fst) else True)"
by (simp add: PLam_def lift_preserves_sub)

lemma PLam_preserves_snd [simp,intro]:
"∀ j. F j ∈ preserves snd ==> PLam I F ∈ preserves snd"

by (simp add: PLam_def lift_preserves_snd_I)

This rule looks unsatisfactory because it refers to lift. One must use lift_guarantees_eq_lift_inv
to rewrite the first subgoal and something like lift_preserves_sub to rewrite
the third. However there’s no obvious alternative for the third premise.
lemma guarantees_PLam_I:

"[| lift i (F i) ∈ X guarantees Y; i ∈ I;
OK I (λi. lift i (F i)) |]

==> (PLam I F) ∈ X guarantees Y"
apply (unfold PLam_def)
apply (simp add: guarantees_JN_I)
done

lemma Allowed_PLam [simp]:
"Allowed (PLam I F) = (

⋂
i ∈ I. lift i ‘ Allowed(F i))"

96 13 THE PREFIX ORDERING ON LISTS

by (simp add: PLam_def)

lemma PLam_preserves [simp]:
"(PLam I F) ∈ preserves v = (∀ i ∈ I. F i ∈ preserves (v o lift_map i))"

by (simp add: PLam_def lift_def rename_preserves)

end

13 The Prefix Ordering on Lists
theory ListOrder
imports Main
begin

inductive_set
genPrefix :: "(’a * ’a)set => (’a list * ’a list)set"
for r :: "(’a * ’a)set"

where
Nil: "([],[]) ∈ genPrefix(r)"

| prepend: "[| (xs,ys) ∈ genPrefix(r); (x,y) ∈ r |] ==>
(x#xs, y#ys) ∈ genPrefix(r)"

| append: "(xs,ys) ∈ genPrefix(r) ==> (xs, ys@zs) ∈ genPrefix(r)"

instantiation list :: (type) ord
begin

definition
prefix_def: "xs <= zs ←→ (xs, zs) ∈ genPrefix Id"

definition
strict_prefix_def: "xs < zs ←→ xs ≤ zs ∧ ¬ zs ≤ (xs :: ’a list)"

instance ..

end

definition Le :: "(nat*nat) set" where
"Le == {(x,y). x <= y}"

definition Ge :: "(nat*nat) set" where
"Ge == {(x,y). y <= x}"

13.1 preliminary lemmas 97

abbreviation
pfixLe :: "[nat list, nat list] => bool" (infixl ‹pfixLe› 50) where
"xs pfixLe ys == (xs,ys) ∈ genPrefix Le"

abbreviation
pfixGe :: "[nat list, nat list] => bool" (infixl ‹pfixGe› 50) where
"xs pfixGe ys == (xs,ys) ∈ genPrefix Ge"

13.1 preliminary lemmas
lemma Nil_genPrefix [iff]: "([], xs) ∈ genPrefix r"
by (cut_tac genPrefix.Nil [THEN genPrefix.append], auto)

lemma genPrefix_length_le: "(xs,ys) ∈ genPrefix r =⇒ length xs <= length
ys"
by (erule genPrefix.induct, auto)

lemma cdlemma:
"[| (xs’, ys’) ∈ genPrefix r |]
==> (∀ x xs. xs’ = x#xs −→ (∃ y ys. ys’ = y#ys & (x,y) ∈ r & (xs, ys)

∈ genPrefix r))"
apply (erule genPrefix.induct, blast, blast)
apply (force intro: genPrefix.append)
done

lemma cons_genPrefixE [elim!]:
"[| (x#xs, zs) ∈ genPrefix r;

!!y ys. [| zs = y#ys; (x,y) ∈ r; (xs, ys) ∈ genPrefix r |] ==>
P

|] ==> P"
by (drule cdlemma, simp, blast)

lemma Cons_genPrefix_Cons [iff]:
"((x#xs,y#ys) ∈ genPrefix r) = ((x,y) ∈ r ∧ (xs,ys) ∈ genPrefix r)"

by (blast intro: genPrefix.prepend)

13.2 genPrefix is a partial order
lemma refl_genPrefix: "refl r ==> refl (genPrefix r)"
apply (unfold refl_on_def, auto)
apply (induct_tac "x")
prefer 2 apply (blast intro: genPrefix.prepend)
apply (blast intro: genPrefix.Nil)
done

lemma genPrefix_refl [simp]: "refl r =⇒ (l,l) ∈ genPrefix r"
by (erule refl_onD [OF refl_genPrefix UNIV_I])

lemma genPrefix_mono: "r<=s ==> genPrefix r <= genPrefix s"
apply clarify
apply (erule genPrefix.induct)
apply (auto intro: genPrefix.append)

98 13 THE PREFIX ORDERING ON LISTS

done

lemma append_genPrefix:
"(xs @ ys, zs) ∈ genPrefix r =⇒ (xs, zs) ∈ genPrefix r"

by (induct xs arbitrary: zs) auto

lemma genPrefix_trans_O:
assumes "(x, y) ∈ genPrefix r"
shows "

∧
z. (y, z) ∈ genPrefix s =⇒ (x, z) ∈ genPrefix (r O s)"

apply (atomize (full))
using assms
apply induct

apply blast
apply (blast intro: genPrefix.prepend)

apply (blast dest: append_genPrefix)
done

lemma genPrefix_trans:
"(x, y) ∈ genPrefix r =⇒ (y, z) ∈ genPrefix r =⇒ trans r

=⇒ (x, z) ∈ genPrefix r"
apply (rule trans_O_subset [THEN genPrefix_mono, THEN subsetD])
apply assumption

apply (blast intro: genPrefix_trans_O)
done

lemma prefix_genPrefix_trans:
"[| x<=y; (y,z) ∈ genPrefix r |] ==> (x, z) ∈ genPrefix r"

apply (unfold prefix_def)
apply (drule genPrefix_trans_O, assumption)
apply simp
done

lemma genPrefix_prefix_trans:
"[| (x,y) ∈ genPrefix r; y<=z |] ==> (x,z) ∈ genPrefix r"

apply (unfold prefix_def)
apply (drule genPrefix_trans_O, assumption)
apply simp
done

lemma trans_genPrefix: "trans r ==> trans (genPrefix r)"
by (blast intro: transI genPrefix_trans)

lemma genPrefix_antisym:
assumes 1: "(xs, ys) ∈ genPrefix r"

and 2: "antisym r"
and 3: "(ys, xs) ∈ genPrefix r"

13.3 recursion equations 99

shows "xs = ys"
using 1 3

proof induct
case Nil
then show ?case by blast

next
case prepend
then show ?case using 2 by (simp add: antisym_def)

next
case (append xs ys zs)
then show ?case

apply -
apply (subgoal_tac "length zs = 0", force)
apply (drule genPrefix_length_le)+
apply (simp del: length_0_conv)
done

qed

lemma antisym_genPrefix: "antisym r ==> antisym (genPrefix r)"
by (blast intro: antisymI genPrefix_antisym)

13.3 recursion equations
lemma genPrefix_Nil [simp]: "((xs, []) ∈ genPrefix r) = (xs = [])"

by (induct xs) auto

lemma same_genPrefix_genPrefix [simp]:
"refl r =⇒ ((xs@ys, xs@zs) ∈ genPrefix r) = ((ys,zs) ∈ genPrefix r)"

by (induct xs) (simp_all add: refl_on_def)

lemma genPrefix_Cons:
"((xs, y#ys) ∈ genPrefix r) =
(xs=[] | (∃ z zs. xs=z#zs & (z,y) ∈ r & (zs,ys) ∈ genPrefix r))"

by (cases xs) auto

lemma genPrefix_take_append:
"[| refl r; (xs,ys) ∈ genPrefix r |]
==> (xs@zs, take (length xs) ys @ zs) ∈ genPrefix r"

apply (erule genPrefix.induct)
apply (frule_tac [3] genPrefix_length_le)
apply (simp_all (no_asm_simp) add: diff_is_0_eq [THEN iffD2])
done

lemma genPrefix_append_both:
"[| refl r; (xs,ys) ∈ genPrefix r; length xs = length ys |]
==> (xs@zs, ys @ zs) ∈ genPrefix r"

apply (drule genPrefix_take_append, assumption)
apply simp
done

lemma append_cons_eq: "xs @ y # ys = (xs @ [y]) @ ys"
by auto

100 13 THE PREFIX ORDERING ON LISTS

lemma aolemma:
"[| (xs,ys) ∈ genPrefix r; refl r |]
==> length xs < length ys −→ (xs @ [ys ! length xs], ys) ∈ genPrefix

r"
apply (erule genPrefix.induct)

apply blast
apply simp

Append case is hardest

apply simp
apply (frule genPrefix_length_le [THEN le_imp_less_or_eq])
apply (erule disjE)
apply (simp_all (no_asm_simp) add: neq_Nil_conv nth_append)
apply (blast intro: genPrefix.append, auto)
apply (subst append_cons_eq, fast intro: genPrefix_append_both genPrefix.append)
done

lemma append_one_genPrefix:
"[| (xs,ys) ∈ genPrefix r; length xs < length ys; refl r |]
==> (xs @ [ys ! length xs], ys) ∈ genPrefix r"

by (blast intro: aolemma [THEN mp])

lemma genPrefix_imp_nth:
"i < length xs =⇒ (xs, ys) ∈ genPrefix r =⇒ (xs ! i, ys ! i) ∈ r"

apply (induct xs arbitrary: i ys)
apply auto

apply (case_tac i)
apply auto

done

lemma nth_imp_genPrefix:
"length xs <= length ys =⇒

(∀ i. i < length xs −→ (xs ! i, ys ! i) ∈ r) =⇒
(xs, ys) ∈ genPrefix r"

apply (induct xs arbitrary: ys)
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib)

apply (case_tac ys)
apply (force+)

done

lemma genPrefix_iff_nth:
"((xs,ys) ∈ genPrefix r) =
(length xs <= length ys & (∀ i. i < length xs −→ (xs!i, ys!i) ∈ r))"

apply (blast intro: genPrefix_length_le genPrefix_imp_nth nth_imp_genPrefix)
done

13.4 The type of lists is partially ordered
declare refl_Id [iff]

antisym_Id [iff]

13.4 The type of lists is partially ordered 101

trans_Id [iff]

lemma prefix_refl [iff]: "xs <= (xs::’a list)"
by (simp add: prefix_def)

lemma prefix_trans: "!!xs::’a list. [| xs <= ys; ys <= zs |] ==> xs <= zs"
apply (unfold prefix_def)
apply (blast intro: genPrefix_trans)
done

lemma prefix_antisym: "!!xs::’a list. [| xs <= ys; ys <= xs |] ==> xs = ys"
apply (unfold prefix_def)
apply (blast intro: genPrefix_antisym)
done

lemma prefix_less_le_not_le: "!!xs::’a list. (xs < zs) = (xs <= zs & ¬ zs
≤ xs)"
by (unfold strict_prefix_def, auto)

instance list :: (type) order
by (intro_classes,

(assumption | rule prefix_refl prefix_trans prefix_antisym
prefix_less_le_not_le)+)

lemma set_mono: "xs <= ys ==> set xs <= set ys"
apply (unfold prefix_def)
apply (erule genPrefix.induct, auto)
done

lemma Nil_prefix [iff]: "[] <= xs"
by (simp add: prefix_def)

lemma prefix_Nil [simp]: "(xs <= []) = (xs = [])"
by (simp add: prefix_def)

lemma Cons_prefix_Cons [simp]: "(x#xs <= y#ys) = (x=y & xs<=ys)"
by (simp add: prefix_def)

lemma same_prefix_prefix [simp]: "(xs@ys <= xs@zs) = (ys <= zs)"
by (simp add: prefix_def)

lemma append_prefix [iff]: "(xs@ys <= xs) = (ys <= [])"
by (insert same_prefix_prefix [of xs ys "[]"], simp)

lemma prefix_appendI [simp]: "xs <= ys ==> xs <= ys@zs"
apply (unfold prefix_def)
apply (erule genPrefix.append)
done

lemma prefix_Cons:

102 13 THE PREFIX ORDERING ON LISTS

"(xs <= y#ys) = (xs=[] | (∃ zs. xs=y#zs ∧ zs <= ys))"
by (simp add: prefix_def genPrefix_Cons)

lemma append_one_prefix:
"[| xs <= ys; length xs < length ys |] ==> xs @ [ys ! length xs] <= ys"

apply (unfold prefix_def)
apply (simp add: append_one_genPrefix)
done

lemma prefix_length_le: "xs <= ys ==> length xs <= length ys"
apply (unfold prefix_def)
apply (erule genPrefix_length_le)
done

lemma splemma: "xs<=ys ==> xs~=ys --> length xs < length ys"
apply (unfold prefix_def)
apply (erule genPrefix.induct, auto)
done

lemma strict_prefix_length_less: "xs < ys ==> length xs < length ys"
apply (unfold strict_prefix_def)
apply (blast intro: splemma [THEN mp])
done

lemma mono_length: "mono length"
by (blast intro: monoI prefix_length_le)

lemma prefix_iff: "(xs <= zs) = (∃ ys. zs = xs@ys)"
apply (unfold prefix_def)
apply (auto simp add: genPrefix_iff_nth nth_append)
apply (rule_tac x = "drop (length xs) zs" in exI)
apply (rule nth_equalityI)
apply (simp_all (no_asm_simp) add: nth_append)
done

lemma prefix_snoc [simp]: "(xs <= ys@[y]) = (xs = ys@[y] | xs <= ys)"
apply (simp add: prefix_iff)
apply (rule iffI)
apply (erule exE)
apply (rename_tac "zs")
apply (rule_tac xs = zs in rev_exhaust)
apply simp

apply clarify
apply (simp del: append_assoc add: append_assoc [symmetric], force)

done

lemma prefix_append_iff:
"(xs <= ys@zs) = (xs <= ys | (∃ us. xs = ys@us & us <= zs))"

apply (rule_tac xs = zs in rev_induct)
apply force

apply (simp del: append_assoc add: append_assoc [symmetric], force)
done

13.5 pfixLe, pfixGe: properties inherited from the translations 103

lemma common_prefix_linear:
fixes xs ys zs :: "’a list"
shows "xs <= zs =⇒ ys <= zs =⇒ xs <= ys | ys <= xs"
by (induct zs rule: rev_induct) auto

13.5 pfixLe, pfixGe: properties inherited from the trans-
lations

lemma refl_Le [iff]: "refl Le"
by (unfold refl_on_def Le_def, auto)

lemma antisym_Le [iff]: "antisym Le"
by (unfold antisym_def Le_def, auto)

lemma trans_Le [iff]: "trans Le"
by (unfold trans_def Le_def, auto)

lemma pfixLe_refl [iff]: "x pfixLe x"
by simp

lemma pfixLe_trans: "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z"
by (blast intro: genPrefix_trans)

lemma pfixLe_antisym: "[| x pfixLe y; y pfixLe x |] ==> x = y"
by (blast intro: genPrefix_antisym)

lemma prefix_imp_pfixLe: "xs<=ys ==> xs pfixLe ys"
apply (unfold prefix_def Le_def)
apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD])
done

lemma refl_Ge [iff]: "refl Ge"
by (unfold refl_on_def Ge_def, auto)

lemma antisym_Ge [iff]: "antisym Ge"
by (unfold antisym_def Ge_def, auto)

lemma trans_Ge [iff]: "trans Ge"
by (unfold trans_def Ge_def, auto)

lemma pfixGe_refl [iff]: "x pfixGe x"
by simp

lemma pfixGe_trans: "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z"
by (blast intro: genPrefix_trans)

lemma pfixGe_antisym: "[| x pfixGe y; y pfixGe x |] ==> x = y"
by (blast intro: genPrefix_antisym)

lemma prefix_imp_pfixGe: "xs<=ys ==> xs pfixGe ys"
apply (unfold prefix_def Ge_def)
apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD])
done

10414 THE FOLLOWS RELATION OF CHARPENTIER AND SIVILOTTE

end

14 The Follows Relation of Charpentier and Sivilotte
theory Follows
imports SubstAx ListOrder "HOL-Library.Multiset"
begin

definition Follows :: "[’a => ’b::{order}, ’a => ’b::{order}] => ’a program
set" (infixl ‹Fols› 65) where

"f Fols g == Increasing g ∩ Increasing f Int
Always {s. f s ≤ g s} Int
(
⋂

k. {s. k ≤ g s} LeadsTo {s. k ≤ f s})"

lemma mono_Always_o:
"mono h ==> Always {s. f s ≤ g s} ⊆ Always {s. h (f s) ≤ h (g s)}"

apply (simp add: Always_eq_includes_reachable)
apply (blast intro: monoD)
done

lemma mono_LeadsTo_o:
"mono (h::’a::order => ’b::order)
==> (

⋂
j. {s. j ≤ g s} LeadsTo {s. j ≤ f s}) ⊆

(
⋂

k. {s. k ≤ h (g s)} LeadsTo {s. k ≤ h (f s)})"
apply auto
apply (rule single_LeadsTo_I)
apply (drule_tac x = "g s" in spec)
apply (erule LeadsTo_weaken)
apply (blast intro: monoD order_trans)+
done

lemma Follows_constant [iff]: "F ∈ (%s. c) Fols (%s. c)"
by (simp add: Follows_def)

lemma mono_Follows_o:
assumes "mono h"
shows "f Fols g ⊆ (h o f) Fols (h o g)"

proof
fix x
assume "x ∈ f Fols g"
with assms show "x ∈ (h ◦ f) Fols (h ◦ g)"
by (auto simp add: Follows_def mono_Increasing_o [THEN [2] rev_subsetD]

mono_Always_o [THEN [2] rev_subsetD]
mono_LeadsTo_o [THEN [2] rev_subsetD, THEN INT_D])

qed

lemma mono_Follows_apply:
"mono h ==> f Fols g ⊆ (%x. h (f x)) Fols (%x. h (g x))"

apply (drule mono_Follows_o)
apply (force simp add: o_def)

14.1 Destruction rules 105

done

lemma Follows_trans:
"[| F ∈ f Fols g; F ∈ g Fols h |] ==> F ∈ f Fols h"

apply (simp add: Follows_def)
apply (simp add: Always_eq_includes_reachable)
apply (blast intro: order_trans LeadsTo_Trans)
done

14.1 Destruction rules
lemma Follows_Increasing1: "F ∈ f Fols g ==> F ∈ Increasing f"
by (simp add: Follows_def)

lemma Follows_Increasing2: "F ∈ f Fols g ==> F ∈ Increasing g"
by (simp add: Follows_def)

lemma Follows_Bounded: "F ∈ f Fols g ==> F ∈ Always {s. f s ≤ g s}"
by (simp add: Follows_def)

lemma Follows_LeadsTo:
"F ∈ f Fols g ==> F ∈ {s. k ≤ g s} LeadsTo {s. k ≤ f s}"

by (simp add: Follows_def)

lemma Follows_LeadsTo_pfixLe:
"F ∈ f Fols g ==> F ∈ {s. k pfixLe g s} LeadsTo {s. k pfixLe f s}"

apply (rule single_LeadsTo_I, clarify)
apply (drule_tac k="g s" in Follows_LeadsTo)
apply (erule LeadsTo_weaken)
apply blast

apply (blast intro: pfixLe_trans prefix_imp_pfixLe)
done

lemma Follows_LeadsTo_pfixGe:
"F ∈ f Fols g ==> F ∈ {s. k pfixGe g s} LeadsTo {s. k pfixGe f s}"

apply (rule single_LeadsTo_I, clarify)
apply (drule_tac k="g s" in Follows_LeadsTo)
apply (erule LeadsTo_weaken)
apply blast

apply (blast intro: pfixGe_trans prefix_imp_pfixGe)
done

lemma Always_Follows1:
"[| F ∈ Always {s. f s = f’ s}; F ∈ f Fols g |] ==> F ∈ f’ Fols g"

apply (simp add: Follows_def Increasing_def Stable_def, auto)
apply (erule_tac [3] Always_LeadsTo_weaken)
apply (erule_tac A = "{s. x ≤ f s}" and A’ = "{s. x ≤ f s}"

in Always_Constrains_weaken, auto)
apply (drule Always_Int_I, assumption)
apply (force intro: Always_weaken)
done

10614 THE FOLLOWS RELATION OF CHARPENTIER AND SIVILOTTE

lemma Always_Follows2:
"[| F ∈ Always {s. g s = g’ s}; F ∈ f Fols g |] ==> F ∈ f Fols g’"

apply (simp add: Follows_def Increasing_def Stable_def, auto)
apply (erule_tac [3] Always_LeadsTo_weaken)
apply (erule_tac A = "{s. x ≤ g s}" and A’ = "{s. x ≤ g s}"

in Always_Constrains_weaken, auto)
apply (drule Always_Int_I, assumption)
apply (force intro: Always_weaken)
done

14.2 Union properties (with the subset ordering)
lemma increasing_Un:

"[| F ∈ increasing f; F ∈ increasing g |]
==> F ∈ increasing (%s. (f s) ∪ (g s))"

apply (simp add: increasing_def stable_def constrains_def, auto)
apply (drule_tac x = "f xb" in spec)
apply (drule_tac x = "g xb" in spec)
apply (blast dest!: bspec)
done

lemma Increasing_Un:
"[| F ∈ Increasing f; F ∈ Increasing g |]
==> F ∈ Increasing (%s. (f s) ∪ (g s))"

apply (auto simp add: Increasing_def Stable_def Constrains_def
stable_def constrains_def)

apply (drule_tac x = "f xb" in spec)
apply (drule_tac x = "g xb" in spec)
apply (blast dest!: bspec)
done

lemma Always_Un:
"[| F ∈ Always {s. f’ s ≤ f s}; F ∈ Always {s. g’ s ≤ g s} |]
==> F ∈ Always {s. f’ s ∪ g’ s ≤ f s ∪ g s}"

by (simp add: Always_eq_includes_reachable, blast)

lemma Follows_Un_lemma:
"[| F ∈ Increasing f; F ∈ Increasing g;

F ∈ Increasing g’; F ∈ Always {s. f’ s ≤ f s};
∀ k. F ∈ {s. k ≤ f s} LeadsTo {s. k ≤ f’ s} |]

==> F ∈ {s. k ≤ f s ∪ g s} LeadsTo {s. k ≤ f’ s ∪ g s}"
apply (rule single_LeadsTo_I)
apply (drule_tac x = "f s" in IncreasingD)
apply (drule_tac x = "g s" in IncreasingD)
apply (rule LeadsTo_weaken)
apply (rule PSP_Stable)
apply (erule_tac x = "f s" in spec)
apply (erule Stable_Int, assumption, blast+)
done

lemma Follows_Un:
"[| F ∈ f’ Fols f; F ∈ g’ Fols g |]

14.3 Multiset union properties (with the multiset ordering) 107

==> F ∈ (%s. (f’ s) ∪ (g’ s)) Fols (%s. (f s) ∪ (g s))"
apply (simp add: Follows_def Increasing_Un Always_Un del: Un_subset_iff sup.bounded_iff,
auto)
apply (rule LeadsTo_Trans)
apply (blast intro: Follows_Un_lemma)

apply (blast intro: Follows_Un_lemma [THEN LeadsTo_weaken])
done

14.3 Multiset union properties (with the multiset order-
ing)

lemma increasing_union:
"[| F ∈ increasing f; F ∈ increasing g |]
==> F ∈ increasing (%s. (f s) + (g s :: (’a::order) multiset))"

apply (simp add: increasing_def stable_def constrains_def, auto)
apply (drule_tac x = "f xb" in spec)
apply (drule_tac x = "g xb" in spec)
apply (drule bspec, assumption)
apply (blast intro: add_mono order_trans)
done

lemma Increasing_union:
"[| F ∈ Increasing f; F ∈ Increasing g |]
==> F ∈ Increasing (%s. (f s) + (g s :: (’a::order) multiset))"

apply (auto simp add: Increasing_def Stable_def Constrains_def
stable_def constrains_def)

apply (drule_tac x = "f xb" in spec)
apply (drule_tac x = "g xb" in spec)
apply (drule bspec, assumption)
apply (blast intro: add_mono order_trans)
done

lemma Always_union:
"[| F ∈ Always {s. f’ s ≤ f s}; F ∈ Always {s. g’ s ≤ g s} |]
==> F ∈ Always {s. f’ s + g’ s ≤ f s + (g s :: (’a::order) multiset)}"

apply (simp add: Always_eq_includes_reachable)
apply (blast intro: add_mono)
done

lemma Follows_union_lemma:
"[| F ∈ Increasing f; F ∈ Increasing g;

F ∈ Increasing g’; F ∈ Always {s. f’ s ≤ f s};
∀ k::(’a::order) multiset.

F ∈ {s. k ≤ f s} LeadsTo {s. k ≤ f’ s} |]
==> F ∈ {s. k ≤ f s + g s} LeadsTo {s. k ≤ f’ s + g s}"

apply (rule single_LeadsTo_I)
apply (drule_tac x = "f s" in IncreasingD)
apply (drule_tac x = "g s" in IncreasingD)
apply (rule LeadsTo_weaken)
apply (rule PSP_Stable)
apply (erule_tac x = "f s" in spec)
apply (erule Stable_Int, assumption, blast)

108 15 PREDICATE TRANSFORMERS

apply (blast intro: add_mono order_trans)
done

lemma Follows_union:
"!!g g’ ::’b => (’a::order) multiset.

[| F ∈ f’ Fols f; F ∈ g’ Fols g |]
==> F ∈ (%s. (f’ s) + (g’ s)) Fols (%s. (f s) + (g s))"

apply (simp add: Follows_def)
apply (simp add: Increasing_union Always_union, auto)
apply (rule LeadsTo_Trans)
apply (blast intro: Follows_union_lemma)

apply (simp add: union_commute)
apply (blast intro: Follows_union_lemma)
done

lemma Follows_sum:
"!!f ::[’c,’b] => (’a::order) multiset.

[| ∀ i ∈ I. F ∈ f’ i Fols f i; finite I |]
==> F ∈ (%s.

∑
i ∈ I. f’ i s) Fols (%s.

∑
i ∈ I. f i s)"

apply (erule rev_mp)
apply (erule finite_induct, simp)
apply (simp add: Follows_union)
done

lemma Increasing_imp_Stable_pfixGe:
"F ∈ Increasing func ==> F ∈ Stable {s. h pfixGe (func s)}"

apply (simp add: Increasing_def Stable_def Constrains_def constrains_def)
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD]

prefix_imp_pfixGe)
done

lemma LeadsTo_le_imp_pfixGe:
"∀ z. F ∈ {s. z ≤ f s} LeadsTo {s. z ≤ g s}
==> F ∈ {s. z pfixGe f s} LeadsTo {s. z pfixGe g s}"

apply (rule single_LeadsTo_I)
apply (drule_tac x = "f s" in spec)
apply (erule LeadsTo_weaken)
prefer 2
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD]

prefix_imp_pfixGe, blast)
done

end

15 Predicate Transformers
theory Transformers imports Comp begin

15.1 Defining the Predicate Transformers wp, awp and wens 109

15.1 Defining the Predicate Transformers wp, awp and wens

definition wp :: "[(’a*’a) set, ’a set] => ’a set" where
— Dijkstra’s weakest-precondition operator (for an individual command)
"wp act B == - (act−1 ‘‘ (-B))"

definition awp :: "[’a program, ’a set] => ’a set" where
— Dijkstra’s weakest-precondition operator (for a program)
"awp F B == (

⋂
act ∈ Acts F. wp act B)"

definition wens :: "[’a program, (’a*’a) set, ’a set] => ’a set" where
— The weakest-ensures transformer
"wens F act B == gfp(λX. (wp act B ∩ awp F (B ∪ X)) ∪ B)"

The fundamental theorem for wp

theorem wp_iff: "(A <= wp act B) = (act ‘‘ A <= B)"
by (force simp add: wp_def)

This lemma is a good deal more intuitive than the definition!

lemma in_wp_iff: "(a ∈ wp act B) = (∀ x. (a,x) ∈ act --> x ∈ B)"
by (simp add: wp_def, blast)

lemma Compl_Domain_subset_wp: "- (Domain act) ⊆ wp act B"
by (force simp add: wp_def)

lemma wp_empty [simp]: "wp act {} = - (Domain act)"
by (force simp add: wp_def)

The identity relation is the skip action

lemma wp_Id [simp]: "wp Id B = B"
by (simp add: wp_def)

lemma wp_totalize_act:
"wp (totalize_act act) B = (wp act B ∩ Domain act) ∪ (B - Domain act)"

by (simp add: wp_def totalize_act_def, blast)

lemma awp_subset: "(awp F A ⊆ A)"
by (force simp add: awp_def wp_def)

lemma awp_Int_eq: "awp F (A∩B) = awp F A ∩ awp F B"
by (simp add: awp_def wp_def, blast)

The fundamental theorem for awp

theorem awp_iff_constrains: "(A <= awp F B) = (F ∈ A co B)"
by (simp add: awp_def constrains_def wp_iff INT_subset_iff)

lemma awp_iff_stable: "(A ⊆ awp F A) = (F ∈ stable A)"
by (simp add: awp_iff_constrains stable_def)

lemma stable_imp_awp_ident: "F ∈ stable A ==> awp F A = A"
apply (rule equalityI [OF awp_subset])
apply (simp add: awp_iff_stable)
done

110 15 PREDICATE TRANSFORMERS

lemma wp_mono: "(A ⊆ B) ==> wp act A ⊆ wp act B"
by (simp add: wp_def, blast)

lemma awp_mono: "(A ⊆ B) ==> awp F A ⊆ awp F B"
by (simp add: awp_def wp_def, blast)

lemma wens_unfold:
"wens F act B = (wp act B ∩ awp F (B ∪ wens F act B)) ∪ B"

apply (simp add: wens_def)
apply (rule gfp_unfold)
apply (simp add: mono_def wp_def awp_def, blast)
done

lemma wens_Id [simp]: "wens F Id B = B"
by (simp add: wens_def gfp_def wp_def awp_def, blast)

These two theorems justify the claim that wens returns the weakest assertion
satisfying the ensures property
lemma ensures_imp_wens: "F ∈ A ensures B ==> ∃ act ∈ Acts F. A ⊆ wens F
act B"
apply (simp add: wens_def ensures_def transient_def, clarify)
apply (rule rev_bexI, assumption)
apply (rule gfp_upperbound)
apply (simp add: constrains_def awp_def wp_def, blast)
done

lemma wens_ensures: "act ∈ Acts F ==> F ∈ (wens F act B) ensures B"
by (simp add: wens_def gfp_def constrains_def awp_def wp_def

ensures_def transient_def, blast)

These two results constitute assertion (4.13) of the thesis
lemma wens_mono: "(A ⊆ B) ==> wens F act A ⊆ wens F act B"
apply (simp add: wens_def wp_def awp_def)
apply (rule gfp_mono, blast)
done

lemma wens_weakening: "B ⊆ wens F act B"
by (simp add: wens_def gfp_def, blast)

Assertion (6), or 4.16 in the thesis
lemma subset_wens: "A-B ⊆ wp act B ∩ awp F (B ∪ A) ==> A ⊆ wens F act
B"
apply (simp add: wens_def wp_def awp_def)
apply (rule gfp_upperbound, blast)
done

Assertion 4.17 in the thesis
lemma Diff_wens_constrains: "F ∈ (wens F act A - A) co wens F act A"
by (simp add: wens_def gfp_def wp_def awp_def constrains_def, blast)

— Proved instantly, yet remarkably fragile. If Un_subset_iff is declared as an
iff-rule, then it’s almost impossible to prove. One proof is via meson after expanding
all definitions, but it’s slow!

15.2 Defining the Weakest Ensures Set 111

Assertion (7): 4.18 in the thesis. NOTE that many of these results hold for an
arbitrary action. We often do not require act ∈ Acts F

lemma stable_wens: "F ∈ stable A ==> F ∈ stable (wens F act A)"
apply (simp add: stable_def)
apply (drule constrains_Un [OF Diff_wens_constrains [of F act A]])
apply (simp add: Un_Int_distrib2 Compl_partition2)
apply (erule constrains_weaken, blast)
apply (simp add: wens_weakening)
done

Assertion 4.20 in the thesis.
lemma wens_Int_eq_lemma:

"[|T-B ⊆ awp F T; act ∈ Acts F|]
==> T ∩ wens F act B ⊆ wens F act (T∩B)"

apply (rule subset_wens)
apply (rule_tac P="λx. f x ⊆ b" for f b in ssubst [OF wens_unfold])
apply (simp add: wp_def awp_def, blast)
done

Assertion (8): 4.21 in the thesis. Here we indeed require act ∈ Acts F

lemma wens_Int_eq:
"[|T-B ⊆ awp F T; act ∈ Acts F|]
==> T ∩ wens F act B = T ∩ wens F act (T∩B)"

apply (rule equalityI)
apply (simp_all add: Int_lower1)
apply (rule wens_Int_eq_lemma, assumption+)

apply (rule subset_trans [OF _ wens_mono [of "T∩B" B]], auto)
done

15.2 Defining the Weakest Ensures Set
inductive_set

wens_set :: "[’a program, ’a set] => ’a set set"
for F :: "’a program" and B :: "’a set"

where

Basis: "B ∈ wens_set F B"

| Wens: "[|X ∈ wens_set F B; act ∈ Acts F|] ==> wens F act X ∈ wens_set
F B"

| Union: "W 6= {} ==> ∀ U ∈ W. U ∈ wens_set F B ==>
⋃

W ∈ wens_set F B"

lemma wens_set_imp_co: "A ∈ wens_set F B ==> F ∈ (A-B) co A"
apply (erule wens_set.induct)

apply (simp add: constrains_def)
apply (drule_tac act1=act and A1=X

in constrains_Un [OF Diff_wens_constrains])
apply (erule constrains_weaken, blast)
apply (simp add: wens_weakening)

apply (rule constrains_weaken)
apply (rule_tac I=W and A="λv. v-B" and A’="λv. v" in constrains_UN, blast+)
done

112 15 PREDICATE TRANSFORMERS

lemma wens_set_imp_leadsTo: "A ∈ wens_set F B ==> F ∈ A leadsTo B"
apply (erule wens_set.induct)

apply (rule leadsTo_refl)
apply (blast intro: wens_ensures leadsTo_Trans)

apply (blast intro: leadsTo_Union)
done

lemma leadsTo_imp_wens_set: "F ∈ A leadsTo B ==> ∃ C ∈ wens_set F B. A ⊆
C"
apply (erule leadsTo_induct_pre)

apply (blast dest!: ensures_imp_wens intro: wens_set.Basis wens_set.Wens)

apply (clarify, drule ensures_weaken_R, assumption)
apply (blast dest!: ensures_imp_wens intro: wens_set.Wens)

apply (case_tac "S={}")
apply (simp, blast intro: wens_set.Basis)

apply (clarsimp dest!: bchoice simp: ball_conj_distrib Bex_def)
apply (rule_tac x = "

⋃
{Z. ∃ U∈S. Z = f U}" in exI)

apply (blast intro: wens_set.Union)
done

Assertion (9): 4.27 in the thesis.

lemma leadsTo_iff_wens_set: "(F ∈ A leadsTo B) = (∃ C ∈ wens_set F B. A ⊆
C)"
by (blast intro: leadsTo_imp_wens_set leadsTo_weaken_L wens_set_imp_leadsTo)

This is the result that requires the definition of wens_set to require W to be non-
empty in the Unio case, for otherwise we should always have {} ∈ wens_set F
B.

lemma wens_set_imp_subset: "A ∈ wens_set F B ==> B ⊆ A"
apply (erule wens_set.induct)

apply (blast intro: wens_weakening [THEN subsetD])+
done

15.3 Properties Involving Program Union
Assertion (4.30) of thesis, reoriented

lemma awp_Join_eq: "awp (FtG) B = awp F B ∩ awp G B"
by (simp add: awp_def wp_def, blast)

lemma wens_subset: "wens F act B - B ⊆ wp act B ∩ awp F (B ∪ wens F act
B)"
by (subst wens_unfold, fast)

Assertion (4.31)

lemma subset_wens_Join:
"[|A = T ∩ wens F act B; T-B ⊆ awp F T; A-B ⊆ awp G (A ∪ B)|]
==> A ⊆ wens (FtG) act B"

apply (subgoal_tac "(T ∩ wens F act B) - B ⊆
wp act B ∩ awp F (B ∪ wens F act B) ∩ awp F T")

apply (rule subset_wens)

15.3 Properties Involving Program Union 113

apply (simp add: awp_Join_eq awp_Int_eq Un_commute)
apply (simp add: awp_def wp_def, blast)

apply (insert wens_subset [of F act B], blast)
done

Assertion (4.32)
lemma wens_Join_subset: "wens (FtG) act B ⊆ wens F act B"
apply (simp add: wens_def)
apply (rule gfp_mono)
apply (auto simp add: awp_Join_eq)
done

Lemma, because the inductive step is just too messy.
lemma wens_Union_inductive_step:

assumes awpF: "T-B ⊆ awp F T"
and awpG: "!!X. X ∈ wens_set F B ==> (T∩X) - B ⊆ awp G (T∩X)"

shows "[|X ∈ wens_set F B; act ∈ Acts F; Y ⊆ X; T∩X = T∩Y|]
==> wens (FtG) act Y ⊆ wens F act X ∧

T ∩ wens F act X = T ∩ wens (FtG) act Y"
apply (subgoal_tac "wens (FtG) act Y ⊆ wens F act X")
prefer 2
apply (blast dest: wens_mono intro: wens_Join_subset [THEN subsetD], simp)

apply (rule equalityI)
prefer 2 apply blast

apply (simp add: Int_lower1)
apply (frule wens_set_imp_subset)
apply (subgoal_tac "T-X ⊆ awp F T")
prefer 2 apply (blast intro: awpF [THEN subsetD])

apply (rule_tac B = "wens (FtG) act (T∩X)" in subset_trans)
prefer 2 apply (blast intro!: wens_mono)

apply (subst wens_Int_eq, assumption+)
apply (rule subset_wens_Join [of _ T], simp, blast)
apply (subgoal_tac "T ∩ wens F act (T∩X) ∪ T∩X = T ∩ wens F act X")
prefer 2
apply (subst wens_Int_eq [symmetric], assumption+)
apply (blast intro: wens_weakening [THEN subsetD], simp)

apply (blast intro: awpG [THEN subsetD] wens_set.Wens)
done

theorem wens_Union:
assumes awpF: "T-B ⊆ awp F T"

and awpG: "!!X. X ∈ wens_set F B ==> (T∩X) - B ⊆ awp G (T∩X)"
and major: "X ∈ wens_set F B"

shows "∃ Y ∈ wens_set (FtG) B. Y ⊆ X & T∩X = T∩Y"
apply (rule wens_set.induct [OF major])

Basis: trivial

apply (blast intro: wens_set.Basis)

Inductive step

apply clarify
apply (rule_tac x = "wens (FtG) act Y" in rev_bexI)
apply (force intro: wens_set.Wens)

114 15 PREDICATE TRANSFORMERS

apply (simp add: wens_Union_inductive_step [OF awpF awpG])

Union: by Axiom of Choice

apply (simp add: ball_conj_distrib Bex_def)
apply (clarify dest!: bchoice)
apply (rule_tac x = "

⋃
{Z. ∃ U∈W. Z = f U}" in exI)

apply (blast intro: wens_set.Union)
done

theorem leadsTo_Join:
assumes leadsTo: "F ∈ A leadsTo B"

and awpF: "T-B ⊆ awp F T"
and awpG: "!!X. X ∈ wens_set F B ==> (T∩X) - B ⊆ awp G (T∩X)"

shows "FtG ∈ T∩A leadsTo B"
apply (rule leadsTo [THEN leadsTo_imp_wens_set, THEN bexE])
apply (rule wens_Union [THEN bexE])

apply (rule awpF)
apply (erule awpG, assumption)

apply (blast intro: wens_set_imp_leadsTo [THEN leadsTo_weaken_L])
done

15.4 The Set wens_set F B for a Single-Assignment Program
Thesis Section 4.3.3

We start by proving laws about single-assignment programs

lemma awp_single_eq [simp]:
"awp (mk_program (init, {act}, allowed)) B = B ∩ wp act B"

by (force simp add: awp_def wp_def)

lemma wp_Un_subset: "wp act A ∪ wp act B ⊆ wp act (A ∪ B)"
by (force simp add: wp_def)

lemma wp_Un_eq: "single_valued act ==> wp act (A ∪ B) = wp act A ∪ wp act
B"
apply (rule equalityI)
apply (force simp add: wp_def single_valued_def)

apply (rule wp_Un_subset)
done

lemma wp_UN_subset: "(
⋃

i∈I. wp act (A i)) ⊆ wp act (
⋃

i∈I. A i)"
by (force simp add: wp_def)

lemma wp_UN_eq:
"[|single_valued act; I 6={}|]
==> wp act (

⋃
i∈I. A i) = (

⋃
i∈I. wp act (A i))"

apply (rule equalityI)
prefer 2 apply (rule wp_UN_subset)
apply (simp add: wp_def Image_INT_eq)

done

lemma wens_single_eq:
"wens (mk_program (init, {act}, allowed)) act B = B ∪ wp act B"

15.4 The Set wens_set F B for a Single-Assignment Program 115

by (simp add: wens_def gfp_def wp_def, blast)

Next, we express the wens_set for single-assignment programs

definition wens_single_finite :: "[(’a*’a) set, ’a set, nat] => ’a set" where

"wens_single_finite act B k ==
⋃

i ∈ atMost k. (wp act ^^ i) B"

definition wens_single :: "[(’a*’a) set, ’a set] => ’a set" where
"wens_single act B ==

⋃
i. (wp act ^^ i) B"

lemma wens_single_Un_eq:
"single_valued act
==> wens_single act B ∪ wp act (wens_single act B) = wens_single act

B"
apply (rule equalityI)
apply (simp_all add: Un_upper1)

apply (simp add: wens_single_def wp_UN_eq, clarify)
apply (rule_tac a="Suc xa" in UN_I, auto)
done

lemma atMost_nat_nonempty: "atMost (k::nat) 6= {}"
by force

lemma wens_single_finite_0 [simp]: "wens_single_finite act B 0 = B"
by (simp add: wens_single_finite_def)

lemma wens_single_finite_Suc:
"single_valued act
==> wens_single_finite act B (Suc k) =

wens_single_finite act B k ∪ wp act (wens_single_finite act B k)"
apply (simp add: wens_single_finite_def wp_UN_eq [OF _ atMost_nat_nonempty])
apply (force elim!: le_SucE)
done

lemma wens_single_finite_Suc_eq_wens:
"single_valued act

==> wens_single_finite act B (Suc k) =
wens (mk_program (init, {act}, allowed)) act

(wens_single_finite act B k)"
by (simp add: wens_single_finite_Suc wens_single_eq)

lemma def_wens_single_finite_Suc_eq_wens:
"[|F = mk_program (init, {act}, allowed); single_valued act|]

==> wens_single_finite act B (Suc k) =
wens F act (wens_single_finite act B k)"

by (simp add: wens_single_finite_Suc_eq_wens)

lemma wens_single_finite_Un_eq:
"single_valued act
==> wens_single_finite act B k ∪ wp act (wens_single_finite act B k)

∈ range (wens_single_finite act B)"
by (simp add: wens_single_finite_Suc [symmetric])

lemma wens_single_eq_Union:

116 15 PREDICATE TRANSFORMERS

"wens_single act B =
⋃

(range (wens_single_finite act B))"
by (simp add: wens_single_finite_def wens_single_def, blast)

lemma wens_single_finite_eq_Union:
"wens_single_finite act B n = (

⋃
k∈atMost n. wens_single_finite act B

k)"
apply (auto simp add: wens_single_finite_def)
apply (blast intro: le_trans)
done

lemma wens_single_finite_mono:
"m ≤ n ==> wens_single_finite act B m ⊆ wens_single_finite act B n"

by (force simp add: wens_single_finite_eq_Union [of act B n])

lemma wens_single_finite_subset_wens_single:
"wens_single_finite act B k ⊆ wens_single act B"

by (simp add: wens_single_eq_Union, blast)

lemma subset_wens_single_finite:
"[|W ⊆ wens_single_finite act B ‘ (atMost k); single_valued act; W 6={}|]
==> ∃ m.

⋃
W = wens_single_finite act B m"

apply (induct k)
apply (rule_tac x=0 in exI, simp, blast)

apply (auto simp add: atMost_Suc)
apply (case_tac "wens_single_finite act B (Suc k) ∈ W")
prefer 2 apply blast

apply (drule_tac x="Suc k" in spec)
apply (erule notE, rule equalityI)
prefer 2 apply blast

apply (subst wens_single_finite_eq_Union)
apply (simp add: atMost_Suc, blast)
done

lemma for Union case

lemma Union_eq_wens_single:
" [[∀ k. ¬ W ⊆ wens_single_finite act B ‘ {..k};

W ⊆ insert (wens_single act B)
(range (wens_single_finite act B))]]

=⇒
⋃

W = wens_single act B"
apply (cases "wens_single act B ∈ W")
apply (blast dest: wens_single_finite_subset_wens_single [THEN subsetD])

apply (simp add: wens_single_eq_Union)
apply (rule equalityI, blast)
apply (simp add: UN_subset_iff, clarify)
apply (subgoal_tac "∃ y∈W. ∃ n. y = wens_single_finite act B n & i≤n")
apply (blast intro: wens_single_finite_mono [THEN subsetD])

apply (drule_tac x=i in spec)
apply (force simp add: atMost_def)
done

lemma wens_set_subset_single:
"single_valued act
==> wens_set (mk_program (init, {act}, allowed)) B ⊆

15.4 The Set wens_set F B for a Single-Assignment Program 117

insert (wens_single act B) (range (wens_single_finite act B))"
apply (rule subsetI)
apply (erule wens_set.induct)

Basis

apply (fastforce simp add: wens_single_finite_def)

Wens inductive step

apply (case_tac "acta = Id", simp)
apply (simp add: wens_single_eq)
apply (elim disjE)
apply (simp add: wens_single_Un_eq)
apply (force simp add: wens_single_finite_Un_eq)

Union inductive step

apply (case_tac "∃ k. W ⊆ wens_single_finite act B ‘ (atMost k)")
apply (blast dest!: subset_wens_single_finite, simp)

apply (rule disjI1 [OF Union_eq_wens_single], blast+)
done

lemma wens_single_finite_in_wens_set:
"single_valued act =⇒

wens_single_finite act B k
∈ wens_set (mk_program (init, {act}, allowed)) B"

apply (induct_tac k)
apply (simp add: wens_single_finite_def wens_set.Basis)

apply (simp add: wens_set.Wens
wens_single_finite_Suc_eq_wens [of act B _ init allowed])

done

lemma single_subset_wens_set:
"single_valued act
==> insert (wens_single act B) (range (wens_single_finite act B)) ⊆

wens_set (mk_program (init, {act}, allowed)) B"
apply (simp add: image_def wens_single_eq_Union)
apply (blast intro: wens_set.Union wens_single_finite_in_wens_set)
done

Theorem (4.29)

theorem wens_set_single_eq:
"[|F = mk_program (init, {act}, allowed); single_valued act|]
==> wens_set F B =

insert (wens_single act B) (range (wens_single_finite act B))"
apply (rule equalityI)
apply (simp add: wens_set_subset_single)

apply (erule ssubst, erule single_subset_wens_set)
done

Generalizing Misra’s Fixed Point Union Theorem (4.41)

lemma fp_leadsTo_Join:

118 16 PROGRESS SETS

"[|T-B ⊆ awp F T; T-B ⊆ FP G; F ∈ A leadsTo B|] ==> FtG ∈ T∩A leadsTo
B"
apply (rule leadsTo_Join, assumption, blast)
apply (simp add: FP_def awp_iff_constrains stable_def constrains_def, blast)

done

end

16 Progress Sets
theory ProgressSets imports Transformers begin

16.1 Complete Lattices and the Operator cl

definition lattice :: "’a set set => bool" where
— Meier calls them closure sets, but they are just complete lattices
"lattice L ==

(∀ M. M ⊆ L -->
⋂

M ∈ L) & (∀ M. M ⊆ L -->
⋃

M ∈ L)"

definition cl :: "[’a set set, ’a set] => ’a set" where
— short for “closure”
"cl L r ==

⋂
{x. x∈L & r ⊆ x}"

lemma UNIV_in_lattice: "lattice L ==> UNIV ∈ L"
by (force simp add: lattice_def)

lemma empty_in_lattice: "lattice L ==> {} ∈ L"
by (force simp add: lattice_def)

lemma Union_in_lattice: "[|M ⊆ L; lattice L|] ==>
⋃

M ∈ L"
by (simp add: lattice_def)

lemma Inter_in_lattice: "[|M ⊆ L; lattice L|] ==>
⋂

M ∈ L"
by (simp add: lattice_def)

lemma UN_in_lattice:
"[|lattice L; !!i. i∈I ==> r i ∈ L|] ==> (

⋃
i∈I. r i) ∈ L"

apply (blast intro: Union_in_lattice)
done

lemma INT_in_lattice:
"[|lattice L; !!i. i∈I ==> r i ∈ L|] ==> (

⋂
i∈I. r i) ∈ L"

apply (blast intro: Inter_in_lattice)
done

lemma Un_in_lattice: "[|x∈L; y∈L; lattice L|] ==> x∪y ∈ L"
using Union_in_lattice [of "{x, y}" L] by simp

lemma Int_in_lattice: "[|x∈L; y∈L; lattice L|] ==> x∩y ∈ L"
using Inter_in_lattice [of "{x, y}" L] by simp

lemma lattice_stable: "lattice {X. F ∈ stable X}"

16.1 Complete Lattices and the Operator cl 119

by (simp add: lattice_def stable_def constrains_def, blast)

The next three results state that cl L r is the minimal element of L that includes
r.
lemma cl_in_lattice: "lattice L ==> cl L r ∈ L"

by (simp add: lattice_def cl_def)

lemma cl_least: "[|c∈L; r⊆c|] ==> cl L r ⊆ c"
by (force simp add: cl_def)

The next three lemmas constitute assertion (4.61)
lemma cl_mono: "r ⊆ r’ ==> cl L r ⊆ cl L r’"
by (simp add: cl_def, blast)

lemma subset_cl: "r ⊆ cl L r"
by (simp add: cl_def le_Inf_iff)

A reformulation of ?r ⊆ cl ?L ?r

lemma clI: "x ∈ r ==> x ∈ cl L r"
by (simp add: cl_def, blast)

A reformulation of [[?c ∈ ?L; ?r ⊆ ?c]] =⇒ cl ?L ?r ⊆ ?c

lemma clD: "[|c ∈ cl L r; B ∈ L; r ⊆ B|] ==> c ∈ B"
by (force simp add: cl_def)

lemma cl_UN_subset: "(
⋃

i∈I. cl L (r i)) ⊆ cl L (
⋃

i∈I. r i)"
by (simp add: cl_def, blast)

lemma cl_Un: "lattice L ==> cl L (r∪s) = cl L r ∪ cl L s"
apply (rule equalityI)
prefer 2
apply (simp add: cl_def, blast)

apply (rule cl_least)
apply (blast intro: Un_in_lattice cl_in_lattice)

apply (blast intro: subset_cl [THEN subsetD])
done

lemma cl_UN: "lattice L ==> cl L (
⋃

i∈I. r i) = (
⋃

i∈I. cl L (r i))"
apply (rule equalityI)
prefer 2 apply (simp add: cl_def, blast)

apply (rule cl_least)
apply (blast intro: UN_in_lattice cl_in_lattice)

apply (blast intro: subset_cl [THEN subsetD])
done

lemma cl_Int_subset: "cl L (r∩s) ⊆ cl L r ∩ cl L s"
by (simp add: cl_def, blast)

lemma cl_idem [simp]: "cl L (cl L r) = cl L r"
by (simp add: cl_def, blast)

lemma cl_ident: "r∈L ==> cl L r = r"
by (force simp add: cl_def)

120 16 PROGRESS SETS

lemma cl_empty [simp]: "lattice L ==> cl L {} = {}"
by (simp add: cl_ident empty_in_lattice)

lemma cl_UNIV [simp]: "lattice L ==> cl L UNIV = UNIV"
by (simp add: cl_ident UNIV_in_lattice)

Assertion (4.62)
lemma cl_ident_iff: "lattice L ==> (cl L r = r) = (r∈L)"
apply (rule iffI)
apply (erule subst)
apply (erule cl_in_lattice)

apply (erule cl_ident)
done

lemma cl_subset_in_lattice: "[|cl L r ⊆ r; lattice L|] ==> r∈L"
by (simp add: cl_ident_iff [symmetric] equalityI subset_cl)

16.2 Progress Sets and the Main Lemma
A progress set satisfies certain closure conditions and is a simple way of including
the set wens_set F B.
definition closed :: "[’a program, ’a set, ’a set, ’a set set] => bool" where

"closed F T B L == ∀ M. ∀ act ∈ Acts F. B⊆M & T∩M ∈ L -->
T ∩ (B ∪ wp act M) ∈ L"

definition progress_set :: "[’a program, ’a set, ’a set] => ’a set set set"
where

"progress_set F T B ==
{L. lattice L & B ∈ L & T ∈ L & closed F T B L}"

lemma closedD:
"[|closed F T B L; act ∈ Acts F; B⊆M; T∩M ∈ L|]
==> T ∩ (B ∪ wp act M) ∈ L"

by (simp add: closed_def)

Note: the formalization below replaces Meier’s q by B and m by X.

Part of the proof of the claim at the bottom of page 97. It’s proved separately
because the argument requires a generalization over all act ∈ Acts F.
lemma lattice_awp_lemma:

assumes TXC: "T∩X ∈ C" — induction hypothesis in theorem below
and BsubX: "B ⊆ X" — holds in inductive step
and latt: "lattice C"
and TC: "T ∈ C"
and BC: "B ∈ C"
and clos: "closed F T B C"

shows "T ∩ (B ∪ awp F (X ∪ cl C (T∩r))) ∈ C"
apply (simp del: INT_simps add: awp_def INT_extend_simps)
apply (rule INT_in_lattice [OF latt])
apply (erule closedD [OF clos])
apply (simp add: subset_trans [OF BsubX Un_upper1])
apply (subgoal_tac "T ∩ (X ∪ cl C (T∩r)) = (T∩X) ∪ cl C (T∩r)")

16.2 Progress Sets and the Main Lemma 121

prefer 2 apply (blast intro: TC clD)
apply (erule ssubst)
apply (blast intro: Un_in_lattice latt cl_in_lattice TXC)
done

Remainder of the proof of the claim at the bottom of page 97.
lemma lattice_lemma:

assumes TXC: "T∩X ∈ C" — induction hypothesis in theorem below
and BsubX: "B ⊆ X" — holds in inductive step
and act: "act ∈ Acts F"
and latt: "lattice C"
and TC: "T ∈ C"
and BC: "B ∈ C"
and clos: "closed F T B C"

shows "T ∩ (wp act X ∩ awp F (X ∪ cl C (T∩r)) ∪ X) ∈ C"
apply (subgoal_tac "T ∩ (B ∪ wp act X) ∈ C")
prefer 2 apply (simp add: closedD [OF clos] act BsubX TXC)

apply (drule Int_in_lattice
[OF _ lattice_awp_lemma [OF TXC BsubX latt TC BC clos, of r]

latt])
apply (subgoal_tac

"T ∩ (B ∪ wp act X) ∩ (T ∩ (B ∪ awp F (X ∪ cl C (T∩r)))) =
T ∩ (B ∪ wp act X ∩ awp F (X ∪ cl C (T∩r)))")

prefer 2 apply blast
apply simp
apply (drule Un_in_lattice [OF _ TXC latt])
apply (subgoal_tac

"T ∩ (B ∪ wp act X ∩ awp F (X ∪ cl C (T∩r))) ∪ T∩X =
T ∩ (wp act X ∩ awp F (X ∪ cl C (T∩r)) ∪ X)")

apply simp
apply (blast intro: BsubX [THEN subsetD])
done

Induction step for the main lemma
lemma progress_induction_step:

assumes TXC: "T∩X ∈ C" — induction hypothesis in theorem below
and act: "act ∈ Acts F"
and Xwens: "X ∈ wens_set F B"
and latt: "lattice C"
and TC: "T ∈ C"
and BC: "B ∈ C"
and clos: "closed F T B C"
and Fstable: "F ∈ stable T"

shows "T ∩ wens F act X ∈ C"
proof -

from Xwens have BsubX: "B ⊆ X"
by (rule wens_set_imp_subset)

let ?r = "wens F act X"
have "?r ⊆ (wp act X ∩ awp F (X∪?r)) ∪ X"

by (simp add: wens_unfold [symmetric])
then have "T∩?r ⊆ T ∩ ((wp act X ∩ awp F (X∪?r)) ∪ X)"

by blast
then have "T∩?r ⊆ T ∩ ((wp act X ∩ awp F (T ∩ (X∪?r))) ∪ X)"

by (simp add: awp_Int_eq Fstable stable_imp_awp_ident, blast)

122 16 PROGRESS SETS

then have "T∩?r ⊆ T ∩ ((wp act X ∩ awp F (X ∪ cl C (T∩?r))) ∪ X)"
by (blast intro: awp_mono [THEN [2] rev_subsetD] subset_cl [THEN subsetD])

then have "cl C (T∩?r) ⊆
cl C (T ∩ ((wp act X ∩ awp F (X ∪ cl C (T∩?r))) ∪ X))"

by (rule cl_mono)
then have "cl C (T∩?r) ⊆

T ∩ ((wp act X ∩ awp F (X ∪ cl C (T∩?r))) ∪ X)"
by (simp add: cl_ident lattice_lemma [OF TXC BsubX act latt TC BC clos])

then have "cl C (T∩?r) ⊆ (wp act X ∩ awp F (X ∪ cl C (T∩?r))) ∪ X"
by blast

then have "cl C (T∩?r) ⊆ ?r"
by (blast intro!: subset_wens)

then have cl_subset: "cl C (T∩?r) ⊆ T∩?r"
by (simp add: cl_ident TC

subset_trans [OF cl_mono [OF Int_lower1]])
show ?thesis

by (rule cl_subset_in_lattice [OF cl_subset latt])
qed

Proved on page 96 of Meier’s thesis. The special case when T = UNIV states that
every progress set for the program F and set B includes the set wens_set F B.
lemma progress_set_lemma:

"[|C ∈ progress_set F T B; r ∈ wens_set F B; F ∈ stable T|] ==> T∩r
∈ C"
apply (simp add: progress_set_def, clarify)
apply (erule wens_set.induct)

Base

apply (simp add: Int_in_lattice)

The difficult wens case

apply (simp add: progress_induction_step)

Disjunctive case

apply (subgoal_tac "(
⋃

U∈W. T ∩ U) ∈ C")
apply simp

apply (blast intro: UN_in_lattice)
done

16.3 The Progress Set Union Theorem
lemma closed_mono:

assumes BB’: "B ⊆ B’"
and TBwp: "T ∩ (B ∪ wp act M) ∈ C"
and B’C: "B’ ∈ C"
and TC: "T ∈ C"
and latt: "lattice C"

shows "T ∩ (B’ ∪ wp act M) ∈ C"
proof -

from TBwp have "(T∩B) ∪ (T ∩ wp act M) ∈ C"
by (simp add: Int_Un_distrib)

then have TBBC: "(T∩B’) ∪ ((T∩B) ∪ (T ∩ wp act M)) ∈ C"
by (blast intro: Int_in_lattice Un_in_lattice TC B’C latt)

16.4 Some Progress Sets 123

show ?thesis
by (rule eqelem_imp_iff [THEN iffD1, OF _ TBBC],

blast intro: BB’ [THEN subsetD])
qed

lemma progress_set_mono:
assumes BB’: "B ⊆ B’"
shows
"[| B’ ∈ C; C ∈ progress_set F T B|]
==> C ∈ progress_set F T B’"

by (simp add: progress_set_def closed_def closed_mono [OF BB’]
subset_trans [OF BB’])

theorem progress_set_Union:
assumes leadsTo: "F ∈ A leadsTo B’"

and prog: "C ∈ progress_set F T B"
and Fstable: "F ∈ stable T"
and BB’: "B ⊆ B’"
and B’C: "B’ ∈ C"
and Gco: "!!X. X∈C ==> G ∈ X-B co X"

shows "FtG ∈ T∩A leadsTo B’"
apply (insert prog Fstable)
apply (rule leadsTo_Join [OF leadsTo])

apply (force simp add: progress_set_def awp_iff_stable [symmetric])
apply (simp add: awp_iff_constrains)
apply (drule progress_set_mono [OF BB’ B’C])
apply (blast intro: progress_set_lemma Gco constrains_weaken_L

BB’ [THEN subsetD])
done

16.4 Some Progress Sets
lemma UNIV_in_progress_set: "UNIV ∈ progress_set F T B"
by (simp add: progress_set_def lattice_def closed_def)

16.4.1 Lattices and Relations

From Meier’s thesis, section 4.5.3
definition relcl :: "’a set set => (’a * ’a) set" where

— Derived relation from a lattice
"relcl L == {(x,y). y ∈ cl L {x}}"

definition latticeof :: "(’a * ’a) set => ’a set set" where
— Derived lattice from a relation: the set of upwards-closed sets
"latticeof r == {X. ∀ s t. s ∈ X & (s,t) ∈ r --> t ∈ X}"

lemma relcl_refl: "(a,a) ∈ relcl L"
by (simp add: relcl_def subset_cl [THEN subsetD])

lemma relcl_trans:
"[| (a,b) ∈ relcl L; (b,c) ∈ relcl L; lattice L |] ==> (a,c) ∈ relcl

L"

124 16 PROGRESS SETS

apply (simp add: relcl_def)
apply (blast intro: clD cl_in_lattice)
done

lemma refl_relcl: "lattice L ==> refl (relcl L)"
by (simp add: refl_onI relcl_def subset_cl [THEN subsetD])

lemma trans_relcl: "lattice L ==> trans (relcl L)"
by (blast intro: relcl_trans transI)

lemma lattice_latticeof: "lattice (latticeof r)"
by (auto simp add: lattice_def latticeof_def)

lemma lattice_singletonI:
"[|lattice L; !!s. s ∈ X ==> {s} ∈ L|] ==> X ∈ L"

apply (cut_tac UN_singleton [of X])
apply (erule subst)
apply (simp only: UN_in_lattice)
done

Equation (4.71) of Meier’s thesis. He gives no proof.

lemma cl_latticeof:
"[|refl r; trans r|]
==> cl (latticeof r) X = {t. ∃ s. s∈X & (s,t) ∈ r}"

apply (rule equalityI)
apply (rule cl_least)
apply (simp (no_asm_use) add: latticeof_def trans_def, blast)

apply (simp add: latticeof_def refl_on_def, blast)
apply (simp add: latticeof_def, clarify)
apply (unfold cl_def, blast)
done

Related to (4.71).

lemma cl_eq_Collect_relcl:
"lattice L ==> cl L X = {t. ∃ s. s∈X & (s,t) ∈ relcl L}"

apply (cut_tac UN_singleton [of X])
apply (erule subst)
apply (force simp only: relcl_def cl_UN)
done

Meier’s theorem of section 4.5.3

theorem latticeof_relcl_eq: "lattice L ==> latticeof (relcl L) = L"
apply (rule equalityI)
prefer 2 apply (force simp add: latticeof_def relcl_def cl_def, clarify)

apply (rename_tac X)
apply (rule cl_subset_in_lattice)
prefer 2 apply assumption

apply (drule cl_ident_iff [OF lattice_latticeof, THEN iffD2])
apply (drule equalityD1)
apply (rule subset_trans)
prefer 2 apply assumption

apply (thin_tac "_ ⊆ X")

16.4 Some Progress Sets 125

apply (cut_tac A=X in UN_singleton)
apply (erule subst)
apply (simp only: cl_UN lattice_latticeof

cl_latticeof [OF refl_relcl trans_relcl])
apply (simp add: relcl_def)
done

theorem relcl_latticeof_eq:
"[|refl r; trans r|] ==> relcl (latticeof r) = r"

by (simp add: relcl_def cl_latticeof)

16.4.2 Decoupling Theorems
definition decoupled :: "[’a program, ’a program] => bool" where

"decoupled F G ==
∀ act ∈ Acts F. ∀ B. G ∈ stable B --> G ∈ stable (wp act B)"

Rao’s Decoupling Theorem

lemma stableco: "F ∈ stable A ==> F ∈ A-B co A"
by (simp add: stable_def constrains_def, blast)

theorem decoupling:
assumes leadsTo: "F ∈ A leadsTo B"

and Gstable: "G ∈ stable B"
and dec: "decoupled F G"

shows "FtG ∈ A leadsTo B"
proof -

have prog: "{X. G ∈ stable X} ∈ progress_set F UNIV B"
by (simp add: progress_set_def lattice_stable Gstable closed_def

stable_Un [OF Gstable] dec [unfolded decoupled_def])
have "FtG ∈ (UNIV∩A) leadsTo B"

by (rule progress_set_Union [OF leadsTo prog],
simp_all add: Gstable stableco)

thus ?thesis by simp
qed

Rao’s Weak Decoupling Theorem

theorem weak_decoupling:
assumes leadsTo: "F ∈ A leadsTo B"

and stable: "FtG ∈ stable B"
and dec: "decoupled F (FtG)"

shows "FtG ∈ A leadsTo B"
proof -

have prog: "{X. FtG ∈ stable X} ∈ progress_set F UNIV B"
by (simp del: Join_stable

add: progress_set_def lattice_stable stable closed_def
stable_Un [OF stable] dec [unfolded decoupled_def])

have "FtG ∈ (UNIV∩A) leadsTo B"
by (rule progress_set_Union [OF leadsTo prog],

simp_all del: Join_stable add: stable,
simp add: stableco)

thus ?thesis by simp
qed

126 16 PROGRESS SETS

The “Decoupling via G’ Union Theorem”
theorem decoupling_via_aux:

assumes leadsTo: "F ∈ A leadsTo B"
and prog: "{X. G’ ∈ stable X} ∈ progress_set F UNIV B"
and GG’: "G ≤ G’"

— Beware! This is the converse of the refinement relation!
shows "FtG ∈ A leadsTo B"

proof -
from prog have stable: "G’ ∈ stable B"

by (simp add: progress_set_def)
have "FtG ∈ (UNIV∩A) leadsTo B"

by (rule progress_set_Union [OF leadsTo prog],
simp_all add: stable stableco component_stable [OF GG’])

thus ?thesis by simp
qed

16.5 Composition Theorems Based on Monotonicity and
Commutativity

16.5.1 Commutativity of cl L and assignment.
definition commutes :: "[’a program, ’a set, ’a set, ’a set set] => bool"
where

"commutes F T B L ==
∀ M. ∀ act ∈ Acts F. B ⊆ M -->

cl L (T ∩ wp act M) ⊆ T ∩ (B ∪ wp act (cl L (T∩M)))"

From Meier’s thesis, section 4.5.6
lemma commutativity1_lemma:

assumes commutes: "commutes F T B L"
and lattice: "lattice L"
and BL: "B ∈ L"
and TL: "T ∈ L"

shows "closed F T B L"
apply (simp add: closed_def, clarify)
apply (rule ProgressSets.cl_subset_in_lattice [OF _ lattice])
apply (simp add: Int_Un_distrib cl_Un [OF lattice]

cl_ident Int_in_lattice [OF TL BL lattice] Un_upper1)
apply (subgoal_tac "cl L (T ∩ wp act M) ⊆ T ∩ (B ∪ wp act (cl L (T ∩ M)))")

prefer 2
apply (cut_tac commutes, simp add: commutes_def)

apply (erule subset_trans)
apply (simp add: cl_ident)
apply (blast intro: rev_subsetD [OF _ wp_mono])
done

Version packaged with [[?F ∈ ?A 7−→ ?B’; ?C ∈ progress_set ?F ?T ?B; ?F ∈
UNITY.stable ?T; ?B ⊆ ?B’; ?B’ ∈ ?C;

∧
X. X ∈ ?C =⇒ ?G ∈ X - ?B co X]] =⇒

?F t ?G ∈ ?T ∩ ?A 7−→ ?B’

lemma commutativity1:
assumes leadsTo: "F ∈ A leadsTo B"

and lattice: "lattice L"

16.5 Composition Theorems Based on Monotonicity and Commutativity 127

and BL: "B ∈ L"
and TL: "T ∈ L"
and Fstable: "F ∈ stable T"
and Gco: "!!X. X∈L ==> G ∈ X-B co X"
and commutes: "commutes F T B L"

shows "FtG ∈ T∩A leadsTo B"
by (rule progress_set_Union [OF leadsTo _ Fstable subset_refl BL Gco],

simp add: progress_set_def commutativity1_lemma commutes lattice BL TL)

Possibly move to Relation.thy, after single_valued

definition funof :: "[(’a*’b)set, ’a] => ’b" where
"funof r == (λx. THE y. (x,y) ∈ r)"

lemma funof_eq: "[|single_valued r; (x,y) ∈ r|] ==> funof r x = y"
by (simp add: funof_def single_valued_def, blast)

lemma funof_Pair_in:
"[|single_valued r; x ∈ Domain r|] ==> (x, funof r x) ∈ r"

by (force simp add: funof_eq)

lemma funof_in:
"[|r‘‘{x} ⊆ A; single_valued r; x ∈ Domain r|] ==> funof r x ∈ A"

by (force simp add: funof_eq)

lemma funof_imp_wp: "[|funof act t ∈ A; single_valued act|] ==> t ∈ wp act
A"
by (force simp add: in_wp_iff funof_eq)

16.5.2 Commutativity of Functions and Relation

Thesis, page 109

From Meier’s thesis, section 4.5.6
lemma commutativity2_lemma:

assumes dcommutes:
"
∧

act s t. act ∈ Acts F =⇒ s ∈ T =⇒ (s, t) ∈ relcl L =⇒
s ∈ B | t ∈ B | (funof act s, funof act t) ∈ relcl L"

and determ: "!!act. act ∈ Acts F ==> single_valued act"
and total: "!!act. act ∈ Acts F ==> Domain act = UNIV"
and lattice: "lattice L"
and BL: "B ∈ L"
and TL: "T ∈ L"
and Fstable: "F ∈ stable T"

shows "commutes F T B L"
proof -

{ fix M and act and t
assume 1: "B ⊆ M" "act ∈ Acts F" "t ∈ cl L (T ∩ wp act M)"
then have "∃ s. (s,t) ∈ relcl L ∧ s ∈ T ∩ wp act M"

by (force simp add: cl_eq_Collect_relcl [OF lattice])
then obtain s where 2: "(s, t) ∈ relcl L" "s ∈ T" "s ∈ wp act M"

by blast
then have 3: "∀ u∈L. s ∈ u --> t ∈ u"

apply (intro ballI impI)
apply (subst cl_ident [symmetric], assumption)

128 17 COMPREHENSIVE UNITY THEORY

apply (simp add: relcl_def)
apply (blast intro: cl_mono [THEN [2] rev_subsetD])
done

with 1 2 Fstable have 4: "funof act s ∈ T∩M"
by (force intro!: funof_in

simp add: wp_def stable_def constrains_def determ total)
with 1 2 3 have 5: "s ∈ B | t ∈ B | (funof act s, funof act t) ∈ relcl

L"
by (intro dcommutes) assumption+

with 1 2 3 4 have "t ∈ B | funof act t ∈ cl L (T∩M)"
by (simp add: relcl_def) (blast intro: BL cl_mono [THEN [2] rev_subsetD])

with 1 2 3 4 5 have "t ∈ B | t ∈ wp act (cl L (T∩M))"
by (blast intro: funof_imp_wp determ)

with 2 3 have "t ∈ T ∧ (t ∈ B ∨ t ∈ wp act (cl L (T ∩ M)))"
by (blast intro: TL cl_mono [THEN [2] rev_subsetD])

then have"t ∈ T ∩ (B ∪ wp act (cl L (T ∩ M)))"
by simp

}
then show "commutes F T B L" unfolding commutes_def by clarify

qed

Version packaged with [[?F ∈ ?A 7−→ ?B’; ?C ∈ progress_set ?F ?T ?B; ?F ∈
UNITY.stable ?T; ?B ⊆ ?B’; ?B’ ∈ ?C;

∧
X. X ∈ ?C =⇒ ?G ∈ X - ?B co X]] =⇒

?F t ?G ∈ ?T ∩ ?A 7−→ ?B’

lemma commutativity2:
assumes leadsTo: "F ∈ A leadsTo B"

and dcommutes:
"∀ act ∈ Acts F.
∀ s ∈ T. ∀ t. (s,t) ∈ relcl L -->

s ∈ B | t ∈ B | (funof act s, funof act t) ∈ relcl
L"

and determ: "!!act. act ∈ Acts F ==> single_valued act"
and total: "!!act. act ∈ Acts F ==> Domain act = UNIV"
and lattice: "lattice L"
and BL: "B ∈ L"
and TL: "T ∈ L"
and Fstable: "F ∈ stable T"
and Gco: "!!X. X∈L ==> G ∈ X-B co X"

shows "FtG ∈ T∩A leadsTo B"
apply (rule commutativity1 [OF leadsTo lattice])
apply (simp_all add: Gco commutativity2_lemma dcommutes determ total

lattice BL TL Fstable)
done

16.6 Monotonicity
From Meier’s thesis, section 4.5.7, page 110
end

17 Comprehensive UNITY Theory
theory UNITY_Main

129

imports Detects PPROD Follows ProgressSets
begin

ML_file ‹UNITY_tactics.ML›

method_setup safety = ‹
Scan.succeed (SIMPLE_METHOD’ o constrains_tac)›
"for proving safety properties"

method_setup ensures_tac = ‹
Args.goal_spec -- Scan.lift Parse.embedded_inner_syntax >>
(fn (quant, s) => fn ctxt => SIMPLE_METHOD’’ quant (ensures_tac ctxt s))

› "for proving progress properties"

setup ‹
map_theory_simpset (fn ctxt => ctxt

addsimps (make_o_equivs ctxt @{thm fst_o_funPair} @ make_o_equivs ctxt
@{thm snd_o_funPair})

addsimps (make_o_equivs ctxt @{thm fst_o_lift_map} @ make_o_equivs ctxt
@{thm snd_o_lift_map}))
›

end

theory Deadlock imports "../UNITY" begin

lemma "[| F ∈ (A ∩ B) co A; F ∈ (B ∩ A) co B |] ==> F ∈ stable (A ∩ B)"
unfolding constrains_def stable_def by blast

lemma Collect_le_Int_equals:
"(
⋂

i ∈ atMost n. A(Suc i) ∩ A i) = (
⋂

i ∈ atMost (Suc n). A i)"
by (induct n) (auto simp add: atMost_Suc)

lemma UN_Int_Compl_subset:
"(
⋃

i ∈ lessThan n. A i) ∩ (- A n) ⊆
(
⋃

i ∈ lessThan n. (A i) ∩ (- A (Suc i)))"
by (induct n) (auto simp: lessThan_Suc)

lemma INT_Un_Compl_subset:
"(
⋂

i ∈ lessThan n. -A i ∪ A (Suc i)) ⊆
(
⋂

i ∈ lessThan n. -A i) ∪ A n"
by (induct n) (auto simp: lessThan_Suc)

lemma INT_le_equals_Int_lemma:
"A 0 ∩ (-(A n) ∩ (

⋂
i ∈ lessThan n. -A i ∪ A (Suc i))) = {}"

130 17 COMPREHENSIVE UNITY THEORY

by (blast intro: gr0I dest: INT_Un_Compl_subset [THEN subsetD])

lemma INT_le_equals_Int:
"(
⋂

i ∈ atMost n. A i) =
A 0 ∩ (

⋂
i ∈ lessThan n. -A i ∪ A(Suc i))"

by (induct n)
(simp_all add: Int_ac Int_Un_distrib Int_Un_distrib2

INT_le_equals_Int_lemma lessThan_Suc atMost_Suc)

lemma INT_le_Suc_equals_Int:
"(
⋂

i ∈ atMost (Suc n). A i) =
A 0 ∩ (

⋂
i ∈ atMost n. -A i ∪ A(Suc i))"

by (simp add: lessThan_Suc_atMost INT_le_equals_Int)

lemma
assumes zeroprem: "F ∈ (A 0 ∩ A (Suc n)) co (A 0)"

and allprem:
"!!i. i ∈ atMost n ==> F ∈ (A(Suc i) ∩ A i) co (-A i ∪ A(Suc

i))"
shows "F ∈ stable (

⋂
i ∈ atMost (Suc n). A i)"

apply (unfold stable_def)
apply (rule constrains_Int [THEN constrains_weaken])

apply (rule zeroprem)
apply (rule constrains_INT)
apply (erule allprem)

apply (simp add: Collect_le_Int_equals Int_assoc INT_absorb)
apply (simp add: INT_le_Suc_equals_Int)
done

end

theory Common
imports "../UNITY_Main"
begin

consts
ftime :: "nat=>nat"
gtime :: "nat=>nat"

axiomatization where
fmono: "m ≤ n ==> ftime m ≤ ftime n" and
gmono: "m ≤ n ==> gtime m ≤ gtime n" and

fasc: "m ≤ ftime n" and
gasc: "m ≤ gtime n"

definition common :: "nat set" where
"common == {n. ftime n = n & gtime n = n}"

definition maxfg :: "nat => nat set" where

131

"maxfg m == {t. t ≤ max (ftime m) (gtime m)}"

lemma common_stable:
"[| ∀ m. F ∈ {m} Co (maxfg m); n ∈ common |]
==> F ∈ Stable (atMost n)"

apply (drule_tac M = "{t. t ≤ n}" in Elimination_sing)
apply (simp add: atMost_def Stable_def common_def maxfg_def le_max_iff_disj)
apply (erule Constrains_weaken_R)
apply (blast intro: order_eq_refl le_trans dest: fmono gmono)
done

lemma common_safety:
"[| Init F ⊆ atMost n;

∀ m. F ∈ {m} Co (maxfg m); n ∈ common |]
==> F ∈ Always (atMost n)"

by (simp add: AlwaysI common_stable)

lemma "SKIP ∈ {m} co (maxfg m)"
by (simp add: constrains_def maxfg_def le_max_iff_disj fasc)

lemma "mk_total_program
(UNIV, {range(%t.(t,ftime t)), range(%t.(t,gtime t))}, UNIV)

∈ {m} co (maxfg m)"
apply (simp add: mk_total_program_def)
apply (simp add: constrains_def maxfg_def le_max_iff_disj fasc)
done

lemma "mk_total_program (UNIV, {range(%t.(t, max (ftime t) (gtime t)))},
UNIV)

∈ {m} co (maxfg m)"
apply (simp add: mk_total_program_def)
apply (simp add: constrains_def maxfg_def gasc max.absorb2)
done

lemma "mk_total_program
(UNIV, { {(t, Suc t) | t. t < max (ftime t) (gtime t)} }, UNIV)

∈ {m} co (maxfg m)"
apply (simp add: mk_total_program_def)
apply (simp add: constrains_def maxfg_def gasc max.absorb2)
done

132 17 COMPREHENSIVE UNITY THEORY

lemma leadsTo_common_lemma:
assumes "∀ m. F ∈ {m} Co (maxfg m)"

and "∀ m ∈ lessThan n. F ∈ {m} LeadsTo (greaterThan m)"
and "n ∈ common"

shows "F ∈ (atMost n) LeadsTo common"
proof (rule LeadsTo_weaken_R)

show "F ∈ {..n} LeadsTo {..n} ∩ id -‘ {n..} ∪ common"
proof (induct rule: GreaterThan_bounded_induct [of n _ _ id])

case 1
from assms have "∀ m∈{..<n}. F ∈ {..n} ∩ {m} LeadsTo {..n} ∩ {m<..}

∪ common"
by (blast dest: PSP_Stable2 intro: common_stable LeadsTo_weaken_R)

then show ?case by simp
qed

next
from ‹n ∈ common›
show "{..n} ∩ id -‘ {n..} ∪ common ⊆ common"

by (simp add: atMost_Int_atLeast)
qed

lemma leadsTo_common:
"[| ∀ m. F ∈ {m} Co (maxfg m);

∀ m ∈ -common. F ∈ {m} LeadsTo (greaterThan m);
n ∈ common |]

==> F ∈ (atMost (LEAST n. n ∈ common)) LeadsTo common"
apply (rule leadsTo_common_lemma)
apply (simp_all (no_asm_simp))
apply (erule_tac [2] LeastI)
apply (blast dest!: not_less_Least)
done

end

theory Network imports "../UNITY" begin

datatype pvar = Sent | Rcvd | Idle

datatype pname = Aproc | Bproc

type_synonym state = "pname * pvar => nat"

locale F_props =
fixes F
assumes rsA: "F ∈ stable {s. s(Bproc,Rcvd) ≤ s(Aproc,Sent)}"

and rsB: "F ∈ stable {s. s(Aproc,Rcvd) ≤ s(Bproc,Sent)}"
and sent_nondec: "F ∈ stable {s. m ≤ s(proc,Sent)}"
and rcvd_nondec: "F ∈ stable {s. n ≤ s(proc,Rcvd)}"
and rcvd_idle: "F ∈ {s. s(proc,Idle) = Suc 0 & s(proc,Rcvd) = m}

co {s. s(proc,Rcvd) = m --> s(proc,Idle) = Suc 0}"

133

and sent_idle: "F ∈ {s. s(proc,Idle) = Suc 0 & s(proc,Sent) = n}
co {s. s(proc,Sent) = n}"

begin

lemmas sent_nondec_A = sent_nondec [of _ Aproc]
and sent_nondec_B = sent_nondec [of _ Bproc]
and rcvd_nondec_A = rcvd_nondec [of _ Aproc]
and rcvd_nondec_B = rcvd_nondec [of _ Bproc]
and rcvd_idle_A = rcvd_idle [of Aproc]
and rcvd_idle_B = rcvd_idle [of Bproc]
and sent_idle_A = sent_idle [of Aproc]
and sent_idle_B = sent_idle [of Bproc]

and rs_AB = stable_Int [OF rsA rsB]

lemmas sent_nondec_AB = stable_Int [OF sent_nondec_A sent_nondec_B]
and rcvd_nondec_AB = stable_Int [OF rcvd_nondec_A rcvd_nondec_B]
and rcvd_idle_AB = constrains_Int [OF rcvd_idle_A rcvd_idle_B]
and sent_idle_AB = constrains_Int [OF sent_idle_A sent_idle_B]

lemmas nondec_AB = stable_Int [OF sent_nondec_AB rcvd_nondec_AB]
and idle_AB = constrains_Int [OF rcvd_idle_AB sent_idle_AB]

lemmas nondec_idle = constrains_Int [OF nondec_AB [unfolded stable_def] idle_AB]

lemma
shows "F ∈ stable {s. s(Aproc,Idle) = Suc 0 & s(Bproc,Idle) = Suc 0 &

s(Aproc,Sent) = s(Bproc,Rcvd) &
s(Bproc,Sent) = s(Aproc,Rcvd) &
s(Aproc,Rcvd) = m & s(Bproc,Rcvd) = n}"

apply (unfold stable_def)
apply (rule constrainsI)
apply (drule constrains_Int [OF rs_AB [unfolded stable_def] nondec_idle,

THEN constrainsD], assumption)
apply simp_all
apply (blast del: le0, clarify)
apply (subgoal_tac "s’ (Aproc, Rcvd) = s (Aproc, Rcvd)")
apply (subgoal_tac "s’ (Bproc, Rcvd) = s (Bproc, Rcvd)")
apply simp
apply (blast intro: order_antisym le_trans eq_imp_le)+
done

end

end

18 The Token Ring
theory Token
imports "../WFair"

begin

From Misra, "A Logic for Concurrent Programming" (1994), sections 5.2 and

134 18 THE TOKEN RING

13.2.

18.1 Definitions
datatype pstate = Hungry | Eating | Thinking

— process states

record state =
token :: "nat"
proc :: "nat => pstate"

definition HasTok :: "nat => state set" where
"HasTok i == {s. token s = i}"

definition H :: "nat => state set" where
"H i == {s. proc s i = Hungry}"

definition E :: "nat => state set" where
"E i == {s. proc s i = Eating}"

definition T :: "nat => state set" where
"T i == {s. proc s i = Thinking}"

locale Token =
fixes N and F and nodeOrder and "next"
defines nodeOrder_def:

"nodeOrder j == measure(%i. ((j+N)-i) mod N) ∩ {..<N} × {..<N}"
and next_def:
"next i == (Suc i) mod N"

assumes N_positive [iff]: "0<N"
and TR2: "F ∈ (T i) co (T i ∪ H i)"
and TR3: "F ∈ (H i) co (H i ∪ E i)"
and TR4: "F ∈ (H i - HasTok i) co (H i)"
and TR5: "F ∈ (HasTok i) co (HasTok i ∪ -(E i))"
and TR6: "F ∈ (H i ∩ HasTok i) leadsTo (E i)"
and TR7: "F ∈ (HasTok i) leadsTo (HasTok (next i))"

lemma HasToK_partition: "[| s ∈ HasTok i; s ∈ HasTok j |] ==> i=j"
by (unfold HasTok_def, auto)

lemma not_E_eq: "(s /∈ E i) = (s ∈ H i | s ∈ T i)"
apply (simp add: H_def E_def T_def)
apply (cases "proc s i", auto)
done

context Token
begin

lemma token_stable: "F ∈ stable (-(E i) ∪ (HasTok i))"
apply (unfold stable_def)
apply (rule constrains_weaken)

18.2 Progress under Weak Fairness 135

apply (rule constrains_Un [OF constrains_Un [OF TR2 TR4] TR5])
apply (auto simp add: not_E_eq)
apply (simp_all add: H_def E_def T_def)
done

18.2 Progress under Weak Fairness
lemma wf_nodeOrder: "wf(nodeOrder j)"
apply (unfold nodeOrder_def)
apply (rule wf_measure [THEN wf_subset], blast)
done

lemma nodeOrder_eq:
"[| i<N; j<N |] ==> ((next i, i) ∈ nodeOrder j) = (i 6= j)"

apply (cases ‹i < j›)
apply (auto simp add: nodeOrder_def next_def mod_Suc add.commute [of _

N])
apply (simp only: diff_add_assoc mod_add_self1)
apply simp
done

From "A Logic for Concurrent Programming", but not used in Chapter 4. Note
the use of cases. Reasoning about leadsTo takes practice!

lemma TR7_nodeOrder:
"[| i<N; j<N |] ==>
F ∈ (HasTok i) leadsTo ({s. (token s, i) ∈ nodeOrder j} ∪ HasTok j)"

apply (cases "i=j")
apply (blast intro: subset_imp_leadsTo)
apply (rule TR7 [THEN leadsTo_weaken_R])
apply (auto simp add: HasTok_def nodeOrder_eq)
done

Chapter 4 variant, the one actually used below.

lemma TR7_aux: "[| i<N; j<N; i 6=j |]
==> F ∈ (HasTok i) leadsTo {s. (token s, i) ∈ nodeOrder j}"

apply (rule TR7 [THEN leadsTo_weaken_R])
apply (auto simp add: HasTok_def nodeOrder_eq)
done

lemma token_lemma:
"({s. token s < N} ∩ token -‘ {m}) = (if m<N then token -‘ {m} else {})"

by auto

Misra’s TR9: the token reaches an arbitrary node

lemma leadsTo_j: "j<N ==> F ∈ {s. token s < N} leadsTo (HasTok j)"
apply (rule leadsTo_weaken_R)
apply (rule_tac I = "-{j}" and f = token and B = "{}"

in wf_nodeOrder [THEN bounded_induct])
apply (simp_all (no_asm_simp) add: token_lemma vimage_Diff HasTok_def)
prefer 2 apply blast

apply clarify
apply (rule TR7_aux [THEN leadsTo_weaken])
apply (auto simp add: HasTok_def nodeOrder_def)

136 18 THE TOKEN RING

done

Misra’s TR8: a hungry process eventually eats

lemma token_progress:
"j<N ==> F ∈ ({s. token s < N} ∩ H j) leadsTo (E j)"

apply (rule leadsTo_cancel1 [THEN leadsTo_Un_duplicate])
apply (rule_tac [2] TR6)
apply (rule psp [OF leadsTo_j TR3, THEN leadsTo_weaken], blast+)
done

end

end

theory Channel imports "../UNITY_Main" begin

type_synonym state = "nat set"

consts
F :: "state program"

definition minSet :: "nat set => nat option" where
"minSet A == if A={} then None else Some (LEAST x. x ∈ A)"

axiomatization where

UC1: "F ∈ (minSet -‘ {Some x}) co (minSet -‘ (Some‘atLeast x))" and

UC2: "F ∈ (minSet -‘ {Some x}) leadsTo {s. x /∈ s}"

lemma minSet_eq_SomeD: "minSet A = Some x ==> x ∈ A"
apply (unfold minSet_def)
apply (simp split: if_split_asm)
apply (fast intro: LeastI)
done

lemma minSet_empty [simp]: " minSet{} = None"
by (unfold minSet_def, simp)

lemma minSet_nonempty: "x ∈ A ==> minSet A = Some (LEAST x. x ∈ A)"
by (unfold minSet_def, auto)

lemma minSet_greaterThan:
"F ∈ (minSet -‘ {Some x}) leadsTo (minSet -‘ (Some‘greaterThan x))"

apply (rule leadsTo_weaken)
apply (rule_tac x1=x in psp [OF UC2 UC1], safe)
apply (auto dest: minSet_eq_SomeD simp add: linorder_neq_iff)
done

18.2 Progress under Weak Fairness 137

lemma Channel_progress_lemma:
"F ∈ (UNIV-{{}}) leadsTo (minSet -‘ (Some‘atLeast y))"

apply (rule leadsTo_weaken_R)
apply (rule_tac l = y and f = "the o minSet" and B = "{}"

in greaterThan_bounded_induct, safe)
apply (simp_all (no_asm_simp))
apply (drule_tac [2] minSet_nonempty)
prefer 2 apply simp

apply (rule minSet_greaterThan [THEN leadsTo_weaken], safe)
apply simp_all
apply (drule minSet_nonempty, simp)
done

lemma Channel_progress: "!!y::nat. F ∈ (UNIV-{{}}) leadsTo {s. y /∈ s}"
apply (rule Channel_progress_lemma [THEN leadsTo_weaken_R], clarify)
apply (frule minSet_nonempty)
apply (auto dest: Suc_le_lessD not_less_Least)
done

end

theory Lift
imports "../UNITY_Main"
begin

record state =
floor :: "int" — current position of the lift
"open" :: "bool" — whether the door is opened at floor
stop :: "bool" — whether the lift is stopped at floor
req :: "int set" — for each floor, whether the lift is requested
up :: "bool" — current direction of movement
move :: "bool" — whether moving takes precedence over opening

axiomatization
Min :: "int" and — least and greatest floors
Max :: "int" — least and greatest floors

where
Min_le_Max [iff]: "Min ≤ Max"

— Abbreviations: the "always" part

definition
above :: "state set"
where "above = {s. ∃ i. floor s < i & i ≤ Max & i ∈ req s}"

definition
below :: "state set"
where "below = {s. ∃ i. Min ≤ i & i < floor s & i ∈ req s}"

definition

138 18 THE TOKEN RING

queueing :: "state set"
where "queueing = above ∪ below"

definition
goingup :: "state set"
where "goingup = above ∩ ({s. up s} ∪ -below)"

definition
goingdown :: "state set"
where "goingdown = below ∩ ({s. ~ up s} ∪ -above)"

definition
ready :: "state set"
where "ready = {s. stop s & ~ open s & move s}"

— Further abbreviations

definition
moving :: "state set"
where "moving = {s. ~ stop s & ~ open s}"

definition
stopped :: "state set"
where "stopped = {s. stop s & ~ open s & ~ move s}"

definition
opened :: "state set"
where "opened = {s. stop s & open s & move s}"

definition
closed :: "state set" — but this is the same as ready!!
where "closed = {s. stop s & ~ open s & move s}"

definition
atFloor :: "int => state set"
where "atFloor n = {s. floor s = n}"

definition
Req :: "int => state set"
where "Req n = {s. n ∈ req s}"

— The program

definition
request_act :: "(state*state) set"
where "request_act = {(s,s’). s’ = s (|stop:=True, move:=False|)

& ~ stop s & floor s ∈ req s}"

definition
open_act :: "(state*state) set"
where "open_act =

{(s,s’). s’ = s (|open :=True,

18.2 Progress under Weak Fairness 139

req := req s - {floor s},
move := True|)

& stop s & ~ open s & floor s ∈ req s
& ~(move s & s ∈ queueing)}"

definition
close_act :: "(state*state) set"
where "close_act = {(s,s’). s’ = s (|open := False|) & open s}"

definition
req_up :: "(state*state) set"
where "req_up =

{(s,s’). s’ = s (|stop :=False,
floor := floor s + 1,
up := True|)

& s ∈ (ready ∩ goingup)}"

definition
req_down :: "(state*state) set"
where "req_down =

{(s,s’). s’ = s (|stop :=False,
floor := floor s - 1,
up := False|)

& s ∈ (ready ∩ goingdown)}"

definition
move_up :: "(state*state) set"
where "move_up =

{(s,s’). s’ = s (|floor := floor s + 1|)
& ~ stop s & up s & floor s /∈ req s}"

definition
move_down :: "(state*state) set"
where "move_down =

{(s,s’). s’ = s (|floor := floor s - 1|)
& ~ stop s & ~ up s & floor s /∈ req s}"

definition
button_press :: "(state*state) set"

— This action is omitted from prior treatments, which therefore are unrealistic:
nobody asks the lift to do anything! But adding this action invalidates many of the
existing progress arguments: various "ensures" properties fail. Maybe it should be
constrained to only allow button presses in the current direction of travel, like in a
real lift.

where "button_press =
{(s,s’). ∃ n. s’ = s (|req := insert n (req s)|)

& Min ≤ n & n ≤ Max}"

definition
Lift :: "state program"

— for the moment, we OMIT button_press
where "Lift = mk_total_program

({s. floor s = Min & ~ up s & move s & stop s &

140 18 THE TOKEN RING

~ open s & req s = {}},
{request_act, open_act, close_act,
req_up, req_down, move_up, move_down},

UNIV)"

— Invariants

definition
bounded :: "state set"
where "bounded = {s. Min ≤ floor s & floor s ≤ Max}"

definition
open_stop :: "state set"
where "open_stop = {s. open s --> stop s}"

definition
open_move :: "state set"
where "open_move = {s. open s --> move s}"

definition
stop_floor :: "state set"
where "stop_floor = {s. stop s & ~ move s --> floor s ∈ req s}"

definition
moving_up :: "state set"
where "moving_up = {s. ~ stop s & up s -->

(∃ f. floor s ≤ f & f ≤ Max & f ∈ req s)}"

definition
moving_down :: "state set"
where "moving_down = {s. ~ stop s & ~ up s -->

(∃ f. Min ≤ f & f ≤ floor s & f ∈ req s)}"

definition
metric :: "[int,state] => int"
where "metric =

(%n s. if floor s < n then (if up s then n - floor s
else (floor s - Min) + (n-Min))

else
if n < floor s then (if up s then (Max - floor s) + (Max-n)

else floor s - n)
else 0)"

locale Floor =
fixes n
assumes Min_le_n [iff]: "Min ≤ n"

and n_le_Max [iff]: "n ≤ Max"

lemma not_mem_distinct: "[| x /∈ A; y ∈ A |] ==> x 6= y"
by blast

declare Lift_def [THEN def_prg_Init, simp]

18.2 Progress under Weak Fairness 141

declare request_act_def [THEN def_act_simp, simp]
declare open_act_def [THEN def_act_simp, simp]
declare close_act_def [THEN def_act_simp, simp]
declare req_up_def [THEN def_act_simp, simp]
declare req_down_def [THEN def_act_simp, simp]
declare move_up_def [THEN def_act_simp, simp]
declare move_down_def [THEN def_act_simp, simp]
declare button_press_def [THEN def_act_simp, simp]

declare above_def [THEN def_set_simp, simp]
declare below_def [THEN def_set_simp, simp]
declare queueing_def [THEN def_set_simp, simp]
declare goingup_def [THEN def_set_simp, simp]
declare goingdown_def [THEN def_set_simp, simp]
declare ready_def [THEN def_set_simp, simp]

declare bounded_def [simp]
open_stop_def [simp]
open_move_def [simp]
stop_floor_def [simp]
moving_up_def [simp]
moving_down_def [simp]

lemma open_stop: "Lift ∈ Always open_stop"
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety)
done

lemma stop_floor: "Lift ∈ Always stop_floor"
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety)
done

lemma open_move: "Lift ∈ Always open_move"
apply (cut_tac open_stop)
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety)
done

lemma moving_up: "Lift ∈ Always moving_up"
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety)
apply (auto dest: order_le_imp_less_or_eq simp add: add1_zle_eq)
done

lemma moving_down: "Lift ∈ Always moving_down"
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety)
apply (blast dest: order_le_imp_less_or_eq)
done

142 18 THE TOKEN RING

lemma bounded: "Lift ∈ Always bounded"
apply (cut_tac moving_up moving_down)
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety, auto)
apply (drule not_mem_distinct, assumption, arith)+
done

18.3 Progress
declare moving_def [THEN def_set_simp, simp]
declare stopped_def [THEN def_set_simp, simp]
declare opened_def [THEN def_set_simp, simp]
declare closed_def [THEN def_set_simp, simp]
declare atFloor_def [THEN def_set_simp, simp]
declare Req_def [THEN def_set_simp, simp]

The HUG’93 paper mistakenly omits the Req n from these!

lemma E_thm01: "Lift ∈ (stopped ∩ atFloor n) LeadsTo (opened ∩ atFloor
n)"
apply (cut_tac stop_floor)
apply (unfold Lift_def, ensures_tac "open_act")
done

lemma E_thm02: "Lift ∈ (Req n ∩ stopped - atFloor n) LeadsTo
(Req n ∩ opened - atFloor n)"

apply (cut_tac stop_floor)
apply (unfold Lift_def, ensures_tac "open_act")
done

lemma E_thm03: "Lift ∈ (Req n ∩ opened - atFloor n) LeadsTo
(Req n ∩ closed - (atFloor n - queueing))"

apply (unfold Lift_def, ensures_tac "close_act")
done

lemma E_thm04: "Lift ∈ (Req n ∩ closed ∩ (atFloor n - queueing))
LeadsTo (opened ∩ atFloor n)"

apply (unfold Lift_def, ensures_tac "open_act")
done

lemmas linorder_leI = linorder_not_less [THEN iffD1]

context Floor
begin

lemmas le_MinD = Min_le_n [THEN order_antisym]
and Max_leD = n_le_Max [THEN [2] order_antisym]

18.3 Progress 143

declare le_MinD [dest!]
and linorder_leI [THEN le_MinD, dest!]
and Max_leD [dest!]
and linorder_leI [THEN Max_leD, dest!]

lemma E_thm05c:
"Lift ∈ (Req n ∩ closed - (atFloor n - queueing))

LeadsTo ((closed ∩ goingup ∩ Req n) ∪
(closed ∩ goingdown ∩ Req n))"

by (auto intro!: subset_imp_LeadsTo simp add: linorder_neq_iff)

lemma lift_2: "Lift ∈ (Req n ∩ closed - (atFloor n - queueing))
LeadsTo (moving ∩ Req n)"

apply (rule LeadsTo_Trans [OF E_thm05c LeadsTo_Un])
apply (unfold Lift_def)
apply (ensures_tac [2] "req_down")
apply (ensures_tac "req_up", auto)
done

declare if_split_asm [split]

lemma E_thm12a:
"0 < N ==>
Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩

{s. floor s /∈ req s} ∩ {s. up s})
LeadsTo

(moving ∩ Req n ∩ {s. metric n s < N})"
apply (cut_tac moving_up)
apply (unfold Lift_def, ensures_tac "move_up", safe)

apply (erule linorder_leI [THEN order_antisym, symmetric])
apply (auto simp add: metric_def)
done

lemma E_thm12b: "0 < N ==>
Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩

{s. floor s /∈ req s} - {s. up s})
LeadsTo (moving ∩ Req n ∩ {s. metric n s < N})"

apply (cut_tac moving_down)
apply (unfold Lift_def, ensures_tac "move_down", safe)

apply (erule linorder_leI [THEN order_antisym, symmetric])
apply (auto simp add: metric_def)
done

144 18 THE TOKEN RING

lemma lift_4:
"0<N ==> Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩

{s. floor s /∈ req s}) LeadsTo
(moving ∩ Req n ∩ {s. metric n s < N})"

apply (rule LeadsTo_Trans [OF subset_imp_LeadsTo
LeadsTo_Un [OF E_thm12a E_thm12b]], auto)

done

lemma E_thm16a: "0<N
==> Lift ∈ (closed ∩ Req n ∩ {s. metric n s = N} ∩ goingup) LeadsTo

(moving ∩ Req n ∩ {s. metric n s < N})"
apply (cut_tac bounded)
apply (unfold Lift_def, ensures_tac "req_up")
apply (auto simp add: metric_def)
done

lemma E_thm16b: "0<N ==>
Lift ∈ (closed ∩ Req n ∩ {s. metric n s = N} ∩ goingdown) LeadsTo

(moving ∩ Req n ∩ {s. metric n s < N})"
apply (cut_tac bounded)
apply (unfold Lift_def, ensures_tac "req_down")
apply (auto simp add: metric_def)
done

lemma E_thm16c:
"0<N ==> Req n ∩ {s. metric n s = N} ⊆ goingup ∪ goingdown"

by (force simp add: metric_def)

lemma lift_5:
"0<N ==> Lift ∈ (closed ∩ Req n ∩ {s. metric n s = N}) LeadsTo

(moving ∩ Req n ∩ {s. metric n s < N})"
apply (rule LeadsTo_Trans [OF subset_imp_LeadsTo

LeadsTo_Un [OF E_thm16a E_thm16b]])
apply (drule E_thm16c, auto)
done

lemma metric_eq_0D [dest]:
"[| metric n s = 0; Min ≤ floor s; floor s ≤ Max |] ==> floor s =

18.3 Progress 145

n"
by (force simp add: metric_def)

lemma E_thm11: "Lift ∈ (moving ∩ Req n ∩ {s. metric n s = 0}) LeadsTo
(stopped ∩ atFloor n)"

apply (cut_tac bounded)
apply (unfold Lift_def, ensures_tac "request_act", auto)
done

lemma E_thm13:
"Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})

LeadsTo (stopped ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})"
apply (unfold Lift_def, ensures_tac "request_act")
apply (auto simp add: metric_def)
done

lemma E_thm14: "0 < N ==>
Lift ∈

(stopped ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})
LeadsTo (opened ∩ Req n ∩ {s. metric n s = N})"

apply (unfold Lift_def, ensures_tac "open_act")
apply (auto simp add: metric_def)
done

lemma E_thm15: "Lift ∈ (opened ∩ Req n ∩ {s. metric n s = N})
LeadsTo (closed ∩ Req n ∩ {s. metric n s = N})"

apply (unfold Lift_def, ensures_tac "close_act")
apply (auto simp add: metric_def)
done

lemma lift_3_Req: "0 < N ==>
Lift ∈

(moving ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})
LeadsTo (moving ∩ Req n ∩ {s. metric n s < N})"

apply (blast intro!: E_thm13 E_thm14 E_thm15 lift_5 intro: LeadsTo_Trans)
done

lemma Always_nonneg: "Lift ∈ Always {s. 0 ≤ metric n s}"
apply (rule bounded [THEN Always_weaken])
apply (auto simp add: metric_def)
done

lemmas R_thm11 = Always_LeadsTo_weaken [OF Always_nonneg E_thm11]

146 18 THE TOKEN RING

lemma lift_3: "Lift ∈ (moving ∩ Req n) LeadsTo (stopped ∩ atFloor n)"
apply (rule Always_nonneg [THEN integ_0_le_induct])
apply (case_tac "0 < z")

prefer 2 apply (force intro: R_thm11 order_antisym simp add: linorder_not_less)
apply (rule LeadsTo_weaken_R [OF asm_rl Un_upper1])
apply (rule LeadsTo_Trans [OF subset_imp_LeadsTo

LeadsTo_Un [OF lift_4 lift_3_Req]], auto)
done

lemma lift_1: "Lift ∈ (Req n) LeadsTo (opened ∩ atFloor n)"
apply (rule LeadsTo_Trans)
prefer 2
apply (rule LeadsTo_Un [OF E_thm04 LeadsTo_Un_post])
apply (rule E_thm01 [THEN [2] LeadsTo_Trans_Un])
apply (rule lift_3 [THEN [2] LeadsTo_Trans_Un])
apply (rule lift_2 [THEN [2] LeadsTo_Trans_Un])
apply (rule LeadsTo_Trans_Un [OF E_thm02 E_thm03])

apply (rule open_move [THEN Always_LeadsToI])
apply (rule Always_LeadsToI [OF open_stop subset_imp_LeadsTo], clarify)

apply (case_tac "open x", auto)
done

end

end

theory Mutex imports "../UNITY_Main" begin

record state =
p :: bool
m :: int
n :: int
u :: bool
v :: bool

type_synonym command = "(state*state) set"

definition U0 :: command
where "U0 = {(s,s’). s’ = s (|u:=True, m:=1|) & m s = 0}"

definition U1 :: command
where "U1 = {(s,s’). s’ = s (|p:= v s, m:=2|) & m s = 1}"

definition U2 :: command
where "U2 = {(s,s’). s’ = s (|m:=3|) & ~ p s & m s = 2}"

18.3 Progress 147

definition U3 :: command
where "U3 = {(s,s’). s’ = s (|u:=False, m:=4|) & m s = 3}"

definition U4 :: command
where "U4 = {(s,s’). s’ = s (|p:=True, m:=0|) & m s = 4}"

definition V0 :: command
where "V0 = {(s,s’). s’ = s (|v:=True, n:=1|) & n s = 0}"

definition V1 :: command
where "V1 = {(s,s’). s’ = s (|p:= ~ u s, n:=2|) & n s = 1}"

definition V2 :: command
where "V2 = {(s,s’). s’ = s (|n:=3|) & p s & n s = 2}"

definition V3 :: command
where "V3 = {(s,s’). s’ = s (|v:=False, n:=4|) & n s = 3}"

definition V4 :: command
where "V4 = {(s,s’). s’ = s (|p:=False, n:=0|) & n s = 4}"

definition Mutex :: "state program"
where "Mutex = mk_total_program

({s. ~ u s & ~ v s & m s = 0 & n s = 0},
{U0, U1, U2, U3, U4, V0, V1, V2, V3, V4},
UNIV)"

definition IU :: "state set"
where "IU = {s. (u s = (1 ≤ m s & m s ≤ 3)) & (m s = 3 --> ~ p s)}"

definition IV :: "state set"
where "IV = {s. (v s = (1 ≤ n s & n s ≤ 3)) & (n s = 3 --> p s)}"

definition bad_IU :: "state set"
where "bad_IU = {s. (u s = (1 ≤ m s & m s ≤ 3)) &

(3 ≤ m s & m s ≤ 4 --> ~ p s)}"

declare Mutex_def [THEN def_prg_Init, simp]

declare U0_def [THEN def_act_simp, simp]
declare U1_def [THEN def_act_simp, simp]
declare U2_def [THEN def_act_simp, simp]
declare U3_def [THEN def_act_simp, simp]
declare U4_def [THEN def_act_simp, simp]
declare V0_def [THEN def_act_simp, simp]
declare V1_def [THEN def_act_simp, simp]

148 18 THE TOKEN RING

declare V2_def [THEN def_act_simp, simp]
declare V3_def [THEN def_act_simp, simp]
declare V4_def [THEN def_act_simp, simp]

declare IU_def [THEN def_set_simp, simp]
declare IV_def [THEN def_set_simp, simp]
declare bad_IU_def [THEN def_set_simp, simp]

lemma IU: "Mutex ∈ Always IU"
apply (rule AlwaysI, force)
apply (unfold Mutex_def, safety)
done

lemma IV: "Mutex ∈ Always IV"
apply (rule AlwaysI, force)
apply (unfold Mutex_def, safety)
done

lemma mutual_exclusion: "Mutex ∈ Always {s. ~ (m s = 3 & n s = 3)}"
apply (rule Always_weaken)
apply (rule Always_Int_I [OF IU IV], auto)
done

lemma "Mutex ∈ Always bad_IU"
apply (rule AlwaysI, force)
apply (unfold Mutex_def, safety, auto)

oops

lemma eq_123: "((1::int) ≤ i & i ≤ 3) = (i = 1 | i = 2 | i = 3)"
by arith

lemma U_F0: "Mutex ∈ {s. m s=2} Unless {s. m s=3}"
by (unfold Unless_def Mutex_def, safety)

lemma U_F1: "Mutex ∈ {s. m s=1} LeadsTo {s. p s = v s & m s = 2}"
by (unfold Mutex_def, ensures_tac U1)

lemma U_F2: "Mutex ∈ {s. ~ p s & m s = 2} LeadsTo {s. m s = 3}"
apply (cut_tac IU)
apply (unfold Mutex_def, ensures_tac U2)
done

lemma U_F3: "Mutex ∈ {s. m s = 3} LeadsTo {s. p s}"
apply (rule_tac B = "{s. m s = 4}" in LeadsTo_Trans)
apply (unfold Mutex_def)

18.3 Progress 149

apply (ensures_tac U3)
apply (ensures_tac U4)
done

lemma U_lemma2: "Mutex ∈ {s. m s = 2} LeadsTo {s. p s}"
apply (rule LeadsTo_Diff [OF LeadsTo_weaken_L

Int_lower2 [THEN subset_imp_LeadsTo]])
apply (rule LeadsTo_Trans [OF U_F2 U_F3], auto)
done

lemma U_lemma1: "Mutex ∈ {s. m s = 1} LeadsTo {s. p s}"
by (rule LeadsTo_Trans [OF U_F1 [THEN LeadsTo_weaken_R] U_lemma2], blast)

lemma U_lemma123: "Mutex ∈ {s. 1 ≤ m s & m s ≤ 3} LeadsTo {s. p s}"
by (simp add: eq_123 Collect_disj_eq LeadsTo_Un_distrib U_lemma1 U_lemma2
U_F3)

lemma u_Leadsto_p: "Mutex ∈ {s. u s} LeadsTo {s. p s}"
by (rule Always_LeadsTo_weaken [OF IU U_lemma123], auto)

lemma V_F0: "Mutex ∈ {s. n s=2} Unless {s. n s=3}"
by (unfold Unless_def Mutex_def, safety)

lemma V_F1: "Mutex ∈ {s. n s=1} LeadsTo {s. p s = (~ u s) & n s = 2}"
by (unfold Mutex_def, ensures_tac "V1")

lemma V_F2: "Mutex ∈ {s. p s & n s = 2} LeadsTo {s. n s = 3}"
apply (cut_tac IV)
apply (unfold Mutex_def, ensures_tac "V2")
done

lemma V_F3: "Mutex ∈ {s. n s = 3} LeadsTo {s. ~ p s}"
apply (rule_tac B = "{s. n s = 4}" in LeadsTo_Trans)
apply (unfold Mutex_def)
apply (ensures_tac V3)

apply (ensures_tac V4)
done

lemma V_lemma2: "Mutex ∈ {s. n s = 2} LeadsTo {s. ~ p s}"
apply (rule LeadsTo_Diff [OF LeadsTo_weaken_L

Int_lower2 [THEN subset_imp_LeadsTo]])
apply (rule LeadsTo_Trans [OF V_F2 V_F3], auto)
done

lemma V_lemma1: "Mutex ∈ {s. n s = 1} LeadsTo {s. ~ p s}"
by (rule LeadsTo_Trans [OF V_F1 [THEN LeadsTo_weaken_R] V_lemma2], blast)

lemma V_lemma123: "Mutex ∈ {s. 1 ≤ n s & n s ≤ 3} LeadsTo {s. ~ p s}"
by (simp add: eq_123 Collect_disj_eq LeadsTo_Un_distrib V_lemma1 V_lemma2

150 18 THE TOKEN RING

V_F3)

lemma v_Leadsto_not_p: "Mutex ∈ {s. v s} LeadsTo {s. ~ p s}"
by (rule Always_LeadsTo_weaken [OF IV V_lemma123], auto)

lemma m1_Leadsto_3: "Mutex ∈ {s. m s = 1} LeadsTo {s. m s = 3}"
apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate])
apply (rule_tac [2] U_F2)
apply (simp add: Collect_conj_eq)
apply (subst Un_commute)
apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate])
apply (rule_tac [2] PSP_Unless [OF v_Leadsto_not_p U_F0])

apply (rule U_F1 [THEN LeadsTo_weaken_R], auto)
done

lemma n1_Leadsto_3: "Mutex ∈ {s. n s = 1} LeadsTo {s. n s = 3}"
apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate])
apply (rule_tac [2] V_F2)
apply (simp add: Collect_conj_eq)
apply (subst Un_commute)
apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate])
apply (rule_tac [2] PSP_Unless [OF u_Leadsto_p V_F0])

apply (rule V_F1 [THEN LeadsTo_weaken_R], auto)
done

end

theory Reach imports "../UNITY_Main" begin

typedecl vertex

type_synonym state = "vertex=>bool"

consts
init :: "vertex"

edges :: "(vertex*vertex) set"

definition asgt :: "[vertex,vertex] => (state*state) set"
where "asgt u v = {(s,s’). s’ = s(v:= s u | s v)}"

definition Rprg :: "state program"
where "Rprg = mk_total_program ({%v. v=init},

⋃
(u,v)∈edges. {asgt u v},

UNIV)"

definition reach_invariant :: "state set"

18.3 Progress 151

where "reach_invariant = {s. (∀ v. s v --> (init, v) ∈ edges∗) & s init}"

definition fixedpoint :: "state set"
where "fixedpoint = {s. ∀ (u,v)∈edges. s u --> s v}"

definition metric :: "state => nat"
where "metric s = card {v. ~ s v}"

*We assume that the set of vertices is finite
axiomatization where

finite_graph: "finite (UNIV :: vertex set)"

lemma ifE [elim!]:
"[| if P then Q else R;

[| P; Q |] ==> S;
[| ~ P; R |] ==> S |] ==> S"

by (simp split: if_split_asm)

declare Rprg_def [THEN def_prg_Init, simp]

declare asgt_def [THEN def_act_simp,simp]

All vertex sets are finite
declare finite_subset [OF subset_UNIV finite_graph, iff]

declare reach_invariant_def [THEN def_set_simp, simp]

lemma reach_invariant: "Rprg ∈ Always reach_invariant"
apply (rule AlwaysI, force)
apply (unfold Rprg_def, safety)
apply (blast intro: rtrancl_trans)
done

lemma fixedpoint_invariant_correct:
"fixedpoint ∩ reach_invariant = { %v. (init, v) ∈ edges∗ }"

apply (unfold fixedpoint_def)
apply (rule equalityI)
apply (auto intro!: ext)
apply (erule rtrancl_induct, auto)
done

lemma lemma1:
"FP Rprg ⊆ fixedpoint"

apply (simp add: FP_def fixedpoint_def Rprg_def mk_total_program_def)
apply (auto simp add: stable_def constrains_def)

152 18 THE TOKEN RING

apply (drule bspec, assumption)
apply (simp add: Image_singleton image_iff)
apply (drule fun_cong, auto)
done

lemma lemma2:
"fixedpoint ⊆ FP Rprg"

apply (simp add: FP_def fixedpoint_def Rprg_def mk_total_program_def)
apply (auto intro!: ext simp add: stable_def constrains_def)
done

lemma FP_fixedpoint: "FP Rprg = fixedpoint"
by (rule equalityI [OF lemma1 lemma2])

lemma Compl_fixedpoint: "- fixedpoint = (
⋃

(u,v)∈edges. {s. s u & ~ s v})"
apply (simp add: FP_fixedpoint [symmetric] Rprg_def mk_total_program_def)
apply (rule subset_antisym)
apply (auto simp add: Compl_FP UN_UN_flatten)
apply (rule fun_upd_idem, force)

apply (force intro!: rev_bexI simp add: fun_upd_idem_iff)
done

lemma Diff_fixedpoint:
"A - fixedpoint = (

⋃
(u,v)∈edges. A ∩ {s. s u & ~ s v})"

by (simp add: Diff_eq Compl_fixedpoint, blast)

lemma Suc_metric: "~ s x ==> Suc (metric (s(x:=True))) = metric s"
apply (unfold metric_def)
apply (subgoal_tac "{v. ~ (s (x:=True)) v} = {v. ~ s v} - {x}")
prefer 2 apply force

apply (simp add: card_Suc_Diff1 del:card_Diff_insert)
done

lemma metric_less [intro!]: "~ s x ==> metric (s(x:=True)) < metric s"
by (erule Suc_metric [THEN subst], blast)

lemma metric_le: "metric (s(y:=s x | s y)) ≤ metric s"
by (cases "s x --> s y") (auto intro: less_imp_le simp add: fun_upd_idem)

lemma LeadsTo_Diff_fixedpoint:
"Rprg ∈ ((metric-‘{m}) - fixedpoint) LeadsTo (metric-‘(lessThan m))"

apply (simp (no_asm) add: Diff_fixedpoint Rprg_def)
apply (rule LeadsTo_UN, auto)
apply (ensures_tac "asgt a b")
prefer 2 apply blast

apply (simp (no_asm_use) add: linorder_not_less)
apply (drule metric_le [THEN order_antisym])
apply (auto elim: less_not_refl3 [THEN [2] rev_notE])

18.3 Progress 153

done

lemma LeadsTo_Un_fixedpoint:
"Rprg ∈ (metric-‘{m}) LeadsTo (metric-‘(lessThan m) ∪ fixedpoint)"

apply (rule LeadsTo_Diff [OF LeadsTo_Diff_fixedpoint [THEN LeadsTo_weaken_R]
subset_imp_LeadsTo], auto)

done

lemma LeadsTo_fixedpoint: "Rprg ∈ UNIV LeadsTo fixedpoint"
apply (rule LessThan_induct, auto)
apply (rule LeadsTo_Un_fixedpoint)
done

lemma LeadsTo_correct: "Rprg ∈ UNIV LeadsTo { %v. (init, v) ∈ edges∗ }"
apply (subst fixedpoint_invariant_correct [symmetric])
apply (rule Always_LeadsTo_weaken [OF reach_invariant LeadsTo_fixedpoint],
auto)
done

end

theory Reachability imports "../Detects" Reach begin

type_synonym edge = "vertex * vertex"

record state =
reach :: "vertex => bool"
nmsg :: "edge => nat"

consts root :: "vertex"
E :: "edge set"
V :: "vertex set"

inductive_set REACHABLE :: "edge set"
where

base: "v ∈ V ==> ((v,v) ∈ REACHABLE)"
| step: "((u,v) ∈ REACHABLE) & (v,w) ∈ E ==> ((u,w) ∈ REACHABLE)"

definition reachable :: "vertex => state set" where
"reachable p == {s. reach s p}"

definition nmsg_eq :: "nat => edge => state set" where
"nmsg_eq k == %e. {s. nmsg s e = k}"

definition nmsg_gt :: "nat => edge => state set" where
"nmsg_gt k == %e. {s. k < nmsg s e}"

definition nmsg_gte :: "nat => edge => state set" where
"nmsg_gte k == %e. {s. k ≤ nmsg s e}"

definition nmsg_lte :: "nat => edge => state set" where

154 18 THE TOKEN RING

"nmsg_lte k == %e. {s. nmsg s e ≤ k}"

definition final :: "state set" where
"final == (

⋂
v∈V. reachable v <==> {s. (root, v) ∈ REACHABLE}) ∩

(
⋂

((nmsg_eq 0) ‘ E))"

axiomatization
where

Graph1: "root ∈ V" and

Graph2: "(v,w) ∈ E ==> (v ∈ V) & (w ∈ V)" and

MA1: "F ∈ Always (reachable root)" and

MA2: "v ∈ V ==> F ∈ Always (- reachable v ∪ {s. ((root,v) ∈ REACHABLE)})"
and

MA3: "[|v ∈ V;w ∈ V|] ==> F ∈ Always (-(nmsg_gt 0 (v,w)) ∪ (reachable
v))" and

MA4: "(v,w) ∈ E ==>
F ∈ Always (-(reachable v) ∪ (nmsg_gt 0 (v,w)) ∪ (reachable w))"

and

MA5: "[|v ∈ V; w ∈ V|]
==> F ∈ Always (nmsg_gte 0 (v,w) ∩ nmsg_lte (Suc 0) (v,w))" and

MA6: "[|v ∈ V|] ==> F ∈ Stable (reachable v)" and

MA6b: "[|v ∈ V;w ∈ W|] ==> F ∈ Stable (reachable v ∩ nmsg_lte k (v,w))"
and

MA7: "[|v ∈ V;w ∈ V|] ==> F ∈ UNIV LeadsTo nmsg_eq 0 (v,w)"

lemmas E_imp_in_V_L = Graph2 [THEN conjunct1]
lemmas E_imp_in_V_R = Graph2 [THEN conjunct2]

lemma lemma2:
"(v,w) ∈ E ==> F ∈ reachable v LeadsTo nmsg_eq 0 (v,w) ∩ reachable v"

apply (rule MA7 [THEN PSP_Stable, THEN LeadsTo_weaken_L])
apply (rule_tac [3] MA6)
apply (auto simp add: E_imp_in_V_L E_imp_in_V_R)
done

lemma Induction_base: "(v,w) ∈ E ==> F ∈ reachable v LeadsTo reachable w"
apply (rule MA4 [THEN Always_LeadsTo_weaken])
apply (rule_tac [2] lemma2)
apply (auto simp add: nmsg_eq_def nmsg_gt_def)
done

lemma REACHABLE_LeadsTo_reachable:
"(v,w) ∈ REACHABLE ==> F ∈ reachable v LeadsTo reachable w"

apply (erule REACHABLE.induct)

18.3 Progress 155

apply (rule subset_imp_LeadsTo, blast)
apply (blast intro: LeadsTo_Trans Induction_base)
done

lemma Detects_part1: "F ∈ {s. (root,v) ∈ REACHABLE} LeadsTo reachable v"
apply (rule single_LeadsTo_I)
apply (simp split: if_split_asm)
apply (rule MA1 [THEN Always_LeadsToI])
apply (erule REACHABLE_LeadsTo_reachable [THEN LeadsTo_weaken_L], auto)
done

lemma Reachability_Detected:
"v ∈ V ==> F ∈ (reachable v) Detects {s. (root,v) ∈ REACHABLE}"

apply (unfold Detects_def, auto)
prefer 2 apply (blast intro: MA2 [THEN Always_weaken])

apply (rule Detects_part1 [THEN LeadsTo_weaken_L], blast)
done

lemma LeadsTo_Reachability:
"v ∈ V ==> F ∈ UNIV LeadsTo (reachable v <==> {s. (root,v) ∈ REACHABLE})"

by (erule Reachability_Detected [THEN Detects_Imp_LeadstoEQ])

lemma Eq_lemma1:
"(reachable v <==> {s. (root,v) ∈ REACHABLE}) =
{s. ((s ∈ reachable v) = ((root,v) ∈ REACHABLE))}"

by (unfold Equality_def, blast)

lemma Eq_lemma2:
"(reachable v <==> (if (root,v) ∈ REACHABLE then UNIV else {})) =
{s. ((s ∈ reachable v) = ((root,v) ∈ REACHABLE))}"

by (unfold Equality_def, auto)

lemma final_lemma1:
"(
⋂

v ∈ V.
⋂

w ∈ V. {s. ((s ∈ reachable v) = ((root,v) ∈ REACHABLE))
&

s ∈ nmsg_eq 0 (v,w)})
⊆ final"

apply (unfold final_def Equality_def, auto)
apply (frule E_imp_in_V_R)
apply (frule E_imp_in_V_L, blast)
done

156 18 THE TOKEN RING

lemma final_lemma2:
"E 6={}
==> (

⋂
v ∈ V.

⋂
e ∈ E. {s. ((s ∈ reachable v) = ((root,v) ∈ REACHABLE))}

∩ nmsg_eq 0 e) ⊆ final"
apply (unfold final_def Equality_def)
apply (auto split!: if_split)
apply (frule E_imp_in_V_L, blast)
done

lemma final_lemma3:
"E 6={}
==> (

⋂
v ∈ V.

⋂
e ∈ E.

(reachable v <==> {s. (root,v) ∈ REACHABLE}) ∩ nmsg_eq 0 e)
⊆ final"

apply (frule final_lemma2)
apply (simp (no_asm_use) add: Eq_lemma2)
done

lemma final_lemma4:
"E 6={}
==> (

⋂
v ∈ V.

⋂
e ∈ E.

{s. ((s ∈ reachable v) = ((root,v) ∈ REACHABLE))} ∩ nmsg_eq 0
e)

= final"
apply (rule subset_antisym)
apply (erule final_lemma2)
apply (unfold final_def Equality_def, blast)
done

lemma final_lemma5:
"E 6={}
==> (

⋂
v ∈ V.

⋂
e ∈ E.

((reachable v) <==> {s. (root,v) ∈ REACHABLE}) ∩ nmsg_eq 0 e)
= final"

apply (frule final_lemma4)
apply (simp (no_asm_use) add: Eq_lemma2)
done

lemma final_lemma6:
"(
⋂

v ∈ V.
⋂

w ∈ V.
(reachable v <==> {s. (root,v) ∈ REACHABLE}) ∩ nmsg_eq 0 (v,w))
⊆ final"

apply (simp (no_asm) add: Eq_lemma2 Int_def)
apply (rule final_lemma1)
done

lemma final_lemma7:
"final =
(
⋂

v ∈ V.
⋂

w ∈ V.

18.3 Progress 157

((reachable v) <==> {s. (root,v) ∈ REACHABLE}) ∩
(-{s. (v,w) ∈ E} ∪ (nmsg_eq 0 (v,w))))"

apply (unfold final_def)
apply (rule subset_antisym, blast)
apply (auto split: if_split_asm)
apply (blast dest: E_imp_in_V_L E_imp_in_V_R)+
done

lemma not_REACHABLE_imp_Stable_not_reachable:
"[| v ∈ V; (root,v) /∈ REACHABLE |] ==> F ∈ Stable (- reachable v)"

apply (drule MA2 [THEN AlwaysD], auto)
done

lemma Stable_reachable_EQ_R:
"v ∈ V ==> F ∈ Stable (reachable v <==> {s. (root,v) ∈ REACHABLE})"

apply (simp (no_asm) add: Equality_def Eq_lemma2)
apply (blast intro: MA6 not_REACHABLE_imp_Stable_not_reachable)
done

lemma lemma4:
"((nmsg_gte 0 (v,w) ∩ nmsg_lte (Suc 0) (v,w)) ∩

(- nmsg_gt 0 (v,w) ∪ A))
⊆ A ∪ nmsg_eq 0 (v,w)"

apply (unfold nmsg_gte_def nmsg_lte_def nmsg_gt_def nmsg_eq_def, auto)
done

lemma lemma5:
"reachable v ∩ nmsg_eq 0 (v,w) =
((nmsg_gte 0 (v,w) ∩ nmsg_lte (Suc 0) (v,w)) ∩
(reachable v ∩ nmsg_lte 0 (v,w)))"

by (unfold nmsg_gte_def nmsg_lte_def nmsg_gt_def nmsg_eq_def, auto)

lemma lemma6:
"- nmsg_gt 0 (v,w) ∪ reachable v ⊆ nmsg_eq 0 (v,w) ∪ reachable v"

apply (unfold nmsg_gte_def nmsg_lte_def nmsg_gt_def nmsg_eq_def, auto)
done

lemma Always_reachable_OR_nmsg_0:
"[|v ∈ V; w ∈ V|] ==> F ∈ Always (reachable v ∪ nmsg_eq 0 (v,w))"

apply (rule Always_Int_I [OF MA5 MA3, THEN Always_weaken])
apply (rule_tac [5] lemma4, auto)
done

lemma Stable_reachable_AND_nmsg_0:
"[|v ∈ V; w ∈ V|] ==> F ∈ Stable (reachable v ∩ nmsg_eq 0 (v,w))"

apply (subst lemma5)

158 18 THE TOKEN RING

apply (blast intro: MA5 Always_imp_Stable [THEN Stable_Int] MA6b)
done

lemma Stable_nmsg_0_OR_reachable:
"[|v ∈ V; w ∈ V|] ==> F ∈ Stable (nmsg_eq 0 (v,w) ∪ reachable v)"

by (blast intro!: Always_weaken [THEN Always_imp_Stable] lemma6 MA3)

lemma not_REACHABLE_imp_Stable_not_reachable_AND_nmsg_0:
"[| v ∈ V; w ∈ V; (root,v) /∈ REACHABLE |]
==> F ∈ Stable (- reachable v ∩ nmsg_eq 0 (v,w))"

apply (rule Stable_Int [OF MA2 [THEN Always_imp_Stable]
Stable_nmsg_0_OR_reachable,

THEN Stable_eq])
prefer 4 apply blast

apply auto
done

lemma Stable_reachable_EQ_R_AND_nmsg_0:
"[| v ∈ V; w ∈ V |]
==> F ∈ Stable ((reachable v <==> {s. (root,v) ∈ REACHABLE}) ∩

nmsg_eq 0 (v,w))"
by (simp add: Equality_def Eq_lemma2 Stable_reachable_AND_nmsg_0

not_REACHABLE_imp_Stable_not_reachable_AND_nmsg_0)

lemma UNIV_lemma: "UNIV ⊆ (
⋂

v ∈ V. UNIV)"
by blast

lemmas UNIV_LeadsTo_completion =
LeadsTo_weaken_L [OF Finite_stable_completion UNIV_lemma]

lemma LeadsTo_final_E_empty: "E={} ==> F ∈ UNIV LeadsTo final"
apply (unfold final_def, simp)
apply (rule UNIV_LeadsTo_completion)

apply safe
apply (erule LeadsTo_Reachability [simplified])

apply (drule Stable_reachable_EQ_R, simp)
done

lemma Leadsto_reachability_AND_nmsg_0:
"[| v ∈ V; w ∈ V |]
==> F ∈ UNIV LeadsTo

((reachable v <==> {s. (root,v) ∈ REACHABLE}) ∩ nmsg_eq 0 (v,w))"
apply (rule LeadsTo_Reachability [THEN LeadsTo_Trans], blast)
apply (subgoal_tac

"F ∈ (reachable v <==> {s. (root,v) ∈ REACHABLE}) ∩
UNIV LeadsTo (reachable v <==> {s. (root,v) ∈ REACHABLE}) ∩

18.3 Progress 159

nmsg_eq 0 (v,w) ")
apply simp
apply (rule PSP_Stable2)
apply (rule MA7)
apply (rule_tac [3] Stable_reachable_EQ_R, auto)
done

lemma LeadsTo_final_E_NOT_empty: "E 6={} ==> F ∈ UNIV LeadsTo final"
apply (rule LeadsTo_weaken_L [OF LeadsTo_weaken_R UNIV_lemma])
apply (rule_tac [2] final_lemma6)
apply (rule Finite_stable_completion)

apply blast
apply (rule UNIV_LeadsTo_completion)

apply (blast intro: Stable_INT Stable_reachable_EQ_R_AND_nmsg_0
Leadsto_reachability_AND_nmsg_0)+

done

lemma LeadsTo_final: "F ∈ UNIV LeadsTo final"
apply (cases "E={}")
apply (rule_tac [2] LeadsTo_final_E_NOT_empty)

apply (rule LeadsTo_final_E_empty, auto)
done

lemma Stable_final_E_empty: "E={} ==> F ∈ Stable final"
apply (unfold final_def, simp)
apply (rule Stable_INT)
apply (drule Stable_reachable_EQ_R, simp)
done

lemma Stable_final_E_NOT_empty: "E 6={} ==> F ∈ Stable final"
apply (subst final_lemma7)
apply (rule Stable_INT)
apply (rule Stable_INT)
apply (simp (no_asm) add: Eq_lemma2)
apply safe
apply (rule Stable_eq)
apply (subgoal_tac [2]

"({s. (s ∈ reachable v) = ((root,v) ∈ REACHABLE) } ∩ nmsg_eq 0 (v,w))
=

({s. (s ∈ reachable v) = ((root,v) ∈ REACHABLE) } ∩ (- UNIV ∪ nmsg_eq
0 (v,w)))")
prefer 2 apply blast
prefer 2 apply blast
apply (rule Stable_reachable_EQ_R_AND_nmsg_0

[simplified Eq_lemma2 Collect_const])
apply (blast, blast)
apply (rule Stable_eq)
apply (rule Stable_reachable_EQ_R [simplified Eq_lemma2 Collect_const])

16019 ANALYZING THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL IN UNITY

apply simp
apply (subgoal_tac

"({s. (s ∈ reachable v) = ((root,v) ∈ REACHABLE) }) =
({s. (s ∈ reachable v) = ((root,v) ∈ REACHABLE) } ∩

(- {} ∪ nmsg_eq 0 (v,w)))")
apply blast+
done

lemma Stable_final: "F ∈ Stable final"
apply (cases "E={}")
prefer 2 apply (blast intro: Stable_final_E_NOT_empty)

apply (blast intro: Stable_final_E_empty)
done

end

19 Analyzing the Needham-Schroeder Public-
Key Protocol in UNITY

theory NSP_Bad imports "HOL-Auth.Public" "../UNITY_Main" begin

This is the flawed version, vulnerable to Lowe’s attack. From page 260 of Bur-
rows, Abadi and Needham. A Logic of Authentication. Proc. Royal Soc. 426
(1989).

type_synonym state = "event list"

definition
Fake :: "(state*state) set"
where "Fake = {(s,s’).

∃ B X. s’ = Says Spy B X # s
& X ∈ synth (analz (spies s))}"

definition
NS1 :: "(state*state) set"
where "NS1 = {(s1,s’).

∃ A1 B NA.
s’ = Says A1 B (Crypt (pubK B) {|Nonce NA, Agent A1|}) # s1

& Nonce NA /∈ used s1}"

definition
NS2 :: "(state*state) set"
where "NS2 = {(s2,s’).

∃ A’ A2 B NA NB.
s’ = Says B A2 (Crypt (pubK A2) {|Nonce NA, Nonce NB |}) # s2

& Says A’ B (Crypt (pubK B) {|Nonce NA, Agent A2|}) ∈ set s2
& Nonce NB /∈ used s2}"

19.1 Inductive Proofs about ns_public 161

definition
NS3 :: "(state*state) set"
where "NS3 = {(s3,s’).

∃ A3 B’ B NA NB.
s’ = Says A3 B (Crypt (pubK B) (Nonce NB)) # s3

& Says A3 B (Crypt (pubK B) {|Nonce NA, Agent A3|}) ∈ set s3
& Says B’ A3 (Crypt (pubK A3) {|Nonce NA, Nonce NB |}) ∈ set s3}"

definition Nprg :: "state program" where

"Nprg = mk_total_program({[]}, {Fake, NS1, NS2, NS3}, UNIV)"

declare spies_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

For other theories, e.g. Mutex and Lift, using [iff] slows proofs down. Here, it
facilitates re-use of the Auth proofs.

declare Fake_def [THEN def_act_simp, iff]
declare NS1_def [THEN def_act_simp, iff]
declare NS2_def [THEN def_act_simp, iff]
declare NS3_def [THEN def_act_simp, iff]

declare Nprg_def [THEN def_prg_Init, simp]

A "possibility property": there are traces that reach the end. Replace by LEAD-
STO proof!

lemma "A 6= B ==>
∃ NB. ∃ s ∈ reachable Nprg. Says A B (Crypt (pubK B) (Nonce NB)) ∈ set

s"
apply (intro exI bexI)
apply (rule_tac [2] act = "totalize_act NS3" in reachable.Acts)
apply (rule_tac [3] act = "totalize_act NS2" in reachable.Acts)
apply (rule_tac [4] act = "totalize_act NS1" in reachable.Acts)
apply (rule_tac [5] reachable.Init)
apply (simp_all (no_asm_simp) add: Nprg_def totalize_act_def)
apply auto
done

19.1 Inductive Proofs about ns_public

lemma ns_constrainsI:
"(!!act s s’. [| act ∈ {Id, Fake, NS1, NS2, NS3};

(s,s’) ∈ act; s ∈ A |] ==> s’ ∈ A’)
==> Nprg ∈ A co A’"

apply (simp add: Nprg_def mk_total_program_def)
apply (rule constrainsI, auto)
done

This ML code does the inductions directly.

ML‹

16219 ANALYZING THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL IN UNITY

fun ns_constrains_tac ctxt i =
SELECT_GOAL

(EVERY
[REPEAT (eresolve_tac ctxt @{thms Always_ConstrainsI} 1),
REPEAT (resolve_tac ctxt [@{thm StableI}, @{thm stableI}, @{thm constrains_imp_Constrains}]

1),
resolve_tac ctxt @{thms ns_constrainsI} 1,
full_simp_tac ctxt 1,
REPEAT (FIRSTGOAL (eresolve_tac ctxt [disjE])),
ALLGOALS (clarify_tac (ctxt delrules [impI, @{thm impCE}])),
REPEAT (FIRSTGOAL (analz_mono_contra_tac ctxt)),
ALLGOALS (asm_simp_tac ctxt)]) i;

(*Tactic for proving secrecy theorems*)
fun ns_induct_tac ctxt =

(SELECT_GOAL o EVERY)
[resolve_tac ctxt @{thms AlwaysI} 1,
force_tac ctxt 1,
(*"reachable" gets in here*)
resolve_tac ctxt [@{thm Always_reachable} RS @{thm Always_ConstrainsI}

RS @{thm StableI}] 1,
ns_constrains_tac ctxt 1];

›

method_setup ns_induct = ‹
Scan.succeed (SIMPLE_METHOD’ o ns_induct_tac)›
"for inductive reasoning about the Needham-Schroeder protocol"

Converts invariants into statements about reachable states
lemmas Always_Collect_reachableD =

Always_includes_reachable [THEN subsetD, THEN CollectD]

Spy never sees another agent’s private key! (unless it’s bad at start)
lemma Spy_see_priK:

"Nprg ∈ Always {s. (Key (priK A) ∈ parts (spies s)) = (A ∈ bad)}"
apply ns_induct
apply blast
done
declare Spy_see_priK [THEN Always_Collect_reachableD, simp]

lemma Spy_analz_priK:
"Nprg ∈ Always {s. (Key (priK A) ∈ analz (spies s)) = (A ∈ bad)}"

by (rule Always_reachable [THEN Always_weaken], auto)
declare Spy_analz_priK [THEN Always_Collect_reachableD, simp]

19.2 Authenticity properties obtained from NS2
It is impossible to re-use a nonce in both NS1 and NS2 provided the nonce is
secret. (Honest users generate fresh nonces.)
lemma no_nonce_NS1_NS2:
"Nprg
∈ Always {s. Crypt (pubK C) {|NA’, Nonce NA |} ∈ parts (spies s) -->

Crypt (pubK B) {|Nonce NA, Agent A |} ∈ parts (spies s) -->

19.2 Authenticity properties obtained from NS2 163

Nonce NA ∈ analz (spies s)}"
apply ns_induct
apply (blast intro: analz_insertI)+
done

Adding it to the claset slows down proofs...

lemmas no_nonce_NS1_NS2_reachable =
no_nonce_NS1_NS2 [THEN Always_Collect_reachableD, rule_format]

Unicity for NS1: nonce NA identifies agents A and B

lemma unique_NA_lemma:
"Nprg

∈ Always {s. Nonce NA /∈ analz (spies s) -->
Crypt(pubK B) {|Nonce NA, Agent A |} ∈ parts(spies s) -->
Crypt(pubK B’) {|Nonce NA, Agent A’|} ∈ parts(spies s) -->
A=A’ & B=B’}"

apply ns_induct
apply auto

Fake, NS1 are non-trivial

done

Unicity for NS1: nonce NA identifies agents A and B

lemma unique_NA:
"[| Crypt(pubK B) {|Nonce NA, Agent A |} ∈ parts(spies s);

Crypt(pubK B’) {|Nonce NA, Agent A’|} ∈ parts(spies s);
Nonce NA /∈ analz (spies s);
s ∈ reachable Nprg |]

==> A=A’ & B=B’"
by (blast dest: unique_NA_lemma [THEN Always_Collect_reachableD])

Secrecy: Spy does not see the nonce sent in msg NS1 if A and B are secure

lemma Spy_not_see_NA:
"[| A /∈ bad; B /∈ bad |]

==> Nprg ∈ Always
{s. Says A B (Crypt(pubK B) {|Nonce NA, Agent A |}) ∈ set s

--> Nonce NA /∈ analz (spies s)}"
apply ns_induct

NS3

prefer 4 apply (blast intro: no_nonce_NS1_NS2_reachable)

NS2

prefer 3 apply (blast dest: unique_NA)

NS1

prefer 2 apply blast

Fake

apply spy_analz
done

16419 ANALYZING THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL IN UNITY

Authentication for A: if she receives message 2 and has used NA to start a run,
then B has sent message 2.
lemma A_trusts_NS2:
"[| A /∈ bad; B /∈ bad |]
==> Nprg ∈ Always

{s. Says A B (Crypt(pubK B) {|Nonce NA, Agent A |}) ∈ set s &
Crypt(pubK A) {|Nonce NA, Nonce NB |} ∈ parts (knows Spy s)

--> Says B A (Crypt(pubK A) {|Nonce NA, Nonce NB |}) ∈ set s}"

apply (insert Spy_not_see_NA [of A B NA], simp, ns_induct)
apply (auto dest: unique_NA)
done

If the encrypted message appears then it originated with Alice in NS1
lemma B_trusts_NS1:

"Nprg ∈ Always
{s. Nonce NA /∈ analz (spies s) -->

Crypt (pubK B) {|Nonce NA, Agent A |} ∈ parts (spies s)
--> Says A B (Crypt (pubK B) {|Nonce NA, Agent A |}) ∈ set s}"

apply ns_induct
apply blast
done

19.3 Authenticity properties obtained from NS2
Unicity for NS2: nonce NB identifies nonce NA and agent A. Proof closely follows
that of unique_NA.
lemma unique_NB_lemma:
"Nprg
∈ Always {s. Nonce NB /∈ analz (spies s) -->

Crypt (pubK A) {|Nonce NA, Nonce NB |} ∈ parts (spies s) -->
Crypt(pubK A’) {|Nonce NA’, Nonce NB |} ∈ parts(spies s) -->
A=A’ & NA=NA’}"

apply ns_induct
apply auto

Fake, NS2 are non-trivial

done

lemma unique_NB:
"[| Crypt(pubK A) {|Nonce NA, Nonce NB |} ∈ parts(spies s);

Crypt(pubK A’) {|Nonce NA’, Nonce NB |} ∈ parts(spies s);
Nonce NB /∈ analz (spies s);
s ∈ reachable Nprg |]

==> A=A’ & NA=NA’"
apply (blast dest: unique_NB_lemma [THEN Always_Collect_reachableD])
done

NB remains secret PROVIDED Alice never responds with round 3
lemma Spy_not_see_NB:

"[| A /∈ bad; B /∈ bad |]
==> Nprg ∈ Always

19.3 Authenticity properties obtained from NS2 165

{s. Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB |}) ∈ set s &
(∀ C. Says A C (Crypt (pubK C) (Nonce NB)) /∈ set s)
--> Nonce NB /∈ analz (spies s)}"

apply ns_induct
apply (simp_all (no_asm_simp) add: all_conj_distrib)

NS3: because NB determines A

prefer 4 apply (blast dest: unique_NB)

NS2: by freshness and unicity of NB

prefer 3 apply (blast intro: no_nonce_NS1_NS2_reachable)

NS1: by freshness

prefer 2 apply blast

Fake

apply spy_analz
done

Authentication for B: if he receives message 3 and has used NB in message 2,
then A has sent message 3–to somebody....
lemma B_trusts_NS3:

"[| A /∈ bad; B /∈ bad |]
==> Nprg ∈ Always

{s. Crypt (pubK B) (Nonce NB) ∈ parts (spies s) &
Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB |}) ∈ set s
--> (∃ C. Says A C (Crypt (pubK C) (Nonce NB)) ∈ set s)}"

apply (insert Spy_not_see_NB [of A B NA NB], simp, ns_induct)
apply (simp_all (no_asm_simp) add: ex_disj_distrib)
apply auto

NS3: because NB determines A. This use of unique_NB is robust.

apply (blast intro: unique_NB [THEN conjunct1])
done

Can we strengthen the secrecy theorem? NO
lemma "[| A /∈ bad; B /∈ bad |]

==> Nprg ∈ Always
{s. Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB |}) ∈ set s

--> Nonce NB /∈ analz (spies s)}"
apply ns_induct
apply auto

Fake

apply spy_analz

NS2: by freshness and unicity of NB

apply (blast intro: no_nonce_NS1_NS2_reachable)

NS3: unicity of NB identifies A and NA, but not B

apply (frule_tac A’=A in Says_imp_spies [THEN parts.Inj, THEN unique_NB])

16619 ANALYZING THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL IN UNITY

apply (erule Says_imp_spies [THEN parts.Inj], auto)
apply (rename_tac s B’ C)

This is the attack!

1.
∧

s B’ C.
[[A /∈ bad; B /∈ bad; s ∈ reachable Nprg;
Says A C (Crypt (pubEK C) {|Nonce NA, Agent A |}) ∈ set s;
Says B’ A (Crypt (pubEK A) {|Nonce NA, Nonce NB |}) ∈ set s;
C ∈ bad;
Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB |}) ∈ set s;
Nonce NB /∈ analz (knows Spy s)]]

=⇒ False

oops

end

theory Handshake imports "../UNITY_Main" begin

record state =
BB :: bool
NF :: nat
NG :: nat

definition

cmdF :: "(state*state) set"
where "cmdF = {(s,s’). s’ = s (|NF:= Suc(NF s), BB:=False|) & BB s}"

definition
F :: "state program"
where "F = mk_total_program ({s. NF s = 0 & BB s}, {cmdF}, UNIV)"

definition

cmdG :: "(state*state) set"
where "cmdG = {(s,s’). s’ = s (|NG:= Suc(NG s), BB:=True|) & ~ BB s}"

definition
G :: "state program"
where "G = mk_total_program ({s. NG s = 0 & BB s}, {cmdG}, UNIV)"

definition

invFG :: "state set"
where "invFG = {s. NG s <= NF s & NF s <= Suc (NG s) & (BB s = (NF s = NG

s))}"

declare F_def [THEN def_prg_Init, simp]

167

G_def [THEN def_prg_Init, simp]

cmdF_def [THEN def_act_simp, simp]
cmdG_def [THEN def_act_simp, simp]

invFG_def [THEN def_set_simp, simp]

lemma invFG: "(F t G) ∈ Always invFG"
apply (rule AlwaysI)
apply force
apply (rule constrains_imp_Constrains [THEN StableI])
apply auto
apply (unfold F_def, safety)

apply (unfold G_def, safety)
done

lemma lemma2_1: "(F t G) ∈ ({s. NF s = k} - {s. BB s}) LeadsTo
({s. NF s = k} Int {s. BB s})"

apply (rule stable_Join_ensures1[THEN leadsTo_Basis, THEN leadsTo_imp_LeadsTo])
apply (unfold F_def, safety)

apply (unfold G_def, ensures_tac "cmdG")
done

lemma lemma2_2: "(F t G) ∈ ({s. NF s = k} Int {s. BB s}) LeadsTo
{s. k < NF s}"

apply (rule stable_Join_ensures2[THEN leadsTo_Basis, THEN leadsTo_imp_LeadsTo])
apply (unfold F_def, ensures_tac "cmdF")

apply (unfold G_def, safety)
done

lemma progress: "(F t G) ∈ UNIV LeadsTo {s. m < NF s}"
apply (rule LeadsTo_weaken_R)
apply (rule_tac f = "NF" and l = "Suc m" and B = "{}"

in GreaterThan_bounded_induct)

apply (auto intro!: lemma2_1 lemma2_2
intro: LeadsTo_Trans LeadsTo_Diff simp add: vimage_def)

done

end

20 A Family of Similar Counters: Original Ver-
sion

theory Counter imports "../UNITY_Main" begin

datatype name = C | c nat
type_synonym state = "name=>int"

primrec sum :: "[nat,state]=>int" where

168 20 A FAMILY OF SIMILAR COUNTERS: ORIGINAL VERSION

"sum 0 s = 0"
| "sum (Suc i) s = s (c i) + sum i s"

primrec sumj :: "[nat, nat, state]=>int" where
"sumj 0 i s = 0"

| "sumj (Suc n) i s = (if n=i then sum n s else s (c n) + sumj n i s)"

type_synonym command = "(state*state)set"

definition a :: "nat=>command" where
"a i = {(s, s’). s’=s(c i:= s (c i) + 1, C:= s C + 1)}"

definition Component :: "nat => state program" where
"Component i =

mk_total_program({s. s C = 0 & s (c i) = 0}, {a i},⋃
G ∈ preserves (%s. s (c i)). Acts G)"

declare Component_def [THEN def_prg_Init, simp]
declare a_def [THEN def_act_simp, simp]

lemma sum_upd_gt: "I<n ==> sum I (s(c n := x)) = sum I s"
by (induct I) auto

lemma sum_upd_eq: "sum I (s(c I := x)) = sum I s"
by (induct I) (auto simp add: sum_upd_gt [unfolded fun_upd_def])

lemma sum_upd_C: "sum I (s(C := x)) = sum I s"
by (induct I) auto

lemma sumj_upd_ci: "sumj I i (s(c i := x)) = sumj I i s"
by (induct I) (auto simp add: sum_upd_eq [unfolded fun_upd_def])

lemma sumj_upd_C: "sumj I i (s(C := x)) = sumj I i s"
by (induct I) (auto simp add: sum_upd_C [unfolded fun_upd_def])

lemma sumj_sum_gt: "I<i ==> sumj I i s = sum I s"
by (induct I) auto

lemma sumj_sum_eq: "(sumj I I s = sum I s)"
by (induct I) (auto simp add: sumj_sum_gt)

lemma sum_sumj: "i<I ==> sum I s = s (c i) + sumj I i s"
by (induct I) (auto simp add: linorder_neq_iff sumj_sum_eq)

lemma p2: "Component i ∈ stable {s. s C = s (c i) + k}"
by (simp add: Component_def, safety)

lemma p3: "Component i ∈ stable {s. ∀ v. v 6=c i & v 6=C --> s v = k v}"

169

by (simp add: Component_def, safety)

lemma p2_p3_lemma1:
"(∀ k. Component i ∈ stable ({s. s C = s (c i) + sumj I i k}

∩ {s. ∀ v. v 6=c i & v 6=C --> s v = k v}))
= (Component i ∈ stable {s. s C = s (c i) + sumj I i s})"

apply (simp add: Component_def mk_total_program_def)
apply (auto simp add: constrains_def stable_def sumj_upd_C sumj_upd_ci)
done

lemma p2_p3_lemma2:
"∀ k. Component i ∈ stable ({s. s C = s (c i) + sumj I i k} Int

{s. ∀ v. v 6=c i & v 6=C --> s v = k v})"
by (blast intro: stable_Int [OF p2 p3])

lemma p2_p3: "Component i ∈ stable {s. s C = s (c i) + sumj I i s}"
by (auto intro!: p2_p3_lemma2 simp add: p2_p3_lemma1 [symmetric])

lemma sum_0’: "(
∧

i. i < I ==> s (c i) = 0) ==> sum I s = 0"
by (induct I) auto

lemma safety:
"0<I ==> (

⊔
i ∈ {i. i<I}. Component i) ∈ invariant {s. s C = sum I s}"

apply (simp (no_asm) add: invariant_def JN_stable sum_sumj)
apply (force intro: p2_p3 sum_0’)
done

end

21 A Family of Similar Counters: Version with
Compatibility

theory Counterc imports "../UNITY_Main" begin

typedecl state

consts
C :: "state=>int"
c :: "state=>nat=>int"

primrec sum :: "[nat,state]=>int" where

"sum 0 s = 0"
| "sum (Suc i) s = (c s) i + sum i s"

primrec sumj :: "[nat, nat, state]=>int" where
"sumj 0 i s = 0"

| "sumj (Suc n) i s = (if n=i then sum n s else (c s) n + sumj n i s)"

17021 A FAMILY OF SIMILAR COUNTERS: VERSION WITH COMPATIBILITY

type_synonym command = "(state*state)set"

definition a :: "nat=>command" where
"a i = {(s, s’). (c s’) i = (c s) i + 1 & (C s’) = (C s) + 1}"

definition Component :: "nat => state program" where
"Component i = mk_total_program({s. C s = 0 & (c s) i = 0},

{a i},⋃
G ∈ preserves (%s. (c s) i). Acts G)"

declare Component_def [THEN def_prg_Init, simp]
declare Component_def [THEN def_prg_AllowedActs, simp]
declare a_def [THEN def_act_simp, simp]

lemma sum_sumj_eq1: "I<i ==> sum I s = sumj I i s"
by (induct I) auto

lemma sum_sumj_eq2: "i<I ==> sum I s = c s i + sumj I i s"
by (induct I) (auto simp add: linorder_neq_iff sum_sumj_eq1)

lemma sum_ext: "(
∧

i. i<I =⇒ c s’ i = c s i) ==> sum I s’ = sum I s"
by (induct I) auto

lemma sumj_ext: "(
∧

j. j<I ==> j 6=i ==> c s’ j = c s j) ==> sumj I i s’
= sumj I i s"

by (induct I) (auto intro!: sum_ext)

lemma sum0: "(
∧

i. i<I ==> c s i = 0) ==> sum I s = 0"
by (induct I) auto

lemma Component_ok_iff:
"(Component i ok G) =
(G ∈ preserves (%s. c s i) & Component i ∈ Allowed G)"

apply (auto simp add: ok_iff_Allowed Component_def [THEN def_total_prg_Allowed])
done
declare Component_ok_iff [iff]
declare OK_iff_ok [iff]
declare preserves_def [simp]

lemma p2: "Component i ∈ stable {s. C s = (c s) i + k}"
by (simp add: Component_def, safety)

lemma p3:
"[| OK I Component; i∈I |]
==> Component i ∈ stable {s. ∀ j∈I. j 6=i --> c s j = c k j}"

apply simp
apply (unfold Component_def mk_total_program_def)
apply (simp (no_asm_use) add: stable_def constrains_def)

171

apply blast
done

lemma p2_p3_lemma1:
"[| OK {i. i<I} Component; i<I |] ==>
∀ k. Component i ∈ stable ({s. C s = c s i + sumj I i k} Int

{s. ∀ j∈{i. i<I}. j 6=i --> c s j = c k j})"
by (blast intro: stable_Int [OF p2 p3])

lemma p2_p3_lemma2:
"(∀ k. F ∈ stable ({s. C s = (c s) i + sumj I i k} Int

{s. ∀ j∈{i. i<I}. j 6=i --> c s j = c k j}))
==> (F ∈ stable {s. C s = c s i + sumj I i s})"

apply (simp add: constrains_def stable_def)
apply (force intro!: sumj_ext)
done

lemma p2_p3:
"[| OK {i. i<I} Component; i<I |]
==> Component i ∈ stable {s. C s = c s i + sumj I i s}"

by (blast intro: p2_p3_lemma1 [THEN p2_p3_lemma2])

lemma safety:
"[| 0<I; OK {i. i<I} Component |]
==> (

⊔
i∈{i. i<I}. (Component i)) ∈ invariant {s. C s = sum I s}"

apply (simp (no_asm) add: invariant_def JN_stable sum_sumj_eq2)
apply (auto intro!: sum0 p2_p3)
done

end

theory PriorityAux
imports "../UNITY_Main"
begin

typedecl vertex

definition symcl :: "(vertex*vertex)set=>(vertex*vertex)set" where
"symcl r == r ∪ (r−1)"

— symmetric closure: removes the orientation of a relation

definition neighbors :: "[vertex, (vertex*vertex)set]=>vertex set" where
"neighbors i r == ((r ∪ r−1)‘‘{i}) - {i}"

— Neighbors of a vertex i

definition R :: "[vertex, (vertex*vertex)set]=>vertex set" where
"R i r == r‘‘{i}"

definition A :: "[vertex, (vertex*vertex)set]=>vertex set" where

17221 A FAMILY OF SIMILAR COUNTERS: VERSION WITH COMPATIBILITY

"A i r == (r−1)‘‘{i}"

definition reach :: "[vertex, (vertex*vertex)set]=> vertex set" where
"reach i r == (r+)‘‘{i}"

— reachable and above vertices: the original notation was R* and A*

definition above :: "[vertex, (vertex*vertex)set]=> vertex set" where
"above i r == ((r−1)+)‘‘{i}"

definition reverse :: "[vertex, (vertex*vertex) set]=>(vertex*vertex)set" where
"reverse i r == (r - {(x,y). x=i | y=i} ∩ r) ∪ ({(x,y). x=i|y=i} ∩ r)−1"

definition derive1 :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool"
where

— The original definition
"derive1 i r q == symcl r = symcl q &

(∀ k k’. k 6=i & k’6=i -->((k,k’) ∈ r) = ((k,k’) ∈ q)) ∧
A i r = {} & R i q = {}"

definition derive :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool"
where

— Our alternative definition
"derive i r q == A i r = {} & (q = reverse i r)"

axiomatization where
finite_vertex_univ: "finite (UNIV :: vertex set)"

— we assume that the universe of vertices is finite

declare derive_def [simp] derive1_def [simp] symcl_def [simp]
A_def [simp] R_def [simp]
above_def [simp] reach_def [simp]
reverse_def [simp] neighbors_def [simp]

All vertex sets are finite
declare finite_subset [OF subset_UNIV finite_vertex_univ, iff]

and relatons over vertex are finite too
lemmas finite_UNIV_Prod =

finite_Prod_UNIV [OF finite_vertex_univ finite_vertex_univ]

declare finite_subset [OF subset_UNIV finite_UNIV_Prod, iff]

lemma image0_trancl_iff_image0_r: "((r+)‘‘{i} = {}) = (r‘‘{i} = {})"
apply auto
apply (erule trancl_induct, auto)
done

lemma image0_r_iff_image0_trancl: "(r‘‘{i}={}) = (∀ x. ((i,x) ∈ r+) = False)"
apply auto
apply (drule image0_trancl_iff_image0_r [THEN ssubst], auto)

173

done

lemma acyclic_eq_wf: "!!r::(vertex*vertex)set. acyclic r = wf r"
by (auto simp add: wf_iff_acyclic_if_finite)

lemma derive_derive1_eq: "derive i r q = derive1 i r q"
by auto

lemma lemma1_a:
"[| x ∈ reach i q; derive1 k r q |] ==> x 6=k --> x ∈ reach i r"

apply (unfold reach_def)
apply (erule ImageE)
apply (erule trancl_induct)
apply (cases "i=k", simp_all)
apply (blast, blast, clarify)

apply (drule_tac x = y in spec)
apply (drule_tac x = z in spec)
apply (blast dest: r_into_trancl intro: trancl_trans)
done

lemma reach_lemma: "derive k r q ==> reach i q ⊆ (reach i r ∪ {k})"
apply clarify
apply (drule lemma1_a)
apply (auto simp add: derive_derive1_eq

simp del: reach_def derive_def derive1_def)
done

lemma reach_above_lemma:
"(∀ i. reach i q ⊆ (reach i r ∪ {k})) =
(∀ x. x 6=k --> (∀ i. i /∈ above x r --> i /∈ above x q))"

by (auto simp add: trancl_converse)

lemma maximal_converse_image0:
"(z, i) ∈ r+ =⇒ (∀ y. (y, z) ∈ r −→ (y,i) /∈ r+) = ((r−1)‘‘{z}={})"

apply auto
apply (frule_tac r = r in trancl_into_trancl2, auto)
done

lemma above_lemma_a:
"acyclic r ==> A i r 6={}-->(∃ j ∈ above i r. A j r = {})"

apply (simp add: acyclic_eq_wf wf_eq_minimal)
apply (drule_tac x = " ((r−1)+) ‘‘{i}" in spec)
apply auto
apply (simp add: maximal_converse_image0 trancl_converse)
done

lemma above_lemma_b:
"acyclic r ==> above i r 6={}-->(∃ j ∈ above i r. above j r = {})"

174 22 THE PRIORITY SYSTEM

apply (drule above_lemma_a)
apply (auto simp add: image0_trancl_iff_image0_r)
done

end

22 The priority system
theory Priority imports PriorityAux begin

From Charpentier and Chandy, Examples of Program Composition Illustrating
the Use of Universal Properties In J. Rolim (editor), Parallel and Distributed
Processing, Spriner LNCS 1586 (1999), pages 1215-1227.

type_synonym state = "(vertex*vertex)set"
type_synonym command = "vertex=>(state*state)set"

consts
init :: "(vertex*vertex)set"
— the initial state

Following the definitions given in section 4.4

definition highest :: "[vertex, (vertex*vertex)set]=>bool"
where "highest i r ←→ A i r = {}"

— i has highest priority in r

definition lowest :: "[vertex, (vertex*vertex)set]=>bool"
where "lowest i r ←→ R i r = {}"

— i has lowest priority in r

definition act :: command
where "act i = {(s, s’). s’=reverse i s & highest i s}"

definition Component :: "vertex=>state program"
where "Component i = mk_total_program({init}, {act i}, UNIV)"

— All components start with the same initial state

Some Abbreviations

definition Highest :: "vertex=>state set"
where "Highest i = {s. highest i s}"

definition Lowest :: "vertex=>state set"
where "Lowest i = {s. lowest i s}"

definition Acyclic :: "state set"
where "Acyclic = {s. acyclic s}"

definition Maximal :: "state set"
— Every “above” set has a maximal vertex

where "Maximal = (
⋂

i. {s. ~highest i s-->(∃ j ∈ above i s. highest j s)})"

definition Maximal’ :: "state set"

22.1 Component correctness proofs 175

— Maximal vertex: equivalent definition
where "Maximal’ = (

⋂
i. Highest i Un (

⋃
j. {s. j ∈ above i s} Int Highest

j))"

definition Safety :: "state set"
where "Safety = (

⋂
i. {s. highest i s --> (∀ j ∈ neighbors i s. ~highest

j s)})"

definition system :: "state program"
where "system = (

⊔
i. Component i)"

declare highest_def [simp] lowest_def [simp]
declare Highest_def [THEN def_set_simp, simp]

and Lowest_def [THEN def_set_simp, simp]

declare Component_def [THEN def_prg_Init, simp]
declare act_def [THEN def_act_simp, simp]

22.1 Component correctness proofs
neighbors is stable

lemma Component_neighbors_stable: "Component i ∈ stable {s. neighbors k
s = n}"
by (simp add: Component_def, safety, auto)

property 4

lemma Component_waits_priority: "Component i ∈ {s. ((i,j) ∈ s) = b} ∩ (-
Highest i) co {s. ((i,j) ∈ s)=b}"
by (simp add: Component_def, safety)

property 5: charpentier and Chandy mistakenly express it as ’transient Highest
i’. Consider the case where i has neighbors

lemma Component_yields_priority:
"Component i ∈ {s. neighbors i s 6= {}} Int Highest i

ensures - Highest i"
apply (simp add: Component_def)
apply (ensures_tac "act i", blast+)
done

or better

lemma Component_yields_priority’: "Component i ∈ Highest i ensures Lowest
i"
apply (simp add: Component_def)
apply (ensures_tac "act i", blast+)
done

property 6: Component doesn’t introduce cycle

176 22 THE PRIORITY SYSTEM

lemma Component_well_behaves: "Component i ∈ Highest i co Highest i Un Lowest
i"
by (simp add: Component_def, safety, fast)

property 7: local axiom

lemma locality: "Component i ∈ stable {s. ∀ j k. j 6=i & k 6=i--> ((j,k) ∈
s) = b j k}"
by (simp add: Component_def, safety)

22.2 System properties
property 8: strictly universal

lemma Safety: "system ∈ stable Safety"
apply (unfold Safety_def)
apply (rule stable_INT)
apply (simp add: system_def, safety, fast)
done

property 13: universal

lemma p13: "system ∈ {s. s = q} co {s. s=q} Un {s. ∃ i. derive i q s}"
by (simp add: system_def Component_def mk_total_program_def totalize_JN, safety,
blast)

property 14: the ’above set’ of a Component that hasn’t got priority doesn’t
increase

lemma above_not_increase:
"system ∈ -Highest i Int {s. j /∈above i s} co {s. j /∈above i s}"

apply (insert reach_lemma [of concl: j])
apply (simp add: system_def Component_def mk_total_program_def totalize_JN,

safety)
apply (simp add: trancl_converse, blast)
done

lemma above_not_increase’:
"system ∈ -Highest i Int {s. above i s = x} co {s. above i s <= x}"

apply (insert above_not_increase [of i])
apply (simp add: trancl_converse constrains_def, blast)
done

p15: universal property: all Components well behave

lemma system_well_behaves: "system ∈ Highest i co Highest i Un Lowest i"
by (simp add: system_def Component_def mk_total_program_def totalize_JN,

safety, auto)

lemma Acyclic_eq: "Acyclic = (
⋂

i. {s. i /∈above i s})"
by (auto simp add: Acyclic_def acyclic_def trancl_converse)

lemmas system_co =

22.3 The main result: above set decreases 177

constrains_Un [OF above_not_increase [rule_format] system_well_behaves]

lemma Acyclic_stable: "system ∈ stable Acyclic"
apply (simp add: stable_def Acyclic_eq)
apply (auto intro!: constrains_INT system_co [THEN constrains_weaken]

simp add: image0_r_iff_image0_trancl trancl_converse)
done

lemma Acyclic_subset_Maximal: "Acyclic <= Maximal"
apply (unfold Acyclic_def Maximal_def, clarify)
apply (drule above_lemma_b, auto)
done

property 17: original one is an invariant
lemma Acyclic_Maximal_stable: "system ∈ stable (Acyclic Int Maximal)"
by (simp add: Acyclic_subset_Maximal [THEN Int_absorb2] Acyclic_stable)

property 5: existential property
lemma Highest_leadsTo_Lowest: "system ∈ Highest i leadsTo Lowest i"
apply (simp add: system_def Component_def mk_total_program_def totalize_JN)
apply (ensures_tac "act i", auto)
done

a lowest i can never be in any abover set
lemma Lowest_above_subset: "Lowest i <= (

⋂
k. {s. i /∈above k s})"

by (auto simp add: image0_r_iff_image0_trancl trancl_converse)

property 18: a simpler proof than the original, one which uses psp
lemma Highest_escapes_above: "system ∈ Highest i leadsTo (

⋂
k. {s. i /∈above

k s})"
apply (rule leadsTo_weaken_R)
apply (rule_tac [2] Lowest_above_subset)
apply (rule Highest_leadsTo_Lowest)
done

lemma Highest_escapes_above’:
"system ∈ Highest j Int {s. j ∈ above i s} leadsTo {s. j /∈above i s}"

by (blast intro: leadsTo_weaken [OF Highest_escapes_above Int_lower1 INT_lower])

22.3 The main result: above set decreases
The original proof of the following formula was wrong
lemma Highest_iff_above0: "Highest i = {s. above i s ={}}"
by (auto simp add: image0_trancl_iff_image0_r)

lemmas above_decreases_lemma =
psp [THEN leadsTo_weaken, OF Highest_escapes_above’ above_not_increase’]

178 22 THE PRIORITY SYSTEM

lemma above_decreases:
"system ∈ (

⋃
j. {s. above i s = x} Int {s. j ∈ above i s} Int Highest

j)
leadsTo {s. above i s < x}"

apply (rule leadsTo_UN)
apply (rule single_leadsTo_I, clarify)
apply (rule_tac x = "above i xa" in above_decreases_lemma)
apply (simp_all (no_asm_use) add: Highest_iff_above0)
apply blast+
done

lemma Maximal_eq_Maximal’: "Maximal = Maximal’"
by (unfold Maximal_def Maximal’_def Highest_def, blast)

lemma Acyclic_subset:
"x 6={} ==>
Acyclic Int {s. above i s = x} <=
(
⋃

j. {s. above i s = x} Int {s. j ∈ above i s} Int Highest j)"
apply (rule_tac B = "Maximal’ Int {s. above i s = x}" in subset_trans)
apply (simp (no_asm) add: Maximal_eq_Maximal’ [symmetric])
apply (blast intro: Acyclic_subset_Maximal [THEN subsetD])
apply (simp (no_asm) del: above_def add: Maximal’_def Highest_iff_above0)
apply blast
done

lemmas above_decreases’ = leadsTo_weaken_L [OF above_decreases Acyclic_subset]
lemmas above_decreases_psp = psp_stable [OF above_decreases’ Acyclic_stable]

lemma above_decreases_psp’:
"x 6={}==> system ∈ Acyclic Int {s. above i s = x} leadsTo

Acyclic Int {s. above i s < x}"
by (erule above_decreases_psp [THEN leadsTo_weaken], blast, auto)

lemmas finite_psubset_induct = wf_finite_psubset [THEN leadsTo_wf_induct]

lemma Progress: "system ∈ Acyclic leadsTo Highest i"
apply (rule_tac f = "%s. above i s" in finite_psubset_induct)
apply (simp del: above_def

add: Highest_iff_above0 vimage_def finite_psubset_def, clarify)
apply (case_tac "m={}")
apply (rule Int_lower2 [THEN [2] leadsTo_weaken_L])
apply (force simp add: leadsTo_refl)
apply (rule_tac A’ = "Acyclic Int {x. above i x < m}" in leadsTo_weaken_R)
apply (blast intro: above_decreases_psp’)+
done

We have proved all (relevant) theorems given in the paper. We didn’t assume
any thing about the relation r. It is not necessary that r be a priority relation
as assumed in the original proof. It suffices that we start from a state which is
finite and acyclic.
end

22.3 The main result: above set decreases 179

theory TimerArray imports "../UNITY_Main" begin

type_synonym ’a state = "nat * ’a"

definition count :: "’a state => nat"
where "count s = fst s"

definition decr :: "(’a state * ’a state) set"
where "decr = (UN n uu. {((Suc n, uu), (n,uu))})"

definition Timer :: "’a state program"
where "Timer = mk_total_program (UNIV, {decr}, UNIV)"

declare Timer_def [THEN def_prg_Init, simp]

declare count_def [simp] decr_def [simp]

lemma Timer_leadsTo_zero: "Timer ∈ UNIV leadsTo {s. count s = 0}"
apply (rule_tac f = count in lessThan_induct, simp)
apply (case_tac "m")
apply (force intro!: subset_imp_leadsTo)

apply (unfold Timer_def, ensures_tac "decr")
done

lemma Timer_preserves_snd [iff]: "Timer ∈ preserves snd"
apply (rule preservesI)
apply (unfold Timer_def, safety)
done

declare PLam_stable [simp]

lemma TimerArray_leadsTo_zero:
"finite I
=⇒ (plam i: I. Timer) ∈ UNIV leadsTo {(s,uu). ∀ i∈I. s i = 0}"

apply (erule_tac A’1 = "λi. lift_set i ({0} × UNIV)"
in finite_stable_completion [THEN leadsTo_weaken])

apply auto

prefer 2
apply (simp add: Timer_def, safety)

apply (rule_tac f = "sub i o fst" in lessThan_induct)
apply (case_tac "m")

apply (auto intro: subset_imp_leadsTo
simp add: insert_absorb

lift_set_Un_distrib [symmetric] lessThan_Suc [symmetric]

Times_Un_distrib1 [symmetric] Times_Diff_distrib1 [symmetric])

180 23 PROGRESS SET EXAMPLES

apply (rename_tac "n")
apply (rule PLam_leadsTo_Basis)
apply (auto simp add: lessThan_Suc [symmetric])
apply (unfold Timer_def mk_total_program_def, safety)
apply (rule_tac act = decr in totalize_transientI, auto)
done

end

23 Progress Set Examples
theory Progress imports "../UNITY_Main" begin

23.1 The Composition of Two Single-Assignment Programs
Thesis Section 4.4.2

definition FF :: "int program" where
"FF = mk_total_program (UNIV, {range (λx. (x, x+1))}, UNIV)"

definition GG :: "int program" where
"GG = mk_total_program (UNIV, {range (λx. (x, 2*x))}, UNIV)"

23.1.1 Calculating wens_set FF {k..}

lemma Domain_actFF: "Domain (range (λx::int. (x, x + 1))) = UNIV"
by force

lemma FF_eq:
"FF = mk_program (UNIV, {range (λx. (x, x+1))}, UNIV)"

by (simp add: FF_def mk_total_program_def totalize_def totalize_act_def
program_equalityI Domain_actFF)

lemma wp_actFF:
"wp (range (λx::int. (x, x + 1))) (atLeast k) = atLeast (k - 1)"

by (force simp add: wp_def)

lemma wens_FF: "wens FF (range (λx. (x, x+1))) (atLeast k) = atLeast (k -
1)"
by (force simp add: FF_eq wens_single_eq wp_actFF)

lemma single_valued_actFF: "single_valued (range (λx::int. (x, x + 1)))"
by (force simp add: single_valued_def)

lemma wens_single_finite_FF:
"wens_single_finite (range (λx. (x, x+1))) (atLeast k) n =
atLeast (k - int n)"

apply (induct n, simp)
apply (force simp add: wens_FF

def_wens_single_finite_Suc_eq_wens [OF FF_eq single_valued_actFF])
done

lemma wens_single_FF_eq_UNIV:
"wens_single (range (λx::int. (x, x + 1))) (atLeast k) = UNIV"

23.1 The Composition of Two Single-Assignment Programs 181

apply (auto simp add: wens_single_eq_Union)
apply (rule_tac x="nat (k-x)" in exI)
apply (simp add: wens_single_finite_FF)
done

lemma wens_set_FF:
"wens_set FF (atLeast k) = insert UNIV (atLeast ‘ atMost k)"

apply (auto simp add: wens_set_single_eq [OF FF_eq single_valued_actFF]
wens_single_FF_eq_UNIV wens_single_finite_FF)

apply (erule notE)
apply (rule_tac x="nat (k-xa)" in range_eqI)
apply (simp add: wens_single_finite_FF)
done

23.1.2 Proving FF ∈ UNIV 7−→ {k..}

lemma atLeast_ensures: "FF ∈ atLeast (k - 1) ensures atLeast (k::int)"
apply (simp add: Progress.wens_FF [symmetric] wens_ensures)
apply (simp add: wens_ensures FF_eq)
done

lemma atLeast_leadsTo: "FF ∈ atLeast (k - int n) leadsTo atLeast (k::int)"
apply (induct n)
apply (simp_all add: leadsTo_refl)

apply (rule_tac A = "atLeast (k - int n - 1)" in leadsTo_weaken_L)
apply (blast intro: leadsTo_Trans atLeast_ensures, force)

done

lemma UN_atLeast_UNIV: "(
⋃

n. atLeast (k - int n)) = UNIV"
apply auto
apply (rule_tac x = "nat (k - x)" in exI, simp)
done

lemma FF_leadsTo: "FF ∈ UNIV leadsTo atLeast (k::int)"
apply (subst UN_atLeast_UNIV [symmetric])
apply (rule leadsTo_UN [OF atLeast_leadsTo])
done

Result (4.39): Applying the leadsTo-Join Theorem

theorem "FFtGG ∈ atLeast 0 leadsTo atLeast (k::int)"
apply (subgoal_tac "FFtGG ∈ (atLeast 0 ∩ atLeast 0) leadsTo atLeast k")
apply simp

apply (rule_tac T = "atLeast 0" in leadsTo_Join)
apply (rule leadsTo_weaken_L [OF FF_leadsTo], simp)

apply (simp add: awp_iff_constrains FF_def, safety)
apply (simp add: awp_iff_constrains GG_def wens_set_FF, safety)
done

end

18224 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

24 Common Declarations for Chandy and Char-
pentier’s Allocator

theory AllocBase imports "../UNITY_Main" "HOL-Library.Multiset_Order" be-
gin

consts Nclients :: nat

axiomatization NbT :: nat
where NbT_pos: "0 < NbT"

abbreviation (input) tokens :: "nat list ⇒ nat"
where

"tokens ≡ sum_list"

abbreviation (input)
"bag_of ≡ mset"

lemma sum_fun_mono:
fixes f :: "nat ⇒ nat"
shows "(

∧
i. i < n =⇒ f i ≤ g i) =⇒ sum f {..<n} ≤ sum g {..<n}"

by (induct n) (auto simp add: lessThan_Suc add_le_mono)

lemma tokens_mono_prefix: "xs ≤ ys =⇒ tokens xs ≤ tokens ys"
by (induct ys arbitrary: xs) (auto simp add: prefix_Cons)

lemma mono_tokens: "mono tokens"
using tokens_mono_prefix by (rule monoI)

lemma bag_of_append [simp]: "bag_of (l@l’) = bag_of l + bag_of l’"
by (fact mset_append)

lemma mono_bag_of: "mono (bag_of :: ’a list => (’a::order) multiset)"
apply (rule monoI)
apply (unfold prefix_def)
apply (erule genPrefix.induct, simp_all add: add_right_mono)
apply (erule order_trans)
apply simp
done

declare sum.cong [cong]

lemma bag_of_nths_lemma:
"(
∑

i∈ A Int lessThan k. {#if i<k then f i else g i#}) =
(
∑

i∈ A Int lessThan k. {#f i#})"
by (rule sum.cong, auto)

lemma bag_of_nths:
"bag_of (nths l A) =

24.1 State definitions. OUTPUT variables are locals 183

(
∑

i∈ A Int lessThan (length l). {# l!i #})"
by (rule_tac xs = l in rev_induct)

(simp_all add: nths_append Int_insert_right lessThan_Suc nth_append
bag_of_nths_lemma ac_simps)

lemma bag_of_nths_Un_Int:
"bag_of (nths l (A Un B)) + bag_of (nths l (A Int B)) =
bag_of (nths l A) + bag_of (nths l B)"

apply (subgoal_tac "A Int B Int {..<length l} =
(A Int {..<length l}) Int (B Int {..<length l}) ")

apply (simp add: bag_of_nths Int_Un_distrib2 sum.union_inter, blast)
done

lemma bag_of_nths_Un_disjoint:
"A Int B = {}
==> bag_of (nths l (A Un B)) =

bag_of (nths l A) + bag_of (nths l B)"
by (simp add: bag_of_nths_Un_Int [symmetric])

lemma bag_of_nths_UN_disjoint [rule_format]:
"[| finite I; ∀ i∈I. ∀ j∈I. i 6=j −→ A i Int A j = {} |]
==> bag_of (nths l (

⋃
(A ‘ I))) =

(
∑

i∈I. bag_of (nths l (A i)))"
apply (auto simp add: bag_of_nths)
unfolding UN_simps [symmetric]
apply (subst sum.UNION_disjoint)
apply auto
done

end

theory Alloc
imports AllocBase "../PPROD"
begin

24.1 State definitions. OUTPUT variables are locals
record clientState =

giv :: "nat list" — client’s INPUT history: tokens GRANTED
ask :: "nat list" — client’s OUTPUT history: tokens REQUESTED
rel :: "nat list" — client’s OUTPUT history: tokens RELEASED

record ’a clientState_d =
clientState +
dummy :: ’a — dummy field for new variables

definition
— DUPLICATED FROM Client.thy, but with "tok" removed
— Maybe want a special theory section to declare such maps
non_dummy :: "’a clientState_d => clientState"
where "non_dummy s = (|giv = giv s, ask = ask s, rel = rel s|)"

18424 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

definition
— Renaming map to put a Client into the standard form
client_map :: "’a clientState_d => clientState*’a"
where "client_map = funPair non_dummy dummy"

record allocState =
allocGiv :: "nat => nat list" — OUTPUT history: source of "giv" for i
allocAsk :: "nat => nat list" — INPUT: allocator’s copy of "ask" for i
allocRel :: "nat => nat list" — INPUT: allocator’s copy of "rel" for i

record ’a allocState_d =
allocState +
dummy :: ’a — dummy field for new variables

record ’a systemState =
allocState +
client :: "nat => clientState" — states of all clients
dummy :: ’a — dummy field for new variables

24.1.1 Resource allocation system specification
definition

— spec (1)
system_safety :: "’a systemState program set"
where "system_safety =

Always {s. (
∑

i ∈ lessThan Nclients. (tokens o giv o sub i o client)s)
≤ NbT + (

∑
i ∈ lessThan Nclients. (tokens o rel o sub i o client)s)}"

definition
— spec (2)
system_progress :: "’a systemState program set"
where "system_progress = (INT i : lessThan Nclients.

INT h.
{s. h ≤ (ask o sub i o client)s} LeadsTo
{s. h pfixLe (giv o sub i o client) s})"

definition
system_spec :: "’a systemState program set"
where "system_spec = system_safety Int system_progress"

24.1.2 Client specification (required)
definition

— spec (3)
client_increasing :: "’a clientState_d program set"
where "client_increasing = UNIV guarantees Increasing ask Int Increasing

rel"

definition
— spec (4)
client_bounded :: "’a clientState_d program set"
where "client_bounded = UNIV guarantees Always {s. ∀ elt ∈ set (ask s).

elt ≤ NbT}"

24.1 State definitions. OUTPUT variables are locals 185

definition
— spec (5)
client_progress :: "’a clientState_d program set"
where "client_progress =

Increasing giv guarantees
(INT h. {s. h ≤ giv s & h pfixGe ask s}

LeadsTo {s. tokens h ≤ (tokens o rel) s})"

definition
— spec: preserves part
client_preserves :: "’a clientState_d program set"
where "client_preserves = preserves giv Int preserves clientState_d.dummy"

definition
— environmental constraints
client_allowed_acts :: "’a clientState_d program set"
where "client_allowed_acts =

{F. AllowedActs F =
insert Id (

⋃
(Acts ‘ preserves (funPair rel ask)))}"

definition
client_spec :: "’a clientState_d program set"
where "client_spec = client_increasing Int client_bounded Int client_progress

Int client_allowed_acts Int client_preserves"

24.1.3 Allocator specification (required)

definition
— spec (6)
alloc_increasing :: "’a allocState_d program set"
where "alloc_increasing =

UNIV guarantees
(INT i : lessThan Nclients. Increasing (sub i o allocGiv))"

definition
— spec (7)
alloc_safety :: "’a allocState_d program set"
where "alloc_safety =

(INT i : lessThan Nclients. Increasing (sub i o allocRel))
guarantees
Always {s. (

∑
i ∈ lessThan Nclients. (tokens o sub i o allocGiv)s)

≤ NbT + (
∑

i ∈ lessThan Nclients. (tokens o sub i o allocRel)s)}"

definition
— spec (8)
alloc_progress :: "’a allocState_d program set"
where "alloc_progress =

(INT i : lessThan Nclients. Increasing (sub i o allocAsk) Int
Increasing (sub i o allocRel))

Int
Always {s. ∀ i<Nclients.

∀ elt ∈ set ((sub i o allocAsk) s). elt ≤ NbT}
Int
(INT i : lessThan Nclients.

18624 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

INT h. {s. h ≤ (sub i o allocGiv)s & h pfixGe (sub i o allocAsk)s}
LeadsTo
{s. tokens h ≤ (tokens o sub i o allocRel)s})

guarantees
(INT i : lessThan Nclients.
INT h. {s. h ≤ (sub i o allocAsk) s}

LeadsTo
{s. h pfixLe (sub i o allocGiv) s})"

definition
— spec: preserves part
alloc_preserves :: "’a allocState_d program set"
where "alloc_preserves = preserves allocRel Int preserves allocAsk Int

preserves allocState_d.dummy"

definition
— environmental constraints
alloc_allowed_acts :: "’a allocState_d program set"
where "alloc_allowed_acts =

{F. AllowedActs F =
insert Id (

⋃
(Acts ‘ (preserves allocGiv)))}"

definition
alloc_spec :: "’a allocState_d program set"
where "alloc_spec = alloc_increasing Int alloc_safety Int alloc_progress

Int
alloc_allowed_acts Int alloc_preserves"

24.1.4 Network specification

definition
— spec (9.1)
network_ask :: "’a systemState program set"
where "network_ask = (INT i : lessThan Nclients.

Increasing (ask o sub i o client) guarantees
((sub i o allocAsk) Fols (ask o sub i o client)))"

definition
— spec (9.2)
network_giv :: "’a systemState program set"
where "network_giv = (INT i : lessThan Nclients.

Increasing (sub i o allocGiv)
guarantees
((giv o sub i o client) Fols (sub i o allocGiv)))"

definition
— spec (9.3)
network_rel :: "’a systemState program set"
where "network_rel = (INT i : lessThan Nclients.

Increasing (rel o sub i o client)
guarantees
((sub i o allocRel) Fols (rel o sub i o client)))"

24.1 State definitions. OUTPUT variables are locals 187

definition
— spec: preserves part
network_preserves :: "’a systemState program set"
where "network_preserves =

preserves allocGiv Int
(INT i : lessThan Nclients. preserves (rel o sub i o client) Int

preserves (ask o sub i o client))"

definition
— environmental constraints
network_allowed_acts :: "’a systemState program set"
where "network_allowed_acts =

{F. AllowedActs F = insert Id
(
⋃

(Acts ‘ (preserves allocRel ∩ (
⋂

i<Nclients.
preserves (giv ◦ sub i ◦ client)))))}"

definition
network_spec :: "’a systemState program set"
where "network_spec = network_ask Int network_giv Int

network_rel Int network_allowed_acts Int
network_preserves"

24.1.5 State mappings

definition
sysOfAlloc :: "((nat => clientState) * ’a) allocState_d => ’a systemState"
where "sysOfAlloc = (%s. let (cl,xtr) = allocState_d.dummy s

in (| allocGiv = allocGiv s,
allocAsk = allocAsk s,
allocRel = allocRel s,
client = cl,
dummy = xtr|))"

definition
sysOfClient :: "(nat => clientState) * ’a allocState_d => ’a systemState"
where "sysOfClient = (%(cl,al). (| allocGiv = allocGiv al,

allocAsk = allocAsk al,
allocRel = allocRel al,
client = cl,
systemState.dummy = allocState_d.dummy al|))"

axiomatization Alloc :: "’a allocState_d program"
where Alloc: "Alloc ∈ alloc_spec"

axiomatization Client :: "’a clientState_d program"
where Client: "Client ∈ client_spec"

axiomatization Network :: "’a systemState program"
where Network: "Network ∈ network_spec"

definition System :: "’a systemState program"
where "System = rename sysOfAlloc Alloc t Network t

18824 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

(rename sysOfClient
(plam x: lessThan Nclients. rename client_map Client))"

declare subset_preserves_o [THEN [2] rev_subsetD, intro]
declare subset_preserves_o [THEN [2] rev_subsetD, simp]
declare funPair_o_distrib [simp]
declare Always_INT_distrib [simp]
declare o_apply [simp del]

lemmas [simp] =
rename_image_constrains
rename_image_stable
rename_image_increasing
rename_image_invariant
rename_image_Constrains
rename_image_Stable
rename_image_Increasing
rename_image_Always
rename_image_leadsTo
rename_image_LeadsTo
rename_preserves
rename_image_preserves
lift_image_preserves
bij_image_INT
bij_is_inj [THEN image_Int]
bij_image_Collect_eq

ML ‹
(*Splits up conjunctions & intersections: like CONJUNCTS in the HOL system*)
fun list_of_Int th =

(list_of_Int (th RS conjunct1) @ list_of_Int (th RS conjunct2))
handle THM _ => (list_of_Int (th RS @{thm IntD1}) @ list_of_Int (th RS

@{thm IntD2}))
handle THM _ => (list_of_Int (th RS @{thm INT_D}))
handle THM _ => (list_of_Int (th RS @{thm bspec}))
handle THM _ => [th];

›

lemmas lessThanBspec = lessThan_iff [THEN iffD2, THEN [2] bspec]

attribute_setup normalized = ‹
let

fun normalized th =
normalized (th RS spec

handle THM _ => th RS @{thm lessThanBspec}
handle THM _ => th RS @{thm bspec}
handle THM _ => th RS (@{thm guarantees_INT_right_iff} RS iffD1))

handle THM _ => th;
in

Scan.succeed (Thm.rule_attribute [] (K normalized))

24.1 State definitions. OUTPUT variables are locals 189

end
›

ML ‹
fun record_auto_tac ctxt =

let val ctxt’ =
ctxt addSWrapper Record.split_wrapper
addsimps

[@{thm sysOfAlloc_def}, @{thm sysOfClient_def},
@{thm client_map_def}, @{thm non_dummy_def}, @{thm funPair_def},
@{thm o_apply}, @{thm Let_def}]

in auto_tac ctxt’ end;

›

method_setup record_auto = ‹Scan.succeed (SIMPLE_METHOD o record_auto_tac)›

lemma inj_sysOfAlloc [iff]: "inj sysOfAlloc"
apply (unfold sysOfAlloc_def Let_def)
apply (rule inj_onI)
apply record_auto
done

We need the inverse; also having it simplifies the proof of surjectivity

lemma inv_sysOfAlloc_eq [simp]: "!!s. inv sysOfAlloc s =
(| allocGiv = allocGiv s,

allocAsk = allocAsk s,
allocRel = allocRel s,
allocState_d.dummy = (client s, dummy s) |)"

apply (rule inj_sysOfAlloc [THEN inv_f_eq])
apply record_auto
done

lemma surj_sysOfAlloc [iff]: "surj sysOfAlloc"
apply (simp add: surj_iff_all)
apply record_auto
done

lemma bij_sysOfAlloc [iff]: "bij sysOfAlloc"
apply (blast intro: bijI)
done

24.1.6 bijectivity of sysOfClient

lemma inj_sysOfClient [iff]: "inj sysOfClient"
apply (unfold sysOfClient_def)
apply (rule inj_onI)
apply record_auto
done

lemma inv_sysOfClient_eq [simp]: "!!s. inv sysOfClient s =
(client s,
(| allocGiv = allocGiv s,

19024 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

allocAsk = allocAsk s,
allocRel = allocRel s,
allocState_d.dummy = systemState.dummy s|))"

apply (rule inj_sysOfClient [THEN inv_f_eq])
apply record_auto
done

lemma surj_sysOfClient [iff]: "surj sysOfClient"
apply (simp add: surj_iff_all)
apply record_auto
done

lemma bij_sysOfClient [iff]: "bij sysOfClient"
apply (blast intro: bijI)
done

24.1.7 bijectivity of client_map

lemma inj_client_map [iff]: "inj client_map"
apply (unfold inj_on_def)
apply record_auto
done

lemma inv_client_map_eq [simp]: "!!s. inv client_map s =
(%(x,y).(|giv = giv x, ask = ask x, rel = rel x,

clientState_d.dummy = y|)) s"
apply (rule inj_client_map [THEN inv_f_eq])
apply record_auto
done

lemma surj_client_map [iff]: "surj client_map"
apply (simp add: surj_iff_all)
apply record_auto
done

lemma bij_client_map [iff]: "bij client_map"
apply (blast intro: bijI)
done

o-simprules for client_map

lemma fst_o_client_map: "fst o client_map = non_dummy"
apply (unfold client_map_def)
apply (rule fst_o_funPair)
done

ML ‹ML_Thms.bind_thms ("fst_o_client_map’", make_o_equivs context @{thm fst_o_client_map})›
declare fst_o_client_map’ [simp]

lemma snd_o_client_map: "snd o client_map = clientState_d.dummy"
apply (unfold client_map_def)
apply (rule snd_o_funPair)
done

ML ‹ML_Thms.bind_thms ("snd_o_client_map’", make_o_equivs context @{thm snd_o_client_map})›

24.2 o-simprules for sysOfAlloc [MUST BE AUTOMATED] 191

declare snd_o_client_map’ [simp]

24.2 o-simprules for sysOfAlloc [MUST BE AUTOMATED]
lemma client_o_sysOfAlloc: "client o sysOfAlloc = fst o allocState_d.dummy
"

apply record_auto
done

ML ‹ML_Thms.bind_thms ("client_o_sysOfAlloc’", make_o_equivs context @{thm
client_o_sysOfAlloc})›
declare client_o_sysOfAlloc’ [simp]

lemma allocGiv_o_sysOfAlloc_eq: "allocGiv o sysOfAlloc = allocGiv"
apply record_auto
done

ML ‹ML_Thms.bind_thms ("allocGiv_o_sysOfAlloc_eq’", make_o_equivs context
@{thm allocGiv_o_sysOfAlloc_eq})›
declare allocGiv_o_sysOfAlloc_eq’ [simp]

lemma allocAsk_o_sysOfAlloc_eq: "allocAsk o sysOfAlloc = allocAsk"
apply record_auto
done

ML ‹ML_Thms.bind_thms ("allocAsk_o_sysOfAlloc_eq’", make_o_equivs context
@{thm allocAsk_o_sysOfAlloc_eq})›
declare allocAsk_o_sysOfAlloc_eq’ [simp]

lemma allocRel_o_sysOfAlloc_eq: "allocRel o sysOfAlloc = allocRel"
apply record_auto
done

ML ‹ML_Thms.bind_thms ("allocRel_o_sysOfAlloc_eq’", make_o_equivs context
@{thm allocRel_o_sysOfAlloc_eq})›
declare allocRel_o_sysOfAlloc_eq’ [simp]

24.3 o-simprules for sysOfClient [MUST BE AUTOMATED]
lemma client_o_sysOfClient: "client o sysOfClient = fst"

apply record_auto
done

ML ‹ML_Thms.bind_thms ("client_o_sysOfClient’", make_o_equivs context @{thm
client_o_sysOfClient})›
declare client_o_sysOfClient’ [simp]

lemma allocGiv_o_sysOfClient_eq: "allocGiv o sysOfClient = allocGiv o snd
"

apply record_auto
done

ML ‹ML_Thms.bind_thms ("allocGiv_o_sysOfClient_eq’", make_o_equivs context
@{thm allocGiv_o_sysOfClient_eq})›

19224 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

declare allocGiv_o_sysOfClient_eq’ [simp]

lemma allocAsk_o_sysOfClient_eq: "allocAsk o sysOfClient = allocAsk o snd
"

apply record_auto
done

ML ‹ML_Thms.bind_thms ("allocAsk_o_sysOfClient_eq’", make_o_equivs context
@{thm allocAsk_o_sysOfClient_eq})›
declare allocAsk_o_sysOfClient_eq’ [simp]

lemma allocRel_o_sysOfClient_eq: "allocRel o sysOfClient = allocRel o snd
"

apply record_auto
done

ML ‹ML_Thms.bind_thms ("allocRel_o_sysOfClient_eq’", make_o_equivs context
@{thm allocRel_o_sysOfClient_eq})›
declare allocRel_o_sysOfClient_eq’ [simp]

lemma allocGiv_o_inv_sysOfAlloc_eq: "allocGiv o inv sysOfAlloc = allocGiv"
apply (simp add: o_def)
done

ML ‹ML_Thms.bind_thms ("allocGiv_o_inv_sysOfAlloc_eq’", make_o_equivs con-
text @{thm allocGiv_o_inv_sysOfAlloc_eq})›
declare allocGiv_o_inv_sysOfAlloc_eq’ [simp]

lemma allocAsk_o_inv_sysOfAlloc_eq: "allocAsk o inv sysOfAlloc = allocAsk"
apply (simp add: o_def)
done

ML ‹ML_Thms.bind_thms ("allocAsk_o_inv_sysOfAlloc_eq’", make_o_equivs con-
text @{thm allocAsk_o_inv_sysOfAlloc_eq})›
declare allocAsk_o_inv_sysOfAlloc_eq’ [simp]

lemma allocRel_o_inv_sysOfAlloc_eq: "allocRel o inv sysOfAlloc = allocRel"
apply (simp add: o_def)
done

ML ‹ML_Thms.bind_thms ("allocRel_o_inv_sysOfAlloc_eq’", make_o_equivs con-
text @{thm allocRel_o_inv_sysOfAlloc_eq})›
declare allocRel_o_inv_sysOfAlloc_eq’ [simp]

lemma rel_inv_client_map_drop_map: "(rel o inv client_map o drop_map i o
inv sysOfClient) =

rel o sub i o client"
apply (simp add: o_def drop_map_def)
done

ML ‹ML_Thms.bind_thms ("rel_inv_client_map_drop_map’", make_o_equivs con-
text @{thm rel_inv_client_map_drop_map})›
declare rel_inv_client_map_drop_map [simp]

24.3 o-simprules for sysOfClient [MUST BE AUTOMATED] 193

lemma ask_inv_client_map_drop_map: "(ask o inv client_map o drop_map i o
inv sysOfClient) =

ask o sub i o client"
apply (simp add: o_def drop_map_def)
done

ML ‹ML_Thms.bind_thms ("ask_inv_client_map_drop_map’", make_o_equivs con-
text @{thm ask_inv_client_map_drop_map})›
declare ask_inv_client_map_drop_map [simp]

Client : <unfolded specification>
lemmas client_spec_simps =

client_spec_def client_increasing_def client_bounded_def
client_progress_def client_allowed_acts_def client_preserves_def
guarantees_Int_right

ML ‹
val [Client_Increasing_ask, Client_Increasing_rel,

Client_Bounded, Client_Progress, Client_AllowedActs,
Client_preserves_giv, Client_preserves_dummy] =

@{thm Client} |> simplify (context addsimps @{thms client_spec_simps})
|> list_of_Int;

ML_Thms.bind_thm ("Client_Increasing_ask", Client_Increasing_ask);
ML_Thms.bind_thm ("Client_Increasing_rel", Client_Increasing_rel);
ML_Thms.bind_thm ("Client_Bounded", Client_Bounded);
ML_Thms.bind_thm ("Client_Progress", Client_Progress);
ML_Thms.bind_thm ("Client_AllowedActs", Client_AllowedActs);
ML_Thms.bind_thm ("Client_preserves_giv", Client_preserves_giv);
ML_Thms.bind_thm ("Client_preserves_dummy", Client_preserves_dummy);
›

declare
Client_Increasing_ask [iff]
Client_Increasing_rel [iff]
Client_Bounded [iff]
Client_preserves_giv [iff]
Client_preserves_dummy [iff]

Network : <unfolded specification>
lemmas network_spec_simps =

network_spec_def network_ask_def network_giv_def
network_rel_def network_allowed_acts_def network_preserves_def
ball_conj_distrib

ML ‹
val [Network_Ask, Network_Giv, Network_Rel, Network_AllowedActs,

Network_preserves_allocGiv, Network_preserves_rel,
Network_preserves_ask] =

@{thm Network} |> simplify (context addsimps @{thms network_spec_simps})
|> list_of_Int;

ML_Thms.bind_thm ("Network_Ask", Network_Ask);
ML_Thms.bind_thm ("Network_Giv", Network_Giv);

19424 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

ML_Thms.bind_thm ("Network_Rel", Network_Rel);
ML_Thms.bind_thm ("Network_AllowedActs", Network_AllowedActs);
ML_Thms.bind_thm ("Network_preserves_allocGiv", Network_preserves_allocGiv);
ML_Thms.bind_thm ("Network_preserves_rel", Network_preserves_rel);
ML_Thms.bind_thm ("Network_preserves_ask", Network_preserves_ask);
›

declare Network_preserves_allocGiv [iff]

declare
Network_preserves_rel [simp]
Network_preserves_ask [simp]

declare
Network_preserves_rel [simplified o_def, simp]
Network_preserves_ask [simplified o_def, simp]

Alloc : <unfolded specification>
lemmas alloc_spec_simps =

alloc_spec_def alloc_increasing_def alloc_safety_def
alloc_progress_def alloc_allowed_acts_def alloc_preserves_def

ML ‹
val [Alloc_Increasing_0, Alloc_Safety, Alloc_Progress, Alloc_AllowedActs,

Alloc_preserves_allocRel, Alloc_preserves_allocAsk,
Alloc_preserves_dummy] =

@{thm Alloc} |> simplify (context addsimps @{thms alloc_spec_simps})
|> list_of_Int;

ML_Thms.bind_thm ("Alloc_Increasing_0", Alloc_Increasing_0);
ML_Thms.bind_thm ("Alloc_Safety", Alloc_Safety);
ML_Thms.bind_thm ("Alloc_Progress", Alloc_Progress);
ML_Thms.bind_thm ("Alloc_AllowedActs", Alloc_AllowedActs);
ML_Thms.bind_thm ("Alloc_preserves_allocRel", Alloc_preserves_allocRel);
ML_Thms.bind_thm ("Alloc_preserves_allocAsk", Alloc_preserves_allocAsk);
ML_Thms.bind_thm ("Alloc_preserves_dummy", Alloc_preserves_dummy);
›

Strip off the INT in the guarantees postcondition
lemmas Alloc_Increasing = Alloc_Increasing_0 [normalized]

declare
Alloc_preserves_allocRel [iff]
Alloc_preserves_allocAsk [iff]
Alloc_preserves_dummy [iff]

24.4 Components Lemmas [MUST BE AUTOMATED]
lemma Network_component_System: "Network t

((rename sysOfClient
(plam x: (lessThan Nclients). rename client_map Client)) t

rename sysOfAlloc Alloc)
= System"

by (simp add: System_def Join_ac)

24.4 Components Lemmas [MUST BE AUTOMATED] 195

lemma Client_component_System: "(rename sysOfClient
(plam x: (lessThan Nclients). rename client_map Client)) t

(Network t rename sysOfAlloc Alloc) = System"
by (simp add: System_def Join_ac)

lemma Alloc_component_System: "rename sysOfAlloc Alloc t
((rename sysOfClient (plam x: (lessThan Nclients). rename client_map

Client)) t
Network) = System"

by (simp add: System_def Join_ac)

declare
Client_component_System [iff]
Network_component_System [iff]
Alloc_component_System [iff]

* These preservation laws should be generated automatically *
lemma Client_Allowed [simp]: "Allowed Client = preserves rel Int preserves
ask"

by (auto simp add: Allowed_def Client_AllowedActs safety_prop_Acts_iff)

lemma Network_Allowed [simp]: "Allowed Network =
preserves allocRel Int
(INT i: lessThan Nclients. preserves(giv o sub i o client))"

by (auto simp add: Allowed_def Network_AllowedActs safety_prop_Acts_iff)

lemma Alloc_Allowed [simp]: "Allowed Alloc = preserves allocGiv"
by (auto simp add: Allowed_def Alloc_AllowedActs safety_prop_Acts_iff)

needed in rename_client_map_tac

lemma OK_lift_rename_Client [simp]: "OK I (%i. lift i (rename client_map
Client))"

apply (rule OK_lift_I)
apply auto
apply (drule_tac w1 = rel in subset_preserves_o [THEN [2] rev_subsetD])
apply (drule_tac [2] w1 = ask in subset_preserves_o [THEN [2] rev_subsetD])
apply (auto simp add: o_def split_def)
done

lemma fst_lift_map_eq_fst [simp]: "fst (lift_map i x) i = fst x"
apply (insert fst_o_lift_map [of i])
apply (drule fun_cong [where x=x])
apply (simp add: o_def)
done

lemma fst_o_lift_map’ [simp]:
"(f ◦ sub i ◦ fst ◦ lift_map i ◦ g) = f o fst o g"

apply (subst fst_o_lift_map [symmetric])
apply (simp only: o_assoc)
done

19624 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

ML
‹
fun rename_client_map_tac ctxt =

EVERY [
simp_tac (ctxt addsimps [@{thm rename_guarantees_eq_rename_inv}]) 1,
resolve_tac ctxt @{thms guarantees_PLam_I} 1,
assume_tac ctxt 2,

(*preserves: routine reasoning*)
asm_simp_tac (ctxt addsimps [@{thm lift_preserves_sub}]) 2,

(*the guarantee for "lift i (rename client_map Client)" *)
asm_simp_tac

(ctxt addsimps [@{thm lift_guarantees_eq_lift_inv},
@{thm rename_guarantees_eq_rename_inv},
@{thm bij_imp_bij_inv}, @{thm surj_rename},
@{thm inv_inv_eq}]) 1,

asm_simp_tac
(ctxt addsimps [@{thm o_def}, @{thm non_dummy_def}, @{thm guarantees_Int_right}])

1]
›

method_setup rename_client_map = ‹
Scan.succeed (fn ctxt => SIMPLE_METHOD (rename_client_map_tac ctxt))

›

Lifting Client_Increasing to systemState

lemma rename_Client_Increasing: "i ∈ I
==> rename sysOfClient (plam x: I. rename client_map Client) ∈

UNIV guarantees
Increasing (ask o sub i o client) Int
Increasing (rel o sub i o client)"

by rename_client_map

lemma preserves_sub_fst_lift_map: "[| F ∈ preserves w; i 6= j |]
==> F ∈ preserves (sub i o fst o lift_map j o funPair v w)"

apply (auto simp add: lift_map_def split_def linorder_neq_iff o_def)
apply (drule_tac [!] subset_preserves_o [THEN [2] rev_subsetD])
apply (auto simp add: o_def)
done

lemma client_preserves_giv_oo_client_map: "[| i < Nclients; j < Nclients
|]

==> Client ∈ preserves (giv o sub i o fst o lift_map j o client_map)"
apply (cases "i=j")
apply (simp, simp add: o_def non_dummy_def)
apply (drule Client_preserves_dummy [THEN preserves_sub_fst_lift_map])
apply (drule_tac [!] subset_preserves_o [THEN [2] rev_subsetD])
apply (simp add: o_def client_map_def)
done

lemma rename_sysOfClient_ok_Network:
"rename sysOfClient (plam x: lessThan Nclients. rename client_map Client)

ok Network"
by (auto simp add: ok_iff_Allowed client_preserves_giv_oo_client_map)

24.4 Components Lemmas [MUST BE AUTOMATED] 197

lemma rename_sysOfClient_ok_Alloc:
"rename sysOfClient (plam x: lessThan Nclients. rename client_map Client)

ok rename sysOfAlloc Alloc"
by (simp add: ok_iff_Allowed)

lemma rename_sysOfAlloc_ok_Network: "rename sysOfAlloc Alloc ok Network"
by (simp add: ok_iff_Allowed)

declare
rename_sysOfClient_ok_Network [iff]
rename_sysOfClient_ok_Alloc [iff]
rename_sysOfAlloc_ok_Network [iff]

The "ok" laws, re-oriented. But not sure this works: theorem ok_commute is
needed below

declare
rename_sysOfClient_ok_Network [THEN ok_sym, iff]
rename_sysOfClient_ok_Alloc [THEN ok_sym, iff]
rename_sysOfAlloc_ok_Network [THEN ok_sym]

lemma System_Increasing: "i < Nclients
==> System ∈ Increasing (ask o sub i o client) Int

Increasing (rel o sub i o client)"
apply (rule component_guaranteesD [OF rename_Client_Increasing Client_component_System])
apply auto
done

lemmas rename_guarantees_sysOfAlloc_I =
bij_sysOfAlloc [THEN rename_rename_guarantees_eq, THEN iffD2]

lemmas rename_Alloc_Increasing =
Alloc_Increasing

[THEN rename_guarantees_sysOfAlloc_I,
simplified surj_rename o_def sub_apply

rename_image_Increasing bij_sysOfAlloc
allocGiv_o_inv_sysOfAlloc_eq’]

lemma System_Increasing_allocGiv:
"i < Nclients =⇒ System ∈ Increasing (sub i o allocGiv)"

apply (unfold System_def)
apply (simp add: o_def)
apply (rule rename_Alloc_Increasing [THEN guarantees_Join_I1, THEN guaranteesD])
apply auto
done

ML ‹
ML_Thms.bind_thms ("System_Increasing’", list_of_Int @{thm System_Increasing})
›

declare System_Increasing’ [intro!]

19824 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

Follows consequences. The "Always (INT ...) formulation expresses the general
safety property and allows it to be combined using Always_Int_rule below.

lemma System_Follows_rel:
"i < Nclients ==> System ∈ ((sub i o allocRel) Fols (rel o sub i o client))"
apply (auto intro!: Network_Rel [THEN component_guaranteesD])
apply (simp add: ok_commute [of Network])
done

lemma System_Follows_ask:
"i < Nclients ==> System ∈ ((sub i o allocAsk) Fols (ask o sub i o client))"
apply (auto intro!: Network_Ask [THEN component_guaranteesD])
apply (simp add: ok_commute [of Network])
done

lemma System_Follows_allocGiv:
"i < Nclients ==> System ∈ (giv o sub i o client) Fols (sub i o allocGiv)"
apply (auto intro!: Network_Giv [THEN component_guaranteesD]

rename_Alloc_Increasing [THEN component_guaranteesD])
apply (simp_all add: o_def non_dummy_def ok_commute [of Network])
apply (auto intro!: rename_Alloc_Increasing [THEN component_guaranteesD])
done

lemma Always_giv_le_allocGiv: "System ∈ Always (INT i: lessThan Nclients.
{s. (giv o sub i o client) s ≤ (sub i o allocGiv) s})"

apply auto
apply (erule System_Follows_allocGiv [THEN Follows_Bounded])
done

lemma Always_allocAsk_le_ask: "System ∈ Always (INT i: lessThan Nclients.
{s. (sub i o allocAsk) s ≤ (ask o sub i o client) s})"

apply auto
apply (erule System_Follows_ask [THEN Follows_Bounded])
done

lemma Always_allocRel_le_rel: "System ∈ Always (INT i: lessThan Nclients.
{s. (sub i o allocRel) s ≤ (rel o sub i o client) s})"

by (auto intro!: Follows_Bounded System_Follows_rel)

24.5 Proof of the safety property (1)
safety (1), step 1 is System_Follows_rel

safety (1), step 2

lemmas System_Increasing_allocRel = System_Follows_rel [THEN Follows_Increasing1]

safety (1), step 3

lemma System_sum_bounded:
"System ∈ Always {s. (

∑
i ∈ lessThan Nclients. (tokens o sub i o allocGiv)

s)

24.6 Proof of the progress property (2) 199

≤ NbT + (
∑

i ∈ lessThan Nclients. (tokens o sub i o allocRel)
s)}"

apply (simp add: o_apply)
apply (insert Alloc_Safety [THEN rename_guarantees_sysOfAlloc_I])
apply (simp add: o_def)
apply (erule component_guaranteesD)
apply (auto simp add: System_Increasing_allocRel [simplified sub_apply o_def])
done

Follows reasoning
lemma Always_tokens_giv_le_allocGiv: "System ∈ Always (INT i: lessThan Nclients.

{s. (tokens o giv o sub i o client) s
≤ (tokens o sub i o allocGiv) s})"

apply (rule Always_giv_le_allocGiv [THEN Always_weaken])
apply (auto intro: tokens_mono_prefix simp add: o_apply)
done

lemma Always_tokens_allocRel_le_rel: "System ∈ Always (INT i: lessThan Nclients.
{s. (tokens o sub i o allocRel) s
≤ (tokens o rel o sub i o client) s})"

apply (rule Always_allocRel_le_rel [THEN Always_weaken])
apply (auto intro: tokens_mono_prefix simp add: o_apply)
done

safety (1), step 4 (final result!)
theorem System_safety: "System ∈ system_safety"

apply (unfold system_safety_def)
apply (tactic ‹resolve_tac context [Always_Int_rule [@{thm System_sum_bounded},

@{thm Always_tokens_giv_le_allocGiv}, @{thm Always_tokens_allocRel_le_rel}]
RS

@{thm Always_weaken}] 1›)
apply auto
apply (rule sum_fun_mono [THEN order_trans])
apply (drule_tac [2] order_trans)
apply (rule_tac [2] add_le_mono [OF order_refl sum_fun_mono])
prefer 3 apply assumption
apply auto
done

24.6 Proof of the progress property (2)
progress (2), step 1 is System_Follows_ask and System_Follows_rel

progress (2), step 2; see also System_Increasing_allocRel

lemmas System_Increasing_allocAsk = System_Follows_ask [THEN Follows_Increasing1]

progress (2), step 3: lifting Client_Bounded to systemState
lemma rename_Client_Bounded: "i ∈ I

==> rename sysOfClient (plam x: I. rename client_map Client) ∈
UNIV guarantees
Always {s. ∀ elt ∈ set ((ask o sub i o client) s). elt ≤ NbT}"

using image_cong_simp [cong del] by rename_client_map

20024 COMMON DECLARATIONS FOR CHANDY AND CHARPENTIER’S ALLOCATOR

lemma System_Bounded_ask: "i < Nclients
==> System ∈ Always

{s. ∀ elt ∈ set ((ask o sub i o client) s). elt ≤ NbT}"
apply (rule component_guaranteesD [OF rename_Client_Bounded Client_component_System])
apply auto
done

lemma Collect_all_imp_eq: "{x. ∀ y. P y −→ Q x y} = (INT y: {y. P y}. {x.
Q x y})"

apply blast
done

progress (2), step 4
lemma System_Bounded_allocAsk: "System ∈ Always {s. ∀ i<Nclients.

∀ elt ∈ set ((sub i o allocAsk) s). elt ≤ NbT}"
apply (auto simp add: Collect_all_imp_eq)
apply (tactic ‹resolve_tac context [Always_Int_rule [@{thm Always_allocAsk_le_ask},

@{thm System_Bounded_ask}] RS @{thm Always_weaken}] 1›)
apply (auto dest: set_mono)
done

progress (2), step 5 is System_Increasing_allocGiv

progress (2), step 6
lemmas System_Increasing_giv = System_Follows_allocGiv [THEN Follows_Increasing1]

lemma rename_Client_Progress: "i ∈ I
==> rename sysOfClient (plam x: I. rename client_map Client)

∈ Increasing (giv o sub i o client)
guarantees
(INT h. {s. h ≤ (giv o sub i o client) s &

h pfixGe (ask o sub i o client) s}
LeadsTo {s. tokens h ≤ (tokens o rel o sub i o client) s})"

supply image_cong_simp [cong del]
apply rename_client_map
apply (simp add: Client_Progress [simplified o_def])
done

progress (2), step 7
lemma System_Client_Progress:

"System ∈ (INT i : (lessThan Nclients).
INT h. {s. h ≤ (giv o sub i o client) s &

h pfixGe (ask o sub i o client) s}
LeadsTo {s. tokens h ≤ (tokens o rel o sub i o client) s})"

apply (rule INT_I)

apply (rule component_guaranteesD [OF rename_Client_Progress Client_component_System])
apply (auto simp add: System_Increasing_giv)
done

lemmas System_lemma1 =

24.6 Proof of the progress property (2) 201

Always_LeadsToD [OF System_Follows_ask [THEN Follows_Bounded]
System_Follows_allocGiv [THEN Follows_LeadsTo]]

lemmas System_lemma2 =
PSP_Stable [OF System_lemma1

System_Follows_ask [THEN Follows_Increasing1, THEN IncreasingD]]

lemma System_lemma3: "i < Nclients
==> System ∈ {s. h ≤ (sub i o allocGiv) s &

h pfixGe (sub i o allocAsk) s}
LeadsTo
{s. h ≤ (giv o sub i o client) s &

h pfixGe (ask o sub i o client) s}"
apply (rule single_LeadsTo_I)
apply (rule_tac k1 = h and x1 = "(sub i o allocAsk) s"

in System_lemma2 [THEN LeadsTo_weaken])
apply auto
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] prefix_imp_pfixGe)
done

progress (2), step 8: Client i’s "release" action is visible system-wide
lemma System_Alloc_Client_Progress: "i < Nclients

==> System ∈ {s. h ≤ (sub i o allocGiv) s &
h pfixGe (sub i o allocAsk) s}

LeadsTo {s. tokens h ≤ (tokens o sub i o allocRel) s}"
apply (rule LeadsTo_Trans)
prefer 2
apply (drule System_Follows_rel [THEN

mono_tokens [THEN mono_Follows_o, THEN [2] rev_subsetD],
THEN Follows_LeadsTo])

apply (simp add: o_assoc)
apply (rule LeadsTo_Trans)
apply (cut_tac [2] System_Client_Progress)
prefer 2
apply (blast intro: LeadsTo_Basis)

apply (erule System_lemma3)
done

Lifting Alloc_Progress up to the level of systemState

progress (2), step 9
lemma System_Alloc_Progress:
"System ∈ (INT i : (lessThan Nclients).

INT h. {s. h ≤ (sub i o allocAsk) s}
LeadsTo {s. h pfixLe (sub i o allocGiv) s})"

apply (simp only: o_apply sub_def)
apply (insert Alloc_Progress [THEN rename_guarantees_sysOfAlloc_I])
apply (simp add: o_def del: INT_iff)
apply (drule component_guaranteesD)
apply (auto simp add:

System_Increasing_allocRel [simplified sub_apply o_def]
System_Increasing_allocAsk [simplified sub_apply o_def]
System_Bounded_allocAsk [simplified sub_apply o_def]

20225 IMPLEMENTATION OF A MULTIPLE-CLIENT ALLOCATOR FROM A SINGLE-CLIENT ALLOCATOR

System_Alloc_Client_Progress [simplified sub_apply o_def])
done

progress (2), step 10 (final result!)
lemma System_Progress: "System ∈ system_progress"

apply (unfold system_progress_def)
apply (cut_tac System_Alloc_Progress)
apply auto
apply (blast intro: LeadsTo_Trans

System_Follows_allocGiv [THEN Follows_LeadsTo_pfixLe]
System_Follows_ask [THEN Follows_LeadsTo])

done

theorem System_correct: "System ∈ system_spec"
apply (unfold system_spec_def)
apply (blast intro: System_safety System_Progress)
done

Some obsolete lemmas
lemma non_dummy_eq_o_funPair: "non_dummy = (% (g,a,r). (| giv = g, ask =
a, rel = r |)) o

(funPair giv (funPair ask rel))"
apply (rule ext)
apply (auto simp add: o_def non_dummy_def)
done

lemma preserves_non_dummy_eq: "(preserves non_dummy) =
(preserves rel Int preserves ask Int preserves giv)"

apply (simp add: non_dummy_eq_o_funPair)
apply auto

apply (drule_tac w1 = rel in subset_preserves_o [THEN [2] rev_subsetD])
apply (drule_tac [2] w1 = ask in subset_preserves_o [THEN [2] rev_subsetD])
apply (drule_tac [3] w1 = giv in subset_preserves_o [THEN [2] rev_subsetD])
apply (auto simp add: o_def)

done

Could go to Extend.ML
lemma bij_fst_inv_inv_eq: "bij f =⇒ fst (inv (%(x, u). inv f x) z) = f z"

apply (rule fst_inv_equalityI)
apply (rule_tac f = "%z. (f z, h z)" for h in surjI)
apply (simp add: bij_is_inj inv_f_f)

apply (simp add: bij_is_surj surj_f_inv_f)
done

end

25 Implementation of a multiple-client allocator
from a single-client allocator

theory AllocImpl imports AllocBase "../Follows" "../PPROD" begin

203

record ’b merge =
In :: "nat => ’b list"
Out :: "’b list"
iOut :: "nat list"

record (’a,’b) merge_d =
"’b merge" +
dummy :: ’a

definition non_dummy :: "(’a,’b) merge_d => ’b merge" where
"non_dummy s = (|In = In s, Out = Out s, iOut = iOut s|)"

record ’b distr =
In :: "’b list"
iIn :: "nat list"
Out :: "nat => ’b list"

record (’a,’b) distr_d =
"’b distr" +
dummy :: ’a

record allocState =
giv :: "nat list"
ask :: "nat list"
rel :: "nat list"

record ’a allocState_d =
allocState +
dummy :: ’a

record ’a systemState =
allocState +
mergeRel :: "nat merge"
mergeAsk :: "nat merge"
distr :: "nat distr"
dummy :: ’a

definition

merge_increasing :: "(’a,’b) merge_d program set"
where "merge_increasing =

UNIV guarantees (Increasing merge.Out) Int (Increasing merge.iOut)"

definition

merge_eqOut :: "(’a,’b) merge_d program set"
where "merge_eqOut =

20425 IMPLEMENTATION OF A MULTIPLE-CLIENT ALLOCATOR FROM A SINGLE-CLIENT ALLOCATOR

UNIV guarantees
Always {s. length (merge.Out s) = length (merge.iOut s)}"

definition

merge_bounded :: "(’a,’b) merge_d program set"
where "merge_bounded =

UNIV guarantees
Always {s. ∀ elt ∈ set (merge.iOut s). elt < Nclients}"

definition

merge_follows :: "(’a,’b) merge_d program set"
where "merge_follows =

(
⋂

i ∈ lessThan Nclients. Increasing (sub i o merge.In))
guarantees
(
⋂

i ∈ lessThan Nclients.
(%s. nths (merge.Out s)

{k. k < size(merge.iOut s) & merge.iOut s! k = i})
Fols (sub i o merge.In))"

definition

merge_preserves :: "(’a,’b) merge_d program set"
where "merge_preserves = preserves merge.In Int preserves merge_d.dummy"

definition

merge_allowed_acts :: "(’a,’b) merge_d program set"
where "merge_allowed_acts =

{F. AllowedActs F =
insert Id (

⋃
(Acts ‘ preserves (funPair merge.Out iOut)))}"

definition
merge_spec :: "(’a,’b) merge_d program set"
where "merge_spec = merge_increasing Int merge_eqOut Int merge_bounded Int

merge_follows Int merge_allowed_acts Int merge_preserves"

definition

distr_follows :: "(’a,’b) distr_d program set"
where "distr_follows =

Increasing distr.In Int Increasing distr.iIn Int
Always {s. ∀ elt ∈ set (distr.iIn s). elt < Nclients}
guarantees
(
⋂

i ∈ lessThan Nclients.
(sub i o distr.Out) Fols
(%s. nths (distr.In s)

{k. k < size(distr.iIn s) & distr.iIn s ! k = i}))"

definition
distr_allowed_acts :: "(’a,’b) distr_d program set"

205

where "distr_allowed_acts =
{D. AllowedActs D = insert Id (

⋃
(Acts ‘ (preserves distr.Out)))}"

definition
distr_spec :: "(’a,’b) distr_d program set"
where "distr_spec = distr_follows Int distr_allowed_acts"

definition

alloc_increasing :: "’a allocState_d program set"
where "alloc_increasing = UNIV guarantees Increasing giv"

definition

alloc_safety :: "’a allocState_d program set"
where "alloc_safety =

Increasing rel
guarantees Always {s. tokens (giv s) ≤ NbT + tokens (rel s)}"

definition

alloc_progress :: "’a allocState_d program set"
where "alloc_progress =

Increasing ask Int Increasing rel Int
Always {s. ∀ elt ∈ set (ask s). elt ≤ NbT}
Int
(
⋂

h. {s. h ≤ giv s & h pfixGe (ask s)}
LeadsTo
{s. tokens h ≤ tokens (rel s)})

guarantees (
⋂

h. {s. h ≤ ask s} LeadsTo {s. h pfixLe giv s})"

definition

alloc_preserves :: "’a allocState_d program set"
where "alloc_preserves = preserves rel Int

preserves ask Int
preserves allocState_d.dummy"

definition

alloc_allowed_acts :: "’a allocState_d program set"
where "alloc_allowed_acts =

{F. AllowedActs F = insert Id (
⋃

(Acts ‘ (preserves giv)))}"

definition
alloc_spec :: "’a allocState_d program set"
where "alloc_spec = alloc_increasing Int alloc_safety Int alloc_progress

Int
alloc_allowed_acts Int alloc_preserves"

locale Merge =

20625 IMPLEMENTATION OF A MULTIPLE-CLIENT ALLOCATOR FROM A SINGLE-CLIENT ALLOCATOR

fixes M :: "(’a,’b::order) merge_d program"
assumes

Merge_spec: "M ∈ merge_spec"

locale Distrib =
fixes D :: "(’a,’b::order) distr_d program"
assumes

Distrib_spec: "D ∈ distr_spec"

declare subset_preserves_o [THEN subsetD, intro]
declare funPair_o_distrib [simp]
declare Always_INT_distrib [simp]
declare o_apply [simp del]

25.1 Theorems for Merge
context Merge
begin

lemma Merge_Allowed:
"Allowed M = (preserves merge.Out) Int (preserves merge.iOut)"

apply (cut_tac Merge_spec)
apply (auto simp add: merge_spec_def merge_allowed_acts_def Allowed_def

safety_prop_Acts_iff)
done

lemma M_ok_iff [iff]:
"M ok G = (G ∈ preserves merge.Out & G ∈ preserves merge.iOut &

M ∈ Allowed G)"
by (auto simp add: Merge_Allowed ok_iff_Allowed)

lemma Merge_Always_Out_eq_iOut:
"[| G ∈ preserves merge.Out; G ∈ preserves merge.iOut; M ∈ Allowed G

|]
==> M t G ∈ Always {s. length (merge.Out s) = length (merge.iOut s)}"

apply (cut_tac Merge_spec)
apply (force dest: guaranteesD simp add: merge_spec_def merge_eqOut_def)
done

lemma Merge_Bounded:
"[| G ∈ preserves merge.iOut; G ∈ preserves merge.Out; M ∈ Allowed G

|]
==> M t G ∈ Always {s. ∀ elt ∈ set (merge.iOut s). elt < Nclients}"

apply (cut_tac Merge_spec)
apply (force dest: guaranteesD simp add: merge_spec_def merge_bounded_def)
done

lemma Merge_Bag_Follows_lemma:
"[| G ∈ preserves merge.iOut; G ∈ preserves merge.Out; M ∈ Allowed G

25.2 Theorems for Distributor 207

|]
==> M t G ∈ Always

{s. (
∑

i ∈ lessThan Nclients. bag_of (nths (merge.Out s)
{k. k < length (iOut s) & iOut s ! k = i}))

=
(bag_of o merge.Out) s}"

apply (rule Always_Compl_Un_eq [THEN iffD1])
apply (blast intro: Always_Int_I [OF Merge_Always_Out_eq_iOut Merge_Bounded])
apply (rule UNIV_AlwaysI, clarify)
apply (subst bag_of_nths_UN_disjoint [symmetric])

apply (simp)
apply blast

apply (simp add: set_conv_nth)
apply (subgoal_tac

"(
⋃

i ∈ lessThan Nclients. {k. k < length (iOut x) & iOut x ! k = i})
=

lessThan (length (iOut x))")
apply (simp (no_asm_simp) add: o_def)

apply blast
done

lemma Merge_Bag_Follows:
"M ∈ (

⋂
i ∈ lessThan Nclients. Increasing (sub i o merge.In))

guarantees
(bag_of o merge.Out) Fols
(%s.

∑
i ∈ lessThan Nclients. (bag_of o sub i o merge.In) s)"

apply (rule Merge_Bag_Follows_lemma [THEN Always_Follows1, THEN guaranteesI],
auto)
apply (rule Follows_sum)
apply (cut_tac Merge_spec)
apply (auto simp add: merge_spec_def merge_follows_def o_def)
apply (drule guaranteesD)

prefer 3
apply (best intro: mono_bag_of [THEN mono_Follows_apply, THEN subsetD],

auto)
done

end

25.2 Theorems for Distributor
context Distrib
begin

lemma Distr_Increasing_Out:
"D ∈ Increasing distr.In Int Increasing distr.iIn Int

Always {s. ∀ elt ∈ set (distr.iIn s). elt < Nclients}
guarantees
(
⋂

i ∈ lessThan Nclients. Increasing (sub i o distr.Out))"
apply (cut_tac Distrib_spec)
apply (simp add: distr_spec_def distr_follows_def)
apply clarify
apply (blast intro: guaranteesI Follows_Increasing1 dest: guaranteesD)
done

20825 IMPLEMENTATION OF A MULTIPLE-CLIENT ALLOCATOR FROM A SINGLE-CLIENT ALLOCATOR

lemma Distr_Bag_Follows_lemma:
"[| G ∈ preserves distr.Out;

D t G ∈ Always {s. ∀ elt ∈ set (distr.iIn s). elt < Nclients} |]
==> D t G ∈ Always

{s. (
∑

i ∈ lessThan Nclients. bag_of (nths (distr.In s)
{k. k < length (iIn s) & iIn s ! k = i}))

=
bag_of (nths (distr.In s) (lessThan (length (iIn s))))}"

apply (erule Always_Compl_Un_eq [THEN iffD1])
apply (rule UNIV_AlwaysI, clarify)
apply (subst bag_of_nths_UN_disjoint [symmetric])

apply (simp (no_asm))
apply blast

apply (simp add: set_conv_nth)
apply (subgoal_tac

"(
⋃

i ∈ lessThan Nclients. {k. k < length (iIn x) & iIn x ! k = i})
=

lessThan (length (iIn x))")
apply (simp (no_asm_simp))

apply blast
done

lemma D_ok_iff [iff]:
"D ok G = (G ∈ preserves distr.Out & D ∈ Allowed G)"

apply (cut_tac Distrib_spec)
apply (auto simp add: distr_spec_def distr_allowed_acts_def Allowed_def

safety_prop_Acts_iff ok_iff_Allowed)
done

lemma Distr_Bag_Follows:
"D ∈ Increasing distr.In Int Increasing distr.iIn Int

Always {s. ∀ elt ∈ set (distr.iIn s). elt < Nclients}
guarantees
(
⋂

i ∈ lessThan Nclients.
(%s.

∑
i ∈ lessThan Nclients. (bag_of o sub i o distr.Out) s)

Fols
(%s. bag_of (nths (distr.In s) (lessThan (length(distr.iIn s))))))"

apply (rule guaranteesI, clarify)
apply (rule Distr_Bag_Follows_lemma [THEN Always_Follows2], auto)
apply (rule Follows_sum)
apply (cut_tac Distrib_spec)
apply (auto simp add: distr_spec_def distr_follows_def o_def)
apply (drule guaranteesD)

prefer 3
apply (best intro: mono_bag_of [THEN mono_Follows_apply, THEN subsetD],

auto)
done

end

25.3 Theorems for Allocator
lemma alloc_refinement_lemma:

209

"!!f::nat=>nat. (
⋂

i ∈ lessThan n. {s. f i ≤ g i s})
⊆ {s. (

∑
x ∈ lessThan n. f x) ≤ (

∑
x ∈ lessThan n. g x s)}"

apply (induct_tac "n")
apply (auto simp add: lessThan_Suc)
done

lemma alloc_refinement:
"(
⋂

i ∈ lessThan Nclients. Increasing (sub i o allocAsk) Int
Increasing (sub i o allocRel))

Int
Always {s. ∀ i. i<Nclients -->

(∀ elt ∈ set ((sub i o allocAsk) s). elt ≤ NbT)}
Int
(
⋂

i ∈ lessThan Nclients.⋂
h. {s. h ≤ (sub i o allocGiv)s & h pfixGe (sub i o allocAsk)s}

LeadsTo {s. tokens h ≤ (tokens o sub i o allocRel)s})
⊆

(
⋂

i ∈ lessThan Nclients. Increasing (sub i o allocAsk) Int
Increasing (sub i o allocRel))

Int
Always {s. ∀ i. i<Nclients -->

(∀ elt ∈ set ((sub i o allocAsk) s). elt ≤ NbT)}
Int
(
⋂

hf. (
⋂

i ∈ lessThan Nclients.
{s. hf i ≤ (sub i o allocGiv)s & hf i pfixGe (sub i o allocAsk)s})

LeadsTo {s. (
∑

i ∈ lessThan Nclients. tokens (hf i)) ≤
(
∑

i ∈ lessThan Nclients. (tokens o sub i o allocRel)s)})"
apply (auto simp add: ball_conj_distrib)
apply (rename_tac F hf)
apply (rule LeadsTo_weaken_R [OF Finite_stable_completion alloc_refinement_lemma],
blast, blast)
apply (subgoal_tac "F ∈ Increasing (tokens o (sub i o allocRel))")
apply (simp add: Increasing_def o_assoc)

apply (blast intro: mono_tokens [THEN mono_Increasing_o, THEN subsetD])
done

end

26 Distributed Resource Management System:
the Client

theory Client imports "../Rename" AllocBase begin

type_synonym
tokbag = nat — tokbags could be multisets...or any ordered type?

record state =
giv :: "tokbag list" — input history: tokens granted
ask :: "tokbag list" — output history: tokens requested
rel :: "tokbag list" — output history: tokens released
tok :: tokbag — current token request

record ’a state_d =

21026 DISTRIBUTED RESOURCE MANAGEMENT SYSTEM: THE CLIENT

state +
dummy :: ’a — new variables

definition
rel_act :: "(’a state_d * ’a state_d) set"
where "rel_act = {(s,s’).

∃ nrel. nrel = size (rel s) &
s’ = s (| rel := rel s @ [giv s!nrel] |) &
nrel < size (giv s) &
ask s!nrel ≤ giv s!nrel}"

definition
tok_act :: "(’a state_d * ’a state_d) set"
where "tok_act = {(s,s’). s’=s | s’ = s (|tok := Suc (tok s mod NbT) |)}"

definition
ask_act :: "(’a state_d * ’a state_d) set"
where "ask_act = {(s,s’). s’=s |

(s’ = s (|ask := ask s @ [tok s]|))}"

definition
Client :: "’a state_d program"
where "Client =

mk_total_program
({s. tok s ∈ atMost NbT &

giv s = [] & ask s = [] & rel s = []},
{rel_act, tok_act, ask_act},⋃

G ∈ preserves rel Int preserves ask Int preserves tok.
Acts G)"

definition

non_dummy :: "’a state_d => state"
where "non_dummy s = (|giv = giv s, ask = ask s, rel = rel s, tok = tok

s|)"

definition

client_map :: "’a state_d => state*’a"
where "client_map = funPair non_dummy dummy"

declare Client_def [THEN def_prg_Init, simp]
declare Client_def [THEN def_prg_AllowedActs, simp]

211

declare rel_act_def [THEN def_act_simp, simp]
declare tok_act_def [THEN def_act_simp, simp]
declare ask_act_def [THEN def_act_simp, simp]

lemma Client_ok_iff [iff]:
"(Client ok G) =
(G ∈ preserves rel & G ∈ preserves ask & G ∈ preserves tok &
Client ∈ Allowed G)"

by (auto simp add: ok_iff_Allowed Client_def [THEN def_total_prg_Allowed])

Safety property 1: ask, rel are increasing
lemma increasing_ask_rel:

"Client ∈ UNIV guarantees Increasing ask Int Increasing rel"
apply (auto intro!: increasing_imp_Increasing simp add: guar_def preserves_subset_increasing
[THEN subsetD])
apply (auto simp add: Client_def increasing_def)
apply (safety, auto)+
done

declare nth_append [simp] append_one_prefix [simp]

Safety property 2: the client never requests too many tokens. With no Substi-
tution Axiom, we must prove the two invariants simultaneously.
lemma ask_bounded_lemma:

"Client ok G
==> Client t G ∈

Always ({s. tok s ≤ NbT} Int
{s. ∀ elt ∈ set (ask s). elt ≤ NbT})"

apply auto
apply (rule invariantI [THEN stable_Join_Always2], force)
prefer 2
apply (fast elim!: preserves_subset_stable [THEN subsetD] intro!: stable_Int)

apply (simp add: Client_def, safety)
apply (cut_tac m = "tok s" in NbT_pos [THEN mod_less_divisor], auto)
done

export version, with no mention of tok in the postcondition, but unfortunately
tok must be declared local.
lemma ask_bounded:

"Client ∈ UNIV guarantees Always {s. ∀ elt ∈ set (ask s). elt ≤ NbT}"
apply (rule guaranteesI)
apply (erule ask_bounded_lemma [THEN Always_weaken])
apply (rule Int_lower2)
done

** Towards proving the liveness property **
lemma stable_rel_le_giv: "Client ∈ stable {s. rel s ≤ giv s}"
by (simp add: Client_def, safety, auto)

lemma Join_Stable_rel_le_giv:
"[| Client t G ∈ Increasing giv; G ∈ preserves rel |]
==> Client t G ∈ Stable {s. rel s ≤ giv s}"

21226 DISTRIBUTED RESOURCE MANAGEMENT SYSTEM: THE CLIENT

by (rule stable_rel_le_giv [THEN Increasing_preserves_Stable], auto)

lemma Join_Always_rel_le_giv:
"[| Client t G ∈ Increasing giv; G ∈ preserves rel |]
==> Client t G ∈ Always {s. rel s ≤ giv s}"

by (force intro: AlwaysI Join_Stable_rel_le_giv)

lemma transient_lemma:
"Client ∈ transient {s. rel s = k & k<h & h ≤ giv s & h pfixGe ask s}"

apply (simp add: Client_def mk_total_program_def)
apply (rule_tac act = rel_act in totalize_transientI)

apply (auto simp add: Domain_unfold Client_def)
apply (blast intro: less_le_trans prefix_length_le strict_prefix_length_less)

apply (auto simp add: prefix_def genPrefix_iff_nth Ge_def)
apply (blast intro: strict_prefix_length_less)
done

lemma induct_lemma:
"[| Client t G ∈ Increasing giv; Client ok G |]

==> Client t G ∈ {s. rel s = k & k<h & h ≤ giv s & h pfixGe ask s}
LeadsTo {s. k < rel s & rel s ≤ giv s &

h ≤ giv s & h pfixGe ask s}"
apply (rule single_LeadsTo_I)
apply (frule increasing_ask_rel [THEN guaranteesD], auto)
apply (rule transient_lemma [THEN Join_transient_I1, THEN transient_imp_leadsTo,
THEN leadsTo_imp_LeadsTo, THEN PSP_Stable, THEN LeadsTo_weaken])

apply (rule Stable_Int [THEN Stable_Int, THEN Stable_Int])
apply (erule_tac f = giv and x = "giv s" in IncreasingD)

apply (erule_tac f = ask and x = "ask s" in IncreasingD)
apply (erule_tac f = rel and x = "rel s" in IncreasingD)

apply (erule Join_Stable_rel_le_giv, blast)
apply (blast intro: order_less_imp_le order_trans)

apply (blast intro: sym order_less_le [THEN iffD2] order_trans
prefix_imp_pfixGe pfixGe_trans)

done

lemma rel_progress_lemma:
"[| Client t G ∈ Increasing giv; Client ok G |]

==> Client t G ∈ {s. rel s < h & h ≤ giv s & h pfixGe ask s}
LeadsTo {s. h ≤ rel s}"

apply (rule_tac f = "%s. size h - size (rel s) " in LessThan_induct)
apply (auto simp add: vimage_def)
apply (rule single_LeadsTo_I)
apply (rule induct_lemma [THEN LeadsTo_weaken], auto)
apply (blast intro: order_less_le [THEN iffD2] dest: common_prefix_linear)

apply (drule strict_prefix_length_less)+
apply arith
done

lemma client_progress_lemma:
"[| Client t G ∈ Increasing giv; Client ok G |]

213

==> Client t G ∈ {s. h ≤ giv s & h pfixGe ask s}
LeadsTo {s. h ≤ rel s}"

apply (rule Join_Always_rel_le_giv [THEN Always_LeadsToI], simp_all)
apply (rule LeadsTo_Un [THEN LeadsTo_weaken_L])

apply (blast intro: rel_progress_lemma)
apply (rule subset_refl [THEN subset_imp_LeadsTo])

apply (blast intro: order_less_le [THEN iffD2] dest: common_prefix_linear)
done

Progress property: all tokens that are given will be released
lemma client_progress:

"Client ∈
Increasing giv guarantees
(INT h. {s. h ≤ giv s & h pfixGe ask s} LeadsTo {s. h ≤ rel s})"

apply (rule guaranteesI, clarify)
apply (blast intro: client_progress_lemma)
done

This shows that the Client won’t alter other variables in any state that it is
combined with
lemma client_preserves_dummy: "Client ∈ preserves dummy"
by (simp add: Client_def preserves_def, clarify, safety, auto)

* Obsolete lemmas from first version of the Client *
lemma stable_size_rel_le_giv:

"Client ∈ stable {s. size (rel s) ≤ size (giv s)}"
by (simp add: Client_def, safety, auto)

clients return the right number of tokens
lemma ok_guar_rel_prefix_giv:

"Client ∈ Increasing giv guarantees Always {s. rel s ≤ giv s}"
apply (rule guaranteesI)
apply (rule AlwaysI, force)
apply (blast intro: Increasing_preserves_Stable stable_rel_le_giv)
done

end

27 Projections of State Sets
theory Project imports Extend begin

definition projecting :: "[’c program => ’c set, ’a*’b => ’c,
’a program, ’c program set, ’a program set] => bool" where

"projecting C h F X’ X ==
∀ G. extend h FtG ∈ X’ --> Ftproject h (C G) G ∈ X"

definition extending :: "[’c program => ’c set, ’a*’b => ’c, ’a program,
’c program set, ’a program set] => bool" where

"extending C h F Y’ Y ==
∀ G. extend h F ok G --> Ftproject h (C G) G ∈ Y

214 27 PROJECTIONS OF STATE SETS

--> extend h FtG ∈ Y’"

definition subset_closed :: "’a set set => bool" where
"subset_closed U == ∀ A ∈ U. Pow A ⊆ U"

context Extend
begin

lemma project_extend_constrains_I:
"F ∈ A co B ==> project h C (extend h F) ∈ A co B"

apply (auto simp add: extend_act_def project_act_def constrains_def)
done

27.1 Safety
lemma project_unless:

"[| G ∈ stable C; project h C G ∈ A unless B |]
==> G ∈ (C ∩ extend_set h A) unless (extend_set h B)"

apply (simp add: unless_def project_constrains)
apply (blast dest: stable_constrains_Int intro: constrains_weaken)
done

lemma Join_project_constrains:
"(Ftproject h C G ∈ A co B) =

(extend h FtG ∈ (C ∩ extend_set h A) co (extend_set h B) &
F ∈ A co B)"

apply (simp (no_asm) add: project_constrains)
apply (blast intro: extend_constrains [THEN iffD2, THEN constrains_weaken]

dest: constrains_imp_subset)
done

lemma Join_project_stable:
"extend h FtG ∈ stable C
==> (Ftproject h C G ∈ stable A) =

(extend h FtG ∈ stable (C ∩ extend_set h A) &
F ∈ stable A)"

apply (unfold stable_def)
apply (simp only: Join_project_constrains)
apply (blast intro: constrains_weaken dest: constrains_Int)
done

lemma project_constrains_I:
"extend h FtG ∈ extend_set h A co extend_set h B
==> Ftproject h C G ∈ A co B"

apply (simp add: project_constrains extend_constrains)
apply (blast intro: constrains_weaken dest: constrains_imp_subset)
done

lemma project_increasing_I:

27.2 "projecting" and union/intersection (no converses) 215

"extend h FtG ∈ increasing (func o f)
==> Ftproject h C G ∈ increasing func"

apply (unfold increasing_def stable_def)
apply (simp del: Join_constrains

add: project_constrains_I extend_set_eq_Collect)
done

lemma Join_project_increasing:
"(Ftproject h UNIV G ∈ increasing func) =
(extend h FtG ∈ increasing (func o f))"

apply (rule iffI)
apply (erule_tac [2] project_increasing_I)
apply (simp del: Join_stable

add: increasing_def Join_project_stable)
apply (auto simp add: extend_set_eq_Collect extend_stable [THEN iffD1])
done

lemma project_constrains_D:
"Ftproject h UNIV G ∈ A co B
==> extend h FtG ∈ extend_set h A co extend_set h B"

by (simp add: project_constrains extend_constrains)

end

27.2 "projecting" and union/intersection (no converses)
lemma projecting_Int:

"[| projecting C h F XA’ XA; projecting C h F XB’ XB |]
==> projecting C h F (XA’ ∩ XB’) (XA ∩ XB)"

by (unfold projecting_def, blast)

lemma projecting_Un:
"[| projecting C h F XA’ XA; projecting C h F XB’ XB |]
==> projecting C h F (XA’ ∪ XB’) (XA ∪ XB)"

by (unfold projecting_def, blast)

lemma projecting_INT:
"[| !!i. i ∈ I ==> projecting C h F (X’ i) (X i) |]
==> projecting C h F (

⋂
i ∈ I. X’ i) (

⋂
i ∈ I. X i)"

by (unfold projecting_def, blast)

lemma projecting_UN:
"[| !!i. i ∈ I ==> projecting C h F (X’ i) (X i) |]
==> projecting C h F (

⋃
i ∈ I. X’ i) (

⋃
i ∈ I. X i)"

by (unfold projecting_def, blast)

lemma projecting_weaken:
"[| projecting C h F X’ X; U’<=X’; X ⊆ U |] ==> projecting C h F U’

U"
by (unfold projecting_def, auto)

lemma projecting_weaken_L:
"[| projecting C h F X’ X; U’<=X’ |] ==> projecting C h F U’ X"

216 27 PROJECTIONS OF STATE SETS

by (unfold projecting_def, auto)

lemma extending_Int:
"[| extending C h F YA’ YA; extending C h F YB’ YB |]
==> extending C h F (YA’ ∩ YB’) (YA ∩ YB)"

by (unfold extending_def, blast)

lemma extending_Un:
"[| extending C h F YA’ YA; extending C h F YB’ YB |]
==> extending C h F (YA’ ∪ YB’) (YA ∪ YB)"

by (unfold extending_def, blast)

lemma extending_INT:
"[| !!i. i ∈ I ==> extending C h F (Y’ i) (Y i) |]
==> extending C h F (

⋂
i ∈ I. Y’ i) (

⋂
i ∈ I. Y i)"

by (unfold extending_def, blast)

lemma extending_UN:
"[| !!i. i ∈ I ==> extending C h F (Y’ i) (Y i) |]
==> extending C h F (

⋃
i ∈ I. Y’ i) (

⋃
i ∈ I. Y i)"

by (unfold extending_def, blast)

lemma extending_weaken:
"[| extending C h F Y’ Y; Y’<=V’; V ⊆ Y |] ==> extending C h F V’ V"

by (unfold extending_def, auto)

lemma extending_weaken_L:
"[| extending C h F Y’ Y; Y’<=V’ |] ==> extending C h F V’ Y"

by (unfold extending_def, auto)

lemma projecting_UNIV: "projecting C h F X’ UNIV"
by (simp add: projecting_def)

context Extend
begin

lemma projecting_constrains:
"projecting C h F (extend_set h A co extend_set h B) (A co B)"

apply (unfold projecting_def)
apply (blast intro: project_constrains_I)
done

lemma projecting_stable:
"projecting C h F (stable (extend_set h A)) (stable A)"

apply (unfold stable_def)
apply (rule projecting_constrains)
done

lemma projecting_increasing:
"projecting C h F (increasing (func o f)) (increasing func)"

apply (unfold projecting_def)
apply (blast intro: project_increasing_I)
done

27.3 Reachability and project 217

lemma extending_UNIV: "extending C h F UNIV Y"
apply (simp (no_asm) add: extending_def)
done

lemma extending_constrains:
"extending (%G. UNIV) h F (extend_set h A co extend_set h B) (A co B)"

apply (unfold extending_def)
apply (blast intro: project_constrains_D)
done

lemma extending_stable:
"extending (%G. UNIV) h F (stable (extend_set h A)) (stable A)"

apply (unfold stable_def)
apply (rule extending_constrains)
done

lemma extending_increasing:
"extending (%G. UNIV) h F (increasing (func o f)) (increasing func)"

by (force simp only: extending_def Join_project_increasing)

27.3 Reachability and project
lemma reachable_imp_reachable_project:

"[| reachable (extend h FtG) ⊆ C;
z ∈ reachable (extend h FtG) |]

==> f z ∈ reachable (Ftproject h C G)"
apply (erule reachable.induct)
apply (force intro!: reachable.Init simp add: split_extended_all, auto)
apply (rule_tac act = x in reachable.Acts)
apply auto
apply (erule extend_act_D)

apply (rule_tac act1 = "Restrict C act"
in project_act_I [THEN [3] reachable.Acts], auto)

done

lemma project_Constrains_D:
"Ftproject h (reachable (extend h FtG)) G ∈ A Co B
==> extend h FtG ∈ (extend_set h A) Co (extend_set h B)"

apply (unfold Constrains_def)
apply (simp del: Join_constrains

add: Join_project_constrains, clarify)
apply (erule constrains_weaken)
apply (auto intro: reachable_imp_reachable_project)
done

lemma project_Stable_D:
"Ftproject h (reachable (extend h FtG)) G ∈ Stable A
==> extend h FtG ∈ Stable (extend_set h A)"

apply (unfold Stable_def)
apply (simp (no_asm_simp) add: project_Constrains_D)
done

lemma project_Always_D:
"Ftproject h (reachable (extend h FtG)) G ∈ Always A

218 27 PROJECTIONS OF STATE SETS

==> extend h FtG ∈ Always (extend_set h A)"
apply (unfold Always_def)
apply (force intro: reachable.Init simp add: project_Stable_D split_extended_all)
done

lemma project_Increasing_D:
"Ftproject h (reachable (extend h FtG)) G ∈ Increasing func
==> extend h FtG ∈ Increasing (func o f)"

apply (unfold Increasing_def, auto)
apply (subst extend_set_eq_Collect [symmetric])
apply (simp (no_asm_simp) add: project_Stable_D)
done

27.4 Converse results for weak safety: benefits of the ar-
gument C

lemma reachable_project_imp_reachable:
"[| C ⊆ reachable(extend h FtG);

x ∈ reachable (Ftproject h C G) |]
==> ∃ y. h(x,y) ∈ reachable (extend h FtG)"

apply (erule reachable.induct)
apply (force intro: reachable.Init)
apply (auto simp add: project_act_def)
apply (force del: Id_in_Acts intro: reachable.Acts extend_act_D)+
done

lemma project_set_reachable_extend_eq:
"project_set h (reachable (extend h FtG)) =
reachable (Ftproject h (reachable (extend h FtG)) G)"

by (auto dest: subset_refl [THEN reachable_imp_reachable_project]
subset_refl [THEN reachable_project_imp_reachable])

lemma reachable_extend_Join_subset:
"reachable (extend h FtG) ⊆ C
==> reachable (extend h FtG) ⊆

extend_set h (reachable (Ftproject h C G))"
apply (auto dest: reachable_imp_reachable_project)
done

lemma project_Constrains_I:
"extend h FtG ∈ (extend_set h A) Co (extend_set h B)
==> Ftproject h (reachable (extend h FtG)) G ∈ A Co B"

apply (unfold Constrains_def)
apply (simp del: Join_constrains

add: Join_project_constrains extend_set_Int_distrib)
apply (rule conjI)
prefer 2
apply (force elim: constrains_weaken_L

dest!: extend_constrains_project_set
subset_refl [THEN reachable_project_imp_reachable])

apply (blast intro: constrains_weaken_L)
done

27.5 A lot of redundant theorems: all are proved to facilitate reasoning about guarantees.219

lemma project_Stable_I:
"extend h FtG ∈ Stable (extend_set h A)
==> Ftproject h (reachable (extend h FtG)) G ∈ Stable A"

apply (unfold Stable_def)
apply (simp (no_asm_simp) add: project_Constrains_I)
done

lemma project_Always_I:
"extend h FtG ∈ Always (extend_set h A)
==> Ftproject h (reachable (extend h FtG)) G ∈ Always A"

apply (unfold Always_def)
apply (auto simp add: project_Stable_I)
apply (unfold extend_set_def, blast)
done

lemma project_Increasing_I:
"extend h FtG ∈ Increasing (func o f)
==> Ftproject h (reachable (extend h FtG)) G ∈ Increasing func"

apply (unfold Increasing_def, auto)
apply (simp (no_asm_simp) add: extend_set_eq_Collect project_Stable_I)
done

lemma project_Constrains:
"(Ftproject h (reachable (extend h FtG)) G ∈ A Co B) =
(extend h FtG ∈ (extend_set h A) Co (extend_set h B))"

apply (blast intro: project_Constrains_I project_Constrains_D)
done

lemma project_Stable:
"(Ftproject h (reachable (extend h FtG)) G ∈ Stable A) =
(extend h FtG ∈ Stable (extend_set h A))"

apply (unfold Stable_def)
apply (rule project_Constrains)
done

lemma project_Increasing:
"(Ftproject h (reachable (extend h FtG)) G ∈ Increasing func) =
(extend h FtG ∈ Increasing (func o f))"

apply (simp (no_asm_simp) add: Increasing_def project_Stable extend_set_eq_Collect)
done

27.5 A lot of redundant theorems: all are proved to facil-
itate reasoning about guarantees.

lemma projecting_Constrains:
"projecting (%G. reachable (extend h FtG)) h F

(extend_set h A Co extend_set h B) (A Co B)"

apply (unfold projecting_def)
apply (blast intro: project_Constrains_I)
done

lemma projecting_Stable:
"projecting (%G. reachable (extend h FtG)) h F

220 27 PROJECTIONS OF STATE SETS

(Stable (extend_set h A)) (Stable A)"
apply (unfold Stable_def)
apply (rule projecting_Constrains)
done

lemma projecting_Always:
"projecting (%G. reachable (extend h FtG)) h F

(Always (extend_set h A)) (Always A)"
apply (unfold projecting_def)
apply (blast intro: project_Always_I)
done

lemma projecting_Increasing:
"projecting (%G. reachable (extend h FtG)) h F

(Increasing (func o f)) (Increasing func)"
apply (unfold projecting_def)
apply (blast intro: project_Increasing_I)
done

lemma extending_Constrains:
"extending (%G. reachable (extend h FtG)) h F

(extend_set h A Co extend_set h B) (A Co B)"
apply (unfold extending_def)
apply (blast intro: project_Constrains_D)
done

lemma extending_Stable:
"extending (%G. reachable (extend h FtG)) h F

(Stable (extend_set h A)) (Stable A)"
apply (unfold extending_def)
apply (blast intro: project_Stable_D)
done

lemma extending_Always:
"extending (%G. reachable (extend h FtG)) h F

(Always (extend_set h A)) (Always A)"
apply (unfold extending_def)
apply (blast intro: project_Always_D)
done

lemma extending_Increasing:
"extending (%G. reachable (extend h FtG)) h F

(Increasing (func o f)) (Increasing func)"
apply (unfold extending_def)
apply (blast intro: project_Increasing_D)
done

27.6 leadsETo in the precondition (??)
27.6.1 transient

lemma transient_extend_set_imp_project_transient:
"[| G ∈ transient (C ∩ extend_set h A); G ∈ stable C |]
==> project h C G ∈ transient (project_set h C ∩ A)"

27.6 leadsETo in the precondition (??) 221

apply (auto simp add: transient_def Domain_project_act)
apply (subgoal_tac "act ‘‘ (C ∩ extend_set h A) ⊆ - extend_set h A")
prefer 2
apply (simp add: stable_def constrains_def, blast)

apply (erule_tac V = "AA ⊆ -C ∪ BB" for AA BB in thin_rl)
apply (drule bspec, assumption)
apply (simp add: extend_set_def project_act_def, blast)
done

lemma project_extend_transient_D:
"project h C (extend h F) ∈ transient (project_set h C ∩ D)
==> F ∈ transient (project_set h C ∩ D)"

apply (simp add: transient_def Domain_project_act, safe)
apply blast+
done

27.6.2 ensures – a primitive combining progress with safety
lemma ensures_extend_set_imp_project_ensures:

"[| extend h F ∈ stable C; G ∈ stable C;
extend h FtG ∈ A ensures B; A-B = C ∩ extend_set h D |]

==> Ftproject h C G
∈ (project_set h C ∩ project_set h A) ensures (project_set h B)"

apply (simp add: ensures_def project_constrains extend_transient,
clarify)

apply (intro conjI)

apply (blast intro: extend_stable_project_set
[THEN stableD, THEN constrains_Int, THEN constrains_weaken]

dest!: extend_constrains_project_set equalityD1)

apply (erule stableD [THEN constrains_Int, THEN constrains_weaken])
apply assumption

apply (simp (no_asm_use) add: extend_set_def)
apply blast

apply (simp add: extend_set_Int_distrib extend_set_Un_distrib)
apply (blast intro!: extend_set_project_set [THEN subsetD], blast)

apply auto
prefer 2
apply (force dest!: equalityD1

intro: transient_extend_set_imp_project_transient
[THEN transient_strengthen])

apply (simp (no_asm_use) add: Int_Diff)
apply (force dest!: equalityD1

intro: transient_extend_set_imp_project_transient
[THEN project_extend_transient_D, THEN transient_strengthen])

done

Transferring a transient property upwards

lemma project_transient_extend_set:

222 27 PROJECTIONS OF STATE SETS

"project h C G ∈ transient (project_set h C ∩ A - B)
==> G ∈ transient (C ∩ extend_set h A - extend_set h B)"

apply (simp add: transient_def project_set_def extend_set_def project_act_def)
apply (elim disjE bexE)
apply (rule_tac x=Id in bexI)
apply (blast intro!: rev_bexI)+

done

lemma project_unless2:
"[| G ∈ stable C; project h C G ∈ (project_set h C ∩ A) unless B |]

==> G ∈ (C ∩ extend_set h A) unless (extend_set h B)"
by (auto dest: stable_constrains_Int intro: constrains_weaken

simp add: unless_def project_constrains Diff_eq Int_assoc
Int_extend_set_lemma)

lemma extend_unless:
"[|extend h F ∈ stable C; F ∈ A unless B|]
==> extend h F ∈ C ∩ extend_set h A unless extend_set h B"

apply (simp add: unless_def stable_def)
apply (drule constrains_Int)
apply (erule extend_constrains [THEN iffD2])
apply (erule constrains_weaken, blast)
apply blast
done

lemma Join_project_ensures:
"[| extend h FtG ∈ stable C;

Ftproject h C G ∈ A ensures B |]
==> extend h FtG ∈ (C ∩ extend_set h A) ensures (extend_set h B)"

apply (auto simp add: ensures_eq extend_unless project_unless)
apply (blast intro: extend_transient [THEN iffD2] transient_strengthen)
apply (blast intro: project_transient_extend_set transient_strengthen)
done

Lemma useful for both STRONG and WEAK progress, but the transient con-
dition’s very strong
lemma PLD_lemma:

"[| extend h FtG ∈ stable C;
Ftproject h C G ∈ (project_set h C ∩ A) leadsTo B |]

==> extend h FtG ∈
C ∩ extend_set h (project_set h C ∩ A) leadsTo (extend_set h B)"

apply (erule leadsTo_induct)
apply (blast intro: Join_project_ensures)

apply (blast intro: psp_stable2 [THEN leadsTo_weaken_L] leadsTo_Trans)
apply (simp del: UN_simps add: Int_UN_distrib leadsTo_UN extend_set_Union)
done

lemma project_leadsTo_D_lemma:
"[| extend h FtG ∈ stable C;

Ftproject h C G ∈ (project_set h C ∩ A) leadsTo B |]
==> extend h FtG ∈ (C ∩ extend_set h A) leadsTo (extend_set h B)"

27.7 Towards the theorem project_Ensures_D 223

apply (rule PLD_lemma [THEN leadsTo_weaken])
apply (auto simp add: split_extended_all)
done

lemma Join_project_LeadsTo:
"[| C = (reachable (extend h FtG));

Ftproject h C G ∈ A LeadsTo B |]
==> extend h FtG ∈ (extend_set h A) LeadsTo (extend_set h B)"

by (simp del: Join_stable add: LeadsTo_def project_leadsTo_D_lemma
project_set_reachable_extend_eq)

27.7 Towards the theorem project_Ensures_D

lemma project_ensures_D_lemma:
"[| G ∈ stable ((C ∩ extend_set h A) - (extend_set h B));

Ftproject h C G ∈ (project_set h C ∩ A) ensures B;
extend h FtG ∈ stable C |]

==> extend h FtG ∈ (C ∩ extend_set h A) ensures (extend_set h B)"

apply (auto intro!: project_unless2 [unfolded unless_def]
intro: project_extend_constrains_I
simp add: ensures_def)

prefer 2
apply (blast intro: project_transient_extend_set)

apply (force elim!: extend_transient [THEN iffD2, THEN transient_strengthen]
simp add: split_extended_all)

done

lemma project_ensures_D:
"[| Ftproject h UNIV G ∈ A ensures B;

G ∈ stable (extend_set h A - extend_set h B) |]
==> extend h FtG ∈ (extend_set h A) ensures (extend_set h B)"

apply (rule project_ensures_D_lemma [of _ UNIV, elim_format], auto)
done

lemma project_Ensures_D:
"[| Ftproject h (reachable (extend h FtG)) G ∈ A Ensures B;

G ∈ stable (reachable (extend h FtG) ∩ extend_set h A -
extend_set h B) |]

==> extend h FtG ∈ (extend_set h A) Ensures (extend_set h B)"
apply (unfold Ensures_def)
apply (rule project_ensures_D_lemma [elim_format])
apply (auto simp add: project_set_reachable_extend_eq [symmetric])
done

27.8 Guarantees
lemma project_act_Restrict_subset_project_act:

"project_act h (Restrict C act) ⊆ project_act h act"
apply (auto simp add: project_act_def)
done

224 27 PROJECTIONS OF STATE SETS

lemma subset_closed_ok_extend_imp_ok_project:
"[| extend h F ok G; subset_closed (AllowedActs F) |]
==> F ok project h C G"

apply (auto simp add: ok_def)
apply (rename_tac act)
apply (drule subsetD, blast)
apply (rule_tac x = "Restrict C (extend_act h act)" in rev_image_eqI)
apply simp +
apply (cut_tac project_act_Restrict_subset_project_act)
apply (auto simp add: subset_closed_def)
done

lemma project_guarantees_raw:
assumes xguary: "F ∈ X guarantees Y"

and closed: "subset_closed (AllowedActs F)"
and project: "!!G. extend h FtG ∈ X’

==> Ftproject h (C G) G ∈ X"
and extend: "!!G. [| Ftproject h (C G) G ∈ Y |]

==> extend h FtG ∈ Y’"
shows "extend h F ∈ X’ guarantees Y’"

apply (rule xguary [THEN guaranteesD, THEN extend, THEN guaranteesI])
apply (blast intro: closed subset_closed_ok_extend_imp_ok_project)
apply (erule project)
done

lemma project_guarantees:
"[| F ∈ X guarantees Y; subset_closed (AllowedActs F);

projecting C h F X’ X; extending C h F Y’ Y |]
==> extend h F ∈ X’ guarantees Y’"

apply (rule guaranteesI)
apply (auto simp add: guaranteesD projecting_def extending_def

subset_closed_ok_extend_imp_ok_project)
done

27.9 guarantees corollaries
27.9.1 Some could be deleted: the required versions are easy to prove

lemma extend_guar_increasing:
"[| F ∈ UNIV guarantees increasing func;

subset_closed (AllowedActs F) |]
==> extend h F ∈ X’ guarantees increasing (func o f)"

apply (erule project_guarantees)
apply (rule_tac [3] extending_increasing)
apply (rule_tac [2] projecting_UNIV, auto)
done

lemma extend_guar_Increasing:

225

"[| F ∈ UNIV guarantees Increasing func;
subset_closed (AllowedActs F) |]

==> extend h F ∈ X’ guarantees Increasing (func o f)"
apply (erule project_guarantees)
apply (rule_tac [3] extending_Increasing)
apply (rule_tac [2] projecting_UNIV, auto)
done

lemma extend_guar_Always:
"[| F ∈ Always A guarantees Always B;

subset_closed (AllowedActs F) |]
==> extend h F

∈ Always(extend_set h A) guarantees Always(extend_set h B)"
apply (erule project_guarantees)
apply (rule_tac [3] extending_Always)
apply (rule_tac [2] projecting_Always, auto)
done

27.9.2 Guarantees with a leadsTo postcondition
lemma project_leadsTo_D:

"Ftproject h UNIV G ∈ A leadsTo B
==> extend h FtG ∈ (extend_set h A) leadsTo (extend_set h B)"

apply (rule_tac C1 = UNIV in project_leadsTo_D_lemma [THEN leadsTo_weaken],
auto)
done

lemma project_LeadsTo_D:
"Ftproject h (reachable (extend h FtG)) G ∈ A LeadsTo B

==> extend h FtG ∈ (extend_set h A) LeadsTo (extend_set h B)"
apply (rule refl [THEN Join_project_LeadsTo], auto)
done

lemma extending_leadsTo:
"extending (%G. UNIV) h F

(extend_set h A leadsTo extend_set h B) (A leadsTo B)"
apply (unfold extending_def)
apply (blast intro: project_leadsTo_D)
done

lemma extending_LeadsTo:
"extending (%G. reachable (extend h FtG)) h F

(extend_set h A LeadsTo extend_set h B) (A LeadsTo B)"
apply (unfold extending_def)
apply (blast intro: project_LeadsTo_D)
done

end

end

28 Progress Under Allowable Sets
theory ELT imports Project begin

226 28 PROGRESS UNDER ALLOWABLE SETS

inductive_set

elt :: "[’a set set, ’a program] => (’a set * ’a set) set"
for CC :: "’a set set" and F :: "’a program"

where

Basis: "[| F ∈ A ensures B; A-B ∈ (insert {} CC) |] ==> (A,B) ∈ elt
CC F"

| Trans: "[| (A,B) ∈ elt CC F; (B,C) ∈ elt CC F |] ==> (A,C) ∈ elt CC F"

| Union: "∀ A∈S. (A,B) ∈ elt CC F ==> (Union S, B) ∈ elt CC F"

definition

givenBy :: "[’a => ’b] => ’a set set"
where "givenBy f = range (%B. f-‘ B)"

definition

leadsETo :: "[’a set, ’a set set, ’a set] => ’a program set"
(‹(3_/ leadsTo[_]/ _)› [80,0,80] 80)

where "leadsETo A CC B = {F. (A,B) ∈ elt CC F}"

definition
LeadsETo :: "[’a set, ’a set set, ’a set] => ’a program set"

(‹(3_/ LeadsTo[_]/ _)› [80,0,80] 80)
where "LeadsETo A CC B =

{F. F ∈ (reachable F Int A) leadsTo[(%C. reachable F Int C) ‘ CC] B}"

lemma givenBy_id [simp]: "givenBy id = UNIV"
by (unfold givenBy_def, auto)

lemma givenBy_eq_all: "(givenBy v) = {A. ∀ x∈A. ∀ y. v x = v y −→ y ∈ A}"
apply (unfold givenBy_def, safe)
apply (rule_tac [2] x = "v ‘ _" in image_eqI, auto)
done

lemma givenByI: "(
∧

x y. [| x ∈ A; v x = v y |] ==> y ∈ A) ==> A ∈ givenBy
v"
by (subst givenBy_eq_all, blast)

lemma givenByD: "[| A ∈ givenBy v; x ∈ A; v x = v y |] ==> y ∈ A"
by (unfold givenBy_def, auto)

lemma empty_mem_givenBy [iff]: "{} ∈ givenBy v"
by (blast intro!: givenByI)

lemma givenBy_imp_eq_Collect: "A ∈ givenBy v ==> ∃ P. A = {s. P(v s)}"

227

apply (rule_tac x = "λn. ∃ s. v s = n ∧ s ∈ A" in exI)
apply (simp (no_asm_use) add: givenBy_eq_all)
apply blast
done

lemma Collect_mem_givenBy: "{s. P(v s)} ∈ givenBy v"
by (unfold givenBy_def, best)

lemma givenBy_eq_Collect: "givenBy v = {A. ∃ P. A = {s. P(v s)}}"
by (blast intro: Collect_mem_givenBy givenBy_imp_eq_Collect)

lemma preserves_givenBy_imp_stable:
"[| F ∈ preserves v; D ∈ givenBy v |] ==> F ∈ stable D"

by (force simp add: preserves_subset_stable [THEN subsetD] givenBy_eq_Collect)

lemma givenBy_o_subset: "givenBy (w o v) <= givenBy v"
apply (simp (no_asm) add: givenBy_eq_Collect)
apply best
done

lemma givenBy_DiffI:
"[| A ∈ givenBy v; B ∈ givenBy v |] ==> A-B ∈ givenBy v"

apply (simp (no_asm_use) add: givenBy_eq_Collect)
apply safe
apply (rule_tac x = "%z. R z & ~ Q z" for R Q in exI)
unfolding set_diff_eq
apply auto
done

lemma leadsETo_Basis [intro]:
"[| F ∈ A ensures B; A-B ∈ insert {} CC |] ==> F ∈ A leadsTo[CC] B"

apply (unfold leadsETo_def)
apply (blast intro: elt.Basis)
done

lemma leadsETo_Trans:
"[| F ∈ A leadsTo[CC] B; F ∈ B leadsTo[CC] C |] ==> F ∈ A leadsTo[CC]

C"
apply (unfold leadsETo_def)
apply (blast intro: elt.Trans)
done

lemma leadsETo_Un_duplicate:
"F ∈ A leadsTo[CC] (A’ ∪ A’) =⇒ F ∈ A leadsTo[CC] A’"

by (simp add: Un_ac)

lemma leadsETo_Un_duplicate2:
"F ∈ A leadsTo[CC] (A’ ∪ C ∪ C) ==> F ∈ A leadsTo[CC] (A’ Un C)"

228 28 PROGRESS UNDER ALLOWABLE SETS

by (simp add: Un_ac)

lemma leadsETo_Union:
"(
∧

A. A ∈ S =⇒ F ∈ A leadsTo[CC] B) =⇒ F ∈ (
⋃

S) leadsTo[CC] B"
apply (unfold leadsETo_def)
apply (blast intro: elt.Union)
done

lemma leadsETo_UN:
"(
∧

i. i ∈ I =⇒ F ∈ (A i) leadsTo[CC] B)
==> F ∈ (UN i:I. A i) leadsTo[CC] B"

apply (blast intro: leadsETo_Union)
done

lemma leadsETo_induct:
"[| F ∈ za leadsTo[CC] zb;

!!A B. [| F ∈ A ensures B; A-B ∈ insert {} CC |] ==> P A B;
!!A B C. [| F ∈ A leadsTo[CC] B; P A B; F ∈ B leadsTo[CC] C; P B C

|]
==> P A C;

!!B S. ∀ A∈S. F ∈ A leadsTo[CC] B & P A B ==> P (
⋃

S) B
|] ==> P za zb"

apply (unfold leadsETo_def)
apply (drule CollectD)
apply (erule elt.induct, blast+)
done

lemma leadsETo_mono: "CC’ <= CC ==> (A leadsTo[CC’] B) <= (A leadsTo[CC]
B)"
apply safe
apply (erule leadsETo_induct)
prefer 3 apply (blast intro: leadsETo_Union)
prefer 2 apply (blast intro: leadsETo_Trans)
apply blast
done

lemma leadsETo_Trans_Un:
"[| F ∈ A leadsTo[CC] B; F ∈ B leadsTo[DD] C |]
==> F ∈ A leadsTo[CC Un DD] C"

by (blast intro: leadsETo_mono [THEN subsetD] leadsETo_Trans)

lemma leadsETo_Union_Int:
"(!!A. A ∈ S ==> F ∈ (A Int C) leadsTo[CC] B)
==> F ∈ (

⋃
S Int C) leadsTo[CC] B"

apply (unfold leadsETo_def)
apply (simp only: Int_Union_Union)
apply (blast intro: elt.Union)
done

229

lemma leadsETo_Un:
"[| F ∈ A leadsTo[CC] C; F ∈ B leadsTo[CC] C |]
==> F ∈ (A Un B) leadsTo[CC] C"

using leadsETo_Union [of "{A, B}" F CC C] by auto

lemma single_leadsETo_I:
"(
∧

x. x ∈ A ==> F ∈ {x} leadsTo[CC] B) =⇒ F ∈ A leadsTo[CC] B"
by (subst UN_singleton [symmetric], rule leadsETo_UN, blast)

lemma subset_imp_leadsETo: "A<=B =⇒ F ∈ A leadsTo[CC] B"
by (simp add: subset_imp_ensures [THEN leadsETo_Basis]

Diff_eq_empty_iff [THEN iffD2])

lemmas empty_leadsETo = empty_subsetI [THEN subset_imp_leadsETo, simp]

lemma leadsETo_weaken_R:
"[| F ∈ A leadsTo[CC] A’; A’<=B’ |] ==> F ∈ A leadsTo[CC] B’"

by (blast intro: subset_imp_leadsETo leadsETo_Trans)

lemma leadsETo_weaken_L:
"[| F ∈ A leadsTo[CC] A’; B<=A |] ==> F ∈ B leadsTo[CC] A’"

by (blast intro: leadsETo_Trans subset_imp_leadsETo)

lemma leadsETo_Un_distrib:
"F ∈ (A Un B) leadsTo[CC] C =
(F ∈ A leadsTo[CC] C ∧ F ∈ B leadsTo[CC] C)"

by (blast intro: leadsETo_Un leadsETo_weaken_L)

lemma leadsETo_UN_distrib:
"F ∈ (UN i:I. A i) leadsTo[CC] B =
(∀ i∈I. F ∈ (A i) leadsTo[CC] B)"

by (blast intro: leadsETo_UN leadsETo_weaken_L)

lemma leadsETo_Union_distrib:
"F ∈ (

⋃
S) leadsTo[CC] B = (∀ A∈S. F ∈ A leadsTo[CC] B)"

by (blast intro: leadsETo_Union leadsETo_weaken_L)

lemma leadsETo_weaken:
"[| F ∈ A leadsTo[CC’] A’; B<=A; A’<=B’; CC’ <= CC |]
==> F ∈ B leadsTo[CC] B’"

apply (drule leadsETo_mono [THEN subsetD], assumption)
apply (blast del: subsetCE

intro: leadsETo_weaken_R leadsETo_weaken_L leadsETo_Trans)
done

lemma leadsETo_givenBy:
"[| F ∈ A leadsTo[CC] A’; CC <= givenBy v |]

230 28 PROGRESS UNDER ALLOWABLE SETS

==> F ∈ A leadsTo[givenBy v] A’"
by (blast intro: leadsETo_weaken)

lemma leadsETo_Diff:
"[| F ∈ (A-B) leadsTo[CC] C; F ∈ B leadsTo[CC] C |]
==> F ∈ A leadsTo[CC] C"

by (blast intro: leadsETo_Un leadsETo_weaken)

lemma leadsETo_Un_Un:
"[| F ∈ A leadsTo[CC] A’; F ∈ B leadsTo[CC] B’ |]
==> F ∈ (A Un B) leadsTo[CC] (A’ Un B’)"

by (blast intro: leadsETo_Un leadsETo_weaken_R)

lemma leadsETo_cancel2:
"[| F ∈ A leadsTo[CC] (A’ Un B); F ∈ B leadsTo[CC] B’ |]
==> F ∈ A leadsTo[CC] (A’ Un B’)"

by (blast intro: leadsETo_Un_Un subset_imp_leadsETo leadsETo_Trans)

lemma leadsETo_cancel1:
"[| F ∈ A leadsTo[CC] (B Un A’); F ∈ B leadsTo[CC] B’ |]

==> F ∈ A leadsTo[CC] (B’ Un A’)"
apply (simp add: Un_commute)
apply (blast intro!: leadsETo_cancel2)
done

lemma leadsETo_cancel_Diff1:
"[| F ∈ A leadsTo[CC] (B Un A’); F ∈ (B-A’) leadsTo[CC] B’ |]

==> F ∈ A leadsTo[CC] (B’ Un A’)"
apply (rule leadsETo_cancel1)
prefer 2 apply assumption

apply simp_all
done

lemma e_psp_stable:
"[| F ∈ A leadsTo[CC] A’; F ∈ stable B; ∀ C∈CC. C Int B ∈ CC |]
==> F ∈ (A Int B) leadsTo[CC] (A’ Int B)"

apply (unfold stable_def)
apply (erule leadsETo_induct)
prefer 3 apply (blast intro: leadsETo_Union_Int)
prefer 2 apply (blast intro: leadsETo_Trans)
apply (rule leadsETo_Basis)
prefer 2 apply (force simp add: Diff_Int_distrib2 [symmetric])
apply (simp add: ensures_def Diff_Int_distrib2 [symmetric]

231

Int_Un_distrib2 [symmetric])
apply (blast intro: transient_strengthen constrains_Int)
done

lemma e_psp_stable2:
"[| F ∈ A leadsTo[CC] A’; F ∈ stable B; ∀ C∈CC. C Int B ∈ CC |]
==> F ∈ (B Int A) leadsTo[CC] (B Int A’)"

by (simp (no_asm_simp) add: e_psp_stable Int_ac)

lemma e_psp:
"[| F ∈ A leadsTo[CC] A’; F ∈ B co B’;

∀ C∈CC. C Int B Int B’ ∈ CC |]
==> F ∈ (A Int B’) leadsTo[CC] ((A’ Int B) Un (B’ - B))"

apply (erule leadsETo_induct)
prefer 3 apply (blast intro: leadsETo_Union_Int)

apply (rule_tac [2] leadsETo_Un_duplicate2)
apply (erule_tac [2] leadsETo_cancel_Diff1)
prefer 2
apply (simp add: Int_Diff Diff_triv)
apply (blast intro: leadsETo_weaken_L dest: constrains_imp_subset)

apply (rule leadsETo_Basis)
apply (blast intro: psp_ensures)
apply (subgoal_tac "A Int B’ - (Ba Int B Un (B’ - B)) = (A - Ba) Int B Int
B’")
apply auto
done

lemma e_psp2:
"[| F ∈ A leadsTo[CC] A’; F ∈ B co B’;

∀ C∈CC. C Int B Int B’ ∈ CC |]
==> F ∈ (B’ Int A) leadsTo[CC] ((B Int A’) Un (B’ - B))"

by (simp add: e_psp Int_ac)

lemma gen_leadsETo_imp_Join_leadsETo:
"[| F ∈ (A leadsTo[givenBy v] B); G ∈ preserves v;

FtG ∈ stable C |]
==> FtG ∈ ((C Int A) leadsTo[(%D. C Int D) ‘ givenBy v] B)"

apply (erule leadsETo_induct)
prefer 3
apply (subst Int_Union)
apply (blast intro: leadsETo_UN)

prefer 2
apply (blast intro: e_psp_stable2 [THEN leadsETo_weaken_L] leadsETo_Trans)

apply (rule leadsETo_Basis)
apply (auto simp add: Diff_eq_empty_iff [THEN iffD2]

Int_Diff ensures_def givenBy_eq_Collect)
prefer 3 apply (blast intro: transient_strengthen)
apply (drule_tac [2] P1 = P in preserves_subset_stable [THEN subsetD])

232 28 PROGRESS UNDER ALLOWABLE SETS

apply (drule_tac P1 = P in preserves_subset_stable [THEN subsetD])
apply (unfold stable_def)
apply (blast intro: constrains_Int [THEN constrains_weaken])+
done

lemma leadsETo_subset_leadsTo: "(A leadsTo[CC] B) <= (A leadsTo B)"
apply safe
apply (erule leadsETo_induct)

prefer 3 apply (blast intro: leadsTo_Union)
prefer 2 apply (blast intro: leadsTo_Trans, blast)

done

lemma leadsETo_UNIV_eq_leadsTo: "(A leadsTo[UNIV] B) = (A leadsTo B)"
apply safe
apply (erule leadsETo_subset_leadsTo [THEN subsetD])

apply (erule leadsTo_induct)
prefer 3 apply (blast intro: leadsETo_Union)

prefer 2 apply (blast intro: leadsETo_Trans, blast)
done

lemma LeadsETo_eq_leadsETo:
"A LeadsTo[CC] B =

{F. F ∈ (reachable F Int A) leadsTo[(%C. reachable F Int C) ‘ CC]

(reachable F Int B)}"
apply (unfold LeadsETo_def)
apply (blast dest: e_psp_stable2 intro: leadsETo_weaken)
done

lemma LeadsETo_Trans:
"[| F ∈ A LeadsTo[CC] B; F ∈ B LeadsTo[CC] C |]
==> F ∈ A LeadsTo[CC] C"

apply (simp add: LeadsETo_eq_leadsETo)
apply (blast intro: leadsETo_Trans)
done

lemma LeadsETo_Union:
"(
∧

A. A ∈ S =⇒ F ∈ A LeadsTo[CC] B) =⇒ F ∈ (
⋃

S) LeadsTo[CC] B"
apply (simp add: LeadsETo_def)
apply (subst Int_Union)
apply (blast intro: leadsETo_UN)
done

lemma LeadsETo_UN:
"(
∧

i. i ∈ I =⇒ F ∈ (A i) LeadsTo[CC] B)

233

=⇒ F ∈ (UN i:I. A i) LeadsTo[CC] B"
apply (blast intro: LeadsETo_Union)
done

lemma LeadsETo_Un:
"[| F ∈ A LeadsTo[CC] C; F ∈ B LeadsTo[CC] C |]
==> F ∈ (A Un B) LeadsTo[CC] C"

using LeadsETo_Union [of "{A, B}" F CC C] by auto

lemma single_LeadsETo_I:
"(
∧

s. s ∈ A ==> F ∈ {s} LeadsTo[CC] B) =⇒ F ∈ A LeadsTo[CC] B"
by (subst UN_singleton [symmetric], rule LeadsETo_UN, blast)

lemma subset_imp_LeadsETo:
"A <= B =⇒ F ∈ A LeadsTo[CC] B"

apply (simp (no_asm) add: LeadsETo_def)
apply (blast intro: subset_imp_leadsETo)
done

lemmas empty_LeadsETo = empty_subsetI [THEN subset_imp_LeadsETo]

lemma LeadsETo_weaken_R:
"[| F ∈ A LeadsTo[CC] A’; A’ <= B’ |] ==> F ∈ A LeadsTo[CC] B’"

apply (simp add: LeadsETo_def)
apply (blast intro: leadsETo_weaken_R)
done

lemma LeadsETo_weaken_L:
"[| F ∈ A LeadsTo[CC] A’; B <= A |] ==> F ∈ B LeadsTo[CC] A’"

apply (simp add: LeadsETo_def)
apply (blast intro: leadsETo_weaken_L)
done

lemma LeadsETo_weaken:
"[| F ∈ A LeadsTo[CC’] A’;

B <= A; A’ <= B’; CC’ <= CC |]
==> F ∈ B LeadsTo[CC] B’"

apply (simp (no_asm_use) add: LeadsETo_def)
apply (blast intro: leadsETo_weaken)
done

lemma LeadsETo_subset_LeadsTo: "(A LeadsTo[CC] B) <= (A LeadsTo B)"
apply (unfold LeadsETo_def LeadsTo_def)
apply (blast intro: leadsETo_subset_leadsTo [THEN subsetD])
done

lemma reachable_ensures:
"F ∈ A ensures B =⇒ F ∈ (reachable F Int A) ensures B"

apply (rule stable_ensures_Int [THEN ensures_weaken_R], auto)
done

234 28 PROGRESS UNDER ALLOWABLE SETS

lemma lel_lemma:
"F ∈ A leadsTo B =⇒ F ∈ (reachable F Int A) leadsTo[Pow(reachable F)]

B"
apply (erule leadsTo_induct)

apply (blast intro: reachable_ensures)
apply (blast dest: e_psp_stable2 intro: leadsETo_Trans leadsETo_weaken_L)

apply (subst Int_Union)
apply (blast intro: leadsETo_UN)
done

lemma LeadsETo_UNIV_eq_LeadsTo: "(A LeadsTo[UNIV] B) = (A LeadsTo B)"
apply safe
apply (erule LeadsETo_subset_LeadsTo [THEN subsetD])

apply (unfold LeadsETo_def LeadsTo_def)
apply (blast intro: lel_lemma [THEN leadsETo_weaken])
done

context Extend
begin

lemma givenBy_o_eq_extend_set:
"givenBy (v o f) = extend_set h ‘ (givenBy v)"

apply (simp add: givenBy_eq_Collect)
apply (rule equalityI, best)
apply blast
done

lemma givenBy_eq_extend_set: "givenBy f = range (extend_set h)"
by (simp add: givenBy_eq_Collect, best)

lemma extend_set_givenBy_I:
"D ∈ givenBy v ==> extend_set h D ∈ givenBy (v o f)"

apply (simp (no_asm_use) add: givenBy_eq_all, blast)
done

lemma leadsETo_imp_extend_leadsETo:
"F ∈ A leadsTo[CC] B
==> extend h F ∈ (extend_set h A) leadsTo[extend_set h ‘ CC]

(extend_set h B)"
apply (erule leadsETo_induct)

apply (force intro: subset_imp_ensures
simp add: extend_ensures extend_set_Diff_distrib [symmetric])

apply (blast intro: leadsETo_Trans)
apply (simp add: leadsETo_UN extend_set_Union)
done

lemma Join_project_ensures_strong:
"[| project h C G /∈ transient (project_set h C Int (A-B)) |

235

project_set h C Int (A - B) = {};
extend h FtG ∈ stable C;
Ftproject h C G ∈ (project_set h C Int A) ensures B |]

==> extend h FtG ∈ (C Int extend_set h A) ensures (extend_set h B)"
apply (subst Int_extend_set_lemma [symmetric])
apply (rule Join_project_ensures)
apply (auto simp add: Int_Diff)
done

lemma pli_lemma:
"[| extend h FtG ∈ stable C;

Ftproject h C G
∈ project_set h C Int project_set h A leadsTo project_set h B |]

==> Ftproject h C G
∈ project_set h C Int project_set h A leadsTo

project_set h C Int project_set h B"
apply (rule psp_stable2 [THEN leadsTo_weaken_L])
apply (auto simp add: project_stable_project_set extend_stable_project_set)
done

lemma project_leadsETo_I_lemma:
"[| extend h FtG ∈ stable C;

extend h FtG ∈
(C Int A) leadsTo[(%D. C Int D)‘givenBy f] B |]

==> Ftproject h C G
∈ (project_set h C Int project_set h (C Int A)) leadsTo (project_set h

B)"
apply (erule leadsETo_induct)

prefer 3
apply (simp only: Int_UN_distrib project_set_Union)
apply (blast intro: leadsTo_UN)

prefer 2 apply (blast intro: leadsTo_Trans pli_lemma)
apply (simp add: givenBy_eq_extend_set)
apply (rule leadsTo_Basis)
apply (blast intro: ensures_extend_set_imp_project_ensures)
done

lemma project_leadsETo_I:
"extend h FtG ∈ (extend_set h A) leadsTo[givenBy f] (extend_set h B)
=⇒ Ftproject h UNIV G ∈ A leadsTo B"

apply (rule project_leadsETo_I_lemma [THEN leadsTo_weaken], auto)
done

lemma project_LeadsETo_I:
"extend h FtG ∈ (extend_set h A) LeadsTo[givenBy f] (extend_set h B)

=⇒ Ftproject h (reachable (extend h FtG)) G

236 28 PROGRESS UNDER ALLOWABLE SETS

∈ A LeadsTo B"
apply (simp (no_asm_use) add: LeadsTo_def LeadsETo_def)
apply (rule project_leadsETo_I_lemma [THEN leadsTo_weaken])
apply (auto simp add: project_set_reachable_extend_eq [symmetric])
done

lemma projecting_leadsTo:
"projecting (λG. UNIV) h F

(extend_set h A leadsTo[givenBy f] extend_set h B)
(A leadsTo B)"

apply (unfold projecting_def)
apply (force dest: project_leadsETo_I)
done

lemma projecting_LeadsTo:
"projecting (λG. reachable (extend h FtG)) h F

(extend_set h A LeadsTo[givenBy f] extend_set h B)
(A LeadsTo B)"

apply (unfold projecting_def)
apply (force dest: project_LeadsETo_I)
done

end

end

	The Basic UNITY Theory
	The abstract type of programs
	Inspectors for type "program"
	Equality for UNITY programs
	co
	Union
	Intersection
	unless
	stable
	Union
	Intersection
	invariant
	increasing
	Theoretical Results from Section 6
	Ad-hoc set-theory rules

	Partial versus Total Transitions
	Basic properties

	Rules for Lazy Definition Expansion
	Inspectors for type "program"

	Fixed Point of a Program
	Progress
	transient
	ensures
	leadsTo
	PSP: Progress-Safety-Progress
	Proving the induction rules
	wlt
	Completion: Binary and General Finite versions

	Weak Safety
	traces and reachable
	Co
	Stable
	Increasing
	The Elimination Theorem
	Specialized laws for handling Always
	"Co" rules involving Always
	Totalize

	Weak Progress
	Specialized laws for handling invariants
	Introduction rules: Basis, Trans, Union
	Derived rules
	PSP: Progress-Safety-Progress
	Induction rules
	Completion: Binary and General Finite versions

	The Detects Relation
	Unions of Programs
	SKIP
	SKIP and safety properties
	Join
	JN
	Algebraic laws
	Laws Governing 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Safety: co, stable, FP
	Progress: transient, ensures
	the ok and OK relations
	Allowed
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 safetyprop, for reasoning about given instances of "ok"

	Composition: Basic Primitives
	The component relation
	The preserves property

	Guarantees Specifications
	Existential Properties
	Universal Properties
	Guarantees
	Distributive Laws. Re-Orient to Perform Miniscoping
	Guarantees: Additional Laws (by lcp)
	Guarantees Laws for Breaking Down the Program (by lcp)

	Extending State Sets
	Restrict
	Trivial properties of f, g, h
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 extendset: basic properties
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 projectset: basic properties
	More laws
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 extendact
	extend
	Safety: co, stable
	Weak safety primitives: Co, Stable
	Progress: transient, ensures
	Proving the converse takes some doing!
	preserves
	Guarantees

	Renaming of State Sets
	inverse properties
	the lattice operations
	Strong Safety: co, stable
	Weak Safety: Co, Stable
	Progress: transient, ensures
	"image" versions of the rules, for lifting "guarantees" properties

	Replication of Components
	Injectiveness proof
	Surjectiveness proof
	The Operator 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 liftset
	The Lattice Operations
	Safety: constrains, stable, invariant
	Progress: transient, ensures
	Lemmas to Handle Function Composition (o) More Consistently
	More lemmas about extend and project
	OK and "lift"

	The Prefix Ordering on Lists
	preliminary lemmas
	genPrefix is a partial order
	recursion equations
	The type of lists is partially ordered
	pfixLe, pfixGe: properties inherited from the translations

	The Follows Relation of Charpentier and Sivilotte
	Destruction rules
	Union properties (with the subset ordering)
	Multiset union properties (with the multiset ordering)

	Predicate Transformers
	Defining the Predicate Transformers 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wp, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 awp and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wens
	Defining the Weakest Ensures Set
	Properties Involving Program Union
	The Set 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wensset F B for a Single-Assignment Program

	Progress Sets
	Complete Lattices and the Operator 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cl
	Progress Sets and the Main Lemma
	The Progress Set Union Theorem
	Some Progress Sets
	Lattices and Relations
	Decoupling Theorems

	Composition Theorems Based on Monotonicity and Commutativity
	Commutativity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cl L and assignment.
	Commutativity of Functions and Relation

	Monotonicity

	Comprehensive UNITY Theory
	The Token Ring
	Definitions
	Progress under Weak Fairness
	Progress

	Analyzing the Needham-Schroeder Public-Key Protocol in UNITY
	Inductive Proofs about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nspublic
	Authenticity properties obtained from NS2
	Authenticity properties obtained from NS2

	A Family of Similar Counters: Original Version
	A Family of Similar Counters: Version with Compatibility
	The priority system
	Component correctness proofs
	System properties
	The main result: above set decreases

	Progress Set Examples
	The Composition of Two Single-Assignment Programs
	Calculating 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wensset FF k
	Proving 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 FF UNIV --3mu k

	Common Declarations for Chandy and Charpentier's Allocator
	State definitions. OUTPUT variables are locals
	Resource allocation system specification
	Client specification (required)
	Allocator specification (required)
	Network specification
	State mappings
	bijectivity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sysOfClient
	bijectivity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 clientmap

	o-simprules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sysOfAlloc [MUST BE AUTOMATED]
	o-simprules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sysOfClient [MUST BE AUTOMATED]
	Components Lemmas [MUST BE AUTOMATED]
	Proof of the safety property (1)
	Proof of the progress property (2)

	Implementation of a multiple-client allocator from a single-client allocator
	Theorems for Merge
	Theorems for Distributor
	Theorems for Allocator

	Distributed Resource Management System: the Client
	Projections of State Sets
	Safety
	"projecting" and union/intersection (no converses)
	Reachability and project
	Converse results for weak safety: benefits of the argument C
	A lot of redundant theorems: all are proved to facilitate reasoning about guarantees.
	leadsETo in the precondition (??)
	transient
	ensures – a primitive combining progress with safety

	Towards the theorem 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 projectEnsuresD
	Guarantees
	guarantees corollaries
	Some could be deleted: the required versions are easy to prove
	Guarantees with a leadsTo postcondition

	Progress Under Allowable Sets

